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ABSTRACT

Pneumonia has claimed and continues to claim the lives of millions of people worldwide.

Also, its effect on countrys and households cannot be ignored since most of the people that

get infected and/or die from the diseases are usually future generation childrens. The im-

pact of Pneumonia worsened in the presence of opportunistic infections like Typhoid fever.

Thus, firms need to get involved in the fight against Pneumonia and its co-infection with

these opportunistic infections. This thesis presents three detailed deterministic mathematical

models that are aimed at describing the dynamics of Pneumonia and its co-infection with

Typhoid fever. The first model is a general one that describes the dynamics of Pneumonia.

The model is qualitatively analyzed to determine conditions for successful campaign against

Pneumonia. Numerical simulations are also carried out and various combinations of inter-

ventions strategies are compared to determine the most cost-effective strategy that should be

employed for the campaign against the disease. It is observed that the strategy that adopts

prevention and treatment is most cost-effective in the fight against the spread of the disease.

The second model considers dynamics of the Typhoid fever. This model is qualitatively an-

alyzed to determine conditions for eradication of the disease. Numerical simulations and

comparison of various intervention schemes revealed that the most cost-effective scheme

that should be adopted for a successful campaign against the disease is one that implements

prevention and treatment strategies. The third model considers the dynamics of co-infection

of Pneumonia and Typhoid fever diseases The model is also qualitatively analyzed and nu-

merically simulated. It is revealed that a successful campaign against the co-infection of the

two diseases will have to include preventative measure for Typhoid fever and treatment for

Pneumonia.
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Chapter 1

INTRODUCTION

1.1 Basic Information about Pneumonia

Pneumonia is a life-threatening infection of the lower respiratory tract that affects children

and adults around the world and is a leading cause of death of all infectious disease [WHO

2014]. Hippocrates described this disease before 2,500 years and Dr. William Osler who

studied this disease in his entire life, called pneumonia, which means ” captain of death” due

to the reason that the great loss of human being by this disease (Osler, 2006).

1.1.1 Cause of Pneumonia

According to world healthy organization (WHO), Pneumonia is caused by different fac-

tors including pathogens, the environment, health systems, and health-seeking behaviours.

Pathogenic Organisms that cause Pneumonia are Bacteria, Viruses, Fungi and Parasites.

Bacteria

Among the four micro-organisms Bacteria is the main cause of Pneumonia [WHO], specifi-

cally Streptococcus pneumoniae. Another type of pneumonia named as Klebsiella pneumo-

niae and Hemophilus influenzae is occurred most of the time for peoples who have chronic

obstructive pulmonary disease or individuals that are addicted to alcohol. Mycoplasma pneu-

monia is also caused by bacteria and most of the time occur during summer(hot) season and

1



it will continue for some months. Another types of bacteria responsible for pneumonia are

Legionella pneumoniae (often found in contaminated water supplies and air conditioners),

Chlamydia pneumonia and also Pneumocystis carinii pneumonia is a form of pneumonia

that usually affects the two lungs and attack people who have a weak immune system (Dunn,

2005). The bacteria can also be carried in the mouth or flora of nasopharynx of a healthy

person without causing any harm (Pessoa, 2010). Such people are referred to as carriers. For

carriers, the bacteria can find its way to the lungs and invade to cause the infection. This

is possible when the immunity of the individual is lowered otherwise they may continue for

years with out showing the symptom of the disease but they may transmit the bacteria to

other people.

Viruses

Viral pneumonias are pneumonias that caused by viruses and most of the time they do not

respond to antibiotics. Some of the virus that are responsible for the cause of viral pneu-

monia are influenza virus (flu), parain fluenza, rhino-virus and respiratory syncytial virus

(RSV)(Orin, 2005). Herpes simplex virus also cause pneumonia for persons who have sig-

nificant burns, cancer patient and infants. (Behera, 2010)

Fungi

Fungal pneumonia is a pneumonia that are caused by fungi but this pneumonia is not com-

mon but it may affect individuals with low immune system due to different reasons. It is

caused by Histoplasma capsulatum, blastomyces, Cryptococcus neoformans, Pneumocystis

jiroveci (pneumocystis pneumonia), and Coccidioides immitis. (Orin, 2005).

Parasites

Different Parasites like, Plasmodium malariae, Strongyloides stercoralis, Toxoplasma gondii,

and Ascaris lumbricoides can affect human lungs by releasing toxic substances which may

result Pneumonia WHO.
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1.1.2 Symptom of Pneumonia

Symptoms of pneumonia for individuals in which their is younger than 65 may come sud-

denly if the pneumonia is caused by bacteria. Pneumonia symptom most of the time starts

after or during upper respiratory infections due to flu or cold (Singh and Aneja, 2011). The

symptom of Pneumonia varies in age but most common symptoms may include: Cough,

chest wall, feel pain due to coughing or breathing in often producing mucus and this mucus

may be tinged with blood, rusty or green , fever, Shaking, chills. Fast, often shallow, breath-

ing and the feeling of being short of breath, fast heartbeat, feeling very tired or weak, nausea

and vomiting and diarrhea (Singh and Aneja, 2011). Symptoms of pneumonia that are not

caused by bacteria may not come suddenly and are usually not as bad as symptoms due to

bacterial pneumonia because of this, many people don’t realize that, they have been affected

by non-bacterial pneumonia, because they feel good until it worsen. Children symptoms

varies according their age, most of the time for more than one month of age, symptoms may

include having little or no energy, feeding poorly, grunting, or having a fever. In some condi-

tions other disease with symptoms similar to pneumonia include bronchitis and tuberculosis

citepWo2006. As a result of this clinical diagnosis of pneumonia is difficult and going for

Pneumonia lab test is recommended.

1.1.3 Diagnosis of Pneumonia

A chest X-ray, which is almost always done to check for changes in the lungs that may mean

presence of pneumonia. But an X-ray does not always show whether you have pneumonia,

especially if it is done when you first get sick citepWo2006. In some cases, the X-ray results

may: Suggest the type of organism (bacterial, viral, or fungal) causing pneumonia, show

complications of pneumonia, such as infection of the heart muscle or the sac surrounding

the heart, show conditions that may occur with pneumonia, such as fluid in the chest cavity

or a collapsed lung, reveal another condition, such as heart failure, lung cancer, or acute

bronchitis. Figure 1.1.1 shows chest X- ray film of a person who suffered from pneumonia.

This chest X-ray shows an area of lung inflammation indicating the presence of pneumo-
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Figure 1.1.1: Chest X-ray

nia.

Lab tests for pneumonia is another method to examine pneumonia. The need for more

tests often depends on how severe the symptoms are, age, and overall health of the patient.

In general, the sicker, the more tests may need. This is especially true for older adults and

infants (Yil et al., 2010). Arterial blood gas test is prescribed for a very ill patients, have

severe shortness of breath, or for a condition that increases risk (such as asthma or Chronic

obstructive pulmonary disease) mucus test is done (Yil et al., 2010). Tests will include a

Gram strain and a sputum culture. And to identify some bacteria that cause pneumonia rapid

urine test is used. This can help guide treatment for pneumonia.

1.1.4 Transmission of Pneumonia

Pneumonia can spread through the community in different ways. The bacteria or viruses

spread via air-borne droplets from a cough or sneeze. Pneumonia may spread through blood,

especially during and shortly after birth. In addition, Parasitic Pneumonia spread if the or-

ganisms enter to the body through direct contact with the skin, ingestion, or via an insect

vector WHo.
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1.1.5 Control of Pneumonia

The cause of Pneumonia have different factor, so no single intervention can effectively pre-

vent, treat, or control pneumonia (Tong, 2013). As such, a combination of main interventions

to control pneumonia would include immunization, screening , treatment of the infected

individuals and improvements in nutrition and environmental living conditions (e.g. safe

drinking water, sanitation, hygiene, low household air pollution) (Tong, 2013).

1.2 Basic Information about Typhoid fever

Typhoid fever is endemic mainly in developing countries that can spread throughout the

body, affecting many organs. Without prompt treatment, it can cause serious complications

and can be fatal citepwho2008.

1.2.1 Cause of Typhoid fever

Typhoid fever is caused by bacteria called Salmonella typhi (S. typhi) which is a Gram-

negative anaerobic rod shaped bacterium that belong to a family of Enterobacteriaceae (To-

dar, 2011). Figure 1.2.1 show the microscopic picture of S. typhi

1.2.2 Symptom of Typhoid fever

It usually takes 1 to 3 weeks time for patients to develop typhoid symptoms after exposure

to the bacteria. The duration of the disease is 3 to 4 weeks depending upon the severity

of the disease (mild or severe) with the normal incubation time is 7 to 14 days (Crump

et al., 2004). The symptoms are, headaches, constipation or diarrhea, high fever (103 degree

F), lethargy, poor appetite, enlarged spleen and liver, rose-colored spots on the chest, chest

congestion, abdominal pain, fatigue, chills and generalized pain and weakness citepWh2005.

Some conditions with symptoms similar to typhoid fever include Malaria. Therefore Typhoid

fever lab Exams and Tests is must to decide that the disease is typhoid fever. Otherwise

complications of typhoid occur when a large number of bacteria get into the bloodstream,
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Figure 1.2.1: Salmonella typhi , Source(http://www.denniskunkel.com/)

causing bacteremia. They can travel to the lungs, causing pneumonia, or to the lining of

the brain (meningitis), the bones (osteomyelitis), the heart valves (endocarditis), the kidneys

(glomerulonephritis), the genital or urinary tract, or the muscles. Hepatitis (inflammation of

the liver) can also occur.

1.2.3 Diagnosis of Typhoid fever

If a person are suffering from the disease, the complete blood count of the patient will show

an increased white blood cell (WBC) count and if blood culture done during the initial phase

of the disease (in the first week) shows S. typhi bacteria. Another tests is ELISA, which is

a recent diagnostic test. ELISA urine test is done to look out for the bacteria causing the

disease. Fluorescent antibody study is also a test in which any substances that are specific

to the bacterium are looked for. Stool culture is also done to determine the presence of the

bacterium in the feces (Christopher et al., 2002).
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1.2.4 Transmission of Typhoid fever

Typhoid fever causing bacteria will be in the stool and rarely in the urine of the infected

persons. If they don’t wash their hands properly they contaminate any drinks or foods they

touch. Any individuals who drink or eat the contaminate drinks and food may get the bacte-

ria (Lauria et al., 2009).

After Salmonella typhi bacteria enters to the body it will move down into the digestive sys-

tem, where they will quickly multiply. Up 5% who get the bacteria become carriers har-

bouring S.typhi in the gallbladder with out causing any disease symptom . This shows the

bacteria start to live in the carrier’s and continue to spread through urine and stools for years.

It usually takes 1 to 3 weeks time for non carrier patients to develop typhoid symptoms after

exposure to the bacteria (Crump et al., 2004).

1.2.5 Control of Typhoid fever

Typhoid fever will be controlled through proper sanitation like washing hands properly after

using toilet, mass cleaning of infected human waste from environments and avoiding of

eating raw vegetables that have been fertilized by human waste, Provision of a safe water

supply.[WHO 2014] In line with treating individuals who develop the symptoms Screening

of Carrier’s is vital to control Typhoid fever infection, because they release the bacteria with

out knowing as they are living with salmonella typhi. Reducing the number of cases in the

general population requires the provision of safe drinking water, effective sewage disposal,

and hygienic food preparation citepwho2008.

1.3 Some statistics on Pneumonia

In the last few decades, the world has been plagued with outbreaks of several diseases that

claimed and continue to claim the lives of millions of people worldwide. Among these dis-

ease Pneumonia pandemic has been of concern to many well-meaning nations, organizations

and individuals. According to world health organization Pneumonia is a leading infectious
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cause of death worldwide . Figure 1.3.1 shows that from 2007 to 2015 the number of un-

der five year children who lost their life due to Pneumonia and estimated that more than 21

millions under five childhoods died due to Pneumonia. [WHO]

Figure 1.3.1: Under five year death due to Pneumonia

Pneumonia is responsible for 19% of all deaths of children under five years old in 2012.

[WHO 2012] April 10th,2013 in Geneva world healthy organization in collaboration with

UNICEF developed an action plan named, the Integrated Global Action Plan for the Preven-

tion and Control of Pneumonia and Diarrhoea (GAPPD) that used to support the achievement

of Millennium Development Goal 6 (MDG 6). The goal of (GAPPD) to see a drop in deaths

from pneumonia to fewer than 3 children in 1000 live births, and from diarrhoea to less than

1 in 1000 by 2025.[WHO 2013]

1.4 Some statistics of Typhoid fever

Typhoid fever is one of public health problem in many developing countries . It is estimated

that the worldwide incidence of typhoid fever exceeds 50 million cases per year, with more

than 600,000 deaths occurring annually, however, the true magnitude is difficult to quantify

because the clinical picture is confused with many other febrile illnesses and most typhoid

endemic areas lack facilities to confirm the diagnosis (Crump et al., 2004). Figure 1.4.1

below shows Typhoid fever distribution globally.
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Figure 1.4.1: Typhoid Distribution Globally. Source:(http://www.slideshare.net/dranwarahmad/typhoid-
fever-ppt)

According to world healthy organization (WHO) data base each year the number of

deaths occurring annually greater than 200,000. Figure 1.4.2 shows number of deaths glob-

ally from 2000-2016.

Figure 1.4.2: Typhoid fever deaths globally

1.5 Mathematical Modelling of Pneumonia and Typhoid fever

From the days of Bernoulli, mathematical modelling has played a very significant role in

the study of infectious diseases with a major role in increasing our understanding of the

dynamics of diseases and providing intervention strategies to mitigate the diseases. One

of the earlier models on infectious diseases was that of Kermack and McKendrick (1927)

. Several models have been proposed to study the effects of some factors on the transmis-

sion dynamics of infectious diseases and to provide guidelines as to how the spread can
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be controlled. Smith et al. (1993) and Lipsitch (1999) are among the earlier study of the

transmission dynamics of Pneumonia only by proposing a model to determine the effects

of various factors on the transmission of the disease. Cvjetanovij et al. (1971) is also one

of the earlier study on the transmission dynamics of Typhoid fever. This study developed

a mathematical model and the proposed model depends up on the endemicity level of Ty-

phoid fever, and the model considered sanitation and vaccination as intervention strategies.

Several other models are proposed to to study the dynamics of Pneumonia or Typhoid fever

only. Melegaro et al. (2004) proposed and gave a detailed analysis of a dynamical model

of Pneumonia by considering susceptible and infected in two groups, children and adults.

Temime et al. (2004) also proposed Pneumonia model by considering the population in three

age structures. Several other models have been proposed to study dynamics of either Pneu-

monia only or Typhoid fever only, for instance see studies Huang et al. (2008),Snedecor et al.

(2009), Effelterre et al. (2010), Ong’ala et al. (2013), Adetunde (2008),Mushayabasa (2011),

Waleed and Imran (2015) to mention a few.

All the above studies have developed mathematical model of pneumonia only or Typhoid

dynamics by viewing in different aspects. Some of them considered deterministic model and

others stochastic model and subdivided the population in to Susceptible, infective, vacci-

nated, treated, carrier and recovered. But any of them didn’t apply optimal control strategies

and also to the best of our knowledge no study have been undertaken co-infection of Pneu-

monia and Typhoid fever. This is, therefore we are motivated to undertake this study for

fulfilling all this gap.

1.6 Research Aim and Objectives

The main aim of this thesis is to study the dynamics of the co-infection of Pneumonia and

Typhoid fever with optimal control and cost-effectiveness analysis.In this thesis a study of

the optimal strategies of combating the spread of Pneumonia and Typhoid fever is studied. To

achieve this, a number of new mathematical models are proposed to describe the dynamics

of Pneumonia , Typhoid fever and also their co-infection and incorporate controls aimed at

10



reducing and/or controlling the spread of the diseases. Qualitative properties of these models

in the form of equilibria, conditions of stability, existence of optimal control profiles and the

implications of these properties are presented. Threshold quantities, like the basic reproduc-

tion number ℜ0, that informs about the possible eradication or persistence of the infection

are also studied.

The thesis addresses a number of mathematical and epidemiological problems, pertaining to

the optimal control of Pneumonia, Typhoid fever and their co-infection.

To help achieve the main aim of the thesis, the following objectives were sought:

i) To study the dynamics of Pneumonia Disease with Optimal Control Cost Effective Strate-

gies.

ii) To study the dynamics of Typhoid fever Disease with Optimal Control Cost Effective

Strategies.

iii) To study the Co-Dynamics of Pneumonia and Typhoid Fever Diseases with Cost Effective

Optimal Control Analysis.

1.7 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, some relevant mathemat-

ical tools and concepts are presented. Chapter 3 presents a basic deterministic model that

describes the dynamics of Pneumonia. This model is comprehensively analyzed both qual-

itatively and quantitatively. In Chapter 4, a comprehensive model is proposed to study the

dynamics of Typhoid fever. Chapter 5 proposes and rigorously analyzes another determinis-

tic model to study the dynamics of Pneumonia and Typhoid fever co-infection. Finally, the

main results of the thesis and conclusions drawn there from are presented in Chapter 6. Other

relevant components of the thesis that are not in the chapters mentioned above are presented

in the Appendices.
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Chapter 2

Mathematical Preliminaries

This chapter presents the mathematical principles that underlie the methods and theories used

in the thesis. There are currently two streams of methodologies used to study the dynamics

of infectious diseases. These are stochastic and non-stochastic methodologies. Among the

non-stochastic methodologies is the theory of differential equations, which is by far the most

widely used methodology employed in the Mathematical modelling of infectious diseases.

This wide application of differential equations is due to the fact that the mathematics of

differential equations is well-established and easily implemented using the current state-of-

the-art technology. For this reason, the models developed and analyzed in this thesis are

differential equation models. A number of differential equation models are proposed in

order to describe the spread of Pneumonia and Typhoid fever. These models are qualitatively

studied and numerically solved. The best ways of controlling the disease are also sought

by constructing optimal control problems involving intervention strategies that are aimed

at combating the spread of the diseases with minimal cost. We present in the sequel some

basic mathematical preliminaries that are critical in the use of differential equations to model

infectious diseases. We give definitions of some basic terms relating to dynamical systems.

Definition 2.0.1. (Perko, 2001) A dynamical system is a way of describing the passage in

time of all points of a given space S .

The space S could be thought of, for example, as the space of the state of some physical

system. Dynamical systems arise in almost all fields of learning especially in the sciences
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where there is usually an interest in knowing the behavior of a given system at given times in

space. Dynamical systems are either discrete or continuous depending on whether the inter-

est has to do with the state of the system at integer time values or not. A general dynamical

system is of the form

φt : Rn→ Rn (2.0.1)

Definition 2.0.2. A smooth dynamical system on Rn is a continuously differentiable func-

tion φ : Rn→ Rn where φ(t,X) = φt(X) satisfies

1. φ0 : Rn→ Rn is the identity function: φ0(X0) = X0;

2. The composition φt ◦φs = φt+s for each t, s ∈ R

Most of the dynamical systems in Engineering and Science, and specifically those con-

sidered in this thesis, are in the form of differential equations and hence focus is given to the

concepts in differential equations.

2.1 Differential Equations

Definition 2.1.1. A differential equation is an equation involving a quantity together with its

derivatives with respect to some independent variable(s).

Differential equations are of two types; ordinary and partial differential equations. An

ordinary differential equation is one in which the quantity being described has only one

variable on which it depends. A partial differential equation on the other hand, involves a

quantity with more than one independent variable. For the most part of this thesis, determin-

istic models which are ordinary differential equations are dealt with and hence most of the

discussions in this section will be focused on this category of differential equations.

Definition 2.1.2. Let x be the state of a dynamical system. Then a generalized deterministic

model involving x is given by
dx
dt

= f (x, t;λ ) (2.1.1)
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Where x ∈ Rn, t represents time, and λ ∈ Rm represents the parameters upon which the

evolution of the system depends. Equation (2.1.1) is called an Ordinary differential Equation

(ODE). ODEs in which the time variable, t, explicitly appears are said to be Non-autonomous

while those in which the time variable does not explicitly appear are said to be Autonomous

ODEs. Most epidemic models including those considered in this thesis are autonomous

systems that can be written in the form:

ẋ = f (x) (2.1.2)

where x = (x1,x2, . . . ,xn) and ẋ = dx
dt represents point-wise time-derivatives of the state vari-

able x. When information about the initial state of the system is provided along with equation

(2.1.2) the resulting equation is called an initial-value problem, which is given by:

ẋ = f (x), withx(t0) = x0 ∈ Rn (2.1.3)

when data about the initial time state and final time state are given, the differential equation

together with these information become a boundary-value problem. It should be noted here

that the models that are considered in this thesis are compartmental models which involve

the rate of change of population sizes of several compartments in a given system. For a given

system, with say n compartments, a general dynamical system that describes the evolution

of the system is given by:

dx1
dt = f1(x1,x2, . . . ,xn)

dx2
dt = f2(x1,x2, . . . ,xn)

...
dxn−1

dt = fn−1(x1,x2, . . . ,xn)

dxn
dt = fn(x1,x2, . . . ,xn)


(2.1.4)

Models like (2.1.4) are often compactly represented in the form of (2.1.2) so that x=(x1,x2, . . . ,xn)

and f = ( f1, f2, . . . , fn).
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Lemma 2.1.1. (Hirsch et al., 2004) Let E be an open subset of Rn and let f : E→Rn. then,

if f ∈ C1(E), f is locally Lipschitz on E.

Definition 2.1.3. Let f : E→Rn where E is an open subset of Rn. We say f ∈ C1(E) iff the

partial derivatives ∂ fi
∂x j

, i, j = 1, . . . ,n, exist and are continuous on E.

The notation Ck is used to denote the space of all functions with continuous kth− order

derivatives.

Definition 2.1.4. (Perko, 2001) The function f : Rn→Rn is differentiable at x0 ∈Rn if there

is a linear transformation D f (x0) ∈L (Rn) that satisfies

lim
|h|→ 0

| f (x0 +h)− f (x0)−D f (x0)h|
|h|

= 0

The linear transformation D f (x0) is called the derivative of f at x0

In order to calculate the derivative of a function at a point, the following theorem is quite

useful.

Theorem 2.1.2. (Perko, 2001) If f : Rn→ Rn is differentiable at x0, then the partial deriva-

tives ∂ fi
∂x j

, i, j = 1, . . . ,n all exist at x0 and for all x ∈ Rn,

D f (x0)x =
n

∑
j=1

∂ f
∂x j

(x0)x j.

Thus, if f is a differentiable function, the derivative is given by the n× n Jacobian matrix

D f =
[

∂ fi

∂x j

]
.

Definition 2.1.5. Suppose V1 and V2 are two normed linear spaces with respective norms,

‖.‖1 and ‖.‖2. Then f : V1→ V2 is continuous at x0 ∈ V1 if for all ε > 0, there exists a δ > 0

such that for any x ∈ V1, if ‖x− x0‖1 < δ then ‖ f (x)− f (x0)‖2 < ε

The function f is said to be continuous on the set E ∈ V1 if it is continuous at every point
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in E and when that happens, the notation f ∈ C(E) is used to mean that f is continuous on

E.

Theorem 2.1.3 (Fundamental Existence-Uniqueness theorem (Hirsch et al., 2004)). Con-

sider the initial value problem (2.1.3). Suppose that f is C1. Then first of all, there exists a

solutions of this initial value problem and secondly, this is the only such solution. More pre-

cisely, there exists an a > 0 and a unique solution of (2.1.3) on the interval [−a,a] satisfying

the initial condition x(t0) = x0.

2.1.1 Equilibrium and Linearization of Autonomous Systems

Definition 2.1.6. Given the autonomous deterministic model (2.1.2), a state x̄ is said to be an

equilibrium point of the model if f (x̄) = 0 ( i.e. The function-value at x̄ is zero.). Equilibrium

points are also called critical points of the model.

For ordinary differential equation models in the form of (2.1.2), the equilibrium points

are found by making the left-hand-sides of the equations zero (ie set ẋ = 0) and solving for

the state variable x.

Definition 2.1.7. (Stability in the sense of Lyapunov) An equilibrium point, x̄, of (2.1.2) is

said to be locally stable if ∀ε > 0, ∃δ > 0 such that ‖x0− x̄‖< δ ⇒ ‖x(t)− x̄‖< ε

An equilibrium point which is not locally stable is said to be Unstable.

Definition 2.1.8. (Asymptotic Stability) An equilibrium point x̄ of the model (2.1.2) is said

to be locally asymptotically stable if it is locally stable and furthermore all solutions starting

near x̄ tend towards x̄ as t→ ∞.

That is ∃δ > 0 such that ‖x0− x̄‖< δ ⇒ lim
t→∞

x(t) = x̄ .

2.1.2 Local Stability Analysis of Equilibrium Points

In mathematical modelling, it is often very important to know the behavior of a dynamical

system near an equilibrium point. It is important to know whether or not future evolutions
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of the system will remain close to the equilibrium point if initial conditions are close to the

equilibrium. To find out about this, the local stability analysis is often carried out. The

indirect Lyapunov technique is often employed to determine the local stability of critical

points.

Definition 2.1.9. A critical point x̄ of a dynamical system is said to be locally stable if all

eigenvalues of the Jacobian evaluated at x̄ are negative.

Definition 2.1.10. The Jacobian of the dynamical system represented in (2.1.4) is given by:

J = D f (x) =



∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn−1

∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn−1

∂ f2
∂xn

...
... . . .

...
...

∂ fn−1
∂x1

∂ fn−1
∂x2

. . . ∂ fn−1
∂xn−1

∂ fn−1
∂xn

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn−1

∂ fn
∂xn


(2.1.5)

Definition 2.1.11. An equilibrium point x̄ of (2.1.2) is said to be hyperbolic if none of the

eigenvalues of the Jacobian evaluated at x̄, (ie D f (x̄) ), have a zero real part. The point, x̄, is

said to be non hyperbolic otherwise.

Definition 2.1.12. Consider the system

ẋ = f (x), x ∈ Rn

ẏ = g(y), y ∈ Rn
(2.1.6)

where f and g are two Cr (r ≥ 1) functions defined on Rn. Then the dynamics generated

by f and g are said to be Ck (k ≥ r) conjugate is there exists a Ck diffeomorphism h which

takes the orbits of the flow generated by f , φ(t, x), to the orbits of the flow generated by g,

ψ(t, y), preserving orientation and parameterization by time .

Definition 2.1.13. Let x̄ denote an equilibrium point of (2.1.2) and let D f (x̄) denote the

Jacobian evaluated at x̄. Then the system of differential equations given by:

ẏ = D f (x̄)y (2.1.7)
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is linear in y and is said to be the linearization of (2.1.2) near x̄.

Theorem 2.1.4 (Linearization theorem (Hirsch et al., 2004) ). ‘ Suppose the nonlinear system

(2.1.2) has an equilibrium point x̄ that is hyperbolic. Then the nonlinear flow is conjugate to

the flow of the linearized system in a neighborhood of x̄.

This theorem is also called the Hartman-Grobman theorem and simply says that the local

behavior of an hyperbolic equilibrium point of a nonlinear system can be approximated by

its linearization.

2.2 Global Stability of Dynamical Systems

The indirect method of Lyapunov which is used to determine the local stability of the equilib-

rium points has some limitations. Its results apply only in cases where there are infinitesimal

perturbations about the equilibrium. No information about the extent of the basin of attrac-

tion (which is the domain such that all solutions starting within that domain approach the

critical point) is provided. The direct Lyapunov method addresses this problem.

Definition 2.2.1. An equilibrium point x̄ is said to be globally asymptotically stable if it is

asymptotically stable for all initial condition x0 ∈ Rn

Without having to compute the trajectories of the dynamical system (2.1.2), Lyapunov

theory can be used to access the global stability of the equilibrium points.

The idea behind Lyapunov direct method is to establish properties of the equilibrium point of

the non-linear system by studying how carefully selected scalar functions of the state behave

as the system state evolves. It involves constructing a differentiable scalar function V (x)

such that:

a. V (x) is positive definite: V (0) = 0; V (x)> 0 for all x 6= 0 and,

b.∇V (x) · f (x)< 0 for all x

where ”·” designates the dot product, and ∇ designates the gradient vector function.

Definition 2.2.2. (Positive definite functions) a. A continuously differentiable function

V : Rn→ R+ is said to be positive definite in a region U ∈ Rn that contains the origin if
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(i). V (0) = 0, and

(ii). V (x)> 0,

for x ∈ U , and x 6= 0.

b. V (x) is said to be positive semi-definite if V (x)≥ 0∀x ∈ U .

c. Conversely, V (x) is said to be negative definite if V (x)< 0, and

d. V (x) is said to be negative semi-definite if V (x)≤ 0

Theorem 2.2.1. Let x∗ = 0 be an equilibrium point of the dynamical system (2.1.2), where

f : U→Rn is locally Lipschitz and U ⊂Rn a domain that contains the origin. Let V : U→R

be continuously differentiable, positive definite function in U.

a. If V̇ (x) = ∂ V
∂x · f ≤ 0, then x∗ = 0 is globally stable.

b. If V̇ (x) = ∂ V
∂x · f < 0, then x∗ = 0 is globally asymptotically stable.

Any function V that satisfies the conditions for Lyapunov stability theorem is called

Lyapunov function. Application of the Lyapunov function theorem is often very difficult

because there are no general methods for constructing the Lyapunov functions. However,

the following functional forms or heir variants can often serve as candidates for Lyapunov

functions.

a. Quadratic functions: V (x) =
n
∑

i=1
(xi− x∗i ).

b.Logarithmic functions: V (x) =
n
∑

i=1

(
xi− x∗i − x∗i ln

(
xi
x∗i

))
where x∗ = (x∗1, x∗2, . . . x∗n) is the equilibrium point.

2.3 Bifurcation Analysis

Definition 2.3.1. Bifurcation is (generally) defined as a change in the qualitative behavior

of a given dynamical system when an associated parameter is varied. The points of the

parameter where the change occurs are called bifurcation points (or bifurcation values).

Definition 2.3.2. Let

ẋ = f (x,µ), x ∈ R, µ ∈ R (2.3.1)
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be a one-parameter family of one-dimensional ODEs. An equilibrium solution of (2.3.1)

given by (x,µ) = (0,0) is said to undergo bifurcation at µ = 0 if the flow for µ near zero and

x near zero is not qualitatively the same as the flow near x = 0 at µ = 0 (Sharomi, 2010).

The Lyapunov indirect method is often used to study the local stability of disease-free

equilibria of epidemic models. This method involves linearizing the model around the

disease-free equilibrium and using the eigenvalues of the resultant Jacobian matrix to de-

termine conditions of stability. Doing this for endemic equilibrium states for most models is

quite tedious and mathematically intractable. To study the stability of endemic equilibrium

points, the center manifold theory ( described in (Castillo-Chavez and B., 2004) by Theorem

4.1) is used as an alternative. This theory is reproduced here for convenience.

Theorem 2.3.1. Theorem 4.1 of (Castillo-Chavez and B., 2004) Consider the following gen-

eral system of ODEs with a parameter φ .

dx
dt

= f (x,φ), f : Rn×R→ Rand f ∈ C2(Rn×R), (2.3.2)

where 0 is an equilibrium point of the system (that is, f (0,φ)≡ 0, ∀φ ) and assume

A1: A=Dx f (0,0) =
(

∂ fi
∂x j

(0,0)
)

is the linearization matrix of (2.3.2) around the equilibrium

point 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A

have negative real parts;

A2: Matrix A has a right eigenvector w and a left vector v (each corresponding to the zero

eigenvalue).

Let fk be the kth component of f and

a =
n

∑
k, i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(0,0), (2.3.3)

b =
n

∑
k, i=1

vkwi
∂ 2 fk

∂xi∂φ
(0,0). (2.3.4)

The local dynamics of the system (2.3.2) around 0 is totally determined by the signs of a and

b:
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i. a > 0, b > 0. When φ < 0 with |φ | ≤ 1, 0 is locally asymptotically stable, and there exists

a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium;

ii. a < 0, b < 0. When φ < 0 with |φ | � 1, 0 is unstable; when 0 < φ � 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0,b < 0. When φ < 0 with |φ | � 1, 0 is unstable, and there exists a locally asymp-

totically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a positive unstable

equilibrium appears;

iv. a < 0,b > 0. When φ changes from negative to positive, 0 changes its stability from stable

to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally

asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

This theorem is summarized in Table tab:Bifurcation-types-table (Castillo-Chavez and

B., 2004), with some bifurcation diagrams. In the bifurcation diagrams in Table ref tab:Bifurcation-

types-table, the vertical axis represents equilibrium points x∗, and the horizontal axis is the

parameter φ . Solid lines and dashed lines symbolize stable (S) and unstable (U), respectively.

2.3.1 Computation of Bifurcation Co-efficients, a and b

It should be noted here that using the formulas for determining a and b as defined in equations

(2.3.3) and (2.3.4) respectively becomes tedious for large systems. In this brief, a simplifi-

cation of the formulas for a and b is presented to allow for use of softwares like maple and

mupad to compute them.

Consider a system of n differential equations of the form:
dx
dt = f (x,φ) where x = (x1, x2, . . . ,xn) and f = ( f1, f2, . . . , fn).

Let w = (w1, w2, . . . ,wn)
T and v = (v1, v2, . . . ,vn) be the right and left eigenvectors associ-

ated with a simple eigenvalue of the Jacobian (evaluated at (0,0)) of the above system of

differential equations and define Then the bifurcation co-efficients, a and b can be computed
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using the following formulas:

a = v.



wT H1w

wT H2w

·

·

·

wT Hnw


and b = vT Mw (2.3.5)

2.4 Optimal Control Theory

A major part of the thesis employs concepts in mathematical optimal control theory to

study the best methods of combating the spread Pneumonia and Typhoid fever diseases.

For this reason, some basic concepts of the theory of optimal control is presented in this

section. The simplest optimal control problem is an optimization problem that seeks to

maximize/minimize an objective function subject to a dynamical system in the form of equa-

tion (ref eq:General-Autonomous-System) together with some initial or boundary conditions.

Formally, the simplest optimal control problem is one of the form

Maximize
∫ t f

t0
g(t,X ,u)dt

Subject to
dx
dt

= f (t,x,u), x(t0) = x0, x(t f ) free

and u(t) ∈U ,∀t ∈
[
0, t f

]


(2.4.1)

2.4.1 The Pontryagin’s Maximum Principle

The Pontryagin’s maximum principle often called the maximum principle is the main tool

used to solve optimal control problems. It provide first-order necessary conditions for opti-

mal solution of the problem. The principle provides direction as to how the control u, state

variable x and a third variable known as co-state or adjoint variable λ should change over
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time through equations of motions for x and λ . The Pontryagin’s maximum principle is given

in the following theorem.

Theorem 2.4.1. Let u(t) be a time optimal control and X(t) be the corresponding response

of the system. Then there exists a function λ (t) : [0, t f ]→ Rn, such that:

ẋ =
∂H
∂λ

(x,λ , u) ,x(t0) = x0 (State Equation) (2.4.2)

λ̇ =−∂H
∂x

(x, λ , u) (Co-state Equations) (2.4.3)

λ (t f ) = 0 (Transversality condition) (2.4.4)

H(x, λ , u) = max
u∈A

H(x, λ , u)
{

or
∂ H
∂u

= 0
}

(2.4.5)

Where H = g(t,x,u)+ λ (t) f (t,x,u) is called the Hamiltonian of the optimal control

problem. Equation (2.4.5) is given in two forms because, when the Hamiltonian is differen-

tiable with respect to u, the condition ∂ H
∂u = 0 can often be used to replace H(x∗, λ ∗, u∗) =

maxu∈A H(x, λ , u).

2.4.2 Numerical Solution of Optimal Control Problems

Most optimal control problems arising from engineering or biological sciences can not be

solved analytically and hence numerical solutions are often sought. Solving optimal control

problems in the form of (2.4.1) numerically involves finding piecewise continuous functions

ui(t) that optimize the objective functional. One can resort to total-enumeration methods or

linear programming techniques for this purpose, but bearing in mind that any solution of the

problem must necessarily satisfy the state and co-state equations as well as the optimality

conditions. For most problems, the optimality conditions can often be manipulated to find

an explicit expression for the control variable u(t), which can then be substituted into the

state (2.4.2) and co-state systems (2.4.3) so that the the two equations then form a two-point

boundary value problem. Numerical methods for solving ordinary differential equations and

boundary value problems can then be employed to solve the resulting two-point boundary

value problem. The numerical scheme employed in this thesis to solve resulting optimal
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control problems is the Forward-Backward Sweep method. Lenhart and T. (2007) gave a

rough outline of this method, which is reproduced here for convenience.

Step 1. Make an initial guess for u over the interval. Store the initial guess as u

Step 2. Using the initial condition x(t0) = x0 and the stored values for u, solve x forward in

time according to it differential equation in the optimality system.

Step 3. Using the transversality condition λ (t f ) = 0 and the stored values for x and u, solve

λ backward in time according to its differential equation in the optimality system.

Step 4. Update the control u by entering the new x and λ values into the characterization.

Step 5. Check convergence. If values of the variables in this iteration and the last iteration

are negligibly small, output current values as solutions. If values are not small, return to Step

2.

In implementing the above algorithm, the following can be taken note of:

1.For Step 1, a simple guess of u≡ 0 can often be used except when division by u occurs in

the problem, in which case a different initial guess can be used.

2. Even though many types of convergence criteria exists, it is often sufficient to require
n
∑

i=1
|u(i)− uold(i)| to be small, where u(i) and uold(i) are the vectors of estimated controls

for the current and old iterations respectively. Lenhart and T. (2007) suggested a stricter

convergence criterion (that the percentage error |u−uold |
|u| ≤ δ be negligibly small, where δ

is the accepted tolerance). This criterion can be manipulated (in order to circumvent issues

related to u≡ 0) to get an easily implemented criterion given by

δ

n

∑
i=1
|u(i)|−

n

∑
i=1
|u(i)−uold(i)| ≥ 0.

This requirement can be demanded of all x, λ and u.

2.5 The Basic Reproduction Number, ℜ0

The concept of the basic reproduction number is one of the central topics in mathematical

modelling of infectious diseases due to its meaning and extreme importance. Hardly can
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one find a publication on a mathematical model without mention of this number. It is also

called the basic reproduction ratio among other variant forms. It is very important in disease

modelling because it gives an indication regarding the future state of the infection. It tells us

whether or not the disease will persist or will be eradicated in due course.

Definition 2.5.1. (Diekmann et al., 1990)

The basic reproduction number, denoted ℜ0, is ’the expected number of secondary cases

produced, in a completely susceptible population, by a typical infective individual’

If ℜ0 < 1, then it means that on average, an infected individual infects less than one

susceptible over the course of its infectious period and the disease can not grow. If how-

ever, ℜ0 > 1, then an infected individual infects more than one susceptible over the course

of its infectious period and the disease will persist. ”For the case of a single infected com-

partment, ℜ0 > 1 is simply the product of the infection rate and the mean duration of the

infection. However, for more complicated models with several infected compartments this

simple heuristic definition of ℜ0 is insufficient ” (Driessche et al., 2002). Due to its impor-

tance, researchers have sought to find ways of determining ℜ0 and/or its proxies. A review

of the current methodologies used to estimate ℜ0 can be found in the work of Heffernan

et al. (2005). For the sake of simplicity, a brief description of the method of Driessche et al.

(2002) is given. It is this methodology that is employed in this thesis for the calculation of

ℜ0.

2.5.1 Description of the Method of Driessche and Watmough

Consider a compartmental disease transmission model in the form of (2.1.2), where x =

(x1, . . . ,xn) with xi denoting the number or proportion of individuals in compartment i. De-

fine Fi(x) as the rate of appearance of new infections in compartment i; V +
i (x) as the rate

of transfer of new infectives into compartment i; V −i (x) as the rate of transfer of infectives

out of compartment i and V (x) = V −i (x)−V +
i (x).

Let Xs = {x≥ 0|xi = 0, i = 1, . . . ,m} be the set of all disease free states.

Assuming the following conditions on these functions are true.
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A1 If x≥ 0 then Fi, V
+

i , V −i ≥ 0 for all i = 1, . . . ,n.

A2 If xi = 0 then V −i = 0. In particular if x ∈ Xs then V −i = 0 for i = 1, . . . ,m.

A3 Fi = 0 if i > m.

A4 If x ∈ Xs then Fi(x) = 0 and V +
i (x) = 0 for i = 1, . . . m.

A5 If F (x) is set to zero then all eigenvalues of D f (x0) have negative real parts.

Then the Jacobian matrix D f (x0) can be partitioned as given in the following lemma.

Lemma 2.5.1 (Lemma 1 of (Driessche et al., 2002)). If x0 is a DFE of (2.1.2) and fi(x)

satisfies (A1)-(A5), then the derivatives DF (x0) and DV (x0) are partitioned as follows

DF (x0) =

 F 0

0 0

 , DV (x0) =

 V 0

J3 J4

 ,

where F and V are m× m matrices defined by

F =

[
∂ Fi

∂xi
(x0)

]
and V =

[
∂ Vi

∂xi
(x0)

]
with i≤ m, j ≤ m.

Further, F is non-negative, V is a non-singular M-matrix and all eigenvalues of J4 have

positive real parts.

The following theorem then is used to compute the threshold parameter ℜ0.

Theorem 2.5.2 (Theorem 2 of (Driessche et al., 2002)). Consider the disease transmission

model given by (2.1.2) with f (x) satisfying conditions (A1)-(A5). If x0 is a DFE of the model,

then x0 is locally asymptotically stable if ℜ0 < 1, but unstable if ℜ0 > 1, where ℜ0 is defined

by

ℜ0 = ρ
(
FV−1)

where ρ(A) denotes the spectral radius of A.

Thus, the threshold quantity ℜ0 plays a major role in determining the qualitative behavior

of epidemic models. We note that at ℜ0 = 1 the disease-free equilibrium and endemic equi-

librium exchange stability. This phenomenon of change of stability, known as forward bifur-

cation, has been observed in several epidemic models ((Kermack and McKendrick, 1927),

26



(Hethcote and W, 1987),(Castillo-Chavez et al., 1989), (Hethcote, 2000), (Castillo-Chavez

and B., 2004) ). Figure 2.5.1 is a diagram giving the description of forward bifurcation.

When forward bifurcation occurs, then ℜ0 ≤ 1 is a necessary and sufficient condition for

Figure 2.5.1: Forward Bifurcation Diagram.

disease elimination. Another important concept related to the condition ℜ0 ≤ 1 is that of

backward bifurcation. This occurs when a stable endemic equilibrium co-exists with a sta-

ble disease-free equilibrium. When this happens, then ℜ0 ≤ 1 only remains a necessary but

not sufficient condition for disease elimination and hence disease eradication can not just be

achieved by making ℜ0 < 1 but the initial population sizes will have to satisfy some condi-

tions. This phenomenon has also been observed in some epidemic models ((Castillo-Chavez

et al., 1989), (Dushoff et al., 1998), (Feng et al., 2000), (Elbasha and B., 2006)). A depiction

of a backward bifurcation diagram is given in Figure 2.5.2.
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Figure 2.5.2: Backward Bifurcation Diagram Showing the Co-Existence of a Stable Disease
Free Equilibrium and Two Branches of Endemic Equilibria.
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Chapter 3

Modelling of Pneumonia Disease dynam-

ics

3.1 Introduction

In the report of WHO,2013, ”infectious diseases are the leading cause of death in Human be-

ings”. According to the fact sheet of WHO,2013 sixteen percent of all deaths each year are

from infectious diseases that means over 9.5 million deaths annually attribute to infectious

diseases, with most of them in developing countries. From 9.5 million annual death , ”Pneu-

monia and other respiratory infections cause about 2 million child deaths yearly in devel-

oping countries” (WHO,2015). If we compare infectious diseases like Malaria, HIV/AIDS,

Measles and Pneumonia for under five year children in Africa, pneumonia is the leading

cause of deaths (WHO,2015). According to (IHME,2014) every 35 seconds a child dies

from pneumonia.

In Ethiopia, pneumonia is one of the leading cause of death. The reported cases shows that,

it has been increasing aggregatively in the past 7 years ( see figure figure 4.1.1). A lot of

Scholars proposed models for understanding of infectious disease dynamics and also for

making quantitative predictions of different intervention strategies and their effectiveness, (

see, Okosun and Makinde (2011), (2012),(2013) and (2014)). Very few essential research

have been done on the dynamics of pneumonia have been done in the last decade. Some of

29



Figure 3.1.1: Reported cases of Pneumonia disease in Ethiopia from 2009 to 2015

them are, Melegaro, et al., 2004, Joseph Emaline,2012, Ssebuliba, 201 3, and Okaka,et al.,

2013, proposed a model on pneumonia dynamics. Additionally, Ong’ala et al., 2014 studied

and estimated the basic reproductive number as a random variable by first developing and

analyzing a deterministic model for transmission patterns of pneumonia.

All the above studies have developed a deterministic as well as stochastic mathematical

model of pneumonia dynamics by subdividing the population into sub-classes of Suscep-

tible, infectious, vaccinated, treated, carrier and recovered. But none of them considered

optimal control and cost effectiveness strategies and also no study have been undertaken by

applying optimal control. This, therefore motivated us to undertake this study to fulfil this

gap.To estimate some parameters demographic data was collected from Health Minster of

federal democratic republic of Ethiopia.

3.2 Model Description and Formulation

The model divides the total population into five sub-classes according to their disease status.

Susceptible (S), vaccinated (V ), carrier(C), infected (I) and recovered (R ). The model as-

sumes that a fraction of the population has been vaccinated before the disease out break at

the rate of (p) and (1− p) fraction of population susceptible.( We consider this model due

to the reason that, in African particularly in Ethiopian context all new born infants are not

taking Pneumococcal conjugate vaccine (PCV). Only those mothers who are aware or who

stay around town or city will go to their nearby health center to vaccinate their infants but

there are a lot of newborn left without vaccination).The Susceptible class is increased from
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vaccinated class in which those individuals who are vaccinated but did not respond to vacci-

nation with waning rate of φ and from recovered class in which those individuals who loss

their temporary immunity by δ rate. However,individuals from susceptible class move to

vaccinated class with vaccination rate of ϑ .The susceptible class is infected either by carrier

or symptomatically infected individuals with a force of infection λ = ξ ( I(t)+ϒC(t)
N ) where,

ξ = kτ , k is contact rate ,τ is the probability that a contact is effective to cause infection

and ϒ is transmission coefficient for the carrier. If ϒ > 1 then, the carries infect susceptible

more likely than infective. If ϒ = 1 , then both carriers and infective have equal chance to

infect the susceptible, but if ϒ < 1 then the infective have good chance to infect susceptible

than carriers. The model assumes vaccination is not 100% effective, so vaccinated classes

(V ) also have a chance of being infectious or carrier with small proportion and the force of

infection for the vaccinated class is λv = ελ , where 0≤ ε < 1 and ε is the proportion of the

serotype not covered by the vaccine. Newly infected individuals by the force of infection be-

come either carrier with a probability of ρ to join the carrier class C or move to the infected

class I with probability of 1− ρ . The carrier class can develop disease symptom or can

screen themselves and join the infected class with a rate of χ or recover by gaining natural

immunity at β rate. Individuals in the infected class move to recovered compartment at a per

capita rate of η by treatment, with treatment efficacy of q proportion of individuals join the

recovered class or join the the carrier class with (1−q) proportion by adapting the treatment,

or die from the disease at the rate α . In all compartments µ is the natural mortality rate of

individuals and also all the parameters are positive.

The above model description can be represented diagrammatically in figure (4.2.1).

The above flow diagram can be written in to a system of five differential equations as

follow:
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Figure 3.2.1: Flow diagram of the model



dS(t)
dt = (1− p)π +φV (t)+δR(t)− (µ +λ +ϑ)S(t),

dV (t)
dt = pπ +ϑS(t)− (µ + ελ +φ)V (t),

dC(t)
dt = ρλS(t)+ρελV (t)+(1−q)ηI(t)− (µ +β +χ)C(t),

dI(t)
dt = (1−ρ)λS(t)+(1−ρ)ελV (t)+χC(t)− (µ +α +η)I(t),

dR(t)
dt = βC(t)+qηI(t)− (µ +δ )R(t),

(3.2.1)

With initial condition S(0) = S0, V (0) =V0, I(0) = I0, C(0) =C0, R(0) = R0.

3.3 Model Analysis

3.3.1 Invariant Region

In this section, a region in which solutions of the model system are uniformly bounded is the

proper subset Ω⊂ℜ5
+.

The total population at any time t is given by N = S+V +C+ I +R.

After differentiating both sides of N,

dN
dt

=
dS
dt

+
dV
dt

+
dC
dt

+
dI
dt

+
dR
dt

. (3.3.1)
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Which gives,
dN
dt

= π−µN−αI(t). (3.3.2)

In the absence of mortality due to pneumonia equation 3.3.2 become,

dN
dt
≤ π−µN. (3.3.3)

By the separation of variable rule equation 3.3.3 become,

dN
π−µN

≤ dt. (3.3.4)

Integrating both side of equation 3.3.4 gives,

∫ dN
π−µN

≤
∫

dt. (3.3.5)

⇔ −1
µ

ln(π−µN)≤ t + c which simplifies in to

π−µN ≥ Ae−µt. (3.3.6)

where A is constant. By applying the initial condition N(0) = N0 in equation 3.3.7, we get

A = π−µN0 which up on substitution in equation 3.3.7 yields,

π−µN ≥ (π−µN0)e−µt . (3.3.7)

Then by rearranging equation ?? we can get,

N ≤ π

µ
− [

π−µN0

µ
]e−µt . (3.3.8)

as t → ∞ in equation 3.3.8 the population size N→ π

µ
which implies that 0 ≤ N ≤ π

µ
. Thus

the feasible solution set of the system equation of the model enter and remain in the region:

Ω = {(S,V,C, I,R) ∈ℜ
5
+ : N ≤ π

µ
} (3.3.9)
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Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is

sufficient to study the dynamics of the basic model in Ω

3.3.2 Positivity of the solutions

In this section We aim at obtaining non-negative solutions when dealing with human popula-

tions.Therefore, the next discussion below targets on the conditions under which the model

being studied has non-negative solutions. The derivative of a function at a point is one prop-

erty that unveils the behaviour of that function even if that function is unknown. It is known

that if the derivative at a point is positive, then the function is increasing there, if it is nega-

tive, then the function is decreasing and if it is zero, then function is constant.

Theorem 3.3.1. let Ω = {(S,V,C, I,R) ∈ ℜ5
+ : S0 > 0,V0 > 0,C0 > 0, I0 > 0,R0 > 0} then

the solution of {S,V,C, I,R} are positive for t ≥ 0.

Proof: From the system of differential equation 3.2.1 let us taking the first equation

dS
dt = (1− pψ)π +φV +δR− (µ +λ +ϑ)S

⇒ dS
dt ≥−(µ +λ +ϑ)S

⇒ dS
S ≥−(µ +λ +ϑ)d(t)

⇒
∫ dS

S ≥−
∫
(µ +λ +ϑ)d(t)

S(t)≥ S0exp− (µ +λ +ϑ)t ≥ 0.

let us take the second equation
dV
dt = pψπ +ϑS− (µ + ελ +φ)V

⇒ dV
dt ≥−(µ + ελ +φ)V

⇒ dV
V ≥−(µ + ελ +φ)d(t)

⇒
∫ dV

V ≥−
∫
(µ + ελ +φ)d(t)

V (t)≥V0exp− (µ + ελ +φ)t ≥ 0.

let us take the third equation
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dC
dt = ρλS+ρελV +(1−q)ηI− (µ +β +χ)C

⇒ dC
dt ≥−(µ +β +χ)C

⇒ dC
C ≥−(µ +β +χ)d(t)

⇒
∫ dC

C ≥−
∫
(µ +β +χ)d(t)

V (t)≥C0exp− (µ +β +χ)t ≥ 0.

let us take the fourth equation
dI
dt = (1−ρ)λS+(1−ρ)ελV +χC− (µ +α +η)I

⇒ dI
dt ≥−(µ +α +η)I

⇒ dI
I ≥−(µ +α +η)d(t)

⇒
∫ dI

V ≥−
∫
(µ +α +η)d(t)

V (t)≥ I0exp− (µ +α +η)t ≥ 0.

let us take the fifth equation
dR
dt = βC+qηI− (µ +δ )R(t)

⇒ dR
dt ≥−(µ +δ )R

⇒ dR
R ≥−(µ +δ )d(t)

⇒
∫ dR

V ≥−
∫
(µ +δ )d(t)

V (t)≥ R0exp− (µ +α +(1−q)η)t ≥ 0.

This completes the proof of the Theorem.

3.3.3 Disease free equilibrium (DFE)

In this section we obtain the equilibrium point at which the epidemic is eradicated from the

population. Letting the right hand side of equation (3.2.1) to zero and letting C = I = 0, leads

to;

(1− pΨ)π +φV0− (µ +ϑ)S0 = 0. (3.3.10)

pΨπ +ϑS0− (µ +φ)V0 = 0, (3.3.11)

then by rearranging equation (3.3.10) and (3.3.11) and after substituting each other, we got,
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S0 =
(µ−Pπµ+φ)π

µ(µ+φ+ϑ) = π

µ
℘,

where ℘= µ−Pπµ+φ)
(µ+φ+ϑ) .

V0 =
(Pπµ+ϑ)π
µ(µ+φ+ϑ) =

π

µ
ℑ, where, ℑ = Pπµ+ϑ)

(µ+φ+ϑ) ,

then the disease free equilibrium point is given by, E0 = (π

µ
℘, π

µ
ℑ,0,0,0).

where, ℘= µ−Pπµ+φ)
(µ+φ+ϑ) and ℑ = Pπµ+ϑ)

(µ+φ+ϑ) .

3.3.4 The Effective Reproductive Number (Re f f )

In this section we obtained the threshold parameter that governs the spread of a disease which

is called the effective reproduction number is determined.To obtain the effective reproduction

number we used the next generation matrix method so that it is the spectral radius of the next

generation matrix (Driessche et al., 2002).

The model equations are re-written starting with newly infective classes:

dC(t)
dt

= ρλS(t)+ρελV (t)+(1−q)ηI(t)− (µ +β +χ)C(t),

dI(t)
dt

= (1−ρ)λS(t)+(1−ρ)ελV (t)+χC(t)− (µ +α +η)I(t).

Then by the principle of next generation matrix we can obtained,

f =

 ρλS+ρελV

(1−ρ)λS+(1−ρ)ελV

 , (3.3.12)

v =

 (µ +β +χ)C− (1−q)ηI

(µ +α +η)I−χC

 , (3.3.13)

(3.3.14)

Since λ = aC+bI,

where a = kτϒ is transmission co-efficient for the carrier compartment and

b = kτ is also the transmission co-efficient for the infective compartment.
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The next is obtaining the Jacobian matrix of f and v with respect to C and I at the disease

free equilibrium (S0,V0,0,0,0).

To simplify our work, we assigned f and v in the following way,

f =

 f1

f2

 ,
v =

 v1

v2

 ,

where f1 = ρλS+ρελV

f2 = (1−ρ)λS+(1−ρ)ελV

v1 = (µ +β +χ)C− (1−q)ηI

v2 = (µ +α +η)I−χC.

The Jacobian matrix of f and v is obtained by F and V respectively.

F =

 ∂ f1
∂C

∂ f1
∂ I

∂ f2
∂C

∂ f2
∂ I

 ,
V =

 ∂v1
∂C

∂v1
∂ I

∂v2
∂C

∂v2
∂ I

 .
The entry members of F is obtained in the following way:
∂ f1
∂C = ρaS+ρεaV,
∂ f1
∂ I = ρbS+ρεbV,

∂ f2
∂C = (1−ρ)aS+(1−ρ)εaV,
∂ f2
∂ I = (1−ρ)bS+(1−ρ)εbV.

Similarly the entry members of V is also obtained:
∂v1
∂C = µ +β +χ,

∂v1
∂ I =−(1−q)η ,

∂v2
∂C =−χ,

∂v2
∂ I = µ +α +η .
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Then the Jacobian matrix of f and v at the disease free equilibrium are,

F =

 ρa(S0 + εV0) ρb(S0 + εV0)

(1−ρ)a(S0 + εV0) (1−ρ)b(S0 + εV0)

 ,
V =

 µ +β +χ −(1−q)η

−χ µ +α +η

 respectively.

It is known that for any two by two matrix say A =

 a b

c d

 , its inverse is obtained by

A−1 = 1
ad−bc

 d −b

−c a

 .
In a similar fashion the inverse of V can be obtained,

V−1 = 1
(µ+β+χ)(µ+α+η)−χη(1−q)

 µ +α +η (1−q)η

χ µ +β +χ

 ,
then the product of F and V−1 become,

FV−1 = 1
(µ+β+χ)(µ+α+η)−χη(1−q)

[
ρa(µ +α +η)(S0 + εV0)+ρbχ(S0 + εV0) ρa(1−q)η(S0 + εV0)+ρb(µ +β +χ)(S0 + εV0)

(1−ρ)a(µ +α +η)(S0 + εV0)+(1−ρ)χ(S0 + εV0) (1−ρ)a(1−q)η(S0 + εV0)+(1−ρ)b(µ +β +χ)(S0 + εV0)

]
.

Now we are in the position to obtain the dominant eigenvalue of FV−1 .

But to minimize long expression and to simplify our work let as represent the following expressions,

a1 =
µ+α+η

(µ+β+χ)(µ+α+η)−χη(1−q)(S0 + εV0),

a2 =
χ

(µ+β+χ)(µ+α+η)−χη(1−q)(S0 + εV0),

a3 =
(1−q)η

(µ+β+χ)(µ+α+η)−χη(1−q)(S0 + εV0),

a4 =
(µ+β+χ)

(µ+β+χ)(µ+α+η)−χη(1−q)(S0 + εV0).

Then FV−1 re-written as,

FV−1 =

 ρaa1 +ρba2 ρaa3 +ρba4

(1−ρ)aa1 +(1−ρ)ba2 (1−ρ)aa3 +(1−ρ)ba4

 .
The eigenvalue of FV−1can be obtained,

∣∣∣∣∣∣ (ρaa1 +ρba2)−λ ρaa3 +ρba4

(1−ρ)aa1 +(1−ρ)ba2 ((1−ρ)aa3 +(1−ρ)ba4)−λ

∣∣∣∣∣∣= 0,
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⇒ ((ρaa1+ρba2)−λ )(((1−ρ)aa3+(1−ρ)ba4)−λ )−((1−ρ)aa1+(1−ρ)ba2)(ρaa3+ρba4)= 0,

⇒ λ
2−(ρ(aa1+ba2)+(1−ρ)(aa3+ba4))λ−ρ(aa1+ba2)(1−ρ)(aa3+ba4)−ρ(1−ρ)(aa1+ba2)(aa3+ba4)= 0

,

⇒ λ
2− (ρ(aa1 +ba2)+(1−ρ)(aa3 +ba4)λ − (aa1 +ba2)(aa3 +ba4)(ρ(1−ρ)−ρ(1−ρ)) = 0,

⇒ λ
2− (ρ(aa1 +ba2)+(1−ρ)(aa3 +ba4)λ = 0,

λ (λ − (ρ(aa1 +ba2)+(1−ρ)(aa3 +ba4)) = 0.

Then the eigenvalues are,

λ1 = 0

and

λ2 = ρ(aa1 +ba2)+(1−ρ)(aa3 +ba4).

From λ1 and λ2 the dominant eigenvalue is λ2. Therefore the effective reproductive number is given

by

Re f f = ρ(aa1 +ba2)+(1−ρ)(aa3 +ba4).

By back substitution of a1, a2, a3 and a4 the effective reproduction number become:

Re f f =

[
ρ(a(µ +α +η)+bχ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(a(1−q)η +b(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
(S0+εV0),

when we also substitute a = kτϒ and b = kτ and ξ = kτ , the effective reproduction number become,

Re f f = kτ

[
ρ(ϒ(µ +α +η)+χ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(ϒ(1−q)η +(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
(

π

µ
℘+ε

π

µ
ℑ).

(3.3.15)
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3.3.5 Analysis of Re f f

The effective reproduction number measures the average number of new infectious generated by a

typically infectious individual in a community when some strategies are in place, like vaccination or

treatment.

We can re-write the effective number:

Re f f = kτ

[
ρ(ϒ(µ +α +η)+χ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(ϒ(1−q)η +(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
π

µ
℘

+

kτ

[
ρ(ϒ(µ +α +η)+χ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(ϒ(1−q)η +(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
ε

π

µ
ℑ.

Thus

Re f f = R∗s℘+R∗vℑ

where,

R∗s = kτ

[
ρ(ϒ(µ +α +η)+χ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(ϒ(1−q)η +(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
π

µ

and

R∗v = εkτ

[
ρ(ϒ(µ +α +η)+χ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(ϒ(1−q)η +(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
π

µ
.

From this we can see that for the over all disease transmission, there is a contribution from susceptible

population (R∗s ) and vaccinated population (R∗v).

Definition 3.3.1. 1. The threshold parameters R∗s , is the reproduction number when all individuals

are susceptible .

2. The threshold parameters R∗v , is the reproduction number when all individuals are vaccinated .
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We have studied the effect of vaccination on the generation of secondary cases. Now let as

see with out intervention, that means initially the entire population are susceptible. That means

ε = 0, p = 0, φ = 0, ϕ = 0 and π = 0 .

Then the effective reproductive number is reduced to :

R0 = [(1−ρ)(b
µ +β +χ

(µ +β +χ)(µ +α +η)−χη(1−q)
+(1−q)a

η

(µ +β +χ)(µ +α +η)−χη(1−q)
)

+ρ(a
µ +α +η

(µ +β +χ)(µ +α +η)−χη(1−q)
+b

χ

(µ +β +χ)(µ +α +η)−χη(1−q)
)]

π

µ

.

Which is the basic reproductive number, means the average number of secondary infectious caused

by a single infective in totally susceptible population.

When a single infective in an entirely susceptible population is introduced, with a probability 1−

ρ it become a non-carrier, hence make b effective contacts per unit time. This is multiplied by

average infectious period µ+β+χ

(µ+β+χ)(µ+α+η)−χη(1−q) for non-carrier; this number should be increased

by the number of infection caused by this with (1− q)a η

(µ+β+χ)(µ+α+η)−χη(1−q) proportion. With

probability of ρ the infective is a carrier, hence make a effective contacts per unit time during the

average period µ+α+η

(µ+β+χ)(µ+α+η)−χη(1−q) it remains a carrier. This number should be increased by the

number of infectious b χ

(µ+β+χ)(µ+α+η)−χη(1−q) . Therefore the expression in big square bracket in R0

is the per captia average number of infectious. This number multiplied by the number of susceptible

at the disease free equilibrium π

µ
gives R0

3.3.6 Local stability of disease free equilibrium

Theorem 3.3.2. The disease free equilibrium point is locally asymptotically stable if Re f f < 1 and

unstable if Re f f > 1.

Proof To prove local stability of disease free equilibrium, we obtained the Jacobian matrix of the
system ( 3.2.1) at the disease free equilibrium E0 :

J(S0,V0,0,0,0) =



−(µ +ϕ) φ −aS0 −bS0 δ

ϕ −(µ +φ) −aεV0 −bεV0 0

0 0 ρaS0 +ρaεV0− (µ +β +χ) ρbS0 +ρbεV0 +(1−q)η 0

0 0 (1−ρ)aS0 +(1−ρ)aεV0 +χ (1−ρ)bS0 +(1−ρ)bεV0− (µ +α +η) 0

0 0 β qη −(µ +δ )


. (3.3.16)
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To obtain the eigenvalue of (3.3.16),

∣∣∣∣∣∣∣∣∣∣∣∣∣

−(µ +ϕ)−λ φ −aS0 −bS0 δ

ϕ −(µ +φ)−λ −aεV0 −bεV0 0

0 0 [ρaS0 +ρaεV0− (µ +β +χ)]−λ ρbS0 +ρbεV0 +(1−q)η 0

0 0 (1−ρ)aS0 +(1−ρ)aεV0 +χ [(1−ρ)bS0 +(1−ρ)bεV0− (µ +α +η)]−λ 0

0 0 β qη −(µ +δ )−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒−(µ +ϕ)−λ

∣∣∣∣∣∣∣∣∣∣
−(µ +φ)−λ −aεV0 −bεV0 0

0 [ρaS0 +ρaεV0− (µ +β +χ)]−λ ρbS0 +ρbεV0 +(1−q)η 0

0 (1−ρ)aS0 +(1−ρ)aεV0 +χ [(1−ρ)bS0 +(1−ρ)bεV0− (µ +α +η)]−λ 0

0 β qη −(µ +δ )−λ

∣∣∣∣∣∣∣∣∣∣
−

ϕ

∣∣∣∣∣∣∣∣∣∣
φ −aS0 −bS0 δ

0 [ρaS0 +ρaεV0− (µ +β +χ)]−λ ρbS0 +ρbεV0 +(1−q)η 0

0 (1−ρ)aS0 +(1−ρ)aεV0 +χ [(1−ρ)bS0 +(1−ρ)bεV0− (µ +α +η)]−λ 0

0 β qη −(µ +δ )−λ

∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (−(µ +ϕ)−λ )[−(µ +φ)−λ ]

∣∣∣∣∣∣∣∣
[ρaS0 +ρaεV0− (µ +β +χ)]−λ ρbS0 +ρbεV0 +(1−q)η 0

(1−ρ)aS0 +(1−ρ)aεV0 +χ [(1−ρ)bS0 +(1−ρ)bεV0− (µ +α +η)]−λ 0

β qη −(µ +δ )−λ

∣∣∣∣∣∣∣∣−

ϕφ

∣∣∣∣∣∣∣∣
[ρaS0 +ρaεV0− (µ +β +χ)]−λ ρbS0 +ρbεV0 +(1−q)η 0

(1−ρ)aS0 +(1−ρ)aεV0 +χ [(1−ρ)bS0 +(1−ρ)bεV0− (µ +α +η)]−λ 0

β qη −(µ +δ )−λ

∣∣∣∣∣∣∣∣= 0

⇒ (−(µ +ϕ)−λ )[−(µ +φ)−λ ]−ϕφ

∣∣∣∣∣∣∣∣
[ρaS0 +ρaεV0− (µ +β +χ)]−λ ρbS0 +ρbεV0 +(1−q)η 0

(1−ρ)aS0 +(1−ρ)aεV0 +χ [(1−ρ)bS0 +(1−ρ)bεV0− (µ +α +η)]−λ 0

β qη −(µ +δ )−λ

∣∣∣∣∣∣∣∣= 0

⇒ (−(µ +ϕ)−λ )[−(µ +φ)−λ ]−ϕφ = 0 (3.3.17)

or ∣∣∣∣∣∣∣∣
[ρaS0 +ρaεV0− (µ +β +χ)]−λ ρbS0 +ρbεV0 +(1−q)η 0

(1−ρ)aS0 +(1−ρ)aεV0 +χ [(1−ρ)bS0 +(1−ρ)bεV0− (µ +α +η)]−λ 0

β qη −(µ +δ )−λ

∣∣∣∣∣∣∣∣= 0, (3.3.18)

when we expand equation (3.3.17),

λ
2 +(2µ +φ +ϕ)λ +µ(µ +φ +ϕ). (3.3.19)

Then by Routh-Hurwitz criteria equation (3.3.19) have strictly negative root.

The determinant of equation (3.3.18) can be obtained,

∣∣∣∣∣∣∣∣∣
ρa(S0 + εV0)− (µ +β +χ)−λ ρb(S0 + εV0)+(1−q)η 0

(1−ρ)a(S0 + εV0)+χ (1−ρ)b(S0 + εV0)− (µ +α +η)−λ 0

β qη −(µ +δ )−λ

∣∣∣∣∣∣∣∣∣= 0
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⇒−(µ +δ )−λ

∣∣∣∣∣∣ ρa(S0 + εV0)− (µ +β +χ)−λ ρb(S0 + εV0)+(1−q)η

(1−ρ)a(S0 + εV0)+χ (1−ρ)b(S0 + εV0)− (µ +α +η)−λ

∣∣∣∣∣∣= 0,

then

λ1 =−(µ +δ )< 0

and

(ρa(S0+εV0)−(µ+β +χ)−λ )((1−ρ)b(S0+εV0)−(µ+α+η)−λ )−((1−ρ)a(S0+εV0)+χ)(ρb(S0+εV0)+(1−q)η)= 0,

(3.3.20)

when we rearrange equation (3.3.20) it become

λ
2 +a1λ +a2 = 0,

where

a1 = (µ +β +χ)+(µ +α +η)− (ρa+(1−ρ)b)(S0 + εV0),

a2 =−(ρ(a(µ+α+η)+bχ)+(1−ρ)(b(µ+β +χ)+a(1−q)η))(S0+εV0)−((1−q)χη−(µ+β +χ)(µ+α+η)).

By Routh-Hurwitz criteria,

a1 > 0

means that,

(µ +β +χ)+(µ +α +η)> (ρa+(1−ρ)b)(S0 + εV0),

and also

a2 > 0

means that,

−(ρ(a(µ+α+η)+bχ)+(1−ρ)(b(µ+β +χ)+a(1−q)η))(S0+εV0)−((1−q)χη−(µ+β +χ)(µ+α+η))> 0

⇒ [(ρ(a(µ+α+η)+bχ)+(1−ρ)(b(µ+β +χ)+a(1−q)η))](S0+εV0)< (µ+β +χ)(µ+α+η)−(1−q)χη
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⇒ [(ρ(a(µ +α +η)+bχ)+(1−ρ)(b(µ +β +χ)+a(1−q)η))]

(µ +β +χ)(µ +α +η)− (1−q)χη
(S0 + εV0)< 1

⇒ Re f f < 1,

Thus, the disease free equilibrium is locally asymptotically stable if Re f f < 1.

3.3.7 The endemic equilibrium (EE)

The endemic equilibrium is denoted by E∗ and defined as a steady state solutions for the Model

(3.2.1). This can occur when there is a persistence of the disease. It can be obtained by equating the

system of equation 3.2.1 to zero.

We took the third and the fourth equations of the model 3.2.1 and combined each other then we ob-

tained,

C∗ =
(1−ρ)(1−q)η +ρ(µ +α +η)

(1−ρ)(µ +β +χ)+ρχ
I∗, (3.3.21)

By substituting 4.6.6a in to the fifth equation of the model 3.2.1, we obtained;

R∗ =
β ((1−ρ)(1−q)η +ρ(µ +α +η))+((1−ρ)(µ +β +χ)+ρχ)qη

((1−ρ)(µ +β +χ)+ρχ)(µ +δ )
I∗. (3.3.22)

From the second equation of the model 3.2.1, we obtained;

V ∗ =
pΨπ +ϑS∗

µ + ελ ∗+φ
. (3.3.23)

By combining 3.3.23 and the third and fourth equation of the model 3.2.1 we obtained;

S∗=
(µ +β +χ)((1−ρ)(1−q)η +ρ(µ +α +η))− (1−q)η((1−ρ)(µ +β +χ)+ρχ)(µ + ελ +φ)I∗

(((1−ρ)(µ +β +χ)+ρχ)(µ +δ ))ρλ (µ + ελ +φ + εϑ)
.

(3.3.24)

From 3.3.22, 3.3.23 ,3.3.24 and the first equation of the model (3.2.1) we obtained;

I∗=
A2λ ∗∗(λ ∗∗2ε2D2 +λ ∗∗µεD2 +λ ∗∗εD2 +λ ∗∗εD2D6 +λ ∗∗εD4 +µD2D6 +φD2D6−λ ∗∗D2 +D1D7 +D4D6)

A1(λ ∗∗εD5)D7−δλ ∗∗3A5A2ε2 +δλ ∗∗2D6A5A2ε +δλ ∗∗2D5A5ε +δλ ∗∗D6D5A5A2 +A1(λ ∗∗ε +D5)λ ∗∗
.

(3.3.25)
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where

A1 = (µ +β +χ)((µ +α +η)−η(1−q)),

A2 = χρ +(1−ρ)(µ +β +χ),

A3 = ρ(µ +δ )2(χ +(1−ρ)(µ +β +χ)),

A4 = (χρ +(1−ρ))(µ +δ ),

A5 = (1−ρ)η(1−q)+ρ(µ +α +η)+(χρ +(1−ρ)(µ +β +χ))qη ,

D1 = ε pΨπ,

D2 = A3(1− pΨ)π,

D4 = A3φ pΨπ,

D5 = µ +φ ,

D6 = εϑ +µ +φ ,

D7 = A4φϑ −µ−ϑ .

Hence E∗ = (S∗,V ∗,C∗, I∗,R∗) is the endemic equilibrium of the model 3.2.1.

Lemma 3.3.3. For Re f f > 1 a unique endemic equilibrium point E∗ exist and no endemic equilibrium

otherwise.

Proof. For the disease to endemic, dC
dt > 0 and dI

dt > 0, that is:

dC(t)
dt

= ρλS(t)+ρελV (t)+(1−q)ηI(t)− (µ +β +χ)C(t)> 0,

dI(t)
dt

= (1−ρ)λS(t)+(1−ρ)ελV (t)+χC(t)− (µ +α +η)I(t)> 0
. (3.3.26)

From the second inequality of (3.3.26),

(µ +α +η)I(t)< (1−ρ)λS(t)+(1−ρ)ελV (t)+χC(t)

⇒ I < (1−ρ)ξ ( I(t)+ϒC(t)
N (S+εV )+χC

(µ+α+η)
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From the fact (S+εV )
N ≤ 1,

I <
(1−ρ)ξ I(t)+(1−ρ)ξ ϒC(t)+χC

(µ +α +η)
. (3.3.27)

From the first inequality of (3.3.26),

(µ +β +χ)C(t)< ρλS(t)+ρελV (t)+(1−q)ηI(t)

⇒C <
ρξ ( I(t)+ϒC(t)

N (S+εV )+(1−q)ηI(t)
(µ+β+χ) .

From the fact (S+εV )
N ≤ 1,

C <
ρξ I(t)+(1−q)ηI(t)
(µ +β +χ)−ρξ ϒ

. (3.3.28)

By substituting (3.3.28)in to (3.3.27) we can get,

I <
(1−ρ)ξ I((µ +β +χ)−ρξ ϒ)+(1−ρ)ξ ϒ(ρξ I +(1−q)ηI)+χ(ρξ I +(1−q)ηI)

(µ +α +η)(µ +β +χ−ρξ ϒ)
.

Then, by rearranging and cancelling of I in both sides, we can get:

1 < ξ

[
ρ(ϒ(µ +α +η)+χ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(ϒ(1−q)η +(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
≤

ξ

[
ρ(ϒ(µ +α +η)+χ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(ϒ(1−q)η +(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
(

π

µ
℘+ ε

π

µ
ℑ) = Re f f

(3.3.29)

⇒ 1 < Re f f .

Thus a unique endemic equilibrium exist when Re f f > 1.

3.3.8 The global stability of the endemic equilibrium

Theorem 3.3.4. If Re f f > 1, the endemic equilibrium E∗ of the model (3.2.1) is globally asymptoti-

cally stable.

Proof. To prove the global asymptotic stability of the endemic equilibrium we use the method of

Lyapunov functions.

Define.

46



L(S∗,V ∗,C∗, I∗,R∗) =
(

S−S∗−S∗ln
S∗

S

)
+

(
V −V ∗−V ∗ln

V ∗

V

)
+

(
C−C∗−C∗ln

C∗

C

)
+

(
I− I∗− I∗ln

I∗

I

)
+

(
R−R∗−R∗ln

R∗

R

)
.

By direct calculating the derivative of L along the solution of (3.2.1) we have;

dL
dt

=

(
S−S∗

S

)
dS
dt

+

(
V −V ∗

V

)
dV
dt

+

(
C−C∗

C

)
dC
dt

+

(
I− I∗

I

)
dI
dt

+

(
R−R∗

R

)
dR
dt

.

dL
dt

=

(
S−S∗

S

)
[(1− pΨ)π +φV +δR− (µ +λ +ϑ)S]+

(
V −V ∗

V

)
[pΨπ +ϑS− (µ + ελ +φ)V ]

+

(
C−C∗

C

)
[ρλS+ρελV +(1−q)ηI− (µ +β +χ)C]+

(
I− I∗

I

)
[(1−ρ)λS

+(1−ρ)ελV +χC− (µ +α +η)I]+
(

R−R∗

R

)
[βC+qηI− (µ +δ )R].

dL
dt

= π +φV −φV ∗+δR−δR∗− πS∗

S
− PΨπS∗

S
− φV S∗

S
+

φV ∗S∗

S
− δRS∗

S
+

δR∗S∗

S
+χC−χC∗− (1−ρ)λSI∗

I
+

(1−ρ)λS∗I∗

I

− (1−ρ)ελV I∗

I
+

(1−ρ)ελV ∗I∗

I
− χCI∗

I
+

χC∗I∗

I
+(1−q)ηI− (1−q)ηI∗− ρλSC∗

C
+

ρλS∗C∗

C
− ρελVC∗

C
+

ρελV ∗C∗

C

− (1−q)ηIC∗

C
+

(1−q)ηI∗C∗

C
+βC−βC∗+qηI−qηI∗− βCR∗

R
+

βC∗R∗

R
− qηIR∗

R
+

qηI∗R∗

R
+ϕS−ϕS∗− PπΠV ∗

V
− ϕSV ∗

V
+

ϕS∗V ∗

V

+λS−λS∗+ ελV − ελV ∗− (V −V ∗)2

V
[µ + ελ +φ ]− (I− I∗)2

I
[µ +α +η ]− (S−S∗)2

S
[µ +λ +ϕ]− (C−C∗)2

C
[µ +β +χ]− (R−R∗)2

R
[µ +δ ].

(3.3.30)

Thus collecting positive terms together and negative terms together from equation (3.3.31) leads to,

dL
dt

= Q−K

where,

Q = π + φV + δR+ φV ∗S∗
S + δR∗S∗

S + χC + (1−ρ)λS∗I∗

I + (1−ρ)ελV ∗I∗

I + χC∗I∗
I + (1− q)ηI + ρλS∗C∗

C +

ρελV ∗C∗
C + (1−q)ηI∗C∗

C +βC+qη + βC∗R∗
R + qηI∗R∗

R +ϕS+ ϕS∗V ∗
V +λS+ ελV

K = φV ∗+ πS∗
S + PΨπS∗

S + φV S∗
S + δRS∗

S +χC∗+ (1−ρ)λSI∗

I + (1−ρ)ελV I∗

I + χCI∗
I +(1−q)ηI∗+ ρλSC∗

C +

ρελVC∗
C + (1−q)ηIC∗

C +qηI∗+ βCR∗
R + qηIR∗

R +ϕS∗+ PπΠV ∗
V + ϕSV ∗

V +λS∗+ ελV ∗+ (V−V ∗)2

V [µ + ελ +

φ ]+ (I−I∗)2

I [µ +α +η ]+ (S−S∗)2

S [µ +λ +ϕ]+ (C−C∗)2

C [µ +β +χ]+ (R−R∗)2

R [µ +δ ].

Thus if Q < K, then dL
dt ≤ 0;

Noting that dL
dt = 0 if and only if S = S∗,V =V ∗,C =C∗, I = I∗,R = R∗

Therefore, the largest compact invariant set in {(S∗,V ∗,C∗, I∗,R∗) ∈Ω : dL
dt = 0} is the singleton
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E∗, where E∗ is the endemic equilibrium of the system (3.2.1).

By LaSalles invariant principle (LaSalle, 1976), it implies that E∗ is globally asymptotically stable in

Ω if Q < K.

3.3.9 Determination of Backward Bifurcation

To explore the possibility of backward or forward bifurcation of the model system (3.2.1) we use the

centre manifold theory , explained in chapter 2 section 2.3. This is done by renaming the variables as

follows;

Let

S = x1,V = x2,C = x3, I = x4,R = x5,

further by introducing the Vector notation;

x = (x1,x2,x3,x4,x5)
T .

Then the model can be written in the form of:

dx
dt

= F(x),

where

F = ( f1, f2, f3, f4, f5)
T

as follows,
dx1

dt
= (1− pΨ)π +φx2 +δx5− (µ +λ +ϑ)x1,

dx2

dt
= pΨπ +ϑx1− (µ + ελ +φ)x2,

dx3

dt
= ρλ (x1 + εx2)+(1−q)ηx4− (µ +β +χ)x3,

dx4

dt
= (1−ρ)λ (x1 + εx2)+χx3− (µ +α +η)x4,

dx5

dt
= βx3 +qηx4− (µ +δ )x5,


(3.3.31)

where

N = x1 + x2 + x3 + x4 + x5.
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Then the Jacobian system at the disease free,

JE =



−(µ +ϕ) φ −ξ ϒ℘ −ξ℘ δ

ϕ −(µ +φ) −ξ ϒεℑ −ξ εℑ 0

0 0 ρξ ϒ(℘+ εℑ)− (µ +β +χ) ρξ (℘+ εℑ)+(1−q)η 0

0 0 (1−ρ)ξ ϒ(℘+ εℑ)+χ (1−ρ)ξ (℘+ εℑ)− (µ +α +η) 0

0 0 β qη −(µ +δ )


. (3.3.32)

Suppose that ξ = ξ ∗ is a bifurcation parameter; the system 3.3.32 is linearized at the disease free

equilibrium point when ξ ∗ = ξ with Re f f = 1, solving for ξ ∗ for Re f f = 1 from:-

Re f f = ξ

[
ρ(ϒ(µ +α +η)+χ)

(µ +β +χ)(µ +α +η)−χη(1−q)
+

(1−ρ)(ϒ(1−q)η +(µ +β +χ))

(µ +β +χ)(µ +α +η)−χη(1−q)

]
(

π

µ
℘+ε

π

µ
ℑ).

We obtained,

ξ
∗ =

µ((µ +β +χ)(µ +α +η)−χη(1−q))
π(ρ(ϒ(µ +α +η)+χ)+(1−ρ)(ϒ(1−q)η +(µ +β +χ)))(℘+ εℑ)

.

The system 3.3.33 with ξ = ξ ∗ has a simple zero eigenvalues, hence the centre manifold theory will
be used to analyse the dynamics of the system near ξ = ξ ∗. The Jacobean matrix near ξ = ξ ∗ has
a right eigenvector associated with the zero eigenvalue given by; w = (w1,w2,w3,w4,w5)

T from the
system;

JE =



−(µ +ϕ) φ −ξ ϒ℘ −ξ℘ δ

ϕ −(µ +φ) −ξ ϒεℑ −ξ εℑ 0

0 0 ρξ ϒ(℘+ εℑ)− (µ +β +χ) ρξ (℘+ εℑ)+(1−q)η 0

0 0 (1−ρ)ξ ϒ(℘+ εℑ)+χ (1−ρ)ξ (℘+ εℑ)− (µ +α +η) 0

0 0 β qη −(µ +δ )





w1

w2

w3

w4

w5


=



0

0

0

0

0


(3.3.33)

The system of equation become,

−(µ +ϕ)w1 +φw2−ξ ϒ℘w3−ξ℘w4 +δw5 = 0

ϕw1− (µ +φ)w2−ξ ϒεℑw3−ξ εℑw4 = 0

(ρξ ϒ(℘+ εℑ)− (µ +β +χ))w3 +(ρξ (℘+ εℑ)+(1−q)η)w4 = 0

((1−ρ)ξ ϒ(℘+ εℑ)+χ)w3 +((1−ρ)ξ (℘+ εℑ)− (µ +α +η))w4 = 0

βw3 +qηw4− (µ +δ )w5 = 0


(3.3.34)

Solving system of equation 3.3.35 we obtained,
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w1 =
(µ +φ)w2 +ξ ϒεℑw3 +ξ εℑw4

ϑ

w2 = w2 > 0

w3 =
((1−ρ)ξ (℘+ εℑ)− (µ +α +η))w4

(µ +β +χ)−ρξ ϒ(℘+ εℑ)

w4 = w4 > 0

w5 =
βw3 +qηw4

(µ +δ )

The left eigenvectors of JE associated with the zero eigenvalue at ξ ∗= ξ is given by v=(v1,v2,v3,v4,v5)
T ,

from the system 3.3.33.

JE 1=



−(µ +ϕ) ϕ 0 0 0

φ −(µ +φ) 0 0 0

−ξ ϒ℘ −ξ ϒεℑ ρξ ϒ(℘+ εℑ)− (µ +β +χ) (1−ρ)ξ ϒ(℘+ εℑ)+χ β

−ξ℘ −ξ εℑ ρξ (℘+ εℑ)+(1−q)η (1−ρ)ξ (℘+ εℑ)− (µ +α +η) qη

δ 0 0 0 −(µ +δ )





v1

v2

v3

v4

v5


=



0

0

0

0

0


. (3.3.35)

The system of equation of 3.3.36 become,

−(µ +ϕ)v1 +ϕv2 = 0

φv1− (µ +φ)v2 = 0

−ξ ϒ℘v1−ξ ϒεℑv2 +(ρξ ϒ(℘+ εℑ)− (µ +β +χ))v3 +((1−ρ)ξ ϒ(℘+ εℑ)+χ)v4 +βv5 = 0

−ξ℘v1−ξ εℑv2 +(ρξ (℘+ εℑ)+(1−q)η)v3 +((1−ρ)ξ (℘+ εℑ)− (µ +α +η))v4 +qηv5 = 0

δv1− (µ +δ )v5 = 0.


(3.3.36)

Solving system of equation 3.3.37 we obtained,

v1 = v2 = 0,

v3 =
((1−ρ)ξ ϒ(℘+ εℑ)+χ)v4

(µ +β +χ)−ρξ ϒ(℘+ εℑ)
,

v4 = v4 > 0,

v5 = 0.
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To compute a and b we use a formula explained in section 2.3 of chapter 2.

a =
n

∑
k, j,i=1

vkwiw j
∂ 2 f

∂xi∂x j
(S0,V0,0,0,0), (3.3.37)

b =
n

∑
k,i=1

vkwi
∂ 2 f

∂xi∂ξ
, (3.3.38)

where
f1 = (1− pΨ)π +φx2 +δx5− (µ +λ +ϑ)x1,

f2 = pΨπ +ϑx1− (µ + ελ +φ)x2,

f3 = ρλ (x1 + εx2)+(1−q)ηx4− (µ +β +χ)x3,

f4 = (1−ρ)λ (x1 + εx2)+χx3− (µ +α +η)x4,

f5 = βx3 +qηx4− (µ +δ )x5.


(3.3.39)

Taking into account system 3.3.40 and considering only the non-zero components of the left eigen-

vectors v3and v4, then we obtained,

a = (2ξ w4v4)a0,

b = ξ w4v4(ϒr0 +1)(ρ(k0−1)+1)(℘+ εℑ),

where,

a0 = (ρ(k0−1)+1)(ϒr0(w1 + εw2)+w1 + εw2),

k0 =
((1−ρ)ξ (℘+ εℑ)− (µ +α +η))

(µ +β +χ)−ρξ ϒ(℘+ εℑ)
,

r0 =
((1−ρ)ξ ϒ(℘+ εℑ)+χ)

(µ +β +χ)−ρξ ϒ(℘+ εℑ)
.

Since the coefficient b is always positive, it is the sign of the coefficient a and consequently the

sign of the quantity a0 which determines the local dynamics of the disease around the disease-free

equilibrium.

Therefore, a > 0 depending on whether a0 is greater or less than 0 . Thus we have established the

following result.

Theorem 3.3.5. If a0 > 0,a > 0 then model system (3.2.1) has a backward bifurcation at Re f f = 1,

otherwise,a < 0 and a unique endemic equilibrium is locally asymptotically stable for ,Re f f > 1 but
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close to 1.

Remark. The appearance of backward bifurcation implies that Re f f < 1 is not sufficient to con-

trol the spread of disease, a stable endemic state may exist even when Re f f < 1, and Re f f must be

reduced below the leftmost point on the bifurcation curve for which an endemic equilibrium ex-

ists, Rc, sometimes called the minimum transition value. Mathematical speaking, when a backward

bifurcation occurs and Rc < Re f f < 1, there are at least three equilibria, the stable disease-free equi-

librium, a larger stable endemic equilibrium, and a smaller unstable endemic equilibrium which acts

as a boundary between the basins of attraction for the two stable equilibria. When Re f f > 1, there

exists only one endemic equilibrium.

3.4 Sensitivity Analysis of the Model parameters

we carried out the sensitivity analysis to determine the model robustness to parameter values. This is

to helped us to identify the parameters that have a high impact on the reproductive number (Re f f ). In

this section we followed the approach of (Chitnis et al., 2006) and also the approach of (Blower and

Dowlatabadi, 1994).

Moreover, sensitivity indices allowed us to measure the relative change in a state variable when a

parameter changes (Chitnis et al., 2006). The normalized forward sensitivity index of a variable to

a parameter is a ratio of the relative change in the variable to the relative change in the parameter.

If a variable is a differentiable function of the parameter, the sensitivity index may be alternatively

defined using partial derivatives.

Definition 3.4.1. The normalized forward sensitivity index of a variable, u, which depends differen-

tiability on index of a parameter,p is defined as Λu
p =

∂u
∂ p

p
u

From an explicit formula for (Re f f ) in (3.3.10) we derive an analytical expression for the sen-

sitivity of Re f f as Λ
Re f f
p =

∂Re f f
∂ p

p
Re f f

to each of the parameter involved in (Re f f ). For example the

sensitivity index of Re f f with respect to k is Λ
Re f f
k =

∂Re f f
∂k

k
Re f f

= 1, other indices

Λ
Re f f
τ ,Λ

Re f f
p ,Λ

Re f f
φ

,Λ
Re f f
ϑ

,Λ
Re f f
ε ,Λ

Re f f
χ ,Λ

Re f f
q ,Λ

Re f f
η ,Λ

Re f f

β
,Λ

Re f f
τ ,Λ

Re f f
ρ ,Λ

Re f f
µ ,Λ

Re f f
α where obtained and

evaluated at, p = 0.6,φ = 0.001,ϑ = 0.9,ε = 0.4,χ = 0.00274,q = 0.5,η = 0.0238,β = 0.0115,k =

6,τ = 0.89,ρ = 0.338,µ = 0.002,α = 0.33 to obtain the following results.
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Table 3.4.1: Sensitivity indices table

Parameter symbol Sensitivity indices
k +ve
ε +ve
τ +ve
φ +ve
χ +ve
p -ve
ϑ -ve
µ -ve
α -ve
ρ -ve
β -ve
η -ve
q -ve

3.4.1 Interpretation of Sensitivity Indices

Table 5.5.1 shows the sensitivity indices of Re f f to the parameters for the pneumonia model, evaluated

at the baseline parameter values given in Table 5.7.1. The parameters are ordered from most sensitive

to least. The most sensitive parameter is the contact rate, and the least sensitive parameter is the

progression proportion of the disease . This result implies that, when the parameters k , ε ,τ , φ and

χ are increased keeping other parameters constant they increase the value of Re f f thus, they increase

the endemicity of the disease as they have positive indices. While the parameters χ , p , ϑ , µ , α ,ρ

, β , η and q decrease the value of Re f f when they are increased while keeping the other parameters

constant, implying that they decrease the endemicity of the disease as they have negative indices.

3.5 Extension of the Model into an Optimal Control

In this section, we apply optimal control strategies on the model (3.2.1). This helped us to identify

the best intervention strategies that helps to eradicate the disease in the specified time. The optimal

control model is an extension pneumonia model by including the following three controls defined as:

i. u1 a prevention effort, that protect susceptible from contacting the disease.

ii. u2 a treatment effort, to minimize infection by treating infectious.

iii. u3 a screening effort ,to help carriers to screen themselves.
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After incorporating, u1,u2 and u3 in pneumonia model (3.2.1), we obtain the following optimal

control model of pneumonia:



dS
dt = (1− p)π +φ V +δ r− (1−u1)ξ (ϒC+I)S

N − (ϑ +µ)S,

dV
dt = pπ +ϑ S− (1−u1)ξ (ϒC+I)V

N − (µ +φ)V,

dC
dt = ρ (1−u1)ξ (ϒC+I)(ε V+S)

N +(1−q)(1−u2)η I− (u3 +χ)C− (µ +β )C,

dI
dt =

(1−ρ)(1−u1)ξ (ϒC+I)(ε V+S)
N +(u3 +χ)C− (η +u2) I− (µ +α) I,

dR
dt = βC+(u2 +qη)I− (µ +δ )R,

(3.5.1)

To study the optimal levels of the controls the control set U is Lebesgue measurable and it is defined

as : U = {(u1(t),u2(t),u3(t)) : 0 ≤ u1 < 1,0 ≤ u2 < 1,0 ≤ u3 < 1,0 ≤ t ≤ T}. Our aim is to obtain

a control u and S,V,C, I and R that minimize the proposed objective function J and the form of the

objective functional is taken in line with literature on epidemic models (Baba and Makinde, 2014),

given by:

J = min
u1,u2,u3

∫ t f

0
(b1C+b2I +

1
2

3

∑
i=1

wiu2
i )dt. (3.5.2)

Where b1 ,b2 and wi are positive. The expression 1
2 wiu2

i represents cost which is associated with the

controls ui.The form is quadratic because we assume that costs are non-linear in its nature. Our aim

is to minimize the number of carriers, infectives and costs. Thus, we seek to find an optimal triple

controls (u∗1,u
∗
2,u
∗
3) such that:

J(u∗1,u
∗
2,u
∗
3) = min{J(u1,u2,u3)/ui ∈U},

where, U = {(u1,u2,u3)/ each ui is measurable with 0≤ ui < 1 for 0≤ t ≤ t f .

3.5.1 Existence of an optimal control

We note that the existence of an optimal control pair can be proved by using results from (Fleming

and Rishel, 1982). It is clear that the system of equations given by (5.6.4)is bounded from above by

a linear system. The boundedness of solutions of system (5.6.4) for a finite time interval is used to

prove the existence of an optimal control. To use the results on existence, [ (Fleming and Rishel,

1982), Theorem 4.1, p68-69] in the special case of the problem (the free terminal point problem)
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of optimal control in which the initial time and state and the final time are fixed and there are no

conditions on the final state, we must check that the following properties are satisfied.

(1) The set of controls and corresponding state variables is non-empty.

(2) The control set U is convex and closed.

(3) The right hand side of the state system is bounded by a linear function in the state and control.

(4) The integrand of the objective functional is concave on U .

(5) The function is bounded below by a2−a1(|u1|2 + |u2|2 + |u3|2)
α

2 where a1,a2 > 0 and α > 1

An existence result in [ (Lukes, 1982), Theorem 9.2.1, p. 182] for the state system (5.6.4) with

bounded coefficients is used to give condition 1. The control set U is convex and closed by definition.

The right hand side of the state system (5.6.4) satisfies condition 3 as the state solutions are a priori

bounded. The integrand in the objective functional,b1S+ b2C+ b3I + 1
2 ∑

3
i=1 wiu2

i is clearly concave

on U . Moreover, there are a1,a2 > 0 and α > 1 satisfying

b1C+b2I +
1
2

3

∑
i=1

wiu2
i ≤ a2−a1(|u1|2 + |u2|2 + |u3|2)

α

2

because, the state variables are bounded. Finally under assumption 5, there exists an optimal control

(u1,u2,u3) that minimizes the objective functional J(u1,u2,u3).

3.5.2 The Hamiltonian and Optimality System

By using the principle of (Pontryagin et al., 1986),” Pontryagins Maximum Principle Pontryagin”,

we got the necessary conditions which is satisfied by optimal pair. Therefore, by this principle we

obtained a Hamiltonian (H) defined as:

H(S,V,C, I,R, t) = L(C, I,u1,u2,u3, t)+λ1
ds
dt

+λ2
dV
dt

+λ3
dC
dt

+λ4
dI
dt

+λ5
dR
dt

,

where L(C, I,u1,u2,u3, t) = b1C+b2I + 1
2 ∑

3
i=1 wiu2

i , λi, i = 1,2,3,4,5 are the adjoint variable func-

tions to be determined suitably by applying Pontryagin’s maximal principle (Pontryagin et al., 1986)

and also using (Fleming and Rishel, 1982) for existence of the optimal control pairs.

Theorem 3.5.1. For an optimal control set u1,u2,u3 that minimizes J over U, there is an adjoint
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variables, λ1, ...,λ5 such that:

dλ1
dt =−

(
− (1−u1)ξ (ϒC+I)

N −ϑ −µ

)
λ1−ϑ λ2− ρ (1−u1)ξ (ϒc+i)λ3

N − (1−ρ)(1−u1)ξ (ϒC+I)λ4
N

dλ2
dt =−φ λ1−

(
− (1−u1)ξ (ϒC+I)

N −µ−φ

)
λ2− ρ (1−u1)ξ (ϒC+I)ε λ3

N − (1−ρ)(1−u1)ξ (ϒC+I)ε λ4
N

dλ3
dt = (1−u1)ξ ϒSλ1

N + (1−u1)ξ ϒV λ2
N −

(
ρ (1−u1)ξ ϒ(ε V+S)

N −u3−χ−µ−β

)
λ3

−
(
(1−ρ)(1−u1)ξ ϒ(ε V+S)

N +u3 +χ

)
λ4−β λ5−b1

dλ4
dt = (1−u1)ξ Sλ1

N + (1−u1)ξV λ2
N −

(
ρ(1−u1)ξ (εV+S)

N +(1−q)(1−u2)η

)
λ3

−
(
(1−ρ)(1−u1)ξ (ε V+S)

N −η−u2−µ−α

)
λ4− (ηq+u2)λ5−b2

dλ5
dt =−δ λ1− (−µ−δ )λ5

(3.5.3)

With transversality conditions, λi(t f ) = 0, i = 1, ...,5.

Furthermore, we obtain the control set (u∗1,u
∗
2,u
∗
3) characterized by

u∗1(t) = max{0,min(1,Φ1)},

u∗2(t) = max{0,min(1,Φ2)},

u∗3(t) = max{0,min(1,Φ3)},

where,

Φ1 =
ξ (σ C+I)(ρ V ε λ3−ρ V ε λ4+ρ Sλ3−ρ Sλ4+V ε λ4−V λ1+Sλ4−V λ2)

Nw1
,

Φ2 =− I(η qλ3−η λ3−λ4+λ5)
w2

, Φ3 =
C(λ3−λ4)

w3
.

Proof:

The form of the adjoint equation and transversality conditions are standard results from Pontryagin’s

maximum principle (Pontryagin et al., 1986). We differentiate the Hamiltonian (4.5.3) with respect

to states S, V, C, I and R respectively and then the adjoint system can be written as:
dλ1(t)

dt =−dH
dS −

(
− (1−u1)ξ (ϒC+I)

N −ϑ −µ

)
λ1−ϑ λ2− ρ (1−u1)ξ (ϒC+I)λ3

N − (1−ρ)(1−u1)ξ (ϒC+I)λ4
N

dλ2
dt =−dH

dV =−φ λ1−
(
− (1−u1)ξ (ϒC+I)

N −µ−φ

)
λ2− ρ (1−u1)ξ (ϒC+I)ε λ3

N − (1−ρ)(1−u1)ξ (ϒC+I)ε λ4
N

dλ3
dt =−dH

dC = (1−u1)ξ ϒSλ1
N + (1−u1)ξ ϒV λ2

N −
(

ρ (1−u1)ξ ϒ(ε V+S)
N −u3−χ−µ−β

)
λ3

−
(
(1−ρ)(1−u1)ξ ϒ(ε V+S)

N +u3 +χ

)
λ4−β λ5−b1

dλ4
dt =−dH

dt = (1−u1)ξ Sλ1
N + (1−u1)ξV λ2

N −
(

ρ(1−u1)ξ (εV+S)
N +(1−q)(1−u2)η

)
λ3
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−
(
(1−ρ)(1−u1)ξ (ε v+s)

N −η−u2−µ−α

)
λ4− (ηq+u2)λ5−b2

dλ5
dt =−dH

dR =−δ λ1− (−µ−δ )λ5

Similarly by following the approach of (Pontryagin et al., 1986), to get the controls ,we solved the

equation, ∂H
∂ui

= 0 at u∗i , for i = 1,2,3 and obtained:

u∗1 =
ξ (ϒC+ I)(ρ V ε λ3−ρ V ε λ4 +ρ Sλ3−ρ Sλ4 +V ε λ4−Sλ1 +Sλ4−V λ2)

Nw1
,

u∗2 =−
I (η qλ3−η λ3−λ4 +λ5)

w2
,

u∗3 =
C (λ3−λ4)

w3
.

When we write by using standard control arguments involving the bounds on the controls, we con-

clude:

u∗1 =


Φ1 if 0 < Φ1 < 1

0 if Φ1 ≤ 0

1 if Φ1 ≥ 1.

u∗2 =


Φ2 if 0 < Φ2 < 1

0 if Φ2 ≤ 0

1 if Φ2 ≥ 1.

u∗3 =


Φ3 if 0 < Φ3 < 1

0 if Φ3 ≤ 0

1 if Φ3 ≥ 1

.

In compact notation

u∗1(t) = max{0,min(1,Φ1)},

u∗2(t) = max{0,min(1,Φ2)},

u∗3(t) = max{0,min(1,Φ3)}.

Φ1 =
ξ (ϒC+ I)(ρ V ε λ3−ρ V ε λ4 +ρ Sλ3−ρ Sλ4 +V ε λ4−Sλ1 +Sλ4−V λ2)

Nw1
,

Φ2 =−
I (η qλ3−η λ3−λ4 +λ5)

w2
,

Φ3 =
C (λ3−λ4)

w3
.

The optimality system is formed from the optimal control system (the state system) and the adjoint
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variable system by incorporating the characterized control set and initial and transversal condition.



dS
dt = (1− p)π +φ V +δ R− (1−u1

∗)ξ (ϒC+I)S
N − (ϑ +µ)S,

dV
dt == pπ +ϑ S− (1−u1

∗)ξ (ϒC+I)V
N − (µ +φ)V,

dC
dt == ρ (1−u1

∗)ξ (ϒC+I)(ε V+S)
N +(1−q)(1−u2

∗)η I− (u3
∗+χ)C− (µ +β )C,

dI
dt == (1−ρ)(1−u1

∗)ξ (ϒC+I)(ε V+S)
N +(u3

∗+χ)C− (η +u2
∗) I− (µ +α) I,

dR
dt = βC+(u2

∗+qη)I− (µ +δ )R,

dλ1
dt =−

(
− (1−u1

∗)ξ (ϒC+I)
N −ϑ −µ

)
λ1−ϑ λ2− ρ (1−u1

∗)ξ (ϒC+I)λ3
N − (1−ρ)(1−u1

∗)ξ (ϒC+I)λ4
N ,

dλ2
dt =−φ λ1−

(
− (1−u1

∗)ξ (ϒC+I)
N −µ−φ

)
λ2− ρ (1−u1

∗)ξ (ϒC+I)ε λ3
N − (1−ρ)(1−u1

∗)ξ (ϒC+I)ε λ4
N ,

dλ3
dt = (1−u1

∗)ξ ϒSλ1
N + (1−u1

∗)ξ ϒV λ2
N −

(
ρ (1−u1

∗)ξ ϒ(ε V+S)
N −u3

∗−χ−µ−β

)
λ3

−
(
(1−ρ)(1−u1

∗)ξ ϒ(ε V+S)
N +u3

∗+χ

)
λ4−β λ5−b1,

dλ4
dt = (1−u1

∗)ξ Sλ1
N + (1−u1

∗)ξV λ2
N −

(
ρ(1−u1

∗)ξ (εV+S)
N +(1−q)(1−u2

∗)η

)
λ3

−
(
(1−ρ)(1−u1

∗)ξ (ε V+S)
N −η−u2

∗−µ−α

)
λ4− (ηq+u2)λ5−b2,

dλ5
dt =−δ λ1− (−µ−δ )λ5,

λi(t f ) = 0, i = 1,2,3, S(0) = S0, V (0) =V0, C(0) =C0, I(0) = I0, and R(0) = R0.

3.5.3 Uniqueness of the Optimality System

Due to the priori boundedness of the state, adjoint functions and the resulting Lipschitz structure of

the ODEs, we can obtain the uniqueness of solutions of the optimality system for the small time

interval.

Lemma 3.5.2. The function u∗(s) = min((max(s,a),b) is Lipschitz continuous in s, where a < b are

fixed positive constants.

Theorem 3.5.3. For t ∈ [0, t f ], the bounded solutions to the optimality system are unique.

Proof:

Suppose (S,V,C, I,R,λ1,λ2,λ3,λ4,λ5) and (S,V ,C, I,R,λ1,λ2,λ3,λ4,λ5) are two different solutions

of our optimality system.

58



Let S = eλ tk, V = eλ t l, C = eλ tm, I = eλ tn, R= eλ to, λ1 = e−λ tr, λ2 = e−λ tw, λ3 = e−λ tx, λ4 = e−λ ty,

λ5 = e−λ tz.

Similarly, let

S = eλ tk, V = eλ t l, C = eλ tm, I = eλ tn, R = eλ to, λ1 = e−λ tr, λ2 = e−λ tw, λ3 = e−λ tx, λ4 = e−λ ty,

λ5 = e−λ tz,

λ > 0 is to be chosen.

u∗1 = max{0,min(1,Φ1)},

u∗2 = max{0,min(1,Φ2)},

u∗3 = max{0,min(1,Φ3)},

where

Φ1 =−τ
(λ1(t)Ψp+λ2(t)Ψp−λ1(t))

w1
,

Φ2 = ηI
(−λ5(t)q+λ4(t))

w2
,

Φ3 = χC
(λ4(t)−λ3(t))

w3
.

And

u∗1 = max{0,min(1,Φ1)},

u∗2 = max{0,min(1,Φ2)},

u∗3 = max{0,min(1,Φ3)},

where,

Φ1 =−τ
(rΨp+wΨp− r)

w1
,
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Φ2 = ηn
(−zq+ y)

w2
,

Φ3 = χm
(y− x)

w3
.

Now we substitute S = eλ tk into the first ODE of the optimality system, then we can obtain,

k̇+λk = (1−max{0,min(1,Φ1)})(1− pΨ)π +φ l +δo− (ξ
(ϒm+n)

N
+ϕ +µ)k.

Similarly, due to V = eλ t l, C = eλ tm, I = eλ tn, R = eλ to, λ1 = e−λ tr, λ2 = e−λ tw, λ3 = e−λ tx,

λ4 = e−λ ty, λ5 = e−λ tz,

we can obtain the following equations,

l̇ +λ l = max{0,min(1,Φ1)}pΨπ +ϑk− (εξ
(ϒm+n)

N +µ +φ)l,

ṁ+λm = ρξ
(ϒm+n)

N (k+ εl)+(1−q)ηn−max{0,min(1,Φ3)}χm− (µ +β )m,

ṅ+λn = (1−ρ)ξ (ϒm+n)
N (k+ εl)+max{0,min(1,Φ3)}χm−max{0,min(1,Φ2)}ηn− (µ +α)n,

ȯ+λo = βm+max{0,min(1,Φ2)}qηn− (µ +δ )o,

ṙ+λ r =−r(−ξ (ϒm+n)
N −ϑ −µ)−wϑ − xρξ

(mϒ+n)
N − y(1−ρ)ξ (mϒ+n)

N ,

ẇ+λw =−rφ −w(−εξ
(mϒ+n)

N −µ−φ)− xρξ
(mϒ+n)

N − y(1−ρ)ξ (mϒ+n)ε
N ,

ẋ+λx = xξ ϒk
N + wεξ ϒl

N − x (ρξ ϒ(εl+k)
N −max{0,min(1,Φ3)}χ−µ−β ),

− y((1−ρ)ξ ϒ
(εl+k)

N +max{0,min(1,Φ3)}χ)− zβ ,

ẏ+λy = rξ k
N +w εξ l

N − x(ρσ
(εl+k)

N +(1−q)η)− y((1−ρ)ξ (εl+k)
N ,

−max{0,min(1,Φ2)}η−µ−α)− z)max{0,min(1,Φ2)}qη ,

ż+λ z =−rδ − z(−µ−δ ),

where k̇ = dk
dt .

The equations for S,V,C, I,R,λ1,λ2,λ3,λ4 and λ5 are subtracted respectively. Then we multiply each

equation by appropriate difference of functions and integrate from 0 to t f . Next, we add all ten

integrals equations and will use inequalities to obtain uniqueness. See Fister et al. (1998) for proof of

a similar uniqueness result. The uniqueness for a small time interval is usual in ”two-point” boundary

value problems due to opposite time orientations; the state equations have initial conditions and the

adjoint equations have final time conditions. The optimal controls, u1,u2 and u3 are characterized in

terms of the unique solution of the optimality system.
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3.6 Numerical Simulations

In this section, we perform some numerical experimentation on the basic model (3.2.1) and the re-

sulting optimality system consisting of the state equations (5.6.4) and the adjoint system (5.6.3). We

make use of the parameter values given in Table (5.7.1) for the simulation.

An iterative scheme is used to find the optimal solution of the optimality system. Since the

state system (3.2.1) have initial conditions and the adjoint systems (5.6.3) have final conditions, we

solve the state system using a forward fourth-order Runge-kutta method and solve the adjoint system

using a backward fourth-order Runge-Kutta method. The solution iterative scheme involves making

a guess of the controls and using that guess to solve the state system. The initial guess of the control

together with the solution of the state systems is used to solve the adjoint systems. The controls are

then updated using a convex combination of the previous controls and the values obtained using the

characterizations . The updated controls are then used to repeat the solution of the state and adjoint

systems. This process is repeated until the values in the current iteration are close enough to the

previous iteration values (Lenhart and T., 2007).

Using different combinations of the controls, like one control only at a time, two controls at a

time and also all controls at a time, that we analyze and compare numerical results from simulations

with the following scenarios.

(i). Using Prevention effort (u1) of susceptible without treatment (u2 = 0) and with no screening

(u3 = 0).

(ii). Using treatment effort (u2) without prevention (u1 = 0) and with no screening (u3 = 0).

(iii). Using screening (u3) but without prevention (u1 = 0) and no treatment of infectious u2 = 0.

(iv). Using prevention (u1) and treatment (u2) and without screening (u3 = 0).

(v). Using prevention u1 and screening(u3) and without treatment (u2 = 0).

(vi). Using treatment (u2) and screening u3 and without prevention (u1).

(vii). Using all the three controls, prevention u1 treatment of infective (u2) and screening of carriers

u3.

We used b1 = 300,b2 = 150,w1 = 2,w2 = 2 and w3 = 6 for simulation of Pneumonia model with
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Table 3.6.1: Parameter Values for Pneumonia Model

Parameter symbol Value Source
k 0.5 Estimated
ε 0.002 Emile.J,2012
τ 0.89 to 0.99 Jacob.O,2012
φ 0.0025 Emile.J,2012
χ 0.001 to 0.01096 per day Jacob.O,2012
p 0.2 Emile.J,2012
ϑ 0.008 Assumed
µ 0.01 Estimated
α 0.057 Estimated
ρ 0.05 Jacob.O,2012
β 0.0115 Jacob.O,2012
η 0.2 Jacob.O,2012
q 0.5 to 1 Jacob.O,2012
ϒ 1.2 Assumed
δ 0.1 Emile. J, 2012
Ψ 0.2 Assumed

optimal control and also for cost-effectiveness analysis. Additionally we used S(0) = 8200,V (0) =

2800,C(0) = 200, I(0) = 210,R(0) = 200 as initial values.

3.6.1 Control with Prevention only

We simulate the model by Preventive intervention only. From figure (3.6.1 ) we see that the decrease

of infectious and carrier population due to implementation of prevention. This can be attribute the

fact that prevention minimizes the rate of joining of individuals in to infective as well as carrier com-

partments. This implies that, optimized prevention reduces the burden of the infection of pneumonia.

3.6.2 Control with Treatment only

Figure 5.7.1 shows a decrease of infectious population up to 4 month, then after start to go up. Those

individuals, who were previously with the disease are being treated and that is why the number of

infective population goes down for the first four month. Then, due to lack of prevention newly infected
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Figure 3.6.1: Simulations of optimal control with prevention only.

individuals start to join the infective as well as the carrier classes. That is why the number of infective

start to goes up after four months of going down and the number of carrier also starts to go up after

five month.
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Figure 3.6.2: Simulations optimal control with treatment only.

3.6.3 Control With Screening only

Screening helps carriers to move into the infective classes and start to get treatment. Figure 4.6.3b

shows a decrease in carrier population up to five months and then start to increase because due to lack

of prevention. Susceptible start to be infected and joins carrier as well as infective classes. As a result

of this screening only might not be sufficient to eradicate the burden of the infection of pneumonia.

Figure 3.6.3: Simulations of optimal control with Screening only.
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3.6.4 Control with Prevention and Treatment

We used prevention and treatment as intervention strategy, and figure (5.7.5) show that, the number

of infective and also carriers goes down in the specified time. Therefore, this strategies is effective in

eradicating the disease from the community in a specified period of time.
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Figure 3.6.4: Simulations optimal control with Prevention and Treatment interventions.

3.6.5 Control with Prevention and Screening

In this strategy we used prevention and screening. The first figure 5.7.5 shows that, the curve for

optimal control is above the curve of with out control. Due to the reason that, there is no treatment

but individuals from carrier groups are joining infective compartment by screening and also there are

a number of infected people in the compartment before prevention with out getting treatment so this

situation make the curve to goes up for a time being. After some time the number of infectious goes

down because due to prevention strategies new infection is no more coming and also since there is no

treatment the number of infective population start to goes down by disease causing death and natural

death rates.

Figure 3.6.5: Simulations of optimal control with prevention and Screening intervention .
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3.6.6 Control with Treatment and Screening

We used treatment and screening controls as intervention. From figures ( 5.7.7) we observe that

optimal control of the combination of treatment and screening helps to bring down the infectious as

well as the carrier population which helps to eradicate the disease in the community.
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Figure 3.6.6: Simulations of optimal control with treatment and screening intervention.

3.6.7 Control with Prevention, Treatment and Screening

We implement all control the three controls interventions, that helps to minimize the objective func-

tion . From figure (3.6.7) we observe that the number of the infectious and carrier populations de-

crease at the specified time due to the intervention strategies. Therefore, applying this strategy helps

to eradicate pneumonia disease in specified period of time.

Figure 3.6.7: Simulations of optimal control with Prevention , Treatment and screening in-
terventions.
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Figure 3.6.8: Backward bifurcation of the force of infection at equilibrium against the effec-
tive reproduction number Re f f

3.7 Cost-Effectiveness Analysis

Cost-effectiveness analysis used to rank the implemented strategies interims of their cost. Applying

one intervention only might to be effective to eradicate the disease from the community. Therefore,

we analzed strategies that used more than one intervention method. To achieve, this we used incre-

mental cost-effectiveness ratio (ICER), stated by (Baba and Makinde, 2014);

”ICER = Difference in costs between strategies
Difference in health effects between strategies .”

In table (5.8.1) we obtain the total number of infectious averted and total cost for the implemented

strategies. The difference between the total infectious individuals without control and the total infec-

tious individuals with control is used to obtain the total number of infectious averted. And also to find

the total cost for the implemented strategies we used the cost function, which is 1
2 w1u2

1,
1
2 w2u2

2 and 1
2 w3u2

3

over time. We used the parameter values in table (5.7.1 ) and to apply ICER technique first we ordered

the intervention strategies for pairwise comparison as in table (5.7.1) from A to D with increasing or-

der of effectiveness.

Table 3.7.1: Number of infectious averted and total cost of each strategies

Strategies Description Total infectious averted Total cost (USD)
A Vaccination and Screening 101,417 5,906.1
B Treatment and Screening 116,099 5,472.7
C Prevention and Treatment 117,142 5,292
D Prevention, Treatment and Screening 119,465 6,948.8
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First we compared the cost effectiveness of strategy A and B.

ICER(A)= 5,906.1
101,417 = 0.058,

ICER(B)= 5,472.7−5,906.1
116,099−101,417 =−0.029.

From ICER (A) and ICER (B) we can see that strategy B saves 0.029 than strategy A. Therefore, we

exclude strategy A, because it is a bit expensive continue to compare strategy B and C.

ICER(B)= 5,472.7
116,099 = 0.047,

ICER(C)= 5,292−5,472.7
117,142−116,099 =−0.0015.

Similarly, from ICER (B) and ICER (C) we can see that strategy C saves 0.0015 than strategy B.

Therefore, we exclude strategy B, because it is a bit expensive and finally we compared strategy C

and D.

ICER(C)= 5,292
117,142 = 0.045,

ICER(D)= 6,948.8−5,292
119,465−117,142 = 0.71.

From ICER (C) and ICER (D) we can see that strategy C saves 0.71 than strategy D. Therefore, we

exclude strategy D, because it is a bit expensive. Therefore, we conclude that strategy C the cheapest

of all compared strategies, that meant it is the most cost-effective for pneumonia disease control

interventions strategys.

For further elaboration, figure 5.8.1 shows that applying only one intervention costs the least interims

of price but we didnt consider this, due to the reason that a single intervention is not effective to

eradicate the disease. And additionally we observe from the figure, applying all the three intervention

at once is the most expensive of all the applied intervention strategies.

Figure 3.7.1: Cost Function of the intervention starategies for the period of 10 months
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3.8 Discussions and Conclusions

In this chapter we described and proposed a pneumonia model, which is deterministic in its nature

and also the population is assumed to be variable in size. Several qualitative properties of the model

are presented including feasible region, positivity of the solution set, effective reproductive number,

equilibria points and their stability. The fact that the DFE is locally asymptotically stable when Re f f

¡ 1. The possibility of bifurcation of the model is also studied. From the basic model,an optimal

control problem is formulated by incorporating three control variables; Prevention, treatment and

screening. The Hamiltonian, adjoint variables, characterization of the controls and the optimality

system are derived from the optimal control problem and also numerically simulated by considering

single control at a time and then combination of two control at a time then lastly by applying all

the three control variables. Several combinations of the control variables are compared to determine

which combination is most cost effective in the fight against Pneumonia. From the pairwise result of

the cost effectiveness analysis, the combination of prevention and treatment of pneumonia is observed

to be the best cost effective strategy interims of cost as well as health benefits. .
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Chapter 4

Modelling Typhoid fever Disease dynam-

ics

4.1 Introduction

According to ( WHO,2000),”infectious diseases are those disease caused by viruses, bacteria, epi-

phytes , parasites such as protozoans or worms that have a potential to spread in to the population

easily”. Typhoid fever is one of a common infectious disease in human being, that caused by differ-

ent species of Salmonella. The most common species of Salmonella that cause Typhoid fever are,

Salmonella paratyphi A, B, C and Salmonella paratyphi D [WHO (2003)]. ” Most of the time Ty-

phoid fever is caused by lack of sanitation in which the disease causing bacteria is transmitted by

ingestion of contaminated food or water” WHO,2003. The bacteria is released from the infectious in-

dividuals or carriers and then contaminate food or drinking water as a consequence of unsatisfactory

hygiene practices. Due to this Typhoid fever is a common disease in developing countries. The data

taken from Ethiopia for that past seven years (2009-2015), in figure 4.1.1 indicate that in each year

the disease is increasing in alarming rate. Mathematical models have a great benefits for describing

the dynamics of infectious disease. Moreover, it plays a significant role in predicting suitable control

strategies and analysing and ranking their cost-effectiveness, ( for example see, Makinde and Okosun

(2011), (2012),(2013) and (2014)). Very essential research results on the transmission dynamics of

typhoid have been come out in the last decade, for instance see, Adetunde (2008) , Mushayabasa et

al. (2013), Moffat et al.( 2014), Steady et al.( 2014), Adeboye et al.( 2015) ,Andrew et al.( 2015),
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Figure 4.1.1: Reported cases of Typhoid in Ethiopia for the past seven years.

Muhammad et al.( 2015) and Okaka et al.( 2015) . All of the above studies reveal an important result

for Typhoid fever dynamics by considering different countries situation. But we have identified that

till now there is no study has been done to investigate the Typhoid fever dynamics with the application

of optimal control methods and cost-effectiveness analysis of the applied control strategies.

In view of the above we developed a deterministic mathematical model to investigate the dynamics

of Typhoid fever with optimal control strategies and also we investigated the cost-effectiveness of the

implemented control strategies .

4.2 Model Description and Formulation

The model considers human population as well as bacteria population (Bc). The human population

is divided in to four sub-classes. Susceptible (S) includes those individuals who are at risk for

developing an infection from Typhoid fever disease. Infected (I) this class includes all individuals

who are showing the symptom of the disease. Carrier(C) includes those individuals who are carrying

the disease causing micro-organism but they didn’t show disease symptom and they are not aware of

as they are with bacteria causing Typhoid fever. Recovered (R ) includes all individuals that have

recovered from the disease and got temporary immunity. The Susceptible class is increased by birth

or emigration and also from recovered class by losing temporary immunity with δ rate. Susceptible

individuals will got Typhoid causing bacteria when they take foods or waters which is contaminated

by Salmonella Bacteria. The force of infection of the model is, λ = Bcv
K+Bc

, where, v is ingestion rate, k

is the concentration of Salmonella bacteria in foods or waters and Bc
k+Bc

is the probability of individuals

in consuming foods or drinks contaminated with Typhoid causing bacteria. After the susceptible got

the Typhoid causing bacteria, they have probability of joining carrier with τ rate or being a member
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of infective with 1−ρ rate. The infected sub-class is increased from carrier sub-class by θ screening

rate. Those individuals in the infected sub-class can get treatment and join recovered sub-class with

a rate of β . The recovered sub-class also increase with individuals who came from carrier class by

getting natural immunity with a rate of φ . In all human sub-classes, µ is the natural death rate of

individuals, but in the infective class α is the disease causing death rate. The model assumed the

bacteria population in contaminated foods and waters. Where carriers and infective can contribute

to increase the number of bacteria population in foods and waters with out proper sanitation with a

discharge rate of σ1 and σ2 respectively. We consider µb is the death rate of Salmonella bacteria and

all the described parameters are non-negative.

The above model description is represented using diagrammatically in the figure 4.2.1

Figure 4.2.1: Flow diagram of the model

The above flow diagrams can be written in to five system of differential equations.



dS
dt = Λ+δR− (µ +λ )S

dC
dt = ρλS− (σ1 +θ +µ +φ)C

dI
dt = (1−ρ)λS+θC− (σ2 +β +µ +α)I

dR
dt = β I +φC− (µ +δ )R

dBc
dt = σ1C+σ2I−µbBc

(4.2.1)

Where, λ = Bcv
K+Bc

, with initial condition S(0) = S0, I(0) = I0, C(0) =C0, R(0) = R0 and Bc(0) = 0.

74



4.3 The Model Analysis

4.3.1 Invariant Region

To obtain the invariant region in which the model solution to be bounded, we consider the total human

population (N) and Where, N = S+C+ I +R.

Then, differentiating N both sides with respect to t leads to;

dN
dt

=
dS
dt

+
dC
dt

+
dI
dt

+
dR
dt

. (4.3.1)

By combining equation 4.2.1 and 4.3.1 we obtain can get;

dN
dt

= Λ−µN−αI. (4.3.2)

In the absence of mortality due to Typhoid fever disease (α = 0), equation (4.3.2) become

dN
dt
≤ Λ−µN. (4.3.3)

Integrating both side of equation (4.3.3),

∫ dN
Λ−µN

≤
∫

dt. (4.3.4)

⇔ −1
µ

ln(Λ−µN)≤ t + c which simplifies in to

Λ−µN ≥ Ae−µt (4.3.5)

where A is constant. By applying the initial condition N(0) = N0 in equation (4.3.5), we get A =

Λ−µN0 which up on substitution in equation(4.3.5) yields

Λ−µN ≥ (Λ−µN0)e−µt . (4.3.6)

Then by rearranging equation (4.3.6) we can get,

N ≤ Λ

µ
− [

Λ−µN0

µ
]e−µt . (4.3.7)
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As t → ∞ in equation (4.3.7) the population size N → Λ

µ
which implies that 0 ≤ N ≤ Λ

µ
. Thus the

feasible solution set of the system equation of the model enter and remain in the region:

Ω = {(S, I,C,R) ∈ℜ
4
+ : N ≤ Λ

µ
} (4.3.8)

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is sufficient

to study the dynamics of the basic model in Ω

4.3.2 Positivity of the solutions

we assumed that the initial condition of the model is non-negative, and now we also showed the

solution of the model is also positive.

Theorem 4.3.1. Let Ω = {(S,C, I,R,Bc) ∈ ℜ5
+ : S0 > 0, I0 > 0,C0 > 0,R0 > 0,Bc0 > 0} then the

solution of {S, I,C,R,Bc} are positive for t ≥ 0.

Proof:

From the system of differential equation 4.2.1 let us taking the first equation

dS
dt = Λ+δR− (µ +λ )S

⇒ dS(t)
dt ≥−(µ +λ )S(t)

⇒ dS(t)
S(t) ≥−(µ +λ )d(t)

⇒
∫ dS(t)

S(t) ≥−
∫
(µ +λ )d(t). Then by solving using separation of variable and applying condition

we obtained:

S(t)≥ S0e−(µ+λ )t ≥ 0.

And also by taking the first equation of 4.2.1 that is
dC
dt = ρλS− (σ1 +θ +µ +φ)C, it is true that

dC
dt ≥−(σ1 +θ +µ +φ)C.

⇒ dC
C ≥−(σ1 +θ +µ +φ)d(t)

⇒
∫ dC

C ≥−
∫
(σ1 +θ +µ +φ)(t). Then by solving using separation of variable and applying initial

condition gives ;

∴C(t)≥C0e−(µ+φ)t ≥ 0.
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Similarly we took the third equation of 4.2.1 which is;
dI(t)

dt = (1−ρ)λS+θC− (σ2 +β +µ +α)I it is true that
dI
dt ≥−(σ2 +β +µ +α)I

⇒ dI
I ≥−(σ2 +β +µ +α)d(t)

⇒
∫ dI

I ≥−
∫
(σ2 +β +µ +α)d(t). Then by solving using separation of variable and applying

initial condition gives ;

∴ I(t)≥ I0e−(σ2+β+µ+α)t ≥ 0.

when we took the fourth equation of 4.2.1 which is,
dR
dt = β I +φC− (µ +δ )R,

⇒ dR
dt ≥−(µ +δ )R

⇒ dR
R ≥−(µ +δ )d(t)

⇒
∫ dR

R(t) ≥−
∫
(µ +δ )d(t)

∴ R(t)≥ R0e−(µ+δ )t ≥ 0.

Finally we took the fifth equation of 4.2.1
dBc
dt = σ1C+σ2I−µbBc

⇒ dBc
dt ≥−µbBc

⇒ dBc
Bc(t)
≥−(µb)d(t)

⇒
∫ dBc

Bc
≥−

∫
(µb)d(t)

∴ Bc ≥ Bc0e−(µb)t ≥ 0.

This completes the proof of the Theorem.

Therefore, the solution of the model is positive.

4.3.3 The disease free equilibrium (DFE)

The disease-free equilibrium is obtained by setting to zero all model variables involving infected and

carrier individuals and solving for the non-infected and non-carrier state variables. Therefore, the

disease free equilibrium E0 = (Λ

µ
,0,0,0,0)
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4.3.4 The Basic Reproductive Number(ℜ0)

In this section we obtained the threshold parameter that governs the spread of a disease which is called

the basic reproduction number is determined.To obtain the basic reproduction number we used the

next generation matrix method so that it is the spectral radius of the next generation matrix (Driessche

et al., 2002).

The model equations are re-written starting with newly infective classes:

dC
dt

= ρλS− (σ1 +θ +µ +φ)C

dI
dt

= (1−ρ)λS+θC− (σ2 +β +µ +α)I

dBc

dt
= σ1C+σ2I−µbBc

Then by the principle of next generation matrix we can obtained

f =

 ρ( Bcv
k+Bc

)S

(1−ρ)( Bcv
k+Bc

)S

 (4.3.9)

and

p =


(σ1 +θ +µ +φ)C

(σ2 +β +µ +α)I−θC

−(σ1C+σ2I−µbBc)

 (4.3.10)

The Jacobian matrix of f and v evaluated at DFE is given by F and P respectively such that;

F =


0 0 ρ

Λv
µk

0 0 (1−ρ)Λv
µk

0 0 0



V =


(σ1 +θ +µ +φ) 0 0

−θ (σ2 +β +µ +α) 0

−δ1 −δ2 µb


The Inverse of V is obtained and given by;
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V−1 =


1
k1

0 0
θ

k1k2

1
k2

0
θσ2+σ1k2

k1k2µb

σ2
k2µb

1
µb



where, k1 = (σ1 +θ +µ +φ) and k2 = (σ2 +β +µ +α)

Then,

FV−1 =


ρΛv(θσ2+σ1k2)

µkk1k2µb

ρΛvσ2
µkk2µb

ρΛv
vkµb

(1−ρ)Λv(θσ2+σ1k2)
µkk1k2µb

(1−ρ)Λvσ2
µkk2µb

(1−ρ)Λv
vkµb

0 0 0



The characteristic equation of FV1 is obtained as;

λ
2(ρ

Λv(θσ2 +σ1k2)

µkk1k2µb
+(1−ρ))

Λvσ2

µkk2µb
) = 0

The eigenvalues of FV−1 are;

λ1 = λ2 = 0

λ3 = ρ
Λv(θσ2 +σ1k2)

µkk1k2µb
+(1−ρ))

Λvσ2

µkk2µb

The dominant eigenvalue of FV−1 is λ3.

Therefore, the basic reproduction number (ℜ0) after substituting k1 and k2 is given by

ℜ0 =

[
ρ
(θσ2 +σ1(σ2 +β +µ +α))

(σ1 +θ +µ +φ)
+(1−ρ)σ2

]
Λv

µk(σ2 +β +µ +α)µb
(4.3.11)

4.3.5 Local stability of disease free equilibrium

Proposition: The disease free equilibrium point is locally asymptotically stable if ℜ0 < 1 and unsta-

ble if ℜ0 > 1

Proof
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To proof this theorem first we obtain the Jacobian matrix of the system ( 4.2.1) at the disease free

equilibrium E0 as follow :

JE0 =



−µ 0 0 δ
vΛ

kµ

0 −(σ1 +θ +µ +φ) 0 0 ρvΛ

µk

0 θ −(σ2 +β +µ +α) 0 (1−ρ)vΛ

µk

0 φ β −(µ +δ ) 0

0 σ1 σ2 0 −µb


(4.3.12)

From the Jacobian matrix of equation (4.3.12) we obtained a characteristic polynomial:

(−λ −µ)(−λ − (µ +δ ))(λ 3 +L1λ
2 +L2λ +L3) = 0 (4.3.13)

Where, L1 = σ2 +β +2µ +α +σ1 +φ +θ +µb,

L2 = µb(σ2+β +2µ +α +σ1+φ +θ)+(σ2+β +µ +α)(σ1+µ +φ +θ)− (ρσ1+(1−ρ)σ2)
vΛ

µk ,

L3 = µb(σ2 +β +µ +α)(σ1 +µ +φ +θ)(1−ℜ0).

From equation 4.3.13 clearly, we see that:

−λ −µ = 0, or −λ − (µ +δ )) = 0, or λ 3 +L1λ 2 +L2λ +L3 = 0.

=⇒ λ1 =−µ < 0,λ2 =−(µ +δ )< 0.

For the last expression, that is,

λ
3 +L1λ

2 +L2λ +L3 = 0, (4.3.14)

we applied Routh-Hurwitz criteria. By the principle of Routh-Hurwitz criteria, equation 4.3.14 have

strictliy negative real root if and only if

ℜ0 < 1.

Therefore, DFE to be locally asymptotically stable if and only if ℜ0 < 1.

4.3.6 Global stability of DFE

Theorem 4.3.2. The disease free equilibrium is globally asymptotically stable in the feasible region

Ω if ℜ0 < 1.

Proof: To prove this theorem, we first developed a Lyapunov function, technically.
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L =

[
θσ2 +σ1k2

k1

]
C+σ2I + k2βc

Then by differentiating L both sides leads to,

dL
dt

=

[
θσ2 +σ1k2

k1

]
dC
dt

+σ2
dI
dt

+ k2
dβc

dt
. (4.3.15)

Combination of equation (4.2.1) and (4.3.15), result,

dL
dt

=

[
θσ2 +σ1k2

k1

]
ρλS−(σ1+θ +µ+φ)C+σ2((1−ρ)λS+θC−(σ2+β +µ+α)I)+k2(σ1C+σ2I−µbBc).

(4.3.16)

By collecting like terms of equation (4.3.16),

dL
dt

=

[
ρ

θσ2 +σ1k2

k1
+(1−ρ)σ2

]
λS+(θσ2−θσ2−σ1k2)C−σ2k2I + k2(σ1C+σ2I−µbBc).

(4.3.17)

Equation (4.3.17) can be simplified as;

dL
dt

=

[
ρ

θσ2 +σ1k2

k1
+(1−ρ)σ2

]
λS− k2µbBc). (4.3.18)

Equation (4.3.18) can be written as interims of ℜ0,

dL
dt

= (ℜ0µbk2
µk
Λv

)λS− k2µbBc). (4.3.19)

At S = S0 =
Λ

µ
, equation (4.3.19) become;

dL
dt
≤ (ℜ0−1)k2µbBc. (4.3.20)

So dL
dt ≤ 0 if ℜ0 ≤ 1. Furthermore,

dL
dt = 0⇔ Bc = 0 which leads to C = I = 0 or ℜ0 = 1.

Hence, L is Lyapunov function on Ω and the largest compact invariant set in {(S,C, I,R,Bc)∈Ω, dL
dt =

0} is the singleton (S0,0,0,0,0).

Therefore by Lasalles’s invariance principle (LaSalle, 1976), every solution to equations of the model

(4.2.1) with initial conditions in Ω approaches the disease free equilibrium at t(time) tends to infinity
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(t→ ∞) whenever ℜ0 ≤ 1. Hence The disease free equilibrium is globally asymptotically stable.

4.3.7 The endemic equilibrium

The endemic equilibrium is denoted by E∗ = (S∗,C∗, I∗,R∗,B∗c) and it occur when the disease persist

in the community. To obtain it we equate all the model equations (4.2.1) to zero. Then we obtain :

S∗ =
Λ(σ2 +µ +α +β )(σ1 +µ +θ +φ)(µ +δ )

(µ +λ ∗)−βλ ∗δ ((1−ρ)(σ1 +µ +θ +φ)+ρθ)−δφρλ ∗(σ2 +µ +β +α)

C∗ =
ρλ ∗Λ(σ2 +µ +α +β )(µ +δ )

(µ +λ ∗)−βλ ∗δ ((1−ρ)(σ1 +µ +θ +φ)+ρθ)−δφρλ ∗(σ2 +µ +β +α)

I∗ = (ℜ0k(σ1+µ+θ+φ)(σ2+µ+β+α)µµb−σ1ρΛv(σ2+µ+β+α))(µ+δ )
µkσ2+vσ2−βδℜ0k(σ1+µ+θ+φ)(σ2+µ+β+α)µµb+βδσ1(σ2+µ+β+α)Λv−δσ2φρv(σ2+µ+β+α)

R∗ = β I∗+φC∗

µ+δ

B∗c =
λ ∗Λ(µ +λ ∗)[σ1ρ(σ2 +µ +α +β )+σ2(1−ρ)(σ1 +µ +θ +φ)+ρθ ]

µb[µ +λ ∗)−βλδ ((1−ρ)(σ1 +µ +θ +φ)+ρθ)−δφρλ ∗(σ2 +µ +β +α)]

When we substitute the expression for B∗c in to the force of infection that is, λ ∗ = B∗cv
k+B∗c

we obtained

a characteristic polynomial of force of infection;

p(λ ∗) = D1λ ∗2 +D2λ ∗ = 0,

where D1 = 1+ℜ0(σ2+µ +α +β )(σ1+µ +θ +φ)(µ +δ )µµbk+(βδ ((1−ρ)(σ1+µ +θ +φ)+

ρθ)+δφρ(σ2 +µ +α +β )),

D2 = (1−ℜ0)(µ +δ )µ .

Clearly, D1 > 0 and D2 ≥ 0. Whenever ℜ0 < 1 , λ ∗ = −D1
D2
≤ 0. From this, we see that for ℜ0 < 1,

there is no endemic equilibrium for this model.

Therefore, this condition shows that it is not possible for backward bifurcation in the model if ℜ0 < 1.

When we plot I∗ over ℜ0 by using the expression for I∗ and estimated parameters in table (5.7.1) we

got a forward bifurcation figure (4.3.1).

Lemma 4.3.3. A unique endemic equilibrium point E∗ exist and is positive if ℜ0 > 1.
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Figure 4.3.1: Forward bifurcation of Typhoid fever model.

The global stability of endemic equilibrium

Theorem 4.3.4. If ℜ0 > 1, the endemic equilibrium E∗ of the model (3.2.1) is globally asymptotically

stable.

Proof. First we define a Lyapunov function L Such that;

L =

(
S−S∗+S∗ln

S∗

S

)
+

(
I− I∗+ I∗ln

I∗

I

)
+

(
C−C∗+C∗ln

C∗

C

)
+

(
R−R∗+R∗ln

R∗

R

)
+

(
Bc−B∗c +B∗c ln

B∗c
Bc

)
.

(4.3.21)

The derivative of equation 4.3.21 with respect to t we got;

dL
dt

=

(
S−S∗

S

)
dS
dt

+

(
I− I∗

I

)
dI
dt

+

(
C−C∗

C

)
dC
dt

+

(
R−R∗

R

)
dR
dt

+

(
Bc−B∗c

Bc

)
dBc

dt
.

(4.3.22)

By replacing dS
dt ,

dC
dt ,

dI
dt ,

dR
dt and dBc

dt in equation 4.3.22, from their respective expressions in equation

3.2.1 and then after collecting positive terms together and negative terms also together leads to,

dL
dt

= H−K.

where,

H = Λ+ δR+(1−ρ)λS+ρλS+β I + θC+ φC+Q+σ1C+σ2I + δR∗S∗
S + (1−ρ)λS∗I∗

I + ρλS∗C∗
C +
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θ I∗C∗
I + β I∗R∗

R + φC∗R∗
R + σ1C∗B∗c

Bc
+ σ2I∗B∗c

Bc

K = δR∗ + (1− ρ)λS∗ + ρλS∗ + θC∗ + β I∗ + φC∗ + σ1C∗ + σ2I∗ + ΛS∗
S + δRS∗

S + (µ+λ )(S−S∗)2

S +

(1−ρ)λSI∗

I + (σ2+β+µ+α)(I−I∗)2

I + ρλSC∗
c + θ I∗C

I + (σ1+θ+µ+φ)(C−C∗)2

C + β IR∗
R + θCR∗

R + (µ+δ )(R−R∗)2

R + QB∗c
Bc

+

σ1CB∗c
BC

+ σ2IB∗c
Bc

+ µb(Bc−B∗c)
2

Bc

Thus if H < K, then dL
dt ≤ 0, and dL

dt = 0 if and only if S = S∗,C =C∗, I = I∗,R = R∗,Bc = B∗c .

From this, we see that E∗=(S∗,C∗, I∗,R∗,B∗c) is the largest compact invariant singleton set in {(S∗,C∗, I∗,R∗,B∗c)∈

Ω : dL
dt = 0} . Therefore, by the principle of Lasalle, the endemic equilibrium (E∗), is globally asymp-

totically stable in the invariant region if H < K.

4.4 Sensitivity Analysis of Model parameters

Since exact values of parameters of epidemic models are not often known, it is proper to examine the

robustness of the model to changes in parameter values. This will help to determine parameters that

most influence the dynamics of the model. Sensitivity analysis is helpful for experimental design,

data assimilation and reduction of complex non-linear models. Values for sensitivity indexes indicate

which parameters should be targeted most for interventions purposes. A very high sensitivity index

indicates that more care should be taken in the estimation of the associated parameter. The normalized

forward sensitivity index is often used to determine the parameters that have higher influence on the

basic reproduction number, ℜ0. Thus, we have ∆ℜ0
v = ∂ℜ0

∂v
v

Re f f
= 1 and since the expressions for the

sensitivity indexes of the remaining parameters are quite complex, we evaluate them (using parameter

values in Table 5.7.1) and present them in Table ??.
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Table 4.4.1: Sensitivity indices table

Parameter symbol Sensitivity indices
v 1
k 0.999
σ1 0.26
σ2 0.03
ρ 0.00506
µ -1.028
µb -1
α -0.0592
θ 0.009
β -0.00017
φ -0.000089

4.4.1 Interpretation of Sensitivity Indices

The sensitivity indices of the basic reproductive number with respect to main parameters are arranged

orderly in table (5.5.1). Those parameters that have positive indices (v, k , σ1,σ2 and ρ) shows that as

they have great impact in expanding the disease in the community if their values are increasing. Due to

the reason that the basic reproduction number increases as their values increase, mean that the average

number of secondary case infection increases in the community. And also those parameters in which

their sensitivity indices are negative (µ,µb , α , θ ,β and φ ) have an influence of minimizing the

burden of the disease in the community is their values increase while the others are left constant. This

is also as their values increase, the basic reproduction number decrease, which leads to minimizing

the endemicity of the disease in the community.

4.5 Extension of the Model into an Optimal Control

In this section, the basic model of Typhoid fever is generalized by incorporating three control inter-

ventions. The controls are prevention (u1) (sanitation and proper hygiene controls) , treatment (u2

( treating individuals who developed symptoms of the disease) and screening of carriers (u3 which

helps them to get proper treatment if they are aware of their status.

After incorporating the controls in to the basic model of Typhoid fever, we get the following state
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equations:



dS
dt = Λ+δR− (1−u1)λS−µS

dC
dt = (1−u1)ρλS− (θ +u3)C− (σ1 +φ +µ)C

dI
dt = (1−u1)(1−ρ)λS+(1−u3)θC− (u2 +β )I− (σ2 +µ +α)I

dR
dt = (u2 +β )I +φC− (µ +δ )R

dBc
dt = σ1C+σ2I−µbBc,

(4.5.1)

where λ = Bcv
k+Bc

.

To study the optimal levels of the controls the control set U is Lebesgue measurable and it is

defined as : The control set ( U ) defined as: U = {(u1(t),u2(t),u3(t)) : 0 ≤ u1 < 1,0 ≤ u2 < 1,0 ≤

u3 < 1,0≤ t ≤ T} is Lebesgue measurable. Our main objective is to obtain the optimal levels of the

controls and associated state variables that optimize the objective function. The form of the objective

function is taken from (Baba and Makinde, 2014) and given by:

J = min
u1,u2,u3

∫ t f

0
(b1I +b2c+

1
2

3

∑
i=1

wiu2
i )dt (4.5.2)

The coefficients associated with state variables (b1 and b2 ) and with controls (wi ) are positive. Due

to the fact that, cost is not linear in its condition we make the cost expression ( 1
2 wiu2

i ) quadratic.

As objective function (5.6.2) shows we aimed to minimize the number of carriers, infectives and

costs. That is we want to get an optimal triple (u∗1,u
∗
2,u
∗
3) such that:

J(u∗1,u
∗
2,u
∗
3) = min{J(u1,u2,u3)/ui ∈U}, where U = {(u1,u2,u3)/ each ui is measurable with 0 ≤

ui < 1 for 0≤ t ≤ t f } is the set of acceptable controls.

4.5.1 Existence of an optimal control

To show an existence of optimal control it can be used an approach of (Fleming and Rishel, 1982) .

We have already justify that the solution of the basic model of Typhoid fever is bounded, so this result

can be used to prove the existence of optimal control. For detail proof, [see (Fleming and Rishel,

1982), Theorem 4.1, p68-69].
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4.5.2 The Hamiltonian and Optimality System

To obtain the Hamiltonian (H) we follow the approach of (Pontryagin et al., 1986) such that:

H =
dJ
dt

+λ1
dS
dt

+λ2
dC
dt

+λ3
dI
dt

+λ4
dR
dt

+λ5
dBc

dt
.

That is,

H(S,C, I,R,Bc, t) = L(C, I,u1,u2,u3, t)+λ1
dS
dt

+λ2
dC
dt

+λ3
dI
dt

+λ4
dR
dt

+λ5
dBc

dt
, (4.5.3)

where L(C, I,u1,u2,u3, t) = b1C+b2I + 1
2 ∑

3
i=1 wiu2

i ,

λ1,λ2,λ3,λ4 and λ5 are the adjoint variable functions. To obtain the adjoint variables we followed the

classical result of (Pontryagin et al., 1986).

Theorem 4.5.1. There exists an optimal control set u1,u2,u3 and corresponding solution, S,C, I,R

and Bc, that minimizes J(u1,u2,u3) over U. Furthermore, there exists adjoint functions, λ1, ...,λ5

such that,



dλ1
dt =−λ1

(
−µ− Bcv(1−u1)

k+Bc

)
− λ2(1−ρ)(1−u1)Bcv

k+Bc
− λ3(1−u1)ρ vBc

k+Bc

dλ2
dt =−b1−λ2 (−θ −u3)−λ3 (1−u3)θ −λ4φ −λ5σ1

dλ3
dt =−b2−λ3 (−u2−β − k2)−λ4 (u2 +β )−λ5σ2

dλ4
dt =−λ1δ −λ4 (−µ−δ ))

dλ5
dt =−λ1Bcv(1−u1)s

(k+Bc)
2 −λ2

(
(1−u1)ρ vS

k+Bc
− (1−u1)ρ vB−cS

(k+Bc)
2

)
−λ3

(
(1−ρ)(1−u1)vS

k+Bc
− (1−ρ)(1−u1)BcvS

(k+Bc)
2

)
+λ5µb,

(4.5.4)

With transversality conditions,

λi(t f ) = 0, i = 1, ...,5.

and the characterized control set of (u∗1,u
∗
2,u
∗
3) is:

u∗1(t) = max{0,min(1,
S (λ2ρ vBc−Bcρ vλ3 +Bcvλ3−λ1Bcv)

(k+Bc)w1
)},

u∗2(t) = max{0,min(1,
I (λ3−λ4)

w2
)},
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u∗3(t) = max{0,min(1,
C (λ3θ +λ2)

w3
)}.

Proof:

To prove this theorem we used the classical result of (Pontryagin et al., 1986). Accordingly, to get

the system of adjoint variables we differentiate the Hamiltonian (4.5.3) with respect to each states as

follow:
dλ1
dt =−dH

dS =−λ1

(
−µ− Bcv(1−u1)

k+Bc

)
− λ2(1−ρ)(1−u1)Bcv

k+Bc
− λ3(1−u1)ρ vBc

k+Bc
,

dλ2
dt =−dH

dI =−b1−λ2 (−θ −u3)−λ3 (1−u3)θ −λ4φ −λ5σ1,

dλ3
dt =−dH

dC =−b2−λ3 (−u2−β − k2)−λ4 (u2 +β )−λ5σ2,

dλ4
dt =−λ1Bcv(1−u1)s

(k+Bc)
2 −λ2

(
(1−u1)ρ vS

k+Bc
− (1−u1)ρ vB−cS

(k+Bc)
2

)
−λ3

(
(1−ρ)(1−u1)vS

k+Bc
− (1−ρ)(1−u1)BcvS

(k+Bc)
2

)
+λ5µb.

And also for characterization of the optimal control we used the following partial differential equa-

tion:
∂H
∂ui

= 0 at ui = u∗i where i = 1,2,3.

For i = 1
∂H
∂u1

= 0 at u∗1,

⇒ u∗1 =
S (λ2ρ vBc−Bcρ vλ3 +Bcvλ3−λ1Bcv)

(k+Bc)w1
.

For i = 2
∂H
∂u2

= 0 at u∗2,

⇒ u∗2 =
I (λ3−λ4)

w2
.

For i = 3
∂H
∂u3

= 0 at u∗3,

⇒ u∗3 =
C (λ3θ +λ2)

w3
.

Since 0 < u∗i < 1, we can wrote in a compact notation:

u∗1 = max{0,min(1,
S (λ2ρ vBc−Bcρ vλ3 +Bcvλ3−λ1Bcv)

(k+Bc)w1
)},
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u∗2 = max{0,min(1,
I (λ3−λ4)

w2
)},

u∗3 = max{0,min(1,
C (λ3θ +λ2)

w3
)}.

4.5.3 The optimality system

It is a system of states (5.6.4) and adjoint (5.6.3) incorporating with the characterization of the optimal

control and initial and transversality conditions . Then we have the following optimality system:



dS
dt = Λ+δR− (1−u∗1)λS−µS

dC
dt = (1−u1

∗)ρλS− (θ +u∗3)C− (σ1 +φ +µ)C

dI
dt = (1−u∗1)(1−ρ)λS+(1−u∗3)θC− (u∗2 +β )I− (σ2 +µ +α)I

dR
dt = (u∗2 +β )I +φC− (µ +δ )R

dBc
dt = Q+σ1C+σ2I−µbBc,

dλ1
dt =−λ1

(
−µ− Bcv(1−u∗1)

k+Bc

)
− λ2(1−ρ)(1−u∗1)Bcv

k+Bc
− λ3(1−u∗1)ρ vBc

k+Bc

dλ2
dt =−b1−λ2 (−θ −u∗3)−λ3 (1−u∗3)θ −λ4φ −λ5σ1

dλ3
dt =−b2−λ3 (−u∗2−β − (σ2 +µ +α))−λ4 (u∗2 +β )−λ5σ2

dλ4
dt =−λ1δ −λ4 (−µ−δ ))

dλ5
dt =−λ1Bcv(1−u∗1)S

(k+Bc)
2 −λ2

(
(1−u∗1)ρ vS

k+Bc
− (1−u∗1)ρ vB−cS

(k+Bc)
2

)
−λ3

(
(1−ρ)(1−u∗1)vS

k+Bc
− (1−ρ)(1−u∗1)BcvS

(k+Bc)
2

)
+λ5µb,

λi(t f ) = 0, i = 1,2,3,4,5 S(0) = S0, I(0) = I0, C(0) =C0, R(0) = R0, Bc(0) = Bc0 .

4.5.4 Uniqueness of the Optimality System

Since the state and adjoint variables are bounded and also the obtained ordinary differential equations

have Lipschitz in their structure, it is possible to show the uniqueness, hence the following theorem.

Theorem 4.5.2. For t ∈ [0, t f ], the bounded solutions to the optimality system are unique.

Proof:

See (Fister et al., 1998) for the proof of this theorem.
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4.6 Numerical Simulations

We perform numerical simulation of the optimality system by using the parameter values given in

table (5.7.1).

Table 4.6.1: Parameter Values for Typhoid fever Model

Parameter symbol Parameter description Value Source
v Salmonella ingestion rate 0.9 Assumed
k Concentration of Salmonella bacteria in foods and water 50000 Gosh et al,2006
µ Human being natural death rate 0.0247 assumed
α Typhoid induced death rate 0.052 estimated
β Treatment rate of infectious 0.002 Estimated
σ1 Discharge rate of Salmonella from carriers 0.9 Gosh et al,2006
σ2 Discharge rate of Salmonella from infective 0.8 Assumed
δ Removal rate from Recovered sub-class to Susceptible sub-class 0.000904 Adetunde,2008
θ Screening rate of carriers 0.2 Assumed
φ Removal of carriers by natural immunity 0.0003 assumed
ρ Probability of susceptible joining carrier state 0.3 Assumed
µb Natural/drug induced death rate of bacteria 0.001 Gosh et al,2006
Λ Recruitment of human being 100 Assumed

To obtain optimal solution we apply iterative technique. By using an advantage of the initial

conditions of the state system we used a forward fourth-order Runge-kutta method to solve it and

also due to the final conditions for the adjoint system we used a backward fourth-order Runge-Kutta

method to solve it. To solve the state initial guess of controls is used and the solution of the state

system and the initial guess helps to solve the adjoint system. Each controls continue to be updated

by combining its previous and characterization values. To repeat the solutions the updated controls

are used. This situation continues until two consecutive iterations are close enough (Lenhart and

Workman, 2007).

To examine the impact of each control on eradication of Typhoid fever disease we used the following

strategy:

(i). Applying prevention only (u1) as intervention,

(ii). Applying treatment only (u2 ) as intervention,

(iii). Applying screening only ( u3) as intervention,

(iv). Implementing prevention (u1) and treatment ( u2 ) intervention,

(v). Implementing prevention ( u1 ) and screening ( u3 ) intervention ,

(vi). Implementing treatment ( u2) and screening ( u3 ) intervention,

(vii). Using all the three controls, prevention effort u1 treatment effort u2 and also screening u3.

Initial values that we used for Simulation of the optimal control are S(0) = 1000,C(0) = 150, I(0) =
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200,R(0) = 300 and Bc(0) = 200 and also coefficients of the state and controls that we used are

b1 = 25,b2 = 25,w1 = 4,w2 = 3 and w3 = 5.

4.6.1 Control with Prevention only

We simulated the Optimality system by incorporating prevention intervention only. Figure 4.6.1 a

and b shows the decrease of infectious and carrier population in the specified time. We conclude that

prevention that include sanitation and other technique is a vital method to reduce Typhoid fever in-

fection. The number of individuals who have been with Typhoid fever disease before implementation

of prevention control has gone down due to disease induced and natural deaths. Therefore, applying

optimized prevention control can eradicate Typhoid fever disease in the community.

(a) Prevention impact on infectious population (b) Prevention impact on carrier population

Figure 4.6.1: Simulations of Typhoid fever model with prevention control only.

4.6.2 Control with Treatment

We applied treatment only as intervention that is treating individuals who develop disease symptom.

From figure 5.7.1 a and b, we understand that the number of infectious and carriers decreased when

treatment intervention is applied. The number of infectious and carriers didn’t goes to zero over the

period of implementation of this intervention strategy. The reason is that due to lack of prevention

susceptible individuals still get infected. Therefore, we conclude that, applying optimized treatment

only as control intervention decrease the burden of the disease but it can’t eradicate Typhoid fever

disease in the community.
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4.6.3 Control With Screening

As we know screening helps carriers to identify their status as they are leaving with the bacteria or

not. Therefore, figure 4.6.3 a and b shows that, the infectious and carrier population goes down by

screening effort but their number can’t be zero. New infection always there in the community due to

the reason that, the disease are not prevented and individuals who develop the symptom of the disease

are not getting treatment. Therefore, control with screening only reduce the burden in some extent

but it is not helpful to eradicate Typhoid fever disease totally from the community.

4.6.4 Control with Prevention and Treatment

We simulate the model using a combination of prevention and treatment as intervention strategy

for control of Typhoid fever disease in the community. Figure 4.6.4 a and b clearly show that the

infectious carrier population has gone to zero at the end of the implementation period. Therefore, we

conclude that, this strategies is effective in eradicating the disease from the community in a specified

period of time.

4.6.5 Control with Prevention and Screening

We simulated the model by incorporating optimized prevention and screening as disease control strat-

egy. Figure 4.6.5 a and b shows that the infectious and carrier population goes to zero at the end of

the implementation of intervention time. From this we can conclude that, applying prevention and

screening can eradicate the disease even if without treating of individuals that have disease symp-

tom. Therefore, applying Optimized Prevention and screening as intervention strategy will eradicate

Typhoid fever disease from the community.

4.6.6 Control with Treatment and Screening

In this strategy we applied treatment and screening as intervention to control Typhoid fever disease.

Figures 4.6.6 a and b shows that optimized intervention by treating infectious individuals and screen-

ing of carriers decrease the number of infectious and carrier populations but didn’t goes to zero.

Therefore, this strategy is not 100% effective to eradicate the disease in the specified period of time.
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(a) Treatment impact on infectious population (b) Treatment impact carrier population

Figure 4.6.2: Simulations of Typhoid fever model with treatment control only.

(a) Screening impact on infectious population (b) Screening only impact on carrier population

Figure 4.6.3: Simulations of Typhoid fever model with screening control only.
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(a) Prevention and treatment impact on infectious (b) Prevention and treatment impact on carrier

Figure 4.6.4: Simulations of Typhoid fever model with prevention and treatment controls

Figure 4.6.5: Simulations of the Typhoid fever model with prevention and screening controls.

(a) Treatment and screening impact on infectious (b) Treatment and screening impact on carriers

Figure 4.6.6: Simulations of the Typhoid fever model with treatment and screening controls.
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4.6.7 Control with Prevention, Treatment and Screening

In this strategy we implemented all the three controls (Prevention, Treatment and Screening) as inter-

vention to eradicate Typhoid fever from the community. Figure 4.6.7 a and b shows that the number

of infectious and carriers goes to zero at the end of the implementation period. Moreover, figure 4.6.8

shows that the number of salmonella bacteria population decreased after the implementation of the

strategy. Therefore, applying this strategy is effective to eradicate Typhoid fever disease form the

community in a specified period of time.

(a) Prevention, treatment and screening impact on
infectious

(b) Prevention ,treatment and screening impact on
carriers

Figure 4.6.7: Simulations of the Typhoid fever model with prevention , treatment and screen-
ing controls.

Figure 4.6.8: Simulations of the Typhoid fever model with prevention , treatment and screen-
ing controls on Salmonella bacteria populations.
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4.7 Cost-Effectiveness Analysis

In this section, we identified a strategy which is cost effective compared to other strategies. To a

chive this we used incremental cost-effectiveness ratio (ICER), which is done dividing the difference

of costs between two strategies to the difference of the total number of their infectious averted. We

estimated the total number of infectious averted for each strategy by subtracting total infectious with

control from without control. To get the total cost of each strategy we used their respective cost

function ( 1
2 w1u2

1,
1
2 w2u2

2 and 1
2 w3u2

3) to calculate over the time of intervention. We didn’t consider

strategies that implement one intervention only, due to the reason that one intervention only is not

guaranteed to eradicate the disease totally from the community. For those strategies which incorporate

more than one intervention are ordered below to be compared pairwise.

Strategy A (Prevention and screening).

Strategy B (Treatment and Screening).

Strategy C (Prevention and Treatment).

Strategy D ( Prevention, Treatment and Screening).

We used parameter values in table (5.7.1) to estimate the total cost and total infectious averted in table

(4.7.1).

Table 4.7.1: Number of infectious averted and total cost of each strategies

Strategies Description Total infectious averted Total cost (USD)
A Prevention and Screening 11,977 733.07
B Treatment and Screening 13,805 800
C Prevention and Treatment 19,699 531.19
D Prevention, Treatment and Screening 19,987 1104.5

First we compared the cost effectiveness of strategy A and B, ICER(A)= 733.07
11,977 = 0.06,

ICER(B)= 733.07−800
11,977−13,805 = 0.037

This shows that strategy B is cheaper than strategy A by saving 0.037. That means strategy A needs

higher money than strategy B. Therefore, we exclude strategy A and continue to compare strategy B

and C.

ICER(B)= 800
13,805 = 0.058,

ICER(C)= 800−573.19
13,805−19,699 =−0.039.

Similarly this comparison indicate that strategy C is cheaper than strategy B by saving 0.039. There-
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fore, strategy B is rejected and continue to compare strategy C with the last strategy which is D.

ICER(C)= 573.19
19,699 = 0.029,

ICER(D)= 573.19−1,104.5
19,699−19,987 = 1.845.

Finally this the comparison result reveal strategy C is cheaper than strategy D by saving 0.029.

Therefore, strategy C (combination of Prevention and treatment ) is the best strategy interims cost-

effectiveness and healthy benefit also from all compared strategies.

Moreover, figure 5.8.1 shows that applying only one intervention strategy the most cheapest than

other strategies . But we do not consider this because a single intervention is not effective to eradicate

the disease. A combination of prevention and treatment strategy is the cheapest of all other combined

intervention strategies . The combination of all the three interventions (Prevention , treatment and

screening) is the most expensive strategy compared to other strategies.

Figure 4.7.1: Cost Function of the intervention starategies for the period of 3 months
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4.8 Discussions and Conclusions

In this chapter, a deterministic model for the dynamics of Typhoid fever disease is proposed. The

qualitative analysis of the model shows as the solution of the model is bounded and positive. Com-

prehensive and robust mathematical techniques have been used to analyze the model steady states.

It has been established that the model has a disease-free equilibrium which is locally and globally

asymptotically stable when the associated reproductive number is less than unity an also it reveal that

for ℜ0 < 1 there is no possibility of having backward bifurcation. Sensitivity analysis of the repro-

ductive number has been carried out. Results from the sensitivity analysis of the reproductive number

suggest that an increase in v, k , σ1 and σ2 has the greatest influence on increasing the magnitude of

the associated reproductive number which results the endemicity of Typhoid fever.

Using Pontryagins maximum principle, the optimal control problem is formulated and analyzed

the conditions for optimal control of the disease with effective preventive measures (sanitation and

proper hygiene controls) ,treatment regime and screening. Existence conditions for optimal control

is established and the optimality system is developed. Seven intervention strategies are proposed to

for examining each strategies on the eradication of Typhoid. The proposed strategies are investigated

numerically and their results are displayed graphically. From the numerical results, we obtained

that prevention and the cost put into treatment have a strong impact on the disease control. Effec-

tive treatment only without prevention is not the best option in controlling the spread of Typhoid

fever. We therefore conclude that adequate control measures which adhered to these control strate-

gies (preventive and treatment) would be a very effective way for fighting the disease and also for

cost effectiveness.
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Chapter 5

A co-infection model of Pneumonia and

Typhoid fever diseases

5.1 Introduction

Pneumonia is the leading cause of serious illness in children and adults throughout the world. The

disease is endemic and claims so many lives. Typhoid fever also continues to be an important cause of

illness and death in developing countries where safe water supply, environmental sanitation and food

hygiene are not optimal. In Africa where pneumonia and Typhoid fever are endemic, it is common

for people to be infected by either or both. To mitigate these disease continuous research into the

prevention and control of the disease is vital. Mathematical modelling have an important role in de-

scribing the dynamics of infectious diseases and also for investigating the optimal use of intervention

strategies to control the spread of infectious diseases. For example Okaka,et al (2013) developed a

mathematical model for the impact of misdiagnosis and treatment of pneumonia as malaria. Other

studies include Steady, et al, (2014) developed a deterministic mathematical model for assessing the

transmission dynamics of typhoid fever in malaria endemic settings. The result of the study suggests

that a Typhoid fever outbreak in malaria endemic settings may lead to higher population of dually in-

fected individuals displaying clinical symptoms of both infections than the singly infected population

displaying clinical symptoms of the diseases. Adeboye, et al,( 2015) developed SIRS mathematical

model that addressed the control of the transmission of Typhoid fever and Malaria simultaneously.

The study concluded that the control measures against malaria and typhoid incorporated into the
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model had significant impacts on the malaria and typhoid fever by controlling the spread of the two

diseases. Okaka, et al, (2015) formulated a mathematical model of malaria- typhoid concurrent and

co-infection to establish the effect of misdiagnosing typhoid as malaria and hence treating it with

anti-malarias.

Quite a few studies have been undertaken with co-infection of pneumonia with Malaria and also

co-infection of Typhoid fever with Malaria. However, all of them did not consider optimal control

strategies in their studies. But to the best of our knowledge no work has been done to investigate the

Pneumonia- Typhoid co-infection dynamics with the application of optimal control method.

In this Chapter, we take inspiration from the above studies and introduce, an SIR model for Pneumonia-

Typhoid fever co-infection with optimal control problem and cost-effectiveness analysis of the opti-

mal intervention strategies are presented.

The main goal of this Chapter is to provide detailed qualitative analysis of Pneumonia- Typhoid fever

co-infection model and to propose best strategies that can be employed to effectively control the

spread of the two diseases at minimum cost.

The remainder of the Chapter is organized as follows. In section 5.2 , we discuss the formulation

of the model in focus whilst sections 5.3, 5.4, and 5.5, deal with qualitative analysis of the basic

Pneumonia only model, Typhoid fever only model and the full model respectively. In section 5.6, the

main model is extended to form an optimal control problem which is qualitatively analyzed using the

Pontryagins Maximum principle. In section ??, numerical experimentation of the resulting optimal

control is performed. In Section ?? cost effectiveness analysis is described. Lastly in Section ??

discussion and conclusion of the chapter is presented.

5.2 Model description

The model consider the Typhoid fever causing bacteria (salmonella) population (B) and the human

population . The human population is divided in to seven classes, susceptible (S), Pneumonia infec-

tious (Ip), Typhoid infectious (It), pneumonia and Typhoid co-infectious (It p), Pneumonia recovered

(Rp), Typhoid recovered (Rt) and Pneumonia - Typhoid co-infectious recovered (Rt p).is also consid-

ered The recruitment rate susceptible individuals either by birth or immigration is Q and the number

of susceptible increases by those individuals that lost their temporary immunity from recovered sub

classes of Pneumonia (Rp), Typhoid fever (Rt) and Pneumonia-Typhoid fever co-infected sub class
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(Rt p) with a rate of δ1,δ2 and δ3 respectively. Any susceptible individuals either can get Pneumonia

disease with force of infection λ1 =
γ(Ip+ϒIt p)

N and join Pneumonia infectious sub-class (Ip) or Typhoid

fever disease with force of infection λ2 =
vB

k+B and join Typhoid fever infectious sub-class(It), where

ϒ is transmission coefficient for the dually infected. If ϒ > 1 then, dually infected may infect suscep-

tible more likely than pneumonia only infected. If ϒ = 1 , then both dually infected and pneumonia

only infective have equal chance to infect the susceptible, but if ϒ < 1 then pneumonia only infected

have good chance to infect susceptible than dually infected. And also γ is infectious rate of Pneumo-

nia, v is the rate of ingestion of Typhoid causing bacteria, k is concentration of bacteria in foods and

water. The number of co-infection sub- class is increased from Pneumonia infected group by getting

Typhoid fever disease with λ2 force of infection and also from Typhoid fever infected sub-class by

getting Pneumonia disease with λ1 force of infection. The infectious sub-class of Pneumonia also

can get treatment with β1 rate and move to Pneumonia recovered sub-class Rp or dies due to disease

causing death rate of α1. Similarly the infected sub-class of Typhoid fever also can get treatment with

a rate of β2 and join Typhoid recovered sub-class or dies from disease causing death with a rate of α2.

The Pneumonia- Typhoid co-infected sub class can get treatment with a rate of σ and get temporary

immunity either from both disease or Pneumonia only or Typhoid only and join the join co-infected

recovered sub-class (Rt p) with probability of (1− g)(1− e) or Pneumonia recovered sub-class (Rp)

with probability of e or Typhoid fever recovered sub-class (Rt) with probability of g(1− e), where

(1−g)(1−e)+g(1−e)+e = 1. Additionally, individuals in the co-infected sub class also dies either

Pneumonia or Typhoid causing death with similar rate of Pneumonia or Typhoid only infected indi-

viduals. In all the seven human population sub-classes µ is natural causing death rate. The Typhoid

fever causing bacteria (salmonella) population (B) grows in contaminated food or drinks with π rate

and also increase its number from the discharge of bacteria from Typhoid fever infected individuals

and the co-infected individuals with a rate of σ1 and σ2 respectively and also it dies due to Natural/

drug induced death rate of µb.

The above description of the model is plotted in figure (5.2.1).

co.PNG

Figure 5.2.1: Flow diagram of the model

From the above flow diagrams we generate the following seven system of differential equation.
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

dS
dt = Q+δ1Rp +δ2Rt +δ3Rt p− (λ1 +λ2 +µ)S

dIp
dt = λ1S− (λ2 +β1 +α1 +µ)Ip

dIt
dt = λ2S− (λ1 +β2 +α2 +σ1 +µ)It

dIt p
dt = λ2Ip +λ1It − (σ +α1 +σ2 +α2 +µ)It p

dRp
dt = β1Ip +σeIt p− (δ1 +µ)Rp

dRt
dt = β2It +σg(1− e)It p− (δ2 +µ)Rt

dRt p
dt = σ(1−g)(1− e)It p− (δ3 +µ)Rt p

dB
dt = pi+σ1It +σ2It p−µbB,

(5.2.1)

where, λ1 =
γ(Ip+ϒIt p)

N ,λ2 =
vB

k+B and S(0)= S0, Ip(0)= Ip0 , It(0)= It0 , It p(0)= It p0 ,Rp(0)=Rp0,Rt(0)=

Rt0,Rt p(0) = Rt p0 and B(0) = B0 are non-negative initial values.

5.3 Pneumonia only model

The Pneumonia only model is obtained from equation (5.2.1) by setting It = It p = Rt = Rt p = B =

0,δ2 = δ3 = λ2 = 0. Then we obtain;
dS
dt = Q+δ1Rp− (λ ∗1 +µ)S

dIp
dt = λ ∗1 S− (β1 +α1 +µ)Ip

dRp
dt = β1Ip− (δ1 +µ)Rp

(5.3.1)

where, λ ∗1 = γIp

5.3.1 Invariant region

In this section we obtain a region in which the solution of (5.3.1) is bounded. For this model the total

population N1=S+ Ip +Rp. Then, after differentiating N1 with respect to time and substituting the

expression for dS
dt ,

dIp
dt and dRp

dt from equation (5.3.1) we obtain;

dN1

dt
= Q+µN−α1Ip. (5.3.2)

102



If there is no death from Pneumonia, equation (5.3.2) become;

dN1

dt
≤ Q+µN. (5.3.3)

After, solving equation (5.3.3) and evaluating it as time tends to infinity, we got;

Ω1 = {(S, Ip,RP) ∈ℜ3
+ : 0≤ N1 ≤ Q

µ
.

Therefore, all the solution set of (5.3.1) is bounded in Ω1.

5.3.2 Positivity of the solution

In this section we show all solutions of the model (5.3.1) are positive for future time.

Theorem 5.3.1. If S0 > 0, Ip0 > 0, and Rp0 > 0 then all the solution set (S(t), Ip(t) and Rp(t) are

positive for future time.

Proof

To prove this theorem first let as define t1,

t1 = sup{t > 0 : S(τ)> 0, Ip(τ)> 0,Rp(τ)> 0 for all τ ∈ [0, t]}.

Since S0 ≥ 0, Ip0 ≥ 0,Rp0 ≥ 0 , thus t1 > 0. If t1 < ∞, then necessarily S or Ip or Rp is equal to zero at

t1. From equation (5.2.1), let as take the first equation:

dS
dt

= Q+δ1Rp− (λ ∗1 +µ)S. (5.3.4)

Using the variation of constants formula the solution of equation (5.3.4) at t1 is given by.

S(t1) = S(0)exp
[
−
∫ t1

0 (λ ∗1 +µ)(s)ds
]
+
∫ t1

0 (Q+δ1Rp)exp
[
−
∫ t1

s (λ ∗1 +µ)(τ)dτ
]

ds.

Moreover, since all the variables are positive in [0, t1], then S(t1)> 0.

It can be shown in a similar way that Ip(t1)> 0 and Rp(t1)> 0 which is a contradiction. Hence t1 =∞.

Therefore, all the solution sets are positive for future time.

5.3.3 Disease free equilibrium

The disease free equilibrium of the model is obtained by letting equation (5.3.1) to zero and evaluating

at Ip = 0.
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Then, we got E0p = (Q
µ
,0,0).

5.3.4 Basic reproduction number (ℜ0p)

To obtain ℜ0p we use the next generation matrix method.

From dIp
dt = λ ∗1 S− (β1 +al pha1 +µ)Ip,

f = γIpS and v = (β1 +al pha1 +µ)Ip. Then,

F = γ
Q
µ

V−1 = 1
(β1+al pha1+µ)

FV−1 = γ
Q
µ

1
(β1+al pha1+µ) . Therefore, the basic reproduction number is given by;

ℜ0p =
γQ

µ(β1 +α1 +µ)
(5.3.5)

5.3.5 Local stability of disease free equilibrium

Theorem 5.3.2. The disease free equilibrium point is locally asymptotically stable if ℜ0p < 1 and

unstable if ℜ0p > 1.

Poof.

To prove this let us take the right hand side expression of the second equation of 5.3.1;

x = λ ∗1 S− (β1 +α1 +µ)Ip. Then the partial derivative of f with respect to Ip at disease free equilib-

rium is,
∂x
∂ Ip

(
Q
µ
,0,0) =

γQ
µ
− (β1 +α1 +µ)

.

The disease free equilibrium to be stable;

∂ f
∂ Ip

(
Q
µ
,0,0) =

γQ
µ
− (β1 +α1 +µ)< 0

⇒ (β1 +α1 +µ)(
γQ

µ(β1 +α1 +µ)
−1)< 0

⇒ (β1 +α1 +µ)(ℜ0p−1)< 0

Therefore, the disease free equilibrium is locally asymptomatically stable if ℜ0p < 1 and unstable

otherwise.
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5.3.6 Global stability of the disease free equilibrium

Theorem 5.3.3. The disease free equilibrium is globally asymptotically stable if ℜ0p < 1.

Proof

To prove the global asymptotic stability of the DFE we use the method of Lyapunov functions.

Systematically, we defined a Lyapunov function L such that;

L =
1

(β1 +α1 +µ)
Ip.

Then,
dL
dt

=
1

(β1 +α1 +µ)

dIp

dt
=

1
(β1 +α1 +µ)

(γSIp− (β1 +α1 +µ)Ip)

⇒ dL
dt

=
γSIp

(β1 +α1 +µ)
− Ip

⇒ dL
dt
≤ (

γQ
µ(β1 +α1 +µ)

−1)Ip

⇒ dL
dt
≤ (ℜ0p−1)Ip

So dL
dt ≤ 0 if ℜ0p ≤ 1. Furthermore, dL

dt = 0 if Ip = 0 or ℜ0p = 1.

From this we see that, (S0,0,0) is the only singleton in {(S, Ip,Rp) ∈Ω1 : dL
dt = 0}.

Therefore by the principle of (LaSalle, 1976), DFE is globally asymptotically stable if ℜ0p ≤ 1.

5.3.7 Endemic equilibrium

The endemic equilibrium is denoted by E∗p = (S∗, I∗p,R
∗
p) and it occur when the disease persist in the

community. To obtain it we equate all the model equations (5.3.1) to zero. Then we obtain :

S∗ =
Q

µℜ0p

I∗p =
Q(ℜ0 p−1)+δ1ℜ0pRp

ℜ0 p(β1 +µ +α1)

R∗p =
β1

µ +δ1
I∗p

From this we see that for the endemic equilibrium to be exist ℜ0p > 1.
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Lemma 5.3.4. A unique endemic equilibrium point E∗ exist and is positive if ℜ0p > 1.

Using expression for I∗p in the endemic equilibrium and estimated parameters in table (5.7.1), we

plot figure (5.3.1) that shows there is a transcritical bifurcation for pneumonia only model.

Figure 5.3.1: Transcritical bifurcation.

5.3.8 Global stability of endemic equilibrium

Theorem 5.3.5. If ℜ0p > 1, the endemic equilibrium E∗ of the model (5.3.1) is globally asymptotically

stable.

Proof

Systematically we define an appropriate Lyapunov function L Such that;

L =

(
S−S∗+S∗ln

S∗

S

)
+

(
Ip− I∗p + I∗pln

I∗p
Ip

)
+

(
RP−R∗P +R∗pln

R∗p
Rp

)
. (5.3.6)

Then differentiating equation (5.3.6) with respect to t gives,

dL
dt

=

(
S−S∗

S

)
dS
dt

+

(
Ip− I∗p

Ip

)
dIp

dt
+

(
Rp−R∗p

Rp

)
dRp

dt
. (5.3.7)

After substituting expressions for dS
dt ,

dIp
dt and dRp

dt from (5.3.1) in to (5.3.6) and collecting all positive

terms together and also negative terms together, we obtain:
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dL
dt

= L1−L2

Where, L1 = Q+δ1Rp +λ1S+β1Ip +
δ1R∗pS∗

S +
λ1S∗I∗p

Ip
+

β1I∗pR∗p
Rp

,

L2 = δ1R∗p +λ1S∗+λ1SI∗p +
QS∗

S +
δ1RpS∗

S

+ (λ1+µ)(S−S∗)2

S +
λ1SI∗p

Ip
+

(β1+α1+µ)(Ip−I∗p)
2

Ip
+

β1IpR∗p
Rp

+
(δ1+µ)(Rp−R∗p)

2

Rp
.

Thus if L1 < L2, then dL
dt ≤ 0, and dL

dt = 0 if and only if S = S∗, Ip = I∗P,RP = R∗p

From this, we see that E∗=(S∗, I∗P,R
∗
p) is the largest compact invariant singleton set in {

(
S∗, I∗P,R

∗
p)
)
∈

Ω1 : dL
dt = 0} . Therefore, by the principle of (LaSalle, 1976), the endemic equilibrium (E∗), is globally

asymptotically stable in the invariant region if L1 < L2.

5.4 Typhoid fever only model

By letting IP = It p = Rp = Rt p = σ2 = 0 in equation (5.2.1) we obtained Typhoid fever only model.



dS
dt = Q+δ2Rt − (λ2 +µ)S

dIt
dt = λ2S− (β2 +α2 +σ1 +µ)It

dRt
dt = β2It − (δ2 +µ)Rt

dB
dt = π +σ1It −µbB,

(5.4.1)

5.4.1 Invariant region

In this section we obtain a region in which the solution of (5.4.1) is bounded. For this model the total

human population N2=S+ It +Rt . Then, after differentiating N2 with respect to time and substituting

the expression for dS
dt ,

dIt
dt and dRt

dt from equation (5.4.1) we obtain;

dN2

dt
= Q−µN−α2It −σ1It . (5.4.2)

If there is no death from Typhoid fever and Typhoid discharge, equation (5.4.2) become;

dN2

dt
≤ Q−µN. (5.4.3)
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After, solving equation (5.4.3) and evaluating it as time tends to infinity, we got;

Ω2 = {(S, It ,Rt ,B) ∈ℜ3
+∪ℜ+ : 0≤ N2 ≤ Q

µ
.

Therefore, all the solution set of (5.4.1) is bounded in Ω2.

5.4.2 Positivity of the solution

In this section we show all solutions of the model (5.4.1) are positive for future time.

Theorem 5.4.1. If S0 > 0, It0 > 0, Rp0 > 0 and B0 > 0 then all the solution set (S(t), It(t), Rp(t) and

B(t) are positive for future time.

Proof

To prove this theorem first let as define t1,

t1 = sup{t > 0 : S(τ)> 0, It(τ)> 0,Rt(τ)> 0,B(τ)> 0 for all τ ∈ [0, t]}.

Since S0 ≥ 0, It0 ≥ 0,Rt0 ≥ 0,B0 ≥ 0 , thus t1 > 0. If t1 < ∞, then necessarily S or It or Rt or B is equal

to zero at t1. From equation (5.4.1), let as take the first equation:

dS
dt

= Q+δ2Rt − (λ2 +µ)S (5.4.4)

Using the variation of constants formula the solution of equation (5.4.4) at t1 is given by.

S(t1) = S(0)exp
[
−
∫ t1

0 (λ2 +µ)(s)ds
]
+
∫ t1

0 (Q+δ2Rt)exp
[
−
∫ t1

s (λ2 +µ)(τ)dτ
]

ds.

Moreover, since all the variables are positive in [0, t1], then S(t1)> 0.

It can be shown in a similar way that It(t1)> 0, Rt(t1)> 0 and B(t1) which is a contradiction. Hence

t1 = ∞. Therefore, all the solution sets are positive for future time.

5.4.3 Disease free equilibrium (DFE)

The disease free equilibrium of the model is obtained by letting equation (5.4.1) to zero and evaluating

at It = 0.

Then, we got E02 = (Q
µ
,0,0,0).
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5.4.4 Basic reproduction number (ℜ0t)

To obtain ℜ0t we used the next generation matrix method.
dIt
dt = λ2S− (β2 +α2 +σ1 +µ)It
dB
dt = π +σ1It −µbB

By the principle of next generation matrix; f =
(

Bv
k+B S

)
and c =

 (β2 +α2 +σ1 +µ)It

−(π +σ1It −µbB)

 .

F =

 0 vQ
µk

0 0

 and C−1 =

 1
(β2+α2+σ1+µ) 0

σ1
µb(β2+α2+σ1+µ)

1
µb


FC−1 =

 σ1vQ
µkµb(β2+α2+σ1+µ)

vQ(β2+α2+σ1+µ)
µk

0 0

 .

The eigenvalues of FC−1 are 0 and σ1vQ
µkµb(β2+α2+σ1+µ) . Since the dominant eigenvalue of FC−1 is

σ1vQ
µkµb(β2+α2+σ1+µ) , the basic reproduction of Typhoid only model is given by;

ℜ0t =
σ1vQ

µµb(β2 +α2 +σ1 +µ)
. (5.4.5)

5.4.5 Local stability of disease free equilibrium

Theorem 5.4.2. The disease free equilibrium point is locally asymptotically stable if ℜ0t < 1 and

unstable if ℜ0t > 1.

Poof.

To prove this first we obtain the Jacobian matrix of of 5.4.1 at the disease free equilibrium (E02) such

that;

JE02 =


−µ 0 δ2

−vQ
µk

0 −(β2 +α2 +σ1 +µ) 0 vQ
µk

0 β2 −(δ2 +µ) 0

0 σ1 0 −µb

 (5.4.6)
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The characteristic polynomial of equation (5.4.6) is:

(−µ−λ
∗)(−(µ+δ2)−λ

∗)
[
λ

2 +(µb +β2 +µ +α2 +σ1)λ
∗+µb(β2 +α2 +µ +σ1)(1−ℜ0t)

]
= 0

(5.4.7)

From equation (5.4.7) it is clear that;

−µ−λ
∗ = 0,

⇒ λ
∗
1 =−µ < 0,

and

−(µ +δ2)−λ
∗ = 0,

such that

λ
∗
2 =−(µ +δ2)< 0.

When we apply we apply Routh-Hurwitz criteria on the polynomial in the closed bracket of equa-

tion (5.4.7) to have strictly negative real root if and only if ℜ0t < 1. Therefore, DFE to be locally

asymptotically stable if and only if ℜ0t < 1.

5.4.6 Global stability of disease free equilibrium

Theorem 5.4.3. The disease free equilibrium is globally asymptotically stable if ℜ0t < 1.

Proof

To prove the global asymptotic stability of the DFE we use the method of Lyapunov functions.

Systematically, we defined a Lyapunov function L such that;

L =
σ1

(β2 +α2 +σ1 +µ)
It +B.

Then,
dL
dt

=
σ1

(β2 +α2 +σ1 +µ)

dIt
dt

+
dB
dt

. (5.4.8)

After substituting expressions for dIt
dt and dRt

dt from (5.4.1) to equation (5.4.8) and simplifying it, we

obtain:
dL
dt

=
σ1λ2S

(β2 +α2 +σ1 +µ)
−µbB = (

σ1vS
(β2 +α2 +σ1 +µ)(k+B)

−µb)B. (5.4.9)
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⇒ dL
dt
≤ µb(

σ1vQ
µµb(β2 +α2 +σ1 +µ)k

−1)B

⇒ dL
dt
≤ µb(ℜ0t −1)B

So dL
dt ≤ 0 if ℜ0t ≤ 1. Furthermore, dL

dt = 0 if B = 0 which mean It = 0 or ℜ0t = 1.

From this we see that, (S0,0,0,0) is the only singleton in {(S, It ,Rt) ∈Ω2 : dL
dt = 0}.

Therefore by the principle of (LaSalle, Jp. (1976)), DFE is globally asymptotically stable if ℜ0t ≤ 1.

5.4.7 Endemic equilibrium

The endemic equilibrium is denoted by E∗t = (S∗, I∗t ,R
∗
t ,B
∗) and it occur when the disease persist in

the community. To obtain it we equate all the model equations (5.4.1) to zero. Then we obtain :

S∗ =
(β2 +α2 +σ1 +µ)

λ2
I∗t

I∗t =
Qv(ℜ0t −1)

µℜ0t((β2 +α2 +σ1 +µ)(δ2 +µ)−δ2β2)

R∗t =
β2

δ2 +µ
I∗t

B∗ =
σ1

µb
I∗t

From this we see that for the endemic equilibrium to be exist ℜ0t > 1.

Lemma 5.4.4. A unique endemic equilibrium point E∗t exist and is positive if ℜ0t > 1.

Using expression for I∗t in the endemic equilibrium and estimated parameters in table (5.7.1), we

plot figure (5.4.1) that shows there is a forward bifurcation for typhoid fever only model.

5.4.8 Global stability of Endemic equilibrium

Theorem 5.4.5. If ℜ0t > 1, the endemic equilibrium E∗t of the model (5.4.1) is globally asymptotically

stable.

Proof

Systematically we define an appropriate Lyapunov function L Such that;
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Figure 5.4.1: Forward bifurcation.

L =

(
S−S∗+S∗ln

S∗

S

)
+

(
It − I∗t + I∗t ln

I∗t
It

)
+

(
Rt −R∗t +R∗t ln

R∗t
Rt

)
+

(
B−B∗+B∗ln

B∗

B

)
.

(5.4.10)

Then differentiating equation (5.4.10) with respect to t gives,

dL
dt

=

(
S−S∗

S

)
dS
dt

+

(
It − I∗t

It

)
dIt
dt

+

(
Rt −R∗t

Rt

)
dRt

dt
+

(
B−B∗

B

)
dB
dt

. (5.4.11)

After substituting expressions for dS
dt ,

dIt
dt , dRt

dt and dB
dt from (5.4.1) in to (5.4.11) and collecting all

positive terms together and also negative terms together, we obtain:

dL
dt

= M1−M2

Where, M1 = Q+δ2Rt +λ2S+β2It +σ1It +
δ2R∗t S∗

S + λ2S∗I∗t
It

+ β2I∗t R∗t
Rt

+ B∗I∗t
B ,

M2 = δ1R∗t +λ2S∗+β2I∗t +σ1I∗t +
λ1SI∗t

It
+ QS∗

S + δ2Rt S∗
S

+ (λ2+µ)(S−S∗)2

S + λ1SI∗t
It

+ (β2+α2+σ1+µ)(It−I∗t )
2

It
+ β2It R∗t

Rt
+ (δ2+µ)(Rt−R∗t )

2

Rt
+ σ1It

B + µb(B−B∗)2

B .

Thus if M1 < M2, then dL
dt ≤ 0, and dL

dt = 0 if and only if S = S∗, It = I∗t ,Rt = R∗t and B = B∗

From this, we see that E∗=(S∗, I∗t ,R
∗
t ,B
∗) is the largest compact invariant singleton set in {(S∗, I∗t ,R∗t ,B∗))∈

Ω2 : dL
dt = 0} . Therefore, by the principle of Lasalle, the endemic equilibrium (E∗t ), is globally asymp-

totically stable in the invariant region if M1 < M2.
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5.5 Pneumonia- Typhoid fever co-infection model

The model equation of Pneumonia and Typhoid fever co-infection given in equation (5.2.1) is ;

dS
dt = Q+δ1Rp +δ2Rt +δ3Rt p− (λ1 +λ2 +µ)S

dIp
dt = λ1S− (λ2 +β1 +α1 +µ)Ip

dIt
dt = λ2S− (λ1 +β2 +α2 +σ1 +µ)It

dIt p
dt = λ2Ip +λ1It − (σ +α1 +α2 +σ2 +µ)It p

dRp
dt = β1Ip +σeIt p− (δ1 +µ)Rp

dRt
dt = β2It +σg(1− e)It p− (δ2 +µ)Rt

dRt p
dt = σ(1−g)(1− e)It p− (δ3 +µ)Rt p

dB
dt = π +σ1It +σ2It p−µbB,

(5.5.1)

where, λ1 =
γ(Ip+ϒIt p)

N ,λ2 =
vB

k+B and S(0)= S0, Ip(0)= Ip0 , It(0)= It0 , It p(0)= It p0 ,Rp(0)=Rp0,Rt(0)=

Rt0,Rt p(0) = Rt p0 and B(0) = B0 are non-negative initial values.

5.5.1 Invariant region

In this section we obtain a region in which the solution of (5.6.1) is bounded. For this model the total

human population is N=S+ Ip + It + It p+Rp +Rt +Rt p. Then, after differentiating N with respect to

time and substituting the expression for dS
dt ,

dIp
dt ,

dIt
dt ,

dIt p
dt ,

Rp
dt ,

dRt
dt and dRt p

dt and from equation (5.6.1) we

obtain;
dN
dt

= Q−µN−α1(It + It p)−α2(It + It p). (5.5.2)

If there is no death from Pneumonia and Typhoid fever, equation (5.5.2) become;

dN
dt
≤ Q−µN. (5.5.3)

After, solving equation (5.5.3) and evaluating it as time tends to infinity, we got;

Ω = {(S, Ip, It , It p,Rp,Rt ,Rt p) ∈ℜ7 : 0≤ N ≤ Q
µ
}.

Therefore, all the solution set of (5.6.1) is bounded in Ω.
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5.5.2 Positivity of the solution

In this section we show all the solution of the model (5.6.1) remain positive for future time if their

respective initial values are positive.

Theorem 5.5.1. If S0 > 0, Ip0 > 0, It0 > 0, It p0 > 0,Rp0 > 0,Rt0 > 0,Rt p0 > B0 > 0 then all the solution

set (S(t), Ip(t), It(t), It p(t),Rp(t),Rt(t),Rt p(t),B(t)) are positive for future time.

Proof

To prove this theorem first let as define t1,

t1 = sup{t > 0 : S(τ) > 0, Ip(τ) > 0, It(τ) > 0, It p(τ) > 0,Rp(τ) > 0,Rt(τ) > 0,Rt p(τ) > 0, for all

τ ∈ [0, t]}.

Since S0 ≥ 0, Ip0 ≥ 0, It0 ≥ 0, It p0 ≥ 0,Rp0 ≥ 0,Rt0 ≥ 0,Rt p0 ≥ 0,B0 ≥ 0 , thus t1 > 0. If t1 < ∞, then

necessarily S or Ip or It or It p or Rp or Rt or Rt p or B is equal to zero at t1. From equation (5.2.1), let

as take the first equation,

dS
dt

= Q+δ1Rp +δ2Rt +δ3Rt p− (λ1 +λ2 +µ)S. (5.5.4)

Using the variation of constants formula the solution of equation (5.5.4) at t1 is given by.

S(t1)= S(0)exp
[
−
∫ t1

0 (λ1 +λ2 +µ)(s)ds
]
+
∫ t1

0 (Q+δ1Rp+δ2Rt +δ3Rt p)exp
[
−
∫ t1

s (λ1 +λ2 +µ)(τ)dτ
]

ds.

Moreover, since all the variables are positive in [0, t1], then S(t1)> 0.

It can be shown in a similar way that Ip(t1)> 0, It(t1)> 0, It p(t1)> 0,Rp(t1)> 0,Rt(t1)> 0, Rt p(t1)>

0 and B(t1)> 0 which is a contradiction. Hence t1 = ∞.

Therefore, all the solution sets are positive for future time.

5.5.3 Disease free equilibrium

The disease free equilibrium of equation (5.6.1) is obtained by equating all equations of the model to

zero and then letting Ip = 0, It = 0 and It p = 0. Then we obtain;

E0 = (Q
µ
,0,0,0,0,0,0,0).
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5.5.4 Basic reproduction number (ℜ0)

By the principle of next generation matrix we consider the following equations from the model.
dIp
dt = λ1S− (λ2 +β1 +α1 +µ)Ip

dIt
dt = λ2S− (λ1 +β2 +α2 +σ1 +µ)It
dIt p
dt = λ2Ip +λ1It − (σ +α1 +α2 +σ2 +µ)It p

dB
dt = σ1It +σ2It p−µbB

Then the next generation matrices are given by:

F =



γQ
µ

0 γQ
µ

0

0 0 0 vQ
µk

0 0 0 0

0 0 0 0

&V =


(β1 +α1 +µ) 0 0 0

0 (β2 +α2 +σ1 +µ) 0 0

0 0 (σ +α1 +α2 +σ2 +µ) 0

0 −σ1 −σ2 µb



FV−1 =



γQ
µ(β1+α1+µ) 0 γQ

µ(σ+α1+α2+σ2+µ) 0

0 σ1vQ
µµbk(β2+α2+σ1+µ)

σ2vQ
µµbk(β2+α2+σ1+µ)

vQ
µµbk

0 0 0 0

0 0 0 0


Then the eigenvalues of FV−1 are;

λ
∗
1 =

γQ
µ(β1 +α1 +µ)

= ℜ0p

λ
∗
2 =

σ1vQ
µµbk(β2 +α2 +σ1 +µ)

= ℜ0t

λ
∗
3,4 = 0

Since the basic reproduction number is the spectral radius of FV−1, therefore, it is :

ℜ0 = max{ℜ0p,ℜ0t}.
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5.5.5 Local stability of disease free equilibrium

Theorem 5.5.2. The disease free equilibrium point is locally asymptotically stable if ℜ0 < 1 and

unstable if ℜ0 > 1.

Poof.
To prove this we obtain the Jacobian matrix of the model at the disease free equilibrium;

JE0 =



−µ
−γQ

µ
0 −γQ

µ
δ1 δ2 δ3

−vQ
µk

0 −γQ
µ
− (β1 +α1 +µ) 0 −γQ

µ
0 0 0 0

0 0 −(β2 +α2 +σ1 +µ) 0 0 0 0 vQ
µk

0 0 0 −(σ +α1 +α2 +σ2 +µ) 0 0 0 0

0 β1 0 c1 −(δ1 +µ) 0 0 0

0 0 β2 c2 0 −(δ2 +µ) 0 0

0 0 0 c3 0 0 −(δ3 +µ) 0

0 0 σ1 σ2 0 0 0 µb


(5.5.5)

The characteristic polynomial of equation (5.5.5) is;

(−µ−λ
∗)(−c1−λ

∗)

(
(
γQ
µ
− c3)−λ

∗
)
(−c2−λ

∗)
[
(λ ∗)3 + k1(λ

∗)2 +(k2 + k3(1−ℜ0t))λ
∗− k4(1+ℜ0t)

]
= 0,

(5.5.6)

where,

c1 = δ3 +µ,

c2 = δ2 +µ,

c3 = β1 +α1 +µ ,

k1 = β2 +2α2 +σ1 +2µ +σ +α1 +σ2 +µb,

k2 = (σ +α1 +α2 +σ2 +µ)(β2 +α2 +σ1 +2µ),

k3 = µb(β2 +α2 +σ1 +µ),

k4 = (µb(β2 +α2 +σ1 +µ)(σ +α1 +α2 +σ2 +µ).

From equation (5.5.6) it is clear that;

−µ−λ = 0, ⇒ λ ∗1 =−µ < 0

or

−c1−λ = 0, ⇒ λ ∗2 =−c1 < 0

or

(−γQ
µ
− c3)−λ ∗ = 0,⇒ λ ∗3 = c3(ℜ0p−1) , λ ∗3 < 0 if ℜ0p < 1

or
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(λ ∗)3 + k1(λ
∗)2 +(k2 + k3(1−ℜ0t))λ

∗− k4(1+ℜ0t) = 0. (5.5.7)

When we apply Routh-Hurwitz criteria on equation (5.5.7) it have strictly negative real root if ℜ0t < 1.

Therefore the disease free equilibrium is locally asymptotically stable if ℜ0p < 1 and ℜ0t < 1 which

means that ℜ0 < 1.

5.5.6 Global asymptotic stability of disease free equilibrium

To investigate the global stability of disease free equilibrium we used technique implemented by

Castillo- Chavez et al (2002). First the full pneumonia- Typhoid fever model (5.6.1) can be re-written

as:
dX
dt

= F(X ,Z),

dZ
dt

= G(X ,Z), G(X ,0) = 0.

Where, X stands for the uninfected population, that is X = (S,Rp,Rt ,Rt p) and Z also stands for the

infected population ,that is Z = (Ip, It , It p). The disease free equilibrium point of the model is denoted

by U = (X∗,0).

The point U = (X∗,0) to be globally asymptotically stable equilibrium for the model provided that

ℜ0 < 1 (which is locally asymptotically stable) and the following conditions must be met:

(H1). For dX
dt = F(X ,0), X∗ is globally asymptotically stable.

(H2). G(X ,Z) = AZ− G̃(X ,Z), G̃(X ,Z)≥ 0 for (X ,Z) ∈Ω

If the model (5.6.1) met the above two criteria then the following theorem holds:

Theorem 5.5.3. The point U = (X∗,0) is globally asymptotically stable equilibrium provided that

ℜ0 < 1 and the condition (H1) and (H2) are satisfied.

Proof

From the system (5.6.1) we can get F(X ,Z) and G(X ,Z);
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F(X ,Z) =


Q+δ1Rp +δ2Rt +δ3Rt p− (λ1 +λ2 +µ)S

β1Ip +σeIt p− (δ1 +µ)Rp

β2It +σg(1− e)It p− (δ2 +µ)Rt

σ(1−g)(1− e)It p− (δ3 +µ)Rt p



G(X ,Z) =


λ1S− (λ2 +β1 +α1 +µ)Ip

λ2S− (λ1 +β2 +α2 +σ1 +µ)It

λ2Ip +λ1It − (σ +α1 +α2 +σ2 +µ)It p


Consider the reduced system,

dX
dt

∣∣∣∣
Z=0

=


Q−µS

0

0

0

 (5.5.8)

From equation (5.5.8), it is obvious that X∗ = (Q
µ
,0) is the global asymptotic point. This can be

verified from the solution, namely S = Q
µ
+(S(0)− Q

µ
)e−µt . As t→∞, the solution (S)→ Q

µ
, implying

that the global convergence of (5.5.8) in Ω.

Let

A =


γ− (β1 +α1 +µ) 0 γ

0 −(β2 +α2 +σ1 +µ) 0

0 0 −(σ +α1 +α2 +σ2 +µ)


. Then, G(X ,Z) can be written as, G(X ,Z) = AZ− G̃(X ,Z), where,

G̃(X ,Z) =


G̃1(X ,Z)

G̃2(X ,Z)

G̃3(X ,Z)

=


γ(It + It p)(1− S

N )+λ2Ip

λ1It

−(λ2Ip +λ1It)

 (5.5.9)

In equation (5.5.9) G̃2(X ,Z)< 0 which leads to G̃(X ,Z)< 0, that means the second condition (H2) is

not satisfied, so U = (X∗,0) may not be globally asymptotically stable when ℜ0 < 1.
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5.5.7 The endemic equilibrium

The endemic equilibrium is denoted by E∗t p = (S∗, I∗p, I
∗
t , I
∗
t p,R

∗
p,R
∗
t ,R
∗
t p,B

∗) and it occur when the

disease persist in the community. To obtain it we equate all the model equations (5.6.1) to zero. Then

we obtain:

S∗=
Qc(λ ∗1 + k2)(λ

∗
2 + k1)k3

c(λ ∗1 +λ ∗2 +µ)(λ ∗1 + k2)(λ ∗2 + k1)k3− [(λ ∗1 + k2)(c1k3λ ∗1 + c3λ ∗1 λ ∗2 )+(λ ∗2 + k1)(c2k3λ ∗2 + c3λ ∗1 λ ∗2 )]

I∗p =
λ ∗1 Qc(λ ∗1 + k2)k3

c(λ ∗1 +λ ∗2 +µ)(λ ∗1 + k2)(λ ∗2 + k1)k3− [(λ ∗1 + k2)(c1k3λ ∗1 + c3λ ∗1 λ ∗2 )+(λ ∗2 + k1)(c2k3λ ∗2 + c3λ ∗1 λ ∗2 )]

I∗t =
λ ∗2 Qc(λ ∗2 + k1)k3

c(λ ∗1 +λ ∗2 +µ)(λ ∗1 + k2)(λ ∗2 + k1)k3− [(λ ∗1 + k2)(c1k3λ ∗1 + c3λ ∗1 λ ∗2 )+(λ ∗2 + k1)(c2k3λ ∗2 + c3λ ∗1 λ ∗2 )]

I∗t p =
λ ∗1 λ ∗2 Qc(λ ∗1 + k2)(λ

∗
2 + k1)

c(λ ∗1 +λ ∗2 +µ)(λ ∗1 + k2)(λ ∗2 + k1)k3− [(λ ∗1 + k2)(c1k3λ ∗1 + c3λ ∗1 λ ∗2 )+(λ ∗2 + k1)(c2k3λ ∗2 + c3λ ∗1 λ ∗2 )]

R∗p =
β1I∗p +σeI∗t p

δ1 +µ

R∗t =
β2I∗t +σg(1− e)I∗t p

δ2 +µ

R∗t p =
σ(1−g)(1− e)

δ3 +µ
I∗t p

B∗ =
σ1I∗t +σ2I∗t p

µb

Where,

k1 = β1 +α1 +µ

k2 = β2 +α2 +σ1 +µ

k3 = σ +α1 +α2 +σ2 +µ

c = (δ1 +µ)(δ2 +µ)(δ3 +µ)

c1 = δ1β1

c2 = δ2β2

119



c3 = δ1σe+δ2σg(1− e)+δ3σ(1−g)(1− e)

5.5.8 Impact of Pneumonia on Typhoid fever infection

To describe impact of Pneumonia on Typhoid fever and vase versa, we express ℜ0p interims of ℜ0t .

Since ,

ℜ0t =
σ1vQ

µµbk(β2 +α2 +σ1 +µ)

⇒ µ =
σ1vQ

ℜ0t µbk(β2 +α2 +σ1 +µ)
.

Then substituting the expression for µ in ℜ0p give

ℜ0p =
γℜ0t µbk(β2 +α2 +σ1 +µ)

σ1v(β1 +α1 +µ)
.

To investigate the impact of the two disease each other we did;

∂ℜ0p

∂ℜ0t
=

γµbk(β2 +α2 +σ1 +µ)

σ1v(β1 +α1 +µ)
> 0. (5.5.10)

Equation (5.5.10) shows that Typhoid fever cases increase Pneumonia cases and also similarly Pneu-

monia cases increase Typhoid fever cases.

To investigate treatment of Pneumonia reduces Typhoid fever diseases;

From

ℜ0p =
γQ

µ(β1 +α1 +µ)
,

we get

µ =
γQ

ℜ0p(β1 +α1 +µ)
. (5.5.11)

After combination of equation (5.5.11) and ℜ0t we obtain,

ℜ0t =
σ1v(ℜ0p(β1 +α1 +µ)+ γQ)

kµb(β1 +α1 +µ)(β1 +α1)(β2 +α2 +µ +σ1)
(5.5.12)

∂ℜ0t

∂β1
=

σ1v
kµb(β2 +α2 +µ +σ1)

−
[
ℜ0p(β

2
1 +2β1(α1 +µ)+(α1 +µ)2))+ γQ(2β1 +2α1 +µ)

]
(β1 +α1 +µ)2(β1 +α1)2

(5.5.13)
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Equation (5.5.13) shows ∂ℜ0t
∂β1

< 0 , this mean treatment of Pneumonia (β1) have an impact in de-

creasing Typhoid fever infection and similarly can be shown treatment of Typhoid fever (β2) have an

impact in Pneumonia infection cases.

5.5.9 Bifurcation Analysis

We investigated the nature of the bifurcation by using the method introduced in chapter 2, which is

based on the use of the center manifold theory. There are two important quantities: the coefficients,

say a and b, of the normal form representing the dynamics of the system on the central manifold.

These coefficients decide the bifurcation. In particular, if a < 0 and b > 0, then the bifurcation is

forward; if a > 0 and b > 0, then the bifurcation is backward. Using this approach, the following

result may be obtained:

Theorem 5.5.4. If ℜ0 < 1 and

a0 = σ2µbβ2−σ1
v∗Q
µk

(δ2 +µ)> 0 (5.5.14)

then system (5.2.1) exhibits a backward bifurcation at ℜ0 = 1. If the inequality holds reversed, then

the system exhibits a forward bifurcation at ℜ0 = 1.

Proof.

First, we consider the transmission rate γ and v as bifurcation parameters so that ℜ0p = 1 and ℜ0t = 1

if and only if

γ = γ
∗ =

µ(β1 +α1 +µ)

Q

and

v = v∗ =
kµb(β1 +α1 +µ)(β2 +α2 +µ +σ1)

σ1(ℜ0p(β1 +α1 +µ)(β1 +α1)+ γQ)

Then we make the following change of variables S = x1, Ip = x2, It = x3, It p = x4,Rp = x5,Rt =

x6,Rt p = x7,B= x8. In addition, using vector notation x= (x1,x2,x3,x4,x5,x6,x7,x8)
T , the Pneumonia

Typhoid model can then be written in the form dx
dt = F(x), with F = ( f1, f2, f3, f4, f5, f6, f7, f8)

T , as
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shown below: 

dx1
dt = Q+δ1x5 +δ2x6 +δ3x7− (λ1x +λ2x +µ)x1

dx2
dt = λ1xx1− (λ2x +β1 +α1 +µ)x2

dx3
dt = λ2xx1− (λ1x +β2 +α2 +σ1 +µ)x3

dx4
dt = λ2xx2 +λ1xx3− (σ +α1 +σ2 +α2 +µ)x4

dx5
dt = β1x2 +σex4− (δ1 +µ)x5

dx6
dt = β2x3 +σg(1− e)x4− (δ2 +µ)x6

dx7
dt = σ(1−g)(1− e)x4− (δ3 +µ)x7

dx8
dt = π +σ1x3 +σ2x4−µbx8,

(5.5.15)

where, λ1x = γ(x2 +ϒx4) and λ2x =
vx8

k+x8
.

This method involves evaluation of the Jacobian of the system (5.5.15) at the disease free equilibrium

(DFE), denoted by JE0 . This becomes

JE0 =



−µ −J1 0 −J2 δ1 δ2 δ3 −J3

0 −J4 0 −J2 0 0 0 0

0 0 −J5 0 0 0 0 J6

0 0 0 −J7 0 0 0 0

0 β1 0 J11 −J8 0 0 0

0 0 β2 J9 0 −J9 0 0

0 0 0 J10 0 0 −J11 0

0 0 σ1 σ2 0 0 0 µb



(5.5.16)

Where,

J1 =
γQ
µ

, J2 =
γϒQ

µ
, J3 =

vQ
µk , J4 =

γQ
µ
+(β1 +α1 +µ), J5 = (β2 +α2 +σ1 +µ), J6 =

vQ
µk ,

J7 = (σ +α1 +α2 +σ2 +µ), J8 = (δ1 +µ) J9 = (δ2 +µ), J10 = β1 +α1 +µ and J11 = (δ3 +µ). We

first start by calculating the right eigenvector of J(E0) denoted respectively by w= [w1,w2,w3,w4,w5,w6,w7,w8, ]
T
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.



−µ −J1 0 −J2 δ1 δ2 δ3 −J3

0 −J4 0 −J2 0 0 0 0

0 0 −J5 0 0 0 0 J6

0 0 0 −J7 0 0 0 0

0 β1 0 J11 −J8 0 0 0

0 0 β2 J9 0 −J9 0 0

0 0 0 J10 0 0 −J11 0

0 0 σ1 σ2 0 0 0 −µb





w1

w2

w3

w4

w5

w6

w7

w8



=



0

0

0

0

0

0

0

0



(5.5.17)

Then equation (5.5.17) can be written as;

−µw1− J1w2− J2w4 +δ1ws +δ2w6 +δ3w7− J3w8 = 0

−J4w2− J2w4 = 0

−J5w3− J6w8 = 0

−J7w4 = 0

β1w2 + J11w4− J8w5 = 0

β2w3 + J9w4− J9w6 = 0

J10w4− J11w7 = 0

σ1w3 +σ2w4−µbw8 = 0.

(5.5.18)

From equation (5.5.18) we obtain,

w1 =
1
µ
(δ2w6− J3w8), w2 = w4 = w5 = w7 = 0, w3 = w3 > 0, w6 =

β2
J9

w3 and w8 =
σ1
µb

w3.

The left eigenvectors of JE associated with the zero eigenvalue is given by v=(v1,v2,v3,v4,v5,v7,v8)
T ,

is calculated as;
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

−µ 0 0 0 0 0 0 0

−J1 −J4 0 0 β1 0 0 0

0 0 −J5 0 0 β2 0 σ1

−J2 −J2 0 −J7 J11 J9 J10 σ2

δ1 0 0 0 −J8 0 0 0

δ2 0 0 0 0 −J9 0 0

δ3 0 0 0 0 0 −J11 0

−J3 0 J6 0 0 0 0 −µb





v1

v2

v3

v4

v5

v6

v7

v8



=



0

0

0

0

0

0

0

0



(5.5.19)

Equation (5.5.19) can be written as,

−µv1 = 0

−J1v1− J2v2 +β1v5 = 0

−J5v3 +β2v6 +σ1v8 = 0

−J2v1− J2v2− J7v4 + J11v5 + J9v6 + J10v7 +σ2v8 = 0

δ1v1− J8v5 = 0

δ2v1− J9v6 = 0

δ3v1− J11v7 = 0

−J3v1 + J6v3−µbv8 = 0.

(5.5.20)

Solving equation (5.5.20) gives, v1 = v2 = v5 = v6 = v7 = 0, v3 = v3 > 0, v4 =
σ2
J7

v8 and v8 =
J5
σ1

v3

where v3 is calculated to ensure that the eigenvectors satisfy the condition v.w = 1.

The coefficients a and b defined in Theorem Appendix B.1, i. e

a =
n

∑
k, j,i=1

vkwiw j
∂ 2 fk

∂xi∂x j
(S0,0,0,0,0,0,0,0), (5.5.21)

b =
n

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂v∗
(S0,0,0,0,0,0,0,0), (5.5.22)

may be now explicitly computed. Taking into account of system (5.5.15) and considering only the
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non-zero components of the left eigenvector v, it follows that:

a = v3

(
3w1w8

∂ 2 f3

∂x1∂x8

)

and

b = v3w8
∂ 2 f3

∂x8∂v∗
.

where the fis denote the right hand side of system (5.5.15). It can be checked that:

∂ 2 f3

∂x1∂x8
=

v
k
,

∂ 2 f3

∂x8∂v∗
=

Λ

µk
.

It follows:

b =
σ1Λ

µµbk
v3w3

so that b is always positive, and:

a = 3v∗σ1

(
a0

µµ2
b J9

)
w2

3v3

where a0 is defined in (5.5.14). Therefore, system (5.2.1) exhibits backward or forward bifurcation at

ℜ0 = 1 according to the sign of a0.

5.5.10 Sensitivity Analysis

We did Sensitivity analysis of some basic parameters of the model. This helped us to identify the

parameters that have great influence on the basic reproductive number (ℜ0). We used the techniques

outlined in Chitnis et al.,( 2008). Sensitivity index of ℜ0 with respect to some parameter, say k is

given by Λ
ℜ0
k = ∂ℜ0

∂k
k

ℜ0
. Since ℜ0 =max{ℜ0p,ℜ0t}, we obtain the sensitivity analysis of ℜ0p and

ℜ0t separately.

Λ
ℜ0p
γ =

∂ℜ0p
∂γ

γ

ℜ0p
= Q

µ(β1+α1+µ)
γµ(β1+α1+µ)

γQ = 1 > 0

Λ
ℜ0p
α1 =

∂ℜ0p
∂α1

α1
ℜ0p

=− α1
(β1+α1+µ) < 0
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Λ
ℜ0p
β1

=
∂ℜ0p
∂β1

β1
ℜ0p

=− β1
(β1+α1+µ) < 0

Λ
ℜ0p
µ =

∂ℜ0p
∂ µ

µ

ℜ0p
=− (β1+α1+2µ)

(β1+α1+µ) < 0

Λℜ0t
v = ∂ℜ0t

∂v
v

ℜ0t
= σ1Q

µµb(β2+α2+σ1+µ)
vµµb(β2+α2+σ1+µ)

σ1vQ = 1 > 0

Λ
ℜ0t
σ1 = ∂ℜ0t

∂σ1

σ1
ℜ0t

= (β2+α2+µ)
(β2+α2+σ1+µ) > 0

Λ
ℜ0t
α2 = ∂ℜ0t

∂α2

α2
ℜ0t

=− α2
(β2+α2+σ1+µ) < 0

Λ
ℜ0t
β2

= ∂ℜ0t
∂β2

β2
ℜ0t

=− β2
(β2+α2+σ1+µ) < 0

Λ
ℜ0t
µb = ∂ℜ0t

∂ µb

µb
ℜ0t

=− σ1vQ
µ2

b µ(β2+α2+σ1+µ)

µ2
b µ(β2+α2+σ1+µ)

σ1vQ =−1 < 0

Λ
ℜ0t
µ = ∂ℜ0t

∂ µ

µ

ℜ0t
=− (β2+α2+σ1+2µ)

(β2+α2+σ1+µ) < 0

The above sensitivity analysis is summarized in table (5.5.1).

Table 5.5.1: Indices of sensitivity

Symbol Description Sensitivity indices
ℜ0p Basic reproduction number of Pneumonia only
γ Infectious rate of pneumonia 1
β1 Treatment rate of Pneumonia -036055
α1 Pneumonia induced death rate -0.91942
µ Natural causing death rate -1.044
ℜ0t Basic reproduction number of Typhoid fever only
v Ingestion rate of Salmonella bacteria 1
σ1 Discharge rate of salmonella from Typhoid infected individuals 0.011
β2 Treatment rate of Typhoid fever -0.0025
α2 Typhoid fever induced death rate -0.00642
µb Natural/ drug induced death rate of salmonella -1
µ Natural causing death rate -1.003

In table (5.5.1) Parameters that have positive sensitivity indices, particularly γ and v have great influ-

ence in expanding the disease if their values are increased, while the other parameters are unchanged.

Due to the reason that, they increase the average number of secondary case infection.

Examining the sensitivity analysis, it is not biologically reasonable to suggest that the human mortal-

ity rate (α1,α2,µ) be increased in order to control the disease. The other possible sensitive parameters

(negative sensitivity indices) that are important for effective control of the disease are treatment rate

of pneumonia, treatment rate of typhoid fever and drug /natural induced death rate of salmonella.
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Therefore, in section ??, we shall incorporate control measures to determine the optimal strategy for

controlling Pneumonia-typhoid fever co-infection.

5.6 Optimal Control

In this section, we extend Pneumonia-Typhoid fever co-infection model (5.6.1) by incorporating five

control interventions . This helped us to identify the best intervention strategies that helps to eradicate

the disease in the specified time. The control intervention are defined as:

i. u1 prevention effort of Pneumonia disease, that protect susceptible from contacting the disease.

ii. u2 prevention of typhoid fever disease by keeping proper personal sanitation that protect suscepti-

ble from contacting salmonella bacteria.

iii. u3 treatment effort of pneumonia infected individuals.

iv. u4 treatment effort of typhoid fever infected individuals.

v. u5 mass cleaning of environments and ponds to eliminate typhoid causing bacteria.

After incorporating, u1,u2,u3,u4 and u5 in pneumonia-Typhoid co-infection model (5.6.1), we

obtain the following optimal control model:

dS
dt = Q+δ1Rp +δ2Rt +δ3Rt p− ((1−u1)λ1 +(1−u2)λ2 +µ)S

dIp
dt = (1−u1)λ1S− (1−u2)λ2Ip− (β1 +u3)Ip− (α1 +µ)Ip

dIt
dt = (1−u2)λ2S− (1−u1)λ1I− t− (β2 +u4)It − (α2 +σ1 +µ)It

dIt p
dt = (1−u2)λ2Ip +(1−u1)λ1It − (σ +u3 +u4)It p− (α1 +α2 +σ2 +µ)It p

dRp
dt = (β1 +u3)Ip +(σe+u3)It p− (δ1 +µ)Rp

dRt
dt = (β2 +u4)It +(σg(1− e)+u4)It p− (δ2 +µ)Rt

dRt p
dt = (σ(1−g)(1− e)+u3 +u4)It p− (δ3 +µ)Rt p

dB
dt = π +σ1It +σ2It p− (u5 +µb)B,

(5.6.1)

To study the optimal levels of the controls the control set U is Lebesgue measurable and it is defined

as : U = {(u1(t),u2(t),u3(t),u4(t),u5(t)) : 0 ≤ u1 < 1,0 ≤ u2 < 1,0 ≤ u3 < 1,0 ≤ u4 < 1,0 ≤ u5 <

1,0 ≤ t ≤ T}. Our aim is to obtain a control U and S, Ip, It , It p,RP,Rt ,Rt p and B that minimize the
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proposed J and the form of the objective functional (J) is taken from [16], given by:

J = min
u1,u2,u3,u4,u5

∫ t f

0
(b1Ip +b2It +b3It p +

1
2

5

∑
i=1

wiu2
i )dt. (5.6.2)

Where b1, b2,b3 and wi are positive. The expression 1
2 wiu2

i represents cost which is associated with

the controls ui.The form is quadratic because we assume that costs are non-linear in its nature. Our

aim is to minimize the number of infectious and costs. Thus, we want to obtain an optimal controls

(u∗1,u
∗
2,u
∗
3,u
∗
4,u
∗
5) in which:

J(u∗1,u
∗
2,u
∗
3,u
∗
4,u
∗
5) = min{J(u1,u2,u3,u4,u5)/ui ∈U},

where, U = {(u1,u2,u3,u4,u5)/ each ui is measurable with 0≤ ui < 1 for 0≤ t ≤ t f .

5.6.1 The Hamiltonian and Optimality System

By using the principle of [17],”Pontryagins Maximum Principle Pontryagin”, we obtained a Hamil-

tonian (H) defined as:

H(S, Ip, It , It p,RP,Rt ,Rt p,B, t) = L(Ip, It , It p,u1,u2,u3,u4,u5, t)+h1
ds
dt +h2

dIp
dt +h3

dIt
dt +h4

dIt p
dt

+h5
dRp
dt +h6

dRt
dt +h7

dRt p
dt +h8

dB
dt .

Where L(Ip, It , It p,u1,u2,u3,u4,u5, t) = b1Ip +b2It +b3It p +
1
2 ∑

5
i=1 wiu2

i , hi, i = 1,2,3,4,5,6,7,8 are

the adjoint variable functions to be determined suitably by applying Pontryagin’s maximal principle

[17] and also using [18] for existence of the optimal control pairs.

Theorem 5.6.1. For an optimal control set u1,u2,u3,u4,u5 that minimizes J over U, there is an adjoint
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variables, h1, ...,h8 such that:



dh1
dt =−h1

(
− (1−u2)Bv

k+B − γ (Ip+ϒItp)(1−u1)
N −µ

)
− h2γ (Ip+ϒItp)(1−u1)

N − h3(1−u2)Bv
k+B

dh2
dt =−b1 +

h1γ (1−u1)S
N −h2

(
γ (1−u1)S

N − (1−u2)Bv
k+B −β1−u3−α1−µ

)
+ h3γ (1−u1)It

N

−h4

(
(1−u2)Bv

k+B + γ (1−u1)It
N

)
−λ5 (β1 +u3)

dh3
dt =−b2−h3

(
− γ (Ip+ϒItp)(1−u1)

N −β2−u4−α2−σ1−µ

)
− h4γ (Ip+ϒItp)(1−u1)

N −h6 (β2 +u4)−h8σ1

dh4
dt =−b3 +

h1γ (1−u1)S
N − h2γ (1−u1)S

N + h3γ (1−u1)It
N −h4

(
γ (1−u1)It

N −σ −u3−u4−α1−α2−σ2−µ

)
−h5 (σ e+u3)−h6 (σ (1− e)+u4)−h7 (σ (1−g)(1− e)+u3 +u4)−h8σ2

dh5
dt =−h1δ1−h5 (−δ1−µ)

dh6
dt =−h1δ2−h6 (−δ2−µ)

dh7
dt =−h1δ3−h7 (−δ3−µ)

dh8
dt =−h1(1−u2)BvS

(k+B)2 − h2(1−u2)BvIp

(k+B)2 + h3(1−u2)BvS
(k+B)2 +

h4(1−u2)BvIp

(k+B)2 −h8 (−u5−µb)

(5.6.3)

With transversality conditions, hi(t f ) = 0, i = 1, ...,8.

Furthermore, we obtain the control set (u∗1,u
∗
2,u
∗
3,u
∗
4,u
∗
5) characterized by

u∗1(t) = max{0,min(1,Φ1)},

u∗2(t) = max{0,min(1,Φ2)},

u∗3(t) = max{0,min(1,Φ3)},

u∗4(t) = max{0,min(1,Φ4)},

u∗5(t) = max{0,min(1,Φ5)},

where,

Φ1 =− γ (Ip+ϒItp)(Sh1−Sh2+It h3−It h4)
Nw1

Φ2 =−Bv(Sh1−Sh3+Iph2−Iph4)
(k+B)w2

Φ3 =
Iph2−Iph5+h4ϒItp−ϒItph5−h7ϒItp

w3

Φ4 =
(h4−h6−h7)Itp+It(h3−h6)

w4

Φ5 =
h8B
w5

Proof:

By using Pontryagin’s maximum principle [17] we obtain the following system of adjoint variables: :
dh1
dt =−dH

dS =−h1

(
− (1−u2)Bv

k+B − γ (Ip+ϒItp)(1−u1)
N −µ

)
− h2γ (Ip+ϒItp)(1−u1)

N − h3(1−u2)Bv
k+B
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dh2
dt =− dH

dIp
=−b1 +

h1γ (1−u1)S
N −h2

(
γ (1−u1)S

N − (1−u2)Bv
k+B −β1−u3−α1−µ

)
+ h3γ (1−u1)It

N

−h4

(
(1−u2)Bv

k+B + γ (1−u1)It
N

)
−h5 (β1 +u3)

dh3
dt = dH

dIt
=−b2−h3

(
− γ (Ip+ϒItp)(1−u1)

N −β2−u4−α2−σ1−µ

)
− h4γ (Ip+ϒItp)(1−u1)

N −h6 (β2 +u4)−

h8σ1

dh4
dt =− dH

dIt p
=−b3+

h1γ (1−u1)S
N − h2γ (1−u1)S

N + h3γ (1−u1)It
N −h4

(
γ (1−u1)It

N −σ −u3−u4−α1−α2−σ2−µ

)
−h5 (σ e+u3)−h6 (σ (1− e)+u4)−h7 (σ (1−g)(1− e)+u3 +u4)−h8σ2

dh5
dt =− dH

dRp
=−h1δ1−h5 (−δ1−µ)

dh6
dt =− dH

dRt
=−h1δ2−h6 (−δ2−µ)

dh7
dt =− dH

dRt p
=−h1δ3−h7 (−δ3−µ)

dh8
dt =−dH

dB =−h1(1−u2)BvS
(k+B)2 − h2(1−u2)BvIp

(k+B)2 + h3(1−u2)BvS
(k+B)2 +

h4(1−u2)BvIp

(k+B)2 −h8 (−u5−µb)

Similarly by following the approach of [17], to get the controls ,we solved the equation, ∂H
∂ui

=

0 at u∗i , for i = 1, ...,5 and obtained:

u∗1 =−
γ (Ip +ϒItp)(Sh1−Sh2 + Ith3− Ith4)

Nw1

u∗2 =−
Bv (Sh1−Sh3 +ϒIph2− Ipλ4)

(k+B)w2

u∗3 =
Iph2− Iph5 +h4ϒItp−ϒItph5−h7ϒItp

w3

u∗4 =
(h4−h6−h7)ϒItp + It (h3−h6)

w4

u∗5 =
h8B
w5

When we write by using standard control arguments involving the bounds on the controls, we con-

clude:

u∗1 =


Φ1 if 0 < Φ1 < 1

0 if Φ1 ≤ 0

1 if Φ1 ≥ 1.

u∗2 =


Φ2 if 0 < Φ2 < 1

0 if Φ2 ≤ 0

1 if Φ2 ≥ 1.

130



u∗3 =


Φ3 if 0 < Φ3 < 1

0 if Φ3 ≤ 0

1 if Φ3 ≥ 1

.

u∗4 =


Φ4 if 0 < Φ4 < 1

0 if Φ4 ≤ 0

1 if Φ4 ≥ 1

.

u∗5 =


Φ5 if 0 < Φ5 < 1

0 if Φ5 ≤ 0

1 if Φ5 ≥ 1

.

In compact notation

u∗1(t) = max{0,min(1,Φ1)},

u∗2(t) = max{0,min(1,Φ2)},

u∗3(t) = max{0,min(1,Φ3)},

u∗4(t) = max{0,min(1,Φ4)},

u∗5(t) = max{0,min(1,Φ5)}.

Φ1 =− γ (Ip+ϒItp)(Sh1−Sh2+It h3−It h4)
Nw1

Φ2 =−Bv(Sh1−Sh3+Iph2−Iph4)
(k+B)w2

Φ3 =
Iph2−Iph5+h4ϒItp−ϒItph5−h7ϒItp

w3

Φ4 =
(h4−h6−h7)ϒItp+It(h3−h6)

w4

Φ5 =
h8B
w5

The optimality system is formed from the optimal control system (the state system) and the adjoint
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variable system by incorporating the characterized control set and initial and transversal condition.

dS
dt = Q+δ1Rp +δ2Rt +δ3Rt p− ((1−u∗1)λ1 +(1−u∗2)λ2 +µ)S

dIp
dt = (1−u∗1)λ1S− (1−u∗2)λ2Ip− (β1 +u∗3)Ip− (α1 +µ)Ip

dIt
dt = (1−u∗2)λ2S− (1−u∗1)λ1I− t− (β2 +u∗4)It − (α2 +σ1 +µ)It

dIt p
dt = (1−u∗2)λ2Ip +(1−u∗1)λ1It − (σ +u∗3 +u∗4)It p− (α1 +α2 +σ2 +µ)It p

dRp
dt = (β1 +u∗3)Ip +(σe+u∗3)It p− (δ1 +µ)Rp

dRt
dt = (β2 +u∗4)It +(σg(1− e)+u∗4)It p− (δ2 +µ)Rt

dRt p
dt = (σ(1−g)(1− e)+u∗3 +u∗4)It p− (δ3 +µ)Rt p

dB
dt = σ1It +σ2It p− (u∗5 +µb)B

dh1
dt =−h1

(
− (1−u2)Bv

k+B − γ (Ip+ϒItp)(1−u1)
N −µ

)
− h2γ (Ip+ϒItp)(1−u1)

N − h3(1−u2)Bv
k+B

dh2
dt =−b1 +

h1γ (1−u1)S
N −h2

(
γ (1−u1)S

N − (1−u2)Bv
k+B −β1−u3−α1−µ

)
+ h3γ (1−u1)It

N

−h4

(
(1−u2)Bv

k+B + γ (1−u1)It
N

)
−λ5 (β1 +u3)

dh3
dt =−b2−h3

(
− γ (Ip+ϒItp)(1−u1)

N −β2−u4−α2−σ1−µ

)
− h4γ (Ip+ϒItp)(1−u1)

N −h6 (β2 +u4)−h8σ1

dh4
dt =−b3 +

h1γ (1−u1)S
N − h2γ (1−u1)S

N + h3γ (1−u1)It
N −h4

(
γ (1−u1)It

N −σ −u3−u4−α1−α2−σ2−µ

)
−h5 (σ e+u3)−h6 (σ (1− e)+u4)−h7 (σ (1−g)(1− e)+u3 +u4)−h8σ2

dh5
dt =−h1δ1−h5 (−δ1−µ)

dh6
dt =−h1δ2−h6 (−δ2−µ)

dh7
dt =−h1δ3−h7 (−δ3−µ)

dh8
dt =−h1(1−u2)BvS

(k+B)2 − h2(1−u2)BvIp

(k+B)2 + h3(1−u2)BvS
(k+B)2 +

h4(1−u2)BvIp

(k+B)2 −h8 (−u5−µb)

(5.6.4)

hi(t f ) = 0, i = 1,2,3, S(0) = S0, V (0) =V0, C(0) =C0, I(0) = I0, and R(0) = R0.

5.6.2 Uniqueness of the Optimality System

Due to the boundedness of the model (5.6.4) which is considered the state , adjoiunt functions and

also considering Lipschitz structure of the ordinary differential equations . Then it is possible to

show the uniquines of the resulting optimality system by considering small time interval. Hence the
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following theorem:

Theorem 5.6.2. For t ∈ [0, t f ], the bounded solutions to the optimality system are unique.

For the proof of the theorem See [19].

5.7 Numerical Simulation

In this section, we performed numerical simulation of the co-infection model (5.6.1) and the result-

ing optimality system (5.6.4). We make use of the parameter values given in Table (5.7.1) for the

simulation.

Table 5.7.1: Parameter Values for Pneumonia Model

Parameter symbol Value Source
δ1 0.002-0.1 [20]
δ2 0.00904- 0.99 [21]
δ3 0.01 Assumed
γ 0.001 [20]
v 0.9 Assumed
k 50.000 [22]
β1 0.002 Estimated
α1 0.051 Estimated
β2 0.002 Estimated
α2 0.0052 Estimated
σ 0.1 Assumed
g 0.5 - 1 Assumed
e 0.5 -1 [23]
µ 0.00247 [20]
σ1 0.8 Assumed
σ2 0.9 Assumed
µb 0.0000125 [22]

To simulate the model, which is for obtaining the optimal solution of the resulting optimality

system iterative technique is applied. By considering the initial condition of the state system and the

final condition of the adjoint systems, we use forward fourth-order Runke-Kutta method to solve the

state system and backward fourth-order Runge-Kutta method for solving the state system. The adjoint

systems is solved by using the initial guess of the controls incorporating with the obtained solution
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for the state system. The controls continues to be updated by combining from the previous result

of the controls with the characterization. The solution of the state and adjoint system is repeated by

the updated controls. This condition continues repeatedly upto consecutive iteration are close enough

each other, [24].

We proposed the following five strategies for numerical simulation of the co-infection model:

(i). Prevention effort for Pneumonia and treatment effort for Typhoid fever disease (u1 6= 0,u4 6=

0,u2 = u3 = u5 = 0).

(ii). Using prevention effort for Typhoid fever disease and treatment effort for Pneumonia disease

((u2 6= 0,u3 6= 0,u5 6= 0,u1 = 0,u4 = 0)).

(iii). Using treatment effort for both disease (u3 6= 0,u4 6= 0,u1 = u2 = u5 = 0).

(iv). Using all the intervention efforts (u1 6= 0,u2 6= 0,u3 6= 0,u4 6= 0,u5 6= 0).

We assumed b1 = 25,b2 = 25,b3 = 25,w1 = 4,w2 = 3,w3 = 5,w4 = 6 and w5 = 7 for simulation of

the model with optimal control and also for cost-effectiveness analysis. Additionally we used S(0) =

1000, Ip(0) = 300, It(0) = 200, It p(0) = 150,Rp(0) = 200,Rt(0) = 150,Rt p(0) = 150 and B(0) = 0 as

initial values

5.7.1 Control with prevention of Pneumonia disease and treatment of

Typhoid fever disease

The simulation results from figure (5.7.1) and (5.7.2) shows that a control with prevention of Pneu-

monia disease and treatment of Typhoid fever disease have a potential of decreasing the co-infectious,

Pneumonia infectious and Typhoid fever infectious populations. From this we conclude that applying

an optimized controls (prevention of Pneumonia disease and treatment of Typhoid fever disease) can

eradicate both diseases from the community in a specified period of time.
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Figure 5.7.1: Simulations optimal control with prevention of Pneumonia disease and treat-
ment of Typhoid fever disease.

Figure 5.7.2: Simulations optimal control with prevention of Pneumonia disease and treat-
ment of Typhoid fever disease.
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5.7.2 Control with prevention effort for Typhoid fever and treatment

effort for Pneumonia.

Here we used prevention for Typhoid fever disease and treatment for Pneumonia disease as inter-

vention strategy, and figures (5.7.3) and (5.7.4) shows that, the number of co-infectious, Pneumonia

infectious and Typhoid fever infectious population goes down in the specified time. Therefore, this

strategies is effective in eradicating the diseases from the community in a specified period of time.

Figure 5.7.3: Simulations optimal control with Prevention of Typhoid fever disease and treat-
ment of Pneumonia disease.

136



Figure 5.7.4: Simulations optimal control with Prevention of Typhoid fever disease and treat-
ment of Pneumonia disease.

5.7.3 Control with treatment effort only for both disease

In this strategy we used treatment as an intervention for both Pneumonia and Typhoid fever disease.

The simulation results in figure 5.7.5 and (5.7.6) shows that the number of co-infectious, Pneumonia

infectious and Typhoid fever infectious population goes down in the specified time. Therefore, this

strategies is effective in eradicating the diseases from the community in a specified period of time.

Figure 5.7.5: Simulations of optimal control with treatment of Pneumonia and Typhoid fever
disease as intervention .
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Figure 5.7.6: Simulations of optimal control with treatment of Pneumonia and Typhoid fever
disease as intervention .

5.7.4 Control with all intervention efforts

Here we used all interventions efforts (prevention of both disease and treatment of both disease).

treatment and screening controls as intervention. From the simulation results in figures ( 5.7.7) and

(5.7.8) we observe that optimal control of the combination of all interventions helps to bring down the

co-infectious, Pneumonia infectious as well as the Typhoid fever infectious populations. Therefore,

applying this strategy is can eradicate the diseases from the community.

Figure 5.7.7: Simulations of optimal control all interventions.
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Figure 5.7.8: Simulations of optimal control with all interventions.

5.8 Cost-Effectiveness Analysis

Cost-effectiveness analysis used to rank the implemented strategies interims of their cost. To achieve,

this we used incremental cost-effectiveness ratio (ICER), stated by (Baba and Makinde, 2014);

”ICER = Difference in costs between strategies
Difference in health effects between strategies .”

In table (5.8.1) we obtain the total number of co-infectious averted and total cost for the implemented

strategies. The total number of co-infectious averted is obtained from the differences of total individu-

als after and before the implementation of the control strategies. And also to find the total cost for the

implemented strategies we used the cost function, which is 1
2 w1u2

1,
1
2 w2u2

2,
1
2 w3u2

3,
1
2 w4u2

4 and 1
2 w5u2

5

over time. We used the parameter values in table (5.7.1 ) and to apply ICER technique first we ordered

the intervention strategies for pairwise comparison as in table (5.7.1) from A to D with increasing or-

der of effectiveness.

Table 5.8.1: Number of co-infectious averted and total cost of each strategies

Strategies Description Averted Total cost (USD)
1 Pneumonia Prevention and Typhoid fever treatment 370,405 1,354.5
2 Typhoid fever Prevention and Pneumonia treatment 370,792 1,204
3 Control with treatment effort only for both disease 375,659 1,655.5
4 Control with all interventions 375,911 2,709

First we compared the cost effectiveness of strategy A and B.

ICER(1)= 1,354.5
370,405 = 0.003,
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ICER(2)= 1,354.5−1204
370,405−370,792 =−0.389.

From ICER (1) and ICER (2) we can see that strategy 2 saves 0.389 than strategy 1. Therefore, we

exclude strategy 1, because it is a bit expensive, so we continue to compare strategy 2 and 3.

ICER(2)= 1,204
370,792 = 0.00325,

ICER(3)= 1204−1655.5
370,792−355,659 = 0.093.

Similarly, from ICER (2) and ICER () we can see that strategy 2 saves 0.00325 than strategy 3. There-

fore, we exclude strategy 3, because it is a bit expensive and we continue to compare strategy 2 and

4.

ICER(2)=0.00325

ICER(4)= 1204−2,709
370,792−375,911 = 0.029

Similarly, from ICER (2) and ICER (4) we can see that strategy 2 saves 0.00325 than strategy 4.

Therefore, we exclude strategy 4, because it is a bit expensive. Therefore, we conclude that strategy

2 (Typhoid fever prevention and Treatment of Pneumonia) is the cheapest of all compared strategies,

that meant it is the most cost-effective for pneumonia-Typhoid fever disease co-infection control in-

terventions strategy but strategy 4 is the most expensive of all the above strategies .

For further elaboration we plotted the cost function of each strategy in figure (5.8.1) and the figure

shows that strategy 2 (Pneumonia treatment and Typhoid fever prevention) is the least cost for imple-

menting the intervention and strategy 4 (using all intervention) costs the highest of all strategies for

implementation.

Figure 5.8.1: Cost Function of the intervention starategies
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5.9 Discussions and Conclusions

In section 5.2 we briefly described and proposed a pneumonia-Typhoid fever co-infection model,

which is deterministic in its nature and also the population is assumed to be variable in size. In

section 5.3 we analysed Pneumonia only model by obtaining the feasible region, positivity of the

solution set, basic reproductive number, equilibria points and their stability. In section 5.4 also we

analysed Typhoid fever only model by obtaining the feasible region, positivity of the solution set,

basic reproductive number, equilibria points and their stability. In section 5.5 we analysed the full

Pneumonia-Typhoid fever co-infection model by obtaining the feasible region, positivity of the solu-

tion set, basic reproductive number which is the maximum of the basic reproductive number of Pneu-

monia and Typhoid fever only models, equilibria points and their stability are analysed. Moreover, by

using Castillo- Chavez et al., (2002) theorem possibility of bifurcation of the model is analyzed. The

impact of the two diseases on each other are also investigated and the result indicate that Pneumonia

cases increase Typhoid fever cases and also Typhoid fever cases increase Pneumonia cases. More-

over, we explored that treatment of Pneumonia have an impact of reducing Typhoid fever disease and

also similarly treatment of Typhoid fever disease have also an impact of reducing Pneumonia disease.

Sensitivity analysis of basic parameters and interpretation of the sensitivity index is also done in sec-

tion 5.5. In section 5.6 the full Pneumonia-Typhoid fever co-infection model is extended, by applying

optimal control interventions then the Hamiltonian, the adjoint variables , the characterization of the

controls and the optimality system are obtained. In section 5.7 the optimality system is explored

numerically by considering different strategies as follows:

• By applying Prevention for Pneumonia and treatment for Typhoid fever disease.

• By applying prevention for Typhoid fever and treatment for Pneumonia disease.

• By applying treatment effort for both disease.

• By applying all control interventions.

In section 5.8 numerically we investigated cost effectiveness analysis to determine, the least and the

most expensive strategies by using ICER technique. From the pairwise comparison result we conclude

that, applying Prevention effort for Typhoid fever disease and Treatment effort for Pneumonia disease

is the best cost effective strategies interims of cost as well as health benefits.
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Chapter 6

SUMMARY OF CONTRIBUTIONS AND FU-

TURE RESEARCH

In this thesis, new deterministic models have been proposed in order to study the dynamics of Pneu-

monia, Typhoid fever and also their co-infection. These models have been qualitatively analyzed

rigorously. The main contribution of the thesis is the proposition of these new mathematical models,

their qualitative analysis, and the use of optimal control theory to determine best strategies that can

be employed to effectively combat the various infections.

6.1 Summary of Contributions

In chapter 3, a new deterministic model proposed, that describes the dynamics of pneumonia. It is

shown that the effective reproduction number of the model is most sensitive to natural dearth rate

(µ), vaccination rate of susceptible ϑ , fraction of vaccinated population before disease out break

(p), disease induced death rate (α), probability of joining carrier compartment (ρ), recovery rate

of carriers (β ), treatment rate of infective (η) and treatment efficacy rate (q). It is also shown that

the condition Re f f < 1 is necessary and sufficient for local asymptotic stability of the DFE and the

condition Re f f > 1 is necessary and sufficient for local and global asymptotic stability of the EE .

Finally, an optimal control problem is also proposed by incorporating control variables into the model

and seeking to minimize an appropriately chosen objective function subject to the modified model.

Numerical simulations of the resulting control problem are carried out to determine the effectiveness
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of various combinations of the controls. It is revealed from the cost-effectiveness analysis of the

employed strategies, the combination of prevention and treatment of pneumonia is most effective in

the fight against the disease as well as cost benefit.

In chapter 4 a new deterministic model for typhoid transmission model is proposed. The condi-

tions for existence and stability of equilibrium states characterized in terms of the basic reproduction

number are determined. The study showed that there is a disease-free equilibrium which is locally

and globally asymptotically stable if ℜ0 < 1 and unstable if ℜ0 > 1 , and the endemic equilibrium

which is locally asymptotically stable if ℜ0 > 1. It is shown that the basic reproduction number of the

model is most sensitive to natural dearth rate (µ), drug/ natural induced death rate of salmonella typhi

(µb),disease induced death rate (α), screening rate of carriers (θ ), recovery rate of carriers naturally

(φ ) and treatment rate (β ). The models is modified into an optimal control problem by incorporat-

ing control variables (prevention, treatment and screening) into the model and qualitatively analyzed

using the Pontryagins Maximum principle and the existence result of (Fleming and Rishel, 1982).

Numerical simulation of the resulting optimal control problem is also carried out, and cost effective-

ness analysis showed that the best strategy to fight the typhoid fever is to implement the preventative

and treatment control at a time.

In chapter 5, a detailed new deterministic model involving the co-infection of Pneumonia with

Typhoid fever is proposed. The model is divided into two basic models, namely; the Pneumonia-only

model and the Typhoid fever-only model. These models are rigorously analyzed for qualitative prop-

erties. It is observed that the Pneumonia-only, Typhoid fever-only and the full Pneumonia-Typhoid

fever models have locally asymptotically stable DFE when their respective basic reproduction num-

bers are less than unity. The basic reproduction number of the full model is shown to be the greatest

of the reproduction numbers of the two sub-models. Bifurcation analysis of the basic sub-models

show that the Pneumonia-only does exhibit the feature of transcritical bifurcation and the typhoid

fever-only model is however shown to exhibit a forward bifurcation feature. Finally, the Pneumonia-

Typhoid fever model is modified into an optimal control problem and analyzed both qualitatively and

numerically, and cost effectiveness analysis indicated that the most cost effective strategy that can be

used to combat the co-infection is the one that combines preventive control for Typhoid fever and

treatment control for Pneumonia.

These results have important public health implications, since they determine the severity and

outcome of the epidemic (i.e. clearance or persistence of infection) and provide a framework for the
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design of control strategies.

6.1.1 Future Research

The work presented in this thesis can extended in a lot of respects including the following:

• We note that the models in this thesis are not exhaustive. Incorporating drug resistance com-

partment could be studied for both Pneumonia and Typhoid fever diseases.

• It should be noted that the models in this thesis all assumed linear incidence and hence each of

the models can be extended to include non-linear incidence rates.

• An extension of the models in this thesis to take care of the period between contacting disease

causing organisms and development of clinical symptoms will be interesting. In this case,

delay differential equation models will be developed.

• Analysing the models based upon immune level dynamics of the diseases.
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