
DESIGN OF AN ONLINE ADAPTIVE CONTROLLER

FOR ACTIVE DISTURBANCE REJECTION IN A

FIXED WING UAV USING REINFORCEMENT

LEARNING AND DIFFERENTIAL GAMES

STEPHEN MUCHAI KIMATHI

MASTER OF SCIENCE

(Electrical and Electronic Engineering)

JOMO KENYATTA UNIVERSITY OF

AGRICULTURE AND TECHNOLOGY

2018

Design of an Online Adaptive Controller For Active

Disturbance

Rejection In a Fixed Wing UAV Using Reinforcement

Learning

And Differential Games

Stephen Muchai Kimathi

A thesis submitted in partial fulfilment for the degree of

Master of Science in Electrical and Electronic Engineering

in the Jomo Kenyatta University of Agriculture and

Technology

2018

DECLARATION

This thesis is my original work and has not been presented for a degree in any

other university.

Signature : .. Date :

Stephen Muchai Kimathi

This thesis has been submitted with our approval as University Supervisors:

Signature : ... Date :

Prof. Samuel Kang’ethe, PhD

JKUAT, Kenya

Signature : ... Date :

Dr. Peter Kihato, PhD

JKUAT, Kenya

ii

DEDICATION

I dedicate this work to my late Dad for his encouragement and continued support

towards my education.

iii

ACKNOWLEDGEMENT

I would like to pass my sincere gratitude to my supervisors Prof. Samuel Kang’ethe

and Dr. Peter Kihato for their input, direction and guidance towards the achieve-

ment of this work. Finally, I thank my mum, siblings, classmates, colleagues and

friends for their encouragement, motivation and support they gave me during the

period of this work.

iv

TABLE OF CONTENTS

DECLARATION . ii

DEDICATION . iii

ACKNOWLEDGEMENT . iv

TABLE OF CONTENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF APPENDICES . xiii

LIST OF ABBREVIATIONS . xiv

NOMENCLATURE . xv

ABSTRACT . xvi

CHAPTER ONE

INTRODUCTION 1

1.1 Background . 1

1.2 Problem Statement . 3

1.3 Justification . 4

1.4 Objectives . 5

1.4.1 Main Objective . 5

1.4.2 Specific Objectives . 5

1.5 Scope . 5

1.6 Research Contributions and Publications 5

1.7 Organization of the Thesis . 7

v

CHAPTER TWO

LITERATURE REVIEW 8

2.1 Reinforcement Learning . 8

2.2 Differential Games . 12

2.3 Learning in Differential Games . 13

2.4 Review of methods used in disturbance rejection in UAVs 15

2.4.1 Active disturbance rejection control (ADRC) 15

2.4.2 Non-linear H∞ state feedback 16

2.4.3 Proportional Integral Derivative Method 16

2.4.4 Intelligent Methods . 17

2.4.5 Other nonlinear methods 18

2.5 Summary . 19

CHAPTER THREE

METHODOLOGY 21

3.1 Introduction: UAV Control Basics 21

3.2 UAV Mathematical modeling . 23

3.2.1 Differential game modeling 26

3.3 Adaptive Controller . 34

3.3.1 Adaptive Control . 34

3.4 Design of an Adaptive Controller 37

3.4.1 Feedforward Neural network 38

3.4.2 SARSA Algorithm . 39

3.4.3 Back Propagation . 42

vi

3.5 X-Plane Integration with MATLAB 44

3.5.1 X-Plane UAV plane model 47

3.5.2 Actuator Models . 48

3.6 Experimental Setup . 49

3.7 Summary . 51

CHAPTER FOUR

RESULTS AND DISCUSSION 52

4.1 Analysis of the mathematical model 52

4.2 Configuration of the Reference Controller 55

4.2.1 Proportional Integral Derivative (PID) Controller 56

4.2.2 Comparison of PI and PID Control 59

4.2.3 Validating the reference Controller 60

4.3 Performance of the Controllers . 61

4.3.1 Performance of adaptive controller using the model 61

4.3.2 Performance of the adaptive controller using UAV model

in X-Plane . 62

4.3.3 Performance upon training the Initial weights of Controller 65

4.4 Performance of adaptive controller in the presence of disturbances 66

4.4.1 Performance using the UAV mathematical model 67

4.4.2 Performance under disturbances on UAV model in X-Plane 73

4.5 Summary . 79

vii

CHAPTER FIVE

CONCLUSION 80

5.1 Conclusion . 80

5.2 Further Work . 82

REFERENCES . 83

viii

LIST OF TABLES

Table 3.1 Great Planes, GP-PT-60 UAV specification 47

Table 3.2 Characteristics of UltraStick 48

Table 3.3 Control surface saturation limits 49

Table 4.1 PID gains . 57

Table 4.2 Comparison of PID and PI controllers 59

ix

LIST OF FIGURES

Figure 2.1 Agent-environment interaction in reinforcement learning . . 9

Figure 2.2 SARSA algorithm illustration 11

Figure 2.3 Generalized Policy iteration 11

Figure 3.1 UAV guidance, navigation and control model 22

Figure 3.2 UAV axes of motion . 22

Figure 3.3 Control Surfaces . 23

Figure 3.4 Stability Coefficients . 25

Figure 3.5 Actor Critic Structure . 28

Figure 3.6 Direct Adaptive control principle 36

Figure 3.7 Indirect Adaptive control principle 37

Figure 3.8 Adaptive control block diagram 38

Figure 3.9 Feedforward neural network 39

Figure 3.10 Evaluative Feedback . 44

Figure 3.11 X-Plane Test platform . 45

Figure 3.12 X-Plane SIMULINK communication library 46

Figure 3.13 X-Plane atmospheric layers 47

Figure 3.14 Experimental Setup for Mathematical Model Simulations . 50

Figure 3.15 Experimental Setup for real-time Simulations in X-Plane . 50

Figure 3.16 The functions performing Adaptation in the Setups 51

Figure 4.1 Singular value decomposition of the model 53

Figure 4.2 Hankel Singular Value Analysis 54

Figure 4.3 Input-to-Output Pole-zero Map of the open loop system . . 55

x

Figure 4.4 PID controllers in cascade 56

Figure 4.5 One DoF architecture for a closed loop system 58

Figure 4.6 Heading rate response of the PID and PI controllers 59

Figure 4.7 Heading angle response . 60

Figure 4.8 Heading rate response of PID control 61

Figure 4.9 Heading rate response of the PID and RL controllers 62

Figure 4.10 Comparison of the two responses to a step heading reference 63

Figure 4.11 PID controller response in X-Plane 64

Figure 4.12 RL controller response in X-Plane 64

Figure 4.13 RL controller response after training neural network 66

Figure 4.14 Impulse disturbance . 67

Figure 4.15 Response under an impulse disturbance at aileron 68

Figure 4.16 Response under an impulse disturbance at rudder 68

Figure 4.17 Response under an impulse disturbance at aileron and rudder 69

Figure 4.18 Chirp disturbance . 70

Figure 4.19 Response chirp disturbance in aileron 70

Figure 4.20 Response chirp disturbance in rudder 71

Figure 4.21 Performance chirp disturbance in aileron and rudder 71

Figure 4.22 Random disturbance . 72

Figure 4.23 Response random disturbance in aileron 72

Figure 4.24 Performance random disturbance in rudder 73

Figure 4.25 Performance random disturbance in aileron and rudder . . 74

Figure 4.26 Response under 5 knots cross wind 74

xi

Figure 4.27 Response under 10 knots cross wind 75

Figure 4.28 Response under 20 knots cross wind 76

Figure 4.29 Response under 40 knots cross wind 77

Figure 4.30 Performance under turbulence 77

xii

LIST OF APPENDICES

Appendix A: Math Model Derivation . 90

Appendix B: Codes . 94

Appendix C: Weather Factors . 100

xiii

LIST OF ABBREVIATIONS

ADRC Active Disturbance Rejection Control

CoG Center of Gravity

DOF Degrees of Freedom

ESO Extended State Observer

GARE Generalized Algebraic Riccati Equation

GNC Guidance, Navigation and Control

HJI Hamilton-Jacobi-Isaacs

NARX Nonlinear Auto-Regressive Network

NTSB National Transportation and Safety Board

ODE Ordinary Differential Equations

PI Proportional-Integral

PID Proportional-Integral-Derivative

RL Reinforcement Learning

SARSA State Action Reward State Action

TCP Transmission Control Protocol

TD Temporal Differences

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

xiv

ABSTRACT

The challenge of coping with highly nonlinear and rapidly time-varying dynamics

is a prevailing factor when designing controllers for next-generation Unmanned

Aerial Vehicles (UAVs). Stochastic disturbances such as wind gusts and atmo-

spheric turbulence form the biggest challenge which the control structure must be

capable of minimizing, while handling the errors in “dynamic modelling”.

This work presents an online adaptive controller for active disturbance rejection

in a fixed wing UAV using reinforcement learning. The approach is based on

modelling the UAV system dynamics as a two player zero-sum differential game

against nature, which will represent external disturbances affecting the UAV such

as wind. Then an online learning algorithm using reinforcement learning is devel-

oped to solve the continuous-time two-player differential game. Game theoretic

methods together with SARSA, a reinforcement learning technique were used to

calculate a cost function for each state action pair. A one step gradient search of

the cost function was done which was implemented as the reinforcement signal in

the differential game. Back propagation technique was used to update the feed

forward neural network weights in real time to compensate for the tracking errors

in the heading from a commanded reference for each time step.

The simulation tests carried out under various disturbances in MATLAB and X-

Plane, showed satisfactory performance of the proposed method to eliminate the

disturbances and maintain the UAV in the desired target path. The responses

got were compared with responses from of a well tuned PID controller both in

MATLAB and X-Plane platforms. The adaptive method responses were better.

xv

CHAPTER ONE

INTRODUCTION

1.1 Background

An unmanned aerial vehicle is a space traversing vehicle that flies without a hu-

man crew on board and, can be remotely controlled or can fly autonomously. The

five general categories of UAVs depending on their configuration are: fixed wing,

vertical takeoff and landing (VTOL), rotary-wing, and helicopters [1]. Among

the many classifications made based on size, there is none which is universally

accepted as a standard. The European Association of Unmanned Vehicle Systems

(EUROUVS) drew up a classification of UAV systems. The classification was not

created for certification purposes but for compiling a universal catalog of UAVs

categories as well as their associated acronyms [2]. Here is the four categories

based on size and wingspan [3];

1. Very small UAVs

2. Small UAVs

3. Medium UAVs

4. Large UAVs

UAVs have a wide range of application including surveillance, search and rescue,

target tracking and weather observations. Recent technology developments allow

unmanned aerial vehicles to displace manned aircraft in many commercial and

1

military roles. As these roles are expanded from simple reconnaissance missions

to more complex missions, there is an increasing need for control systems that

are robust to model uncertainty due to incomplete modelling, system dynamics,

parameter uncertainty and malfunction.

The control of the heading i.e. roll and yaw angles under various disturbances

has been a challenging research due to the high nonlinearity and high coupling

of an UAV model [4]. These present rapidly time-varying dynamics which make

it difficult to analyse, and design control laws using traditional methods. Aero-

dynamic modelling is concerned with the development of mathematical models

to describe the aerodynamic forces and moments acting on the airframe. As the

flow conditions around the airframe are generally complex, any attempt to de-

scribe the aerodynamics phenomona mathematically must result in compromise

[5]. This compromise is referred as “errors in dynamic modelling”, and depends

on the confidence in the aerodynamic modelling process and the fidelity of the

aircraft dynamics derived from the aerodynamic model. Adaptive flight control

designs provide a way to deal with the uncertainties in the system and environ-

ment, without sacrificing performance hence ideally suited for this application

[6].

Game theory is the mathematical study of the interaction of self-interested in-

dependent agents; each agent having his own description of which states of the

world he likes and he acts in an attempt to bring these states of the world. A

dynamic game is said to be differential if the evolution of the decision process

takes place in continuous time and generally involves a differential equation. A

2

game is zero-sum if the sum of the payoffs of the two players is zero for any choice

of strategies. The goal of game theory techniques is to find a saddle point equilib-

rium in which each player has an outcome that cannot be improved unilaterally

by changing his strategy.

Reinforcement Learning (RL), is based on the common sense idea that if a action

is followed by a satisfactory state, or by an improvement in the state, then the

tendency to produce that action is strenghtened i.e. reinforced [7]. Reinforcement

learning framework provide algorithms with a reward function which indicates to

the learning agent when it is doing well and when it is doing poorly. This learning

can be extended along two dimensions [7];

i) the number of decision makers (single or multi)

ii) nature of interaction (collaborative or adversarial)

Reinforcement learning include a number of techniques; Monte Carlo methods,

Dynamic programming and Temporal Differences (TD) learning methods. TD

method has Q-learning which is an Off-policy learning method and SARSA algo-

rithm an On-policy learning method.

1.2 Problem Statement

The various non-linear disturbance control strategies in use have certain draw-

backs; Active Disturbance Rejection Control (ADRC), introduces an extra state

into which untrackable terms like disturbances and modelling errors are lumped.

An extended state observer is used to track the non-linear gains in the extra

3

state. This increases the order of the system and hence complexity of the con-

trol algorithm. H∞ control method requires the complete nonlinear model of

a system. Its application in unmanned aerial vehicles assumes the existence of

deterministic disturbances while trivializing the existence of unmodelled system

dynamics and parameter variation during flight. Therefore, there is need to use

adaptive heuristics to minimize stochastic disturbances and errors in “dynamic

modelling” during flight without sacrificing performance while also improving the

control of a UAV in real time. This is because path following in an unmanned

aerial vehicles is the most important function which accounts for flight safety and

mission survivability.

1.3 Justification

UAVs are subject to disturbances, perturbations and system dynamics for exam-

ple atmospheric turbulence and wind gusts which are too complex to be char-

acterized by explicit mathematical models. An adaptive scheme which gathers

data from online operation and uses adaptive heuristics to determine the param-

eters of the controller is highly desirable. Reinforcement learning based on neural

networks offer distinct advantages for improving control performance; their non-

linearity enables neural networks to implement a wider range of control functions

and their adaptability permits them to improve control performance via on-line,

trial and error learning. Moreover, temporal differences reinforcement learning

techniques do not require an accurate model of the environment.

In view of these advantages, it is imperative to develop an adaptive technique

which result in optimal feedback controllers for dynamical systems that can be

4

described by differential equations.

1.4 Objectives

1.4.1 Main Objective

The main objective of this research is to design an online adaptive controller using

differential games and reinforcement learning for active disturbance rejection in

a fixed wing unmanned aerial vehicle autopilot.

1.4.2 Specific Objectives

i) Model a fixed wing UAV system dynamics as a two player differential game.

ii) Design a controller using reinforcement learning (SARSA algorithm) by ex-

ploring saddle points in the differential game.

iii) Simulate the controller on a UAV model in X-Plane.

1.5 Scope

This research deals with active disturbance rejection in a fixed wing UAV using

SARSA algorithm, a reinforcement learning technique and optimal control strate-

gies. The focus is designing an online adaptive controller in a miniature (small)

fixed wing UAV to cater for disturbances in the lateral directional motion using

information gathered during flight by adaptively minimizing the effect that these

disturbances have on the heading of a UAV.

1.6 Research Contributions and Publications

The main contribution of this thesis are;

5

i) A UAV is modelled as a two player differential game. Where the second

player is taken as wind disturbance. Game theoretic methods are used

convert the modelled system to a differential game against nature.

ii) An online adaptive controller using SARSA, a reinforcement learning tech-

nique is introduced where a generalized solution of the differential game is

achieved using an iterative process.

iii) The designed controller is tested using X-Plane and MATLAB/SIMULINK

simulation tools for the performance of the designed controller under differ-

ent wind conditions.

The related publications and conferences emanating from this work include;

Publications

i) Kimathi, S., Kangethe, S., and Kihato, P. , “Heading Control of a Fixed

Wing UAV under Windy and Turbulent conditions Using Reinforcement

Learning”, IOSR, Journal of Electrical and Electronic Engineering, Vol.2,

2018.

ii) Kimathi, S., Kangethe, S., and Kihato, P. , “Application of Reinforcement

Learning in Heading control of a Fixed Wing UAV using X-Plane Platform”,

International Journal of Scientific and Technology Research, Vol. 6, Issue

02, 2017.

6

Conference Proceedings

i) Kimathi, S., Kangethe, S., and Kihato, P. , “UAV heading controller using

Reinforcement Learning”, Proceedings of Pan African Conference on Sci-

ence, Computing and Telecommunications (PACT), Strathmore University,

March 2017.

ii) Kimathi, S., Kangethe, S., and Kihato, P. , “A review of control algorithms

for fixed wing UAVs”, Proceedings of the 2nd DeKUT International Confer-

ence on Science, Technology, Innovation and Entrepreneurship, Nov. 2016.

1.7 Organization of the Thesis

This thesis is organized as follows. An introductory background, objectives and

the scope of the research are given in Chapter 1. Chapter 2 introduces the

reinforcement learning and differential game principles. It also provides the basis

of learning in games and finally a short review of methods used in disturbance

rejection in UAVs is presented. Chapter 3 describes the methodology of the

research, that is the modelling of the system and the design of the adaptive

controller. In Chapter 4, an analysis of the modelled system is carried out.

Simulation tests of heading control in a UAV using both the mathematical model

and a UAV model in X-Plane and the discussions are presented. The conclusion

and future recommendations for the research are outlined in Chapter 5.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 Reinforcement Learning

Reinforcement learning (RL), is learning what to do that is, how to map situa-

tions to actions, so as to maximize a numerical reward signal. The learning agent

is not told the correct actions; instead it explores the possible actions and re-

members the reward it receives [7]. It is inspired by natural learning mechanisms

where animals adjust their actions based on the reward or punishment stimuli

they receive from interacting with the environment[8]. In machine learning, RL

is a method for solving optimization problems that involve an agent that inter-

acts with an environment and modifies its actions based on stimuli it receives in

response to its actions. The learner and decision maker is called the agent while

everything outside the agent that it interacts with is called its environment. The

agent and the environment interact with each other through a sequence of discrete

time steps, t = 0, 1, 2, 3, At each timestep t, the agent receives some repre-

sentation of the environment’s state, st ∈ S, where S is the set of possible states,

and on that basis executes an action at ∈ A(st) where A(st) is the set of actions

available in the state st. One time step later, as a consequence of its action, the

agent receives a numerical reward rt+1 and finds itself in a new state st+1 [9]. At

each time step, the agent implements a mapping from states to probabilities of

selecting each possible action. This mapping is called the agent’s policy and is

8

Figure 2.1: Agent-environment interaction in rein-

forcement learning

denoted as πt and it is which maximizes the cumulative reward of an agent over

time [9]. The cumulative reward function is given by equation (2.1),

R =
∞∑
t=o

γtrt (2.1)

where 0 < γ < 1 is a discount factor, which discounts the value of future rewards.

To obtain a preferable reward, a reinforcement learning agent must prefer actions

that it has tried in the past and found to be effective in producing a good reward.

The agent has to exploit what it already knows and also explore the environment

in order to make better action selections in future. In reinforcement learning there

is dynamic programming(DP), Monte Carlo methods and temporal difference

methods; which comprise of Q-learning and sarsa algorithm where the latter is

an online learning method [9].

Like Monte Carlo methods, TD methods can learn directly from raw experience

without a model of the environment dynamics and like DP, TD methods updates

estimates based in part on other learned estimates without having to wait for

a final outcome. This makes TD methods more robust and effective as they

9

bootstrap information they gather from interacting with the environment. The

simplest TD method is given as

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.2)

where the temporal difference update is

rt+1 + γV (st+1) (2.3)

where

- α is the learning rate

- r is the reward for being in that state

- γ is a discounting factor

- V (st) is the previous state value function

- V (st+1) is the present state value function

SARSA being an on line TD method, estimates Qπ(s, a) for the current behavior

policy π and for all states s and actions a. This is done using the same TD

method described in equation (2.2) but the transitions from state-action pair to

state-action pair is considered rather than from one state to another state and

hence the value of the state-action pairs.

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.4)

This update is done after every transition from a non terminal state st . The

word SARSA comes from the transitions st − at − r − st+1 − at+1 as Figure 2.2.

10

Figure 2.2: SARSA algorithm illustration

Therefore in SARSA we continually estimate Qπ for the behavior policy π and at

the same time change π towards greediness with respect to Qπ. This is referred

to as generalized policy iteration as is shown in Figure 2.3. RL is different from

Figure 2.3: Generalized Policy iteration

supervised learning ; which is learning from examples provided by a knowledgeable

external supervisor, as it is not adequate for learning from interaction without a

priori information or pattern [10]. Reinforcement learning as a class of learning

methods can and has been used to design adaptive controllers that learn on line,

in real time, the solutions of user-prescribed control problems [7][10].

11

2.2 Differential Games

A game is defined as any situation in which there are at least two players, each

player having a number of possible strategies and courses of actions which he/she

may follow. The strategies chosen by each player determine the outcome of the

game. Also associated with each possible outcome of the game is a collection of

numerical payoffs [11]. Each player would like the game to end in an outcome

which gives him as large a payoff as possible. A game is zero-sum if the sum of

the payoffs of the two players is zero for any choice of strategy. Games can either

be static or dynamic. A static game is one in which a single decision is made by

each player, and each player has no knowledge of the decision made by the other

players before making their own decision. Decisions are made simultaneously. In

dynamic games, the actions available to each agent depends on its current state

which evolves according to a certain dynamical system i.e. sets of states and

actions are usually in a continuum. A dynamic game is said to be a differential

game if the evolution of the decision process takes place in continuous time and

generally involves a differential equation. Differential games provide a natural

extension to the standard control theory model, where two or more individuals

are present and each one of them seeks to maximize his own payoff. The state

of a system is described by a variable x ∈ χ ⊆ Rn. This state evolves in time

according to an ODE

ẋ(t) = f(t, x(t), u1(t), u2(t)) t ∈ [0, T] (2.5)

12

Here t 7→ ui(t) ∈ Ui ⊆ Rm, i = 1, 2, are the control functions implemented by

the two players. The goal of the i− th player is to

maximize : Ji =

∫ T

0

Li(t, x(t), u1(t), u2(t))dt (2.6)

where Ji is the performance index and Li represent xTQx+uTRu−γ2
∥∥d∥∥2

, a cost

function. Since the gain of player 1 represents a loss of player 2, such scenerios

are referred to as zero-sum games. Saddle point equilibrium strategy arises in

zero-sum differential games where a Player 1 wants to maximize and a Player 2

wants to minimize, i.e. (U1?, U2?) is a saddle point equilibrium if;

J(U1, U2?) ≤ J(U1?, U2?) ≤ J(U1?, U2) (2.7)

The analysis of differential games relies heavily on the concepts and techniques

of optimal control theory whereby equilibrium strategies in feedback are best

studied by looking at a system of Hamiltonian-Jacobi-Bellman PDEs for the

value functions of the various players [12].

2.3 Learning in Differential Games

Learning in games can be formalized as a multi-agent reinforcement learning

problem. Agents select actions simultaneously at the current state and receive

rewards at the next state. The agents may not know the transition function or

the reward function from the environment, instead the agents are required to

select actions and observe the received immediate reward and the next state in

order to gain information of the transition function or reward function. Learning

in differential games has attracted a lot of attention [10] [13, 14, 15] . Here, rein-

forcement learning algorithms have been applied to linear quadratic differential

13

games where the game is a Markov decision process with continuous time, states

and actions, linear dynamics and a quadratic cost function. The games are of

predator-prey/pursuit-evasion systems [10][14]. In [16], an online concurrent re-

inforcement learning algorithm based on neural networks to solve the H∞ control

problem of partially unknown continuous time systems is presented. The control

input acts as one player and attempts to make the optimal control while the other

player is a disturbance, which tries to make the worst-case possible disturbance.

The approximate solution is achieved using integral RL and policy iteration for

finding the optimal value function of the corresponding Hamilton Jacobi Isaacs

(HJI) equations. In [10][16], closed loop stability using Lyapunov technique and

convergence of the algorithm was achieved.

In this work, a similar approach based on linear quadratic differential games and

general policy iteration will be used, but a slightly different RL technique called

SARSA will be used due to its key advantages over other RL techniques [9];

1. Its an on-policy algorithm since it updates value functions strictly on the

basis of the experience gained from executing some policy i.e. it does not

represent the policy as a separate entity.

2. Due to the dependence of the policy on the value function, there is en-

hanced convergence of the learning process hence less computational power

is required.

14

2.4 Review of methods used in disturbance re-

jection in UAVs

2.4.1 Active disturbance rejection control (ADRC)

ADRC was originally proposed by J. Han and comprises of three parts: a tracking

differentiator, extended state observer (ESO), and a non-linear state-error feed-

back [17]. It is designed such that the ESO control algorithm actively estimates

and compensates for, in real time the effects of the unknown dynamics and dis-

turbances, forcing an otherwise unknown plant to behave like a nominal one [18].

That is, instead of depending on the model of the plant, the controller draws the

information from the ESO.

The basic principle of ADRC is directly estimating the system dynamics and the

total disturbances which are extended as a new system state in real time using

an ESO and then compensating for them [4]. This method suffers from a few

drawbacks including;

i) it lumps untrackable terms into “total disturbances” hence augmenting the

observer to include an extra state [18, 19]

ii) while the non-linear gains in the state observer may be effective, they also

produce complexity in the control algorithm implementation and tuning

[18].

15

2.4.2 Non-linear H∞ state feedback

Non-linear H∞ control has been applied to aerospace problems such as to stabilise

the rotational movements of a quadrotor helicopter but the application has been

restricted to lateral or longitudinal motion alone [20]. The main difficulty in

applying non-linear H∞ control theory to flight dynamics is solving the associated

Hamilton-Jacobi-Isaacs equations. A solution for this problem was proposed by

[21] for a general 6-DOF motion which can be applied to various types of vehicles

such as airplanes, missiles or helicopters. The drawback of this work is that the

design of the controller is based on deterministic external forces acting on the

vehicle and the aerodynamics characteristics of the aircraft are neglected.

2.4.3 Proportional Integral Derivative Method

The birth and deployment of Proportional-Integral-Derivative (PID), control dates

back to the period of the 1920s-1940s, in response to the pressing demands of in-

dustrial automation before, during and after World War II. Its dominance is

evident even today in various sectors of the industry. The classical PID linear

controller has the advantage that parameter gains are easy to adjust, is simple

to design and tune and has rather good robustness. In [22], PID controllers were

used in autopilot design, one for the lateral motion autopilot and the other for

longitudinal autopilot. The former was converting the roll rate error to aileron

commands with an output saturation mechanism while the latter was converting

heading error to a roll attitude command which was fed to the former as the

roll rate error. This same sequentially tandem PID control was used in [23]. In

16

both [22, 23] the PID gains were designed using root locus technique in order to

achieve the desired heading successfully. The performance showed good response

in terms of both transient and steady state performance. In [24], the performance

of PID controller in control of a fixed wing UAV is compared with other control

methods and its performance was satisfactory but with some limitations; steady

state errors and tuning of the gains is done off line about an equilibrium point

hence not adaptive.

2.4.4 Intelligent Methods

Intelligent control refers to the use of artificial intelligent techniques in control-

ling a system. Most notable intelligent techniques include fuzzy logic, genetic

algorithms and reinforcement learning.

Fuzzy logic represents data in fuzzy sets and uses fuzzy membership functions to

classify data. Prabhudas and Nagababu in [25] used a fuzzy logic controller in

controlling the altitude of a fixed wing UAV. The fuzzy logic controller was used

to adapt the already designed PID controller so as to improve robustness and

adaptability of the controller. In [26], a full fuzzy controller was implemented

for takeoff, cruise and landing. Simulation results revealed the usability of this

method although it had average tracking performance and sluggish response.

The tracking capability of fuzzy logic controllers in UAV autopilot design is also

highlighted in [24]. Reinforcement learning is learning through punishment and

reward. It is an intelligent method as a ‘punishment’ is made to a controller if

it deviates from the set path. This technique although old, its application in

flight control has been scarce due to problem definition that suits formulation of

17

the algorithm. However, in [27] reinforcement learning was used to harness en-

ergy from a horizontal wind shear to achieve dynamic soaring. Simulation results

showed the RL controller was able to achieve better performance than its base-

line teacher. Moreover, it also followed its own optimum path other than that

which it was supposed to follow. In [28], RL was used to improve the baseline

policy through a constructive relationship between a planner and a learner so as

to mitigate the learning risk. Simulation results showed impressive improvement

in performance and reduction in risk.

2.4.5 Other nonlinear methods

Adaptive Backstepping Backsteping has been applied to control the move-

ments of altitude, yaw and roll in UAVs with comparison to other linear con-

trollers such as proportional-integral (PD) and proportional-integral-derivative

(PID), and nonlinear controllers such as fuzzy, sliding mode and nested saturation

methods as in [24]. In [29], adaptive backstepping is used to obtain directional

control of a fixed wing UAV in presence of unknown crosswind. The control strat-

egy was focused on reducing the position deviation of the airplane with respect

to a desired path in the lateral dynamics. Its drawback is that in addition to

being applied to only lateral dynamics, it is an offline method.

Adaptive Super Twisting Technique It uses the adaptive super twisting

algorithm whose goal is to design a controller without overestimating the gain so

as to drive the sliding state variable and its derivative to zero in finite time under

boundary disturbances (additives/multiplicative) with unknown bounds [30]. The

drawback is that it includes a differentiator to estimate inertial states i.e. n− th

18

derivatives of f(t) which introduces complexity of control algorithm. Also, it is

inferior in terms of system response and robustness as compared to ADRC.

Feedback Linearization Dynamic inversion and dynamic surface control

belong to a class of algorithms known as feedback linearization where a nonlinear

system model is transformed into an equivalent system using a change of vari-

ables. In [31], a multi-loop structure is used that comprised an outer guidance

loop which acted as a virtual target and an inner control loop. The control loop

based on dynamic surface control is derived so as to follow the command generated

by the outer guidance loop. The method exploits the relationship between the

two loops thus avoids ‘explosion of complexity’. Simulations showed good track-

ing performance. In [32], two approaches are used; one employed a two-stage

dynamic inversion and the other employed feedback dynamic inversion on the

command augmented system. The two methods permit adaptation of the para-

metric uncertainity and unmodelled dynamics. Numerical simulations showed

average performance while used on their own. The tracking performance was

greatly improved through the use of pseudo-control hedging and neural-network

adaptation designs.

2.5 Summary

In this chapter, reinforcement learning has been discussed with specific empha-

sis on SARSA algorithm, a temporal differences method. Differential games were

introduced and how learning in differential games occurs. Methods used in distur-

bance rejection in UAVs are discussed where under each method, its disadvantage

is stated.

19

Since the UAV will be modelled as a two player differential game, the use of

non-linear H∞ technique is not feasible due to the complexity of finding the so-

lution of the associated Hamilton-Jacobi-Isaacs equations. Moreover, it is an off

line method and relies on deterministic external forces whereas wind disturbances

are stochastic. Therefore, the need to use adaptive heuristics contained in rein-

forcement learning for the solution of a differential game without increasing the

complexity of the system.

20

CHAPTER THREE

METHODOLOGY

This chapter covers UAV mathematical modelling and the design of an adaptive

controller.

3.1 Introduction: UAV Control Basics

An autopilot consists of three subsystems; Guidance, Navigation and Control

(GNC) systems. The guidance system is defined as a group of components that

measure the position of the guided vehicle with respect to the target and changes

its flight path in accordance with a guidance law to achieve the flight mission

goal [1]. Therefore guidance systems takes care of the system inputs; way-points,

desired speed and path. The navigation system determines the position and

altitude of the aircraft at a given time using generated coordinates. The control

system ensures that the aircraft follows the desired path and altitude from the

guidance system to the target position by manipulating the aircraft’s control

surfaces. The subsystems are related as illustrated in Figure 3.1. An unmanned

aerial vehicle is a 6 degrees of freedom (DOF), rigid model with the propeller’s

motor throttle (δT) and three control surfaces; elevator (δe), aileron (δa) and

rudder (δr) which act as control surfaces. Figure 3.2 shows a UAV axes of motion

where the plane can rotate about the three principle axes (x, y, z) from its center

of gravity. The position control of the UAV is converted to angular control in the

three principle axes; roll (Φ), pitch (θ) and yaw (ψ)as shown in Figure 3.3. The

21

Figure 3.1: UAV guidance, navigation and control

model

Figure 3.2: UAV axes of motion [32]

22

effect of the control surfaces to a fixed wing UAV are;

• Ailerons to control the rolling

• Elevator to control the pitching

• Rudder to control the yawing

• Throttle to control the engine power

as shown in Figure 3.3

Figure 3.3: Control Surfaces

3.2 UAV Mathematical modeling

As identified in [4], in addition to the control surfaces above, the derivation of

a complete nonlinear model of a UAV includes velocities (u, v, w), accelerations

(ax, ay, az) and angular rates (p, q, r) measured along the three principle axes of

motion x, y, z respectively. In [31], the velocities are converted into α, the angle

of attack and β, the sideslip angle for easier manipulation and representation

of the model. The derivation of equations of motion for a fixed wing UAV is

given in [33, 34]. The complete nonlinear equations of motion are linearized

23

about a level flight trim condition. The linear model thus obtained is decoupled

into longitudinal and lateral directional sub-systems to approximate the UAV

dynamics in the longitudinal and lateral directions of motion respectively [35].

Thus a lateral mode state space model decoupled from within the linear model

is then used with aileron and rudder as inputs to control the heading of a UAV

[23][20]. The decoupled lateral mode state space model from [33] and [36] is given

as

ẋ = Alatxlat +Blatulat (3.1)

where xlat is the decoupled lateral state space model with [ρ β r Φ]T as the

state variables. ρ is the roll rate, β is the sideslip angle, r is the yawing rate

and Φ is the roll angle of a UAV , ulat is the control input and comprises of δa,

aileron deflection and δr, rudder deflection as shown in Appendix I. Alat is the

state matrix and Blat the input matrix. The state space model as derived in

Appendix I [34] is

β̇

ρ̇

ṙ

Φ̇

=

Yp Yβ Yr − 1 mgcosθe

Lp Lβ Lr 0

Np Nβ Nr 0

1 0 0 0

ρ

β

r

Φ

+

Lδa Lδr

Yδa Yδr

Nδa Nδr

0 0

δa
δr

 (3.2)

where L,N are moment equations, and Y is a force equation, all acting along the

motion variables p, r and v, (β = v
Ue

).

The aerodynamic and stability coefficients shown in Figure 3.4 are taken from

[20] and [36]. Other coefficients include Cmδe = −1.13, Cmq = −5.08 × 101,

Cnβ = 3.44× 10−2, Cnδr = −3.45× 10−2.

24

The UAV properties are;

- Mass of the UAV, m = 1.9kg,

- The wingspan, b = 1.2m,

- The wing area, S = 0.32m2,

- The density of the UAV, ρ = 1.225kg/m3,

- Earth’s gravitational pull, g = 9.8m/s2.

These values are substituted into equation (3.2) using the relations in Appendix

1 labelled as Lateral motion derivatives functions. The resulting linear state

space model is given in equation (3.3) and equation (3.4).

Figure 3.4: Stability Coefficients [20]

A =

0 −1.4000 0 9.4953

−12.8000 −30.9000 14.4000 0

−0.4480 1.4781 −6.0800 0

1.0000 0 0 0

(3.3)

25

and

B =

0 0.7412

61.4000 12.4000

−3.6700 −15.0000

0 0

(3.4)

The C matrix is chosen as in equation(3.5).

C =

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

(3.5)

and the D matrix is taken to be a zero matrix of the required dimensions.

3.2.1 Differential game modeling

The Optimal Control Problem

Consider the nonlinear time-invariant affine input dynamical system given by

ẋ(t) = f(x(t)) + g(x(t))u(t);x(0) = x0 (3.6)

with the state as x(t) ∈ Rn, f(x(t)) ∈ Rn×n, g(x(t)) ∈ Rn×m, u(x(t)) ∈ Rm

as the A matrix , B matrix and control input respectively [8]. We assume that

f(0) = 0, f(x) + g(x)u is Lipschitz continuous on a set Ω ⊆ Rm that contains

the origin and that the system is stabilizable on Ω, i.e. there exists a continuous

control function u(t) ∈ U such that the system is asymptotically stable on a set

Ω. Define an integral cost function

V (xo) =

∫ ∞
0

r(x(τ)), u(τ)dτ (3.7)

26

where r(x, u) = Q(x) + uTRu with Q(x) being (xTQx) as positive defi-

nite and R ∈ Rm×m, a symmetric positive definite matrix.

Definition 1 A control policy µ(x) is defined as admissible with respect to

equation (3.7) on Ω, if µ(x) is continuous on Ω, µ(0) = 0, u(x) = µ(x) stabilizes

equation (3.6) on Ω and V (x0) is finite ∀x0 ∈ Ω [36].

The optimal control problem can now be formulated. Given the continuous-time

system equation (3.6), the set µ ∈ Ψ(Ω) of admissible control policies and the

infinite horizon cost function equation (3.7), find an admissible control policy

such that the cost index equation (3.7) associated with the system equation (3.6)

is minimized. Defining the Hamiltonian of the problem as

H(x, u, Vx) = r(x(t)), u(t) + V T
x (f(x(t)) + g(x(t)µ(t)) (3.8)

where V T
x is the cost function, and the optimal cost function V ∗(x) as

V ∗(x0) = min
µ∈Ψ(Ω)

(
∫∞

0
r(x(τ)), u(τ)dτ)

with x0 = x is known as the value function and satisfies the HJB equation

0 = min
µ∈Ψ(Ω)

[H(x, µ, V ∗x)] (3.9)

Assuming that the minimum on the right hand side of equation (3.9) exists and

is unique, then the optimal control function for the given problem is

u∗(x) = −1
2
R−1gT (x)V ∗x (x) (3.10)

For the linear case, considering the quadratic cost functional, the equivalent of

the HJB equation is the Riccati equation. The optimal control solution for the

27

Figure 3.5: Actor Critic Structure

problem is achieved by solving the HJB equation (3.9) for the value function and

then substitute this into equation (3.10).

Due to the nonlinear nature of the HJB equation, finding its solution is gener-

ally difficult. But this is achieved using policy iteration [9], which is an iterative

method of reinforcement learning for solving optimal control problems and con-

sists of policy evaluation and policy improvement based on equation (3.10). In

the linear-time invariant case, policy iteration method reduces to the Kleinman’s

algorithm [37] for the solution of the Riccati equation and hence a Lyapunov

equation by extension. The policy iteration algorithm like other reinforcement

learning algorithms can be implemented on an actor-critic whose structure [9] is

shown in Figure 3.5; actor because it is used to select actions, and the estimated

value function is known as the critic because it critizes the actions made by the

actor. Learning is always on-policy that is, the critic must learn about and cri-

tique whatever policy is currently being followed by the actor; it takes the form

of a TD error. This scalar signal (dotted line in Figure 3.5)is the sole output

of the critic and drives all learning in both actor and critic. The critic network

is tuned to solve the value function and the actor is tuned to solve the control

28

policy in equation (3.10). The policy iteration algorithm then consists of tuning

the two networks iteratively. At each time step, the critic neural network is tuned

to evaluate the performance of the current control policy.

Two Player Differential game

The formulation of a single input optimal control problem to a two player optimal

control problem commonly referred to as a differential game is put forth. The

solution of a two player zero-sum infinite horizon game is presented where saddle

points strategies for both player are learned in real-time. From equation (3.6) a

second player is included and the dynamical system is reformulated as

ẋ(t) = f(x(t)) + g(x(t))u(x(t)) + k(x)d(x); (3.11)

with state x(t) ∈ Rn, f(x(t)) ∈ Rn, g(x(t)) ∈ Rn×m and control input u(x(t)) ∈

Rm, k(x(t)) ∈ Rn×q and a disturbance d(x(t)) ∈ Rq. We assume that f(x), is

locally Lipschitz, f(0) = 0 so that x = 0 is an equilibrium point of the system.

The corresponding performance index for equation (3.11) is given by [8] as

J(x(0), u, d) =
∫∞

0
(Q(x) + uTRu− γ2 ‖ d ‖2)dt ≡

∫∞
0
r(x, u, d)dt (3.12)

For feedback policies u(x) and disturbance policies d(x), a cost function is defined

as

V (x(t), u, d) =
∫∞

0
(Q(x) + uTRu− γ2 ‖ d ‖2)dt (3.13)

For a two player zero-sum differential game [8], it is defined as in equation (3.14)

V ∗x(0) = min
u

max
d
J(x(0), u, d) = min

u
max
d

∫∞
0

(Q(x)+uTRu−γ2 ‖ d ‖2)dt (3.14)

29

which is subject to the constraints in equation (3.11). Thus, u is the minimizing

player and d is the maximizing player. This optimal control problem has a unique

solution, if a game theoretic saddle point exists; equation (2.7) highlights the

condition for existence of a saddle point.

A necessary condition for this, is the Isaac’s condition

min
u

max
d
H(x,∇V, u, d) = max

u
min
d
H(x,∇V, u, d) (3.15)

for some saddle point (u∗, d∗).

The Hamiltonian is given as

H(x,∇V, u, d) = r(x, u, d) + (∇V)T (f(x) + g(x)u(t) + k(x)d)[8] (3.16)

Given the solution of the value function V ∗(x) ≥ 0, the associated control and

disturbance policies can be denoted as

u∗ = −1
2
R−1gT (x)∇V ∗ (3.17)

and

d∗ = 1
2γ2
kT (x)∇V ∗ (3.18)

Proof of above equation (3.17) and equation (3.18) is given in [38]. The system

equation (3.11) is linearized about the origin to obtain the Generalized Algebraic

Riccati Equation (GARE). Of the non-negative definite solutions to the GARE,

the one with the corresponding stable invariant manifold of the Hamiltonian

matrix is selected. The minimum non negative solution of the corresponding HJI

equation is the one having the stabilizing GARE as its Hessian matrix. The HJI

equation (3.16) is usually intractable to solve directly but iterative methods like

30

[39, 40] have been applied in solving it. In [39], a policy iteration algorithm was

applied where an inner loop with iterations on the disturbance was used. In this

work the policy iteration algorithm is not implemented, instead only one loop is

implemented; the feedback control loop. The effect of the inner disturbance loop

is achieved from the system’s interaction with the environment. In the linear

case, the solution of the HJI equation is given by the solution of the GARE [41]

as

ATP + PA+Q− PBR−1BT + 1
γ2
PKKTP = 0 (3.19)

where A is given in equation (3.3), B in equation (3.4), K from the solution of

equation (3.19), Q and R are as described in equation (3.20) and equation (3.21)

respectively, where the basis of their choice is informed from the perspective of

maintaining a desired heading angle while placing constraints on the maximum

permissible roll rate, pitch rate, aileron and rudder deflections respectively [33].

Q =

1/p2
max 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1/Φ2
max

(3.20)

R = −γ2 ×

1/δr2
max 0

0 1/δr2
max

 (3.21)

where δmax = ±π/3◦, Φmax = 10◦ = 0.174 rad, pmax = 300◦/s = 5.23 rad/s and

γ = 0.5.

31

Two Player Differential game formulation of the System

Wind disturbance is a stochastic process defined by a velocity spectra. A vector

representing a gust which varies spatially over an aircraft can be represented by

including a rotational gust velocity around the pitch, roll and yaw axes [42]. The

purpose of this, is to approximate its effect on flight dynamics on the three coor-

dinate axes which translate to being the control surfaces.

From equation (3.1) and including the principle of two player zero-sum differ-

ential game as given in equation (3.11), the fixed wing UAV flight dynamics is

represented as a two player game as in [42] to be

ẋ = Alatxlat +B1latulat +B2latug (3.22)

where B1lat is the B matrix as described in equation (3.4), B2lat is the disturbance

matrix and ug is the wind gust angular velocity input and comprises of rotational

gusts around the β, p, and r. The B2lat matrix derivation proceed with values

as of the state space model in equation (3.3) as shown in Appendix.

β̇

ρ̇

ṙ

Φ̇

=

Yp Yβ Yr − 1 mgcosθe

Lp Lβ Lr 0

Np Nβ Nr 0

1 0 0 0

ρ

β

r

Φ

+

Lδa Lδr

Yδa Yδr

Nδa Nδr

0 0

δa
δr

−

Yβ Yp Yr

Lβ Lp Lr

Nβ Np Nr

0 0 0

βg

pg

rg

Φg

(3.23)

The state space model in equation (3.23) can be thought of as a game against na-

ture - the second player (wind disturbance); an unreasoning entity whose strategic

choices affects ‘your’ payoff but which has no awareness of, or interest in the out-

32

come of the game.

Definition 2 When one player in a two person zero-sum game is not a reasoning

entity capable of forethought and/or adaptive play which game theory assumes of

players, the minimax solution concept may not apply. However, it is applicable

depending on the goals of the rational player [11].

This is exploited with the sole objective of coming up with a single controller

countering the effects of wind disturbances. Therefore equation (3.17) will be used

and equation (3.18) will be ignored (the effect of the disturbance is ‘felt’ from the

system’s interaction with the environment) in the design of the controller, as the

main interest is to counter it’s effect as is put forth by Savage in his principle of

maximum regret; the rational player should minimize the maximum regret that

he might feel after the nature’s choices become known [11].

In practice, wind disturbance alleviation is accomplished by choosing one

or more variables to be controlled in some manner and designing an algorithm

around this goal [42]. The B2lat matrix in equation (3.23) is reduced to equation

(3.24) by taking a rotational gust about the side slip angle, i.e. along Y with

respect to β, L with respect to β, and N with respect to β moments such that it

reduces to equation (3.24)

β̇

ρ̇

ṙ

Φ̇

=

Yp Yβ Yr − 1 mgcosθe

Lp Lβ Lr 0

Np Nβ Nr 0

1 0 0 0

ρ

β

r

Φ

+

Lδa Lδr

Yδa Yδr

Nδa Nδr

0 0

δa
δr

−

Yβ

Lβ

Nβ

0

βg

pg

rg

Φg

33

(3.24)

This rotational gust becomes the competing input(second player) to the system.

Thus, the system matrices become as in equation (3.25);

β̇

ρ̇

ṙ

Φ̇

=

0 −1.4000 0 9.4953

−12.8000 −30.9000 14.4000 0

−0.4480 1.4781 −6.0800 0

1.0000 0 0 0

ρ

β

r

Φ

+

0 0.7412

61.4000 12.4000

−3.6700 −15.0000

0 0

δa
δr

+

1.4000

30.9000

−1.4781

0

βg

pg

rg

Φg

(3.25)

3.3 Adaptive Controller

This chapter covers the basics of adaptive control, and then discusses the design of

an online adaptive controller using reinforcement learning and differential games

for active disturbance rejection for a smooth heading control in a UAV.

3.3.1 Adaptive Control

Adaptive control refers to a set of techniques that provide a systematic approach

for automatic adjustment of controllers in real time, in order to achieve or main-

tain a desired level of control system performance when the parameters of the

plant dynamic system are unknown and/or change in time [43].

An adaptive control system measures a certain performance index of the control

system using the inputs, states, outputs and the known disturbances. From the

34

comparison of the measured performance index and a set of given ones, the adap-

tation mechanism modifies the parameters of the adjustable controller in order

to maintain the performance index of the control sytem close to the set of given

ones. It is important to note that, while the design of a conventional feedback

control system is oriented firstly toward the elimination of the effect of distur-

bances upon the controlled variables, the design of adaptive control systems is

oriented firstly towards the elimination of the effect of parameter disturbances

upon the performance of the control system. An adaptive control system can be

viewed as a hierarchical feedback system where;

• Level 1: conventional feedback control

• Level 2: adaptation loop

The operation of the adaptation loop and its design relies upon the fundamental

hypothesis: For any possible values of plant model parameters, there is a con-

troller with a fixed structure and complexity such that the specified performances

can be achieved with appropriate values of the controller parameters [43]. Hence,

the work of the adaptation loop is to search for the “good” values of the controller

parameters.

This stresses the importance of a control design for the underlying control prob-

lem, as well as the necessity of a priori information about the structure of the

plant model. Therefore, an adaptive controller is not a “black box” which can

solve a control problem in real time without an initial knowledge about the plant

to be controlled.

Adaptive control consists of direct adaptive and indirect adaptive control.

35

Direct Adaptive Control

In most cases, the desired performance of a feedback control system can be spec-

ified in terms of the characteristics of a dynamic system which is a realization of

the desired behaviour [43]. For instance, for both tracking and regulation objec-

tives, the controller is designed such that for a given plant model, the closed loop

system has characteristics of the desired dynamic system. Thus, the design prob-

lem can be formulated as in Figure 3.6 where the reference model is a realization

of the system with desired performances. The use of direct adaptive control is

Figure 3.6: Direct Adaptive control principle [43]

limited by the hypotheses related to the underlying linear design such that the

conditions for the existence of a feasible controller allowing for the closed loop

to match the reference model are restrictive. This problem becomes even more

difficult for multi-input-multi-output systems.

36

Indirect Adaptive Control

The idea behind indirect adaptive control is that a suitable controller can be

designed on-line if a model of the plant is estimated on-line from the available

input-output measurements. In order to design and tune a good controller, one

has to specify the desired control loop performances [43]. This control method

Figure 3.7: Indirect Adaptive control principle [43]

uses current plant model parameter estimates as if they are equal to the true

ones in order to compute the controller parameters. The method is termed indi-

rect because; there is on-line estimation of plant parameters and there is on-line

computation of the controller parameters based on the current estimated plant

model.

This idea of an indirect adaptive control scheme is presented in this work, where

the controller is designed on line using a model of the plant which is estimated

on line from the available input-output signals.

3.4 Design of an Adaptive Controller

A controller is developed using reinforcement learning and optimal control tech-

niques. It is sub-divided into three parts;

37

• Feedforward neural network

• SARSA algorithm coupled with optimal control

• Back propagation algorithm.

The above components are discussed next to explain how they fit in, to form an

adaptive controller.

Adaptive Control Block Diagram

The diagram in Figure 3.1 was transformed into an operational block diagram

for adaptive control as shown in Figure 3.8. The guidance system is the basic

reference tracking signal method.

Figure 3.8: Adaptive control block diagram

3.4.1 Feedforward Neural network

It consists of a two-layer neural network with one hidden layer with three neurons

as shown in Figure 3.9, that use tanh activation functions since tanh has stronger

gradients, and one output layer with two neurons that use tansig activation func-

tions since they are perform better for half spaces. It has two inputs; the heading

38

error and the roll error.

At the first instance, the neural network weights are initialized arbitrarily.

Figure 3.9: Feedforward neural network

The outputs of this feedforward net are the two the control signals to the

system

• aileron deflection for the roll control, and

• rudder deflection for the yaw control.

This is shown in the block diagram of Figure 3.8 as block 1.

3.4.2 SARSA Algorithm

The system is subjected to the control deflections (inputs) from the feedforward

neural network and the outputs from the system are tapped.

SARSA algorithm coupled with optimal control is then implemented. The refer-

ence signals for the yawing angle (yawing rate) and roll angle (roll rate) are also

directed to this block.

39

Value Function using Riccatti Co-efficient

From the state space model in equation (3.25), the associated Ricatti coefficient,

P is calculated ’OFFLINE’ using equation (3.19). It is formulated as the Alge-

braic Ricatti Equation(ARE); the system’s operation time is infinite.

For easier calculation of P in MATLAB, the B2 matrix in equation (3.25) is

conjoined with the disturbance matrix to form one input matrix. The Ricatti

coefficient is used to calculate the State-Action value function (Cost function)

Q = XTPX (3.26)

for each state and action (control deflection) using a Lyapunov function as was

discussed in Section 3.2.1. This equation is reformulated according to optimal

control literature [8] to include the reference signals as

J = (X − Z)TP (X − Z) (3.27)

where X are states and Z are the reference signals. The states will capture the

effect of wind disturbances has on the system in real time.

Reward function

The reward function for the corresponding action (control deflections) is calcu-

lated as the deviation of the actual state from the desired position - reference

path [44]

r = −C1(ψ − ψref)2 − C2(θ − θref)2 − C3(φ− φref)2 (3.28)

where Cs is a constant giving the ability to focus on the control of one of the

angles rather than the other. In this work, the heading (ψ) error is used hence

40

equation (3.28) reduces to

r = −C(ψactual − ψref)2 (3.29)

Value function

The total value function is then calculated, which is a sum of previous the state-

action value function, the current reward and state-action value function hence,

State-Action – Reward – State-Action (SARSA) Algorithm as

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (3.30)

with values as explained in Section 2.2. This is updated as the value function for

the next cycle of learning.

According to [45], it is allowed to have a one step gradient search of the value

function for ease of real time implementation and less computational burden

but it is not the most efficient. This is calculated as the discounted current value

function minus the previous value function plus the current reward which reduces

to

δt = rt+1 + γQ(st+1)−Q(st) (3.31)

This is referred to as a temporal difference error in SARSA. After each action

selection, the critic evaluates the new state to determine whether things have

gone better or worse. This temporal difference error will be the reinforcement

signal.

41

Optimal Control Signal

According to optimal control principles, an optimal control effort is given as

u = −KX (3.32)

but according to differential games this is represented as in equation (3.17)

u? = −1/2R−1BT∇V ? (3.33)

where ∇V ? is taken as the change in the value function – which in this work,

the temporal difference is used as the reinforcement as explained above. This

optimal control implemented this way, is considered to be compensated of the

wind disturbances, error(s) and deviation from the target states hence the best

control effort.

As Section 3.2.1 puts it, “wind disturbance alleviation is accomplished by

choosing one or more variables to be controlled in some manner and designing an

algorithm around this goal”. This is what has been formulated herein as active

disturbance rejection without explicitly measuring the disturbance affecting the

system but rather getting the real effect of how the disturbance affect the system

with reference to the target states/reference and designing a controller around

that. This part is shown in Figure 3.8 as 2.

3.4.3 Back Propagation

The back propagation algorithm updates the feedforward neural network weights

using back propagation algorithm. This is achieved by getting the deltas for a

42

normal back propagation algorithm

δ1 = Φ(û? − û) (3.34)

δ2 = V (1− Φ2)(û? − û) (3.35)

where

• δ1 is the update for the input weights of the neural network

• δ2 is the update for the middle layer weights

• Φ is the feedforward neural network middle layer weight matrix.

• û? is the best action (control deflection) that should have been implemented

using the State Action Reward State Action algorithm as discussed above;

and

• û the actual control deflection implemented through the feedforward neural

network.

A learning rate of α = 0.6 was arbitrary chosen in the update of the neural

network feedforward weights.

V = V + αδ1 (3.36)

W = W + αδ2 (3.37)

where

• V is the output weights and,

• W the input weights.

43

Figure 3.10: Evaluative Feedback

The process of back propagation is as illustrated in Figure 3.10. The error in

the control deflection is being corrected in the next control action through an

update of feedforward neural network weights thus slowly taking our actions to

the best available control effort in each consecutive cycle thus adaptation as was

illustrated in Figure 2.3. This is consistent with the actor - critic structure of

reinforcement learning discussed in Sec. 3.2.1 and illustrated in Figure 3.5. This

process in shown as block 3 in the experimental block diagram of Figure 3.8.

3.5 X-Plane Integration with MATLAB

X-Plane is a powerful flight simulator for personal computers. It is not a game

but an engineering tool that can be used to predict the flying qualities of fixed

and rotary wing aircraft with considerable accuracy [46]. This makes it a useful

tool to predict and test the performance of an aircraft and its characteristics. It

has the capacity to send and receive data to and from other devices using the

User Datagram Protocol(UDP). UDP uses a simple transmission method with-

out explicit handshaking protocol, ordering or data integrity and thus, provides

fast communication due to less overhead of network level processing thus suit-

44

Figure 3.11: X-Plane Test platform

able for time sensitive real time applications as X-Plane [47]. X-Plane is able

to send and receive data at 99.9 data packets per second via UDP configurable

sockets. Each data packet is configured to carry specific aircraft parameters that

has been selected in the check boxes provided in the X-Plane’s Input and Output

data interface as shown in Figure 3.11. The selected parameters on X-Plane, can

be received by MATLAB/SIMULINK using UDP through loopback addresses.

This is made possible by using X-Plane Communication Library which enables

integration between MATLAB/SIMULINK and X-Plane as in Figure 3.12. The

received packets are repackaged for use in MATLAB/SIMULINK environment

using the X-Plane Fixed Wing UDP Receiver block and the data to be sent to

X-Plane is repacked in a format that can be received and processed by X-Plane

45

Figure 3.12: X-Plane SIMULINK communication li-

brary for fixed wing UAVs

using the X-Plane Fixed Wing UDP Sender block.

X-Plane also has the functionality of altering the weather conditions i.e. wind

speed, shear speed and direction, and turbulence of an altitude layer as shown

in Figure 3.13. This allows for close to real life flying conditions hence a robust

simulation environment. X-Plane will be used to visualize the effectiveness and

robustness of the designed controller through an actual flight envelope using dif-

ferent weather conditions which will be adjusted in real-time. Classification of

weather factors, wind speeds and their effect, and the impact of weather factors

on recorded aviation accidents [48] is provided in Appendix III.

46

Figure 3.13: X-Plane atmospheric layers

3.5.1 X-Plane UAV plane model

The UAV model plane that was used for simulations is an inbuilt model that

comes with the X-Plane software and was designed by the Great Planes company

and has the specifications as shown in the Table 3.1; The values that were used for

Table 3.1: Great Planes, GP-PT-60 UAV specifica-

tion

mathematical modelling of the UAV are different from the X-Plane UAV model.

The characteristics of the modelled Ultra Stick 25E UAV are as shown in Table

47

3.2;

Table 3.2: Characteristics of UltraStick

Mass, m 1900 g

Wingspan,b 1.2 m

Wing area, S 0.32 m2

Fuselage length 1.09 m

Payload 2250 g

As [49] puts it, much of the lateral dynamics of a UAV are determined by the

aerodynamic stability derivatives, which are functions of the vehicle’s configura-

tion and not of inertia; weight, size and speed. But the relative mass which is a

dimensionless number (= m/ρSb) affects the vehicle response. Thus the vehicle

response will be affected as opposed to the vehicle dynamics.

3.5.2 Actuator Models

Actuator dynamics of the aileron and rudder are both modelled by first order

dynamics to account for actuator time lag in the simulation model. The actuators

rotation angle saturation limits are limited to the maximum mechanical deflection

angles of the control surfaces. These limits are given in Table 3.3 for the GP-PT

60 UAV model in X-Plane. They are described by the transfer function:

δa,r = 20
s+20

(3.38)

48

Table 3.3: Control surface saturation limits

where δ ≤ δmax. The outputs from the actuators are the per unit control surface

deflections which are given by;

δa,r = 20
s+20

ua,r (3.39)

where ua,r is the aileron and/or rudder control signal.

3.6 Experimental Setup

The experimental setups are as in Figure 3.14 and Figure 3.15. Figure 3.14 shows

the setup that was used for the mathematical simulation in MATLAB/SIMULINK,

and Figure 3.15 shows the setup used for real time simulation in MATLAB/SIMULINK

and linked with X-Plane platform.

The adaptive critic block of Figure 3.14 and Figure 3.15 is expanded to view

inside for the MATLAB functions implementing the reinforcement learning algo-

rithm as shown in Figure 3.16. The experiments using this setups are;

i) Heading rate simulations using the mathematical model in Figure 3.14

ii) Disturbance rejection test using (i) above.

iii) Real time heading angle simulations in X-Plane using Figure 3.15.

iv) Disturbance rejection tests in X-Plane using (iii) above.

49

Figure 3.14: Experimental Setup for Mathematical

Model Simulations

Figure 3.15: Experimental Setup for real-time Simu-

lations in X-Plane

50

Figure 3.16: The functions performing Adaptation in

the Setups

3.7 Summary

In this chapter, the basics of flight control were introduced and thereafter a UAV

mathematical model was been derived from the given properties. The model was

formulated as a two player differential game, with wind disturbances acting as

the second competing player. Game theoretic methods were used to reduce the

control problem into a game against nature. An iterative method for a gener-

alized solution of the differential game using SARSA, a reinforcement learning

technique was presented where an adaptive approach using an actor-critic struc-

ture utilizing neural networks and back propagation algorithm is used. The actor

implements control structure while the critic approximates the value function and

hence an approximation of the optimal control law which improves the control

effort being implemented by the actor. Thereafter, a brief introduction of X-

Plane, a visualization software for aircrafts is discussed, and its integration with

MATLAB/SIMULINK to aid visualization of the designed controller.

51

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Analysis of the mathematical model

The state space matrices for the system are lifted from equation (3.25) as;

A =

0 −1.4000 0 9.4953

−12.8000 −30.9000 14.4000 0

−0.4480 1.4781 −6.0800 0

1.0000 0 0 0

B1 =

0 0.7412

61.4000 12.4000

−3.6700 −15.0000

0 0

B2 =

1.4000

30.9000

−1.4781

0

52

C =

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

And D matrix is taken to zero matrix of size 4 by 2.

The system open-loop poles are;

• − 32.2627

• 3.4009

• − 5.4576

• − 2.6606

This shows that the system is open-loop unstable, because of the pole at 3.4009.

Figure 4.1 shows the singular value decomposition of the model. It can be seen

that the model has two dominant modes. Both modes have a constant gain at low

Figure 4.1: Singular value decomposition of the

model

frequencies and relatively low gain at high frequencies. The bottom mode has a

53

slightly lower gain as compared to the first. The Hankel singular values1 were also

plotted to see the interaction of the modes in the model and if the model could

be reduced to a lower order. As the plot shows, the first three states contribute

Figure 4.2: Hankel Singular Value Analysis

immensely in the system. The fourth state contributes the least. The first two

states have the highest state energies and thus contribute more i.e. rolling rate

and side-slip angle as compared to the third state i.e. yawing rate. It should be

noted that the first state which also has the highest energy is an unstable state.

Due to the interaction of the different states, a non-dominant state/mode can

affect the response of a ‘dominant’ mode. It was not feasible to reduce the model

to a lower order. Pole-zero mapping of the open-loop system was done and is as

shown in Figure 4.3.

Three things can be noted from the pole-zero mapping;

1Hankel singular values define the ”energy” of each state in the system. Keeping larger

energy states of a system preserves most of its characteristics in terms of stability, frequency,

and time responses.

54

Figure 4.3: Input-to-Output Pole-zero Map of the

open loop system

• All the four states have one pole in the right hand side of the jw axis.

• All the states have at least a zero to the right of the s-plane. This im-

plies that with the two inputs, the system will exhibit non-minimum phase

behaviour.

• State 1, has a zero at the origin from both inputs. The system will have

zero gain at zero frequency.

4.2 Configuration of the Reference Controller

In order to verify the performance of the designed controller, a reference controller

is introduced so that a comparison is done between the performance of the two

controllers.

55

4.2.1 Proportional Integral Derivative (PID) Controller

The state space model given in equation (3.1) and equation (3.2) was used to

design PID controllers and hence get the response of the heading rate in MAT-

LAB/SIMULINK using the block diagram shown in Figure 4.4. This similar

architecture of PIDs in cascade was applied in [23].

Due to the complex interaction of the states, normal PID tuning rules were

Figure 4.4: PID controllers in cascade

not feasible. Thus, gains were tuned using MATLAB/SIMULINK PID interac-

tive tuner2 where gains of the two PIDs were tuned sequentially. A parallel PID

structure of the form

Gc = P + I 1
s

+D N
1+N 1

s

(4.1)

was used, where P represents proportional gain, K integral gain, D derivative

gain and N the filter coefficient.

The PID tuning requirements for the reference controller were;

• Closed loop stability since it was established that the system is open-loop

unstable.

2Automatically computes an initial PID design with a balance between performance and

robustness. A GUI helps one interactively refine the performance of the PID controller to meet

the design requirements.

56

• Minimum overshoot as a result from both inputs operating simulteanously

• Realistic PID gains

• Robust reference tracking ability

The gains realized using the PID interactive tuner in Matlab/Simulink were as

shown in Table 4.1 for the corresponding PID 1 and PID 2 as shown in Figure

4.4. The overall transfer function using this gains were;

Table 4.1: PID gains

PID 1, δa PID 2, δr

Kp -3.707 -3.749

Ki -14.548 -10.825

Kd 0.043 -0.080

N 13.514 42.346

PID1, δa =
−3.704s2 − 14.82s− 1.077

s2 + 0.074s

due to aileron input, and

PID2, δr =
−3.751s2 − 10.91s− 0.2556

s2 + 0.02362s

due to rudder input.

A MATLAB function, loopsens which stands for loop sensitivity was used to

investigate the stability and sensitivity of the tuned system in closed loop. The

architecture for the loopsens is as shown in Figure 4.5. Notice that the function

does not include a reference signal.

57

Figure 4.5: One DoF architecture for a closed loop

system

The function implemented was as;

[Loops.Stable] = loopsens(sys,K)

where the sys was the open loop state space model and K the controller which

was a matrix of the two inputs The output from the loopsens function was;

Loops.Stable ans = 1 which indicates that the system is closed loop stable

using the tuned PID gains given above.

Proportional Integral (PI) Controller

A similar procedure and design specifications was used for PI controllers as was

for PID controllers. The structure for the PI controller is

Gc = P + I 1
s

The gains realized through interactive tuning were as

PI 1, δa PI 2, δr

Kp -3.707 -0.976

Ki -14.548 -3.565

The function loopsens was used to investigate the closed loop stability status of

the system. The output showed that the system is closed loop stable using the

58

Figure 4.6: Heading rate response of the PID and PI

controllers

PI gains above.

4.2.2 Comparison of PI and PID Control

Since the two control methods satisfied most of the design specifications, we in-

vestigated more to see which of the two had superior performance. The responses

of the two controllers were plotted alongside each other as shown in Figure 4.6. A

closer look at Figure 4.6 as is zoomed shows that the response of the PID control

Table 4.2: Comparison of PID and PI controllers

Step Info PID Controllers PI Controllers

Risetime 0.0597 0.1089

SettlingT ime 5.2604 Did not settle within the set bounds of 0.5%

Overshoot(Percentage) 4.4260 7.5474

59

is slightly better than that of PI control; it has a lesser overshoot and tracks the

reference better. Comparison was made based on a step input to get their charac-

teristics as shown in Table 4.2. It can be deduced from the comparison, that PID

control performs better than the corresponding PI control for this application.

Therefore, the PID controllers were chosen and assimilated as the reference

controller.

4.2.3 Validating the reference Controller

In [23], PID controllers in cascade as in Figure 4.4 were used to control the heading

of a fixed wing UAV. The design technique employed was the root locus method

and the heading response to a step input was obtained as in Figure 4.7. There

Figure 4.7: Heading angle response [23]

is a relationship in the graphs with what was achieved using the PID interactive

tuning method in Matlab as shown in Figure 4.8. The main difference is the time

scale whereby the reference PID controller system settled after 0.253 seconds for

a 2% settling time bound whereas that given by [23] settled after 38 seconds.

This big difference could be attributable to the fact that results shown in Figure

60

Figure 4.8: Heading rate response of PID control

4.7 show the heading angle response whereas Figure 4.8 shows the heading rate

response. Even so, there is a great relationship between the two and thus the

PID controller was good enough to be used as a reference controller.

4.3 Performance of the Controllers

4.3.1 Performance of adaptive controller using the model

The response, that is the heading rate is as shown in Figure 4.9 for the UAV

mathematical model. It can be seen that the controller utilizing reinforcement

learning has better tracking response as compared to a well tuned PID reference

controller; has no overshoots and tracks the reference as closely as possible. Sim-

ilar results were achieved in [32] where PCH and neural network adaptation was

used.

61

Figure 4.9: Heading rate response of the PID and RL

controllers

4.3.2 Performance of the adaptive controller using UAV

model in X-Plane

The designed controllers above were integrated to become real time controllers

for a UAV described in Section 3.5.1 in the X-Plane platform. The UAV in X-

Plane should first be taken airborne for the purpose of this simulations tests since

this work does not cover taking off and landing, but concentrated on a controller

during airborne flight.

At first, a single step heading reference was designed for an actual flight regime of

50◦ initial heading to 100◦ final heading and the results were as shown in Figure

4.10.

For the PID response to the step reference, the rise time was 1.4007 seconds

and the system does not settle within the bounds of 0.5% of final value that

62

was specified. The percentage overshoot was calculated to be 6.3119%. The rise

time for the reinforcement learning controller is 1.2663 seconds as compared to

PID’s 1.4007 seconds and the system settles after 21.371 seconds. The percentage

overshoot is 3.1083% for the RL controller. As can be seen the overshoot is

lesser than the PID’s. The results in Figure 4.11 and Figure 4.12 show UAV

simulations where the UAV is commanded from an initial heading of 40◦, then

commanded to go to 80◦ and then 50◦ and so on. The heading in degrees is

plotted on the vertical axis against time in seconds on the horizontal axis. Figure

4.11 shows the performance of the PID controller for real time heading control

of a UAV. PID controller performs well in tracking the reference initially from

any random position, but its tracking response is poor as it overshoots in every

step reference heading change and does not track the reference accurately as is

illustrated in Figure 4.11. Figure 4.12 shows the response of the Reinforcement

Figure 4.10: Comparison of the two responses to a

step heading reference

63

Figure 4.11: PID controller response to real time

heading control in X-Plane

learning controller for the same heading control of a UAV. For the first 10 seconds,

the response is poor as compared to the PID controller; this is due to the fact that

the artificial neural network weights are being continually adjusted where initially

big adjustments are expected then they settle around the optimum weights. After

10 seconds the response stabilizes and follows the reference better than the PID

controller. It can also be seen that there is an overshoot on the first step heading

Figure 4.12: RL controller response to real time

heading control in X-Plane

64

change, but due to adaptation that overshoot is eliminated in the consecutive

step heading angle changes as is evident from the Figure 4.12.

4.3.3 Performance upon training the Initial weights of

Controller

The results presented in Figure 4.12 were achieved using randomly initialized

weights in the RL controller. The impact of this is seen in the first 5 seconds

where there are large oscillations about the reference point. This is due to the

fact that the neural network weights are adjusting rapid to optimal weights in

the designed RL controller.

Training of Initial Neural network Weights

The data from Figure 4.12 was used to train neural network weights using non-

linear autoegressive network with exogenous inputs, NARX in MATLAB. The

equation for a NARX model is

y(t) = f(y(t−1), y(t−2), . . . , y(t−ny), u(t−1), u(t−2), . . . , u(t−nu)) (4.2)

This is a linear ARX model where the next value of the dependent output signal

y(t) is regressed on previous values of the input signal and previous values of

an independent (exogenous) input signal. The optimum neural network weights

were achieved as;

Input weights = −

0.6623 0.1961

0.0701 0.7474

0.9348 0.5801

 (4.3)

65

and

Hidden layer weights = −

1.1392

1.1389

−4.7608× 10−4

 (4.4)

These weights were set as initial weights in the controller and simulation was ran

again. The response was as shown in Figure 4.13. It can be seen that there is

Figure 4.13: RL controller response after training

neural network

some improvement on the initial tracking; there is less oscillations and overshoots

during the initial stages as compared to Figure 4.12.

4.4 Performance of adaptive controller in the

presence of disturbances

Different disturbances are introduced into the mathematical model and, wind dis-

turbances on a UAV model in X-Plane. The simulation responses of the adaptive

66

controller under these disturbances is compared with those of the PID reference

controller.

4.4.1 Performance using the UAV mathematical model

The mathematical model in equation (3.2) was used and different disturbances

were added to the two control inputs δa and δr. The responses were compared

to those of a PID controller.

Impulse Disturbance

An impulse test signal of amplitude 1 rad and 0.4 seconds duration [20] as shown

in Figure 4.14, was injected in the control surfaces. The response of the yawing

Figure 4.14: Impulse disturbance

rate was as in Figure 4.15 when the disturbance was injected in the aileron, Figure

4.16 when injected in the rudder and Figure 4.17 when injected in both aileron

and rudder inputs. The response under an impulse disturbance in the aileron

input shows the system under the RL controller goes out of hand and deviates

completely. This is because the roll damping due to aileron becomes unstable and

the limited aileron control is insufficient to stop it. The disturbance at the rudder

67

Figure 4.15: Response under an impulse disturbance

at aileron

Figure 4.16: Response under an impulse disturbance

at rudder

68

is suppressed well and kept within the target reference. The reference controller

response shows a pronounced disturbance showing at the output as Figure 4.16

shows. The bad response of due to a disturbance in the aileron as observed in

Figure 4.15 is compensated for by the rudder action; which according to [5] is

the primary control for a spin recovery, when the disturbance is injected in both

inputs as Figure 4.17 shows.

Figure 4.17: Response under an impulse disturbance

at aileron and rudder

Chirp signal Disturbance

A chirp signal is a linearly frequency-swept cosine signal at time instance defined

by the time array t. It is defined as

y = chirp(t, f0, t1, f1)

where fo is the instanteneous frequency at time 0, and f1 is the instanteneous

frequency at time t1. The signal generated for this experiment was as in Figure

4.18, where the parameters were f0 = 0Hz, f1 = 30Hz, t1 = 4 seconds and the

69

Figure 4.18: Chirp disturbance

function was linearly scaled down using the function exp−(2t−3)2 so as to achieve

that response. The response of the RL controller in comparison with that of the

reference PID controller was as shown in Figure 4.19 to Figure 4.21.

The behavior under this disturbance in the rudder input is notable, as Figure

Figure 4.19: Response chirp disturbance in aileron

4.20 shows some new form of periodic oscillation after initially minimizing the

chirp disturbance. The periodic oscillation kicks in after the chirp disturbance

was minimized at both inputs as shown in Figure 4.21, but was compensated

70

Figure 4.20: Response chirp disturbance in rudder

Figure 4.21: Performance chirp disturbance in

aileron and rudder

71

quite well by the other input Figure 4.19 which did not experience the additional

periodic disturbance when the same disturbance was injected into it.

Random Disturbance

Figure 4.22: Random disturbance

A random Gaussian signal with a mean of 0 rad and 0.01 rad2 variance as

was used by [20] was generated as shown in Figure 4.22 .

The response achieved was as shown in Figure 4.23 when the random signal

was introduced as a disturbance in the aileron input. The PID reference controller

Figure 4.23: Response random disturbance in aileron

performed better. The RL controller response was poor due the fact that the

72

modelled system as was evidenced in the singular value decomposition will have

low gain at high frequency. Therefore, the system is unable to effectively generate

high gains to minimize a high frequency disturbance. The effect of the random

Figure 4.24: Performance random disturbance in

rudder

disturbance when injected into the rudder input is a shown in Figure 4.24. The

disturbance is successfully managed with bounds. The disturbance in both inputs

is held within bounds as Figure 4.25 shows.

4.4.2 Performance under disturbances on UAV model in

X-Plane

Different wind disturbances were introduced in the X-Plane platform. Initially

a cross wind of 5 knots (approx. 2.57 m/s) and 345◦ wind direction, 2◦ shear

direction was introduced and the tracking ability of the controller under this

condition was as in Figure 4.26.

It can be seen that, the RL controller is able to counter the effects of this lateral

73

Figure 4.25: Performance random disturbance in

aileron and rudder

Figure 4.26: Response under 5 knots cross wind

74

cross wind as time passes. The initial stages shows that there is some slight

deviation from the reference due to the disturbance but after a while, the UAV

is able to track well the reference heading. The performance of PID is inferior as

compared to that of the RL controller. Also, the PID controller exhibits a small

steady-state/offset error.

A cross wind of 10 knots (approx. 5.14 m/s) and 345◦ wind direction, 2◦ shear

direction was introduced and the tracking ability of the controller under this

condition was as shown in Figure 4.27. As in the previous case, the RL controller

Figure 4.27: Response under 10 knots cross wind

performed better.

A lateral cross wind of 20 knots (approx. 10.3 m/s) and 345◦ wind direction, 5◦

shear direction was introduced and Figure 4.28 the response of the controllers.

As can be deduced, the ripples from the PID controller are bigger.

A 40 knots (approx. 20.3 m/s) wind, 345◦ wind direction and 10◦ shear direction

was introduced as Figure 4.29 shows the graphs achieved. This represented severe

75

Figure 4.28: Response under 20 knots cross wind

wind conditions for a small UAV. The tracking ability of the controller under this

condition showed big deviations from the reference heading for both controllers.

The offset error in this response is hidden, since the ripples are bigger and one

can not clearly distinguish the offset error from the disturbance effect. This is due

to the deviations achieved from the wind disturbance are huge thus making the

UAV to oscillate over and below the target reference angle as it tries to reduce

the disturbance. A similar response was reported in [51] where the roll angle

response was being investigated under 50 knots wind gust.

Turbulence

A turbulence of a setting 1 in X-Plane was introduced on a separate flight regime.

This includes a cross-wind of about 20 knots, wind shear of 5 knot and a 10◦

shear speed as set by the X-Plane simulator. This represents extreme turbulent

conditions for a small UAV and the tracking performance was as in Figure 4.30.

As it can be seen, the response of the UAV under this weather condition is

76

Figure 4.29: Response under 40 knots cross wind

Figure 4.30: Performance under turbulence

77

poor. The UAV heads in the right direction but with a lot of overshoots and

oscillations about the desired reference position. This movement is not desirable

in a small UAV as it might lead to structural damage to the body fuselage. Similar

responses under turbulence were obtained by [48] where smaller UAVs were swept

away under turbulence. The main reason for this behaviour is as put forth by

[52][48], that sensor and actuator dynamics do not scale with aircraft dynamics

hence a main limitation in lateral response for UAVs in turbulent conditions. In

[53], it is argued that for significant oscillatory disturbances, a UAV never sees

enough smooth air to dampen out because of the short distance between the CoG

and the vertical stabilizer. In the research [51], whereby the effect of a lateral

wave turbulence of a give span and length was considered on wings from zero to

large wing spans. It was found that only wings with a span of about equal to the

turbulent wave length will experience large roll effects. In view of this, [52] states

that this shortcoming can be addressed through structural aerodynamic design.

PID Offset error

The PID responses have a steady state error. For the mathematical model this

steady state error was measured to be 0.0002◦ in the yawing rate which is an

improvement from 0.0006◦ that was reported in [24]. Also in [23], a steady state

error of 0.05% was reported on the heading angle. In the X-Plane platform,

this steady state error averages to about 0.2485◦ on the heading angle. The

increase in the error is considered to account for measurement noise and those

non-parametric quantities that cannot be quantified but contribute to flying qual-

ities e.g. humidity, temperature, atmospheric texture that increase with increase

78

in atmospheric disturbance. This is supported by [54], where it is stated that

the nominal operating point of PID may be unstable in certain cases like in wind

disturbances. The RL controller is able to cater for this, as it uses adaptation

techniques by using value functions from each state-action pair hence capture the

effect on the UAV motion.

4.5 Summary

An analysis of the UAV model is done, to determine the properties. A reference

controller using PID controllers is presented which forms the basis of comparison

with the designed controller. MATLAB/SIMULINK simulations tests using the

mathematical model were carried out and they demonstrate that the reinforce-

ment learning controller possess better reference tracking ability. This also is

observed when the controller is used as a real time controller for a UAV model in

X-Plane. Then disturbances were introduced in both simulations; for the math-

ematical model and the results were good other than responses from the aileron

whereby the cause of the response has been explained. For real disturbances as set

in X-Plane, the simulation results showed better tracking as compared to the re-

sponse of the PID reference controller, such that even under extreme turbulence,

the UAV oscillates about the target reference.

79

CHAPTER FIVE

CONCLUSION

5.1 Conclusion

UAVs are the future of aerial vehicles due to their numerous application in dif-

ferent areas. Due to their size and hence dynamics, they pose serious control

challenges of dealing with varying disturbances as they endeavour to accomplish

a given mission. The UAV was modelled as a two player differential game against

nature. On investigation, it showed that the open loop system unstable. A PID

controller was developed using interactive tuning in MATLAB to track a reference

and achieve closed loop stability. A cascade system was used and it successfully

introduced stability in the closed loop system, and achieved stable tracking of

a reference. The PID controller’s results compared well with results from other

researchers, and thus was used as a reference controller.

A simple adaptive controller based on reinforcement learning for active distur-

bance rejection in the modelled fixed wing UAV was developed. A game theoretic

method coupled with SARSA, a reinforcement learning technique was applied in

coming up with the adaptive controller. Simulation tests were carried out using

the UAV mathematical model. These were compared to those of the reference

controller, and the adaptive controller simulation results were better.

Real time simulations using the adaptive controller on a UAV model in X-Plane

were carried out. The reinforcement learning controller showed a 9.6% improve-

80

ment in rise time and a reduction of about 50.7% in the overshoot for a step

heading change as was compared with the reference controller. For consecutive

step heading changes in X-Plane, the adaptive controller was able to eliminate

the overshoot completely as is evidenced in the results. Further simulations tests

in X-Plane were carried out under different wind disturbances. The simulations

showed better performance in tracking the reference heading using the adaptive

controller in comparison with the reference controller.

Simulation results have shown that the adaptive controller based on reinforce-

ment learning performed better in terms of tracking the commanded input even

in the presence of disturbances than a well tuned PID controller which was used

as the reference controller, using both the mathematical model and real time

simulations on a UAV model in X-Plane. It can therefore be concluded that,

the designed adaptive controller can perform better in real life than the already

existing PID controllers in UAV autopilots as is evident from the simulations.

81

5.2 Further Work

In this work, the general nonlinear model of a UAV is decoupled into longitudinal

and lateral directional modes. The lateral mode is used in designing the controller.

Further research should aim at trying to investigate if the longitudinal mode can

contribute in compensating for the deviations incase of turbulent conditions.

Also, this work has not addressed the issue of exploration versus exploitation

which is a central tenant to reinforcement learning. The adaptive controller only

exploited the value-function and new states were found by inferring favourable

value-function values. Further research should address exploration while also

striking a balance with real-time control.

82

REFERENCES

[1] R. Yanushevsky, Guidance of Unmanned Aerial Vehicles, Boca Raton: CRC

Press, 2011.

[2] M. Bento “Unmanned Aerial Vehicles: An Overview”, Working Papers, Feb.

2008. Article.

[3] Q. Abdullah.(2014).Classification of the Unmanned Aerial Systems [Online].

Available:http://www.e-education.psu.edu/geog597g/node/5.

[4] X. Hua, Y. Ruyi, Y. Jianqiang, F. Guoliang and J. Fengshui, “Disturbance

Rejection in UAV’s Velocity and Altitude Control: Problems and Solutions,”

Proceedings of the 30th Chinese Control Conference, 2011.

[5] M. Cook, Flight Dynamics Principles, 2nd ed. Oxford, UK: Elsevier

Aerospace Engineering Series, 2007.

[6] Y. Shin, A. Calise and M. Motter, “Adaptive Autopilot Designs for an Un-

manned Aerial Vehicles,” Proceedings of AIAA Guidance, Navigation and

Control Conference and Exhibit, 2005.

[7] R. Button, A. Barto and R. Williams, “Reinforcement learning is Direct

Adaptive Optimal Control”, Proceedings of the American Control Confer-

ence, Boston, 1991.

[8] F. Lewis, D. Vrabie and V. Syrmos, Optimal Control, John Wiley and Sons

Inc., 3rd Edition, 2012.

83

[9] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cam-

bridge, MA: MIT Press, 2005.

[10] M. Harmon, L. Baird and H. Klopf, “Reinforcement Learning Applied to a

Differential Game,” Adaptive Behaviour, 1995.

[11] P. Straffin, Game Theory and Strategy, Mathematical Association of Amer-

ica, 1993.

[12] A. Bressan, “Noncooperative Differential Games: A Tutorial,” Penn State

University, 2010.

[13] J. Sheppard, “Co-learning in differential games,” Machine Learning, 1998.

[14] Y. Ishiwaka, T. Sato and Y. Kakazu, “An approach to the pursuit problem on

a heterogenous multiagent system using Reinforcement Learning,” Robotics

and Autonomous Systems, 2003.

[15] S. Givigi, H. Schwartz and X. Lu, “A reinforcement learning adaptive fuzzy

controller for differential games,” Journal of Intelligent and Robotic Systems,

2010.

[16] S.Yasini, A. Karimpour, M. Sistani and H. Modares, “Online concurrent re-

inforcement learning algorithm to solve two-player zero-sum games for par-

tially unknown nonlinear continuous-time systems, ”International Journal of

Adaptive Control and Signal Processing, 2014.

[17] J. Hans, “Auto-disturbance rejection control and its Applications,” Control

and Decision, 1998.

84

[18] Z. Qing and G. Zhiqiang, “On Practical Applications of Active Disturbance

Rejection Control,” Proceedings of the 29th Chinese Control Conference,

Beijing, 2010.

[19] Z. Yu and G. Li, “Unmanned Helicopter Autopilot Design Based on Active

Disturbance Rejection Control, ” Advanced Science and Technology Letters,

2014.

[20] H. Ferreira, R. Baptista, J. Ishihara and G. Borges, “Disturbance Rejection

in a Fixed Wing UAV using Nonlinear H∞ State feedback,” 9th IEEE Inter-

national Conference on Control and Automation (ICCA), Santiago, Chile,

2011.

[21] C. Yang and C. Kung, “Nonlinear H∞ flight control of general six degree-of-

freedom motions,” Proceedings of the American Control Conference, 2000.

[22] D. Kingston, R. Beard, T. McLain, M. Larsen, and W. Ren, “Autonomous

Vehicle Technologies for Small Fixed Wing UAVs”, American Institute of

Aeronautics and Astronautics, 2003.

[23] A. Mansoor, R. Hamza and A. Zofishan, “Heading control of a Fixed wing

UAV using Alternate control surfaces”, IEEE, Dec., 2012.

[24] T. Espinoza, A. Dzul and M. Llama, “Linear and Nonlinear controllers Ap-

plied to Fixed-Wing UAVs”, International Journal on Advanced Robotic

Systems, 2013.

85

[25] V. Nagababu and M. Prabhudas , “A Fuzzy logic strategy on attitude con-

trolling of Longitudinal autopilot for better disturbance rejection”, Interna-

tional Journal of Engineering Research and Technology, Dec., 2013.

[26] D. Stojcsics, “Fuzzy controller for small size Unmanned Aerial Vehicles”,

10th IEEE International Symposium on Applied Machine Intelligence and

Informatics, Herl’any, Slovakia, 2012.

[27] J. Spletzer and C. Montella , “Reinforcement Learning for Autonomous Dy-

namic Soaring in shear winds”, IEEE/RSJ International Conference, Sept.,

2014.

[28] A. Geramifard, J. Redding, N. Roy and J. How, “UAV Cooperative Control

with Stochastic Risk Models”, American Control Conference, San Francisco,

USA, 2011.

[29] A. brezoescu, T. Espinonza, R. Lozano and P. Castillo, “Adaptive Trajectory

Following for a Fixed-Wing UAV in Presence of Crosswind”, Journal on

Intelligent Robotic System, 2013.

[30] H. Castaneda, O. Salas-Pena and J. Leon-Morales, “Robust Autopilot for a

Fixed Wing UAV using Adaptive Super Twisting Technique”, PHYSCON,

San Luis Potosi, Mexico, 2013.

[31] J. Zhang, Q. Li, N. Cheng and B. Liang, “ Path-following control for

fixed-wing unmmaned aerial vehicles based on a virtual target”, Journal

of Aerospace Engineering, 2012.

86

[32] A. Calise, Y. Shin and M. Motter , “Application of Adaptive Autopilot

designs for an Unmanned Aerial Vehicle”, American Institute of Aeronautics

and Astronautics, 2005.

[33] R. Nelson, Flight Stability and Automatic Control, 2nd ed. Singapore: Mc-

Graw Hill, 1998.

[34] T. McLain and R. Beard, Small Unmanned Aircraft; Theory and Practice,

1st ed. Princeton, New Jersey: Princeton University Press, 2012.

[35] J. Yi, G. Fan, H. Xiong and F. Jing, “Anti-crosswind Autolanding of UAVs

based on Active Disturbance Rejection Control”, AIAA Guidance, Naviga-

tion, and Control Conference, Ontario, 2010.

[36] Y. Chai, “Synthesis and Validation of Flight Control for UAV”, University

of Minnesota, Minnesota, PhD Thesis Dec. 2009.

[37] D. Kleinman, “On an Iterative Technique for Ricatti Equation Computa-

tions”, IEEE Transactions on Automatic Control, 1968.

[38] W. Aangenent, D. Kostic, A. Jager, G. Molengraft and M. Steinbuch, “Data

based Optimal Control”, Proceedings of the America Control Conference,

Portland, USA, 2005.

[39] M. Abu-Khalaf and F. Lewis, “Neurodynamic programming and Zero-sum

games for constrained Control Systems”, IEEE Transactions on Neural Net-

works, 2008.

87

[40] Y. Feng, D. Anderson and M. Rotkowitz, “ A game theoretic Algorithm

to compute local stabilizing solutions to HJI equations in nonlinear H∞

Control”, Automatica, 2009.

[41] H. Geering, Optimal Control with Engineering Applications Berlin: Springer,

2007.

[42] J. Etele, “Overview of Wind Gust Modelling with Application to Au-

tonomous Low-level UAV Control”, Defence R and D Canada, Ottawa,

DRDC Ottawa CR 2006-221, Nov., 2006.

[43] I. Landau, R. Lozano, M. M’Saad and A. Karimi, Adaptive Control: Algo-

rithms, Analysis and Applications, 2nd ed.: Springer, 2011.

[44] H. Bou-Ammar, H. Voos and W. Ertel, “Controller Design for Quadrotor

UAVs Using Reinforcement Learning”, IEEE International Conference on

Control Applications, Yokohama, Sept., 2010.

[45] J. Santamaria, R. Sutton and A. Ram, “Experiments with Reinforcement

Learning in Problems with Continuous State and Action Spaces”, Unpub-

lished.

[46] A. Meyer, X-Plane 10: Operation Manual., 2012.

[47] R. Lucio and O. Neusa, “UAV Autopilot Controllers Test Platform Using

Matlab/Simulink and X-Plane”, 40th ASEE/IEEE Frontiers in Education

Conference, Washington DC, 2010.

88

[48] K. Zhukov, V. Vyshinsky and J. Rohacs , “Effects of atmospheric turbulence

on UAV”, IFFK, Budapest, 2014.

[49] P. Lissaman, “Effects of Turbulence on Bank Upsets of Small Flight Vehi-

cles”, 47th AIAA Aerospace Sciences Meeting, Orlando, Florida, 2009.

[50] B. Aliyu, A. Petinrin and J. Adewumi, “PID COntrol DEsidn of Sideslip

Angle fo a Fixed Wing Mini-UAV”, Advances in Research,2016.

[51] A. Bittar, O. Nuesa and H. Figueiredo, “ Hardware in the Loop simula-

tion with X-Plane of Attitude Control of a SUAV Exploring Atmospheric

Conditions”, Journal of Intelligent Robotic Systems, 2014.

[52] W. Pisano and D. Lawrence, “Control Limitations of Small Unmanned Aerial

Vehicles in Turbulent Environments”, AIAA Guidance, Navigation and Con-

trol Conference, Chicago, Illinois, 2009.

[53] D. Lundstrom and P. Krus, “Testing of Atmospheric Turbulence Effects on

the Performance of Micro Air Vehicles”, International Journal of Micro Air

Vehicles, 2012.

[54] H. Chao, Y. Cao and Y. Chen, “ Autopilots for Small Fixed-Wing Unmanned

Aerial Vehicles: A Survey”, IEEE International Conference on Mechatronics

and Automation, Habrin, China, 2007.

[55] L. Ribeiro and N. Oliveira, “UAV Autopilot Controllers Test Platform Using

Matlab/Simulink and X-Plane,” 40th ASEE/IEEE Frontiers in Education

Conference, Session S2H-1, 2010.

89

APPENDICES

Appendix A: Math Model Derivation

The equilibrium of the moments acting about the three body axes (x, y, z) form

the three moments equations as;

L = ṗIxx − ṙIxz − pqIxz + qr(Izz − Iyy) − rolling motion

M = q̇Iyy + pr(Ixx − Izz) + (p2 − r2)Ixz − pitching motion

N = ṙIxz − ṗIxz + pq(Iyy − Ixx) + qrIxz − yawing motion

where (p, q, r) are the angular velocity components along the (x, y, z) axes, and

Ixx, Ixz, Iyy, Izz are moments of inertia in the respective axes. By definition,

(u, v, w) and (p, q, r) are small quantities such that terms involving products and

squares of this terms are insignificantly small and may be ignored. Therefore,

above equations reduce to

Ixxṗ− Ixz ṙ = L

Iyy q̇ = M

Izz ṙ − Ixzṗ = N

The components of total force (X, Y, Z) acting on a rigid body are;

m(U̇ − rV + qW) = X

m(V̇ − pW + rU) = Y

m(Ẇ − qU + pV) = Z

where m is the total mass of the body and (U, V,W) are the velocity components.

Further development of equations of motion requires that the terms on the right

90

hand side of above equation adequately describes the disturbing forces. The

disturbing force to be considered are wind disturbances labelled with subscript d

in preceding equation.

m(U̇ − rV + qW) = Xg − Longitudinal motion

m(V̇ − pW + rU) = Yg − Lateral motion

m(Ẇ − qU + pV) = Zg − Longitudinal motion

In the presence of wind disturbances, the atmosphere is moving relative to the

earth. The equations of motion have to be modified due to the fact aerodynamic

forces are functions of relative motion between aircraft and atmosphere, and

not the inertial velocities. Let u be the aircraft speed, and ug be the wind

gust speed in that direction, then aircraft speed with respect to atmosphere is

ua = u − ug. After rearrangement by noting that We = Vo sin θe, the lateral

directions equations including disturbances become;

m(V̇ + rU) = Yae + Y̊v(v − vg) + Y̊p(p− pg)

+Y̊r(r − rg) +mgΨ cos θe + Y̊δaδa+ Y̊δrδr

Ixxṗ− Ixz ṙ = Lae + L̊v(v − vg) + L̊p(p− pg)

+L̊r(r − rg) + L̊δaδa+ L̊δrδr

Izz ṙ − Ixzṗ = Nae + N̊v(v − vg) + N̊p(p− pg)

+N̊r(r − rg) + N̊δaδa+ N̊δrδr

where the coefficients (Ẏ , L̇, Ṅ) are aerodynamic stability derivatives, δa and δr

are the aileron and rudder control inputs for the lateral motion. It is also noted

91

that under a steady trimmed flight, Yae, Lae and Nae are all zero.

m(v̇+rUe) = Y̊vV + Y̊pP + Y̊rr+mg cos θeφ+ Y̊δaδa+ Y̊δrδr− Y̊vVg− Y̊ppg− Y̊rrg

Ixxṗ− Ixz ṙ = L̊vv + L̊pp+ L̊rr + L̊δaδa + L̊δrδr − L̊vVg − L̊ppg − L̊rrg

Ixxṙ − Ixzṗ = N̊vv + N̊pp+ N̊rr + L̊δaδa + N̊δrδr − N̊vvg − N̊ppg − N̊rrg

φ̇ = p

Rearranging and putting the above in state-space format, reduces to

m(v̇ + rUe)

Ixṗ− Ixz ṙ

Ixṙ − Ixzṗ

ψ̇

=

Y̊p Y̊v Y̊r mg cos θe

L̊p L̊v L̊r 0

N̊p N̊v N̊r 0

1 0 0 0

p

v

r

φ

+

Y̊δa ˚Ydeltar

L̊δa ˚Ldeltar

N̊δa
˚Ndeltar

δa
δr

 −

Y̊v Y̊p Y̊r

L̊v L̊p L̊r

N̊v N̊p N̊r

vg

pg

rg

Making the necessary substitutions including β = v/ue, then re-arranging we get

β̇

ṗ

ṙ

φ̇

=

Yp Yβ Yr − 1 mg cos θe

Lp Lβ Lr 0

Np Nβ Nr 0

1 0 0 0

p

β

r

φ

+

Yδa Yδr

Lδa Lδr

Nδa Nδr

δa
δr

−

Yβ Yp Yr

Lβ Lp Lr

Nβ Np Nr

βg

pg

rg

92

Lateral motion derivatives functions

Yβ = Cyβ
QS

m
(m/s2)

Yp = Cyp
QSb

2muo
(m/s)

Yr = Cyr
QSb

2muo
(m/s)

Nβ = Cnβ
QSb

Ixx
(s−2)

Np = Cnp
QSb2

2Ixxuo
(s−1)

Nr = Cnr
QSb2

2Ixxuo
(s−1)

Lβ = Clβ
QSb

Ixx
(s−2)

Lp = Clp
QSb2

2Ixxuo
(s−1)

Lr = Clr
QSb2

2Ixxuo
(s−1)

Yδa = Cyδa
QS

m
(m/s2)

Yδr = Cyδr
QS

m
(m/s2)

Nδa = Cnδa
QSb

Ixx
(s2)

Nδr = Cnδr
QSb

Ixx
(s−2)

Lδa = Clδa
QSb

Ixx
(s−2)

Lδr = Clδr
QSb

Ixx
(s−2)

93

Appendix B: Codes

FeedforwardNet.m

It implements a normal feedforward neural network

func t i on [outp , op] = TrainNeuralNet (Error1 , Error2)

%Desc r ip t i on : Feedforword Neural Network

%Function f o r c a l c u l a t i o n o f f eed forward two−l a y e r

%ANN with 3 tanh hidden un i t s and a l i n e a r /(t a n s i g) Output

%#codegen

g l o b a l W V xz

Error1 = Error1 /180 ; Error2 = Error2 /180 ;

Output of HiddenLayer = coder . nu l l copy (xz) ;

output = coder . nu l l copy (z e r o s (2 , 1)) ;

Input = [Error1 ; Error2] ;

%Mult ip ly the Input with the synapt i c weight matrix W.

Input of HiddenLayer = W ∗ Input ;

coder . e x t r i n s i c (’ tanh ’) ;

%Ca lcu la te the Output o f the Hidden Layer us ing tanh func t i on

Output of HiddenLayer = tanh (Input of HiddenLayer) ;

xz = Output of HiddenLayer ;

%Mult ip ly the Output o f the Hidden Layer with the synapt i c weight

% matrix V

94

Input of OutputLayer = V’ ∗ Output of HiddenLayer ;

coder . e x t r i n s i c (’ tans ig ’ , ’ e l l i o t 2 s i g ’ , ’ awgn ’ , ’ pure l in ’) ;

% Ca lcu la te the Output o f the Output Layer , use t a n s i g Function

Output of OutputLayer = t a n s i g (Input of OutputLayer) ;

output = Output of OutputLayer ;

outp= output (1 , :) ;

op= output (2 , :) ;

end

95

BackPropagation.m

It implements Back propagation algorithm

func t i on BackProp (outp , u opt , op , u opt1)

%Desc r ip t i on : I t Implements backpropagat ion a lgor i thm and updates the feed forward neura l network weights .

%#codegen

g l o b a l W V xz

delta W = coder . nu l l copy (z e r o s (3 , 2)) ;

de l ta V = coder . nu l l copy (z e r o s (3 , 1)) ;

del W = coder . nu l l copy (z e r o s (3 , 1)) ;

Input = [u opt ; u opt1] ;

UU=[u opt ; u opt1] ; UU1=[outp ; op] ;

de l ta V = xz ∗(UU − UU1) ’ ;

del W = ([1 ; 1 ; 1] − (xz) . ˆ 2) . ∗ (V∗(UU − UU1)) ;

delta W = del W∗ Input ’ ;

alpha =.6;

% Updating the neura l weights

W = W+alpha .∗ delta W ;

V = V+alpha .∗ delta V ;

end

96

Appendix C: Weather Factors

NTSB factors and weather categories [48]

97

Different air turbulence phenomena [48]

NTBS weather citations in aircraft accidents[48]

98

	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	NOMENCLATURE
	ABSTRACT
	INTRODUCTION
	Background
	Problem Statement
	Justification
	Objectives
	Main Objective
	Specific Objectives

	Scope
	Research Contributions and Publications
	Organization of the Thesis

	LITERATURE REVIEW
	Reinforcement Learning
	Differential Games
	Learning in Differential Games
	Review of methods used in disturbance rejection in UAVs
	Active disturbance rejection control (ADRC)
	Non-linear H state feedback
	Proportional Integral Derivative Method
	Intelligent Methods
	Other nonlinear methods

	Summary

	METHODOLOGY
	Introduction: UAV Control Basics
	UAV Mathematical modeling
	Differential game modeling

	Adaptive Controller
	Adaptive Control

	Design of an Adaptive Controller
	Feedforward Neural network
	SARSA Algorithm
	Back Propagation

	X-Plane Integration with MATLAB
	X-Plane UAV plane model
	Actuator Models

	Experimental Setup
	Summary

	RESULTS AND DISCUSSION
	Analysis of the mathematical model
	Configuration of the Reference Controller
	Proportional Integral Derivative (PID) Controller
	Comparison of PI and PID Control
	Validating the reference Controller

	Performance of the Controllers
	Performance of adaptive controller using the model
	Performance of the adaptive controller using UAV model in X-Plane
	Performance upon training the Initial weights of Controller

	Performance of adaptive controller in the presence of disturbances
	Performance using the UAV mathematical model
	Performance under disturbances on UAV model in X-Plane

	Summary

	CONCLUSION
	Conclusion
	Further Work

