
OPTIMAL SCALING INTEGRATED WITH PRINCIPAL COMPONENT

REGRESSION: MODELING CASSAVA YIELDS,A CASE OF WESTERN

KENYA

ALULU VINCENT HARRY

REG NO: SC384-C012-0005/2015

A Research Project Submitted In Fulfillment Of The Requirement For The Award Of

The Degree Of Master Of Science In Applied Statistics Of Jomo Kenyatta University Of

Science And Technology



DECLARATION

This is my own work and has not been presented for a degree in any other University.

Signature· · · · · · · · · · · · · · · · · · ·· Date· · · · · · · · · · · · · · · · · · ··

Alulu Vincent Harry

REG NO: SC384-C012-0005/2015

This project has been submitted for examination with our approval as University

supervisors

Signature· · · · · · · · · · · · · · · · · · ·· Date· · · · · · · · · · · · · · · · · · ··

Prof. George Orwa

JKUAT, Kenya

Signature· · · · · · · · · · · · · · · · · · ·· Date· · · · · · · · · · · · · · · · · · ··

Mr. Henry Athiany

JKUAT, Kenya

Signature· · · · · · · · · · · · · · · · · · ·· Date· · · · · · · · · · · · · · · · · · ··

i



DEDICATION

To my beloved mother Fridah Busolo.

ii



ACKNOWLEDGMENT

This rigorous process has been made possible and easier due to the help and support from

a number of people. I acknowledge my two supervisors, Mr. Henry Athiany and Prof.

George Orwa for their insight in my work, advise and general guidance. Without them,

things could have been more difficult. I also thank Jomo Kenyatta Univeristy of Science

and Technology-Kisumu CBD campus fraternity for making it possible in coordination

of the entire process. Many thanks to Dr. Woyengo Vincent Were, Senior Research

Officer at Kenya Agriculture and Livestock Research Organization-Kakamega, for giving

me access to breeding data and support throughout. Last but not least, I thank God for

giving me the strength to walk this academic path.

iii



TABLE OF CONTENTS

DECLARATION i

DEDICATION ii

ACKNOWLEDGEMENT iii

LIST OF FIGURES vii

LIST OF TABLES viii

DEFINITION OF KEY TERMS ix

ABSTRACT x

1 INTRODUCTION 1

1.1 Background Of The Study . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Crop Yield Forecasting Based On Weather Parameters . . . . . . 2

1.1.2 Crop Yield Forecasting Based On Plant Parameters . . . . . . . . 8

1.1.3 Models Using Spectral Data . . . . . . . . . . . . . . . . . . . . . 14

1.1.4 Models Using Farmers’ Appraisal . . . . . . . . . . . . . . . . . . 15

1.1.5 Principal Component Regression . . . . . . . . . . . . . . . . . . 15

1.1.6 Discriminant Function Analysis . . . . . . . . . . . . . . . . . . . 16

1.1.7 Artificial Neural Network (ANN) . . . . . . . . . . . . . . . . . . 16

1.1.8 Within Year Model . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.9 Developments In Cassava Industry . . . . . . . . . . . . . . . . . 17

iv



1.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Justification Of The Study . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Organization of the project . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 LITERATURE REVIEW 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Factors Guiding Cassava Production . . . . . . . . . . . . . . . . . . . . 25

2.3 Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 METHODOLOGY 28

3.1 Statistical Method and Model Review . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Optimal Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Principal Component Regression . . . . . . . . . . . . . . . . . . 29

3.1.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Properties Of The Principal Component Regression Model . . . . . . . . 40

4 EMPIRICAL STUDY 43

4.1 Source Of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Correlation Analysis Among Independent Variables . . . . . . . . 46

v



4.3.2 Principal Component Analysis For Dimension Reduction And Se-

lection Of Key Components . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Principal Component Regression And PCR Statistics . . . . . . . 58

4.3.4 Model accuracy assessment and forecasting . . . . . . . . . . . . . 61

5 SUMMARY OF FINDINGS,CONCLUSIONS AND RECOMMENDA-

TIONS 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Summary Of Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Recommendations For Further Studies . . . . . . . . . . . . . . . . . . . 65

REFERENCES 74

vi



LIST OF FIGURES

4.1 Q-Q plot for the multivariate normal test . . . . . . . . . . . . . . . . . . 51

4.2 Scree plot for principal component importance . . . . . . . . . . . . . . . 54

vii



LIST OF TABLES

4.1 Variable description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Correlation analysis among independent variables . . . . . . . . . . . . . 46

4.3 Establishing relationship among the independent variables using multiple

linear regression (MLR) statistics and variance inflation factor. . . . . . . 48

4.4 Testing for normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Eigen values and proportion of variance explained by principal components 52

4.6 Loadings and importance of variables . . . . . . . . . . . . . . . . . . . . 56

4.7 Excerpt of principal component scores for the first five observations on

each of the first 8 PCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Principal Component Regression Statistics . . . . . . . . . . . . . . . . . 59

4.9 Transformed Multiple Linear Regression Coefficients . . . . . . . . . . . . 60

4.10 Model validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



DEFINITION OF KEY TERMS

Optimal Scaling

This is the procedure applied to categorical variables in a dataset as a first transforma-

tion tool to generate continuous variables with correspondence between the two sets of

variables observed.

Principal Component Analysis

Principal Component Analysis refers to the technique applied to reduce the number of

variables in a dataset so as to remain with a subset that contains much information and

in the process eliminate redundancy.

Principal Component Regression

This is the procedure of fitting a regression model on a dataset by first identifying the

key components and then applying the fundamental regression procedure.
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ABSTRACT

Cassava is a major food crop grown in the tropical and subtropical parts of the world. Cas-

sava yields have been estimated, among other methods, based on weather factors,Fisher

(1925) and based on plant parameters Lohse et al. (1985) .Most of the existing models do

not incorporate all factors of production, a few that attempt this only puts into account

the plant and weather factors, leaving out pests and diseases.

In this research work, a model for predicting cassava yield based on all factors of produc-

tion using the principal component regression integrated with optimal scaling is devel-

oped. All factors of production are considered in this model. Moreover, the relationship

between the different factors of production is established and the yield estimated based

on the key components adduced to the factors of production in trial data in Western

region of Kenya. Principal component regression and optimal scaling are used. Pearson

correlation prior to principal component analysis indicated significance correlation among

the factors of production. A prior to principal component regression, analysis using the

variance inflation factor also indicated correlation in key factors of yield forecasting, vari-

ance inflation factor of 1666.667 (R2=0.999 ). The coefficients derived from this model

were unstable and therefore not reliable for yield prediction .Using the amount of ex-

plained variance criterion (70%-80%),the first eight principal components which accounts

for almost 70% of total model variance are selected. Eight (8) key components are ob-

tained as key determinants of yield; the most vital component having an eigen value of

2.149 and the least important having an eigen value of 1.005. The post principal compo-

nent regression model was fitted. The PCR model indicates non-correlation among the

eight principal components with the VIF attributed to the overall PCR model being2.564

x



,(R2=0.610 (Adj R2=0.590) .

The model developed incorporates all factors of production, regardless of whether the

variables are continuous or categorical. It can factor in pests and diseases which are key

factors of crop yield that have been neglected in existing models. The model developed

will serve as a vital statistical tool in the crop production industry and impact on policy

making.
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Chapter 1

INTRODUCTION

1.1 Background Of The Study

Cassava (Manihot esculenta Crantz) is a root tuber plant which is grown in tropical and

subtropical parts of the world. The starchy tuberous roots of cassava are a major source

of carbohydrates and are consumed by 800 million people in Sub-Saharan Africa, Latin

America and Asia Benesi (2005) Cassava is grown virtually in most parts of Kenya Karuri

et al. (2001) and is a major source of income to farmers in agro-climatically disadvan-

taged regions and high potential areas of Coast, Central and Western Kenya Githunguri

et al. (2007). The Western, Coastal and semi-arid Eastern regions of Kenya have the

highest cassava production in that order Karuri et al. (2001). In Kenya, cassava is an

important food security and income generating crop for farmers. It supports livelihood

of approximately 8.6 million people in the lake basin region.

Most of the cassava is produced by small scale farmers using traditional farming systems

Githunguri et al. (2007). About 38% of the cassava produced in the coastal lowlands of

Kenya is consumed at household level and 51% of the farmers make chips for domestic

use, sale to starch and feed factories or as an intermediate for production of flour Kiura

et al. (2005).Cassava is considered as a crop for poor farmers due to its ability to be

productive in low nutrient soils, where cereals and other crops perform poorly. Other
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advantages of cassava include drought tolerance and flexibility in planting and harvesting

time. Cassava is also a low input crop and can be incorporated in various cropping

systems. These attributes make cassava a mainstay of smallholder farmers in the tropics

with limited access to agricultural inputs Aryee et al. (2006); Benesi (2005). As a result of

recurrent droughts and subsequent food shortages in Africa, New Partnership for Africa’s

Development (NEPAD) has identified cassava as one of its key mandate commodities in

order to reduce dependence on maize Fermont et al. (2009). In Kenya, the crop is grown

on 77,502 ha with an output of 841,196 tons FAO (2007). A crucial impediment to cassava

production in most nations in Africa is the Cassava mosaic disease (CMD) caused by single

stranded DNA viruses in the family Geminiviridae and genus begomovirus Fauquet et al.

(2005).

Cassava yield is measured as the number of tubers in tonnes per hectare (ton/ha) CFSAM

(2006).The main factors affecting yield of cassava are inputs and weather. There are

several existing models for crop yield forecasting that are also extended to cassava yield

forecasting. For instance:

1.1.1 Crop Yield Forecasting Based On Weather Parameters

Weather affects crops differently during different stages of crop growth. Thus the ex-

tend of weather influence on crop yield depends not only on the magnitude of weather

variables but also on the distribution pattern of weather over the crop season which, as

such, calls for the necessity of dividing the whole crop season into fine intervals. This

will increase number of variables in the model and in turn a large number of parameters

will have to be evaluated from the data. This will require a long series of data for precise

estimation of the parameters which may not be available in practice. Thus, a technique
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based on a relatively smaller number manageable parameters and at the same time taking

care of entire weather distribution may solve the problem. Fisher (1925) has suggested a

technique which requires small number of parameters to be estimated while taking care

of distribution pattern of weather over the crop season. He assumed that the effect of

change in weather variable on crop in successive weeks would not be an abrupt or erratic

change but an orderly one that follows some mathematical law. He assumed that these

effects are composed of the terms of a polynomial function of time. Further, the value of

weather variable in wth week,Xw was also expressed in terms of orthogonal functions of

time.

Substituting these in the multiple linear regression equation

Y = A0 + A1X1 + A2X2 + ...+ AnXn (1.1.1)

Where Y denoted yield and Xw rainfall in wth week , w = 1, 2, · · ·n and utilizing

the properties of orthogonal and normalized functions, he obtained

Y = A0 + a0ρ0 + a1ρ1 + ...+ akρk (1.1.2)

where

A0, a0, a1, a2, ....ak are constants to be determined and ρi,i = 1, · · · k are distribution

constants of Xw. Fisher has suggested to use k = 5 for most of the practical situations.

In fitting this equation for k = 5, the number of constants to be evaluated will remain

7, no matter how finely growing season is divided. This model was used by Fisher for

studying the influence of rainfall on the yield of wheat. However, Hendrick and Scholl

(1943) have modified Fisher’s technique. They divided the crop season into n weekly
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intervals and have assumed that a second degree polynomial in week number would be

sufficiently flexible to express the relationship. Under this assumption, the model was

obtained as:

Y = A0 + a0
∑
w

Xw + a1
∑
w

WXw + a1
∑
w

W 2Xw (1.1.3)

In this model number of constants to be determined reduces to 4, irrespective of n. This

model was extended for two weather variables to study joint effects. Since the data for

such studies extended over a long period of years, an additional variate T representing the

year was included to make allowance for time trend. Another important contribution in

this field is by Baier (1977). He has classified the crop-weather models in three basic types.

1. Crop growth simulation models

2. Crop-weather Analysis models

3. Empirical statistical models

The most commonly used models in crop forecasting are Empirical Statistical models.

In this approach, one or several variables (representing weather or climate, soil char-

acteristics or a time trend) are related to crop responses such as yield. The weighting

coefficients in these equations are by necessity obtained in an empirical manner using

standard statistical procedures, such as multi-variable regression analysis. Several Em-

pirical Statistical models were developed all over the world. The independent variables

included weather variables, agrometeorological variables, soil characteristics or some suit-

ably derived indices of these variables. Water Requirement Satisfaction Index (WRSI),

Thermal Interception Rate Index (TIR), Growing Degree Days (GDD) are some agrocli-

matic indices used in models.

Southern Oscillation Index(SOI) has also been used with other weather variables to fore-

cast crop yield Ramakrishna et al. (2003). To account for the technological changes year
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variable or some suitable function of time trend was used in the models. Some workers

have also used two time trends. Moving averages of yield were also used to depict the

technological changes. In contrast to empirical regression models, the Joint Agricultural

Weather Information Centre employs the crop weather analysis models that simulate ac-

cumulated crop responses to selected agro-meteorological variables as a function of crop

phenology. Observed weather data and derived agro-meteorological variables are used as

input data. USDA and FAO are the two organizations that systematically forecast world

agricultural production and global crop information based on weather. Daily monitoring

of satellite weather images and meteorological data provides the framework for agricul-

tural weather analysis. Daily, weekly and seasonal summaries are processed and merged

with historical weather and crop data for evaluation of the crop-yield potential. FAO has

also carried out number of studies using agro-meteorological models. The methodology

consists of developing an index depending on water deficit / water surplus in successive

periods of crop growth. These models have good potential for early crop yield assessment

for rainfed crops Frere and Popov (1979).

In India, major organizations involved in developing methodology for forecasting crop

yield based on weather parameters are IMD and IASRI. The methodology adopted by

IMD involves identification of significant correlations between yield and weather factors

during successive overlapping periods of 7 to 60 days of the crop growing season. By ana-

lyzing the correlation coefficients for statistical and phenological significance, the critical

periods when the weather parameters have significant effect on yield are identified. The

weather parameters in critical periods along with trend variables are used through multi-

ple regression analysis to obtain forecast equations. Using this methodology models were

developed for principal crops on meteorological subdivisions basis. Data from various
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locations are averaged to get the figures for meteorological sub-divisions and these are

utilised to develop the forecast model. Monthly forecasts are issued from these models

by taking the actual data upto time of forecast and normal for the remaining period.

In some models yield Moisture Index, Generalised Monsoon Index, Moisture Stress, arid-

ity anomaly Index are also used Sarkar (2003); Sarwade (1988). At IASRI, the model

suggested by Hendricks and Scholl has been modified by expressing effects of changes in

weather variables on yield in the wth week as function of respective m correlation coeffi-

cients between yield and weather variables. This will explain the relationship in a better

way as it gives appropriate weightage to different periods. Under this assumption, the

models were developed for studying the effects of weather variables on yield using com-

plete crop season data whereas forecast model utilised partial crop season data. These

models were found to be better than the one suggested by Hendricks and Scholl.

The forecast model finally recommended was of the form:

Y = A0 +

p∑
i=1

1∑
j=0

aijZij +

p∑
i 6=i′=1

1∑
j=0

aii‘Zii′j + cT + e (1.1.4)

where

Zij =
m∑
w=1

rjiwXiw and Zii′j =
m∑
w=1

rjii′wXiwXi′w (1.1.5)

Here Y is yield,riw/rii′wis correlation coefficient of yield (adjusted for trend effect) with

ith weather variable (Xiw) /product of ith and i′th weather (XiwXi′w) variables in wth

week, m is week of forecast, p is number of weather variables used and e is error term.

Models were successfully used for forecasting yields of various crops at district level as well

as agroclimatic zone level Agrawal et al. (1980, 1983, 1986, 2001); Mehta et al. (2000).

These models were used to forecast yield of paddy and wheat in different situations; (i)
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rainfed area having deficient rainfall (paddy), (ii) rainfed area having adequate rainfall

(paddy) and (iii) irrigated area (wheat). The results revealed that reliable forecasts can

be obtained using this approach when the crops are 10-12 weeks old. This approach was

also used to develop forecast model for sugarcane at district level Mehta et al. (2000).

However, these studies were carried out at district level and required a long series data

of 25-30 years which are not available for most of the locations. Therefore, the study has

been undertaken to develop the model on agro-climatic zone basis by combining the data

of various districts within the zone so that a long series could be obtained in a relatively

shorter period. Previous years yield, moving averages of yield and agricultural inputs

were taken as the variables taking care of variation between districts within the zone.

Year variable was included to take care of technological changes. Different strategies

for pooling district level data for the zone were adopted. Results revealed that reliable

forecasts can be obtained using this methodology at 12 weeks after sowing i.e. about 2

months before harvest. The data requirement reduced to 10-15 years as against 25-30

years for district level models. The approach has been successfully used for forecasting

yields of rice, wheat and sugarcane for Uttar Pradesh Agrawal et al. (2001). At district

level, model based on time series data on weather parameters has also been developed

using technique of discriminant function analysis. The long series of 25-30 years has been

classified into three groups - congenial, normal and adverse with respect to crop yields.

Using weather data of these groups, linear / quadratic discriminant functions were fitted.

These functions were used to find weather scores for each year at different phases of crop

growth and were used as regressors in forecast model Rai (2000).

In another approach based on water balanced technique, models for rainfed crops using

weighted stress indices have been developed. In this approach, water deficit / surplus has
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been worked out at different phases of crop growth and using suitable weights, accumu-

lated weighted stress index has been developed for each year which was used as regressor

in the forecast model Saksena et al. (2001)

1.1.2 Crop Yield Forecasting Based On Plant Parameters

Effects of weather and inputs are manifested through crop stand, number of tillers, leaf

area, and number of earheads just to mention but a few which ultimately determine crop

yield. As such, plant characters can be taken as the integrated effects of various weather

parameters and crop inputs. Thus the other approach to forecast crop yield is to use

plant characters. In USDA, the net yield per acre for each sample plot is computed as

Lohse et al. (1985).

yi = (Fi × Ci ×Wi)−Li (1.1.6)

where ;

Fi = Number of fruits harvested or forecast to be harvested in the ith sample plot

Ci = Conversion factor using the row space measurement to inflate the plot counts to a

per acre basis

Wi = Average weight of fruit harvested or forecast to be harvested

Li = Harvest loss as measured from post-harvest gleanings (the historic average is used

during the forecast season)

ȳ =

(∑
yi
n

)
(1.1.7)

for the n sample plots.

Separate models are used to forecast the number of fruits (Fi) to be harvested and the
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final head weight (Wi). This method cannot be followed in India/tropical countries as

time period from head emergence to maturity is hardly one to two months for most of

the crops whereas in USA this takes two to three months. Forecast of head weight at

maturity therefore cannot be obtained much in advance in India, as such this will not be

useful for obtaining early forecast in such countries. In India, yield is directly regressed on

plant counts and yield contributing characters for obtaining forecast model. Considerable

work has been done at IASRI using this approach. The data are collected at different

periodic intervals through suitable sampling design for 3 to 4 years from farmers fields.

Two types of approaches have been attempted namely: Between year model and Within

year model.

Between Year Models

These models are developed taking previous year(s) data. Objective yield forecasts are

obtained by substituting the current year plant data into a model developed from the

previous year(s). An assumption is made that the present year is a part of the composite

population of these (previous) years. Most commonly used models are based on regression

approach.

Different between year models

In this category, the following models are used.

Linear Regression Models

This model uses the regression equation:

Y = β0 + β1X1 + β2X2 + · · ·+ e (1.1.8)

where Y and Xi are yield and plant characters respectively. These may be used in
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original scale or some suitably transformed variables of these can be used. β0 and βi

are constants to be estimated and e is random error. These models utilise data at one

point of time only during the crop growth Jha et al. (1981); Sardana et al. (1972); Singh

and Bapat (1988); Singh et al. (1976). These models were improved taking regressors

as principal components of plant characters Jain et al. (1984) or growth indices based

on plant characters observed on two or more points of time during the crop growth Jain

et al. (1985). The growth indices are obtained as weighted accumulations of observations

on plant characters in different periods, weights being respective correlation coefficients

between yield and plant characters. The model can be written as:

Y = β0 +
∑

βiGi + e (1.1.9)

Where

Gi =

n2∑
w=n1

riwXiw

Gi is the index of the ith character, w is period identification, n1 and n2 are the initial

and final periods considered in developing the index of the character, riw is simple/partial

correlation coefficient between yield and ith character in wth period (Xiw).

Probability Model

Multiple regression technique has been extensively used in developing models for crop

yield forecasting. Least squares technique is used for estimating the parameters of the

regression model. The optimality properties of these estimates are described in an ideal

setting which is not often realised in practice. It has been observed that regression based

on different subsets of data produce very different results, raising questions of model
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stability. To overcome some of the drawbacks of regression model probability model for

forecasting crop yield using Markov Chain theory has been developed. This method, being

completely model free, does not require any assumption about independent and dependent

variables. Markov Chain method has the advantage of providing non-parametric interval

estimates and is robust against outliers/extreme values. In this method, growth process

of the crop is divided in s phenological stages. A markov chain model is constructed by

defining a set of states, which describe the condition of an individual plant (or average

condition of a group of plants) at specified time within the phonological stages. Individual

states are defined on the basis of available qualitative and quantitative information to

describe plant condition. Let ni, for i = 1, 2, · · · , s denote the number of states at the

commencement of stage i. Let Ai,i+1, and for i = 1, 2, · · · , (s− 1) denote the (ni × ni+1)

transition matrix which gives the transition probabilities of a plant (or group of plants)

moving from any possible state of stage i to any possible state of stage i+1. As a property

of transition matrices, each row of an Ai,i+1 matrix has a summation of unity. Let F denote

the matrix of transition probabilities from each of the (n-ns) states of (s-1) intermediate

stages to each of the ns states, the last (harvest) stage. The ns states are defined as

quantitative intervals of yield.

F matrix can be obtained as:

F =



∏s−1
i=1 Ai,i+1∏s−1
i=2 Ai,i+1

As−2,s−1As−1,s

As−1,s


(1.1.10)

F matrix can be used to forecast crop yields. Each row of F represents a crop condition
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(state) at a certain crop stage. The ns states of the final stage are defined as quantitative

intervals of yield. Each column of F represents a different yield interval. The values of

each row of F are the estimated probabilities of the crop producing a final yield within

each of the ns intervals. Thus, each row of F is a predicted yield distribution for a given

stage and state. Each of the (n-ns) forecast yield distributions in the F matrix may be

analysed to get mean and standard error of the forecast. In particular, transition prob-

ability matrix As-1, s will give mean and standard error of forecast at stage(s-1). This

method was applied to forecast yield of corn and cotton by USDA Matis et al. (1985)

and sugarcane Agrawal and Jain (1996); Jain and Agrawal (1992). Models using higher

order markov chain and using principal components and growth indices of plant charac-

ters in markov chain approach were also developed Jain and Ramasubramanian (1998);

Ramasubramanian and Jain (1999); Ramasubramanian et al. (2004).

Within year models

The ’between year models’ while performing satisfactorily in typical years may falter in

atypical years. A model which uses data from the current growing season only may be

beneficial in improving forecasts during a year with atypical growing conditions. These

models are developed to provide forecasts of pertinent components of crop yield relying

entirely on growth data collected from plant observations during the current growing

season. A logistic model having some yield components as dependent variable and an

independent ’time’ variable generally fits well to the growth process of crop yield com-

ponents like dry matter accumulation etc. The model uses repeated observations from

the current year to estimate the parameters needed to forecast the dependent variable at
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maturity. The model is:

Yi =
α

1 + βρti
+ ei (1.1.11)

and i = 1, 2, · · ·n; α > 0, β > 0, 0 < ρ < 1

where

Yi = dependent growth variable

ti = independent time variable

ei = error term

Partial crop season data are utilised to fit the curve and the value at harvest is predicted

through this curve which in turn is used to forecast yield House (1977); Jain and Agrawal

(1992); Larsen (1978); Nealon (1976). The parameter α is the most important parameter

to be estimated as it gives average amount of yield component (eg. dry matter) at

maturity. It is likely to be overestimated when partial crop season data based on small

data points that too falling on the lower side of the curve where the growth has steep rise

are used to fit the model to forecast the yield component at maturity. This may need

suitable modification in the model so as to capture (dry matter at maturity) from partial

crop season data. The modified logistic model Jain and Agrawal (1992) is as follows:

Yi =
α

√√√√tm
tf

1 + βρti
+ e (1.1.12)

where tm is time of maturity and tf is the time of forecast.
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1.1.3 Models Using Spectral Data

Since the approach using plant characters requires collection of data from farmers’ fields,

the data can be used on characters which can be measured easily without involving much

expertise, cost and sophisticated instruments. Some characters contributing significantly

towards yield may not find place in the model due to these limitations. This calls for the

necessity of including some other variables in the model along with biometrical characters

which could take care of such variables indirectly.

During the last three decades, considerable work has been carried out in India in the

spectral response and yield relationships of different crops at Space Applications Centre,

Ahmedabad, under the remote sensing applications mission called Crop Acreage and Pro-

duction Estimation (CAPE). Spectral indices such as ratio of infra-red (IR)/Red(R) and

Normalised difference (ND) = (IR-R) / (IR+R) are calculated from remotely sensed data

and are used as regressors in the model Singh et al. (2012); Space Application Centre

(1990).

The scheme needed further improvement. Project has been formulated to integrate

Agrometeorology and Land-based observations along with remote sensing data.

The experience in this context is that remote sensing can supplement the existing data

collection system but never completely replace it. The two data collection systems must

be integrated through rigorous statistical methodology. At Space Application Centre,

methodology has been developed which provides multiple forecasts for rice and wheat

using remotely sensed data for acreage forecast whereas forecasts for productivity are

obtained using meteorological and agro- meteorological indices Patel et al. (2004) .
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1.1.4 Models Using Farmers’ Appraisal

Farmer is the best judge of the likely production in the field. Farmers’ appraisal, therefore,

could serve as a good input for forecasting the yield and replace some of the characters

requiring expertise or use of sophisticated instruments for their measurements and thus

reducing the cost on data collection. A study has been carried out to study the feasibility

of using farmers’ appraisal in the forecast model for sugarcane Agrawal and Jain (1996).

The results revealed that a reliable forecast could be obtained using plant population and

farmers appraisal.

Another methodology based on farmers appraisal data has been developed using Bayesian

approach. The study has been carried out for wheat in Muzaffarnagar district. Expert

opinion data were collected in a number of rounds in a year by interviewing the selected

farmers regarding their assessment about the likely crop production and chance of occur-

rences in yield classes. From these responses average prior probabilities were computed.

Actual harvest yield and farmers appraisal data on yield for previous year(s) were taken

into account to obtain posterior probabilities which were then used for obtaining Bayesian

forecast of crop yield for current year Chandrahas and Rai (2001).

1.1.5 Principal Component Regression

Forewarning models can be developed using the principal component techniques as nor-

mally relevant weather variables are large in number and are expected to be highly cor-

related among themselves. Using the first few principal components of weather variables

as independent variables forecast models can be developed.
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1.1.6 Discriminant Function Analysis

The methodology is similar to the one used for yield forecasting, replacing yield by the

character depicting pests and diseases Johnson et al. (1996).

1.1.7 Artificial Neural Network (ANN)

ANN provides an attractive alternative tool for forecasting purposes. ANNs are data

driven self-adaptive methods in that there are few apriori assumptions about the mod-

els for problems under study. They learn from examples and capture subtle functional

relationships among the data even if the underlying relationships are unknown or hard

to describe. After learning the data presented to them, ANNs can often correctly infer

the unseen part of a population even if data contains noisy information. As forecast-

ing is performed via prediction of future behaviour (unseen part) from examples of past

behaviour, it is an ideal application area for ANNs, at least in principle Agrawal et al.

(2004); De Wolf and Francl (2000); De Wolf and Franel (1997). However, the technique

requires a large data base.

1.1.8 Within Year Model

Sometimes, past data on pests and diseases are not available but the pests and diseases

status at different points of time during the crop season are available. In such situations,

within years growth model can be used for forewarning maximum disease severity / pest

population, provided there are 10-12 data points between time of first appearance of

pest / disease and maximum or most damaging stage. The methodology is similar to

yield forecast model as eplained in the aforementioned within year models Agrawal et al.

(2004).
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1.1.9 Developments In Cassava Industry

Key developments have been observed in the cassava industry in recent times as pertains

yield forecasting. Downscaled climate scenarios can be used to produce seasonal crop yield

forecasts, which are needed in order to effectively and efficiently plan and allocate agricul-

tural resources to reduce risk and uncertainties due to seasonal climate and weather vari-

ability. In Thailand and Southeast Asia, rice and cassava are two major food and energy

crops. The majority of their production areas are under rainfed conditions and are very

sensitive to weather and climate variability. Under DSS-SCY4cast (Decision Support Sys-

tem for Seasonal Crop Yield Forecast) framework, soil, climatic, crop genetic coefficients

and crop management data sets were incorporated and linked to the CSM-CERES-Rice

(Crop System Model-Crop-Environment Resource Synthesis-Rice) and CSM-CropSim-

Cassava (Crop System Model Crop Simulation-Cassava) process-oriented models. The

framework was designed and deployed as an online tool to produce seasonal crop yield

forecasts at monthly intervals, i.e., MayDecember (8 month forecast), JuneDecember (7

month forecast), JulyDecember (6 month forecast), AugustDecember (5 month forecast),

SeptemberDecember (4 month forecast), OctoberDecember (3 month forecast), Novem-

berDecember (2 month forecast), and monthly forecast for December (1 month forecast).

Local communities are the integral component of the approach as the provider of field-

based observed data and as the beneficiary of the seasonal crop yield forecasts. The

described approach can be tailored to support local and policy communities in Thailand

and Southeast Asian to produce seasonal forecasts of various crop production systems

and learn to adapt and to sustain the environment and society.

There are a number of issues affecting the cassava industry in Kenya. For instance, the

Agricultural Sector Development Strategy (ASDS) 2010-2020 still considers cassava as
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a food crop rather than an industrial crop hence does not address the challenges and

constraints facing industrial production and processing of cassava Aberi (2012). The

industrial potential of cassava has not been tapped to a great extent and broadening the

pre-harvest yield modeling techniques utilization of cassava remains unexploited. Cassava

is associated with labour intensive farming and low-cost produce unlike other root and

tuber crop Benesi (2005). Therefore, it is vital to develop low cost, energy effective

and adequate statistical model for yield prediction and subsequent industrial utilization

of cassava. This model should be able to easily incorporate both the disease and pest

aspects as vital components that affect yield.

The conventional Principal component regression is a well known technique to reduce

number of explanatory variables in the model. The technique involves conversion of

explanatory variables into a set of uncorrelated variables with variances in descending

order (known as principal components). The whole variation of the system explained

by explanatory variables is explained by first few principal components which are used

as regressors in the model in place of original variables. Besides solving the problem of

number of explanatory variables more than number of observations, the technique also

solves the problem of multicollinearity. The approach has been attempted for forecasting

yields of rice, wheat and sugarcane in Uttar Pradesh in India but the approach was not

found to be successful Singh (2010). The success of PC relies on linearity and good

transformation of variables which is not always assured partly due to the presence of

regressors that are on other scales mostly ordinal and nominal. It is worth noting that the

transformations and standardization in PCR are always underpinned on the assumption

that all the regressors are linear. This is untrue in cases where we merely have data in

form of ranks.
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In this research work a specic form of PCR in which the conventional PCR was integrated

with optimal scaling technique that converted the non-metric (ordinal and nominal) vari-

ables to a continuous scale. PCR is a linear technique, in the sense that observed variables

are approximated by linear combinations of principal components. It can also be a bilin-

ear technique, in the sense that elements of the data matrix are approximated by inner

products, which are bilinear functions of component scores and component loadings. The

nonlinearities in the forms of PCR in this case were nonlinear transformations of the vari-

ables when applying the optimal scaling on non-metric variables, and we still preserved

the basic (bi) linearity of PCR. In their research work,Mair et al. (2009) applied optimal

scaling on all the variables in their dataset, before fitting a homogenity analysis model

using the homals package in R. However, in this research project, only the nominal and

ordinal factors in the dataset were subjected to the Gifi system of descriptive multivari-

ate analysis-optimal scaling technique (a non-linear technique) Michailidis and de Leeuw

(1998) for conversion to a continuous scale before the conventional PCR was applied to

the final dataset of continuous variables. Therefore, the optimal scaling was integrated

into the conventional PCR to develop an prediction model that incorporated soil and dis-

ease data. The major benefit of this model is the fact that the PCR was finally applied

to variables that were on same measurement scale (continuous) as opposed to application

of the conventional PCR on data on different scales.

1.2 Statement of the problem

There has been increased demand for export of cassava to China, US and other developed

nations of the world whose production of currency papers, starch related products, re-

cently fast increasing bio-fuel energy and others, largely depends on Africa’s production
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of cassava. The demand for Cassava has globally increased and it has overshot supply;

the occurrence of drop in yield has put a lot of pressure on production of Cassava and

the present increase in cultivation is not enough to curb demand, according to Food and

Agriculture Organization of the United Nations database FAOstat (2009). The available

statistical models for yield forecasting are not efficient either, since most do no consider

all factors of production in the model at the same time. A few for instance the integrated

model Mehta et al. (2000) take more factors into account. No satisfactory forecasting

model which has universal validity exists till date Singh (2010). Moreover the existing

multiple linear models are unstable in terms of prediction when many covariates are

included Stevens (2002). Therefore, research scientists incur losses in time when they

attempt to forecasts yield using these models that apply to inputs, weather, pests and

diseases as separate entities. There is an inadequacy in models that take into account all

factors at the same time. This is partly due to the fact that the data collection scales are

different and also how different the factors of production affect yield. The existing few

models that attempt to combine these factors are so time-consuming since they require

a lot of calculations and data transformations. This can only be made easier via crop

simulation models (CSMs) which are not being used in Kenya due to the expertise and

technology required. Therefore, most research scientists rely on the traditional models

for yield forecasting.

Achieving the production efficiency of cassava was the problem that this research project

intended to address through a statistical tools approach. The project was focusing on

coming up with a model for cassava yield forecasting for different varieties as affected

by different factors of production that is capable of delivering the cassava production

efficiency.
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1.3 Objectives

1.3.1 General Objective

To use optimal scaling integrated with principal component regression in modeling of

cassava yields in Western Kenya.

1.3.2 Specific Objectives

1. To establish the relationship amongst different factors of cassava production.

2. To determine key principal components in the factors of cassava production using

the optimal scaling integrated with principal component regression

3. To predict cassava yields using the PCR model integrated with optimal scaling

1.4 Justification Of The Study

An incorporated model, that utilizes two techniques that address all the aspects of the

underlying data set is key to precise prediction of cassava yield. This model incorporates

PCR and optimal scaling which is a transformation technique for categorical data. This

therefore makes it easier to incorporate pests and diseases in the prediction model.

The key to better policies by the government in the agriculture sector lies within the

ability to understand the major components of crop yield. Therefore, an efficient model

for cassava yield prediction will be very important in policy-making and coming up with

interventions that can improve production. The model will also be a knowledge base

and a tool that will help the farmer population to understand the key factors of cassava

production.
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1.5 Limitations

This research work is limited to identifying existence of relationship between factors of

production, however it does not go beyond the key factors as reported in the dataset.

The key principal components derived herein therefore pertains to the factors of this very

data set. Inclusion of more diverse factors will therefore result in different key principals.

The prediction thus made is as a result of this PCR and a different PCR model based on

different factors would not guarantee similar results.

1.6 Organization of the project

The rest of this project is organised as follows. In the chapter that follows, there is lit-

erature review in which literature relating to the specific objectives have been reviewed

and gaps therein exposed through a critique. Thereafter, the chapter that follows has

the methodology in which the statistical method and model have been discussed. The

subsequent chapter after methododlogy has the empirical sudy in which the actual data

analysis has been carried out. The last chapter has the findings are summarised, conclu-

sions and recommendations made.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

It is generally accepted that the earliest descriptions of the singular value decomposition

technique now known as PCA were given by Pearson Pearson (1901) and Hotelling (1933)

in the context of a two-way analysis of an agricultural trial.

Pearson (1901) developed the principal component analysis technique. He observed that

in many physical, statistical and biological investigations it is desirable to represent a sys-

tem of points in a plane, three or higher (p) dimensional space by the best fitting straight

line or plane. He also noted that the geometric optimization problems he considered lead

to principal components (PCs).

Hotelling (1933) motivation was that there may be a smaller fundamental set of inde-

pendent variables which determine the values of the original p variables. He notes that

such variables have been called factors in the psychological literature, but introduces the

alternative term components to avoid confusion with other uses of the word factor in

mathematics.

Hotelling chooses his components so as to maximize their successive contributions to the

total of the variances of the original variables, and calls the components that are derived

in this way the principal components.

The analysis that finds such components is then christened the method of principal com-
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ponents.

Tipping and Bishop (1999) introduces prior distributions for the parameters of a model

for PCA. His main motivation was to provide a means of deciding the dimensionality

of the model for prediction rather than the measurement scale of the components being

considered. This is a key element that this research project will exploit.

Lanterman (2000) and Wang and Staib (2000) each use principal components in quanti-

fying prior information in (different) image processing contexts.

Raychaudhuri et al. (2000) used the PCA to analyze DNA microarray data sets. They

stated that clustering genes based on expression information, it can be important to de-

termine if the experiments have independent information or are highly correlated. In

their analysis genes were considered as variables or the experiments as variables or both.

They observed that PCA can find a reduced set of variables that are useful for under-

standing the experiments. Moreover, PCA Reduction of dimensionality in the sporulation

data aids in data visualization. However, application of PCA to time series is somewhat

controversial because of the problems with uneven time intervals and the dependencies

between data points. Jamak et al. (2012) used PCA in authorship detection. In their

research work, function words are counted from selected text (short words used by the

author) and then this data is transferred into principal components form. Principal com-

ponents method compresses data without losing its descriptive power. In conclusion,

they proposed a method of authorship detection using principal component analysis for

texts written in Bosnian language, which has proven as an efficient tool. However, they

observed that future research should focus on the short words, and describe the extend of

the shortness of words significant for the authorship detection. Furthermore, the research

should test the behaviour of the method among larger amount of text samples.
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2.2 Factors Guiding Cassava Production

Cassava yields are affected by socioeconomic factors, market conditions and abiotic con-

straints. Nonetheless pests and diseases are well known to substantially reduce yields,

resulting in multi-billion-dollar crop losses Anderson (2005); Coulibaly et al. (2004); Fon-

dong et al. (2000); Hillocks and Jennings (2003); Hillocks et al. (2002); Legg et al. (2004);

Maruthi et al. (2004); Renkow and Byerlee (2010); Waddington et al. (2010). In plant

breeding experiments, the yield attained at a certain time is dependent on environmental

factors, genetic factors, diseases and pests. The effects of weather and inputs are man-

ifested through crop stand, number of tillers, leaf area, and number of earheads just to

mention but a few which ultimately determine crop yield. As such, plant characters can

be taken as the integrated effects of various weather parameters and crop inputs There-

fore, all these factors are key while coming up with a model for yield prediction. Models

built based on data on plant characters along with agricultural inputs have been found

to be better than models based on plant characters alone in jowar and apple Jain et al.

(1985). However all these production factors are key and a model built on either one only

has obvious shortfalls.

Incorporating all factors is ideal, but often it is not possible to include all the variables

in a single model. In such situations composite forecast can be obtained as a suitable

combination of forecasts obtained from different models. Various strategies for combining

forecasts have been suggested under different situations so as to take into account the

many factors of production Mehta et al. (2000). All these strategies attempt to model

yield based on different factors of production. Walker et al. (2007) used pecific climatic,
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edaphic, crop and fallow growth data from five sites in Western Kenya to calibrate and

validate simulations of maize and improved fallow growth using the Water, Nutrient and

Light Capture in Agroforestry Systems (WaNuLCAS) model.Although their model was

effective in modelling maize yield after cross validation, the model left out diseases and

pests which are major factors determining yield levels.

2.3 Dimension Reduction

Amadei et al. (1993) introduced PCA in molecular dynamics (MD). They proposed that

except for the degrees of freedom that belong to the essential subspace of proteins, all the

other modes are largely irrelevant Gaussian fluctuations, therefore necessitating the choice

of the key components in an MD model. Nonetheless an inadequacy they observed was

that a single MD trajectory may not entail all possible modes that are essential towards

dynamical conformational changes. A direct consequence of such considerations is that

even for a single trajectory, the principal modes obtained during one observation window

may differ from another window. While this remains true, a very long (few hundreds of

ns) MD simulation may not necessarily yield highly convergent eigenvectors from PCA as

compared to simulations with a time span on the order of tens of ns. Even though efforts

have been put in devising methods of enhanced sampling of essential dynamics Amadei

et al. (1999); Hess (2002), convergence of eigenmodes remains a critical issue.

Zhu et al. (2012) integrated the credibility model (semi-linear credibility, and regression

credibility models) in the PCA to develop an improved crop forecasting model through

the incorporation of weather data. Empirical results showed that their model was able to

provide better in-sample and out-of-sample yield forecasting results after cross-validation.

However, their model left out other key factors like pests and diseases which are impor-
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tant determinants of yield. In this research project, optimal scaling will be incorporated

with PCR technique so that the pest and disease aspects are included in the model.

Hansen et al. (2009) incorporated the PCA in General Circulation Models (GCMs) in

developing simulation models for maize yield prediction in Semi-Arid Kenya. In their

analyses they combined downscaled rainfall forecasts, crop yield simulation, stochastic

enterprise budgeting and identification of profit-maximizing fertilizer N rates and stand

densities .Pest and disease scores which are vital factors in crop production were not

incorporated in their model.
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Chapter 3

METHODOLOGY

In fitting the cassava yield prediction model, optimal scaling integrated with principal

component regression approach was used. Yield (Y), the regressed variable was predicted

based upon cassava genotype,soil, pest and disease factors.

3.1 Statistical Method and Model Review

3.1.1 Optimal Scaling
Optimal scoring assigns numeric values to the observations in a way that simultaneously

fulfills two conditions: (I) The assigned scores strictly maintain the specified measure-

ment characteristics for the data, and (2) they fit the statistical model as well as possible

Jacoby (1999). This optimal scaling strategy provides the best set of numerical assign-

ments for the data, where ”best” is defined in terms of goodness of fit between an analytic

model and a set of empirical observations Young (1981).

A data matrix of the non-metric independent variables x1, x2, · · · , xn is transformed

through optimal scaling to convert them from a discrete scale to a continuous scale.

This is done in correspondence of a dependent quantity y say yield. The elements of y

have a one-to-one correspondence with the elements of x; that is, x1 corresponds to y1, x2

corresponds to y2, and so on. Letting the optimally scaled vector be x*, then optimal

scaling is simply the procedure of obtaining x* from x, y, and the measurement assump-

tions that the analyst makes about x. The optimal scaling procedure simply takes the

conditional means of the yis within the observational categories of x, and assigns those
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means to the entries in x* corresponding to their respective categories. In this research

project, reaction to diseases and pests was recorded as scores on a research scientists

predetermined scale of 0-5. Therefore, such variables were subjected to transformation

using optimal scaling before they were incorporated into the PCA procedure.

3.1.2 Principal Component Regression

Principal Component Analysis

PCA is a standard statistical technique that can be used to reduce the dimensionality of a

data set. The method is mainly concerned with identifying variances and correlations in

the data set. We meet the goal of reducing the dimensionality by maximizing the variance

of a linear combination of the variables Rencher (2002). We presented the mathematics

behind the method of PCA by considering a general case. More details on technical

aspects can be found in Cadima and Jolliffe (1995); Cooley and Lohnes (1971); Hyvarinen

et al. (2001); Jolliffe (2002). Consider a data set consisting of p variables observed on n

subjects. Variables are denoted by (x1, x2, · · · , xp) . In general, data are in a table with

the rows representing the subjects (individuals) and the columns the variables. The data

set can also be viewed as an n×p rectangular matrix X. Note that variables are such that

their means make sense. The variables are also standardized. In this case, the PCA is

called normalized principal component analysis, and was based on the correlation matrix

(and not on variance-covariance matrix). The variables were to lie on the unit sphere;

their projection on the subspace spanned by the principal components is the ”correlation

circle”. Standardization allowed the use of variables which are not measured in the same

units (e.g. temperature, weight, distance, size, etc.). The PCA gave us a subspace of

reasonable dimension so that the projection onto this subspace retained ”as much as

possible” of the information present in the data set, i.e., so that the projected clouds
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of points would be as ”dispersed” as possible. In other words, the goal of PCA was to

compute another basis that best re-expressed the dataset. The hope was that this new

basis would filter out the noise and reveal hidden structure.

xi =



x1i

x2i

·

·

·

xpi



reducesdimensionality → zi =



z1i

z2i

·

·

·

zqi



; q < p (3.1.1)

Dimensionality reduction implies information loss. How do we represent the data in a

lower dimensional form without losing too much information? Preserve as much infor-

mation as possible is the objective of the mathematics behind the PCA procedure.

We first of all assume that we want to project the data points on a 1-dimensional space.

The principal component corresponding to this axis is a linear combination of the original

variables and can be expressed as follows:

z1 = A11x1 + A12x2 + · · ·+ A1pxp = Xu1 (3.1.2)

where u1 = (A11, A12, · · · , A1p)
T is a column vector of weights. The principal component

z1 is determined such that the overall variance of the resulting points is as large as possible.

One could make the variance of z1 as large as possible by choosing large values for the

weights A11, A12, · · · , A1p . To prevent this, weights are calculated with the constraint
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that their sum of squares is one, that is u1 is a unit vector subject to the constraint:

A11 + A12 + · · ·+ A1p =‖ u |2 (3.1.3)

Equation(3.1.2) is also the projections of the n subjects on the first component. PCA

finds u1 so that:

V ar(z1) =
1

n

n∑
i=1

z21i =
1

n
‖ z2i ‖=

1

n
u

′

1X
′
Xu1 (3.1.4)

is maximal. The matrix C =
1

n
X

′
Xis the correlation matrix of the variables.The opti-

mization problem is therefore:

Max u
′
1Cu1

s.t ‖ u21 ‖= 1

This implies that we search for a unit vector u1 so as to maximize the variance of the

projection on the first component. The technique for solving such optimization problems

(linearly constrained) involves a construction of a Lagrangian function and solving of

partial derivatives.

δ1 = u
′

1Cu1 − Λ1

(
u

′

1u1 − 1
)

(3.1.5)

Taking the partial derivative
∂δ1
∂u1

= Cu1 − Λ1u1 and solving the equation

∂δ1
∂u1

= 0 yields:

Cu1 = Λ1u1 (3.1.6)

By pre-multiplying each side of this condition by u
′
1 and using the condition u

′
1u1 = 1 we

obtain:

u
′

1Cu1 = Λ1u
′

1u1 = Λ1 (3.1.7)
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It is known from matrix algebra that the parameters u1 and Λ1 that satisfy conditions

(3.1.7) and (3.1.8) are the maximum eigenvalue and the corresponding eigenvector of the

correlation matrix C.

Thus the optimum coefficients of the original variables generating the first principal com-

ponent z1 are the elements of the eigenvector corresponding to the largest eigenvalue of

the correlation matrix. These elements are also known as loadings. The second princi-

pal component is calculated in the same way, with the condition that it is uncorrelated

(orthogonal) with the first principal component and that it accounts for the largest part

of the remaining variance. Using induction, it can be proven that PCA is a procedure

of eigenvalue decomposition of the correlation matrix. The coefficients generating the

linear combinations that transform the original variables into uncorrelated variables are

the eigenvectors of the correlation matrix. We also note that; rather than maximiz-

ing variance, it might sound more plausible to look for the projection with the smallest

average (mean-squared) distance between the original points and their projections on

the principal components. This turns out to be equivalent to maximizing the variance

(Pythagorean Theorem). Principal components are all uncorrelated (orthogonal) to one

another. This is because matrix C is a real symmetric matrix and as studied under linear

algebra, it is diagonalizable and the eigenvectors are orthogonal to one another. Again

because C is a covariance matrix, it is a positive matrix in the sense that u
′
Cu ≥ 0 for
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any vector u . Therefore the eigenvalues of C are all non-negative Rencher (2002).

Var(Z) =



Λ1 0 · 0

0 Λ2 · 0

· · · ·

0 · · Λp


(3.1.8)

The eigenvectors are the “preferential directions”of the data set. The principal compo-

nents are derived in decreasing order of importance; and have a variance equal to their

corresponding eigenvalue. The first principal component is the direction along which the

data have the most variance. The second principal component is the direction orthogonal

to the first component with the most variance. It is clear that all components explain

together 100% of the variability in the data. Thus the PCA works like a change of basis

and allows us to obtain a linear projection of our data, originally in Rp, onto Rq, where

q<p. The variance of the projections on to the first q principal components is the sum of

the eigenvalues corresponding to these components. If the data fall near a q−dimensional

subspace, then p− q of the eigenvalues will be nearly zero.

Criteria for determining the number of meaningful components to retain

When determining the number of meaningful components, the subspace of components

retained must account for a reasonable amount of variance in the data. Usually the

eigenvalues are expressed as a percentage of the total. The fraction of an eigenvalue out

of the sum of all eigenvalues represents the amount of variance accounted by the corre-

sponding principal component. The cumulative percent of variance explained by the first
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q components is calculated with the formula:

rq =

∑q
j=1 Λj∑p
j=1 Λj

× 100 (3.1.9)
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How many principal components we should use depends on how big an rq we need. This

criterion involves retaining all components up to a total percent variance Jolliffe (2002). It

is recommended that the components retained account for at least 60% of the variance.

The principal components that offer little increase in the total variance explained are

ignored; those components are considered to be noise. When PCA works well, the first

two eigenvalues usually account for more than 60% of the total variation in the data.

Regression (PCR)

The conventional regression equation is written in matrix form as:

Y = XB + e (3.1.10)

In ordinary least squares, the regression coefficients are estimated using the formula:

B = (X
′
X)−1X

′
Y (3.1.11)

Since the variables are standardized X
′
X = R where R is the correlation matrix of inde-

pendent variables. To perform principal components (PC) regression, we transform the

independent variables to their principal components as outlined above. Mathematically,

we write;

X
′
X = PDP

′
= Z

′
Z (3.1.12)

where D is a diagonal matrix of the eigenvalues of X
′
X, P is the eigenvector matrix of

XX and Z is a data matrix similar in structure to X made up of the principal components.

P is orthogonal so thatP
′
P = I. We have created new variables Z as weighted averages

of the original variable X. This is similar to using transformations such as the logarithm
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and the square root on our data values prior to performing the regression calculations.

Since these new variables are principal components, their correlations with each other

are all zero. If we use variables X1, X2, and Xp, we will end up with Z1, Z2, and Zp.

The principal components are then selected as outlined above to remain with a few that

account for maximum variance in the dataset.

When we regress Y on Z1, Z2, .....Zp−1, multicollinearity is no longer a problem . In this

research project PCA was used to identify the key factors that contribute to cassava

yield. This was done by applying the PCA technique to the X matrix formed from all

the factors of production of cassava (environmental factors, genetic factors, diseases and

pests). After identification of the key factors through PCA, the PCR was used to fit

a model for predicting the yield of cassava. Regression coefficients were generated and

interpreted in a similar manner to multiple linear regression.

3.1.3 Parameter Estimation

Regression Coefficients

Multiple Linear regression coefficients estimation

If data is mean-centred, the regression model in MLR is:

Y = XB + e (3.1.13)

Using OLS, the regression coefficients are determined by minimizing eTe . This gives a

solution that can be expressed as:

B = XTX
−1

XTY = BOLS (3.1.14)
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Principal Component Regression Coefficients Estimation

These are the estimated values of the regression coefficients b0, b1, · · · , bp . The value

indicates how much change in Y occurs for a one-unit change in x when the remaining Xs

are held constant. These coefficients are also called partial-regression coefficients since

the effect of the other X
′
s has been removed.

From the obtained principal components, we will transform our results back to the X

scale to obtain estimates of B.

These estimates will be biased, but the size of this bias is more than compensated for by

the decrease in variance. That is, the mean squared error of these estimates is less than

that for least squares. Mathematically, the estimation formula becomes:

A = (Z
′
Z)−1Z

′
Y = D−1Z

′
Y (3.1.15)

because of the special nature of principal components. This is simply the ordinary least

squares regression applied to a different set of independent variables. The two sets of

regression coefficients, A and B, are related using the formulas

A = P
′
B

and

B = PA

Standard Error

These are the estimated standard errors (precision) of the PC regression coefficients. The

standard error of the regression coefficient, sbj , is the standard deviation of the estimate.

Standardized Regression Coefficients

These are the estimated values of the standardized regression coefficients. Standardized
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regression coefficients are the coefficients that would be obtained if you standardized

each independent and dependent variable. Here standardizing is defined as subtracting

the mean and dividing by the standard deviation of a variable. A regression analysis on

these standardized variables would yield these standardized coefficients.

When there are vastly different units involved for the variables, this is a way of making

comparisons between variables. The formula for the standardized regression coefficient

is:

bjstd = bj =

(
Sy
Sx,j

)
(3.1.16)

Where Sy and Sx,j are the standard deviations for the dependent variable and the corre-

sponding jth independent variable.

Variance Inflation Factor (VIF)

These are the values of the variance inflation factors associated with the variables. When

multicollinearity has been eliminated, all these values will be expected to be less than 10.

F-Ratio

This is the F statistic for testing the null hypothesis that all β
′
s = 0. This F-statistic

has p degrees of freedom for the numerator variance and n− p− 1 degrees of freedom for

the denominator variance. Since PC regression produces biased estimates, this F-Ratio

is not a valid test.

Root Mean Square Error

This is the square root of the mean square error. It is an estimate of σ, the standard

deviation of the e
′
s.

R-Squared

This is the coefficient of determination. This statistic will explain how much variation in
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yield is accounted for by the main factors of cassava production. Moreover, this statistic

will help in showing the model validity.

Model Accuracy Diagnostics

The model accuracy will be checked by the use of k-fold cross validation. In k-fold cross-

validation, the original sample is randomly partitioned into k equal sized subsamples. Of

the k subsamples, a single subsample is retained as the validation data for testing the

model, and the remaining k 1 subsamples are used as training data. The cross-validation

process is then repeated k times (the folds), with each of the k subsamples used exactly

once as the validation data. The k results from the folds can then be averaged to produce

a single estimation.

This technique will be used in splitting the cassava data set into k-subsets. Each subset

will be held out while the model is trained on all the other subsets. This process will be

completed until model accuracy is determined for each instance in the data set, and an

overall accuracy estimate provided. In this research we chose to perform 10 fold cross-

validation and therefore set the validation argument to CV, however there are other

validation methods available.Nonetheless it is a robust method for estimating accuracy

Xu and Liang (2001).
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3.2 Properties Of The Principal Component Regres-

sion Model

The fitting process for obtaining the PCR estimator involves regressing the response

vector on the derived data matrix Wk which has which has orthogonal columns for any

k ∈ {1, . . . , p} since the principal components are mutually orthogonal to each other.Thus

in the regression step, performing a multiple linear regression jointly on the k selected

principal components as covariates is equivalent to carrying out k independent simple lin-

ear regressions (or, univariate regressions) separately on each of the k selected principal

components as a covariate. When all the principal components are selected for regres-

sion so that k = p, then the PCR estimator is equivalent to the ordinary least squares

estimator. Thus, β̂p = β̂ols. This is easily seen from the fact that Wp = XVp = XV and

also observing that V is an orthogonal matrix. There are three vital properties on which

the principal component regression model is anchored upon:

Variance Reduction

For any k ∈ {1, . . . , p}, the variance of β̂k is given by:

Var(β̂k) = σ2 Vk(W
T
k Wk)

−1V T
k = σ2 Vk diag

(
λ−11 , . . . , λ−1k

)
V T
k = σ2

∑k

j=1

vjv
T
j

λj
. In

particular:

Var(β̂p) = Var(β̂ols) = σ2
∑p

j=1

vjv
T
j

λj
. Hence for all k ∈ {1, · · · , p− 1} we have:

Var(β̂ols)− Var(β̂k) = σ2
∑p

j=k+1

vjv
T
j

λj
.

Thus, for ll k ∈ {1, · · · , p} we have:

Var(β̂ols)− Var(β̂k) � 0

where A � 0 indicates that a square symmetric matrix A is non-negative definite. Con-

sequently, any given linear form of the PCR estimator has a lower variance compared to
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that of the same linear form of the ordinary least squares estimator.

Addressing Multicollinearity

In multicollinearity, two or more of the covariates are highly correlated, so that one can be

linearly predicted from the others with a non-trivial degree of accuracy. As a consequence,

the columns of the data matrix X that correspond to the observations for these covariates

tend to become linearly dependent and therefore, X tends to become rank deficient losing

its full column rank structure. More quantitatively, one or more of the smaller eigenvalues

of XTX get(s) very close or, become(s) exactly equal to 0 under such situations. The

variance expressions above indicate that these small eigenvalues produce the maximal

inflation effect on the variance of the least squares estimator, thereby destabilizing (due

to a high VIF) the estimator significantly when they are close to 0. This issue can be

effectively addressed through using a PCR estimator obtained by excluding the principal

components corresponding to these small eigenvalues.

Dimension reduction

PCR may also be used for performing dimension reduction. To see this, let Lk denote

any p × k matrix having orthonormal columns, for any k ∈ {1, . . . , p}. Suppose now

that we want to approximate each of the covariate observations xi through the linear

transformation Lkzi for some zi ∈ Rk(1 ≤ i ≤ n).

Then, it can be shown that∑n
i=1 ‖xi − Lkzi‖

2

is minimized at Lk = Vk, the matrix with the first k principal component directions as

columns, and zi = xki = V T
k xi, the corresponding k dimensional derived covariates. Thus

the k dimensional principal components provide the best linear approximation of rank k

to the observed data matrix X.
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The corresponding reconstruction error is given by:

∑n
i=1

∥∥xi − Vkxki ∥∥2 =


∑n

j=k+1 λj 1 6 k < p

0 k = p

Thus any potential dimension reduction may be achieved by choosing k, the number of

principal components to be used, through appropriate thresholding on the cumulative sum

of the eigenvalues of XTX. Since the smaller eigenvalues do not contribute significantly

to the cumulative sum, the corresponding principal components may be continued to be

dropped as long as the desired threshold limit is not exceeded. The same criteria may

also be used for addressing the multicollinearity issue whereby the principal components

corresponding to the smaller eigenvalues may be ignored as long as the threshold limit is

maintained.
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Chapter 4

EMPIRICAL STUDY

This chapter describes the analysis of data followed by a discussion of the research find-

ings. The findings relate to the research questions that guided the research project. Data

were analyzed to identify, describe and explore the relationship between yield and dif-

ferent factors of cassava production in cassava breeding sites, relationships between the

factors of production and to reduce dimensionality in the cassava data matrix.

4.1 Source Of Data

This study was focused on modeling the yield of cassava in Western Kenya at any time of

the year based on the environmental, genetic, diseases and pest variables. The study was

centered upon data collected at various KALRO cassava breeding sites in Kenya. The

sites included Busia, Kakamega and Kitale which are in the Western region of Kenya

that takes the bulk of cassava production Karuri et al. (2001).

Variable Description Data was collected on data templates from 10 plots in each of

the 3 replications in each site leading to 180 cases (n=180) of data as per variables:
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Table 4.1: Variable description

Key Description

SITE location where the trial was planted

REP Replications

ENTRY Variety (genotype) name code

SAH Plant population in the plot at harvest

BHT Height to first branch in cm

PHT Plant height in cm

NTOTAL Total number of storage roots harvested

WTOTAL Total weight of storage roots harvested (kg)

YLD Yield (t/ha)

CYN Cyanide content of the storage roots on a scores scale of 1-9

RDM Root dry matter content (%)

CADS Cassava anthracnose disease severity (score scale of 1-5)

CBBS Cassava bacterial blight disease severity (score scale of 1-5)

CBSDS Cassava brown streak disease severity (score scale of 1-5)

CMVS Cassava mosaic virus disease severity (score scale of 1-5)

CGMS Cassava green mites severity (score scale of 1-5)

CMBS Cassava mealy bugs severity (score scale of 1-5)

The data collection was accomplished by research assistants who worked so closely with

breeding technologists and the senior cassava breeder at the breeding sites. However, not

all plots had data on all variables under study and therefore complete responses were
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from 176 plots, that is a response rate of 98%.

4.2 Analysis Methods

Multidimensional scaling methods and quantitative data transformation techniques were

used to transform the data collected on all variables under the study. Roystons multivari-

ate normality (MVN) test was performed to test normality before the principal component

analysis procedure and a chi-square Q-Q plot produced. Inferential statistical analysis

was used to identify relationships among the dependent and independent variables. The

statistical significance of multiple linear regression model for selected variables and princi-

pal components was determined using the Fishers F-test while significance for correlation

among variables was based upon the Pearson correlation coefficient r. Multicolinearity

testing for multiple linear regression model (MLR) and the principal component regres-

sion model (PCR) was based on the variance inflation factor. Significance for individual

variables in regression models was based upon Student t-test. The level of significance

was set at 0.05. The analyses were done in statistical R package version 3.3.1.
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From the table 4.2 above there is significant positive correlation between SITE and RDM,

significant negative correlation between SITE and CBBS , significant negative correlation

between REP and RDM , significant positive correlation between ENTRY and BHT, sig-

nificant positive correlation between ENTRY and CMVS, significant positive correlation

between BHT and PHT, significant positive correlation between BHT and CADS, sig-

nificant positive correlation between PHT and N TOTAL, significant positive correlation

between PHT and W TOTAL, significant positive correlation between PHT and CBBS ,

significant negative correlation between PHT and CBBS, significant positive correlation

between N TOTAL and W TOTAL, significant negative correlation between N TOTAL

and CYN, significant negative correlation between N TOTAL and CADS, significant

positive correlation between N TOTAL and CGMS, significant positive correlation be-

tween W TOTAL and CGMS. Thus it is evident that despite YLD being dependent on

the different factors of production, there is correlation among the factors of production

themselves. This therefore justifies the need for dimensionality reduction and obtaining

a smaller set of independent variables that can best model yield.
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Table 4.3: Establishing relationship among the in-

dependent variables using multiple linear regression

(MLR) statistics and variance inflation factor.

IndepVar Coeff Std Error P-value VIF

SITE 1.009 0.002 0.0458* 6.541

REP 1.012 0.004 0.166 7.659

ENTRY 0.999 0.001 0.586 5.421

SAH 1.04 0.001 0.000** 214.549

BHT 1 0 0.93 19.931

PHT 1 0 0.118 37.693

NTOTAL 1 0 0.798 11.815

WTOTAL 1.018 0 0.000** 22.305

RDM 1.005 0.001 0.001 46.038

CYN 1.03 0.004 0.0039** 17.156

CADS 0.983 0.009 0.43 13.763

CBBS 1.029 0.009 0.169 14.755

CBSDS 1.198 0.022 0.0004** 58.949

CMVS 1.032 0.008 0.103 11.514

CGMS 1.013 0.01 0.551 14.81

CMBS 1.479 0.034 0.000** 145.737

* N/B: Tolerance= (1/VIF) while * and ** indicate signif-

icance at 0.05 and 0.01 respectively. F-value=16200 with

160 degrees of freedom
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From table 4.3, most of the factors regressed against the rest returned a VIF of above

10 implying multicollinearity. For instance, regressing SAH on the rest of the factors

returned a VIF (1/1-R2 ) of 214.549, regressing BHT on the rest of the factors had a VIF

of 19.931, regressing PHT on the rest of the factors returned a VIF of 37.693, regressing

W TOTAL on the remaining factors of production gave a VIF of 22.305, RDM regressed

on the other factors returned a VIF of 46.038, CYN regressed on the rest of the factors of

production returned a VIF of 17.156, CBSDS regressed on the other factors of production

returned a VIF of 58.949 and CGMS and CMBS regressed on the rest of the factors gave a

VIF of 14.810 and 145.737 respectively. Moreover, most of the factors had higher values of

standard error and this adds to the evidence of existence of multicollinearity. The overall

model returned, F=16200 (DF=160), R2=0.9994 and VIF of 1666.6667. This high value

of VIF indicates presence of multicollinearity in the overall model for predicting cassava

yield when all the factors of production are included in the model. Therefore coefficients

derived from this model will be unstable and therefore results for yield prediction would

be unreliable and invalid. This justifies dimension reduction through principal component

analysis.

4.3.2 Principal Component Analysis For Dimension Reduction

And Selection Of Key Components

4.3.2.1 Testing For Normality

Before the PCA procedure, the data was tested for multivariate normality. The table

below has the statistics from this procedure.
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Table 4.4: Testing for normality

H-value P-value

957.043 p<0.0001

The p-value 0.000<0.05 indicates the results are significant, implying absence of mul-

tivariate normality. It is worth noting that the MVN test is very sensitive when the

sample is so large (n>30), therefore we will still go ahead with PCA despite the absence

of normality and assume normality due to sample size.
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Figure 4.1: Q-Q plot for the multivariate normal test

4.3.2.2 Eigen Values, Proportion Of Variance Explained By Principal Com-

ponents And Loadings.

The table below has the principal components from the PCA procedure.
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Table 4.5: Eigen values and proportion of variance explained by principal

components

Principal Component Standard Deviation Prop of Variance Cumulative Variance Eigen Value

1 1.466 0.135 0.135 2.149

2 1.270 0.101 0.237 1.614

3 1.202 0.091 0.327 1.445

4 1.145 0.082 0.410 1.312

5 1.106 0.077 0.487 1.224

6 1.081 0.073 0.560 1.168

7 1.019 0.065 0.626 1.039

8 1.002 0.063 0.689 1.005

9 0.898 0.051 0.739 0.807

10 0.882 0.049 0.788 0.779

11 0.852 0.046 0.834 0.726

12 0.803 0.041 0.874 0.645

13 0.782 0.038 0.913 0.611

14 0.747 0.035 0.948 0.558

15 0.702 0.031 0.979 0.493

16 0.578 0.021 1.000 0.334

The total number of principal components returned was 16, equal to the total number

of variables used in the principal component procedure. The principal components are

arranged in order of size from the largest to the smallest, with the largest principal
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component contributing the largest proportion of variance and the smallest principal

component contributing the smallest proportion of variance. The total variance explained

by the components is the sum of the variances of the components which is unity (1). Using

the amount of explained variance criterion (70%-80%), we select the first eight principal

components from the table above which account for almost 70% of total variance. This

is affirmed by the eigenvalue one rule in which we select the eigenvalues that are above

value 1.
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From the scree plot, there’s a sharp decline in variance around PC 8. This indicates a

a sharp reduction in the importance of the principal components. The components that

follow from this point contribute very little to the overall variance.
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Table 4.6: Loadings and importance of variables

Var/Comp Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

SITE 0.24 0.22 0.51 0.187 -0.153

REP 0.23 −0.22 -0.366 0.518 -0.207

ENTRY −0.3 0.554 0.13 0.102 -0.179 -0.352

SAH −0.11 −0.26 0.519 - 0.221 0.269

BHT −0.49 0.22 -0.375

PHT 0.45 −0.24 −0.22 -0.24 -0.134

NTOTAL 0.52 −0.1 0.107 -0.118

WTOTAL 0.49 0.198 0.256 0.111 -

RDM 0.16 −0.14 0.23 0.203 -0.14 -0.517 0.509

CYN −0.19 −0.31 0.25 -0.263 - 0.259 0.187 -0.182

CADS 0.17 0.16 0.21 -0.138 0.281 0.57

CBBS 0.41 0.3 0.417 -0.135 0.236

CBSDS −0.16 0.51 - -0.205 0.31 -0.278

CMVS 0.23 0.19 -0.232 -0.563 -0.111 - 0.206

CGMS 0.12 0.36 −0.13 0 0.18 -0.318 -0.217 -0.539

CMBS −0.17 0.2 -0.289 0.21 -0.606 -0.145

* N/B: The sum of squares of values in the loading column equal to unity. This implies that for uniformity

each variable has to load/contribute 0.25 to each principal component. A value>0.25 shows the importance

of the variable on that principal component.

From the table 4.6 above, PHT, N TOTAL and W TOTAL load highly on principal
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component 1 and among these three, only W TOTAL loads on another component (comp.

6). BHT, CYN, CBBS and CMBS load highly on principal component 2. SITE, SAH,

CYN, CBBS and CBSDS all contribute strongly on component 3. SAH, CYN and CBBS

load highly on component 4. REP, BHT, CADS, CMVS and CMBS load highly on

component 5 while REP, W TOTAL, CYN, CADS and CMBS have high loadings on

component 6. RDM, CBSDS and CMBS load highly on component 7 whereas SAH,

RDM, CBSDS and CGMS load highly on component 8. Overall, CYN (cyanide content)

loads highly on most components (4). Other factors that load highly on more components

as compared to others include ENTRY (Genotype), SAH (plant population in the plot),

CBBS (Cassava Bacterial Blight Disease Severity) and CBSDS (Cassava brown streak

disease severity) which all load highly in 3 of the components. These high loadings in

more than one component indicate the importance of these factors in yield prediction

in cassava yield prediction. It is also worth mentioning that even though RDM (Root

Dry Matter content) loads highly in only two components, these two loadings, -0.517

and 0.509 respectively, are very high as compared to the expected average loading of

0.25. These fewer set of important factors in cassava production could not be arrived

at easily if not for the PCA procedure. Since the principal components were obtained

on standardized data for the factors, the columns of the loadings are the eigenvectors.

Therefore the transpose of this matrix generates the required eigenvector matrix. These

eigenvectors will be vital together with the coefficients of principal component regression

in the generation of MLR coefficients through the transformation stage. To generate the

new scores (projection of the initial data on the new plane of PCs), we simply multiply the

loadings and the standardized X variables. This projection of the original 16 variables

data points in a 16 dimensional plane by the 8 best fitting planes as opposed to the
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original 16 correlated lines is the major advantage of the PCA procedure. This enables

easy visualization of the data. This is in consistent with Pearson (1901) results in which

he observed that in many physical, statistical and biological investigations it is desirable

to represent a system of points in a plane, three or higher (p) dimensional space by the

best fitting straight line or plane. This is also in consistent with Raychaudhuri et al.

(2000) who used the PCA to analyze DNA microarray data set and they observed that

PCA can find a reduced set of variables that are useful for understanding the experiments

and aiding data visualization.The following table gives an excerpt of the scores produced

on the first 8 principal components.

Table 4.7: Excerpt of principal component scores for the first five observations on each

of the first 8 PCs

No. Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

1 -4.199 -2.035 -2.756 1.741 -2.58 -6.354 0.105 -0.501

3 -1.271 0.217 -0.543 -0.423 0.734 -0.357 0.823 1.216

4 -0.283 -0.969 -0.33 1.382 1.838 -0.021 0.018 -0.035

5 -3.575 0.102 0.468 -0.122 2.328 -0.4 -0.037 0.384

4.3.3 Principal Component Regression And PCR Statistics

Fitting a principal component regression model for Yield on the 8 principal components

produced the following PCR statistics.
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Table 4.8: Principal Component Regression

Statistics

Component Coeff Std Error P-Value

Comp.1 3.494 0.24 0.000**

Comp.2 0.524 0.277 0.06

Comp.3 -0.018 0.292 0.95

Comp.4 -0.281 0.307 0.36

Comp.5 1.216 0.318 0.000**

Comp.6 1.63 0.325 0.000**

Comp.7 0.783 0.345 0.024**

Comp.8 0.354 0.351 0.314

* N/B: ** indicate significance at 0.05 and 0.01

respectively. F=32.850 with 168 degrees of free-

dom.

From the above table, the principal component regression equation is given by:

Y LD = 3.494Comp.1 + 0.524Comp.2− 0.018Comp.3− 0.281Comp.4+

1.216Comp.5 + 1.630Comp.6 + 0.783Comp.7 + 0.354Comp.8.

The model has an F= 32.85 with a p-value=0.000 (DF=168). This implies the model

consisting of the first 8 PCs is significant in prediction of yield. The models R2=0.610

(Adj R2=0.590) with the VIF attributed to the overall model being 2.564. The multi-

collinearity therefore is no longer a problem. Transforming these PCR statistics using
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the eigenvectors attributed to the eigenvalues of the standardized X variables results in

the MLR coefficients for the cassava data results in the following PCR statistics.

Table 4.9: Transformed Multiple Linear Regression Coefficients

variable Linear Reg Coefficient

SITE 2.197

REP -0.091

ENTRY 1.288

SAH 0.848

BHT -1.506

PHT 0.142

NTOTAL -0.02

WTOTAL -0.27

RDM 0.171

CYN 0.991

CADS -0.187

CBBS -1.611

CBSDS 1.608

CMVS 0.71

CGMS 0.405

CMBS 0.665

Transforming to a multiple linear regression model yields the above coefficients. The

MLR equation therefore becomes:
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Y LD = β0+2.197SITE−0.091REP+1.288ENTRY+0.848SAH−1.506BHT+0.142PHT−

0.020NTOTAL− 0.270WTOTAL+ 0.171RDM + 0.991CY N − 0.187CADS−

1.611CBBS + 1.608CBSDS + 0710CMV S + 0.405CGMS + 0.665CMBS

In this equation there are many regression coefficients and some are close to zero and

this increases the likelihood of some being insignificant and unstable and hence leading

to unreliable prediction: therefore the above 8 principal components make it easier, con-

venient and efficient for forecasting yield. This stability achievement is another major

aspect that this research project found out and it is recommended that more research be

done in this area to add on existing inconclusive findings.

4.3.4 Model accuracy assessment and forecasting

The model accuracy and forecasting results were as below:
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Table 4.10: Model validation results

PC Crossvalidation variance-explained-X ForecastYLD

1 0.94 13.51 49.31

2 0.94 23.65 50.14

3 0.94 32.74 50.14

4 0.958 40.98 50.34

5 0.93 48.68 53.74

6 0.906 56.02 59.57

7 0.879 62.55 60.77

8 0.888 68.87 61

9 0.887 73.94 63.49

10 0.856 78.83 66.37

11 0.811 83.39 72.9

12 0.699 87.45 81.43

13 0.633 91.29 82.44

14 0.645 94.8 83.64

15 0.62 97.9 86.46

16 0.675 100 97.72

In the analysis results in the table above,8 principal components were enough to explain

nearly 70% of the variability in the data although the CV score is a little higher than

with more than 8 components. Finally,we note that the 16 components explain total

variability as expected.

62



Chapter 5

SUMMARY OF

FINDINGS,CONCLUSIONS AND

RECOMMENDATIONS

5.1 Introduction

In this chapter, summary of key findings, conclusions and recommendations are made.

5.2 Summary Of Key Findings

The major objective of this study was to develop a model for predicting cassava yield

using the PCR model integrated with optimal scaling. The model is to be used for

prediction of response variable yield using few principals. Optimal scaling was used in

transformation of categorical variables while PCA was used in dimension reduction. Pre-

liminary analyses on all the factors of yield indicated a high amount of correlation among

the factors of production, with most of the bivariate combinations resulting in a p<0.05

as shown in table 4.2. Moreover, regressing yield on all factors of production showed

that most of the co-efficients were statistically insignificant, p>0.05. Regressing each
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factor of production on the remaining k-1 factors of production resulted in VIF>10 with

some factors resulting to as high as VIF>100 as evidenced in table 4.3. This indicated

existence of multicollinearity. The PCA technique applied in the analysis had the shrink-

age capability on the data set dimension, from 16 variables to 8 principal components

that best model the cassava yield. Nonetheless, the variance inflation factor for the full

model at 1666.667 reduced to 2.565<10 , therefore providing a more stable and reliable

model. However the variability explained by the PCR model dropped to 61% from 99%

as expected, however the multicolliarity problem had been solved. Model validation in-

dicated a high validation error when one component was used for forecasting, explaining

only 13.51% of the variation in yield but the accuracy of the model optimized at PCs<=8

with the PCR regression co-efficients being statistically significant, p<0.05 and increasing

model reliability for prediction.

5.3 Conclusions

From the foregoing summarized results, the following are conclusions that can be drawn.

From the results of objective 1, factors of cassava production are correlated and therefore

requires dimension reduction before being used in yield prediction models.

From the results of objective 2, eight key principals are sufficient in predicting cassava

yield and offer optimal and accurate results. From the results of objective 3, the model

for cassava prediction is;

Y LD = 3.494Comp.1 + 0.524Comp.2− 0.018Comp.3− 0.281Comp.4+

1.216Comp.5 + 1.630Comp.6 + 0.783Comp.7 + 0.354Comp.8.
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This model therefore not only offers an alternative to existing models but also an efficient

solution when the number of factors of production is high.

5.4 Recommendations For Further Studies

These empirical results show model stability achievement, nonetheless more models that

incorporate pests and disease data that is optimally scaled should be developed and their

stability, validity and reliability assessed. These models could go a long way in informing

policy making in the crop breeding field.

More research should be done in forecasting using the principal component regression in

quadratic or higher polynomial in order to assess model validity, reliability and stability

as this work solely focused on linear combinations of the principal components.

The government and other key stakeholders should allocate resources and support re-

searchers attempting to develop incorporated statistical models for cassava and other

crops prediction.
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