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Multipurpose Reservoir Operating Policies: A Fully Fuzzy

Linear Programming Approach

R. U. Kamodkar', and D. G. Regulwar"

ABSTRACT

A Fully Fuzzy Linear Programming (FFLP) formulation for the reservoir operation of a
multipurpose reservoir in presented in the ongoing paper. In the real world, water resources
systems usually have complexities among social, economic, natural resources and
environmental aspects, which lead to multi-objective problems of significant uncertainties in
system parameters, objectives and in their interactions. These uncertainties in FFLP
reservoir operation model are considered by being treated as fuzzy sets. In the present study,
an FFLP reservoir operation model is developed where all parameters and decision variables
are fuzzy numbers. The developed model is demonstrated through a case study of Jayakwadi
reservoir stage-II, Maharashtra, India with the objectives of maximization of annual releases
for irrigation and hydropower generation. The FFLP reservoir operation model is solved to
obtain a compromised solution by simultaneously optimizing the fuzzified objectives and the
corresponding degree of truthfulness, using linear membership function. The degree of
correspondence (Correspondence) obtained is equal to 0.78 and the corresponding annual
releases for irrigation amount of 367 Mm® and while annual releases for hydropower
generation being 216 Mm’. the present study clearly demonstrates that, use of FFLP in
multipurpose reservoir system optimization presents a potential alternative to attain an
optimal operating policy.

Keywords: Fully fuzzy linear programming, Fuzzy decision variable, Reservoir operation,

Triangular fuzzy numbers.

INTRODUCTION

Linear Programming (LP) is a popular
method for optimization of a wide range of
applications because of its simplicity and
compatibility. However LP in its classical
form is not well equipped in handling
information of fuzzy uncertainty (Nazemi et
al., 2002). In many practical situations, it is
not reasonable to require that the constraints
or the objective function in linear
programming problems be specified in
precise, crisp terms. In such situations, it is
desirable to use some type of FLP (Klir and
Yuan, 2000). The solutions obtained through
FLP are efficient. FLP models are not

uniquely defined types of models. Many
variations are possible, depending on the
assumptions or features of the real situations
to be modeled (Zimmermann, 1978; 1996).
The problem of irrigation planning becomes
more complex by considering an
uncertainty. The uncertainties can be tackled
by formulating the problem of irrigation
planning as FLP. Fuzzy linear programming
models can incorporate the scenario of a real
world problem (Regulwar and Gurav, 2010).
A key difficulty in optimization under
uncertainty is in dealing with an uncertainty
space that is huge, frequently leading to very
large-scale optimization models. Decision
making under uncertainty is often made
further complicated by the presence of
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integer decision variables to model logical
and other discrete decisions in a multi-
period or multi-stage setting (Sahinidis,
2009). Various uncertainties are inherent in
modeling any reservoir operation problem
(Aktar and Simonovic, 2004). These
uncertainties are defined here as the ones
that result from imprecise knowledge of
either current or future demands placed on
the system (Carron et al, 2006). Fuzzy
systems play essential roles in this fuzzy
modeling which can formulate uncertainty in
actual environments. Bellman and Zadeh
(1970) have proposed the concept of
decision making in a fuzzy environment.
Several such kinds of FLP problems have
been appeared in the literature as Li and Li
(2006), Ganesan and Veeramani (2006),
Stanciulescu et al. (2003), Arikan and
Gungor (2007), Wang and Wang (1997),
Rommelfanger (1996), Jimenez and Bilbao
(2009). Modeling of the uncertain model
parameters using fuzzy set theory have been
utilized in many water resources’ decision-
making problems including reservoir
optimization by Darell et al. (1997), Jairaj
and Vedula (2009), Panigrahi and Mujumdar
(2009), Regulwar and Anand Raj (2008;
2009).

Choudhari and Anand Raj (2009)
demonstrated the operation of a complex
system of multi-reservoir with multiple
objectives. Uncertainties of inflow and
demands are addressed by fuzzy set theory.
A fuzzy stochastic based violation analysis
approach is developed by Li and Huang
(2009) for the planning of water resources
management system of uncertain
information. Uncertainty in objectives and
various parameters of reservoir operation is
addressed by Kamodkar and Regulwar
(2010) through fuzzy set theory using linear
membership function. Shrestha et al. (1996)
proposed that the input to the reservoir
operating principles (e.g. initial storage,
inflows, and demands), as well as outputs
(historical releases) could be described by
means of fuzzy relations. These fuzzy inputs
are combined to produce fuzzy output
relations, which can be combined and
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defuzzified to get crisp output. A variety of
optimization models have been developed so
far to facilitate the real time operation of the
reservoir system, a summary being found in
Yeh (1985). Azamathulla et al. (2008)
developed a Genetic Algorithm (GA) and
Linear Programming (LP) model for a real
time reservoir operation. The performance
of the models are analyzed by being applied
to an existing Chiller reservoir system in
Madhya Pradesh, India. Zahraie and
Hosseini (2010) presented an Integrated
Optimization-Simulation based  Genetic
Algorithm model (IOSGA) to develop the
operational policies for a multi-purpose
reservoir system. Rani and Moreira (2009)
have presented a survey of simulation and
optimization modeling approach utilized in a
reservoir system operational problem.
Recent research in modeling uncertainty
in water resources system has highlighted
the use of fuzzy logic based approaches. A
number of research contributions exist in the
literature that deal with uncertainty in water
resources system including fuzziness,
subjectivity, imprecision and lack of
adequate data (Mujumdar and Ghosh, 2009).
However in all the above mentioned works,
those cases of application of fuzzy set theory
were studied in which not all parts of the
problem were assumed to be fuzzy (e.g.
either only right hand side or the objective
function coefficient being taken as fuzzy). In
this study, a problem is taken into
consideration where all the variables and
parameters are fuzzy numbers as described
by Dehghan et al. (2006), Allahviranlo et al.
(2008), Lotif (2009), Amit Kumar et al.
(2011), and Liu (2010). An application of
Fully Fuzzy Linear Programming (FFLP)
problem to the single reservoir operation,
where all the parameters and decision
variables of the reservoir operation model
are represented by triangular fuzzy numbers,
is hereby demonstrated through a case study
of Jayakwadi reservoir stage—1I,
Maharashtra state, India. The results
obtained by solving the FFLP model are
utilized to obtain the compromised solution
for the intended objectives to obtain a
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maximized degree of correspondence
(truthfulness) (1) .

METHODOLOGY

LP is one of the most frequently applied
operational research techniques. In the
conventional approach, values of the
parameters in the LP model must be well
defined and precise. However, in the real
world, this is not a realistic assumption. In
the real life problems, there exists
uncertainties regarding about the parameters.
For example in case of the reservoir
operation, reservoir storages are uncertain
due to variation in inflows and sometimes
vague due to poor operation. Crop water
requirement can be stochastic contributing to
uncertainty in irrigation demands. In such a
situation the parameters of LP problem can
be represented as fuzzy numbers. In the
present FFLP reservoir operation model, the
parameters and variables are treated as
triangular fuzzy numbers.

The definitions of triangular fuzzy
number, ranking function, formulation of
FFLP problem (Allahviranloo et al., 2008)
and fuzzy compromised approach are hereby
given.

Definition 1

A fuzzy set A , is called triangular fuzzy
number with peak (or center)d, left
width & and right width g if its membership
function is of the following form:

1—(a—x)/a’, a—a<x<a

U (x)=11-(x—a)/ B, a<x<a+p
0, otherwise

(1)
and the set of all triangular fuzzy numbers
is denoted by FT () where in parametric

form is:

A:(Ot(r—l)+a,,b’(1—r)+a)

Definition 2

A fuzzy number A is said to be an Lg type
of fuzzy number if:

L((a—x)/a), x<m,a>0

iy (x)= R((x—a)/,b’), x2m, >0
0, otherwise
@)
in which L denotes the left and R stands
for right reference.d is the mean value of A ,
where & and p are called left and right

spreads  respectively.  Symbolically A is
written as:

A=(a,a,p)

If L(x) and R(x) be the linear functions,
then the corresponding LR number is said to
be a triangular fuzzy number.

In the present study the various parameters
of FFLP model are treated as triangular

fuzzy numbers. We use a= (a, a',a ") for

fuzzy numbers where d is the core, a is
the left margin and o  is the right margin.

The graphical representation of triangular
fuzzy number is shown in Figure 1.

Ranking Function

An efficient approach to ordering the
element is to define a ranking function D:
D : F(R) = R which maps for each fuzzy
number into the real line, where a natural
order exits. We define these natural orders
by:

= B if and only if P(A) 2 D(B)

= Bif and only if P(A) < D(B)
A=Bif and only if D(A)= D(B)
Where AB are inF 9] . Also we write

A~z Bt and only if"A=~8B . The
following lemma is now immediate.
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Figure 1. Triangular fuzzy number.

Let D be any linear ranking function then:
As Biff A~B » 0iff —A » — B
Atéandéi—bthenA@(} té@b
Attention is restricted to linear ranking

function, that is a ranking function D such
that:

For any A B belonging o F V)
Here we introduce the linear ranking
function. For any arbitrary fuzzy

number A= (A(r), ;l(i” ), a
function is used as follows:

D(A)=1/2 [ (A)+ |

[0,1] [0,1]

ranking

(A(r))

For a triangular fuzzy number this is
reduced to:

DA =A+1/4A"-A)

Then, for triangular fuzzy
number Aand B , we have:
ArB if and only

fA+1/4(A"= A2 B+1/4(B"- B

Fully Fuzzy Number Linear
Programming Problems (FFLP)

Using definitions (1) and (2), triangular
fuzzy numbers can be defined for all the
parameters and variables while LP model
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being written as Fully Fuzzy Linear
Programming model as presentedbelow:

maxZ=¢ ®%®.....¢ ®F
S.t.
i, ®%®....4 ®F <

X =0,x, =0,......... X, =0
The matrix form of the above equation is:
max Z=c®x

st
A®X=<b
x>0
4
The coefficient matrix
A=Ta. <i i<
A=layl, 1=t j<n is mxn fuzzy
, Vi, j,a. =0
matrix where v or
a; < Oandxf’bf' € F(%).
If matrix A be denoted by:

A=(AALA")
thatAz[aU],A' =[a'ij],A'1=[anij]

>

x= (x,x',x"),b = (b,b',b") , then one has:

max Z =(c,c',¢")® (x,x",x")

S.t.

(A,LAAM® (x,x',x")<(b,b",b")
(x,x,x")=0.

(5)
Fuzzy Compromised Approach

The fuzziness in both single and multiple
objective problems of the fuzzy parameters of
constraints and/or satisfaction levels attained
with objective function(s) can be solved by
using compromised approaches. In literature
this is mostly applied to multiple objective
decision making problems. To construct such a
compromised model with fuzzy objectives,
solve the model using Equation (5) by taking
one objective at a time and find for each
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objective (Z, ) respectively, the best (Zy)
(Z,)
correspondent with the set (decision variables)

values and worst ones being

of solutions (xZ ).

Define a linear membership function

M, (x) for each objective as equation 6.

An equivalent LP problem (crisp model) is
then defined as:
Maximized 4

Subject to

(z,-z7)(2,' -2, )22 fork=12,.

(N
and all the original constraints set as well as
non negativity constraints for X and a degree
of truthfulness (A ). The problem is then
solved using Equation (7). The solution is the
degree of truthfulness ( A ) which is achieved
for the solution X". The corresponding values

*
of the objective function Z, are obtained and

this is the most suitably compromised solution.
Methodology explained in the above section is
used to develop the FFLP model for the

0 Z,<Z~
w, =z, -2z, -2) 2, <2<z fork=12,.

1 Z,27"

reservoir operation to obtain the optimum
release policy from the reservoir. Ranking of
the fuzzy numbers is achieved by using linear

ranking function as explained in the
methodology section.

Case Study
The methodology discussed in the

previous section is used for modeling of
operation of Jayakwadi reservoir stage —II, a
multipurpose project, created by
constructing a dam across the river
Sindaphana, a tributary of river Godavari, in
Aurangabad district, Maharashtra State,
India in operation since 1987. The location
map of the reservoir is depicted in Figure 2.
The gross storage of the reservoir is 453.64
Mm® and live storage 313.30 Mm’. This is
partly supplied by water from the upstream
part of Jayakwadi reservoir stage 1. Main
canal (the Majalgaon right bank canal)
carries a discharge of 82.63 m3 s'. The
length of the canal is 165 km. The total
installation capacity for power generation is

©)

Nandug
Madluneslwar

Erver Grodavan

/
Godava iver basin

Figure 2. Location Map of Jayakwadi reservoir stage—II.
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2.25MW. Irrigable command area is 938.85
km’.

The 75% dependable monthly inflows
into the reservoir are shown in Figure 3.
Monthly irrigation demands were
determined by the help of crop calendar,
water requirements for various crops during
different growth stages and the types of
soils. Monthly irrigation demands in a water
year also are shown in Figure 3.

Modeling Formulation

As mentioned in methodology, a wide
range of models of water resources system
planning and management are developed
within a fuzzy environment. The first reason
is a lack of adequate data, the second is the
application of previous conditions to the
future states, and third is an interaction of
parameters that may not be so obvious. So
application of FFLP as an optimization tool
is both intuitive and plausible. Below is the
generalized LP model developed for
monthly operation of the reservoir assuming
stationary inflows in a water year. As
explained in methodology, FFLP
formulations are incorporated in the
following generalized reservoir operational
model. The triangular fuzzy numbers are
defined for each parameter and variable of

the model. The linear ranking function is
used in defuzzifying the FFLP problem for
the reservoir operation. Finally the model is

solved for both maximized (ﬂ) objectives

by wusing FLP model. The reservoir
operational model developed in the present
study is explained as bellows:

Objective Function

The two objectives considered in the
model are:

(1) Maximization of releases for irrigation
(i.e., RD).

(2) Maximization of releases for
hydropower production (i.e., RP).

Max Z, = Max(TOTRI)
Max Z, = Max(TOTRP)
®)
Where, TOTRI is the Total Releases for
Irrigation within all the time periods and
TOTRP the Total Releases for Hydropower

production. These objective functions can be
written as:

160

—_
=
]

m Inflows

O Irrigation Demand

—_
]
(==
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10 -

Inflows and Irrgation Demands (Mm?)
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Months

Figure 3. Inflows and irrigation demand for Jayakwadi reservoir stage—II.
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12
Max Z, =Y R,
t=1
12
Max Z, =) RP,
t=1
)
Constraints

Turbine Release Constraint

Release for the turbine for hydropower
production should be less than or equal to
Turbine Capacity (TC) within each month
(t), and it should be greater than or equal to
the firm release committed for that month.

RP <TC Vi=12,...,12
RP >FR Vi=1,2,....,12
(10)

Irrigation Demand Constraint

Release into canals for irrigation (RI)
should be less than or equal to maximum
Irrigation Demand (ID). Release should also
be greater than the minimum releases
required for irrigation so that crop will not
wilt. In the present case 30% of the
maximum irrigation demand is considered as
minimum irrigation demand for all the time
periods.

RI <ID, Vi=12,....,12
RI,>ID,, Vi=12,....12
(11)

Reservoir Storage Capacity Constraint

Live storage in the reservoir should be less
than or equal to the maximum Storage
Capacity (SC) and greater than or equal to
minimum Storage Capacity (Sy;,) for all the
time periods.

(-a)S, +I + FCR - Rl - RP -Ag - OVE—RWS =(1+a,)S,
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S, <SC Vi=12,...,12
=S, Vi=1,2,...,12
(12)

Reservoir Storage Continuity Constraint

These constraints are related to the
Releases for the Turbine (RP),, Releases for
Irrigation (RI), reservoir Storage (S),
Inflow (I); into the reservoir, Feeder Canal
Release (FCR),, Overflows (OVF),, Release
for Water Supply (RWS), and the
Evaporation Losses (L); for the whole time
periods. Here evaporation losses are
considered as a function of storage by
assuming a linear relationship between
reservoir water surface area and storage. The
storage continuity constraints can be written
as equation 13:

where,

a=Ael2

In whichAais the surface area of the

reservoir per unit active storage volume;

Aois the surface area of the reservoir

corresponding to the dead storage volume,

€, is evaporation rate for month ¢ in depths

unit.

The FFLP model formulated in this
section is applied to the case study, and is
solved wusing LINGO (Language for
Interactive General Optimization). LINGO
is a simple tool for utilizing the power of
linear and nonlinear optimization to
concisely formulate large problems, solve
them, and have the solution analyzed.

RESULTS AND DISCUSSION

Throughout this study, the applicability of
the reservoir operation model is improved

(13)

+l



by incorporating the FFLP model which
involves uncertainties in model parameters
and variables, representing them
representing as fuzzy sets instead of crisp
values

The model is applied to the case study of
Jayakwadi reservoir stage — II, Maharashtra
state, India. Two objectives namely
maximization of annual releases for
irrigation, and maximization of annual
releases for hydropower production are
considered in the model. Uncertainties in
parameters and variables of the reservoir
operation model are addressed by the
triangular fuzzy number. The linear ranking
function is used for defuzzification of the

Kamodkar and Regulwar

FFLP problem. The model is initially solved
for the individual objective function, the
consequences of the two objectives being
combined to determine an optimal
compromised solution (Zimmermann, 1978).
The results obtained from the individual
optimization of the objectives are given in
Tables 1 and 2. From the obtained results for
irrigation presented in Table 1, it can be seen
that for the months of July, August,
September, October, April and May, the left
and right spreads of the triangular fuzzy
variable amount to zero. This means that in
these months the irrigation demands are
fully satisfied. The level of satisfaction of
the objectives in these particular months is

Table 1. Release policy for the maximization of the releases for irrigation.

Maximization of releases

Hydropower releases

Month for irrigation (Mm°) (Mm?)
Left spread Mean Right spread  Leftspread Mean  Right spread

June 0 2.9 16.8 0 8.7 0
July 0 20.8 0 0 8.7 0
August 0 37.6 0 0 8.7 0
September 0 46.0 0 0 8.7 0
October 0 132.0 0 0 8.7 0
November 0 38.2 355.7 0 8.7 0
December 0 26.8 250.4 0 8.7 0
January 0 30.2 281.9 0 8.7 0
February 0 9.0 84.0 0 8.7 0
March 0 8.7 81.1 0 8.7 0
April 0 35.6 0 0 8.7 0
May 0 259 0 0 8.7 0
Total 0 413.7 1069.9 0 104.4 0

Table 2. Release policy for the maximization of the releases for hydropower.

Maximization of power releases (Mm”)

Releases for irrigation (Mm”)

Months Left spread Mean Right spread

Leftspread Mean  Right spread

June 0 9.4 78.0
July 0 27.9 4.0
August 0 29 0
September 0 29 0
October 0 29 0
November 0 29 0
December 0 8.7 81
January 0 8.7 81
February 0 8.7 81
March 0 8.7 81
April 0 29 0
May 0 29 0
Total 0 246.1 406

2.1
6.2
11.2
13.8
39.6
38.1
26.8
30.2
9.0
8.7
10.7
7.8
204.2

=leoloNoNoNoNololololo ol el
=NeoloNoNoNoNololololo ol e
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the highest. However for the months of June,
November, December, January, February
and March, a minimum of irrigation
requirement is satisfied through the model.
Also for these months the fuzzification of
the releases are possible as there is
significant variation between the mean value
and right spread of the fuzzy variable. For
the month of June there is 83% of right
spread observed, and for the remaining
month the observed right spread is about
89%. It means that for these months the
level of satisfaction for irrigation is lowest.
When the objective of the maximization of
annual releases for irrigation is in priority
the corresponding releases obtained for
hydropower amount to the firm releases
required for hydropower generation. As a
result of this, the left and right spreads are
zero and minimum releases obtained for
hydropower generation correspond to mean
of the triangular fuzzy number. Similarly the
optimal operating policy for hydropower
releases is presented in Table 2. From the
result it is observed that model has satisfied
the maximum turbine capacity during the
months of August, September, October,
November, April and May. The level of
satisfaction of the objective in these
particular months is the highest. However
for the remaining months, model has
satisfied the releases requires for the firm
power production of the turbine. In these
months the fuzzification of the releases are
possible, as there is 90% variation between
the mean value and the right spread of the

triangular fuzzy variable. When the
objective of the maximization of annual
releases for hydropower is in priority the
corresponding  releases  obtained  for
irrigation have satisfied the minimum
irrigation requirement. As a result of this the
left spread and right spread is zero and
minimum releases obtained for irrigation
corresponds to mean of the triangular fuzzy
number.

Fuzzy Compromised Approach

Results obtained from the individual
optimization are used to obtain the
compromised solution for both objectives as
explained in the methodology section. The
best and worst values of either objective are
obtained from the mean values of both of the
objectives of triangular fuzzy number. When
Z,;is maximized, the corresponding value of
Z, 1s considered to be the worst and vice-
versa. These values are shown in Table 3.
These values are used to develop the fuzzy
compromised model using linear
membership function to fuzzify both the
objective functions and it the being solved
for the maximization of degree of
truthfulness (A ). The linear membership
function developed for both objectives are
given by Equations (14) and (15). The
graphical representations of Equations (14)
and (15) are shown by Figures 4 and 5.

0 if Z,<204.2
u, (x)=4(Z,-204.2/(413.7-204.2) if 204.2<Z <413.7
1 if Z,2413.7 (14)
Table 3: Best (Z,") and worst (Z, ) values of the objective function.
Bounds
Objective Best value (Z,") Worst value
function
(Z,)
Releases for irrigation (Mm3) 413.7 204.2
Releases for hydropower (Mm®) 246.1 104.4
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0

1, (x)=1(Z, ~104.40/(246.10~104.40)

G SRR

1
1
1
1
1
1
:
Z

0 2042 413.7

Figure 4. Membership function (Z;,.

By using the above information, the

following fuzzy compromised model is
formulated using Equation (7) and it is the
solved to obtain maximized degree of
truthfulness (A).

MAX = A,

Subject to,
(Z1-204.2)/(413.7.0-204.0) > A,
(Z2-104.40)/(246.10-104.40) > A,

and along with all the original constraints
given in the model andA>0. In this
formulation A is the degree of truthfulness
obtained by simultaneously optimizing the
fuzzified objectives Z; and Z;,

Table 4. Optimal operating policy.

if Z,<104.40
if 104.40< Z, <246.10

if Z,>246.10 s,

My (X) p=mmmmmmm

246.10

1
1
1
1
1
1
1
1
z Z,

0 104.4

Figure 5. Membership function (Z,).

Results obtained by the solving
compromised model, using Equation (7) are
presented in Table 4. From the obtained
results it is observed that the FLP model has
satisfied the minimum irrigation requirement
for the month of June, July and as well from
December to May. However for the month
of August, September and October the FLP
model has satisfied the maximum irrigation
demand. For the month of November, the
releases are 40% of maximum irrigation
demand. The degree of truthfulness of both
objectives is 0.78. Similarly from releases
for hydropower production, it is observed
that FLP model has satisfied the firm release
requirement of the turbine for the month of

Months Releases for irrigation (Mm”) Release for power (Mm”)
June 2.13 9.493
July 6.24 27.96052
August 37.64 29
September 46.02 29
October 132.01 28.75
November 50.29 29
December 26.87 19.33
January 30.2 8.7
February 9 8.7
March 8.69 8.7
April 10.67 8.7
May 7.764 8.7
Total 367.524 216.03352
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January to May. However for the remaining
months i.e. July, August, September,
October and November the releases are
equal to maximum turbine capacity. For the
month of December the releases are only
33% less than the turbine capacity. For the
month of June the releases are slightly more
than the firm power releases. It means that
the maximum power production can be
achieved in the month of July to November.
However in the months of January to May a
minimum of power production can be
maintained. The results are also compared
with the operating policy obtained by
considering the fuzzy coefficients and crisp
variables of the reservoir operation model
(Regulwar and Kamodkar, 2010) and it is
observed that the degree of truthfulness
obtained is only 0.53 as compared with the
FFLP model; i.e. 0.78. The operating policy
obtained through FFLP model is preferred to
the policy obtained by considering the fuzzy
coefficients and the crisp variables of the
reservoir’s operation model.

CONCLUSIONS

In literature, fuzzy linear systems of
equations do not usually consider the fuzzy
decision variables. In this article, the fully
fuzzy linear systems i.e. fuzzy linear
systems with fuzzy coefficients involving
fuzzy variables are investigated and applied
to the reservoir operation problem to decide
the optimal release policy of the Jayakwadi
reservoir stage — II, Maharashtra state, India.
The uncertainty is inevitable in the reservoir
operation modeling due to a lack of a perfect
understanding of the phenomenon and of the
process involved, in addition to random
nature of the events. These uncertainties
involved in the various parameters and
variables are addressed here by fuzzy set
theory. Releases for irrigation, releases for
hydropower generation, irrigation demands,
hydropower demands and storages in the
reservoir during all the time periods are
defined by triangular fuzzy numbers. Fully
Fuzzy Linear Programming (FFLP) model
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as explained in methodology for reservoir
operation is developed by considering two
objectives, i.e. maximization of annual
releases for irrigation and maximization of
annual releases for hydropower generation.
Results obtained by solving FFLP model for
individual optimization of objectives are
used to formulate the fuzzy compromised
model for both objectives while the model
being solved for a maximization of the
degree of truthfulness (A ). The value of
(A ) obtained is equal to 0.78 and the
corresponding values of the objectives i.e.
optimum releases for irrigation, and for
hydropower generation are respectively
recorded as equal to 367.5 Mm®, and 216.0
Mm’.

From the methodology and the obtained
results it can be concluded that when limited
information is available on model
parameters and on boundary conditions,
fuzzy modeling can be employed to address
the uncertainty from the various parameters
of the reservoir operation to be used in the
optimization of the model. The linear
ranking function can then be efficiently used
for the defuzzification of the triangular
fuzzy numbers.

ACKNOWLEDGEMENTS

The authors are thankful to Command
Area Development Authority, Aurangabad,
Maharashtra State, India for providing the
necessary data for the analysis.

Notations

A : Triangular fuzzy number.

a : Peak of triangular fuzzy number.

a : Left spread of triangular fuzzy number.
B :Right spread of triangular fuzzy number.

ﬂg(x)
Belonging) of X in A .

: Grade of Membership (Degree of

FT(R) : Set of all triangular fuzzy numbers.

R : Set of all fuzzy numbers.
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F(R) : Set of all fuzzy subset of R .

A : Degree of truthfulness

FP, : Release for firm power during month ¢.

ID; : Maximum irrigation demand during month
1.

IDyine
month 7.
I; : Inflows into the reservoir during month 7.

RI;: The releases into canals for irrigation during
month ¢.

RP, : The releases for hydropower production
during month 7.

RWS;: Release for water supply during month ¢.
FCR;: Feeder canal releases during month 7.

SC,: The storage capacity of the reservoir during
month 7.

S;: The storage in the reservoir during month ¢.
Sminc : Minimum storage capacity during month ¢.
TC : Turbine Capacity (flow through).

OVF, : Overflow from the reservoir during month
1.

Minimum irrigation demand during
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