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A Dynamic Programming Solution to Solute Transport and 
Dispersion Equations in Groundwater 

M. Mirabzadeh1 and K. Mohammadi2* 

ABSTRACT 

The partial differential equations for water flow and solute transport in a two-
dimensional saturated domain are rendered discrete using the finite difference technique; 
the resulting system of algebraic equations is solved using a dynamic programming (DP) 
method.  The advantage of the DP algorithm is that the problem is converted from solving 
an algebraic system of order NC(NL-1) ×NC(NL-1) into one of solving a difference equa-
tion of order NC×NC over NL-1 steps and involving NL-1 matrix inversions of order 
NC×NC.  The accuracy and precision of the solutions are shown by comparing the results 
with an analytical solution and calculation of mass the balance.  In addition, the perform-
ance of the DP model was compared with the results of the MOC model developed by US 
Geological Survey.  In all cases, the DP model showed good results with sufficient accu-
racy. 
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INTRODUCTION 

In Iran, groundwater is an important source 
of irrigation water.  In fact, it fulfills more 
than 50 percent of the country’s total irriga-
tion needs.  Groundwater has played a major 
role in increasing food production and 
achieving food security. Groundwater, a re-
newable source of water, has the remarkable 
distinction of being a highly dependable and 
safe source of water supply for agriculture, 
domestic and industrial needs.  Increased use 
of chemical fertilizers coupled with im-
proper water management practices has re-
sulted in the deterioration of groundwater 
quality in several parts of the country.  
Every year, almost 17.5 BCM of agricultural 
wastewater is returned to aquifers which 
account for almost 35% of groundwater ex-
traction (1). This recycling of water causes 
secondary salinization in irrigated areas. 

Solute transport models are being used to 

study groundwater quality and water pollu-
tion in the subsurface. Several methods have 
been used to generate a better and faster 
model, for example: Reddell and Sunada 
(20); Chatwal et al. (6); Cheng and Hodge 
(7); Gray and Pinder (11); Grove (12); 
Huyakorn et al. (13); Konikow and Brede-
hoeft (14); and Bouhroum and Bai (5). In 
addition, certain advances in analytical solu-
tions have been made by some other re-
searchers such as Basha and El Habel (2) 
and Sim and Chrysikopoulos (21). They 
have developed one-, two-, and three-
dimensional analytical solutions for solute 
transport in saturated, homogeneous porous 
media. However, numerical algorithms are 
still the only solution to complex problems 
in the field of solute transport in groundwa-
ter. 

In this paper, a numerical model to solve 
the solute transport and dispersion equation 
in groundwater is developed. The purpose of 
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the simulation model is to compute the con-
centration of a non-reactive dissolved 
chemical species in an aquifer at any given 
time and place. The partial differential equa-
tions are made discrete using the finite dif-
ference technique and the resulting system 
of algebraic equations is solved using a dy-
namic programming (DP) method which is 
used here for the first time. Bellman (4), 
Collins (8) and Collins and Angel (9) ap-
plied this technique to the solution of para-
bolic and elliptic partial differential equa-
tions. A dynamic programming method was 
then used by Mirabzadeh (16, 17, 18, 19) to 
solve the flow equation in two and three di-
mensions for heterogeneous and anisotropic 
aquifers. The higher speed of this algorithm 
compared with the other matrix solutions 
such as Jacobi, Guass-Sidel, and Successive 
over Relaxation (SOR) has been the motiva-
tion for using the method in this research (9, 
17). 

Convective transport, hydrodynamic dis-
persion, and chemical reactions are the three 
main processes in solute transport. Among 
these, the first two phenomena are more im-
portant in most cases and those have been 
considered in this model. Because convec-
tive transport and hydrodynamic dispersion 
depend on the velocity of groundwater flow, 
the solute transport equation is a nonlinear 
equation and must be considered in conjunc-
tion with the groundwater flow equation.  
The computer program solves two simulta-
neous partial differential equations- one is 
the groundwater flow equation and the sec-
ond one is the solute transport equation. 

A solution to the solute transport equation 
in two dimensions has been obtained using a 
dynamic programming technique. In this 
paper, the analytical solution (2) and the 
method of characteristics were used to verify 
the developed algorithm. The method of 
characteristics was originally applied to 
transport in porous media by Garder et al. 
(11) in order to calculate miscible displace-
ment in a reservoir simulation. This method 
was later implemented in a two-dimensional 
solute transport model by Konikow and 
Bredehoeft (14); their code is commonly 

referred to as MOC.  The method of charac-
teristics uses a conventional particle tracking 
technique for solving the advection term.  
For more detail about this method, one can 
refer to Zheng and Bennett (22). 

Theoretical Development 

In a Cartesian coordinates, the governing 
equation for two dimensional fluid flow in a 
saturated porous medium by using the conti-
nuity equation and Darcy’s low, is: 
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where h is hydraulic head [L]; t is time [T]; 
q is source/sink term [L/T] with a positive 
sign for the source and negative for sink 
terms; S is storage coefficient; and Txx and 
Tyy are transmisivity [L2/T] in x and y direc-
tion, respectively.  Transmisivity is defined 
as follows: 
[ ] [ ]ijij KbT =  (2 
where b is the saturated thickness of the aq-
uifer [L]; and [Kij] is the hydraulic conduc-
tivity tensor. It is assumed that the coordi-
nate system is oriented with the conductivity 
tensor, so that Kij = 0 for i ≠ j. 

The solute transport equation describing 
convection and dispersion of a nonreactive 
dissolved chemical species in groundwater is 
as follows (14): 
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where C is the concentration of the dissolved 
chemical species [M/L3]; C' is the concentra-
tion of dissolved chemical in a source or 
sink fluid [M/L3]; ne is the effective poros-
ity; Vx and Vy are Darcy’s velocities in x 
and y directions, respectively [L/t]; and Di,j 
is the coefficient of the hydrodynamic dis-
persion [L2/T]. The dispersion coefficient for 
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two-dimensional flow in an isotropic aquifer 
may be written as (4): 
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where αL and αT are the longitudinal and 
transverse dispersivities of the aquifer, re-
spectively [L]; and ⏐V⏐ is the magnitude of 
the velocity [L/T]. 

Finite Difference Formulation 

The two-dimensional model presented here 
is based on an implicit finite difference 
scheme using the dynamic programming 
solution. 

Flow Equation 

The compact finite difference form of 
equation (1) is given by: 
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i = 2,…,NL-1   
j = JD(i),…, JF(i)  
where i, j, k  are, respectively, the indices in 
the x, y, and time dimensions and JD(i), 
JF(i) are the column numbers at the begin-
ning and the end of each row, respectively. 
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Solute Transport Equation 

Using the finite difference discretization 
approach, equation (3) can be written as: 
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Dynamic Programming Solution 

In this section, the proposed relationships 
for solving the resulting algebraic equations 
are presented. In order to solve equation (7) 
subject to the boundary conditions, we de-
fine the vectors Hi, Wi, and R*

i with the di-
mension of N(i)= NC-2 for each row: 
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Using the above definitions, equation (7) 
may be rewritten as follows: 
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Vectors H(1), H(NL), and Wi are known from 
the boundary conditions, F(i) and F(i-1) are the 
diagonal matrices, and G(i) is a tridiagonal 
matrix with the components defined by the 
coefficients of the system of equations (7) as 
follows: 
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Using dynamic programming, equation 
(11) may be cast in the following form: 
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Comparing (12) and (13) yield the follow-
ing recurrence relations: 
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The initial conditions for (14) and (15) are 
derived from (12) setting i = NL 
A(NL-1) = 0                B(NL-1) = H(NL-1) 

Then, the backward solution of (14) and 
(15) will give the matrices A(i) and the vec-
tors B(i). Equation (12) may now be solved 
for H(i) by utilizing A(i) and B(i). 

Equation (9) can be solved in the same 
way. In each time step, after calculating the 
dispersion coefficient tensor, matrices Ac(i) 
and vectors Bc(i) and C(i) will be computed in 
a similar procedure to A(i) ,(14), B(i) ,(15), 
and H(i) ,(12), respectively. 

RESULTS AND DISCUSSION 

In order to verify that the numerical model 
is solving the governing equations correctly, 
it is necessary to compare the results to 
known solutions or results from other mod-
els. The solution developed by Basha and El 
Habel (2) was used to verify the model 
against the analytical solution. A one-
dimensional solute transport in saturated 
media in x direction was solved analytically.  
Table 1 shows the parameters that were used 
in this solution. Figure 1 shows the compari-
son between the analytical solution and DP 
model. The mean absolute error was 0.8 per-
cent and the root mean square error between 
two methods was 0.03 percent which shows 
good agreement between results. 

Table 1. Parameters used in the analytical 
solution. 

Parameter Value 
Δx 
Length (L) 
Initial Concentration (C0) 
Velocity (Vx) 
Dispersivity (αL) 
Injected Mass (C') 

25 m 
100 m 
0 mg/lit 
0.25 m/s 
10 m 
1 mg/lit 
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In addition, the model was compared to the 
results obtained from the MOC model (14).  
A mass balance test was used as a measure 
of the numerical accuracy of the solutions in 
DP and MOC comparisons. Here, the model 
uses, as the mass residual, Mr, a criterion 
compared with the difference between the 
initial mass, Mi, and the net mass flux, Nf.   

fi

r

NM
M100Error
−

=  (16 

where Mr = ΔMs - Nf and ΔMs is the change 
in mass stored in the aquifer [M]. 

One recharge well and one extraction well 
were considered in a 2192×2466 m domain.  
The left and right sides of the domain were 
impermeable and the northern and southern 
sides of the domain had constant head 
boundaries with a 22.5 m and 30 m water 
elevation, respectively. Figure 2 shows the 
result for test problem number 1 and the fol-
lowing parameters were used in the compu-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

X (m)

C
on

ce
nt

ra
tio

n 
(m

g/
l

Analytical Solution DP Model

 
Figure 1. Comparison between the analytical solution and the DP model. 

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

MOC Model

DP Model

 

Figure 2. Comparison of the computed concentration between the DP and MOC models 
after 30 months for test problem number 1. 
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tations: 
K = 1.5×10-3 m/s  Δx = Δy = 274 m 
b = 6.1 m  S = 0.3 
αL = 30.5 m  C' = 220 mg/lit 
αT / αL =0.3   C0 = 0.0 mg/lit 
q (3, 5) = 0.028 m3/s  
q (6, 4) = -0.028 m3/s 

Figure 3 presents the mass balance error for 

the dynamic programming method and 
method of characteristic. 

In test problem 2, the effect of dispersion 
was eliminated (αL = 0.0) and other parame-
ters remained the same as in test problem 
number 1. Again, Figure 4 shows the results 
of the solute concentration after 2 1/2 years 
and Figure 5 shows the mass balance errors 
for this period. 
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Figure 3. Mass balance error for test problem 1. 
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Figure 4. Comparison between the computed concentrations in test problem 2. 
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CONCLUSION 

A general two-dimensional model has been 
developed to simulate solute transport 
through heterogeneous porous media. The 
agreement between the results from the pre-
sent model and the analytical solution and 
the MOC model are good and the mass bal-
ance error for the DP model is less than for 
the MOC model. 

Using a dynamic programming method can 
reduce the time of computation and com-
puter error due to inversion of the large ma-
trices. The application of this method con-
verts the problem from solving an algebraic 
system of order NC (NL-1)×NC(NL-1) into 
that of solving a difference equation of order 
NC×NC over NL-1 steps and involving NL-
1 matrix inversions of order NC×NC. In ad-
dition, it reduces the storage requirements, 
since instead of having to store (NL×NC)2, 
we need to store only (NC×NC) numbers at 
each step. 
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  معادله انتقال و پخشيدگي املاح در آب زيرزمينيي  برنامه ريزي پوياحل

   محمدي.كو   ميرابزاده.م

  چكيده

 آب   محـيط دو بعـدي و اشـباع        معادلات ديفرانـسيل بـا مـشتقات جزئـي بـراي جريـان و انتقـال امـلاح در                  
 بدست آمـده بـه   زيرزميني با روش تفاضل هاي محدود بصورت گسسته در آمده و دستگاه معادلات جبري     

مزيت آلگوريتم برنامه ريزي پويا در اين است كه مسئله را از حـل        .  روش برنامه ريزي پويا و حل گرديدند      
 NC×NC را به حل يك دستگاه معادلات از مرتبه   NC(NL-1)×NC(NL-1)يك دستگاه معادلات از مرتبه    

دقـت روشـهاي   .   استNC×NCمعكوس كردن ماتريس مرتبه  NL-1 گام تبديل كرده كه شامل NL-1در  
ريـزي پويـا      مـدل برنامـه     . محاسبه بيلان جرمـي نـشان داده شـده اسـت            با مقايسه نتايج با حل تحليلي و         حل

در همه موارد مدل  .   كه توسط موسسه زمين شناسي آمريكا تهيه شده مقايسه گرديد          MOCهمچنين با مدل    
DP  دهدنشان داد كه مي تواند نتايجي با دقت خوب ارائه.  

 


