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ABSTRACT 

 

The major interests of survival analysis are either to compare the failure time distribution 

function or to assess the effects of covariate on survival via appropriate hazards 

regression models. Cox‟s proportional hazards model (Cox, 1972) is the most widely 

used framework, the model assumes that the effect on the hazard function of a particular 

factor of interest remains unchanged throughout the observation period (Proportionality 

assumption). For a continuous prognostic factor the model further assumes linear effect 

on the log hazard function (Linearity assumption). Assumptions that many authors have 

found to be questionable when violated since they may result to biased results and 

conclusions and as such non-linear risk functions have been suggested as the suitable 

models. In this paper, we propose a flexible method that models dynamic effects in 

survival data within the Cox regression framework. The method is based on penalized 

splines. The model offers the chance to easily verify the presence of PH and time-

variation. We provide a detailed analysis and derivation of the penalized splines in the 

context of survival data.  
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CHAPTER 1 

INTRODUCTION 

 

1.1  Background of the study 

Survival analysis encompasses a wide variety of methods aimed at analyzing the 

timing of events. Many researchers are able to model and assess why certain subjects 

are exposed to a higher risk of experiencing an event of interest such as death, 

development of an adverse reaction or relapse of a given disease (e.g. Cancer). 

Cox proportional hazard model is the most popular regression model used for the 

analysis of survival data. The model allows testing for the differences in survival 

times of two or more groups of interest and compares the cumulative probability of 

the events, while adjusting other influential covariates. It is a semi-parametric model 

that makes fewer assumptions than a typical parametric method. One of the 

assumptions of the Cox model is the linearity of the covariates variables on the log 

hazard function. The non-flexibility of these methods subjects the model to biasness. 

For instance, they assume independence of covariates that affect the hazard rate. They 

also assume that the model is linear yet findings have indicated that some prognostic 

factors (for example, body mass index) have non-linear effect on breast cancer 

survival and/or prognosis (Gray, 1994). Based on this, cox proportional model poses 

a problem in analyzing time-to-event data; 

i) It is complex to relate the variables to the outcome. 

ii) The variables interact with each other. 

iii) It is not possible to apply the assumption of proportionality of the hazards to 

the data. 

This could possibly lead to biased risk estimates and as such distorting the findings. 

(Hastie, T & Tibshirani, R, 1990) have shown that a better choice is to use smoothing 

splines, where knot selection is automatic based on a mean squared criterion. With 

smoothing splines, the user only need to select the level of smoothness, which is done 

by selecting the degrees of freedom for each spline fit. 
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1.2  Justification of the study 

With a prevalence rate of 33.5 per cent, breast cancer has of late been described as 

one of the leading killer disease among Kenyan women (DCR report 2012). The use 

of smoothing methods will yield parsimonious models that will select significant 

variables hence revealing nonlinearities in the effects of predictors. The approach will 

be compared to standard methods by simulations and an example. It is imperative that 

accurate results that will help policy makers and other players in the field are obtained. 

The use of smoothing methods will help identify non-linear and time varying effects 

and the proposed model will help in coming up with unbiased results that are not 

subject to distortion. 

 

1.3  Statement of the problem 

Cox proportional hazard model is the most widely used framework in survival 

analysis where the main focus of analysis lies in modeling the impact of various 

prognostic factors and therapy on the time to occurrence of a given event/outcome for 

example death or relapse of a disease. 

Although it is a well-designed and validated, this model do not consider time-varying 

effects of their covariates and as such assumes proportionality of the hazards and also 

that the risk factors act multiplicatively on the baseline hazard risk function. These 

assumptions, however, may not be proper in some applications and there is therefore 

the need for alternative models. 

Risk factors may also have additive effects instead of multiplicative effects in the 

baseline hazard function. Another typical deviation from the proportional hazards 

Cox model is when the effects of some covariates change with time. For instance, 

some risk factors may impose a strong effect right after being recorded, but gradually 

lose predictive power (e.g. a treatment effect that is weakened with time). Models 

flexible enough to deal with covariates in which their effects are time-varying are 

therefore of great interest in these situations. 
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1.4  Objectives 

The main objective of this research will be to propose a non-linear model for 

estimating time varying effects in survival data based on smoothing splines. However, 

this objective will further be supplemented with two specific objectives listed below; 

    1.   Explore and identify non-linear and time varying effects in survival data 

    2.   Propose a survival model for estimating the non-linear and time varying effects. 

    3.   Study the properties of the proposed non-linear model (Smoothing splines) 

    4.   Apply the empirical survival data to the model. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1  Introduction 

Time-varying effects (TVEs) of prognostic factors have been detected in a variety of 

medical fields. Gore et.al (1984) presents a classical example discussing this issue for 

several covariates that relate to breast cancer. In the same disease, the effects of 

oestrogen receptor and tumour size have been reported to change over time 

(Hilsenbeck, S. G., et.al, 1998). Other examples have been established to include the 

effects of prothrombin time in primary biliary cirrhosis (Abrahamowicz, M., , T. 

MacKenzie,, & J. M. Esdaile, 1996), the Karnofsky performance status in ovarian 

cancer studies (Verweij & Houwelingen, 1995) and diabetes on mortality after 

coronary artery bypass graft surgery (Gao C, , Yang M,, Wu Y, , & et al, 2006). 

Non-linearity is modeled with time transformations known as fractional polynomials 

(FPs) having power terms that can be negative values and fractions with conventional 

polynomials (CPs) as a special case (Long J, & Ryoo J, 2010). They (Long J, & Ryoo 

J, 2010), further showed in their results that the FPs had better or rather equal fit than 

the higher-order CPs and had prediction curves with as favorable or more favorable 

characteristics, such as less extreme behavior at the edges of the observed time 

intervals. 

 

2.2  Cox proportional hazard (CPH) model 

The semi-parametric proportional hazards model of (Cox, 1972) has become the 

standard for the analysis of survival time data in cancer studies and in many other 

application areas in medicine. In most studies, proportional hazards (PH) are assumed 

for covariate effects, implying that the effect on the hazard function of therapy and of 

each potential prognostic factor measured at the beginning of a study is unchanged 

throughout the whole observation period. However, with long-term follow-up this 

assumption may be questionable. For example, in a study of breast cancer patients, 

(Hilsenbeck, S. G., et.al, 1998), demonstrated that several factors violate the PH 
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assumption. Tumour size was established to have a strongly influence on the short 

term prognosis, but the effect diminished over time and was less relevant for 

prognosis after a patient had remained disease-free for a longer period. The effect of 

oestrogen receptor (ER) status and S-phase fraction also varied in time. Time-varying 

effects of tumour size and ER status have also been reported in breast cancer by 

others, for example (Coradini, D., et.al, 2000). 

Well-known methods for checking the PH assumption have been available for some 

time. (Hess, 1994; Ng‟Andu, 1997; Berger, U., , J. Schäfer, , & K. Ulm, 2003), 

provide an overview and some comparisons of the test statistics properties. 

Nevertheless, there is no agreement about which methods to use. Checking the PH 

assumption is often not even mentioned in papers describing applications of the Cox 

model. 

By 1972, Cox had suggested relaxing the PH assumption by including an interaction 

between a covariate and a pre-specified parametric function of time. Typically, linear 

or logarithmic functions have been used. Since then, several other methods have been 

proposed for incorporating such a time dependent function for a covariate (e.g. for a 

prognostic factor). Examples include a step-function model based on cut points on the 

time axis, the use of smoothing splines (Hastie, T. & Tibshirani, R., 1993), penalized 

regression splines (Gray R. J., 1992), regression splines (Hess, 1994; Heinzl, H. & A. 

Kaider, 1997) and fractional polynomials (Berger, U., , J. Schäfer, , & K. Ulm, 2003). 

Other authors have investigated time-varying effects with even more flexible 

approaches by estimating local time-varying coefficients (Verweij & Houwelingen, 

1995; Cai, Z. & Y. Sun, 2003; Martinussen, T., , T. H. Scheike, , & I. M. Skovgaar, 

2002). 

 

2.3  Parametric functions of time 

2.3.1 Time-dependent covariate method 

Cox in his original paper (1972) proposed extension of the Cox proportional Hazard 

model. He introduced time-dependent components that utilized pre-defined time 

functions in case of non-PH. To check the proportionality assumption, it is thus 
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proposed to fit an extended cox model containing time-dependent variables which is 

defined using some time function. 

This involves inclusion of a time-dependent covariate         that represents an 

interaction between the time parametric function. This corresponds to the inclusion 

(     ) and the predictor. The model is thus modified as; 

   |           (∑         

 

   

)          (∑       

 

   

)                   

Where,                   , represents the time-varying effects. The above model 

provides assessment of the PH assumption by testing the null hypothesis       by 

computing the likelihood ratio test statistic. The limitation of the model lies in making 

inferences of the test results however, the implementation of the model is very easy 

using the standard statistical software such as R and Stata. 

 

2.3.2 Linear correlation test 

A simple test based on Schoenfeld's partial residuals of the model for assessing the 

Cox's PH assumption was developed by Harrel. The test is based on the Pearson 

correlation between rank order of the failure time and the partial residuals. 

The residuals neither depend on time nor do they involve estimation of the baseline 

hazard function. In the presence of tied failure times, the residual is taken as the total 

component of the first derivatives of the log-likelihood function based on the 

regression parameter. To check whether PH assumption holds, we test the null 

hypothesis (        ) using the formula    √             , where    

represents the total number of uncensored observations and    represents the 

correlation between failure time order and residuals. The test statistic tends to be 

positive if the ratio of the hazards for high values of the covariate increases over time, 

and it tends to be negative if this hazard ratio decreases over time. 
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2.4  Smoothing splines 

Smoothing spline methods are becoming popular modeling tools in many survival 

data contexts. They make it possible to handle complex non-linear relationships that 

are otherwise considered difficult to be estimated by the conventional parametric 

models. Splines are known for their ability to render good approximations to smooth 

functions (Boor, 1978; Schumaker, 1981) and their application in nonparametric 

smoothing is broad (Stone, 1997). Spline application in the current context is of 

particular convenient. After choosing a spline basis, the spline is approximated by 

unknown. The regression coefficients and the coefficients of spline are then 

simultaneously estimated by maximizing the partial likelihood. 

The spline estimate  ̂ related to the function   is defined as the minimizer (over the 

class of twice differentiable functions) of; 

∑      ̂     
   ∫   ̂                                                                                        

  

  

 
        

The number of different approaches to spline smoothing is quite wide, ranging from 

smoothing spline techniques (Hastie, T & Tibshirani, R, 1990; Wahba, 1990; Green, 

D. J. & Silverman, B. W., 1994), where a knot is placed at each observation, to 

regression splines with adaptive knot selection (Friedman, 1991). Eilers, P. H and 

Marx, B. D (1996) proposed the application and use of the penalized splines, a 

different approach which can be seen as a compromise between smoothing and 

regression splines. There, the number of knots defining the spline function is larger 

than that justified by the data, but smaller than the number of observations. According 

to Bulcholz. A (2010), splines represents a large group of approaches used in 

modeling time-varying effects. Splines are flexible non-parametric tools that are used 

to identify functional relationships and produce smooth visible curves. The 

construction of splines is based on joining polynomial pieces at certain values called 

knots. The fitted curve is influenced by the choice of position and the number of the 

knots. Very many knots may result to overfitting of the data, while very few knots 

may result in an underfitting (Buchholz, 2010). Solutions to this problem tend to two 

directions. Either relatively few knots are used or a relatively large number of knots is 
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combined with a smoothness penalty, resulting in penalized splines (Eilers, P. H. C. 

& Marx, B. D., 1996). 

For example, (Hess, 1994) and (Heinzl, H. & A. Kaider, 1997) used (unpenalized) 

natural cubic splines with 3 to 5 knots. Their proposals include a formal test of the PH 

assumption by testing on the spline coefficients being equal to zero. (Abrahamowicz, 

M., , T. MacKenzie,, & J. M. Esdaile, 1996) prefer quadratic B-splines with no more 

than two knots. (Hastie, T. & Tibshirani, R., 1993) proposed a penalized partial 

likelihood approach based on natural cubic splines, with knots at unique event times 

and second order penalty based on the squared second derivative of the time-varying 

effects. The values of the smoothing parameters are selected by specifying the 

degrees of freedom for the smooth, i.e. the effective number of parameters. (Gray R. 

J., 1992) uses a similar method to determine the smoothing parameters, but bases the 

estimation of time-varying effects on B-splines of degree two and zero (i.e. piecewise 

constant effects) with a first order integral and first order difference penalty, 

respectively. The number of knots is limited to ten.  (Brown, D., , G. Kauermann, , & 

I. Ford, 2007) proposed a mixed model approach, which assumes that some effects 

are random. They use linear B-splines or, equivalently, truncated polynomials 

penalized by a difference matrix or identity matrix, respectively, to approximate the 

time-varying effects. The smoothing parameters relate to the variance components in 

the mixed model framework and are estimated by method of cross validation. The 

estimation procedure cycles between estimating the regression coefficients for given 

smoothing parameters and vice versa, checking the AIC at each and every iteration. 

The procedure stops if the AIC can no longer be improved. 

 

2.4.1 Penalized smoothing splines 

Penalized spline (P-spline) smoothing is discussed for hazard regression of 

multivariable survival data. Non-proportional hazard functions are fitted in a 

numerically handy manner by employing Poisson regression which results from 

numerical integration of the cumulative hazard function. Multivariate smoothing 

parameters are selected by utilizing the connection between P-spline smoothing and 

generalized linear mixed models. A hybrid routine is suggested which combines the 
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mixed model idea with a classical Akaike information criteria (AIC). The model is 

evaluated with simulations and applied to data on the success and failure of newly 

founded companies. 

 

2.4.2 Fractional Polynomial (FP) 

Fractional polynomial (FP) regression models are the link between polynomial and 

nonlinear models. The aim in using FP functions in regression is to keep the 

advantages of conventional polynomials, while eliminating the disadvantages. FP 

functions are identical to conventional polynomials in that they include powers of X, 

however they don't allow non-integer and negative powers (Royston & Altman, 1994). 

FP models usually give a better fit than conventional polynomials of the same degree, 

and even than those of higher degree. FP functions can be used with any generalized 

linear model and with Cox proportional hazards regression models for survival data. 

The FP of degree   is the function 

             ∑  

 

   

 (  )                                                                                             

where   is a positive integer,                is a real-valued vector of powers 

        and                are real-valued coefficients.  

 

2.4.3 Restricted Cubic Spline (RCS) 

Cubic splines are generally defined as piecewise-polynomial line segments whose 

function values and first and second derivatives agree at the boundaries where they 

join. The boundaries of these segments are called knots, and the fitted curve is 

continuous and smooth at the knot boundaries. To avoid instability of the fitted curve 

at the extremes of the covariate, a common strategy is to constrain the curve to be a 

straight line before the first knot or after the last knot. In this study, multivariate 

analysis of Cox PH model will be fitted on all variables to determine the effective 

factors on survival of the patients with breast cancer. Due to the suitability of spline 

models for continuous predictor variables, to compare the Cox PH model with P-
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spline, fractional polynomial and restricted cubic spline in Cox model from identified 

continuous effective variables in multivariate Cox PH model will be used. 
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CHAPTER 3 

 

METHODOLOGY 

3.1  Review of regression models 

3.1.1 Regression model 

A regression model is basically of the form;  

                                                                                                                             

Where, Y is the response (dependent) variable                are the predictor 

(independent) variables,    is the error or simply the difference between the model 

and the actual values. The regression model aims at minimizing the error ( ) for all 

the values of   without introducing extraneous and arbitrary random variables. For a 

single predictor variable (univariate variable) we have; 

              for some function  . 

3.1.2 Simple linear regression 

Simple linear regression or ordinary least squares (OLS) fits a straight line to the 

dataset of interest. It is given as; 

                                                                                                                                  

Where   is the error term (accounting for difference between the predicted and 

observed   values). We make assumptions that the error has a mean zero and a 

constant variance  ², and is identically independently distributed (iid). By this we 

mean that each error term is centered about the line of best fit (with mean zero) and 

that there is a constant amount of deviation of the error terms from the line of best fit 
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(with constant variance).To find the line of best fit through the scatter plot of       

values, we actually aim at minimizing the error term for all the values of    We then 

modify our equation as                and the fitted or predicted value 

becomes,   ̂           which simply implies that;       ̂      

We rewrite the model by solving the error term as; 

         ̂                                                                                                            

    Selecting the values of    and    that minimizes the total error as much as possible. 

We have; 

       ∑  
 

 

   

 ∑             
  

 

   

                                                                                 

    Taking the partial derivatives and set them to zero     

 

   
  ∑                 

 

   

                                                                                         

 

   
  ∑                   

 

   

                                                                                     

    The above equations yield the following two normal equations;  

  ∑   
 
          ∑   

 
                                                                                                      

∑    

 

   

   ∑  

 

   

   ∑  
 

 

   

                                                                                           

These are two equations in two unknowns. We can thus solve for    and    yielding; 

   
 

 
(∑  

 

   

   ∑  

 

   

)   ̅     ̅                                                                             

   
∑       

 
   

∑   
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3.2  Derivation of spline regression model 

Spline regression is a regression model with piecewise continuous polynomial 

function. We intend to derive penalized spline. Considering a simple linear model (5), 

and applying the concept of algebra we have;  ̂     which can be rewritten in 

matrix form as follows; 

 ̂  [

 ̂ 

 ̂ 

 
 ̂ 

],   [

 
 

  

  

 
 

 
  

]     0
  ̂ 

 ̂ 

1                                                                         

with  ̂              Clearly  ̂ is a unique linear combination of the x-values and 

1, the basis is thus x and 1. 

3.2.1 Penalized Splines 

Using penalization criteria we choose Q such that; 

∑  
 

 

   

                                                                                                                                      

The above equation represents a minimization criterion since it reduces the overall 

effect of individual piecewise functions and avoids over-fitting the data. We can 

formally state the minimization criterion as minimizing the equation given below; 

|    |  subject to          where; 

  

[
 
 
 
 
 
 
 
 

 
 
 

    
    
    

      
 
 

 
 

      
    ]

 
 
 
 
 

 [
        

        
]                                                             

Applying Lagrange Multiplier results an equation which is equivalent to minimizing; 

|    |                                                                                                                    
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We now aim at solving the optimal  ̂ for any given value of    We need to derive two 

common matrix equations and show that; 

i) 
 (   )

  
                                                                                                                

ii) 
 (    )

  
                                                                                                              

Where   is a     vector,   is a     symmetric matrix,           
 , and the 

partial                      is; 

     

  
 [

         

         
] 

i) By multiplication we know that; 

              

  
      

  
 [

                

                
]  *

  

  
+      

ii) By multiplication we also know that; 

   *
    

    
+ [

  

  
]  [

        

        
] 

         
              

  

Using partial derivatives we obtain; 

       

  
 

[
 
 
 
 
      

              
  

  

      
              

  

  ]
 
 
 
 

 

 [
           

           
] 
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   *
    

    
+ [

  

  
] 

     

3.2.2 Deriving the Penalized Spline Solution 

The solution to the penalized spline will involve minimizing (17), that is solving 

when all the partial derivatives with respect to    and    are zero. This could be 

represented mathematically as; 

 

  ̂
 (‖    ̂‖

 
)  

 

  ̂
 (   ̂   ̂)                                                                         

Since differentiation is linear, we are able to split (19) into two parts 

With the two identities already proved we get;  

 

  ̂
 (‖    ̂‖

 
)          ̂  where     is the vector    and     is the matrix 

A. We also have;  

 

  ̂
 (   ̂   ̂) which by linearity of differentiation,   gets factored out leaving; 

   

  ̂
 ( ̂   ̂) with D being symmetrical, we gain apply the differentiation identities 

to get; 

 

  ̂
 (   ̂   ̂)       ̂, we finally combine the partial derivatives to get; 

    ̂    (    ̂)                                                                                                         

Clearly from linear algebra we can manipulate (20) to get; 

    ̂    (    ̂) 

    ̂          ̂ 

    ̂      ̂      
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 ̂              

 ̂                 

Now since we already have  ̂ and we know that  ̂    ̂ we now fit the penalized 

spline as follows; 

 ̂                                                                                                                 

3.3  Smooth Hazard Model 

3.3.1 Fitting the Penalized spline (P-Spline) 

Given the survival time    for the     observational unit, we define    to represent the 

right censoring time; with            We note that                We also 

define the censoring indicator,    as follows; 

   ,
                 

               
                                                                                                         

Now given a covariate     which is independent of time and denoted by   

             covariate vector for the     observational unit, we can then model the 

hazard function as; 

                {    
      }                                                                                               

Where    is the baseline hazard,       is the vector of covariate effects that vary 

smoothly with survival time,    The main idea is to estimate      smoothly by 

avoiding the tough parametric assumptions. A common approach to dealing with non-

linear relationship is to approximate   by a polynomial of order   (Yuedong. W, 

2011). For instance,  

                   
                                                                                      

Applying the Sobolev Space,     
       we have 
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       {                                        ∫(    )

 

 

 

    }      

By Taylors theorem, 

     ∑
       

  

   

   

      

⏟            
                     

 ∫
        

      

 

 

         

⏟                
       

                                       

The polynomial regression in (25) ignores the remainder term        , it could be 

mere assumption that         is negligible. The idea behind smoothing spline is 

simply to let data decide how large         is going to be. Now using the least 

squares (LS) on   
      , an infinite dimensional space, we have; 

 

 
∑ 

 

   

        
                                                                                                           

The distance measure between   and polynomial is,  

∫(    )
 

 

 

                                                                                                                   

We now estimate   by minimizing    under the constraint say,   which yields; 

∫(    )
 

 

 

                                 

We introduce a Lagrange multiplier in (28) and (29) so as to get Penalized Least 

Squares (PLS) 

 

 
∑ 

 

   

        
   ∫(    )

 

 

 

                                                                                  

∫ (    )
  

 
   is called the roughness penalty 
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If we consider now the Sobolev space   
       with a linear product 

      ∑               

   

   

 ∫     
 

 

                                                              

We further say that   
                     

        {                         }                                                  

    {                       ∫(    )
 

 

 

    }                              

Now (31) and (32) are RKHS‟s with the RKs 

        ∑
                

            

 

   

                                                                           

        ∫
      

         
   

            

 

 

                                                                       

     means that          

Looking at (31), it is clear that    contains a polynomial of order   in the Taylor 

expansion. If we now denote   to be the orthonormal projection operator onto    

and based on the definition of the inner product, the roughness penalty is; 

∫ (    )
  

 
   ‖  ‖  which shows that ∫ (    )

  

 
   measures the distance 

between parametric polynomial space             has no penalized functions. The 

penalized least squares is thus; 

 

 
∑          

 

   

    ‖  ‖  
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Where    is a smoothing parameter that controls the balance between the goodness-

of-fit measured by the least squares and departure from the null space    measured 

by ‖  ‖ . Functions in    are not penalized since 

‖  ‖    when     . 

 

3.4  Determination of the smoothing parameter   

Residual sum of squares has been proposed by Griggs (2013) to be a good measure of 

the “goodness-of-fit” since its summation obtains the overall error between the actual 

data and the regression curve. The residual sum of squares (RSS) is defined as; 

    ∑      ̂  
  

     

RSS, however, faces challenges in fitting the penalized spline model with many knots 

and as such we propose Cross-Validation method. 

3.4.1 Cross-Validation method 

 

Cross-Validation (CV) is used to assess the fit of the model with   in a similar way as 

RSS. The CV however, removes the    point and evaluates how well the given fit 

predicts the removed point. CV, attempts to minimize RSS while assuming the closest 

point. Since the method removes the    point it is sometimes referred to as “leave-

one-out” approach. The strategy is defined as; 

       ∑{    ̂        } 
 

   

 

Where  ̂         is the spline fit lacking (       point. This allows us to obtain the 

value   for any given spline basis minimizing this value while taking into account the 
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prediction of the new points and avoiding over-fitting. The method is however 

computationally intensive hence we use an approach given below; 

 ̂         
∑        

 
       

∑      
 
       

 

Where    refers to the smoothing matrix of the penalized linear spline (i.e.    

              ). The CV thus can be rewritten as; 

      ∑.
    ̂ 

       
/

  

   

 

The above equation significantly reduces the computational time since it applies the 

normal residual of the previously fitted model that only requires the diagonal entries 

of the smoothing matrix. 

 

3.5  Asymptotic properties of the penalized splines 

In investigating the properties of the penalized spline estimator, we look at the 

average mean squared error (AMSE) and the asymptotic bias and variance of the 

model. We also discuss the optimum choice of the smoothing parameter    

 

3.5.1 Average Mean Squared Error (AMSE) 

According to Demmler and Reinsch (1975), it is possible to express the average bias 

and variance in terms of the eigenvalues having been obtained from the singular value 

decomposition. 

             
                   

Such that   is the eigenvectors matrix and   represents the eigenvalues  . We denote 

             , with matrix   being the semi-orthogonal with            and 

              . The penalized spline estimator can be rewritten as; 
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 ̂   {           }      {           }      

 {           }   ̂      

We can now obtain the AMSE 

    ( ̂)  
 

 
 ,( ̂   )

 
( ̂   )- 
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(     )
 

     

   

 
  

 
∑

  
   

 

(     )
 

     

   

 
 

 
            

    is an idempotent matrix and         ̂     also   {             }  and 

      thus 

    ( ̂)  
  

 
∑

 

(     )
 

     

   

 
  

 
∑

  
   

 

(     )
 

     

   

 
 

 
∑[ { ̂       }   (  )]

 
 

   

 

In the above equation the first term is the average variance while the second term is 

the average squared bias (shrinkage) and the third term is the average squared 

approximation bias. We define                  
 

     
⁄   

    ⁄
 and 

consider two asymptotic scenarios.  

i) When      and                we have  

     ( ̂)   (
 

 
)   .

  

  
   /   (        ) 

ii) When       and              we have  

     ( ̂)   (
 

 
      ⁄

 
 

    ⁄
)   (

 

 
)          

We observe that when      the result obtained is similar to the regression splines. 

AMSE is determined by the squared approximation bias and the mean asymptotic 

variance. The smaller the smoothing parameter,  , the negligible the shrinkage bias is. 

We also observe that when      the result obtained is similar to the smoothing 

spline. AMSE in this case is dominated by the squared shrinkage bias and mean 
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asymptotic variance. The mean squared approximation bias has the same order as that 

of the shrinkage bias when      and is negligible when     . The results 

suggest that convergence rate for the penalized spline estimator is much faster when 

     basing on the assumption that    . 

 

3.5.2 Asymptotic variance and Bias 

We derive the asymptotic variance and bias considering the above two asymptotic 

scenarios. 

i) When      and                we have  

    { ̂   }  
  

 
     (      ⁄ )

  
  (      ⁄ )

  
        {      } 

  { ̂   }                                           

ii) When      and              we have  

    { ̂   }  
  

 
     (      ⁄ )

  
  (      ⁄ )

  
     

   {(   (  ⁄ )
  

)
  

  ⁄

} 

  { ̂   }                            { (  ⁄ )
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CHAPTER 4 

RESULTS 

4.0 Introduction 

In this chapter we explore and identify non-linear and time varying effects in survival 

data. We also describe the data set used in this study. 

4.1 Data 

Data was obtained from Nairobi Hospital-Cancer Registry. The patients with primary 

node-positive breast cancer registered between 2008 and 2012. The breast cancer data 

contains binary and continuous variables. Complete data for the prognostic factors 

age, tumour size, tumour grade, Menopause, number of positive lymph nodes, 

progesterone and estrogen receptor concentration available for 277 patients was 

analyzed. 

Table 1: Covariates in the breast cancer data 
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4.2 Assessment of proportional hazards model 
 

The Cox model specifies that hazard function for the failure time   commonly 

associated with a     column covariate vector   takes the form; 

                         

Where       represents the baseline hazard function while     is a     column 

vector of the covariates. 

    (Lin, D. Y. & Wei, L. J, 1991), found out that both numerical and graphical 

methods can be used to assess the model based on cumulative sum of martingale 

transformations and residuals. The distribution of such stochastic processes under the 

assumed model could be approximated using the distributions of certain zero-mean 

Gaussian processes whose realizations can only be generated by simulation. We 

compare the observed residual pattern both numerically and graphically. The 

comparisons enable us to assess objectively whether or not the observed residual 

pattern has a reflection of anything beyond random fluctuation. The procedures are 

essential when it comes to determination of the appropriate functional forms of 

covariates and in the assessment of the proportional hazards assumption. 

    Now, let us consider a sample of   subjects and letting (        ) to be the data of 

the     subject for instance,     representing the observed failure time,    representing 

the censoring indicator      if       and     otherwise, and    (         )
 
 

is a     vector of covariates. Let                 and              . We 

further let, 

        ∑                
 
    and        

∑                  
 
   

       
    

Let  ̂ be the maximum partial likelihood estimate of  , and we also let    ̂  to be the 

observed information matrix. We then define martingale residual as; 

    ̂           ∫                  ̂           
 

 
   where  ̂     

∫
∑   

        

  ( ̂  )

 

 
 

The empirical score process  ( ̂  )    ( ̂  ) is a transformation of the martingale 

residuals given as; 
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     ( ̂  )  ∑   
 
    ̂     

4.2.1 Testing for the PH assumption 

4.2.1.1 Graphical Method 

 If the dataset comprises of categorical variables then it is possible to use Kaplan-

Meier plot for survival distribution, that is , we plot for each level of covariate. In the 

presence of PH the curves steadily drift apart (parallel curves). Transformation of the 

Kaplan-Meier survival curves can also be applied and in such a case we plot the 

              as a function of the log survival time and just like the KM plots, the 

stratum log-minus plots exhibits constant differences (curves that are close to 

parallel). 

These particular visualization methods are simple and easy to implement, they 

however a number of limitations. For instance, if the covariate has more than two 

categorical levels then KM plot is rendered useless in discerning presence or absence 

of PH since the graphs become much cluttered (Therneau, T. M. & P. M. Grambsch, 

2000). Many a times, the log-minus plots are also hardly parallel, hence they tend to 

be less precise. It is therefore subjective to accept the PH hypothesis since one has to 

have very strong evidence to either conclude that the PH assumption has been 

violated or not. We now test for the PH assumption for the prognostic factors in the 

breast cancer data. 

Figure 1 displays the plot for menopause and we see in the first figure (stphplot for 

meno) shows nonparallel lines, implying that the proportional-hazards assumption for 

the menopause has been violated. This is confirmed in the second figure (stcoxkm for 

meno), where the observed values and predicted values are somehow far apart. 
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Figure 1: Checking Proportional Hazard assumption for menopause 

For the grade, we observe a display of parallel lines in the first figure (stphplot for 

grade), suggesting that the proportional-hazards assumption for the grade has not 

been violated. This is confirmed in the second figure (stcoxkm for meno), where 

the observed values and predicted values are close together. 

 

Figure 2: Checking Proportional Hazard assumption for grade 
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In figure 3 below, we test the PH assumption of the hormone variable. The stphplot 

displays lines that are parallel to each other, a clear indication that the proportional-

hazards (PH) assumption for hormone has not been violated. This is confirmed by the 

stcoxkm plot where the observed values and predicted values are close together. 

 

Figure 3: Checking Proportional Hazard assumption for hormone 

Figure 4, tests the PH assumption of the gradd1 variable. Just like in the hormone 

case, the stphplot displays lines that are parallel to each other, a clear indication that 

the proportional-hazards (PH) assumption for gradd1 has not been violated. This is 

confirmed by the stcoxkm plot where the observed values and predicted values are 

close together. 
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Figure 4: Checking Proportional Hazard assumption for gradd1 

In the case of gradd2, we clearly observe that the PH assumption has been violated 

since the stphplot displays lines crossing each other (nonparallel lines). This has 

further been confirmed by the stcoxkm plot where the observed values and predicted 

values are close together  

 

Figure 5: Checking Proportional Hazard assumption for gradd2 
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4.2.1.2 Score test based on scaled schoenfeld residuals 

We define schoenfeld residuals after running a Cox model for each predictor variable 

in the model. That is to say that the number of Schoenfeld residual variables in the 

model is the same as the number of covariates. The residuals are associated with the 

contributions of each of the covariates to the log partial likelihood. Scaled Schoenfeld 

residuals can be very useful in diagnostics of Cox regression models, more so in the 

assessment of the PH assumption (P. M. Grambsch & T. M. Therneau, 1994). In 

theory, the scaled Schoenfeld residuals are the adjusted Schoenfeld residuals based on 

the inverse of the covariance matrix of the Schoenfeld residuals. Grambsch and 

Therneau (1994) suggest that under the assumption that that the distribution of the 

predictor variable is similar in the various risk sets, the adjustment can be performed 

using the variance-covariance matrix of the parameter estimates divided by the 

number of events in the sample. The null hypothesis for the test on proportional 

hazards based on the scaled Schoenfeld residuals is that the slope of Schoenfeld 

residuals against a function of time is zero for each covariate variable. Once the 

scaled Schoenfeld residuals are created, we can then perform the test using 

generalized linear regression approach. Specifically, the test statistic on an individual 

covariate is;  

[∑ {         ̅   } 
     ]

 

  ̂  ∑           ̅      
   

 

In this formula,    represents the variable of scaled Schoenfeld residuals,      on the 

other hand is the predefined function of time set before the test,    represents the 

indicator variable of event,   represents the total number of events and     represents 
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the estimate for the variance of the parameter estimate of the covariate of interest. 

The sum is taken over all the observations in the data. The test statistic is 

asymptotically distributed as a    having 1 degree of freedom. The overall test 

statistic for the   predictor variables is given as follows. 

[∑{         ̅   }

 

   

  ]

 

0
  ̂

 ∑ {         ̅   } 
     

1 [∑{         ̅   }

 

   

  ]          

In the formula,    represents the vector of the unscaled Schoenfeld residuals of 

interest. It has   degrees of freedom and it asymptotically follows a    distribution. 

We fit a new Cox model and perform the test for proportional hazards: 

Table 2: Cox model 

                                                                               

      hormon     .4190189   .1025325    -3.55   0.000     .2593867    .6768924

          er     1.000628   .0008388     0.75   0.454     .9989856    1.002274

         pgr       .99812   .0009922    -1.89   0.058     .9961773    1.000067

      enodes     .2230905   .1979079    -1.69   0.091      .039207      1.2694

       nodes     .9982625   .0343654    -0.05   0.960     .9331296    1.067942

      gradd2            1  (omitted)

      gradd1     1.916974   .9406846     1.33   0.185       .73269    5.015476

       grade     .9691075   .3363496    -0.09   0.928     .4908448    1.913373

        size     1.016248   .0058679     2.79   0.005     1.004812    1.027814

        meno     1.856089   .5836122     1.97   0.049       1.0022    3.437503

         age     .9746729    .016991    -1.47   0.141     .9419337     1.00855

                                                                              

          _t   Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =    -476.2825                     Prob > chi2     =    0.0000

                                                   LR chi2(10)     =     46.77

Time at risk    =  977.5222414

No. of failures =           98

No. of subjects =          277                     Number of obs   =       277

Cox regression -- Breslow method for ties

note: gradd2 omitted because of collinearity

   analysis time _t:  id

         failure _d:  1 (meaning all fail)

. stcox age meno size grade gradd1 gradd2 nodes enodes pgr er hormon, nolog
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Table 3: Test for proportional hazard (PH) assumption 

 
 

From table 3 above, we clearly observe that two variables (menopause and gradd2) 

violate the proportional hazards assumption. 

The test for the individual predictors uses the unscaled Schoenfeld residuals, while 

the global test uses the scaled Schoenfeld residuals (Therneau, T. M. & P. M. 

Grambsch, 2000).  

4.3  Testing for the time variation 

 

In 1994, Hess proposed a test based and graphical approaches for exploring possible 

violations of Proportional Hazard assumption. A simple but informal method is by 
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estimating if the constant estimator of the PH-model lies in between the standard 

error (SE) bands of the dynamic estimation. 

A part from the graphical methods tests for the goodness-of-fit for the null hypothesis, 

           can also be used. Based on the Cox proposal, the goodness-of-fit is 

estimated by modifying the predictor                   of the following 

model; 

   |           {            }  and we test the null hypothesis          

using the likelihood-ratio statistic. 

Schonfeld (1980) suggested omnibus goodness-of-fit tests that compare the observed 

and expected frequencies of failure for a particular partition of time. It has been noted 

that the cubic regression spline approach that are based on fixed knots also allows for 

the formal testing of the proportional Hazard assumption. 

4.4   Assessment of time-varying effects 

4.4.1 Aalen Linear Hazards Model (ALHM) 

 

In his paper, (Aalen, 1980) proposed a generalized linear model for the estimation of 

time varying effects based on regression coefficients. Issues of assessment, testing 

and estimation of the model fit have been discussed in Aalen (1989 & 1993). The 

model is given as; 

 (        )                                                                          

The coefficients in the model vary with time,  . In checking for possible time-varying 

effects of the covariates, we use cumulated regression coefficients. The cumulative 

hazard function is obtained through integration of the hazard function and this yields; 
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            ∫  
 

 
             ∑   

 
   ∫        

 

 
 ∑   

 
                    

      is the cumulative regression coefficient for the     covariate and       is the 

baseline cumulative hazard function. 

4.4.2 Testing for time-varying effects 

 

We tested for the time varying effects using the Aalen model. Our hypothesis is; 

             for              . The results from the test portion are shown 

below; 
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Testing using weights equal to one yields only one significant test for the covariate 

effects. However, when we test using weights equal to the size of the risk set, we 

obtain three significant tests for the covariate effects. Test results using weights equal 

to the product of the Kaplan-Meier or just Kaplan-Meier weights and the inverse of 

_cons         1.338     0.181

hormon       -4.885     0.000

pgr          -3.448     0.001

enodes       -1.654     0.098

nodes        -2.194     0.028

gradd2       -5.093     0.000

grade         6.184     0.000

size          1.120     0.263

meno          2.993     0.003

age          -0.044     0.965

-----------------------------

Variable        z         P

(Kaplan-Meier Estimator at Time t-)/(Std. Dev of the Time-varying Coefficient)

Test 4: Uses Weights Equal to

_cons        -0.876     0.381

hormon       -2.758     0.006

pgr          -0.342     0.733

enodes        0.963     0.336

nodes         1.097     0.273

gradd2       -1.084     0.279

grade         1.057     0.291

size          1.277     0.202

meno          0.230     0.818

age          -0.148     0.882

-----------------------------

Variable        z         P

Kaplan-Meier Estimator at Time t-

Test 3: Uses Weights Equal to

_cons        -0.379     0.705

hormon       -3.570     0.000

pgr          -1.736     0.083

enodes        0.637     0.524

nodes         1.154     0.249

gradd2       -1.165     0.244

grade         2.225     0.026

size          2.468     0.014

meno          1.736     0.083

age          -1.138     0.255

-----------------------------

Variable        z         P

the Size of the Risk Set

Test 2: Uses Weights Equal to

_cons        -0.898     0.369

hormon       -2.291     0.022

pgr          -0.039     0.969

enodes        0.973     0.331

nodes         1.070     0.285

gradd2       -1.029     0.303

grade         0.664     0.507

size          0.750     0.453

meno         -0.049     0.961

age           0.060     0.952

-----------------------------

Variable        z         P

1.0

Test 1: Uses Weights Equal to

..

Obs:    277

Model:  age meno size grade gradd2 nodes enodes pgr hormon

-------------------------------------------

Graphs and tests for Aalen's Additive Model

note: gradd1 dropped because of collinearity

>  nograph

. stlh age meno size grade gradd1 gradd2 nodes enodes pgr hormon, test(1 2 3 4)



 

 35   

the estimated standard deviation of B(t) shows that only one test is significant for the 

covariate effects. 

4.5  Simulation 

Simulation studies have been used in evaluating the performance and properties of the 

statistical models (Burton, Altman, Royston, & Holder, 2006). In the field of survival 

analysis either weibull distribution (that makes an assumption of a monotonically 

decreasing or increasing hazard) or the exponential distribution (that makes an 

assumption of constant hazard function) are implemented and used. In the analysis of 

cancer data, a turning point is in most cases observed in the hazard function. 

We simulated survival times from a penalized model with an increasing hazard ratio. 

We first generated a binary treatment group indicator by incorporating a constant 

treatment effect. The seed for reproducibility was set and we conducted 100, 250, 

500, 1000 and 5000 replicates in order to analyze the bias and convergence of the 

estimate of the treatment effect. The model was defined as; 

                                

We simulated a single data set and fitted a flexible (penalized) parametric survival 

model that allowed for time-dependent hazard ratio for the effect of treatment. 

 

Figure 6: Time-dependent hazard ratio 
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4.5.1 Numerical Results 

In this section we applied simulation data in order to check on the asymptotic 

properties as well as the performance of the penalized spline model. Using    as the 

independent variable generated from a uniform distribution on the interval [0, 1] we 

created the dependent variable    such that                where    

Is the error term distributed as; 

i) Normally distributed with mean zero and variance 0.05. 

ii) Exponentially distributed with mean 2. 

iii) Having a Cauchy distribution with scale 0.02 and location 0. 

Table 4: Results of AMSE for n=100, 250, 500 and 1000 

 



 

 37   

Table 4 shows the results for AMSE based on different values of τ that is, when τ=0.5, 

0.25, 0.1 and 0.01. The quantile performance of the penalized spline model with a 

normally distributed error term is good at all values of τ. However, the AMSE with 

the Cauchy distribution is very small τ=0.5 implying presence of a robust estimator. 
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CHAPTER 5 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

 

5.1  Discussion 

In this paper we propose the use of penalized splines in order to check, detect and 

model the time-varying effects in survival data within the context of Cox PH 

framework. The model allows for formal testing of the time-varying effects using 

standard methods. In our simulation study, we observe consistency with a high degree 

of checking and detecting time-variation. The graphical test for the PH assumption is 

subject to bias and is very difficult to use when a categorical prognostic factor with 

many values is given. 

Penalized spline model provides a useful tool for the analysis of survival data with no 

pre-defined information on the time-varying effect and where the PH assumption 

seems to be doubtful. 

5.2  Conclusions 

In the analysis of larger studies of censored data with long term follow-up, the usual 

common standard techniques such as Cox model (Cox, 1972) may not be appropriate 

due to violation of the proportional hazard assumption that is caused by the time-

varying effects. By ignoring the presence of such time-varying effects one may end 

up with incorrect models coupled with biased conclusions as a result of misleading 

effect estimates. Appropriate modeling of the shapes of the covariates is very 

important since „incorrect‟ shapes of the time varying effects could result to 

misleading conclusions just as erroneously assuming the proportional hazard. 

Previous studies have shown varying tests and models for the time-varying effects. 

Cox (1972) proposed a transformation of time which formed a basis for testing and 
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assessing the non-PH, a method that heavily relies on the choice of the time 

transformation. In this paper we proposed the use of penalized splines in order to 

disclose and model effects of survival data within the context of cox model 

framework. The model allows for easy testing of time variation in the presence of 

effects using standard methods such as likelihood ratio test. However, although the 

penalized splines (PS) provide a flexible fit, they still suffer from the same 

restrictions that affect other non-linear smooth functions such as Fractional 

Polynomials. 

5.3  Recommendations 

Several advanced techniques such as fractional polynomial (FP) and restricted cubic 

spline (RCS) have been proposed. Many of such models have however experienced 

both technical and theoretical setbacks. The approaches have for instance fallen short 

of building multivariable model strategies for the selection of time-varying effects. 

Future research should thus employ a larger simulation data to study the properties of 

the various approaches and provide comparisons of the different techniques for 

selection and modeling time-varying effects. 
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APPENDIX 

Stata codes 

estat phtest, detail 

graph combine stphplot stcoxkm 

graph combine stphplot stcoxkm 

graph combine stphplot stcoxkm 

graph combine stphplot stcoxkm 

graph combine stphplot stcoxkm 

qui stcoxkm, by(gradd1) legend(cols(1)) title(Kaplan-Meier Survival Estimate) caption(Fig. 2: stcoxkm 

for gradd1) name(stcoxkm, replace) 

qui stcoxkm, by(gradd2) legend(cols(1)) title(Kaplan-Meier Survival Estimate) caption(Fig. 2: stcoxkm 

for gradd2) name(stcoxkm, replace) 

qui stcoxkm, by(grade) legend(cols(1)) title(Kaplan-Meier Survival Estimate) caption(Fig. 2: stcoxkm 

for grade) name(stcoxkm, replace) 

qui stcoxkm, by(hormon) legend(cols(1)) title(Kaplan-Meier Survival Estimate) caption(Fig. 2: stcoxkm 

for hormon) name(stcoxkm, replace) 

qui stcoxkm, by(meno) legend(cols(1)) title(Kaplan-Meier Survival Estimate) caption(Fig. 2: stcoxkm 

for meno) name(stcoxkm, replace) 

qui stphplot, by(gradd1) title(Kaplan-Meier Survival Estimate) caption(Fig. 1: stphplot for gradd1) 

name(stphplot, replace) 

qui stphplot, by(gradd2) title(Kaplan-Meier Survival Estimate) caption(Fig. 1: stphplot for gradd2) 

name(stphplot, replace) 

qui stphplot, by(grade) title(Kaplan-Meier Survival Estimate) caption(Fig. 1: stphplot for grade) 

name(stphplot, replace) 

qui stphplot, by(hormon) title(Kaplan-Meier Survival Estimate) caption(Fig. 1: stphplot for hormon) 

name(stphplot, replace) 
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qui stphplot, by(meno) title(Kaplan-Meier Survival Estimate) caption(Fig. 1: stphplot for meno) 

name(stphplot, replace) 

stcox age meno size grade gradd1 gradd2 nodes enodes pgr er hormon 

stcox age meno size grade gradd1 gradd2 nodes enodes pgr er hormon, nolog 

stcoxkm, by(meno) legend(cols(1)) 

stcoxkm, by(meno) legend(cols(1)) title(Kaplan-Meier Survival Estimate) 

stcoxkm, by(meno) legend(cols(1)) title(Kaplan-Meier Survival Estimate) caption(Fig. 2: stcoxkm for 

meno) 

stphplot, by(meno) 

stphplot, by(meno) 

stphplot, by(meno) title(Kaplan-Meier Survival Estimate) 

stphplot, by(meno) title(Kaplan-Meier Survival Estimate) caption(Fig. 1: stphplot for meno) 

Simulation 1 

set seed 36577538 

set obs 1000 

gen trt=rbinomial(1,0.5) 

survsim stime event, dist(weibull) cr ncr(2) lambdas(0.1 0.1) gammas(1.5 0.5) cov(trt-0.5 0.5) 

replace event=0 if stime>15 

stset stime, failure(event==1) 

streg trt, didt(w) nohr nolog noheader 

stcompet ci1=ci, compet1(2) by(trt) 

stset stime, failure(event==2) 

streg trt, dist(w) nohr nolog noheader 

stcompet ci2=ci, compet1(1) by(trt) 

 


