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Abstract 

In this study, the turbulent fluid flow problem of a conducting fluid past an 

infinite porous vertical plate in a rotating system is investigated. Hall currents, 

mass transfer and Joule’s heating are accounted for in the present study. A 

deviation from the laminar flow, non–porous medium, Hall currents and Joule’s 

heating is sought. Mathematical formulation in which turbulence is approximated 

using Prandtl mixing hypothesis is constructed. The final set of partial differential 

equations obtained is resolved into difference equations using the forward time 

central space finite difference method. A computer program in matlab is used to 

iteratively solve the resultant difference equations.  The solutions obtained are 

presented in form of graphs. The effect of various non–dimensional parameters on 

the flow profiles are discussed and physical interpretation given. Mass transfer, 

rotation, Hall currents and Joule’s heating are found to have profound effect on 

the primary velocities, secondary velocities, temperature and concentration 

profiles. The rotational parameter and Hall parameter are found to inhibit the 

primary velocities while enhancing the secondary velocities. Injection enhances 

all the flow variables while suction inhibits all flow variables. Results reported in 

the present study follow expected trends and are in good agreement with some of 

the previous studies.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

A fluid is a substance that resists an applied compressive stress, but continually 

deforms (or flows) under an applied shear stress, regardless of the magnitude of 

the applied stress. Magnetohydrodynamics (MHD) is the study of the low 

frequency interaction between electrically conducting fluids and magnetic fields 

(Schnack, 2009). In such models it is assumed that the Maxwell displacement 

current is neglected and the fluid is treated as a continuum (Calvert, 2002). 

The MHD problem is of great interest in current trends in mathematical 

modelling. This is due to its many applications in engineering problems e.g. MHD 

generators, plasma studies, nuclear reactors, oil exploration, geothermal extraction 

and boundary layer control in the field of aerodynamics. 

MHD essentially involves the motion of an ionised fluid in a magnetic field. This 

leads to an inclusion of the Lorentz force in the equation of motion. A solution for 

the MHD problem in which mass, heat, velocity and concentration are transferred 

past a porous plate in a rotating system is sought. In the present study the problem 

is introduced, relevant literature reviewed, a mathematical model formulated for 

the problem, the arising partial differential equations numerically solved and the 

results obtained discussed. 
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1.2 The Geometry of the Problem 

The current problem is that of a turbulent flow past an infinite vertical porous 

plate in a rotating system. Letting the vertical plate be in the ݔ െ  plane, a strong ݖ

constant magnetic field, ܪ଴, is applied along the ݕ െ axis as shown in Figure 1. 1  

below. 

 

 

It is assumed that initially the plate and the fluid are in a rigid body rotation with 

constant angular velocity, Ω, about the ݕ െ  .ݏ݅ݔܽ

1.3 The Physics of the Problem 

1.3.1 Electromagnetic Induction 

According to Faraday’s law of electromagnetic induction, a conductor moving in a 

magnetic field will have an electric current induced in it (Serway and Jewett, 

2004). Further, the induced current is maximised when the direction of motion is 

perpendicular to the applied magnetic field. 

଴ܪ

ܷ 

ܹ

ݖ

ݕ

 ݔ

Ω

Figure 1. 1: A diagrammatic representation of the MHD flow problem 
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In a similar manner, if an ionised fluid flows through a magnetic field, then 

current is induced in the fluid. The current radiating per unit area is called the 

current density, ࡶ. The force due to the interaction of the magnetic and electric 

fields is called Lorentz force. 

1.3.2 The Hall Effect 

Hall Effect is a phenomenon observed when a body of free charged particles is in 

a magnetic field. As per this phenomenon, there is a redistribution of charges in 

the body so as to set up a potential difference across its cross-section. 

Since the fluid in question is moving in the ݔ െ and ݕ െ plane, the ions and 

electrons in the fluid will experience Hall Effect just like that experienced by the 

body. The redistribution of charges, according to Lenz’s law of electromagnetism, 

will be in opposition of the fluid motion. The effect then will be to retard the 

motion. The kinetic energy of the particles reduces and this energy is dissipated as 

heat. 

1.4 Statement of the problem 

A study of the effect of various fluid parameters on the flow variables of MHD 

turbulent flow past an infinite vertical porous plate in a rotating system is carried 

out. The fact that the plate is porous implies that there will be diffusion of the 

fluid (mass transfer) across the plate. This will depend on concentration gradient 

leading to either injection or suction. An extension of the work of Mutua et al 

(2013) by considering the porosity of the plate or the work of Das et al (2011) but 

in a rotating system is sought. 

An approximate solution to the problem using the forward time central space 

(FTCS) finite difference method (FDM) is obtained. The velocity (primary and 
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secondary), temperature and concentration profiles is obtained as variables of time 

 A comparison between the present results and the theoretical .(ݕ) and space (ݐ)

results of  Das et al (2011) and Mutua et al (2013) is carried out. 

1.5 Objectives of the Study 

1.5.1 General Objective 

 To investigate the effect of the Hall currents, Joule’s heating, mass transfer 

and heat transfer on the MHD turbulent flow past an infinite vertical 

porous plate in a rotating system. 

1.5.2 Specific Objectives 

(i) To mathematically develop the final set of governing partial differential 

equations for the MHD problem from the physical laws of hydrodynamics 

and electromagnetism. 

(ii) To solve the final set of governing partial differential equations numerically 

using a computer program. 

(iii) To determine the effect of the fluid properties (e.g. Prandtl number, Hall 

parameter, Schmidt number and rotational parameter) on the flow variables. 

1.6 Justification 

It is difficult to fully explain many physical phenomena. Even when an 

explanation exists, the mathematical prediction may not be exact since there are 

many assumptions. In most MHD studies, the assumption is that the flow is 

streamlined and laminar. In the current problem a deviation from this is sought as 

turbulence is taken into account. We also take into account the porosity of the 
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plate as well as the effect of a rotating system. Further, the Hall currents and 

Joule’s heating are factored into previous models to give a model which is closer 

to the physical phenomenon of MHD. 

The fact that MHD borrows from the same principle as the electrical generators, 

there is hope that by further study of MHD problems a future source of electricity 

may be found. This is so because the world we live in is surrounded by fluids (air) 

that can be tapped into to generate electricity. Other applications of MHD are 

plasma studies, nuclear reactors, oil exploration, geothermal extraction and 

boundary layer control in the field of aerodynamics. Due to these applications the 

field of MHD is an active area of study. Reduction of the number of assumptions 

yields closer predictions to the physical phenomenon of MHD. 

In the next chapter, relevant literature is reviewed and the current MHD fluid flow 

problem placed in context. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview 

In this chapter, we review relevant literature with the intension of placing the 

current problem in its context. We start by reviewing some studies involving 

porous plates; we then proceed to review those studies done in view of rotating 

systems and finally place the current study in the context of these studies. By so 

doing, we shall be showing the gap we are trying to bridge. 

2.2 Early Developments 

The study of MHD may be traced back to 1832 when Faraday attempted to 

measure currents of the River Thames which he believed was due to the moving 

ions in the water and the earth’s magnetic field. Following the disagreements 

between engineering experiments and mathematical theory, Prandtl (1904) 

introduced the very important theory of boundary layers. Theoretical predictions 

and experimental results have been in closer agreement following the boundary 

layer theory. Then there was Hartmann (1937) who besides engineering the 

Hartmann pump also developed the theory of mercury dynamics (Hg-dynamics). 

This revolved around the physics of mercury flow in a magnetic field. However 

greater advances in MHD theory came about after Alfven (1942) discovered the 

Alfven waves. MHD has since seen great developments in both theory and 

experiment. The MHD physical problem is still active and more theories are still 

emerging. 
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2.3 Studies Involving Porous Plates 

Hasimoto (1957) initiated the studies involving MHD flow past porous plates 

when he studied boundary layer growth on a flat plate with uniform suction or 

injection. Later, Mansuti et al (1993) discussed the steady flow of a non–

Newtonian fluid past a porous plate with suction or injection. 

Sharma and Pareek (2002) explained the behaviour of steady free convective 

MHD flow past a vertical porous moving surface. Makinde et al (2003) also 

discussed the unsteady free convective flow with suction on an accelerating 

porous plate. Following this, Das et al (2007) investigated numerically the 

unsteady free convective flow past an accelerated vertical porous plate with 

suction and heat flux. More recently, Das et al (2011) studied the mass transfer 

effects on unsteady hydromagnetic convective flow past a vertical porous plate in 

a porous medium with heat source. 

2.4 Studies Involving Rotating Systems 

Gupta and Soundalgekar (1975) having found that previous studies failed to yield 

the correct asymptotic solution for velocity distributions, studied the 

hydromagnetic flow and heat transfer in an infinite plate past a rotating porous 

wall. Kinyanjui et al (1998) studied the Stokes problem of convective flow past a 

vertical infinite plate in a rotating fluid. 

Later, Kwanza et al (2003) analyzed MHD Stokes free convection flow past an 

infinite vertical porous plate subjected to constant heat flux with ion slip current 

and radiation absorption. Chaudhary (2006) studied combined heat and mass 

transfer effects on MHD free convection flow past an oscillating plate imbedded 

in porous medium. 
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More recently, Ghosh and Ghosh (2008) studied the hydromagnetic rotating flow 

of a dusty fluid near a pulsating plate with several limiting case studies. Marigi et 

al (2012) analysed the hydromagnetic turbulent flow past a semi-infinite vertical 

plate subjected to heat flux. Mutua et al (2013) studied the Stokes problem of a 

free convective flow past a vertical infinite plate in a rotating fluid with Hall 

currents in the presence of a variable magnetic field. 

2.5 Current Problem 

Currently, a study of the MHD problem of a rotating fluid past a porous plate is 

carried out. The present problem takes into account a porous plate, Hall currents 

and Joule’s heating, therefore, extending the work of Das et al (2011) but in a 

rotating system and the work of Mutua et al (2013) but taking into account a 

porous plate. The study is intended to investigate the effects of heat transfer, mass 

transfer and Joule’s heating on velocity, temperature and concentration profiles of 

the suggested fluid flow problem. 

In the next chapter we formulate a mathematical model corresponding to the 

MHD flow problem described in section 1.4. 
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CHAPTER THREE 

GOVERNING EQUATIONS 

3.1 Overview 

In this chapter, a mathematical model for the physical problem described in 

section 1.4 is formulated. As many physical variables as are mathematically 

possible to solve are taken into account. However, many physical problems 

provide mathematical challenges and it is instructive to make some physically 

meaningful assumptions to reduce the problem into a solvable one. The general 

equations are first developed, these equations are then reduced by making 

assumptions, non-dimensional parameters are adopted into the equations to reduce 

them even further and finally turbulence and porosity are introduced. This yields 

the final set of governing equations for the model. 

3.2 Assumptions and Approximations 

It is very difficult to describe a physical phenomenon like MHD mathematically. 

To arrive at the final governing equations several assumptions and approximations 

are made. Here is a summary of the most prominent of them: 

(i) The ratio of the square of the fluid velocity V  and that of the square 

of the velocity of light c is negligibly small i.e. 
2

2
1

V

c

 
 
 

 . 

(ii) The fluid is assumed to be incompressible hence the density of the 

fluid is assumed a constant of both time and space. 

(iii) There is no chemical reaction taking place in the fluid. 
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(iv) A short circuit problem where no charges accumulate is considered. 

Thus electrostatic force, e E , is negligible. 

(v) The displacement current, ࡰ, is negligible with respect to the electric 

current density, ࡶ. 

(vi) The plate is non-conducting. 

(vii) The Magnetic Reynolds number is very large implying that magnetic 

diffusion is negligible. 

(viii) The magnetic field is considered relatively strong and constant. 

(ix) The ion–slip currents are negligible. The applied magnetic field is not 

sufficiently strong to cause appreciable ion–slip currents 

(x) The stress tensor for the magnetohydrodynamic problem is 

approximated to its hydrodynamic analogue. 

(xi) Turbulence in the flow is approximated using the Prandtl mixing 

hypothesis. 

3.3 General Governing Equations 

3.3.1 Equation of Continuity 

The equation of continuity arises from the principal of conservation of mass. This 

requires that, under normal conditions mass can neither be created nor destroyed 

(Hughes and Gaylord, 1964). 

Considering an infinitesimal fluid element of volume, dV , the mass of the 

volume element, M , becomes: 

M d  V  (3.3.1) 
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In the event that there are no sources or sinks of mass within the element, dV , 	

dM

dt
 is just the rate at which mass enters or leaves through the surfaces enclosing 

dV . The mass flux through an infinitesimal surface element dS  is V , where 

V  is the velocity. This implies that the total rate of flow of mass out of the 

volume element is given by: 

V S

d
d d

dt
     V SV  (3.3.2) 

Using Gauss’ theorem in the R.H.S of equation (3.3.2), one has: 

 
V

V

d d
t

 
  



  VV V  (3.3.3) 

Since equation (3.3.3) holds for all arbitrary infinitesimal volumes it can be 

simplified to: 

  0
t

 
 


V  (3.3.4) 

Equation (3.3.4) is easily reduced by the assumption that the fluid is 

incompressible to become: 

0 V  (3.3.5) 

3.3.2 Equation of motion 

This is also known as the equation of momentum (Versteeg and Malalasekera, 

2007). It relies on both Newton’s second law of motion and the principle of 

conservation of momentum. Newton’s second law of motion states that the rate of 

change of momentum is directly proportional to the net force causing the change 

and is in the direction of that resultant force. On the other hand the principle of 
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conservation of momentum requires that the total momentum remain the same 

when two or more bodies interact provided there is no external forces act. For a 

unit volume, this can be stated as: 

d

dt
 

V
F  (3.3.6) 

The net forces per unit volume are represented by letter F  in Equation (3.3.6). 

These forces are classified into body forces and surface forces. 

3.3.2.1 Body Forces 

These are the forces that act throughout the body of a fluid element. They usually 

originate at a distance but affect the body’s state of motion. In MHD, the body 

forces are the gravitational force and the electromagnetic forces. Both of these 

affect the present MHD problem. 

3.3.2.1.1 Gravitational Force 

Due to the geometry of the present problem the gravitational force will affect the 

flow properties of the fluid. The gravitational force per unit volume is given by: 

F g  (3.3.7) 

3.3.2.1.2 Electromagnetic Forces 

The electromagnetic forces are composed of the electrostatic forces that depend 

on the net charge density and the Lorentz force that is determined by the 

interaction between the moving charged particles and the magnetic field. The 

electric force per unit volume is given by: 

qF E  (3.3.8) 
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The Lorentz force on the other hand is given by: 

 F J B  (3.3.9) 

Here J  is the current density given by: 

n q  


 J V  (3.3.10) 

The sum is taken over all species of charged particles. In the present case two 

types of particles (electrons and singly charged positive ions) are considered. 

Assuming that the fluid is partially ionized, there are no neutral fluid particles. 

A quasi–neutral the fluid is considered. This implies that the net charge density is 

negligibly small and hence electric force can be neglected. 

3.3.2.2 Surface Forces 

This forces act normally across the surface of a fluid element. Consider a fluid 

element of volume dV . The fluid element is enclosed by surfaces. The fluid 

beyond this element exerts a force backwards onto the element hence compressing 

it. Considering a surface element dS  we have the total force acting on the 

element given by: 

S

d  f P S  (3.3.11) 

Employing Gauss’ theorem we have: 

.
V

d  f P V  (3.3.12) 

In the limit 0V we have the force per unit volume given by: 

 F P  (3.3.13) 
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P  in equation (3.3.13) is the stress tensor and can be decomposed as: 

p P I Π  (3.3.14) 

Following Schnack (2009), the viscous stress tensor, Π , is given by: 

2

3
T         

 
Π V V I V  (3.3.15) 

This implies that the viscous force, Π , becomes: 

 2 2

3         
 

F V V  (3.3.16) 

In light of equation (3.3.5), the second term in the parenthesis of equation (3.3.16) 

vanishes. Now equation (3.3.16) becomes: 

2
  F V  (3.3.17) 

3.3.2.3 Complete Equation of Motion 

Factoring the body forces and the surface forces into equation (3.3.6) and using 

the total time derivative definition,    d

dt t

     
ζ V ζ , we have: 

2
q p

t
               

V
V V g E J B V  (3.3.18) 

Equation (3.3.18) can be reduced further by the condition that the electrostatic 

force, q E , is negligibly small when compared to the Lorentz force, J B . This 

is so because at all feasible lengths of MHD the net electric field is negligible. 

Therefore, upon neglecting q E  from equation (3.3.18) the equation of motion 

becomes: 
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2p
t

             
V

V V g J B V  (3.3.19) 

Following Greenspan (1963) the Coriolis force ( 2 Ω V ) due to rotation is 

introduced to equation (3.3.19) as follows: 

22 p
t

               
V

V V Ω V g J B V  (3.3.20) 

Equation (3.3.20) is the complete equation of motion of the MHD flow problem. 

3.3.3 Energy Equation 

The energy equation is as a result of the first law of thermodynamics. This asserts 

that energy can neither be created nor destroyed but transformed from one form to 

another. This is obtained by starting with the well known conduction equation 

then adding the viscous dissipation and the Joule’s heating. The conduction 

equation is given by: 

2
p

T
C T k T

t
       

V  (3.3.21) 

Adding the viscous dissipation, :Π V , and Joule’s heating, 
2J


, to equation 

(3.3.21) one obtains: 

2
2 :p

JT
C T k T

t 
    

 

      


Π VV  (3.3.22) 

3.3.4 Mass Transfer Equation 

The mass transfer equation relies on the concentration of a species in a mixture. It 

satisfies the principle of mass conservation but for each of the species in the fluid. 
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With D  being the diffusion coefficient, we have the concentration equation given 

by: 

2dC
D C

dt
   (3.3.23) 

Performing the total time derivative on the L.H.S of (3.3.23) yields: 

2C
C D C

t


   


V  (3.3.24) 

3.4 Component Form of the General Governing Equations 

Equations (3.3.5), (3.3.20), (3.3.22) and (3.3.24) comprise the equations 

governing the MHD flow problem. The four equations are summarized as follows: 

2

2
2

2

0

2

:p

p
t

T J
C T k T

t

C
C D C

t

  




 

            
         


   



V

V
V V Ω V g J B V

V Π V

V

 (3.4.1) 

We next write equations (3.4.1) in their respective component form. Starting with 

0 V and defining ˆˆ ˆui vj wk  V , we write: 

0
u v w

x y z

  
  

  
 (3.4.2) 

Since there is no velocity component in the ݕ െ  and that the plate is ݊݋݅ݐܿ݁ݎ݅݀

infinite, equation (3.4.2) reduces to: 

0
u w

x z

 
 

 
 (3.4.3) 



 

17 
 

We proceed to obtain the component form of the equation of motion using 

Boussinesq’s approximation that asserts the following: 

(i) All the fluid properties except for the density,  , are treated as 

constants. 

(ii) The variation in density is negligible except when it directly causes 

buoyancy forces. 

(iii) The density varies linearly with temperature and the deviation from a 

reference value, 0 , is small. 

These together with the fact that the pressure gradient in the x   and z  directions 

is vanishingly small result in the component form the equation of motion in 3 D  

breaking into two parts given by: 

2 2 2

0 2 2 2

0

2 2 2

2 2 2

2

2

z

x

u u u u u u u
u v w w B J

t x y z x y z

w w w w pu v w u B J g
t x y z y

w w w

x y z

 

 



        
                    

                  
   

      

 (3.4.4) 

The vertical pressure gradient is related to the free stream density as (Archimedes 

principle): 

p
g

z



 


 (3.4.5) 

Substitution of relations (3.4.5) into relations (3.4.4) yields: 
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 

2 2 2

0 2 2 2

0

2 2 2

2 2 2

2

2

z

x

u u u u u u u
u v w w B J

t x y z x y z

w w w w
u v w u B J g

t x y z

w w w

x y z

 

  





        
                    

    
            

   
      

 (3.4.6) 

The density difference is a consequence of buoyancy and is therefore expressed in 

terms of the volume coefficient of expansion,  , and the concentration coefficient 

of expansion, C . Following Incropera and Dewitt (1985) we have the relations: 

 
     

   
       1

1C C

T T
T T

C C
C C

  
    



  
     




 




 




    



 
     



 (3.4.7) 

In relations (3.4.7)   is the thermal contribution factor while 1   is the 

concentration contribution to buoyancy.  Summing up the relations (3.4.7) we 

obtain the difference in densities as: 

   CT T C C              (3.4.8) 

Substituting equation (3.4.8) into relations (3.4.6) one obtains: 

   

2 2 2

0 2 2 2

0

2 2 2

2 2 2

2

2

z

x

C

u u u u u u u
u v w w B J

t x y z x y z

w w w w
u v w u B J

t x y z

g T T C C

w w w

x y z

 



  



 

        
                    

    
          

     
   

      

 (3.4.9) 

Due to the geometry of the problem all derivatives w.r.t x  and z  vanish. There is 

no y  component of the velocity. Equations (3.4.9) then reduce to: 
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   

2
0

2

2
0

2

2

2

z

x
C

u B J u
w

t y

w B J w
u g T T C C

t y




  
  

  
   

 

 
          

 (3.4.10) 

Following Schlchiting (1979), the viscous dissipation term :Π V  in the energy 

equation given by: 

 

2 2 22 2 2

: 2
u v w u v v w w u

x y z y x z y x z

                                                                

Π V

2 2
u w

y y

     

           
 (3.4.11) 

Substituting (3.4.11) into the energy equation and using the fact that all 

derivatives w.r.t x  and z  vanish, the energy equation in component form 

becomes: 

 
2 22

2 2
2

1
p x z

T T u w
C k J J

t y y y
 



       
                

 (3.4.12) 

Similarly the concentration equation becomes: 

2

2

C C
D

t y


 
 

 (3.4.13) 

Equations (3.4.3), (3.4.10), (3.4.12) and (3.4.13) give the general governing 

equations in component form. 

3.5 Turbulence Effects 

Above some critical Reynold’s number, crRe , all fluid flows become turbulent. 

The flow variables e.g. velocity, pressure and temperature undergo chaotic 
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fluctuations. Several approaches have been suggested to deal with the turbulence 

phenomenon (Del Sordo et al, 2013). Among them is the Reynold’s Averaged 

Navier Stokes (RANS) which we shall be using. In this approach, the flow 

variable is decomposed into an average (taken over an appropriate time interval) 

and a perturbation to take care of the fluctuations. Taking   as the flow variable, 

one has: 

      (3.5.1) 

Where   is the average value and    is the perturbation due to the fluctuations. 

After the perturbative treatment of every flow variable, we next average the entire 

equation over the time interval, t  . Some of the guidelines in Reynold’s 

Averaging are: 

,

, ,

, ,

     

       

    
 

    

    

 
  

 

C C  (3.5.2) 

In equation (3.5.2) C  is an arbitrary constant while   is an independent variable. 

3.5.1 The Continuity Equation with Turbulence 

Taking the turbulence perturbation into equation (3.4.2) we write: 

      0

Upon averaging:

0

u u v v w w
x y z

u v w

x y z

         
  

  
  

  

 (3.5.3) 

Since there is no varying ݕ െcomponent of velocity and, because the plate is 

infinite, derivatives along ݔ and ݖ are identically zero, we have: 
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0
u w

x z

 
 

 
 (3.5.4) 

3.5.2 The Equation of Motion with Turbulence 

Allowing the turbulence perturbation into equation (3.4.9), we have: 

         

     

     

         

     

   

2 2 2

0 2 2 2

0

2

2

2

2

z

x C

u u u u u u v v u u
t x y

w w u u w w
z

B J u u u u u u
x y z

w w u u w w v v w w
t x y

w w w w u u
z

B J g T T C C

x







  



 

                 
          

                
                 

         
 

      





     

2 2

2 2
w w w w w w

y z

           

 (3.5.5) 

In equation (3.5.5) the temperature and concentration fluctuations have been 

neglected. Noticing that derivatives along ݔ and ݖ are identically zero, we average 

the pair of equations to get: 

   

2
0

2

2
0

2

2

2

z

x
C

u u B J u vu
v w

t y y y

w w B J w vw
v u g T T C C

t y y y




  
  

    
     

   

   
              

 (3.5.6) 

Although there is no ݕ െcomponent of velocity, we assume a small drag velocity, 

ov , due to injection or suction. In equations (3.5.6) the last terms on the R.H.S 

involve mixtures of velocities. This can be simplified by employing Prandtl 

mixing length hypothesis which asserts (McComb, 1990): 
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2

2 2

2 2

v
vw l

z

v
z

z

v
vw z

z

 





     
     
      

 (3.5.7) 

Where l z  and   is the von Karman constant in relation (3.5.7). 

In a similar way we have: 

2 2

2 2

u
vu y

y

w
vw y

y





 
    

 
    

 (3.5.8) 

Substituting relations (3.5.8) into equations (3.5.6) yields: 

   

22 2
2 20

2 2

2
0

2

2 2
2 2

2

2 2

2

2

z

x
C

u u B J u u u u
v w y y

t y y y y y

w w B J w
v u g T T C C

t y y

w w w
y y

y y y

 


  




 

           
                      

  
            

       
              

 (3.5.9) 

3.5.3 The Energy Equation with Turbulence 

Applying the same procedure as we did for continuity and momentum equations 

to (3.4.12) and including the term, 
T

v
y




, due the total time derivative on the 

L.H.S we obtain: 

 
2 22

2 2
2

1
p x z

T T T u w
C v k J J

t y y y y
 



          
                      

 (3.5.10) 



 

23 
 

In the above equation we set T T  to imply that the temperature fluctuations are 

negligible. 

3.5.4 The Concentration Equation with Turbulence 

The concentration, C , just like the temperature, will be negligibly perturbed. 

Applying the perturbation procedure to equation (3.4.13) and including the term, 

C
v

y




, due the total time derivative on the L.H.S we obtain: 

2

2

C C C
v D

t y y

  
 

  
 (3.5.11) 

Again the fluctuation of the concentration is taken to be negligibly small in 

equation (3.5.11). 

3.6 Hall Current Effect 

3.6.1 General Ohm’s Law 

The generalized Ohm’s law that includes Hall currents, ion slip currents and 

electron pressure gradient is given as: 

 
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2

2

1

1

1

1 1
1

2

e
e e i i

e

p
ne

V
c

V
p

ne c

   



            
  

          
  

E V B
J J B

B B

E V B 

 (3.6.1) 

In MHD the assumption is that the fluid velocity is negligibly small compared to 

the speed of light i.e. 
2

2

1
1

2

V
V c

c
  . Further, considering a short circuit 

problem, 0E . For partially ionized fluids, the pressure gradient is negligible. 
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Last, the ion slip currents are too small since the mass of an ion is heavy and 

cannot lead to high cyclotron velocities i.e. 1i i
B
 . With these assumptions, 

equation (3.6.1) becomes: 

 e e     J J B V B
B

 (3.6.2) 

By the definition eB H  and the fact that we have a strong applied magnetic 

field, 0 0eB H B , equation (3.6.2) can be written as: 

 
0

e e
eH

     J J H V H  (3.6.3) 

Resolution of (3.6.3) into its component form yields the pair of equations: 

0

0

x e e z e

e e x z e

J J H w

J J H u

  
  

  
 

 (3.6.4) 

There is no current component in the ݕ െdirection since the applied magnetic field 

is along the same direction. Solving the system (3.6.4) of simultaneous equations 

in xJ  and zJ  and using the definition of the Hall parameter,  e em   , yields: 

 

 

0
2

0
2

1

1

e
x

e
z

H
J mu w

m
H

J mw u
m





 


 


 (3.6.5) 

Squaring both sides of (3.6.5) one obtains: 

2
2 2 2 2

0 2

2
2 2 2 2

0 2

1

1

x e

z e

mu w
J H

m

mw u
J H

m

 

 

    

    

 (3.6.6) 
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3.6.2 Momentum and Energy Equations with Hall Currents 

Substituting equations (3.6.5) into the equation of motion (3.5.9) we obtain: 

   
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              

 
            

        
                

 (3.6.7) 

Substituting equations (3.6.6) into the energy equation (3.5.10) one obtains: 
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   

2 22
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221
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T T T u w
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          
                    

     

 (3.6.8) 

3.7 Non–Dimensionalisation 

3.7.1 Importance of Non–Dimensionalisation 

Non–dimensionalisation has both the ability to reduce a complicated physical 

problem into a more feasible one for solutions and also enables the scientists work 

with models without limiting themselves to specific measurements and units 

(Schaschke, 1998). Theoretical solutions obtained in non–dimensional form are 

more flexible and free of units. In the present MHD problem, the dimensional 

form of the governing equations shall be given before embarking on the non–

dimensionalisation process. 
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3.7.2 Governing Equations in Dimensional Form 

A flow variable,  , is denoted as    in dimensional form. From equations (3.6.7)

, (3.6.8) and (3.5.11) we have the dimensional form of momentum, energy and 

concentration equations respectively as: 
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 (3.7.1) 
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      

 (3.7.2) 

* * 2 *
*
0* * *2

C C C
v D

t y y

  
 

  
 (3.7.3) 

In equations (3.7.1), (3.7.2) and (3.7.3) we dropped the bars above the velocities 

and replaced *v  with *
0v . The initial and boundary conditions given by: 

* * * * * * *

* * * * * * *
0 0

* * * * * *

0 : 0, 0, , Everywhere

0 : , , , At 0

: 0, 0, ,

w w

t u w T T C C

t u U w W T T C C y

u w T T C C As y

 

 

    

     

    

 (3.7.4) 
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3.7.3 Non–Dimensional Variables 

To allow for independence of units and scales, dimensionless groups are 

employed. The characteristic values for velocity, pressure, length, time and 

magnetic field are denoted by the letters U , P , L , t  and H  respectively. We 

define the following non–dimensional variables for the present MHD problem: 

* 2 * * * *
0

0

* * * *

* * * *

, , , , ,

,
w w

t U y U u v w
t y u v w

U U U

T T C C
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T T C C

 

  

 

    

 
 

 

 (3.7.5) 

With the dimensionless variables above, we evaluate: 
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 (3.7.6) 

Similarly we evaluate: 
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 (3.7.7) 

For the energy equation we evaluate the following: 
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 (3.7.8) 

For the concentration equation we evaluate: 
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 (3.7.9) 

Substituting relations (3.7.6) and (3.7.7) into equations (3.7.1) and dividing 

through by 
3U


 yields the momentum equations as: 
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 (3.7.10) 

Substituting relations (3.7.6), (3.7.7) and (3.7.8) into (3.7.2) and dividing through 

by  
2

* *p
w

C U
T T


   yields the energy equation as: 
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 (3.7.11) 

Substituting relations (3.7.9) into equation (3.7.3) and dividing through by 
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 (3.7.12) 

3.7.4 Common Non–Dimensional Numbers and Parameters in MHD 

Equations (3.7.10), (3.7.11) and (3.7.12) can be simplified further by employing 

common non–dimensional numbers and parameters. In this section we describe a 

few of these numbers and parameters that will be used in the current problem. 

3.7.4.1 Prandtl Number 

This number describes the ratio of momentum diffusivity to heat diffusivity. A 

high Prandtl number indicates that heat diffuses very slowly relative to 

momentum while a low Prandtl number indicates that heat diffuses very fast 

relative to momentum. A Prandtl number of about 1 implies that heat and 

momentum are diffused within the material at almost the same rate. The Prandtl 

number is given by: 

pC
Pr

k


  (3.7.13) 
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3.7.4.2 Grashof Number 

The Grashof number represents the ratio of buoyancy forces to viscous forces. It is 

given by: 

 
3

w
L

g T T
Gr

U

  
  (3.7.14) 

Due to relative similarities, we define the concentration variant of the Grashof 

number as: 

 
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C w
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g C C
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  
  (3.7.15) 

3.7.4.3 Eckert Number 

The Eckert number provides a measure of the kinetic energy of the flow relative to 

the enthalpy difference. It is given by: 

 
2

p w
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C T T




 (3.7.16) 

3.7.4.4 Schmidt Number 

The Schmidt number represents the ratio of momentum diffusivity to mass 

diffusivity. A high Schmidt number implies that mass transfer by diffusion is low 

compared to the momentum diffusion. A low Schmidt number on the other hand 

implies that mass transfer by diffusion is relatively high. The Schmidt number is 

given by: 

Sc
D


  (3.7.17) 



 

31 
 

3.7.4.5 Magnetic Parameter 

This is the ratio of the magnetic force to the viscous force. The magnetic 

parameter is given by: 

2 2
2

2
e oH

M
U

 


  (3.7.18) 

3.7.4.6 Rotational Parameter 

The rotational parameter is the ratio of angular kinetic energy to translational 

kinetic energy and is given by: 

2
Er

U


  (3.7.19) 

3.8 Final Set of Governing Equations 

With the non–dimensional quantities defined in equations (3.7.13) – (3.7.19) 

further simplification of the equation of motion (3.7.10), the energy equation 

(3.7.11) and the concentration equation (3.7.12) is attained as: 
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 (3.8.1) 
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2

0 2

1C C C
v

t y Sc y

  
 

  
 (3.8.3) 

Equations (3.8.1), (3.8.2) and (3.8.3) are the final governing equations of the 

MHD fluid flow problem described in section 1.4. The corresponding initial and 

boundary conditions are: 

0 : 0, 0, 0, 0

0 : 0, 1, 1, 1 0

: 0, 0, 0, 0

t U W C everywhere

t U W C at y

U V C as y







    

     

    

 (3.8.4) 

In the next chapter we develop a numerical scheme corresponding to the final set 

of governing equations in view of the boundary conditions. 
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CHAPTER FOUR 

NUMERICAL TECHNIQUE 

4.1 Overview 

The final set of governing equations: (3.8.1), (3.8.2) and (3.8.3) cannot be solved 

analytically since they are highly coupled and nonlinear. Together with the 

boundary conditions (3.8.4), a numerical solution is constructed using the finite 

difference method (FDM). The velocity, temperature and concentration are all 

functions of time  t  and space  y . There is, therefore, a necessity to discretize 

the time and space coordinates to form a solution mesh. In this chapter we discuss 

the solution mesh, the finite difference method, the difference equations and the 

resultant computer program. 

4.2 Computation Grid 

To begin the discretization process, we define the computation grid or mesh. This 

will be a rectangular mesh with the space co-ordinate along the horizontal axis 

and the temporal co-ordinate along the vertical axis. The space co-ordinate is 

subdivided into 1N   intervals of equal length y  so that there are N  nodal 

points. On the other hand, the temporal co-ordinate is subdivided into 1K   

intervals of equal length t  so that there are K  nodal points. 

Each of the nodal points is labelled by a pair of indices, j  and k . The functions 

u , w ,   and C  are evaluated at each nodal point. Below is a schematic diagram 

(Figure 4. 1) of the representative mesh. 
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4.3 Finite Difference Methods 

4.3.1 Temporal Partial Derivative 

Partial derivatives with respect to time are evaluated using the forward difference 

formula. This is so because we are interested with the future propagation of fluid 

properties given the initial condition (at time 0t  ). The set of final governing 

equations involve the first partial derivative with respect to time. Taking  ,t x  

to represent some fluid flow variable we have: 

1k k
j j

t t

   


 
 (4.3.1) 

Subscript j  corresponds to the thj  space node while superscript k  corresponds 

to the thk  temporal node. 

ݕ

 ݐ

0 

ሺ݇, ݆ሻ 

ሺ݇ ൅ 1, ݆ ൅ 1ሻ 

ሺ݇, ݆ ൅ 1ሻ ሺ݇, ݆ െ 1ሻ 

ሺ݇ ൅ 1, ݆ሻ ሺ݇ ൅ 1, ݆ െ 1ሻ 

 ݐ∆

ݕ∆

Figure 4. 1: Computation grid representation 
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4.3.2 Spatial Partial Derivative 

Partial derivatives with respect to the space co–ordinate y  are evaluated using the 

central difference formula. Since the final set of governing equations involves 

both the first order and second order partial derivatives, the forms for the variable 

 ,t x  are given as: 

 

1 1

2
1 1

22

2

2

k k
j j

k k k
j j j

y y

y y

 

  

 

 




 

 


 

 (4.3.2) 

Again the subscripts and superscripts have the same meaning as they do in section 

4.3.1. 

4.3.3 Mixed Temporal and Spatial Derivatives 

All the flow variables of interest in the current problem involve both temporal and 

spatial partial derivatives in the same equation. There are known methods for 

solving such equations. These are the fully explicit method, the fully implicit and 

the mixed implicit–explicit methods. 

The fully explicit method is also known as the forward time central space (FTCS) 

method while the fully implicit method is also known as the backward time 

central space (BTCS) method. There are many mixed implicit–explicit methods. 

The most common and most accurate of the mixed implicit–explicit methods is 

the Crank–Nicolson scheme. 

The BTCS and the Crank Nicolson schemes are independent of the ratio of the 

time and space width ratios. They are however very difficult to implement with 

highly coupled and nonlinear systems of equations. Since the final set of 
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governing equations are highly coupled and non–linear, the FTCS method is 

preferred in solving the present MHD fluid flow problem. 

We next highlight the FTCS method for solving the partial differential equation of 

the form: 

2

2
, , , ,f t y

t y y

  
   

     
 (4.3.3) 

Where   is the flow variable, t  the temporal co–ordinate, y  the spatial co–

ordinate and f  is an arbitrary function in equation (4.3.3). 

Given the partial differential equation (4.3.3), the FTCS requires f  to be 

evaluated at the present time level, k  (see Figure 4. 2). 

 

 

With the definition of the time derivative in equation (4.3.1), one writes: 

 ݕ

 ݐ

ሺ݇, ݆ሻ ሺ݇, ݆ ൅ 1ሻ ሺ݇, ݆ െ 1ሻ 

ሺ݇ ൅ 1, ݆ሻ

 ݐ∆

ݕ∆

Figure 4. 2: Grid of important points in explicit finite difference method. 
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   
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



   
     

  
       

 (4.3.4) 

kf  in equation (4.3.4) implies that all variables in the function f  are evaluated at 

time level k . This method is the easiest to use provided the flow variables are 

initially known. It is also appropriate for highly non-linear and highly coupled 

equations since all future variables are determined from already known prior 

variables. The fully explicit method has a shortcoming in that it is likely to be 

unstable for large step sizes. This means that the temporal space has to be finely 

subdivided for convergence. A fine mesh results in many steps and several 

iterations before convergence. 

4.3.4 Finite Difference Equations for the Present Model 

The final governing equations as set out in equations (3.8.1), (3.8.2) and (3.8.3) 

are highly coupled and non–linear. The easiest and most appropriate difference 

scheme to implement for the system of equations is the explicit method. The 

system of equations describes the evolution of velocity (both primary and 

secondary), temperature and concentration. In the subsections that follow we 

evaluate the finite difference schemes for these fluid properties. 

4.3.4.1 Velocity 

The velocity along the x axis ,  ,u t y  is the secondary velocity. Using the finite 

difference formulas defined in equations (4.3.1) and (4.3.2) and employing the 

explicit difference method defined by equation (4.3.4) one has: 
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 (4.3.5) 

Multiplying through by t  and using the ratios 1
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 equation (4.3.5) simplifies to: 
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 (4.3.6) 

For the primary velocity,  ,w t y  , the difference equation becomes: 
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 (4.3.7) 

Multiplying equation (4.3.7) through by t  and using the ratios 1
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 we obtain: 
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 (4.3.8) 

4.3.4.2 Temperature 

For the temperature,  ,t y , the difference form of equation (3.8.2) is given as: 
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 (4.3.9) 

Multiplying equation (4.3.9) through by t  and using the ratios 1
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 (4.3.10) 

4.3.4.3 Concentration 

For the concentration  ,C t x  the difference form of equation (3.8.3) is given as: 
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 (4.3.11) 
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Upon multiplying equation (4.3.11) through by t  and using the ratios 1
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Equations (4.3.6), (4.3.8), (4.3.10) and (4.3.12) are the difference forms of the 

secondary velocity, primary velocity, temperature and concentration. In this form 

they can be solved using a computer to obtain solutions at successive time levels. 

4.4 Computer Program 

A computer program written in matlab (Appendix II) was used solve the 

difference equations. The initial and boundary conditions were set as given in 

relations (3.8.4) with y    set as 4y  . The program has graphical outputs for 

the primary and secondary velocity profiles, temperature profiles and 

concentration profiles for various fluid parameter values. In the next chapter these 

results are presented and discussed. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.1 Overview 

In this chapter we present the numerical results obtained upon employing the 

program mentioned in section 4.4. The trends observed upon varying various fluid 

properties are discussed and explained. First the general trend is presented in a 

mesh plot where all the fluid properties are maintained at default values. We then 

present the trends as each fluid property is varied at time 0.2t   while 

maintaining other properties at default values. Last, we present the trends at 

various specific times while all the fluid properties are set to default values. 

5.2 Fluid Property Default Values 

Since the problem has been non-dimensionalized, there is no justification for any 

particular choice of the default values of the fluid properties.  Of interest is how 

changes in these properties affect the flow variables. The choice made for default 

values of fluid properties are: 

2

0

0.71, 1, 1, 1, 2.5, 1, 0.1,

1, 0.5
L CPr Gr Gr Ec Sc M m

Er v

      
 

 (5.2.1) 

5.3 Three Dimensional Plots 

Since the flow variables were all functions of spatial dimension, y , and temporal 

dimension, t , we obtained mesh plots for all the variables. The mesh plots give a 

general trend of the spatial bifurcation and the temporal evolution of the flow 

variables. 
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From Figure 5. 1 one notes that the primary velocity falls from unit to zero along 

the y coordinate  initially very fast but more slowly as time increases. Similar 

observations are made for the temperature and concentration profiles. This is in 

agreement with the initial and boundary conditions that require that primary 

velocity, temperature and concentration be instantaneously raised to unit at the 

plate ( 0y  ) and maintained at zero at the free flow region ( y   ). With time 

the flow variables are transmitted to the boundary layer of the fluid, hence the 

sequential fall in the flow variables. The secondary velocity, on the other hand, 

increases from zero to a maximum value, then falls back to zero again as the 

initial and boundary conditions require. The increase in secondary velocity is 

attributed to the gain in kinetic energy. Sequential gain in this kinetic energy leads 

to the profile observed. 

 
Figure 5. 1: Three dimensional mesh plots for the four flow variables. 
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5.4 Effect of Prandtl Number 

While keeping all the other fluid properties at their default values, the Prandtl 

number was varied as 0.71, 1, 3, 5 7.1Pr and . The results obtained are 

presented in Figure 5. 2 below. 

 

 

It is observed that increase in Prandtl number leads to a slight decrease in both 

primary and secondary velocities. Except for very small region near the plate, the 

temperature, too, decreases more sufficiently with increase in the Prandtl number. 

The effect of Prandtl number on concentration is diminished. 

These observations are a direct consequence of equations (3.8.1), (3.8.2) and 

(3.8.3). From these equations, there is an inverse relationship between the energy 

Figure 5. 2: Fluid flow profiles for various Prandtl numbers. Other properties kept
at default. 
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equation and the Prandtl number. This results in the more pronounced effect of the 

Prandtl number on the temperature profile. Temperature then affects the primary 

velocity which in turn affects the secondary velocity. This leads to the slight effect 

of Prandtl number on both primary and secondary velocity profiles. Neither 

temperature nor the Prandtl number affects the concentration equation and hence 

the diminished effect on the concentration profile. 

Physically, the Prandtl number is the relative diffusivity of momentum to that of 

heat. This implies that small values of Prandtl number imply that heat diffuses 

very fast relative to the fluid velocity e.g. in liquid metals. For higher values of 

Prandtl numbers, heat diffuses relatively slowly when compared to velocity e.g. in 

oils. Hence the decrease in thermal and consequently the velocity boundary layers 

as the Prandtl number increases. There is little effect on mass transfer 

(concentration) by the Prandtl number. 

5.5 Effect of Thermal Variant of Grashof Number 

While maintaining all other fluid properties at their default values, the thermal 

variant of Grashof number was varied as 2, 1.5, 1, 0.5, 0.1, 1, 1.5, 2LGr      . 

From Figure 5. 3, it is observed that both primary and secondary velocities are 

substantially affected by the Grashof number. Increase of the negative Grashof 

number leads to decrease in both primary and secondary velocities. Increase in the 

positive Grashof number leads to increase in both the primary velocities. The 

temperature profile is only slightly affected by the Grashof number with 

observations similar to those of velocity profiles. Again, concentration is, 

apparently, unaffected by the Grashof number. 
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The trends above can be explained from equations (3.8.1) where LGr  affects the 

primary velocity which in turn affects the secondary velocity. Therefore the 

primary velocity is affected more prominently by the thermal variant of Grashof 

number. Due to the relationship between primary and secondary velocity, the 

secondary velocity is also affected by LGr  but by a smaller factor. The slight 

effect on the temperature profiles is a consequence of the relationship between the 

primary and secondary velocity in equation (3.8.2). 

Physically, the thermal variant of Grashof number is a derivative of buoyancy 

effects. According to Archimedes’ principle, less dense substance will be 

displaced by the heavier substance. The heated fluid expands and its density 

Figure 5. 3: Fluid flow profiles for various thermal Grashof numbers. Other 
properties kept at default values. 
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reduces. The heavier fluid sinks to displace this lighter fluid and hence the 

increased primary velocity. The secondary velocity increases too due to the rotary 

motion of the fluid coupled with Hall effects. Increase in fluid velocity implies 

increase in kinetic energy which ultimately results in increase in thermal agitation 

(temperature). Concentration gradient is unaffected since these changes are not in 

the concentration gradient coordinate. 

5.6 Effect of Concentration Variant of Grashof Number 

Varying the concentration variant of Grashof number as 1, 1.5, 2, 4CGr  , while 

keeping the other fluid properties at their default values, we obtained the results in 

Figure 5. 4. 

 

  
Figure 5. 4: Flow profiles for various concentration Grashof numbers. Other fluid
properties kept at default. 
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It is observed that increase in the concentration variant of the Grashof number 

increases the primary velocity, secondary velocity and the temperature. Observed 

increase is larger for the primary velocity than for secondary velocity and 

temperature. There is no observable effect on the concentration profiles. 

It is clear from equations (3.8.1), (3.8.2) and (3.8.3) that there is a direct 

relationship between the primary velocity and the concentration variant of Grashof 

number. An increase in the concentration Grashof number will lead to an increase 

in the primary velocity. From the relationship between the primary and secondary 

velocities, an increase in primary velocity will also lead to an increase in 

secondary velocity. The temperature equation contains terms with both primary 

and secondary velocity. Therefore, increases in primary and secondary velocities 

will result in an increase in temperature. However, increases in secondary and 

temperature are minimal compared to the increases in primary velocity. This is 

because there is no direct relationship between the two flow variables and the 

concentration variant of the Grashof number. There is no observable effect on the 

concentration gradient since there is no mathematical relationship between the 

concentration variant of Grashof number and the concentration gradient. 

Physically, concentration refers to the presence of a given species in a sample. 

This presence can affect the buoyancy effects in that the expected displacement 

may be enhanced or inhibited. If the species on top of the heated and expanding 

volume is denser then the primary velocity will be enhanced. If, however, the 

species at the top will be lighter then buoyancy will be inhibited. The 

enhancement of buoyancy leads to increased primary and secondary velocities. 

This leads to increased kinetic energy and hence thermal excitation. The effect on 
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the concentration gradient and the concentration variant is minimal as the 

direction of flow due to buoyancy does not affect the concentration gradient. 

5.7 Effect of Eckert Number 

Varying the Eckert number as 0.1, 0.5, 1, 1.5Ec and , while keeping the other 

fluid properties at their default values, yields the results in Figure 5. 5. From the 

graphs, we observe that the Eckert number only slightly affects the primary and 

secondary velocities by increasing them marginally. The increase in temperature 

is more appreciable but there is no observable effect on the concentration gradient. 

 

 

The Eckert number affects the temperature profiles the most because from 

equation (3.8.2) the Eckert number directly affects the energy equation. There is a 

Figure 5. 5: Flow profiles for various Eckert numbers. Other fluid properties are
kept at their default values. 
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notable slight increase in the primary velocity when the Eckert number increases 

because of the entry of temperature into the equation of motion, (3.8.1). Therefore 

increase in primary velocity is a carryover effect from temperature. The increase 

in secondary velocity is also due to the relationship between the primary and 

secondary velocities, a carryover effect. There is no notable effect on the 

concentration profiles since there is a very remote relationship between the Eckert 

number and the concentration gradient implied by equation (3.8.3). 

Physically, the Eckert number is a ratio of kinetic energy to the enthalpy. This 

means that a large Eckert number implies more kinetic energy and reduced 

temperature difference. Kinetic energy increase and reduced temperature 

difference implies that more heat transfer and hence the rise in temperature 

profiles. A rise in temperature leads to more agitation and hence the marginal 

increases in both primary and secondary velocity profiles. These changes in 

enthalpy and kinetic energies do not translate to mass transfer effects and hence 

very little effect on the concentration profiles. 

5.8 Effect of Schmidt Number 

By maintaining other fluid properties at their default values and varying the 

Schmidt number as 2, 2.5, 5, 10Sc  , we obtained the results shown Figure 5. 6. 

We observed that the Schmidt number affects mostly the concentration profiles 

and affects the primary and secondary velocity minimally. There is no observable 

effect on the temperature profiles. Increase in the Schmidt number inhibits the 

primary and secondary velocities and the concentration profiles. 

Mathematically, these observations can be explained from the relations in 

equations (3.8.1), (3.8.2) and (3.8.3). We notice that there exists an inverse 
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relationship between the concentration and the Schmidt number, therefore the 

inhibition of the concentration profile on increasing the Schmidt number. The 

effect on the primary and secondary velocities is due to the carryover effect where 

the primary velocity is affected by the concentration and the secondary velocity by 

the primary velocity. The temperature profile is seemingly unaffected due to the 

remoteness of the relationship between it and the Schmidt number. 

 

 

The Schmidt number physically represents the ratio of the momentum diffusivity 

to mass diffusivity. This implies that a higher Schmidt number results in a thicker 

velocity boundary layer than the concentration boundary layer. This therefore 

inhibits concentration profiles. Inhibiting concentration profiles in turn affects the 

buoyancy and hence primary velocity profiles. The secondary velocity profiles are 

Figure 5. 6: Flow profiles for various Schmidt numbers. Other fluid properties
were maintained at their default values. 
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affected due to the rotary motion of the fluid. Reduced kinetic energy will 

remotely affect the temperature profiles. 

5.9 Effect of Magnetic Parameter 

The magnetic parameter, 2M , was varied as 2 1, 5, 10, 20, 50M  , while other 

fluid properties were maintained at their default values. The results obtained are as 

shown in Figure 5. 7. 

 

 

It is observed that the magnetic parameter affects the both primary and secondary 

velocities and temperature profiles. The magnetic parameter inhibits both 

velocities but enhances temperature build up. There is no observable effect on the 

concentration profiles. 

Figure 5. 7: Flow profiles for various magnetic parameter values. Other fluid
properties were maintained at their default values. 
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The above observations are as a result of the final set of governing equations, 

(3.8.1), (3.8.2) and (3.8.3). It can be deduced from the set of equations that the 

magnetic parameter has an inhibitive effect on both primary and secondary 

velocities while having a positive effect on the temperature. The relationship 

between the concentration gradient and the magnetic parameter is distant. 

Physically, the magnetic parameter is a measure of the magnetic field strength 

within the fluid. It actually represents the ratio of the electromagnetic force to 

viscous forces. Higher magnetic field strength coupled with Joule’s heating 

enhances turbulence and hence the build up of heat. Higher magnetisation leads to 

larger values of Lorentz force which inhibits both primary and secondary 

velocities. There is, however, little correlation between the magnetic parameter 

and mass transfer. 

5.10 Effect of Hall Parameter 

While maintaining the other fluid properties at their default values, the Hall 

parameter was varied as 0.1, 0.5, 1, 2m  . The results obtained are as shown in 

Figure 5. 8. It is observed that the Hall parameter has marginal effects on the both 

velocity profiles and temperature profiles. While an increase in the Hall parameter 

leads to an enhancement of the velocity profiles, it is interesting to note that it has 

the reverse effect on the temperature profiles. There is, apparently, no effect on 

the concentration profiles. 

One can deduce, mathematically, the above observations from the final set of 

governing equations. From equations (3.8.1) and (3.8.2) the parameter, m , is 

combined with other parameters with the net negation effect on the two velocity 
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profiles and a net additional effect on the temperature profiles. There is no direct 

correlation between the concentration profiles and the Hall parameter. 

 

 

The Hall parameter has the physical rotary effect. This is because Hall currents are 

developed in cyclotrons. The effect of this is to increase the primary velocity and 

most often the secondary velocity. The rotational motion of the fluid particles will 

draw energy from the system and hence reduce thermal agitation. The rotation, 

being vertical, does not affect mass transfer within the fluid. 

Figure 5. 8: Flow profiles for various Hall parameter values. Other flow properties 
are maintained at their default values. 
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5.11 Effect of Rotational Parameter 

The rotational parameter was varied as 1, 2, 3, 4Er  , while the other fluid 

properties were maintained at their default values. The results obtained are as 

shown in Figure 5. 9. 

 

 

The rotational parameter is observed to have a suppressing effect on the primary 

velocity while reinforcing the secondary velocity profiles. The rotational 

parameter also enhances the temperature profiles but seems to have no observable 

effect on the concentration profiles. 

The observations above are a result of equations (3.8.1), (3.8.2) and (3.8.3). The 

rotational parameter has a negative effect on the primary velocity but has a 

Figure 5. 9: Flow variables for various rotational parameters. Other fluid
properties are maintained at their default values. 
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positive effect on the secondary velocity profiles. The marginal effect on the 

temperature profiles is attributed to the carryover effect from both the primary and 

secondary velocities. There is little conceivable correlation between the 

concentration profiles and the rotational parameter. 

Physically, the temperature rises due to the increased turbulence enhanced by 

rotation. The primary velocity decreases because rotation transfers some of the 

primary velocity to secondary velocity which increases. There being distant 

correlation between the concentration profiles and the rotation parameter, there 

can be no noticeable change in the concentration profiles. 

5.12 Effect of Mass Transfer Velocities 

The injection ( ) or suction ( ) velocity, 0v , was varied as 

0 0.5, 0.25, 0.25, 0.5v    . Other fluid properties were maintained at their default 

values as set in relations (5.2.1). The results obtained are as shown in Figure 5. 10. 

It is observed that the injection velocities have a reinforcing effect on all the flow 

variables while the suction velocities have a suppressing effect on all the flow 

variables. Mathematically, this is a result of the incrementing effect that 0v  has on 

all the final governing equations. Physically injection transfers the wall properties 

to the fluid within the boundary layer. The faster the rate of injection the faster the 

transfer of wall characteristics is. This leads to the enhancement of the primary 

velocity, temperature and concentration profiles. The secondary velocity is 

enhanced too because of the rotational system of motion. 
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5.13 Time Evolution of the Flow Variables 

Last the effect of the time evolution of the profiles is considered. Time was varied 

as 0.2, 0.4, 0.6, 0.8t  . The results obtained are presented in Figure 5. 11. 

It is observed that with time all the profiles are enhanced. This implies that at time 

t    we expect all the plate properties to have been transmitted throughout the 

boundary layer. This is physically expected since the plate flow properties are 

constant. As time goes by, more and more of the plate flow properties are 

transmitted onto the boundary layer. This results in successive build–up of all the 

flow variables. 

Figure 5. 10: Flow profiles for various mass transfer velocities. Other fluid
properties are maintained at their default values. 
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Figure 5. 11: Flow profiles at various times keeping all the fluid properties at their
default values. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

In the present approach we were able to mathematically formulate a suitable 

model to solve the magnetohydrodynamic turbulent flow past an infinite vertical 

porous plate in a rotating medium. A computer program was written in matlab to 

solve the highly coupled and nonlinear partial differential equations. The impact 

of various fluid properties on the primary velocity, secondary velocity, 

temperature and concentration were discussed. 

The results obtained in the present problem closely compared with those of Das et 

al (2011) and Mutua et al (2013). Although Das used the multi–parameter 

perturbation and the fact that our system was rotating, most observations he drew 

agreed with ours. Mutua used a finite difference method just like the present one 

only in a different programming language. His problem differed with the present 

one in that our system was porous and he considered a varying magnetic field. 

Even so, most of the results they obtained agreed closely with the present ones. 

This agreement with other results is encouraging. 

Joule’s heating, mass transfer, rotation and Hall current have a profound effect on 

almost all flow variables. Some of these effects have initially been assumed to be 

of negligible effect but accounting for them in the present model shows that they 

result in a substantive effect. Concentration profile was the least affected by most 

of the fluid properties considered. This is due to the fact that concentration 
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gradient diffuses along the y axis  and could only be affected by the Schmidt 

number and injection or suction velocities. 

The results reported in the present model are in a good agreement with general 

trends. This follows the physical expectation of the effect of various parameters. 

As discussed in chapter five physical trends were eminent in the results. Some 

results like the magnetic parameter on temperature profiles is very interesting. 

Increase in 2M  yielded increase in temperature profiles. This is a consequence of 

the Joule’s heating effect. 

In the world we live in today, a great concern is how to generate green energy. 

With the universe full of charged particles, the study of magnetohydrodynamics 

can provide a future source of electricity. Further with population expected to 

exceed the resources, scientists are in a rush to find alternatives outside earth to 

colonise. One of the problems faced to occupy neighbouring planets like Mars is 

the atmosphere. Electromagnetic control of the atmosphere has been theoretically 

suggested as a possible solution. The thinning of the ozone layer can be retarded 

by magnetohydrodynamic excitation. 

6.2 Recommendations 

The success of this method in yielding results that are in good agreement with 

previous studies and general trends has led us into making the following 

recommendations. 

(i) The model to be extended to include ion slip currents 

(ii) The approach to be extended to solve similar problem with varying magnetic 

field strength 
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(iii) A generalisation to be made by including a porosity factor and other similar 

factors for inclusion of Hall currents and rotation 

(iv) The magnetic field to be inclined at an angle  
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Appendix II: Program for the MHD Problem 

 1 
function mhdproblem() 2 
clear all; 3 
clc 4 
  5 
%CONSTRUCTION OF THE GRID IN y AND t 6 
%Generate array y values 7 
N = 81; 8 
y1 = 0; 9 
yN = 4.0; 10 
dy = (yN-y1)/(N-1); 11 
y = zeros (1, N); 12 
for j=1:N 13 
    y(j) = (j-1)*dy; 14 
end 15 
%y%Test output for y values. Remove the earlier comment to see 16 
values. 17 
  18 
%Generate array t values 19 
K = 80001; 20 
t1 = 0; 21 
tK = 1; 22 
dt = (tK-t1)/(K-1); 23 
t = zeros (1, K); 24 
for k=1:K 25 
    t(k) = (k-1)*dt; 26 
end 27 
%t%Test output for t values. Remove the earlier comment to see 28 
values. 29 
  30 
%DECLARING CONSTANTS 31 
PR = 0.71;%Prandtl number:{0.71},1,3,5,7.1 32 
GRL = 1;%Grashoff number:-2,-1.5,-1,-0.5,0.1,{1},1.5,2 33 
GRC = 1;%Grashoff number variant for concentration:{1},1.5,2,4 34 
EC = 1;%Eckert number:0.1,0.5,{1},1.5 35 
SC = 2.5;%Schmidt number:2,{2.5},5,10 36 
SQUAREDM = 1;%Magnetic parameter/Hartman number:{1},5,10,20,50 37 
em = 0.1;%Hall parameter:{0.1},0.5,1,2 38 
ER = 1;%Rotational parameter:{1},2,3,4 39 
vnought = 0.5;%Drift velocity in the y-direction:-0.5,-40 
0.25,0.25,{0.5} 41 
kappa = 0.4;%Karman constant 42 
  43 
%SETTING THE BOUNDARY CONDITIONS 44 
u = zeros (K, N); w = zeros (K, N); theta = zeros (K, N);... 45 
    C = zeros (K, N);%Initial conditions at t<0 46 
u(1:K,1) = 0; w(1:K,1) = 1; theta(1:K,1) = 1; C(1:K,1) = 47 
1;%Boundary... 48 
                                                         49 
%conditions at y=0 50 
u(1:K,N) = 0; w(1:K,N) = 0; theta(1:K,N) = 0; C(1:K,N) = 51 
0;%Boundary... 52 
                                               %conditions at 53 
y=4(infinity) 54 
for j = 2:N-1 55 
    u(1,j) = 0; w(1,j) = 0; theta(1,j) = 0; C(1,j) = 0;%Initial... 56 
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                                                       %conditions 57 
at t = 0 58 
end 59 
  60 
%COMPUTATION OF VARIABLES 61 
r1 = dt/dy; r2 = dt/(dy)^2; r3 = dt/(dy)^3;%The ratios r1,r2 and 62 
r3. 63 
for k=1:K-1 64 
    for j=2:N-1 65 
        u(k+1,j)=u(k,j)-vnought*r1/2*(u(k,j+1)-u(k,j-1))-66 
2*ER*dt*w(k,j)-... 67 
            SQUAREDM*dt/(1+em^2)*(em*w(k,j)+u(k,j))+r2*(u(k,j+1)-68 
... 69 
            2*u(k,j)+u(k,j-1))+2*kappa^2*(r2/4*y(j)*(u(k,j+1)-... 70 
            u(k,j-1))^2+r3/2*y(j)^2*(u(k,j+1)-u(k,j-1))*(u(k,j+1)-71 
... 72 
            2*u(k,j)+u(k,j-1)));%Computation of u (secondary 73 
velocity) 74 
        w(k+1,j)=w(k,j)-vnought*r1/2*(w(k,j+1)-w(k,j-75 
1))+2*ER*dt*u(k,j)+... 76 
            SQUAREDM*dt/(1+em^2)*(em*u(k,j)-77 
w(k,j))+dt*(GRL*theta(k,j)+... 78 
            GRC*C(k,j))+r2*(w(k,j+1)-2*w(k,j)+w(k,j-1))+... 79 
            2*kappa^2*(r2/4*y(j)*(w(k,j+1)-w(k,j-1))^2+... 80 
            r3/2*y(j)^2*(w(k,j+1)-w(k,j-1))*(w(k,j+1)-... 81 
            2*w(k,j)+w(k,j-1)));%Computation of w (Primary 82 
velocity) 83 
        theta(k+1,j)=theta(k,j)-vnought*r1/2*(theta(k,j+1)-... 84 
            theta(k,j-1))+r2/PR*(theta(k,j+1)-2*theta(k,j)+... 85 
            theta(k,j-1))+EC*r2/4*((u(k,j+1)-u(k,j-86 
1))^2+(w(k,j+1)-... 87 
            w(k,j-1))^2)+EC*SQUAREDM*dt/(1+em^2)^2*((em*u(k,j)-... 88 
            w(k,j))^2+(em*w(k,j)+u(k,j))^2);%Computation of theta 89 
        C(k+1,j)=C(k,j)-vnought*r1/2*(C(k,j+1)-C(k,j-1))+... 90 
            r2/SC*(C(k,j+1)-2*C(k,j)+C(k,j-1));%Computation of C 91 
    end 92 
end 93 
  94 
%OUTPUTS 95 
% 96 
h = 0.2;%Time of observation 97 
tl = h/dt+1;%Corresponding time level 98 
  99 
figure (1)%Primary velocity profiles 100 
hold all 101 
plot(y,w(tl,:),'-') 102 
xlabel('$y$','interpreter','latex','FontSize',18,'FontWeight','bol103 
d') 104 
ylabel('$w(y,t)$','interpreter','latex','FontSize',18,'FontWeight'105 
,'bold') 106 
title(['Primary Velocity Profiles at  ',sprintf('$t = %g$',h)],... 107 
    'interpreter','latex','FontSize',18) 108 
%title('Primary Velocity Profiles at Various 109 
Times','interpreter',... 110 
    %'latex','FontSize',18) 111 
[~,~,~,current_entries] = legend; 112 
legend([current_entries {sprintf('$Pr = 113 
%g$',PR)}],'interpreter','latex'); 114 
       %Effect of Prandtl number, can be changed to other fluid 115 
properties 116 
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  117 
figure (2)%Secondary velocity profiles 118 
hold all 119 
plot(y,u(tl,:),'-') 120 
xlabel('$y$','interpreter','latex','FontSize',18,'FontWeight','bol121 
d') 122 
ylabel('$u(y,t)$','interpreter','latex','FontSize',18,'FontWeight'123 
,'bold') 124 
title(['Secondary Velocity Profiles at  ',sprintf('$t = 125 
%g$',h)],... 126 
    'interpreter','latex','FontSize',18) 127 
%title('Secondary Velocity Profiles at Various 128 
Times','interpreter',... 129 
    %'latex','FontSize',18) 130 
[~,~,~,current_entries] = legend; 131 
legend([current_entries {sprintf('$Ec = 132 
%g$',EC)}],'interpreter','latex'); 133 
       %Effect of Prandtl number, can be changed to other fluid 134 
properties 135 
  136 
figure (3)%Temperature profiles 137 
hold all 138 
plot(y,theta(tl,:),'-') 139 
xlabel('$y$','interpreter','latex','FontSize',18,'FontWeight','bol140 
d') 141 
ylabel('$\theta(y,t)$','interpreter','latex','FontSize',18,... 142 
    'FontWeight','bold') 143 
title(['Temperature Profiles at  ',sprintf('$t = %g$',h)],... 144 
    'interpreter','latex','FontSize',18) 145 
%title('Temperature Profiles at Various Times','interpreter',... 146 
    %'latex','FontSize',18) 147 
[~,~,~,current_entries] = legend; 148 
legend([current_entries {sprintf('$Pr = 149 
%g$',PR)}],'interpreter','latex'); 150 
       %Effect of Prandtl number, can be changed to other fluid 151 
properties 152 
  153 
figure (4)%Concentration profiles 154 
hold all 155 
plot(y,C(tl,:),'-') 156 
xlabel('$y$','interpreter','latex','FontSize',18,'FontWeight','bol157 
d') 158 
ylabel('$C(y,t)$','interpreter','latex','FontSize',18,'FontWeight'159 
,'bold') 160 
title(['Concentration Profiles at  ',sprintf('$t = %g$',h)],... 161 
    'interpreter','latex','FontSize',18) 162 
%title('Concentration Profiles at Various Times','interpreter',... 163 
    %'latex','FontSize',18) 164 
[~,~,~,current_entries] = legend; 165 
legend([current_entries {sprintf('$Pr = 166 
%g$',PR)}],'interpreter','latex'); 167 
       %Effect of Prandtl number, can be changed to other fluid 168 
properties 169 
%} 170 
%{ 171 
figure (5)%3-D Mesh for primary velocity 172 
clear figure 173 
mesh(y,t,w) 174 
xlabel('$y$','interpreter','latex','FontSize',18) 175 
ylabel('$t$','interpreter','latex','FontSize',18) 176 
zlabel('$w(y,t)$','interpreter','latex','FontSize',18) 177 
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title(['Primary velocity ',sprintf('$3-D$'),' Mesh 178 
Plot'],'interpreter',... 179 
    'latex','FontSize',18) 180 
%} 181 
%{ 182 
figure (6)%3-D Mesh for secondary velocity 183 
clear figure 184 
mesh(y,t,u) 185 
xlabel('$y$','interpreter','latex','FontSize',18) 186 
ylabel('$t$','interpreter','latex','FontSize',18) 187 
zlabel('$u(y,t)$','interpreter','latex','FontSize',18) 188 
title(['Secondary velocity ',sprintf('$3-D$'),' Mesh Plot'],... 189 
    'interpreter','latex','FontSize',18) 190 
%} 191 
%{ 192 
figure (7)%3-D Mesh for temperature 193 
clear figure 194 
mesh(y,t,theta) 195 
xlabel('$y$','interpreter','latex','FontSize',18) 196 
ylabel('$t$','interpreter','latex','FontSize',18) 197 
zlabel('$\theta(y,t)$','interpreter','latex','FontSize',18) 198 
title(['Temperature ',sprintf('$3-D$'),' Mesh 199 
Plot'],'interpreter',... 200 
    'latex','FontSize',18) 201 
%} 202 
%{ 203 
figure (8)%3-D Mesh for concentration 204 
clear figure 205 
mesh(y,t,C) 206 
xlabel('$y$','interpreter','latex','FontSize',18) 207 
ylabel('$t$','interpreter','latex','FontSize',18) 208 
zlabel('$C(y,t)$','interpreter','latex','FontSize',18) 209 
title('Concentration 3D Mesh 210 
Plot','interpreter','latex','FontSize',18) 211 
%} 212 
%{                         213 
figure (9)%Initial value subplots 214 
subplot (1,3,1) 215 
plot(y,w(1,:),'-') 216 
xlabel(texlabel('y'),'FontSize',12, 'FontWeight','bold') 217 
ylabel(texlabel('w(y,0)'),'FontSize',12, 'FontWeight','bold') 218 
title('Initial Primary Velocity Profile') 219 
subplot (1,3,2) 220 
plot(y,theta(1,:),'-') 221 
xlabel(texlabel('y'),'FontSize',12, 'FontWeight','bold') 222 
ylabel(texlabel('theta(y,0)'),'FontSize',12, 'FontWeight','bold') 223 
title('Initial Temperature Profile') 224 
subplot (1,3,3) 225 
plot(y,C(1,:),'-') 226 
xlabel(texlabel('y'),'FontSize',12, 'FontWeight','bold') 227 
ylabel(texlabel('C(y,0)'),'FontSize',12, 'FontWeight','bold') 228 
title('Initial Concentration Profile') 229 
%}                         230 
end 231 


