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ABSTRACT

This study set out to price rainfall derivatives based on rainfall at a particular location in
Kenya over a given period. We employ a Markovian-Gamma model to model the rainfall
process. In addition, its parameters are determined via maximum likelihood estimation. We
assume existence of a tradable asset whose performance is rainfall dependent. To compute
the prices of the rainfall derivatives, we rely on the Esscher transform, an actuarial tool. We
then compare the Esscher prices with the standard Black-Scholes prices. The results suggest a
certain pattern of movement of the prices in which the derivative price decreases as the strike
price increases in the Black-Scholes whereas they increase on considering the Esscher. The

study is conducted using rainfall and stock market datain Kenya.
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CHAPTER ONE
INTRODUCTION

1.1Background

Weather conditions have pronounced influence on business revenues. They vary both seasonally
and regionally. The weather influence presents both challenges that are adverse with huge losses
and opportunities for the emergence, development and growth of the financial instruments like
weather derivatives. Businesses use weather derivatives to hedge on their risks in order to make

trading profits. Weather exposure can be hedged just the same way as currency exposure.

Weather conditions, that is, rainfall, temperature, frost, snow are aways unpredictable.
Moreover, by being so unpromising and their patterns being abnormal over the decades, many

industries are becoming victims of the weather in profound ways (Geyser, Van derv enter, 2001).

Over the years, the agricultural based businesses have used futures contracts of agricultural
commodities to hedge on weather related risks. However, traditional methods cannot cover a
number of weather risks. This has given rise to the emergence of a more robust, flexible financia

instrument called the weather derivatives (Geyser, 2002).

Weather derivatives are financia instruments with payoffs linked to specific weather events and
are designed to provide protection against the financial losses that can occur due to unfavorable
weather conditions. It is a contract that stipulates how payment will be settled between the
parties involved based on the prevailing meteorological conditions during the contract period
(Leobacher and Ngare, 2011). They are typicaly swaps, futures or options based on the

underlying weather measures which can be temperature, humidity, rain or snowfall (Alaton,



Djehiche and Stillberger, 2002).Weather derivatives, unlike traditional derivatives, have no
underlying tradable instrument or stock. Therefore, they cannot be used to hedge price risk since
the weather itself cannot be priced. Instead, they hedge against volumetric or quantity risk

associated with weather conditions.

The weather derivatives market is well developed in the United States of America (USA) with
the energy industry players being the leading participants. There is equally rapid growth in Asia
(Japan, China and India among others) and larger Europe. The growth is rather unprecedented

and significantly rapid (Douglas-Jones, 2002)

Closer home, in Africa, businesses in the agriculture and related industries have developed
interest in the weather derivatives .Agriculture is largely unsubsidized and the energy industry is
hugely regulated. Maize and wheat growers, silo owners, transport companies, sugar industry,
fishing as well as insurance companies in South Africa have taken advantage of this new
instrument (Bolin, 2002). Agriculture, clothing, construction, hospitality and outdoor
entertainment industries which are highly weather sensitive and whose revenues and productivity
are closely correlated with weather conditions are the ones heavily affected by harsh weather in

the region.

The mentioned industries are differently affected by prevailing weather conditions. The
hospitality, tourism and entertainment industries are mostly busy during summer, the same time
that most of Africa receives its rainfall. Thus, the attendance figures dwindle. The construction
industry is heavily hit in financial terms for projects that run beyond completion deadlines since
operation of heavy machinery and working outdoor during rainy conditions are rather difficult.
The clothing industry is equally dictated by weather since weather conditions dictate what people

buy and wear for example, during winter, sweater and jacket products experience faster sales
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unlike during a milder than normal winter. In agriculture, weather conditions affect the quality

and quantity of produce (Geyser, 2002).

The emergence of weather derivatives in the agriculture sector has particularly drawn
considerable interest from international institutions like World Bank, International Finance
Corporation (IFC) and International Monetary Fund (IMF).In the underdeveloped and
developing world, farmers are never covered by government sponsored insurance programs yet
the weather risk is most prevalent in devastating scales. The weather derivatives can therefore
provide a sure way of protecting them against risk of drought and poor harvest or any weather

related risk.

According to Cooper (2001), a large portion of South America’s economy relates to growing
commodities and selling them to the world market. In Brazil for instance, coffee harvest can be
adversely affected by bad weather conditions, which will in turn have considerable effects on the

economy. Weather derivatives can bring added stability.

1.2 Problem statement
The impact of weather conditions in regional and local markets plays a critical role in the overall
economy. The energy industry, agriculture, retail, tourism, insurance and a host of many other

weather dependent industries are either directly or indirectly exposed to weather risk.

This vulnerability explains the need for a strategy to manage weather risk in order to protect

these businesses against uncontrolled weather risk exposures.

The development of the weather derivatives market is aimed towards managing the economic
impact of weather events. Weather derivatives help businesses hedge their risk in much the same

way as they can hedge foreign exchange or interest rate risk. There is therefore need to develop



weather risk management in developing countries because they are worst hit when disaster

strikes. They suffer heavier economic loss compared to their devel oped counterparts.

Kenya and Africa has a large potential in the weather derivative market. The climate radically
varies with its vast lands spanning many latitude degrees with complicated terrain. Given that
Africa is a large agriculturally productive continent and most of its economic activities are
weather sensitive, it is urgent to adopt weather derivatives as a hedging mechanism to shield
against weather risk. With telecommunication system networks and meteorological systems now
becoming integrated and advanced, data for devel oping countries and pricing weather derivatives
becomes more available. The ability to manage risk driven by weather events is important for
most industries. There is need, therefore, for studies that will provide tools to manage the
unpredictable financial risks associated with weather fluctuations. It is at this point that weather

derivatives come in as an hedging mechanism against weather related risk.

1.3 OBJECTIVESOF THE STUDY

1.3.1 Main objective
The overall objective of this study was to develop a framework for modelling and pricing rainfall

derivatives used to hedge weather risk in Kenya.

1.3.2 Specific objectives

1. To model rainfall process using Markovian —Gamma model
2. To construct a unique equivalent martingale measure Q via the Esscher transform.

3. To compute arbitrage-free prices of derivatives whose underlying isarainfall process



1.4 Significance of the Study

This study sought to provide more information in the financial derivatives market on how to
compute fair rainfall derivative prices, which can then be used to manage weather risk in Kenya.
The study has greater significance to farmers in a developing economy whose livelihood is
highly affected by fluctuations of the amount of rainfall received during the farming period. The
weather derivative will compensate the farmers in case of above or below normal amount of
rainfall required. In addition, the study is of significance to social event planners who will

receive compensation in case of unexpected weather events.

1.5 Scope of the study
The study focuses on the rainfall at a single site thus we will not take into account the spatial

correlations.

1.6 Limitations of the study
The study assumes rainfall as the main factor that affects crop yield, hydro-electric power

generation.

1.7 Assumptionsin the study

We assume an incomplete market, that is,

i) We assume a constant risk-free rate of interest.

i) The market isfrictionless and trading is continuous, that is, no taxes, no transaction

cost and no restrictions on borrowing or short sales.

iii) All securities are perfectly and infinitely divisible.

Further, we assume that cultural practices, tradition plays no role in the study.



CHAPTER 2

LITERATURE REVIEW
2.1 Introduction
Weather is an essential production factor in agriculture and hydro-power generation. This factor
of production is, however, uncontrollable. Therefore, it can pose risks that are the major sources

of uncertainty in crop production and electricity reliability.

In the past decade research on weather derivatives has focused on temperature as the underlying
weather measure because most traded weather derivatives are based on temperature indices.
There are, however, several economic activities exposed to rainfall risk. A good example is that
farmers and financial investors are affected by indirect losses as a result of abundant or scarce

rainfall.

With the rainfall derivatives, firms are able to transfer rainfall risk to the capital market. The
buyer of the derivative has a chance to reduce rainfall risk exposure, to profit from weather
uncertainty, and stabilize cash flows and earnings. The buyer of the derivative receives a payout
at a pre-determined settlement period if the weather event occurs regardless what the cause of the
loss caused by the weather condition. Sellers of the derivative eliminate moral hazard and avoid

the higher administrative and |oss adjustment expenses of insurance contracts.

The Chicago Mercantile Exchange (CME) first introduced derivative contracts on weather
indices in 1999.Both the over the counter and exchange traded derivatives written on weather

variables range from temperature, hurricanes, frost and precipitation among others.

Unlike insurance that cover low probability extreme events, weather derivatives cover lower risk

high probability events like colder than expected winter. Also the buyer of the derivative will



receive the payoff at settlement period regardiess of the loss caused by the weather events
whereas insurance payoff depend on proof of damage. Further from the seller’s perspective,
weather derivatives eliminate moral hazard and avoid higher administrative costs and loss
adjustment expenses of insurance contracts. However, a considerable risk may remain with
the producer when using weather derivatives, because individual yield variationsin general

are not completely correlated with the relevant weather variable (Oliver et al, 2006).

The weather derivative market is atypical example of an incomplete market in the sense that the
underlying weather variables are not tradable assets and cannot be replicated by other underlying

instruments like in the equity market. Furthermore the market is relatively illiquid.

Campbell and Diebold (2005) suggest that the illiquidity is as a result of non-standardization of
the weather. With this one may encounter inefficiencies in the weather derivative market.
However, protection is achieved when the transaction counter parties: the hedger who wants to
hedge the weather risk exposure and a speculator to whom the risk is transferred in anticipation

for areward meet.

The available academic literature on weather derivatives generally concentrates on two aspects.
First, that the weather derivatives fundamentally differ from standard derivatives in that the
underlying asset is not tradable. Secondly, for weather derivatives to be effective hedging
instruments, good models of weather risks are needed. Filar et al (2008) argues that rather than
studying derivative instruments with weather as the underlying asset, researchers and scholars
ought to study pricing of derivatives where the underlying asset is sensitive to the weather. Like
orange juice can be a classic example of a pure weather asset. In its production one requires

extended development time and commitments of land and labor. Therefore, producers are



exposed to price shocks predominantly created by adverse weather conditions like colder or

warmer than normal temperatures.

Available literature increasingly deals with the question if weather derivatives can also
play arole asrisk management toolsin agriculture, (Richards et al, 2004; Turvey ,2001). Cao et
a (2004) proposed a pricing model for rainfall based on daily rainfall in which they
calculated afair premium while ignoring market price of rainfall risk. Carmona and Diko, (2005)
proposed a Markov process model for the rainfall process for stochastic dynamics of the
underlying rainfall. They assumed the existence of tradable rainfall assets and used utility

indifference approach to price derivatives.

Leobacher and Ngare (2011) did construct a Markovian Gamma model for rainfall process with
seasonal effects and gives utility indifference prices with exponential utility. Leeand Oren
(2010), Hardle and Ospienko (2011) obtained equilibrium prices for weather derivatives
on cumulative monthly  rainfall by simulating market conditions of two types-farmers with
profits exposed to weather and financial market investors aiming to diversify their financial

portfolios.

Classical arbitrage theory assumes that stocks can accurately replicate options on tradable assets.
However, for derivatives on weather conditions like rainfall, temperature indices cannot rely on
hedging principles since the underlying cannot be traded. Therefore, with the market being
incomplete there are many equivalent martingales to price rainfall derivatives. Moreover, these

futures should be arbitrage free since they are indeed tradable.

As aluded to earlier we sought to find arbitrage free prices for rainfall derivatives via the

Esscher transform with a constant Market Price of Risk. Esscher (1932) first introduced the



transform for density approximations which was later developed as a genera probabilistic
model by Barndorff-Nielsen (1997). Gerber and Shiu (1994, 1996) used Esscher transforms in
option pricing. Bithimann et al. (1998), Bingham and Kiesel (1998), Chan (1999), also used the
Esscher transform in their studies. We use Leobacher and Ngare (2011)’s model together with
the Esscher transform. The only difference is that our model incorporates conditional risk
adjusted expectation i.e. the price is given under the risk neutral valuation as opposed to

indifference pricing method which ignores the market price of risk.



CHAPTER THREE

METHODOLOGY
3.0 Introduction
Standard pricing approaches for weather derivatives are based on historical weather data.
Forward-1ooking information such as meteorological forecasts or the implied market price of risk

is often not incorporated in usual pricing approaches.

In this study, we find arbitrage-free prices for rainfall derivatives by using an equivalent

martingale measure via the Esscher transform with a constant market price of risk.

The proposed model captures the typical behaviour of daily rainfall and allows for daily pricing.
Moreover, the resulting theoretical prices can be adjusted to market data by calibrating the
market price of risk. At first, a standard model for daily rainfall isfitted to the available historical
rainfall data. With this, the rainfall can be simulated for every day in the future especialy in the

period under consideration.

We calculate the prices under the risk neutral measure Qq. Since the market is incomplete, there
will be many equivalent martingales Qy. By using an equivalent martingale Q= Q,, we are able to
find arbitrage free prices. This, however, requires an additional parameter 6, the market price of
risk. Since our assumed distribution is non-normal, an Esscher transform of the distribution is
performed with constant market price of risk. The mean of the transformed distribution is the
expected price under the risk neutral measure, where 6 is calibrated to the market data. Brenda et

a (2013) shared this view.

10



3.1 The Rainfall M odd

Carmona and Diko (2000) proposed a time homogenous jump markov process to model
the rainfall process. To price the derivatives, they assumed the existence of tradable asset
whose price depended on rainfall and relied on the utility indifference method to price the
derivatives. This model was later to be improved by Leobacher and Ngare (2011) who
constructed a Markovian- Gamma model for rainfall process which accounts for the seasonal

effects of rainfall and calculates utility indifference prices with exponential utility.

We intend to exploit this model together with the Escher transform with constant market price

rainfall risk to calculate the prices using an equivalent martingale measure.

To account for the seasonal effects of rainfall over a given period Leobacher and Ngare (2011)
partitioned the period under consideration into equal sub-periods and separately modelled

the total amount of rainfall within each sub-period.

By letting Yo,Y1,Y2,..... t0 be the sequence of total rainfall per sub-period, they assumed
that in some sub-period k, the rainfall has a cumulative distribution  function
(CDF),F xmodam, k = 0 where F, is a continuous function and strictly increasing such that the

inverse,F, ~* exists with similar properties ,that is, strictly increasing and continuous.

The assumptions above indicate that the sequence (F xmoam (Yx)), k = 0 constitutes of generally

dependent random variables U uniform on (O, 1) which can generate a future rainfall
sample path by setting Yy, := Fimoam ~(Ux), k = 0, using the standard inverse transform
method.

The sequence F moam(Yx) IS a discrete-time Markov process with state space (0, 1) and

therefore rainfall amounts of two consecutive months or even the days are not independent.
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It is assumed that the rainfall within sub-period k follows a gamma distribution with shape and

scale parameters « and [ respectively. Then, for some standard normal random variable Z,

Fi.(z) = f fO)dy, where

1 ag—1 -y
(y) e /ﬁk, y>0,ay P >0

fie @) =2 BeTay \By e (3.11)

0, y<O0

3.2 Parameter Estimation
This method is taken from Leobacher and Ngare (2011).

Suppose we are given datayy, vy, ....,yn—1 Of precipitation at a specific location with m
observations per year. We want to fit our model to actual data, that is, we want to find a set of
parameters a, ....., &m_1, Bo, ----» Pm—1 Such that if F,isthe CDF of a gamma distribution with
parameters a, f for each k then y,, ....y,_1 has the maximum likelihood. If the observations

are monthly then m=12.

We are supposed to estimate (ay, 8) for every month using ordinary maximum likelihood

estimation framework.

We note that consecutive observations are hardly independent; and since correlation
between consecutive months cannot be ignored, no big error can be expected by assuming that

consecutive Januaries are independent.
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From this we would have estimated that the CDFsFo,F,....Fm1 and thus can compute

q)_l(kaodm(Yk)) = Zy

3.3 Maximum Likelihood Estimation for Gamma Distribution Using Data Containing
Zeros
Wilkis (1990), Leobacher and Ngare (2011) constructed their models using the method bel ow.

Suppose the given data set contains Mg censored data points (recorded as zeros) of
censoring level A = 0.1 and M,, points with known values such that M=Mg+M,. Then the

likelihood function for the distribution parametersis given by:
Let Y(aB:y) =I1;2 G4 @ B T2, g i @ B)

Na—1 Vi
then Y(a,B;y) = [G(4; a, )Mo H?ﬁ&ﬁ%(%) e B ,where

A
G(A;aB) = f 9O a,B)dy = Ply; < A]
0

If we assume that M=0 that is, all the data values are known, then the MLE of the parameters

satisfy:
M, l
0gYyi
log(B) + p(@) = ) —- l
i=1 v
1
Vi
a—=) ZL=0
B LM,



dlog[l'a]

where ¢ (a) = is the digamma function. Hence the MLE for S and a can be

determined. In the case whereM,, # 0,

M, . M,
L(@,f;y) = Mo log[G (A, @, /)] ~ M, [alog($) +l0g(@)] + (a —1) ) logy, —5 >

Can be evaluated numerically for the values of a and S using any of the available mathematical

software like MATLAB.

3.4TheMarket Model

The market model is given by stochastic differential equation:
dS; = p(Y)Sidt + a(Y)S:dZy oovvneeeiiiiiiiiienn (3.4.3)

where Z, ~iid N(0,1) and u(Y;) and a(Y;) are measurable functions whose concrete form we

are yet to determine.
However we can take o (Y;) as aconstant and evaluate u(Y;) modelled as below:
u¥y) =alog(Ye) +b,Y: > 0. i (3.4.9)

The parameters a and b are estimated by MLE scheme by combining both the market and
rainfall data. That is, given the rainfall records yg, vy, ..o .. ¥e—1, Ve and asset prices

S0y S1y «we e e - Se—1, S¢ Of SOMeE hypothetical asset, we can set 9, = log(Y;) asand

dSt = St - St—l SJCh that

14



dS; = (a9, + b)S.dt + S,dZ;

dSt = IJ.Stdt + O-StdZt

ase
St

Then by MLE the estimatesfor a, b, ¢ can be obtained.

InSt - ﬂt

p = Zt~N(0,1)

(t)_i lZZ
f2.0) = exp—312]

1 1
te1 o exp(o; [P — 2Peut + p?t?])

From which we maximize the log likelihood partials as follows

n 1 - 2 9.2
=~ log(2m) —FZ[& _2Put + ut?]
t=1

ol -1 - 200 2 29y 2
£=ﬁ2(—2tpt2)t+2at 9,2 + 2bt29,%) = 0

t=1

a -1

n
— = FZ(—ZtPt +2at29,? + 2bt?) = 0

t=1
On solving the two equations we obtain explicit expression for a and b and even o as below:
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Where

_BS—vya
&6 —y?

_ag— Py

and b = 5 =y

0% =1+ a’c + 2aby + b?*6 — 2ap — 2ba

na =Y tP,
—_ \n—-142 2

ne = Yt-ot* 9",

nlB = Z?z—(} tPt ?)t ’

ny = Z?;Ol t? Dt

—_ \n-1p 2
nt = Y5 P°,

St
Py = InS; = log(S—)
t—1

3.6 THE ESSCHER TRANSFORM

3.6.1 Introduction

According to Buhlmann et a (1996), the standard fair pricing in finance usesthe no arbitrage

notion, that is, there is no such a thing as riskless gain. The mathematical formulation of

this economic principle brings in the fundamental notion of

measure.
fully hedged away and, in most cases, there will be infinitely many such equivalent martingale
measures so that pricing is directly linked to an attitude towards risk. Whereas in classical

insurance, the question would be ‘which premium principle to use’. Within the incomplete

In practice, we mostly deal with incomplete markets. Consequently, risk cannot be

16

risk neutral martingale



finance context it becomes “which equivalent martingale to use®. It is exactly at this point

that the Esscher transform enters as a possible pricing candidate.

The Esscher transform isatool in Actuarial Science. It is aso an efficient technique for valuing
derivative securities if the logarithms of the prices of the primitive securities are
governed by certain stochastic processes with stationary and independent increments. This
family of processes includes the Wierner process, the Poisson, the Gamma and the inverse
Gaussian processes. These types of processes are caled the Levy Processes (LP). They offer
flexibility for accounting for basic features of financia series, that is, skewness, excess kurtosis,
frequent small and large jumps. To be applicable for pricing derivatives, statistical
distributions have to be adjusted for market price of risk and turned into martingale processes

Thisis done by applying the Esscher transform to statistical processes.

The market price of risk is an equivalent property of the equivalent martingale measure.
It is therefore required in order to derive an expression for future rainfall prices in this scheme.
We first need to specify the risk neutral probability Q. We can say, safely, that Q~P (P is the

physical measure) such that all tradable assets in the market are martingal es after discounting.

Therainfal derivatives market is inherently incomplete since the weather is not a tradable asset.

It is not possible to find a unique risk neutral measure Q, the equivalent martingale. Therefore
many martingales exist and according to (Jensen and Nielsen, 1996), (Benth 2004) only bounds

for prices on contingent claims can be provided based on no -arbitrage principles.

We therefore, in this case, specify a class of probability measure using the Esscher
transform which will provide us with market price of risk parameterized by a parameter 6.

Buhlman 1980 derived the Esscher premium as a Pareto-optimal solution to a market

17



situation where al the participants are characterized by an exponential utility function
with al the risks being stochastically independent. The parameter 6 represents risk aversion of

the market participants.

The Esscher transform changes a probability density f(x) of a random variable X to a new

probability densityf (x, 8)) given as

C exp(0n) f(x)
FO08) = o o(6x) f ) dx

Since the transformation is state dependent, the state price density f(x) can be represented in an

exponential form (Duffie and Kan ,1996).

3.6.2 Equivalent Martingale M easure Q Using the Esscher Transform
Modern financia derivatives theory is mainly based on martingal e theory.

We consider a given filtration (flow of information) {F,};so, . F:; can be thought of as the
information generated by all the observed events up to time t. Therefore for any stochastic
variable Y we let E(Y /F,) denote the expected value of Y given the information available after

attimet.

It is important to note that for a fixed t, then E(Y/F,) is a stochastic variable. Indeed if the
filtration is generated by a single observed process say X, then the information available at time t
will depend on the behavior of X over the interval [0, t].So the conditional expectation E(Y /F;)

will in this case be afunction of all past values of X thatis{X,:s <t}

18



Proposition 3.6.3

If Y and Z are stochastic variables, and Z is F; measurable, then E[Z.Y|F,]| = Z.E(Y /F})

Also E[E[Y|F]IF,] = E[Y|F; ]

In the expected value E[Z.Y|F,;] we condition upon all information available at time t.Then if
ZeF,, it means that given the information F; ,we know the exact value of Z ,so we can treat its
conditional expectation as a constant and thus taken outside the expectation. The second result is
the law of iterated expectations which is basically the law of total probability. We can therefore

proceed to define the martingale concept.

Definition

A stochastic process X isreferred to as (F;) martingale if the following hold:

1) X isadapted to thefiltration {F;};s0
i) Forallt, E[|X.]] <o

iii) For al s and t withs < t, then E[X(t)|F;] < X(s)

Definition: Equivalent probability measures

Let P and Q be probability measureson (0, F)

Lemma 3.6.4

For two probability measures P and Q, the relation P~Q on F holdsif and only if:

P(A)=1<Q(A) =1,fordlAe F
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Pr oof

We note that, in the context of probability measures, although two equivalent measures P and Q

may assign totally different probabilities to afixed event A, all eventsimpossible under P,

that is ,P(A) =0 are aso impossible under Q. Equivalently all events possible under
P,that is, P(A) = 1 are also possible under Q.From the definition it also follows that if an event

has a strictly positive P — probability, then it aso has a strictly positive Q — probability.

The study ison a risk neutral distribution, a martingale measure associated with a

Markovian gamma process.

A perfect hedge cannot be obtained and there is always a residual risk that cannot be hedged.
Indeed, there are many different equivalent martingale measures under which the
discounted asset price process is a martingale. The existence of a martingale is related to
the absence of arbitrage, while uniqueness of a martingale measure is related to market

incompleteness,, that is, perfect hedging.

Gerber and Shiu (1994) proposed one approach for finding an equivalent martingale
measure using the Esscher transform. According to their findings, given a statistical model P, the
Esscher transform induces an equivalent probability measure Q and a martingale process. The
Esscher parameter is determined so that the discounted asset price is a martingale under

the new probability measure Q.

Let
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where {X;};so iS a process with stationary and independent increments and X, = 0 then for
each t therandom variable X; hasan infinitely divisible distribution with probability density

given by:
F ), > 0 (3.6.6)
In addition, the moment-generating function, assumed to exist, is defined as-
M(u,t) = E[e] = [7 ™ f(x,)dX..ocviririiiiainiannn (3.6.7)
Assuming that M (u, t) iscontinuousat t = 0, then by infinite divisibility:-
M@, t) = [M(U, 1) e e, (3.6.8)

Let 0 be a real number such that M(8) = ffooo e%% f(x)dx exists, then the Esscher transform of

{Xt}ts0 With parameter 6 is defined as a Levy Process with stationary and independent

increments where the new probability density of X;,t > 0, is:

. _ egxf(x,t) _ egxf(x,t)
fo:6) = [2.e9Fydy  M(O.t)

The modified distribution of X(t) is the Esscher transform of the original distribution

whose moment-generating function given by :-
o _ M@A0n

. _ ux .
M(u,t;6) = f_ooe flx,t;0)dx = M(@,t)

M(u,t,0) = [M(u,1;6)]*

Therefore, an equivalent Esscher measure is given by:
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dQ/F,  e%%
dP/F,  E(e%%)

= exp(6X, — tlog(M(6)))

Proposition 3.6.5

The Esscher measure of agammaprocesshasaMGFat t =1 given by:

e A (3.65.1)

Proof:

0 4
For M(u+ 9) =f0 ew+o)y 2 @l g dy

para”
= gy e by
=k v e TV gy s [%r_l
:(1—Bfu+9))a—1 ﬁalra fOOO ((1_“;?”6)3/)(1_1 e_(%)ydy cer en e e e e (3.6.5.2)
Nowley = (%) y

Therefore dy = (1_B(ﬁu+9)) dy,

Equation (11) becomes

a-1 o2
(1 _ﬁfu T 9)) ﬁalraof(y*)“‘le—% (%) A, e oo (3.6.5.3)
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Recal: Ta= foooy“‘l e dy

. ﬁ, a—1 1 ﬁ
This leads (12) to (1_3(u+9)) BaTa (1—,8(u+9)) la

() e

Andfor M(6,1) = [, e%

a-1,73

ﬁ“l"ay

1 -(1-B8)y

Jyy*te B dy

L%l

-1
—~(1-0)y 1260\
_ 1 ®© a-1 B
- BTa fo y e B dy* <1—BG>
B

i ﬁ“lfa (1—Bﬁ'e)a_1 fooo ((%)Y)a_l e_(%dy
Let y. =552 then dy = (7255) .

1-86

Which now givesriseto, as above,

a-1 %
= ﬁ“lFa (1 —ﬁﬁe) Oj(y*)a_l e (1 —ﬁﬁe) ay.

a

a-—1
_ (1 _ﬁﬂg) ;;alra (1 _ﬁﬁg) a = (1 —1ﬁ8) e (3.6.5.4)

Dividing (3.6.5.3) by (3.6.5.4) completes the proof.
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The probability measure of the process has in fact changed and its exponential function is
positive. Therefore, the modified probability measure is equivalent to the original probability

measure, that is, they both have same null sets—sets of probability measure zero.

The parameter 6 is determined so that the modified probability measure Q is an
equivalent martingale measure to the original statistical probability measure P. The aim is to
find 6 = 6* , so that the discounted stock price process {e ™ S;};»o IS @ martingale with

respect to the probability measure corresponding to 8*
With the martingale condition that,
So = EQ[e™"tS,] = e " EC][S,],
the parameter 6~ isasolution to:-
So = EC[e™"S,] = e "CEC[S,e*t]

EP[e0+DX®0)] e MO+ 1,0)

— ,—Tt —_ 5
=e""So EP[efX(D)] =e""So M(6,t)

where r isthe constant risk free rate of interest.
Thisisequivalent to:
1=eTEC[eXt) ore™ = M(1,t; 6%)
We note that the solution isindependent of ¢ and then by setting t = 1 , we obtain
e’ = M(1,1;60%)
And in logarithm form, the parameter isa solution to:-

r =log[M(1 + 6%)] = log[M(1 + 6%; 1)] — log[M(68*,1)]
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That is,

r = log [{1_1(;3[;)3}0(] = a[log(l —6) — log(l — B+ 9))] ............ (3.6.5.5)

3.6.6 The Escher Transform Parameter 0

From equation (3.6.5.5) we have:

o~
= paT)

It therefore follows from above that theta can be expressed in terms of the other parameters as:

Cea(1-p)—1

9 r
Blex—1)

e . (3.6.5.6)

We need to show that 6* isunique. We know that the parameter 6 = 6* ischosen such that

the process {e "S.};»0 iS a martingale with respect to the probability measure

corresponding to 6*.
Precisely, S, = E[e™"S,;6*]; hencee™ = E[e*t;0*] = [M(1,1,6%)]*
that is, r =log[M(1,1;0%)]

The Esscher measure corresponding to the parameter 8* isthe risk neutral Esscher measure.

25



Proposition 3.6.7

For agiven timeinterval [0,T],where T > 0, the underlying asset price S; is determined by the
model S; = Spexp(X,) with X, is identically distributed with independent and stationary

increments. The payoff function is given by :

Str—K,for St > K
V(Sy) = max(Sy — K,0) = f(x) ={ TO fo?fST EK

Is a European pay off function, where K isthe option strike price.
Then the European call option price C, at t = 0 isgiven by:

Co = Sol1 — F(gIT, 8" + D] — Ke'"[1 — F(g|T, 6]
Where g = log (K/SO) and F(g|T, 6" + 1) istherisk neutral probability measure.

Pr oof

The price of a derivative security, whose payments depend on {S,} is calculated as a
discounted expected value where the expectation is taken with respect to the risk -neutral

Esscher measure.

The value of a European option, at timet =0 , whose exercise price and date are

K and t respectively isgiven as:

ECe™™ (S — K).] = 7 [7[Sce* — KIf (x,£;0") dx
=e S, f:o e*f(x,t;0)dx —e "' K[1 — F(z,t;0%)], for T = log [K/S(O)]

It therefore follows that:
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e@*Vf(x,t) MO+ 1,0)
M@6*t) M(6*t)

e*f(x,t;0) = f(x,t;0"+1)

=M(1,t0)f(x,t;0*+1)=e " f(x,t;0* + 1)

Letting I(.) denote the indicator function and as abovert = log[%] ,the price of theoption
at=0is:-

e "'E[(S; — K)I(S; > K); 6%]

= e "E[SI(S; > K;0*] — e TtK[I(S; > K; 6°]
The expectation on the right hand side is equivalent to

Pr[S; > K;0"] =1—F(t,t;0%)
Thus, the price of a European call option with exercise price K and date t can be given as:
Pre =S [1—=F(T, ;0" 4+ 1) — e " K(L = F(T, 0] v (3.6.5.7)
Accordingly (3.6.5.7) can be written as
SoPr[S; > K; 0 4+ 1] — e TEKPY[S; > K; 0™ ]eeooeeeeee e el (3.6.5.8)
We intend to use this expression (3.6.5.8) in our numerical implementation later.
3.7 TheBlack Scholes M odel

The seminal paper of Black-Scholes (1977) provides an analytical framework for the pricing of
contingent claims and in particular options. However the Black-Scholes formula relies on some
fairly stringent assumptions. Most importantly it assumes that the underlying processis driven by

geometric Brownian motion:
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e udt + odW,
Xt

Thenif F(X;) = log(X;), then by Ito’s formulae :

dF = (,1 - %ﬁ) dt + odW, , which with the initial condition, X,, has a solution

given by:
1 2
F(X;) =logX, + (,u —50 ) (t —to) + oWy,

= X, = X el(k20%) -t +aw]

And by using the martingale approach it results into:

1
V, = E, [Xoe[(”"i"z)(t"t‘))wwt]IFt] , where Q represents the risk neutral martingale measure

and V; isthe payoff of the option contract.
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CHAPTER 4
DATA ANALYSISAND RESULTS
4.1 Data Analysisand Numerics
We obtain daily rainfall data from the Kenya Meteorological Department for Dagoretti weather
station in Kenya. The data spans a period of 11 years (2002-2012).We calculate the monthly
averages and estimate the parameters, « and 8 from which we then proceed to plot density
curves for al the months (Fig 4.1). From the curves, it is evident that the rainfall pattern closely

(approximately) follows both the gamma and NIG distributions.

Also we obtained daily share prices for the Kenya Power Ltd from the Nairobi Securities
Exchange for the same period (2002-2012). This was used to estimate the parameters for the
claimed market model.cf equation (3.4.3).We adopted the KPLC share price because electricity

in Kenyais mainly hydro generated and therefore rainfall dependent.

In the empirica analysis, we use the simulated paths of daily rainfal amounts under the
historical measure P which we will then shift using the parameter as determined by the Esscher

transformation.

Parameter Estimation

The rainfall data obtained from the Kenya Meteorological Department was analysed under the
Gamma and Normal Inverse Gaussian distributions. The associated parameters were then
estimated using the maximum likelihood estimation scheme given in section 3.3. The estimated

parameters are given below in Table 4.1and 4.2 respectively correct to 4 decimal places.
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Table 4.1: Gamma Distribution parameters

Month Shape Rate Month Shape Rate
Jan 2.1293 0.8046 July 0.45450 | 0.0861
February | 1.2291 0.3949 August 0.6908 0.1777
March 2.1856 0.9364 September | 0.3887 0.2532
April 0.3644 0.0910 October 0.3675 0.2632
May 1.4837 0.3572 November | 1.0196 0.2922
June 0.6193 0.3136 December | 0.6226 0.2661
Table 4.2: Normal Inverse Gaussian distribution Parameters

January February | March April May June
Alpha 115.8912 | 375.3693 | 169.2344 291.7944 12.1659 405.4666
Beta 3.0502 | 375.1475 -34.3779 291.6410 | -10.2764 | 405.3924
Delta 280.5836 0.1324 | 232.8769 0.1677 12.6333 0.0396
Mu -4.7410 -0.7373 50.6416 -1.1672 24.1080 -0.0955
Table 4.2 cont’: Normal Inver se Gaussian distribution Parameters

July August September | October November | December
Alpha 158.6296 | 237.3810 | 734.7128 | 270.6253 | 325.0203 | 341.8861
Beta 158.6173 | 237.3639 | 734.2090 | -42.1334 324.8511 | 341.7867
Delta 0.067/8 0.0452 0.0771 | 298.8518 0.1406 0.0615
Mu -0.1477 0.1129 -0.5462 48.4987 -0.8656 -0.2111
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To justify the claim that the rainfall per period follows the gamma distribution, the density plots
and histograms for the determined parameters for the months of February are below. The other

plots and histograms for the rest of the months are included in the appendix.

NIG Distribution Feb STOGRAM REALDATA WITH Gamma Distribution SUPERIMP

0.20
1
0.20
1

0.15
1
0.15

density
0.10
1
density
0.10
1

0.05
I

0.00

0.00

Feb

Fig 4.1 .Density Curvefor Rainfall Process

4.2 Estimation of the Market M odel Par ameters.

From the model in equation (3) and equation (4) we sought to estimate the actual parameters
based on the rainfall and share price data at hand. The parameters are estimated
through a code written in R. Thus by using the monthly data, the estimated parameter values

obtained are asin Table 4.3.
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Table4.3 Market Mode Parameter Values

a b u o
Jan -0.0241 0.6901 0.6708 1.9740
Feb 0.1576 0.5648 0.7216 1.7347
Mar -0.1446 0.7680 0.6859 1.8896
Apr 0.0228 0.7075 0.6711 1.9227
May 0.0166 0.6458 0.6665 2.0031
Jun -0.0704 0.6398 0.7045 1.9005
Jul 0.05980 0.7260 0.7065 1.8626
Aug 0.05069 0.6353 0.6571 2.0596
Sept 0.00573 0.6790 0.6678 2.1153
Oct 0.01682 0.6602 0.6682 2.1206
Nov 0.03116 0.6357 0.6682 2.1205
Dec -0.0520 0.6802 0.6796 2.0936

We observe from table 4.3 that all months have their mean ¢ > 0 and the deviation from the

mean, that is the stock volatility is significantly positive.
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Table 4.4 Esscher Parameter Values

Month (7] 1-p6 1-p0O+1)
January -19.056978 | 24.68503 23.44218
February |-11.286193 29.57988 27.04759
March -19.436885 | 21.75703 20.68911
April -3.746845 42.17412 31.18511
May -13.637160 | 39.17794 36.37839
June -5.831194 19.59437 16.40559
July -4.565867 54.02982 42.41541
August -6.615564 38.22884 32.60137
September | -3.803988 | 16.02365 12.07420
October -3.602615 14.68775 10.88836
November | -9.485880 33.46365 30.04134
December | -5.908616 23.20449 19.44651

Table 4.4 presents the values for theta and transformed scale parameter for each month based on
the estimated parameters. From table 4.4 we redlize that the value of theta varies roughly
between -19 and -2, that is —19 < 8 < —2. With values of 8 # 0 will change the mean and

variance of the transformed distribution

With the monthly Esscher parameter determined, which in this case is regarded as the market

price of risk, it is possible to determine the risk neutral prices of the derivative under Q, using
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equation (3.6.5.8). The estimated prices as aresult of the Esscher transformation and those due to

the Black-Scholes implementation are in Table 4.5.

From the Table 4.5 we observe that the prices increase with the strike price when we consider the
Black-Scholes pricing scheme. They however increase with increase in the strike price when we

consider the esscher pricing method.



CHAPTER 5
CONCLUSION AND RECOMMENDATIONS
Weather risk and in particular rainfall risk is of great interest to researchers lately. Several
methods on pricing and hedging derivatives have been proposed. For example, to price under the
no-arbitrage condition, we need an equivalent martingale measure. In an incomplete market
model, there are an infinite number of equivalent martingale measures. Also in an incomplete
market model, any martingale measure which is equivalent to the physical measure, is a potential
pricing measure. In this research we adopted the risk neutral conditional Esscher transform to

determine an equivalent martingal e measure and used the resulting measure to price the options.

In this research focus was on the European call options. The resulting pricing formulae was
developed based on the equivalent martingale measure Q.Moreover we were able to conduct a
comparison between the prices for the European call options obtained by our equivalent

martingale measure method with those by the standard Black-Scholes method.

The model of a gamma distribution shifted by an Esscher transform parameter is used to obtain
the risk neutral prices of options. The prices are hypothetical since they are not obtained from
actual trading. This is so because there is no established derivative market in the region. The
prices vary depending on the values of K, the strike price (see Table 4.5). And according to the
shift parameter and by extension the actual rainfall distribution parameters and thus the rainfall
process. We observe from table of prices that, except for some two months, the option prices
under the Esscher scheme increase with increase in the strike price whereas the prices under the

Black-Scholes scheme decrease with increase in K.

We observe from table 4.4 that the market price of rainfall risk changes in size with passing

time.it does not necessarily increase and become positive during warmer months. This means
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that months with extreme amounts of rainfall like April have greater risk premium .A negative
(positive) estimate of the MPR implies that the monthly rainfall under Qo coincides with the

index written on the same underlying under P ; with the higher (lower) expected drift.

This is so because hedgers decide to enter contracts in presence of negative expected payoffs to
eliminate their risk since this hedging instrument is less expensive than insurance contracts. To
compensate in speculators from baring hedger’s risk, there must be an expectation of increasing

future prices.

From table 4.5, it can be realized that the derivative prices can be adjusted by adjusting the value
of 8, the MPR . In actual trading, the MPR can be chosen such that the price that results under Q
equals the market price as aresult of actual trading. This appropriate choice of MPR is called the

implied market price of rainfall risk sinceit’s calculated from actual data.

Recommendations

A method on how to calculate risk-neutral prices for rainfall derivatives has been presented. In
this method, a standard model for the rainfall process is used for simulation. In particular, we
used a markovian gamma model represent the rainfall process. We then shift the rainfall process
distribution by the Esscher transform to obtain the risk neutral prices. This procedure is flexible
and can be applied to any rainfall derivative. The Esscher parameter 6, describes the market

price of rainfall risk and can be calibrated from real market data.
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Rainfall derivatives do not trade in the Kenyan market. In fact, they were recently introduced in
the Chicago Mercantile Exchange. Therefore the reported prices are actually hypothetical prices

since they are not from actual trading.

Hopefully, in the near future, when derivative trading gets established in Kenya or in the region,
similar approaches can be used to investigate the behavior of rainfall derivatives and their use in

managing risk associated with the weather and the nature of the market price of risk.

Our calculation can be used for daily trading to analyze temporal behavior of market price of risk

and spatial behavior among different regions in the country.

It may be of great interest to investigate the more general form of univariate and multivariate
esscher transforms, and the possibility of representing an ad hoc risk neutral measure through the

esscher transform.

Further studies are recommended in directions of both hedging and pricing options under regime
switching models. Of particular interest would be to explore application of Esscher transform to
more complex derivatives, and dynamic hedging strategies in the incomplete markets. Further
research can consider optimal hedging under regime switching lognormal models. We are
remark that the hedging may not be simply obtained from pricing due to lack of a replicating

process for regime switching. Thus we recommend use of a dynamic optimization process
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APPENDI X:

Density Curvesfor therainfall process-Gamma Distribution
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Table 4.5: Derivative prices

K/Month
80

90

100

110

120

130

140

150

K/Month
80

90

100

110

120

130

140

150

Jan
35.724

30.908

32.093

42.277

45.717

50.775

58.247

69.495

Jul
37.974

38.408

50.093

54.282

58.533

71.856

78.098

79.737

Aug
35.724

30.927
26.264
24.107
24,531
38.337
66.449

00.000

Feb
35.724

30.908

32.093

43.777

46.467

50.803

59.094

69.717

Mar
52.224

58.658
65.093
75.277
82.461
80.646
77.330

77.811

Sept
35.725

33.908
43.343
47.527
53.217
58.275
73.136

74.906

50

Apr
35.724

33.158
35.093
45.277
50.217
55.974
65.557

74.837

Oct
35.724

33.908
43.343
47.527
53.217
58.275
73.136

74.906

May
35.724

30.908
32.093
43.777
46.467
50.804
59.094

69.638

Nov
35.724

33.158
35.093
45.277
47.999
53.845
59.958

71.487

Jun
35.724

30.908

26.093

24.350

29.450

36.635

39.733

46.918

Dec
35.724

30.908

26.103

25.137

31.054

36.770

40.483

49.081



