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ABSTRACT 

This study set out to price rainfall derivatives based on rainfall at a particular location in 

Kenya over a given period. We employ a Markovian-Gamma model to model the rainfall 

process. In addition, its parameters are determined via maximum likelihood estimation. We 

assume existence of a tradable asset whose performance is rainfall dependent. To compute 

the prices of the rainfall derivatives, we rely on the Esscher transform, an actuarial tool. We 

then compare the Esscher prices with the standard Black-Scholes prices. The results suggest a 

certain pattern of movement of the prices in which the derivative price decreases as the strike 

price increases in the Black-Scholes whereas they increase on considering the Esscher. The 

study is conducted using rainfall and stock market data in Kenya. 
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                                         CHAPTER ONE 

                                       INTRODUCTION 

1.1Background 

 

Weather conditions have pronounced influence on business revenues. They vary both seasonally 

and regionally. The weather influence presents both challenges that are adverse with huge losses 

and opportunities for the emergence, development and growth of the financial instruments like 

weather derivatives. Businesses use weather derivatives to hedge on their risks in order to make 

trading profits. Weather exposure can be hedged just the same way as currency exposure. 

Weather conditions, that is, rainfall, temperature, frost, snow are always unpredictable. 

Moreover, by being so unpromising and their patterns being abnormal over the decades, many 

industries are becoming victims of the weather in profound ways (Geyser, Van derv enter, 2001). 

Over the years, the agricultural based businesses have used futures contracts of agricultural 

commodities to hedge on weather related risks. However, traditional methods cannot cover a 

number of weather risks. This has given rise to the emergence of a more robust, flexible financial 

instrument called the weather derivatives (Geyser, 2002). 

Weather derivatives are financial instruments with payoffs linked to specific weather events and 

are designed to provide protection against the financial losses that can occur due to unfavorable 

weather conditions. It is a contract that stipulates how payment will be settled between the 

parties involved based on the prevailing meteorological conditions during the contract period 

(Leobacher and Ngare, 2011). They are typically swaps, futures or options based on the 

underlying weather measures which can be temperature, humidity, rain or snowfall (Alaton, 
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Djehiche and Stillberger, 2002).Weather derivatives, unlike traditional derivatives, have no 

underlying tradable instrument or stock. Therefore, they cannot be used to hedge price risk since 

the weather itself cannot be priced. Instead, they hedge against volumetric or quantity risk 

associated with weather conditions.   

The weather derivatives market is well developed in the United States of America (USA) with 

the energy industry players being the leading participants. There is equally rapid growth in Asia 

(Japan, China and India among others) and larger Europe. The growth is rather unprecedented 

and significantly rapid (Douglas-Jones, 2002) 

Closer home, in Africa, businesses in the agriculture and related industries have developed 

interest in the weather derivatives .Agriculture is largely unsubsidized and the energy industry is 

hugely regulated. Maize and wheat growers, silo owners, transport companies, sugar industry, 

fishing as well as insurance companies in South Africa have taken advantage of this new 

instrument (Bolin, 2002). Agriculture, clothing, construction, hospitality and outdoor 

entertainment industries which are highly weather sensitive and whose revenues and productivity 

are closely correlated with weather conditions are the ones heavily affected by harsh weather in 

the region. 

The mentioned industries are differently affected by prevailing weather conditions. The 

hospitality, tourism and entertainment industries are mostly busy during summer, the same time 

that most of Africa receives its rainfall. Thus, the attendance figures dwindle.  The construction 

industry is heavily hit in financial terms for projects that run beyond completion deadlines since 

operation of heavy machinery and working outdoor during rainy conditions are rather difficult. 

The clothing industry is equally dictated by weather since weather conditions dictate what people 

buy and wear for example, during winter, sweater and jacket products experience faster sales 
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unlike during a milder than normal winter. In agriculture, weather conditions affect the quality 

and quantity of produce (Geyser, 2002).  

The emergence of weather derivatives in the agriculture sector has particularly drawn 

considerable interest from international institutions like World Bank, International Finance 

Corporation (IFC) and International Monetary Fund (IMF).In the  underdeveloped and 

developing world, farmers are never covered by government sponsored insurance programs yet 

the weather risk is most prevalent in devastating scales. The weather derivatives can therefore 

provide a sure way of protecting them against risk of drought and poor harvest or any weather 

related risk. 

According to Cooper (2001), a large portion of South America�s economy relates to growing 

commodities and selling them to the world market. In Brazil for instance, coffee harvest can be 

adversely affected by bad weather conditions, which will in turn have considerable effects on the 

economy. Weather derivatives can bring added stability. 

1.2 Problem statement 

The impact of weather conditions in regional and local markets plays a critical role in the overall 

economy. The energy industry, agriculture, retail, tourism, insurance and a host of many other 

weather dependent industries are either directly or indirectly exposed to weather risk.  

This vulnerability explains the need for a strategy to manage weather risk in order to protect 

these businesses against uncontrolled weather risk exposures. 

The development of the weather derivatives market is aimed towards managing the economic 

impact of weather events. Weather derivatives help businesses hedge their risk in much the same 

way as they can hedge foreign exchange or interest rate risk. There is therefore need to develop 
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weather risk management in developing countries because they are worst hit when disaster 

strikes. They suffer heavier economic loss compared to their developed counterparts. 

Kenya and Africa has a large potential in the weather derivative market. The climate radically 

varies with its vast lands spanning many latitude degrees with complicated terrain. Given that 

Africa is a large agriculturally productive continent and most of its economic activities are 

weather sensitive, it is urgent to adopt weather derivatives as a hedging mechanism to shield 

against weather risk. With telecommunication system networks and meteorological systems now 

becoming integrated and advanced, data for developing countries and pricing weather derivatives 

becomes more available. The ability to manage risk driven by weather events is important for 

most industries. There is need, therefore, for studies that will provide tools to manage the 

unpredictable financial risks associated with weather fluctuations. It is at this point that weather 

derivatives come in as an hedging mechanism against weather related risk. 

 

1.3 OBJECTIVES OF THE STUDY 

1.3.1 Main objective 

The overall objective of this study was to develop a framework for modelling and pricing rainfall 

derivatives used to hedge weather risk in Kenya. 

1.3.2 Specific objectives 

1.  To model rainfall process using Markovian �Gamma model 

2.  To construct a unique equivalent martingale measure Q via the Esscher transform. 

3.  To compute arbitrage-free prices of derivatives whose underlying is a rainfall process 
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1.4 Significance of the Study 

This study sought to provide more information in the financial derivatives market on how to 

compute fair rainfall derivative prices, which can then be used to manage weather risk in Kenya. 

The study has greater significance to farmers in a developing economy whose livelihood is 

highly affected by fluctuations of the amount of rainfall received during the farming period. The 

weather derivative will compensate the farmers in case of above or below normal amount of 

rainfall required. In addition, the study is of significance to social event planners who will 

receive compensation in case of unexpected weather events. 

1.5 Scope of the study 

The study focuses on the rainfall at a single site thus we will not take into account the spatial 

correlations. 

1.6 Limitations of the study 

The study assumes rainfall as the main factor that affects crop yield, hydro-electric power 

generation. 

1.7 Assumptions in the study 

We assume an incomplete market, that is, 

i)   We assume a constant risk-free rate of interest. 

ii)   The market is frictionless and trading is continuous, that is, no taxes, no transaction  

      cost and no restrictions on borrowing or short sales. 

iii)   All securities are perfectly and infinitely divisible. 

Further, we assume that cultural practices, tradition plays no role in the study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Weather is an essential production factor in agriculture and hydro-power generation. This factor 

of production is, however, uncontrollable. Therefore, it can pose risks that are the major sources 

of uncertainty in crop production and electricity reliability.  

In the past decade research on weather derivatives has focused on temperature as the underlying 

weather measure because most traded weather derivatives are based on temperature indices. 

There are, however, several economic activities exposed to rainfall risk. A good example is that 

farmers and financial investors are affected by indirect losses as a result of abundant or scarce 

rainfall. 

With the rainfall derivatives, firms are able to transfer rainfall risk to the capital market. The 

buyer of the derivative has a chance to reduce rainfall risk exposure, to profit from weather 

uncertainty, and stabilize cash flows and earnings. The buyer of the derivative receives a payout 

at a pre-determined settlement period if the weather event occurs regardless what the cause of the 

loss caused by the weather condition. Sellers of the derivative eliminate moral hazard and avoid 

the higher administrative and loss adjustment expenses of insurance contracts. 

The Chicago Mercantile Exchange (CME) first introduced derivative contracts on weather 

indices in 1999.Both the over the counter and exchange traded derivatives written on weather 

variables range from temperature, hurricanes, frost and precipitation among others. 

Unlike insurance that cover low probability extreme events, weather derivatives cover lower risk 

high probability events like colder than expected winter. Also the buyer of the derivative will 
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receive the payoff at settlement period regardless of the loss caused by the weather events 

whereas insurance payoff depend on proof of damage. Further from the seller�s perspective, 

weather derivatives eliminate moral hazard and avoid higher administrative costs and loss 

adjustment expenses of insurance contracts. However, a  considerable risk  may  remain  with  

the  producer  when  using  weather  derivatives,  because  individual  yield variations in general 

are not completely correlated with the relevant weather variable (Oliver et al, 2006). 

The weather derivative market is a typical example of an incomplete market in the sense that the 

underlying weather variables are not tradable assets and cannot be replicated by other underlying 

instruments like in the equity market. Furthermore the market is relatively illiquid.  

Campbell and Diebold (2005) suggest that the illiquidity is as a result of non-standardization of 

the weather. With this one may encounter inefficiencies in the weather derivative market. 

However, protection is achieved when the transaction counter parties: the hedger who wants to 

hedge the weather risk exposure and a speculator to whom the risk is transferred in anticipation 

for a reward meet. 

The available academic literature on weather derivatives generally concentrates on two aspects. 

First, that the weather derivatives fundamentally differ from standard derivatives in that the 

underlying asset is not tradable. Secondly, for weather derivatives to be effective hedging 

instruments, good models of weather risks are needed. Filar et al (2008) argues that rather than 

studying derivative instruments with weather as the underlying asset, researchers and scholars 

ought to study pricing of derivatives where the underlying asset is sensitive to the weather. Like 

orange juice can be a classic example of a pure weather asset. In its production one requires 

extended development time and commitments of land and labor. Therefore, producers are 
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exposed to price shocks predominantly created by adverse weather conditions like colder or 

warmer than normal temperatures.  

Available  literature  increasingly  deals  with  the  question  if  weather  derivatives  can  also  

play  a role as risk management tools in agriculture, (Richards et al, 2004; Turvey ,2001). Cao  et  

al (2004)  proposed  a  pricing  model  for  rainfall  based  on  daily  rainfall  in  which  they 

calculated a fair premium while ignoring market price of rainfall risk. Carmona and Diko, (2005) 

proposed  a  Markov  process  model  for  the  rainfall  process  for  stochastic  dynamics  of  the 

underlying rainfall. They assumed the existence of tradable rainfall assets and used utility 

indifference approach to price derivatives. 

Leobacher and Ngare (2011) did construct a Markovian Gamma model for  rainfall process with 

seasonal  effects  and  gives  utility  indifference  prices  with  exponential  utility.  Lee and  Oren 

(2010), Hardle  and  Ospienko  (2011)  obtained  equilibrium  prices  for  weather  derivatives  

on cumulative monthly   rainfall by simulating market conditions of two types-farmers with 

profits exposed to weather and financial market investors aiming to diversify their financial 

portfolios. 

Classical arbitrage theory assumes that stocks can accurately replicate options on tradable assets. 

However, for derivatives on weather conditions like rainfall, temperature indices cannot rely on 

hedging principles since the underlying cannot be traded. Therefore, with the market being 

incomplete there are many equivalent martingales to price rainfall derivatives.  Moreover, these 

futures should be arbitrage free since they are indeed tradable. 

As alluded to earlier we sought to find arbitrage free prices for rainfall derivatives via the 

Esscher transform with a constant Market Price of Risk. Esscher  (1932)  first  introduced  the  
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transform  for  density  approximations  which  was  later developed as a general probabilistic 

model by Barndorff-Nielsen (1997). Gerber and Shiu (1994, 1996) used Esscher transforms in 

option pricing. Bühlmann et al. (1998), Bingham and Kiesel (1998), Chan (1999), also used the 

Esscher transform in their studies. We use Leobacher and Ngare (2011)�s model together with 

the Esscher transform. The only difference is that our model incorporates conditional risk 

adjusted expectation i.e. the price is given under the risk neutral valuation as opposed to 

indifference pricing method which ignores the market price of risk. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

Standard  pricing  approaches  for  weather  derivatives  are  based  on  historical  weather  data. 

Forward-looking information such as meteorological forecasts or the implied market price of risk 

is often not incorporated in usual pricing approaches. 

In this study, we find arbitrage-free prices for rainfall derivatives by using an equivalent 

martingale measure via the Esscher transform with a constant market price of risk. 

The proposed model captures the typical behaviour of daily rainfall and allows for daily pricing. 

Moreover, the resulting theoretical prices can be adjusted to market data by calibrating the 

market price of risk. At first, a standard model for daily rainfall is fitted to the available historical 

rainfall data. With this, the rainfall can be simulated for every day in the future especially in the 

period under consideration. 

We calculate the prices under the risk neutral measure Qè. Since the market is incomplete, there 

will be many equivalent martingales Qè. By using an equivalent martingale Q= Qè, we are able to 

find arbitrage free prices. This, however, requires an additional parameter è, the market price of 

risk. Since our assumed distribution is non-normal, an Esscher transform of the distribution is 

performed with constant market price of risk.  The mean of the transformed distribution is the 

expected price under the risk neutral measure, where è is calibrated to the market data. Brenda et 

al (2013) shared this view. 
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3.1 The Rainfall Model 

Carmona  and  Diko  (2000)  proposed  a  time  homogenous  jump  markov  process  to  model  

the  rainfall  process.  To  price  the  derivatives,  they  assumed  the  existence  of  tradable  asset  

whose price depended on rainfall and relied on the utility indifference method to price the 

derivatives. This  model  was  later  to  be  improved  by  Leobacher  and  Ngare  (2011)  who  

constructed  a Markovian- Gamma model for rainfall process which accounts for the seasonal 

effects of rainfall and calculates utility indifference prices with exponential utility. 

We intend to exploit this model together with the Escher transform with constant market price 

rainfall risk to calculate the prices using an equivalent martingale measure. 

To account for the seasonal effects of rainfall over a given period Leobacher and Ngare (2011) 

partitioned  the  period  under  consideration  into  equal  sub-periods  and  separately  modelled  

the total amount of rainfall within each sub-period. 

By letting Y0,Y1,Y2,..... to  be  the  sequence  of  total  rainfall  per  sub-period,  they  assumed  

that  in some sub-period ݇, the rainfall  has a cumulative distribution  function 

(CDF),	�୩୫୭ୢ୫ǡ ݇  Ͳ  where  ܨ is a continuous function and strictly increasing such that the 

inverse,ܨିଵ exists with similar properties ,that is, strictly increasing and continuous. 

The assumptions above indicate that the sequence ሺ	�୩୫୭ୢ୫ሺ ܻሻሻǡ ݇  Ͳ  constitutes of generally 

dependent random variables    ܷ       uniform on (0, 1) which can generate a future rainfall 

sample path by setting� ܻ ؔ ௗିଵሺܷሻǡܨ ݇  Ͳǡ�      using the standard inverse transform 

method.   

The sequence 	�୩୫୭ୢ୫ሺ ܻሻ    is a discrete-time Markov process with state space (0, 1) and 

therefore rainfall amounts of two consecutive months or even the days are not independent. 
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It is assumed that the rainfall within sub-period ݇ follows a gamma distribution with shape and 

scale parameters  ߙ and  ߚ respectively. Then, for some standard normal random variable Z, 

 

ሻݖሺܨ ൌ න ݂ሺݕሻ݀ݕǡ ௭݁ݎ݄݁ݓ
ିஶ  

݂ሺݕሻ ൌ ቐ ͳߚʒߙ ൬ ൰ఈೖିଵߚݕ ݁ି௬ ఉೖൗ ǡ ݕ  Ͳǡ ǡߙ ߚ  ͲͲǡ ݕ ൏ Ͳ ǥǥǥǥǥǥǥǥሺ͵ǤͳǤͳሻ 
 

 

3.2 Parameter Estimation 

This method is taken from Leobacher and Ngare (2011). 

Suppose  we  are  given  data ݕǡ ଵǡݕ ǥ Ǥ ǡ  ିଵ of  precipitation  at  a  specific  location  with  mݕ

observations per year. We want to fit our model to actual data, that is, we want to find a set of 

parameters ߙǡ ǥ Ǥ Ǥ ǡ ିଵǡߙ ǡߚ ǥ Ǥ ǡ  is the CDF of a gamma distribution withܨ ିଵ  such that ifߚ

parameters ߙǡ ǡݕ for each k   then  ߚ ǥ Ǥ  ିଵ  has the maximum likelihood. If the observationsݕ

are monthly then m=12. 

We  are  supposed  to  estimate ሺߙǡ  ሻ for  every  month  using  ordinary  maximum  likelihoodߚ

estimation framework. 

We  note  that  consecutive  observations  are  hardly  independent;  and  since  correlation  

between consecutive months cannot be ignored, no big error can be expected by assuming that 

consecutive Januaries are independent. 
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From  this  we  would  have  estimated  that  the  CDFs,F0,F1,...,Fm-1  and  thus  can  compute ʣିଵ൫ܨௗሺݕሻ൯ ؔ Ǥݖ  
 

3.3 Maximum Likelihood Estimation for Gamma Distribution Using Data Containing   

        Zeros 

Wilkis (1990), Leobacher and Ngare (2011) constructed their models using the method below. 

Suppose  the  given  data  set  contains M0 censored  data  points  (recorded  as  zeros)  of  

censoring level  ܣ� ൌ ͲǤͳ and ܯ௩�points with known values such that  M=M0+Mv. Then the 

likelihood function for the distribution parameters is given by: 

                                                  Let   ܻሺߙǡ Ǣߚ ሻݕ ൌ ς Ǣܣሺܩ ǡߙ ሻςߚ ݃ሺݕǢ ǡߙ ሻெೡୀଵெబୀଵߚ  

   then       �ܻሺߙǡ Ǣߚ ሻ ൌݕ ሾܩሺܣǢ ǡߙ ሻሿெబςߚ ଵఉʒఈ ቀ௬ఉቁఈିଵ �݁షഁெೡୀଵ ǡ  ݁ݎ݄݁ݓ

Ǣܣሺܩ ǡߙ ሻߚ ൌ න ݃ሺݕǢ ǡߙ ݕሻ݀ߚ
 ൌ Զሾݕ   ሿܣ

 

If we assume that M0=0 that is, all the data values are known, then the MLE of the parameters 

satisfy: 

���ሺߚሻ  ߮ሺߙሻ ൌ݈ݕ݃ܯ௩
ெೡ
ୀଵ  

ߙ െ ͳߚ ௩ܯݕ
ெೡ
ୀଵ ൌ Ͳ 
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where ߮ሺߙሻ ൌ ௗሾʒఈሿௗఈ    is the digamma function.  Hence the MLE for  ߙ�݀݊ܽ�ߚ        can be 

determined. In the case whereܯ ് Ͳ, 

ǡߙሺܮ Ǣߚ ሻݕ ൌ ܯ ���ሾܩሺܣǡ ǡߙ ሻሿߚ െ ߙ௩ሾܯ ���ሺߚሻ  ���ሺߙሻሿ  ሺߙ െ ͳሻ݈ݕ݃ெೡ
ୀଵ െ ͳߚݕெೡ

ୀଵ  

������������������������������������ (3.3.2) 

Can be evaluated numerically for the values of  ߚ�݀݊ܽ�ߙ using any of the available mathematical 

software like MATLAB. 

 

3.4 The Market Model 

The market model is given by stochastic differential equation: 

���������������������������������������݀ܵ௧ ൌ ሺߤ ௧ܻሻ ௧ܵ݀ݐ  ሺߪ� ௧ܻሻܵ௧�ܼ݀௧   ����������� (3.4.3) 

where ܼ௧ ̱݅݅݀�ܰሺͲǡͳሻ and ߤሺ ௧ܻሻ�ܽ݊݀ߪ�ሺ ௧ܻሻ are measurable functions whose concrete form we 

are yet to determine. 

However we can take ߪሺ ௧ܻሻ as a constant and evaluate ߤሺ ௧ܻሻ   modelled as below: 

ሺߤ���������������������������������������� ௧ܻሻ ൌ ሺ݈݃ܽ ௧ܻሻ  ܾǡ ௧ܻ  Ͳ����.. ���������. (3.4.4) 

The parameters ܽ�ܽ݊݀�ܾ are estimated by MLE scheme by combining both the market and 

rainfall data. That is, given the rainfall records ݕ�ǡ ଵǡݕ ǥǥǥ Ǥ ௧ିଵǡݕ ǡݏ  ௧��  and asset pricesݕ ଵǡݏ ǥǥǥ Ǥ ௧ିଵǡݏ ௧  of some hypothetical asset, we can set ॓௧ݏ ൌ ���ሺ ௧ܻሻ a.s and �� 
����������������݀ܵ௧ ൌ ܵ௧ െ ܵ௧ିଵ such that   
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�����������������������������������݀ܵ௧ ൌ ሺܽ॓௧  ܾሻܵ௧݀ݐ   ௧ܼ݀௧ܵߪ
��������������������݀ܵ௧ ൌ ݐ௧݀ܵߤ   ௧ܼ݀௧ܵߪ

                                                                    ௗௌௌ ൌ ݐߤ   ௧, ��ܼ௧̱݅݅݀ܰሺͲǡͳሻܼߪ
Then by MLE the estimates for ܽǡ ܾǡ  .can be obtained �ߪ

�௧ܵ݊ܫ െ ߪݐߤ ൌ ܼ௧̱ܰሺͲǡͳሻ 
݂ሺݖǡ ሻݐ ൌ ͳξʹߨ ݔ݁� െ ͳʹ ሾܼ௧ሿଶ 

 

                                                                   ς ଵξଶగ௧ୀଵ ����ሺ ଵଶఙమ ሾ ௧ܲଶ െ ʹ ௧ܲݐߤ   ( ଶሿݐଶߤ
 

From which we maximize the log likelihood partials as follows 

݈ ൌ െ ݊ʹ ሻߨʹሺ݈݃ െ ͳʹߪଶሾ ௧ܲଶ െ ʹ ௧ܲݐߤ  ଶሿݐଶߤ
௧ୀଵ  

 

߲݈߲ܽ ൌ െͳʹߪଶሺെʹݐ ௧ܲ
௧ୀଵ ॓௧  ଶ॓௧ଶݐܽʹ  ଶ॓௧ଶሻݐܾʹ ൌ Ͳ 

߲݈߲ܾ ൌ െͳʹߪଶሺെʹݐ ௧ܲ
௧ୀଵ  ଶ॓௧ଶݐܽʹ  ଶሻݐܾʹ ൌ Ͳ 

On solving the two equations we obtain explicit expression for ܽ�ܽ݊݀�ܾ and even ߪ� as below: 
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ܽ ൌ ߜߚ െ ߜߝߙߛ െ ଶߛ �����ܽ݊݀�ܾ ൌ ߝߙ െ ߜߝߛߚ െ ଶߛ  

ଶߪ ൌ ߬  ܽଶߝ  ߛܾܽʹ  ܾଶߜ െ ߚܽʹ െ  ߙܾʹ

Where �����������������������������������������������������������������݊ߙ ൌ σ ݐ ௧ܲିଵ௧ୀ     ,��������������������������� 
ߝ݊����������������������������������������������������������������������������� ൌ σ ଶିଵ௧ୀݐ ॓௧ଶ ,   

ߚ݊����������������������������������������������������������������������������� ൌ σ ݐ ௧ܲିଵ௧ୀ ॓௧  , 
ߛ݊����������������������������������������������������������������������������� ൌ σ ଶିଵ௧ୀݐ ॓௧,   

ߜ݊ ൌ  ଶିଵݐ
௧ୀ  

                                                                     ݊߬ ൌ σ ௧ܲଶିଵୀ ,   

������������������������ ௧ܲ ൌ ௧ܵ݊ܫ ൌ ����ሺ ܵ௧ܵ௧ିଵሻ 
3.6 THE ESSCHER TRANSFORM 

3.6.1 Introduction 

According to Buhlmann et al (1996),  the standard  fair pricing  in  finance uses the  no arbitrage 

notion,  that  is,  there  is  no  such  a  thing  as  riskless  gain.  The mathematical formulation of  

this economic  principle  brings  in  the  fundamental  notion  of  risk  neutral  martingale  

measure.  In practice, we mostly deal with incomplete markets. Consequently, risk cannot be 

fully hedged away and, in most cases, there will be infinitely many such equivalent martingale 

measures so that pricing is directly linked to an attitude towards risk.  Whereas in classical 

insurance, the question would be �which premium principle to use�.  Within  the  incomplete  
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finance  context  it becomes  �which  equivalent  martingale  to  use�.  It is exactly at this point 

that the Esscher transform enters as a possible pricing candidate. 

The Esscher transform is a tool in Actuarial Science. It is also an efficient technique for valuing 

derivative  securities  if  the  logarithms  of  the  prices  of  the  primitive  securities  are  

governed  by certain stochastic processes with stationary and independent increments. This 

family of processes includes the Wierner process, the Poisson, the Gamma and the inverse 

Gaussian processes. These types of processes are called the Levy Processes (LP).  They offer 

flexibility for accounting for basic features of financial series, that is, skewness, excess kurtosis, 

frequent small and large jumps.  To  be  applicable  for  pricing  derivatives,  statistical  

distributions  have  to  be adjusted for market price of risk and turned into martingale processes 

This is done by applying the Esscher transform to statistical processes. 

The  market  price  of  risk  is  an  equivalent  property  of  the  equivalent  martingale  measure.  

It is therefore required in order to derive an expression for future rainfall prices in this scheme. 

We first need to specify the risk neutral probability Q.  We can say, safely, that Q~P (P is the 

physical measure) such that all tradable assets in the market are martingales after discounting. 

The rainfall derivatives market is inherently incomplete since the weather is not a tradable asset. 

It is not possible to find a unique risk neutral measure Q, the equivalent martingale. Therefore 

many martingales exist and according to (Jensen and Nielsen, 1996), (Benth 2004) only bounds 

for prices on contingent claims can be provided based on no -arbitrage principles. 

We  therefore,  in  this  case,  specify  a  class  of  probability  measure  using  the  Esscher  

transform which will provide us with market price of risk parameterized by a parameter è.  

Buhlman 1980 derived  the  Esscher  premium  as  a  Pareto-optimal  solution  to  a  market  
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situation  where  all  the participants  are  characterized  by  an  exponential  utility  function  

with  all  the  risks  being stochastically independent. The parameter è represents risk aversion of 

the market participants. 

 

The Esscher transform changes a probability density ݂ሺݔሻ of a random variable × to a new 

probability density݂ሺݔǡ   ሻ) given asߠ

݂ሺݔǡ ሻߠ ൌ ���ሺݔߠሻ ݂ሺݔሻ ���ሺݔߠሻ ݂ሺݔሻஶିஶ  ݔ݀

Since the transformation is state dependent, the state price density ݂ሺݔሻ can be represented in an  

exponential  form  (Duffie  and  Kan  ,1996). 

 

3.6.2 Equivalent Martingale Measure Q Using the Esscher Transform 

Modern financial derivatives theory is mainly based on martingale theory. 

We consider a given filtration (flow of information) ሼ ௧࣠ሽ௧ஹ .� ௧࣠ can be thought of as the 

information generated by all the observed events up to time ݐǤ Therefore for any stochastic 

variable ܻ we let ܧሺܻ ௧࣠Τ ሻ denote the expected value of ܻ given the information available after 

at time ݐǤ 
It is important to note that for a fixed ݐ, then ܧሺܻ ௧࣠Τ ሻ is a stochastic variable. Indeed if the 

filtration is generated by a single observed process say ܺ, then the information available at time ݐ 
will depend on the behavior of ܺ over the interval ሾͲǡ ሺܻܧ ሿ.So the conditional expectationݐ ௧࣠Τ ሻ 
will in this case be a function of all past values of  ܺ,that is ሼܺ௦  ݏ   ሽݐ
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Proposition 3.6.3 

If ܻ�ܽ݊݀�ܼ are stochastic variables, and ܼ�݅ݏ� ௧࣠ measurable, then ܧሾܼǤ ܻȁ ௧࣠ሿ ൌ ܼǤ ሺܻܧ ௧࣠Τ ሻ  
Also  ܧሾܧሾܻȁ ௧࣠ሿȁ ௦࣠ሿ ൌ ሾܻȁܧ ௦࣠ ] 
In the expected value ܧሾܼǤ ܻȁ ௧࣠ሿ we condition upon all information available at time ݐǤThen if ܼ߳ ௧࣠, it means that given the information ௧࣠ ,we know the exact value of Z ,so we can treat its 

conditional expectation as a constant and thus taken outside the expectation. The second result is 

the law of iterated expectations which is basically the law of total probability. We can therefore 

proceed to define the martingale concept. 

Definition 

A stochastic process X is referred to as ሺ ௧࣠ሻ martingale if the following hold: 

i) ܺ is adapted to the filtration ሼ ௧࣠ሽ௧ஹ 

ii) For all ݐǡ������� ܧሾȁܺ௧ȁሿ ൏ λ 

iii) For all ݐ�݀݊ܽ�ݏ with ݏ  ሻȁݐሾܺሺܧ then  , ݐ ௦࣠ሿ  ܺሺݏሻ 
 

Definition: Equivalent probability measures 

Let ܲ�ܽ݊݀�ܳ�be probability measures on ሺπǡ࣠ሻ 
Lemma 3.6.4 

For two probability measures ܲ�ܽ݊݀�ܳ, the relation ̱ܲܳ࣠�݊� holds if and only if: 

ܲሺܣሻ ൌ ͳ ՞ ܳሺܣሻ ൌ ͳǡ for all ܣ א �࣠ 
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Proof 

We note that, in the context of probability measures, although two equivalent measures ܲ�ܽ݊݀�ܳ 

may assign totally different probabilities to a fixed eventܣ�, all events impossible under ܲ,  

that is ,ܲሺܣሻ ൌ Ͳ are also impossible under ܳǤ Equivalently all events possible under ܲǡ ǡݏ݅�ݐ݄ܽݐ ܲሺܣሻ ൌ ͳ are also possible under ܳ.From the definition it also follows that if an event 

has a strictly positive ܲ െ ܳ then it also has a strictly positive ,ݕݐ݈ܾܾ݅݅ܽݎ െ  .ݕݐ݈ܾܾ݅݅ܽݎ

The  study  is on a  risk  neutral  distribution,  a  martingale  measure  associated  with  a 

Markovian  gamma  process.   

A perfect hedge cannot be obtained and there is always a residual risk that cannot be hedged. 

Indeed,  there  are  many  different  equivalent  martingale  measures  under   which  the  

discounted asset  price  process  is  a  martingale.  The  existence  of  a  martingale  is  related  to  

the  absence  of arbitrage, while uniqueness of a martingale measure is related to market 

incompleteness., that is, perfect hedging. 

Gerber  and  Shiu  (1994)  proposed  one  approach  for  finding  an  equivalent  martingale  

measure using the Esscher transform. According to their findings, given a statistical model P, the 

Esscher transform induces an equivalent probability measure Q   and a martingale process. The 

Esscher parameter  is  determined  so  that  the  discounted  asset  price  is  a  martingale  under  

the  new probability measure Q. 

 Let 

������������������������������������ܵ௧ ൌ ܵ݁, ������������������.. (3.6.5) 
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where ሼܺ௧ሽ௧ஹ is  a  process  with  stationary  and  independent increments and ܺ ൌ Ͳ then  for 

each   ݐ  the random  variable ܺ௧  has an  infinitely divisible distribution with probability density 

given by: 

����������������������������������݂ሺݔǡ ሻǡݐ ݐ  Ͳ���������������������. (3.6.6) 

In addition, the moment-generating function, assumed to exist, is defined as- 

ǡݑሺܯ��������������������������������� ሻݐ ൌ ሾ݁௨ሿܧ ൌ  ݁௨௫ஶିஶ ݂ሺݔǡ �ݔሻ݀ݐ��������� .. (3.6.7) 

Assuming that ܯሺݑǡ ݐ�ሻ�is continuous atݐ ൌ Ͳ, then by infinite divisibility:- 

ǡݑሺܯ�������������������� ሻݐ ൌ ሾܯሺݑǡ ͳሻሿ௧�����.. ���������������... (3.6.8) 

Let è be a real number such that     ܯሺߠሻ ൌ  ݁ఏ௫ஶିஶ ݂ሺݔሻ݀ݔ exists, then the Esscher transform of ሼܺ௧ሽ௧ஹ�with  parameter ߠ is defined  as  a  Levy  Process  with  stationary  and  independent 

increments where the new probability density of    ܺ௧ǡ ݐ  Ͳ, is : 

����������������������������������݂ሺݔǡ Ǣݐ ሻߠ ൌ ഇೣሺ௫ǡ௧ሻ ഇಮషಮ ሺ௬ǡ௧ሻௗ௬ ൌ ഇೣሺ௫ǡ௧ሻெሺఏǡ௧ሻ ������������. (3.6.9) 

 

The  modified  distribution  of ܺሺݐሻ is  the  Esscher  transform  of  the  original  distribution  

whose moment-generating function given by :- 

ǡݑሺܯ Ǣݐ ሻߠ ൌ  ݁௨௫ஶିஶ ݂ሺݔǡ Ǣݐ ݔሻ݀ߠ ൌ ெሺ௨ାఏǡ௧ሻெሺఏǡ௧ሻ , and 

ǡݑሺܯ ǡݐ ሻߠ ൌ ሾܯሺݑǡ ͳǢ  ሻሿ௧ߠ
Therefore, an equivalent Esscher measure is given by:  
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݀ܳȀܨ௧݀ܲȀܨ௧ ൌ ݁ఏܧሺ݁ఏሻ ൌ ����ሺܺߠ௧ െ ݐ ���൫ܯሺߠሻ൯ሻ 
Proposition 3.6.5 

The Esscher measure of a gamma process has a MGF at  ݐ ൌ ͳ   given by: 

����������������������������������������ቄ ଵିఏఉଵିሺ௨ାఏሻఉቅఈ��������������.. (3.6.5.1) 

Proof: 

 

For  ܯሺݑ  ሻߠ ൌ  ݁ሺ௨ାఏሻ௬ஶ � ଵఉഀʒఈ  ݕఈିଵ݁షഁ݀ݕ

= ������ ଵఉഀʒఈ  ఈିଵஶݕ ݁ିቀభషഁሺೠశഇሻഁ ቁ௬݀ݕ 

=�������� ଵఉഀʒఈ  ఈିଵஶݕ ݁ିቀభషഁሺೠశഇሻഁ ቁ௬݀ݕ כ ቈభషഁሺೠశഇሻഁభషഁሺೠశഇሻഁ ఈିଵ 

=ቀ ఉଵିఉሺ௨ାఏሻቁఈିଵ ଵఉഀʒఈ  ቀሺଵିఉሺ௨ାఏሻ௬ఉ ቁఈିଵஶ ݁ିቀభషഁሺೠశഇሻഁ ቁ௬݀ݕǥǥǥǥǥǥ ǤǤ��ሺ͵ǤǤͷǤʹሻ 
Now let כݕ ൌ ቀଵିఉሺ௨ାఏሻఉ ቁ  ݕ

Therefore  ݀ݕ ൌ ቀ ఉଵିఉሺ௨ାఏሻቁ݀כݕ 
Equation (11) becomes  

൬ ͳߚ െ ݑሺߚ  ሻ൰ఈିଵߠ ͳߚఈʒߙනሺכݕሻఈିଵஶ
 ݁ି௬כ �൬ ͳߚ െ ݑሺߚ  ሻ൰ߠ  ǥǥǥሺ͵ǤǤͷǤ͵ሻכݕ݀
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Recall: ������ʒߙ ൌ  ఈିଵஶݕ ݁ି௬�݀ݕ 

This leads (12) to�����������ቀ ఉଵିఉሺ௨ାఏሻቁఈିଵ ଵఉഀʒఈ ��ቀ ఉଵିఉሺ௨ାఏሻቁ �ʒߙ� 
                                                         

=��ቀ ଵଵିఉሺ௨ାఏሻቁఈ������������������������� ��... (3.6.5.4) 

And for ܯሺߠǡ ͳሻ ൌ  ݁ఏ௬ஶ � ଵఉഀʒఈ  ݕఈିଵ݁షഁ݀ݕ

=����� ଵఉഀʒఈ  ఈିଵஶݕ ݁షሺభషഁഇሻഁ  ݕ݀

=����� ଵఉഀʒఈ  ఈିଵஶݕ ݁షሺభషഁഇሻഁ ݕ݀ כ ቆ భషഁഇഁభషഁഇഁ ቇఈିଵ 

=������ ଵఉഀʒఈ ቀ ఉଵିఉఏቁఈିଵ  ቀሺଵିఉఏఉ ሻݕቁఈିଵஶ ݁ିሺభషഁഇሻഁ  ݕ݀

Let  כݕ ൌ ௬ሺଵିఉఏሻఉ  , then  ݀ݕ ൌ ቀ ఉଵିఉఏቁ݀כݕ 
Which now gives rise to, as above, 

ൌ ͳߚఈʒߙ ൬ ͳߚ െ ሻఈିଵஶכݕ൰ఈିଵනሺߠߚ
 ݁ି௬כ �൬ ͳߚ െ  כݕ൰݀ߠߚ

ൌ�൬ ͳߚ െ ൰ఈିଵߠߚ ͳߚఈʒߙ��൬ ͳߚ െ ൰ߠߚ �ʒߙ ൌ ൬ ͳͳ െ ൰ఈߠߚ ǥǥǥǥሺ͵ǤǤͷǤͶሻ 
Dividing (3.6.5.3) by (3.6.5.4) completes the proof. 
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The probability measure of the process has in fact changed and its exponential function is 

positive. Therefore, the modified probability measure is equivalent to the original probability 

measure, that is, they both have same null sets �sets of probability measure zero. 

The  parameter  ߠ  is  determined  so  that  the  modified  probability  measure  Q  is  an  

equivalent martingale measure to the original statistical probability measure  P. The aim is to 

find  ߠ ൌ  so that the discounted stock price process ሼ݁ି௧�ܵ௧ሽ௧ஹ    is a martingale with , כߠ

respect to the probability measure corresponding to כߠ 
With the martingale condition that,  

�����������������������������������������������ܵ ൌ ொሾ݁ି௧ܵ௧ሿܧ ൌ ݁ି௧ܧொሾܵ௧ሿ ,  
 the parameter   כߠ is a solution to:- 

ܵ ൌ ொሾ݁ି௧ܵ௧ሿܧ ൌ ݁ି௧ܧொሾܵ݁ሿ 
���������������ൌ ݁ି௧ܵ ሾ݁ఏሺ௧ሻሿܧൣ݁ሺఏାଵሻሺ௧ሻ൧ܧ ൌ ݁ି௧ܵܯሺߠ  ͳǡ ǡߠሺܯሻݐ ሻݐ  

where  ݎ is the constant risk free rate of interest. 

This is equivalent to:  

ͳ ൌ ݁ି௧ܧொሾ݁ሿ݁�ݎ�௧ ൌ ሺͳǡܯ Ǣݐ  ሻכߠ�
We note that the solution is independent of   ݐ and then by setting  ݐ ൌ ͳ  , we obtain  

݁ ൌ ሺͳǡͳǢܯ  (כߠ
And in logarithm form, the parameter   is a solution to:- 

ݎ����������������������������� ൌ ���ሾ�ሺͳ  ሻሿכߠ ൌ ���ሾ�ሺͳ  Ǣכߠ ͳሻሿ െ ���ሾ�ሺכߠǡ ͳሻሿ  
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That is, 

ݎ������������������������� ൌ ��� ቂቄ ଵିஒଵିሺ୳ାሻஒቅቃ ൌ Ƚൣ���ሺͳ െ ȾɅሻ െ ���൫ͳ െ ȾሺɊ  Ʌሻ൯൧���� (3.6.5.5) 

3.6.6 The Escher Transform Parameter   ࣂ 

 

From equation (3.6.5.5) we have: 

݁ ൌ ൜ ͳ െ ͳߚߠ െ ߠሺߚ  ͳሻൠఈ 

݁ఈ ൌ ൜ ͳ െ ͳߚߠ െ ߠሺߚ  ͳሻൠ 
It therefore follows from above that theta can be expressed in terms of the other parameters as: 

ߠ ൌ ݁ఈሺͳ െ ሻߚ െ ͳߚሺ݁ఈ െ ͳሻ ǥǥǥǥǥǥǥǥ Ǥ Ǥ ሺ͵ǤǤͷǤሻ 
 

We need to show that  כߠ  is unique. We know that the parameter  ߠ ൌ   is chosen such that  כߠ

the  process   ሼ݁ି௧ܵ௧ሽ௧ஹ  is  a  martingale  with  respect  to  the  probability  measure 

corresponding to כߠ. 
Precisely,    ܵ ൌ ሾ݁ି௧ܵ௧Ǣܧ ሿǢ�hence ݁௧כߠ ൌ ሾ݁Ǣܧ ሿכߠ ൌ ሾܯሺͳǡͳǡ                                   ሻሿ௧כߠ
that is,                                           ݎ ൌ ���ሾܯሺͳǡͳǢ  ሻሿכߠ
The Esscher measure corresponding to the parameter  כߠ  is the risk neutral Esscher measure.  
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Proposition 3.6.7 

For a given time interval ሾͲǡ ܶሿǡ ܶ�݁ݎ݄݁ݓ  Ͳǡ the underlying asset price ܵ௧ is determined by the 

model ܵ௧ ൌ ܵ݁ݔሺܺ௧ሻ with ܺ௧ is identically distributed with independent and stationary 

increments. The payoff function is given by : 

ܸሺ்ܵሻ ൌ ���ሺ்ܵ െ ǡܭ Ͳሻ ൌ ݂ሺݔሻ ൌ ൜்ܵ െ ǡܭ ்ܵ�ݎ݂  Ͳǡܭ ்ܵ�ݎ݂ � ܭ  

Is a European pay off function, where K is the option strike price. 

Then the European call option price ܥ at ݐ ൌ Ͳ is given by: 

ܥ ൌ ܵሾͳ െ ሺ݃ȁܶǡܨ כߠ  ͳሻሿ െ ்ሾͳ݁ܭ െ ሺ݃ȁܶǡܨ  ሻሿכߠ
Where g ؠ ����ቀܭ ܵൗ ቁ and ܨሺ݃ȁܶǡ כߠ  ͳሻ is the risk neutral probability measure. 

Proof 

The  price  of  a  derivative  security,  whose  payments  depend  on ሼܵ௧ሽ   is  calculated  as  a 

discounted  expected  value  where  the  expectation  is  taken  with  respect  to  the  risk -neutral 

Esscher measure. 

The  value  of  a  European  option, at  time ݐ ൌ Ͳ , whose  exercise  price  and  date  are ݐ�݀݊ܽ�ܭ�respectively is given as : 

ொሾ݁ି௧ሺܵ௧ܧ���������������������������������� െ ሻାሿܭ ൌ ݁ି௧  ሾܵ௧݁௫ െ ǡݔሿ݂ሺܭ Ǣݐ ሻஶఛכߠ   ݔ݀

���������������������������ൌ ݁ି௧ܵ௧  ݁௫݂ሺݔǡ Ǣݐ ݔሻ݀ߠ െ ݁ି௧ஶఛ ሾͳܭ െ ሺ߬ǡܨ Ǣݐ ߬ ሻሿ , forכߠ ൌ ��� ቂܭ ܵሺͲሻൗ ቃ 
It therefore follows that: 
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��������������������������݁௫݂ሺݔǡ Ǣݐ ሻߠ ൌ ݁ሺఏכାଵሻ݂ሺݔǡ ǡכߠሺܯሻݐ ሻݐ ൌ כߠሺܯ  ͳǡ ሻݐכߠሺܯሻݐ ݂ሺݔǡ Ǣݐ כߠ  ͳሻ 
ൌ ሺͳǡܯ Ǣݐ ǡݔሻ݂ሺߠ Ǣݐ כߠ  ͳሻ ൌ ݁ି௧݂ሺݔǡ Ǣݐ כߠ  ͳሻ 

Letting ܫሺǤ ሻ denote  the  indicator  function  and  as  above ߬ ൌ ���ሾ ௌሺሻሿ ,the  price  of  the option 

at ݐ ൌ Ͳ is :- 

݁ି௧ܧሾሺܵ௧ െ ሺܵ௧ܫሻܭ  ሻǢܭ  ሿכߠ
��������������������������������ൌ ݁ି௧ܧሾܵ௧ܫሺܵ௧  Ǣܭ ሿכߠ െ ݁ି௧ܭሾܫሺܵ௧  Ǣܭ  ሿכߠ

The expectation on the right hand side is equivalent to 

��ሾܵ௧  Ǣܭ ሿכߠ ൌ ͳ െ ሺ߬ǡܨ Ǣݐ  ሻכߠ
Thus, the price of a European call option with exercise price ݐ�݁ݐܽ݀�݀݊ܽ�ܭ  can be given as: 

ாܲ ൌ ܵ௧ሾͳ െ ሺ߬ǡܨ Ǣݐ כߠ  ͳሻ െ ݁ି௧ܭሺͳ െ ሺ߬ǡܨ Ǣݐ � ሿߠ����������� (3.6.5.7) 

Accordingly (3.6.5.7) can be written as  

ܵ ��ሾܵఛ  Ǣܭ כߠ  ͳሿ െ ݁ି௧ݎܲܭሾܵఛ  Ǣܭ �ሿכߠ������������. �.. (3.6.5.8) 

We intend to use this expression (3.6.5.8) in our numerical implementation later. 

3.7     The Black Scholes Model 

The seminal paper of Black-Scholes (1977) provides an analytical framework for the pricing of 

contingent claims and in particular options. However the Black-Scholes formula relies on some 

fairly stringent assumptions. Most importantly it assumes that the underlying process is driven by 

geometric Brownian motion: 
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ௗ ൌ ݐ݀ߤ  ݀ߪ� ௧ܹ 

Then if ܨሺܺ௧ሻ ൌ ����ሺܺ௧ሻ, then by Ito�s formulae : 

ܨ݀                  ൌ ቀߤ െ ଵଶߪଶቁ ݐ݀  ݀ߪ ௧ܹ , which with the initial condition,�ܺ, has a solution 

given by:    

ሺܺ௧ሻܨ                                     ൌ ���ܺ  ቀߤ െ ଵଶߪଶቁ ሺݐ െ ሻݐ  ߪ ௧ܹି௧బ 

           = ܺ௧ ൌ ܺ݁ሾቀఓିభమఙమቁሺ௧ି௧బሻାఙௐሿ 
             

And by using the martingale approach it results into: 

  ௧ܸ ൌ  ௧ሿ , where Q represents the risk neutral martingale measureܨሾܺ݁ቂቀఓିభమఙమቁሺ௧ି௧బሻାఙௐቃȁܧ

and ௧ܸ is the payoff of the option contract. 
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CHAPTER 4 

DATA ANALYSIS AND RESULTS 

4.1 Data Analysis and Numerics 

We obtain daily rainfall data from the Kenya Meteorological Department for Dagoretti weather 

station in Kenya. The data spans a period of 11 years (2002-2012).We calculate the monthly 

averages and estimate the parameters,ߚ�݀݊ܽ�ߙ��from which we then proceed to plot density 

curves for all the months (Fig 4.1). From the curves, it is evident that the rainfall pattern closely 

(approximately) follows both the gamma and NIG distributions. 

Also we obtained daily share prices for the Kenya Power Ltd from the Nairobi Securities 

Exchange for the same period (2002-2012). This was used to estimate the parameters for the 

claimed market model.cf equation (3.4.3).We adopted the KPLC share price because electricity 

in Kenya is mainly hydro generated and therefore rainfall dependent. 

In the empirical analysis, we use the simulated paths of daily rainfall amounts under the 

historical measure P which we will then shift using the parameter as determined by the Esscher 

transformation.  

Parameter Estimation 

The rainfall data obtained from the Kenya Meteorological Department was analysed under the 

Gamma and Normal Inverse Gaussian distributions. The associated parameters were then 

estimated using the maximum likelihood estimation scheme given in section 3.3. The estimated 

parameters are given below in Table 4.1and 4.2 respectively correct to 4 decimal places. 
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Table 4.1: Gamma Distribution parameters 

Month Shape Rate  Month Shape  Rate 

Jan 2.1293 0.8046  July 0.45450 0.0861 

February 1.2291 0.3949  August 0.6908 0.1777 

March 2.1856 0.9364  September 0.3887 0.2532 

April 0.3644 0.0910  October 0.3675 0.2632 

May 1.4837 0.3572  November 1.0196 0.2922 

June 0.6193 0.3136  December 0.6226 0.2661 

  

    Table 4.2: Normal Inverse Gaussian distribution Parameters 

 January February March April May June 

Alpha 115.8912 375.3693 169.2344 291.7944  12.1659 405.4666 

Beta     3.0502 375.1475  -34.3779 291.6410 -10.2764 405.3924 

Delta 280.5836     0.1324 232.8769    0.1677  12.6333     0.0396 

Mu   - 4.7410    -0.7373   50.6416   -1.1672  24.1080    -0.0955 

 

Table 4.2 cont�: Normal Inverse Gaussian distribution Parameters 

 July August September October November December 

Alpha 158.6296 237.3810 734.7128 270.6253 325.0203 341.8861 

Beta 158.6173 237.3639 734.2090 -42.1334 324.8511 341.7867 

Delta     0.0678     0.0452     0.0771 298.8518     0.1406     0.0615 

Mu   -0.1477     0.1129   -0.5462   48.4987    -0.8656    -0.2111 
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To justify the claim that the rainfall per period follows the gamma distribution, the density plots 

and histograms for the determined parameters for the months of February are below. The other 

plots and histograms for the rest of the months are included in the appendix. 

                    

Fig 4.1 .Density Curve for Rainfall Process 

 

4.2 Estimation of the Market Model Parameters. 

From the model in equation (3) and equation (4) we sought to estimate the actual parameters 

 based on the rainfall and share price data at hand. The parameters are estimated 

through a code written in R. Thus by using the monthly data, the estimated parameter values 

obtained are as in Table 4.3.  
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Table 4.3 Market Model Parameter Values 

 ߪ ߤ ܾ ܽ 

Jan -0.0241 0.6901 0.6708  1.9740 

Feb  0.1576 0.5648 0.7216  1.7347 

Mar -0.1446 0.7680 0.6859  1.8896 

Apr  0.0228 0.7075 0.6711  1.9227 

May  0.0166 0.6458 0.6665  2.0031 

Jun -0.0704 0.6398 0.7045  1.9005 

Jul 0.05980 0.7260 0.7065 1.8626 

Aug 0.05069 0.6353 0.6571 2.0596 

Sept 0.00573 0.6790 0.6678 2.1153 

Oct 0.01682 0.6602 0.6682 2.1206 

Nov 0.03116 0.6357 0.6682 2.1205 

Dec -0.0520 0.6802 0.6796 2.0936 

 

We observe from table 4.3 that all months have their mean ߤ  Ͳ and the deviation from the 

mean, that is the stock volatility is significantly positive. 
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Table 4.4 Esscher Parameter Values 

Month ࣂ  െ  ࣂࢼ െ ࣂሺࢼ  ሻ 
January   -19.056978 24.68503 23.44218 

February -11.286193  29.57988 27.04759 

March -19.436885 21.75703 20.68911 

April -3.746845 42.17412 31.18511 

May -13.637160 39.17794 36.37839 

June -5.831194  19.59437 16.40559 

July -4.565867  54.02982 42.41541 

August -6.615564 38.22884 32.60137 

September  -3.803988 16.02365 12.07420 

October -3.602615 14.68775 10.88836 

November -9.485880 33.46365  30.04134 

December -5.908616 23.20449 19.44651 

 

Table 4.4 presents the values for theta and transformed scale parameter for each month based on 

the estimated parameters. From table 4.4 we realize that the value of theta varies roughly 

between -19 and -2, that is െͳͻ  ߠ  െʹ. With values of ߠ ് Ͳ will change the mean and 

variance of the transformed distribution 

With the monthly Esscher parameter determined, which in this case is regarded as the market 

price of risk, it is possible to determine the risk neutral prices of the derivative under  ܳఏ  using 
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equation (3.6.5.8). The estimated prices as a result of the Esscher transformation and those due to 

the Black-Scholes implementation are in Table 4.5. 

From the Table 4.5 we observe that the prices increase with the strike price when we consider the 

Black-Scholes pricing scheme. They however increase with increase in the strike price when we 

consider the esscher pricing method. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

Weather risk and in particular rainfall risk is of great interest to researchers lately. Several 

methods on pricing and hedging derivatives have been proposed. For example, to price under the 

no-arbitrage condition, we need an equivalent martingale measure. In an incomplete market 

model, there are an infinite number of equivalent martingale measures. Also in an incomplete 

market model, any martingale measure which is equivalent to the physical measure, is a potential 

pricing measure. In this research we adopted the risk neutral conditional Esscher transform to 

determine an equivalent martingale measure and used the resulting measure to price the options. 

In this research focus was on the European call options. The resulting pricing formulae was 

developed based on the equivalent martingale measure ܳ.Moreover we were able to conduct a 

comparison between the prices for the European call options obtained by our equivalent 

martingale measure method with those by the standard Black-Scholes method. 

The model of a gamma distribution shifted by an Esscher transform parameter is used to obtain 

the risk neutral prices of options. The prices are hypothetical since they are not obtained from 

actual trading. This is so because there is no established derivative market in the region. The 

prices vary depending on the values of K, the strike price (see Table 4.5). And according to the 

shift parameter and by extension the actual rainfall distribution parameters and thus the rainfall 

process. We observe from table of prices that, except for some two months, the option prices 

under the Esscher scheme increase with increase in the strike price whereas the prices under the 

Black-Scholes scheme decrease with increase in K. 

We observe from table 4.4 that the market price of rainfall risk changes in size with passing 

time.it does not necessarily increase and become positive during warmer months. This means 
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that months with extreme amounts of rainfall like April have greater risk premium .A negative 

(positive) estimate of the MPR implies that the monthly rainfall under ܳఏ coincides with the 

index written on the same underlying under ܲ ; with the higher (lower) expected drift. 

This is so because hedgers decide to enter contracts in presence of negative expected payoffs to 

eliminate their risk since this hedging instrument is less expensive than insurance contracts. To 

compensate in speculators from baring hedger�s risk, there must be an expectation of increasing 

future prices. 

From table 4.5, it can be realized that the derivative prices can be adjusted by adjusting the value 

of ߠ, the MPR . In actual trading, the MPR can be chosen such that the price that results under Q 

equals the market price as a result of actual trading. This appropriate choice of MPR is called the 

implied market price of rainfall risk since it�s calculated from actual data.  

 

Recommendations 

 

A method on how to calculate risk-neutral prices for rainfall derivatives has been presented. In 

this method, a standard model for the rainfall process is used for simulation. In particular, we 

used a markovian gamma model represent the rainfall process. We then shift the rainfall process 

distribution by the Esscher transform to obtain the risk neutral prices. This procedure is flexible 

and can be applied to any rainfall derivative. The Esscher parameterߠ�, describes the market 

price of rainfall risk and can be calibrated from real market data. 
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Rainfall derivatives do not trade in the Kenyan market. In fact, they were recently introduced in 

the Chicago Mercantile Exchange. Therefore the reported prices are actually hypothetical prices 

since they are not from actual trading. 

Hopefully, in the near future, when derivative trading gets established in Kenya or in the region, 

similar approaches can be used to investigate the behavior of rainfall derivatives and their use in 

managing risk associated with the weather and the nature of the market price of risk. 

Our calculation can be used for daily trading to analyze temporal behavior of market price of risk 

and spatial behavior among different regions in the country. 

It may be of great interest to investigate the more general form of univariate and multivariate 

esscher transforms, and the possibility of representing an ad hoc risk neutral measure through the 

esscher transform. 

Further studies are recommended in directions of both hedging and pricing options under regime 

switching models. Of particular interest would be to explore application of Esscher transform to 

more complex derivatives, and dynamic hedging strategies in the incomplete markets. Further 

research can consider optimal hedging under regime switching lognormal models. We are 

remark that the hedging may not be simply obtained from pricing due to lack of a replicating 

process for regime switching. Thus we recommend use of a dynamic optimization process 
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APPENDIX: 

Density Curves for the rainfall process -Gamma Distribution 
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NIG Distribution Histograms and density curves  
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Table 4.5: Derivative prices 

K/Month Jan Feb Mar Apr May Jun 
80                   
              

35.724 
 

35.724 
 

52.224 
 

35.724 
 

35.724 
 

35.724 
 

90 30.908 
 

30.908 
 

58.658 
 

33.158 
 

30.908 
 

30.908 
 

100 32.093 
 

32.093 
 

65.093 
 

35.093 
 

32.093 
 

26.093 
 

110 42.277 
 

43.777 
 

75.277 
 

45.277 
 

43.777 
 

24.350 
 

120 45.717 
 

46.467 
 

82.461 
 

50.217 
 

46.467 
 

29.450 
 

130 50.775 
 

50.803 
 

80.646 
 

55.974 
 

50.804 
 

36.635 
 

140 58.247 
 

59.094 
 

77.330 
 

65.557 
 

59.094 
 

39.733 
 

150 69.495 
 

69.717 
 

77.811 
 

74.837 
 

69.638 
 

46.918 
 

 

    

K/Month Jul Aug Sept Oct Nov Dec 
80 37.974 

 
35.724 
 

35.725 
 

35.724 
 

35.724 
 

35.724 
 

90 38.408 
 

30.927 
 

33.908 33.908 
 

33.158 
 

30.908 
 

100 50.093 
 

26.264 
 

43.343 
 

43.343 
 

35.093 
 

26.103 
 

110 54.282 
 

24.107 
 

47.527 
 

47.527 
 

45.277 
 

25.137 
 

120 58.533 
 

24.531 
 

53.217 
 

53.217 
 

47.999 
 

31.054 
 

130 71.856 
 

38.337 
 

58.275 
 

58.275 
 

53.845 
 

36.770 
 

140 78.098 
 

66.449 
 

73.136 
 

73.136 
 

59.958 
 

40.483 
 

150 79.737 
 

00.000 
 

74.906 
 

74.906 
 

71.487 
 

49.081 
 

 

 


