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ABSTRACT

In this thesis, auxiliary information is used to determine an estimator of

finite population total using nonparametric regression under stratified random

sampling. To achieve this, a model-based approach is adopted by making use

of the local polynomial regression estimation to predict the nonsampled values

of the survey variable. The performance of the proposed estimator is investi-

gated against some design-based and model-based regression estimators. From

the simulation experiments, the resulting estimator records better results in the

estimation of the finite population total. Generally, use of the proposed esti-

mator leads to relatively smaller values of relative efficiency compared to other

estimators.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

Sample surveys’ main objective is to obtain information about the popu-

lation, and then use such information to make inference about some population

quantities. The information that is mostly sought about the population is usu-

ally aggregate values of various population characteristics such as total number

of units or proportion of units having certain attributes. The information can

be collected by either sampling methods or census. While census is the complete

enumeration of units in a population, sampling methods, which consist of sample

selection from a specified population, make it possible to estimate various popula-

tion quantities such as population totals, means or proportions. This is done while

reducing the size of survey operations. Nonparametric regression may be used in

the estimation of unknown finite population quantities such as population totals,

means, proportions or averages. The idea of nonparametric regression traces its

origin in works by Nadaraya (1964) and Watson (1964). Nonparametric-based

estimation is often more robust and flexible than inference based on parametric

regression models or design probabilities (as in design-based inference) (Dorf-

man, 1992). In sample surveys, auxiliary information is used at the estimation

stage of finite population quantities- population total or mean, say - to increase

the precision of estimators of such population quantities (Montanari and Ranalli,

2003, 2005; Sánchez-Borrego and Rueda, 2009). A variety of approaches exist for

construction of more efficient estimators for population total or mean, and they

include model-based and design-based methods. Model-based approach in sam-
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ple surveys assumes that the population under study is a realization of a random

variable having a superpopulation model ξ. This model ξ is used to predict the

nonsampled values of the population, and hence the finite population quantities,

total Y or mean Ȳ (Sánchez-Borrego and Rueda, 2009).

In this thesis, auxiliary information is used to determine an estimator of

finite population total using nonparametric regression under stratified random

sampling. To achieve this, a model-based approach is adopted by making use of

the local polynomial regression estimation to predict the values of the nonsampled

set.

1.2 Statement of the Problem

Model-based approach in sample surveys assumes that the population un-

der study is a realization of random variables having a superpopulation model ξ.

Such model is used to predict the nonsampled values of the population, and hence

the finite population quantities Y or mean Ȳ . In this approach, auxiliary infor-

mation is often used at the estimation stage to increase the precision of estimators

of population total or mean. Scientists have used supplementary population in-

formation on a character x to estimate finite population total Y or mean Ȳ of

a character y under study (Montanari and Ranalli, 2003, 2005; Sánchez-Borrego

and Rueda, 2009; Orwa et al., 2010; Rady and Ziedan, 2014a,b). Most of the

scientists have used estimators based on simple random sampling to estimate the

finite population quantities Y or mean Ȳ in local polynomial regression. Previous

works involve the construction of estimators based on simple random sampling.

Elsewhere as in Orwa et al. (2010) and Ngesa et al. (2012) ratio estimators based

on stratified random sampling are proposed. Various approaches have been pro-

posed in the efficient estimation of finite population totals or means, both model-

based and design-based methods. This study seeks to propose a model-based

estimator of the finite population total using local polynomial regression under

2



stratified random sampling. Stratified estimators for finite population total Y or

mean Ȳ have proved to yield better estimators than those resulting from simple

random sampling (Orwa et al., 2010; Ngesa et al., 2012). Furthermore, it has

been shown in the literature that local polynomial approximation method has

several attractive features including satisfactory boundary behaviour, easy inter-

pretability, applicability for a variety of design-circumstances and nice minimax

properties (see for example Fan and Gijbels, 1992; Fan, 1993, and Ruppert and

Wand, 1994). Hence the need for this study.

1.3 Objectives of the Study

1.3.1 Main Objective

To investigate the theoretical properties of a local polynomial regression

estimator of the finite population total under stratified random sampling in a

model-based approach.

1.3.2 Specific Objectives

(i) To determine a model-based estimator of the finite population total using

local polynomial regression under stratified random sampling.

(ii) To investigate the asymptotic properties (asymptotic model unbiasedness

and consistency) of the proposed estimator.

(iii) To compare the performance of the proposed estimator to that of existing

ones namely Horvitz-Thompson estimator, the Linear regression estimator,

and the Mixed ratio estimator using simulated data.
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1.4 Significance of the Study

1.4.1 Contribution to Current Knowledge

Various efficient estimators of finite population totals or means, both model-

based and design-based methods have been proposed in the literature. Estimators

for finite population total Y or mean Ȳ under stratified random sampling have

been proved to yield better estimators (more efficient estimators) than those re-

sulting from simple random sampling. However, there is no work in the local

polynomial regression estimation of finite population totals under stratified ran-

dom sampling. This piece of work will close this gap.

1.4.2 Application to the Real World

Stratified random sampling is the most common method in many surveys

and its most important to develop estimators in this context that can be used

by researchers in other fields such as social sciences, economics and geology. The

local polynomial regression estimator being proposed can be used to make infer-

ence about some finite population quantities such as the finite population total.

Furthermore, when the variance of the proposed estimator is derived, it can be

used to construct confidence intervals for the finite population total or mean.

1.5 Scope of the Study

A local polynomial regression estimator of the finite population total in

a model-based approach under stratified random sampling shall be determined.

Then asymptotic properties of the proposed estimator such as asymptotic model

unbiasedness and consistency will be determined. This is to mean that the per-

formance of the model will be related to how close the estimated values are to the

observed values. Different criteria will be used to compare the proposed estimator

4



with the Horvitz-Thompson estimator, the Linear regression estimator (Cochran,

1977, p. 200) and the Mixed ratio estimator of Orwa et al. (2010). Criteria for

comparison include relative absolute bias (RAB) and relative efficiency (RE).
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the various studies that have so far been done in

relation to local polynomial regression estimation in various designs. It highlights

some key contributions in the study of local polynomial regression and the general

methodologies that have been conducted in the study of this kind.

2.2 The Paradigm of Model-based Approach

Nonparametric methods have recently been employed in the estimation pro-

cedure of finite population parameters in a model-based framework. The history

of the use of auxiliary information is as old as the history of survey sampling.

Neyman (1938) work may be thought as the actual work where auxiliary infor-

mation was used to improve the precision of an estimator. In his work, Neyman

introduced the concept of double sampling in sampling human populations when

the mean of the auxiliary variate is unknown. In the development of the ratio

estimator by Cochran (1940), the survey variable was highly correlated with the

auxiliary variable and the regression line passed through the origin. Similarly,

Cochran (1977) used auxiliary information in proposing linear regression estima-

tors in stratified random sampling.

One of the approaches to using auxiliary information in construction of

estimators is by assuming a working model that describes the relationship between

the survey variable and the auxiliary variable. Estimators are then derived based

on this model. At this stage, estimators are sought to have good efficiency given

6



that the model is true. In most cases, a linear model is assumed. Generalized

regression estimators by Cassel et al. (1976) and Robinson and Sarndal (1983)

including linear regression estimators and ratio estimators by Cochran (1977),

and best linear unbiased estimators by Royall (1970) and Brewer (1963) as well

as post-stratification estimators by Holt and Smith (1979) are all derived from

the assumption of linear models.

Sometimes the linear model is an inappropriate model, and therefore, the

resulting estimators do not beat the purely design-based estimators. As a result,

Wu and Sitter (2001) proposed a class of estimators in which the working model

assumes a nonlinear parametric model. However, the improvement of the effi-

ciency of such estimators requires prior information about the exact parametric

population structure. As a result of these concerns, several researchers have so far

considered nonparametric models for ξ. For instance, Nadaraya (1964) and Wat-

son (1964) introduced the idea of nonparametric regression to estimate unknown

regression functions. Later on, Dorfman (1992) and Chambers et al. (1993) in-

troduced model-based nonparametric kernel-regression estimators for some finite

population quantities and their distribution functions.

In model-based approach, the model ξ is used to predict the non-sampled

values of the population, and hence the population quantities mean Ȳ or total

Y . In their work, Orwa et al. (2010) proposed a mixed ratio estimator for the

finite population total under stratified random sampling in model based frame-

works. This estimator was based on the Nadaraya-Watson kernel regression, and

it generally led to a relatively small error as compared to the usual ratio esti-

mator. Further this estimator was shown to be statistically consistent as well as

asymptotically unbiased.
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2.3 Local Polynomial Regression Estimation

The introduction of more general models and flexible techniques to obtain

prediction of the value taken by the survey variable in non-sampled units seems

of great interest more also when auxiliary information is available for each unit

of the population. Breidt and Opsomer (2000) first considered nonparametric

models for ξ within a model-assisted approach and obtained a local polynomial

regression estimator as a generalization of the ordinary generalized regression

estimator. On the other hand, Zheng and Little (2003) developed a model-based

estimator based on penalized spline regression.

Sánchez-Borrego and Rueda (2009) considered a general working model

through a nonparametric class of models ξ which is within the model-based ap-

proach to inference. In their work, Sánchez-Borrego and Rueda (2009) employ

local polynomial regression in the estimation of the finite population mean except

for that their estimator is only applicable to direct sampling designs such as sim-

ple random sampling. On the other hand, Breidt and Opsomer (2000) proposed

a model-assisted nonparametric estimator for finite population total and this has

attracted researchers. This estimator was based on local polynomial smooth-

ing, which is a kernel-based technique. Although this estimator has the form of

generalized regression estimator, it is based on a nonparametric superpopulation

model ξ applicable to a large class of functions. Breidt and Opsomer (2000) lo-

cal polynomial regression estimator only applies to direct sampling designs when

auxiliary information is available for each unit of the population. When com-

plete auxiliary information is available, the employment of more flexible methods

to predict the value taken by the survey variable in non-sampled units produce

more efficient estimators (Montanari and Ranalli, 2003). This is often done at

the estimation stage in order to increase the precision of estimators of population

parameters - population total or mean. Such auxiliary information can include

8



census data, administrative registers or previous surveys.

Sánchez-Borrego and Rueda (2009) improved on Breidt and Opsomer (2000)

estimator and developed a model-based local polynomial regression estimator ap-

plicable to direct sampling designs such as simple random sampling and system-

atic sampling. This estimator is more reliable than the classical design-based

approach, originally developed by Neyman (1934). The design-based approach

has some weaknesses in that it is prescriptive for the choice of estimator. Go-

dambe (1955) mentions that it lacks a theory for optimal estimation, and hence

yields potentially inefficient estimates. The aforementioned limitations of classical

design-based approach calls for the need to employ the model-based approach.

2.3.1 Some Local Polynomial Regression Estimators and their Theo-

retical Properties

Breidt and Opsomer (2000) used the traditional local polynomial regression

estimator of the unknown function m(.). In their work they assume that m(.) is a

smooth function in x and obtain consistent and design-unbiased estimators of the

finite population total. Breidt and Opsomer (2000) local polynomial regression

estimator has the form of the generalized regression estimator, but it is based

on a nonparametric superpopulation model ξ which is applicable to a wide class

of functions. Based on the empirical studies carried out, this estimator yields

better results than the classical regression estimator and the post-stratification

estimator of Cochran (1977), as well as the model-based nonparametric estimator

of Dorfman (1992).

Sánchez-Borrego and Rueda (2009) extended Breidt and Opsomer (2000)

idea to model-based approach and considered a general working model through

a nonparametric class of models ξ which is within the model-based approach

to inference. In their work, Sánchez-Borrego and Rueda (2009) employ local

polynomial regression in the estimation of the finite population mean except for

9



that their estimator is applicable to direct sampling designs such as simple random

sampling. Their estimator is asymptotically model-unbiased and also consistent.

Based on the empirical studies, their estimator is better than the previous model-

assisted local polynomial regression estimator of Breidt and Opsomer (2000) as it

maintains the lowest relative efficiency in the Sine, Bump, Counties70 and Jump

populations. Their estimator is asymptotically design-unbiased and a consistent

estimator of the finite population total.

Most recently, Rady and Ziedan (2014b) has developed a local linear poly-

nomial regression estimator of the finite population total. The difference between

them and the aforementioned researchers is that they incorporate two auxiliary

variables. They combine resampling methods together with local linear regression

method in the estimation of a finite population total. Their empirical studies are

based on the mean absolute error (MAE), mean squared error (MSE) and mean

absolute percentage error (MAPE). More specifically, they consider two auxiliary

variables and do an empirical study to compare the estimator of finite popula-

tion total based on classical linear regression and local linear regression, and the

effects of bootstrap and jackknife methods on these estimators. The local linear

regression estimator beat the classical regression estimator when the model is

misspecified, a proof of robustness.

By considering Breidt and Opsomer (2000); Sánchez-Borrego and Rueda

(2009); Rady and Ziedan (2014b) ideas, local polynomial regression estimator of

the finite population total in the case of stratified random sampling is suggested.

In this study, the local polynomial regression estimator to stratified sampling

when samples from each stratum are drawn using simple random sampling with-

out replacement will be extended. The use of a model-based nonparametric ap-

proach (in the case of one auxiliary variable which is available for each unit of

the population) will be considered.

10



2.4 Choice of degree, p of the polynomial

It is important to make a good choice of the appropriate degree of poly-

nomial to fit. When choosing the degree, there is a trade-off between variance

and bias. Higher order polynomials usually allow for precise fitting. This means

that the bias will be small, but an increase in the degree results to an increase

in the variance. However, such increase is not constant. Avery (2012) notes

that the asymptotic variance of the function m̂(.) only increases whenever the

degree, p changes from odd to even. For instance, there will be an increase in

the asymptotic variance when moving from p = 1 to p = 2. However, there is

no loss when moving from p = 0 to p = 1. This strongly supports the idea of

choosing odd-degree polynomial (say p = 1) in the previous section since there is

no associated cost in variance (Fan and Gijbels, 1992; Ruppert and Wand, 1994).

Fan and Gijbels (1992) propose an adaptive method for selecting the correct de-

gree of polynomial based on local factors and they allow p to vary for different

points in the support of the data. The estimator that results has the property of

robustness to bandwidth. This implies that if the selected bandwidth is too large,

a polynomial of higher degree will be selected to better model the contours of the

data. Similarly, if the selected bandwidth is too small, then a polynomial of lower

degree will be fit in order to help reduce the variance and make the estimates

numerically stable.

2.5 Bandwidth Selection

The choice of bandwidth, b, is critically important in local polynomial

regression. Bandwidths control the complexity or the ”jaggedness” of the fit.

Smaller values of b will lead to less smoothing whereas larger values result to a

regression curve with fewer sharp changes. Furthermore, there exists a trade-off

11



between bias and variance. Larger values for b will reduce the variance. This is

because more local points will be included in the estimate. However, an increase

in b leads to an increase in the average distance between x0 and these local points,

and consequently to a larger bias. Fan and Gijbels (1996) notes that a natural

way to select bandwidth, and balance such trade-off is by minimizing the MSE.

2.6 Choice of the Kernel Function

Many possible kernel smoothers exist. However, the selected kernel should

be easy to implement both practically and theoretically. Silverman (1986) listed

the requirements that a kernel smoother has to meet, and they include:

(i) The smoother should be easy and simple to construct and implement.

(ii) The smoother should be user-friendly. That is, it should be theoretically

and practically fit in both natural and simulated data.

(iii) The smoother should not take very small values since this may result to

numerical underflow in the computer.

(iv) The range of values that the kernel smoother takes should be well-defined

and not open as in the Gaussian kernel case.

Table 2.1 gives the efficiencies of several kernels with respect to the Epanech-

nikov kernel.

12



Kernel K(u) Efficiency

Epanechnikov 3
4

(1− u2), |u| < 1 1.000

Biweight 15
16

(1− u2)
2
, |u| < 1 0.9939

Triangular 1− |u|, |u| < 1 0.9859

Gaussian 1√
2π

exp
(
−1

2
u2
)
, −∞ < u <∞ 0.9512

Rectangular 1
2
, |u| < 1 0.9295

Table 2.1: Efficiency Relative to the Epanechnikov kernel.

The performance of the kernel function is usually measured by the mean in-

tegrated square error (MISE) or asymptotic mean integrated square error (AMISE).

Epanechnikov kernel, in this case, minimizes the AMISE and is therefore optimal.

Hence the best choice for a study of this kind.

13



CHAPTER 3

METHODOLOGY

3.1 Introduction

The model-based approach, which is based on superpopulation models, as-

sumes that the population under investigation is a realization of a superpopu-

lation random variable having a superpopulation model ξ. With this model ξ,

one is able to predict the nonsampled values of the population, and hence the

population total Y . Superpopulation models visualize y′is as realized values of a

random variable y but the sample is fixed.

Suppose there is a population of N units: U = {1, 2, . . . . . . ., N}. Suppose

a random sample s of size n is selected according to some sampling design, say

d, with the first order inclusion probability πi.

Let yi be the value of the study variable y, for the ith population element. Let

also xi be the auxiliary variate which is available for all population units in U

and associated to yi. The values of two variables (yi, xi), i ∈ s are observed for

the estimation of finite population total Y . Suppose the distribution generating

y′is is given by ξ.

Here, the problem of estimating Y is basically the problem of predicting the sum

of unobserved random variable. From the sample, inference is made about ξ and

then used to predict
∑
i∈r

yi, where r is the nonsampled set.

Usually in the computation of finite population total, we have the formula given

in Equation (3.1).

Y =
N∑
i=1

yi =
∑
i∈s

yi+
∑
i∈r

yi (3.1)

14



The first component in Equation (3.1) is known while the second requires pre-

diction which is the focus in this particular work. Various methods exist for this

purpose. In this context, focus is on the local polynomial regression, which is a

kernel-based technique.

3.2 Local Polynomial Regression

3.2.1 Introduction

In this subsection, local polynomial regression is discussed in a broader

context. Local polynomial regression is typically used to model the relationship

between a survey variable and the auxiliary variable. In the presence of an aux-

iliary variable, x, a natural way to predict the unknown component in Equation

(3.1) is by adopting the regression model in Equation (3.2) that treats the proxy

values y0
i = m(xi) as the predicted values of the unobserved values yi, i ∈ r.

yi = m(xi) + ei (3.2)

Here, local polynomial regression estimation, a kernel-based method, is

adopted to estimate the unknown function m(xi) for i ∈ r. The unknown func-

tion m(xi) is assumed to be a smooth function. The error terms are assumed to

be independently distributed random variables with mean 0 and variance σ2(x).

The approaches employed by Breidt and Opsomer (2000),Sánchez-Borrego

and Rueda (2009) and Rady and Ziedan (2014b) are used. The local polynomial

kernel estimator is used to predict yi, i ∈ r in the context of stratified random

sampling.
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3.2.2 Estimation of the unknown function m(.)

Assuming that the unknown function m(.) in Equation (3.2) is a smooth

function in x. No global assumptions about m(.) are made except the assumption

that the function can locally be approximated with a member of a simple group

of parametric functions, for instance, a straight line or a constant.

Let Kb(u) = b−1K(u/b), where K denotes a continuous kernel function and b is

the bandwidth.

In nonparametric regression, focus is on estimation of the unknown function m(.).

Now consider a Taylor’s expansion of the unknown function m(.) for xi in the

neighborhood of a point of interest, x0:

m(xi) ≈ m(x0) +m
′
(x0)(xi − x0) + .....+m(p)(x0)(xi − x0)p

1

p!
(3.3)

Note that Taylor’s theorem says that any k−times differentiable or continuous

function can be approximated with a polynomial.

Define the local kernel weights as wi = Kb(xi−x0). To estimate the terms on the

right hand side of Equation (3.3), we adopt the weighted least-squares regression

in the following way:

Equation (3.4) is fitted

yi = β0 + β1(xi − x0) + β2(xi − x0)2 + ......+ βp(xi − x0)p + ei (3.4)

to minimize the local weighted residual sum of squares given by

n∑
i=1

wie
2
i =

n∑
i=1

[
yi−

p∑
j=0

βj (xi − x0)j
]2

Kb (xi − x0) (3.5)
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That is,

min
β

n∑
i=1

{
yi − β0 − β1(xi − x0)− β2(xi − x0)2 − ......− βp(xi − x0)p

}2︸ ︷︷ ︸Kb(xi − x0)︸ ︷︷ ︸
local

polynomial

(3.6)

where β = (β0, β1, β2, ....., βp)
T . Denoting the solution to Equation (3.6) as β̂(x).

Then m̂(r)(x0) = r!β̂r(x), (r = 0, 1, 2, ...., p).

Accordingly,

β̂(x) = (XT
sjW

T
sjXsj)

−1XT
sjW

T
sjYs (3.7)

as long as X
′
sjW

′
sjXsj is invertible.

Thus from Equation (3.7), a model-based local polynomial regression es-

timator based on the whole finite population (as in Breidt and Opsomer, 2000;

Sánchez-Borrego and Rueda, 2009; Rady and Ziedan, 2014b) would be given by:

m̂(x0) = eT1 (XT
sjW

T
sjXsj)

−1XT
sjW

T
sjYs = wTsjYs (3.8)

where e1 = (1, 0, 0, ....., 0)T is a column vector of length p+ 1; Ys = [yi]i∈s;

Wsj = diag{Kb(xi − x0)}i∈s and Xsj = [1, (xi − x0), ......, (xi − x0)p]i∈s.

Equation (3.8) holds as long as XT
sjW

T
sjXsj is a nonsingular matrix.

Thus in estimating each y(x) the following 3 steps need to be followed:

(i) Construct Xsj matrix for each x ∈ {x1, ......., xn}

(ii) Construct Wsj matrix for each x ∈ {x1, ......., xn}

(iii) Estimate m(x) using equation (3.8).

Then the model-based local polynomial regression estimator for Y is given by

Ŷlp =
∑
i∈s

yi+
∑
i∈r

m̂i (3.9)
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where r is the nonsampled set.

In this study, the local polynomial regression estimation in simple random

sampling is extended to stratified random sampling using one auxiliary variable.

The Epanechnikov kernel with bandwidth values b = n−1/5 (see Rady and Ziedan,

2014b) (with n = 200), b = 0.4, b = 1 and b = 2 (see Orwa et al., 2010) is used

for the nonparametric estimators.

3.3 Proposed Estimator

Consider a population consisting of N units. Suppose this population is divided

into H disjoint strata, where hth is of size Nh, h = 1, 2, ...., H.

Let yhj, j = 1, 2, ...., Nh be the survey measurement for the jth unit in the hth

stratum. Further, let xhj, j = 1, 2, ...., Nh be the auxiliary measurement positively

correlated with yhi.

From the hth stratum, a simple random sample of size nh is selected without

replacement, where nh is sufficiently large with respect to Nh and fh = nh/Nh −→

0.

Let sh be the sample in the hth stratum and rh be the nonsampled set in the hth

stratum.

The population total is defined as

Y =
H∑
h=1

Nh∑
j=1

yhj =
H∑
h=1

nh∑
j=1

yhj+
H∑
h=1

Nh∑
j=nh+1

yhj (3.10)

which can rewritten as

Y =
H∑
h=1

yhs+
H∑
h=1

yhr (3.11)

where yhs =
nh∑
j=1

yhj and yhr =
Nh∑

j=nh+1

yhj.
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Once the sample has been observed, the problem of estimating Y becomes

the problem of predicting the sum of the nonsampled y′hjs. Usually, inference is

made using the known sample and the model ξ.

The first component in Equation (3.10) is known while the second requires

prediction which is the focus in this study. In this study, local polynomial regres-

sion method will be used to predict the unknown y′hjs, ∀j ∈ rh.

Suppose the distribution generating y′hjs is given by the superpopulation model,

ξ in which

yhj = m(xhj) + ehj (3.12)

where e′hjs are independently distributed random variables with mean 0 and vari-

ance σ2(xhj).

Then it follows that

E(yhj) =m(xhj) (3.13)

Cov(yhj, yh′j′) =


σ2(xhj), for

0, otherwise

h = h′ and j = j′

(3.14)

where σ2(x) and m(x) are assumed to be continuous and twice differentiable

functions of x, and σ2(x) > 0 .

From equations (3.3), (3.4), (3.5), (3.6), (3.8), and (3.9), a model-based

local polynomial regression estimator of the nonsampled y′hjs in the hth stratum

is therefore given by

m̂hj = eT1
(
XT
hjWhjXhj

)−1
XT
hjW

T
hjy = wThjy (3.15)

where e1 = (1, 0, 0, ....., 0)T is a column vector of length p + 1; y = [yhj]j∈sh ;
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Whj = diag {Kb (xhj − xhi)}j∈sh and Xhj = [1, (xhj − xhi) , ......, (xhj − xhi)p]j∈sh .

Equation (3.15) holds as long as XT
hjWhjXhj is a nonsingular matrix.

Now denoting the estimator for the finite population total by ŶLP and the

estimator within the hth stratum by ŶLPh
. Therefore, in stratum h, the estimator

of the population total based on local polynomial regression is

ŶLPh
= yhs+

Nh∑
j=nh+1

m̂hj (3.16)

and the estimator for the finite population total is

ŶLP =
H∑
h=1

ŶLPh
=

H∑
h=1

(
yhs+

Nh∑
j=nh+1

m̂hj

)
(3.17)

with yhs =
nh∑
j=1

yhj.

3.4 Properties of Proposed Estimator

In this section, a study is carried out on various properties of estimator (3.17),

which may be important in practice. Assumptions made are as follows:

(i) The regression function m(x) has a bounded second derivative.

(ii) The marginal density, fX(x) is continuous and fX(x) > 0.

(iii) The conditional variance σ2(x) =var(Y/X = x) is bounded and continuous.

(iv) The kernel density function K(x) is bounded and continuous satisfying:
∞́

−∞
K(x)dx = 1,

∞́

−∞
xK(x)dx = 0,

∞́

−∞
x2K(x)dx > 0 and

∞́

−∞
x2tK(x)dx <∞ for t = 1, 2, .......

These conditions on K(·) were imposed and used in Fan (1993) work and are

purposely for the convenience of technical arguments and therefore can be relaxed.
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3.4.1 ŶLP is Asymptotically Model-Unbiased

Now consider the difference:

ŶLP − Y =

(
H∑
h=1

yhs+
H∑
h=1

∑
j∈rh

m̂hj

)
−

(
H∑
h=1

yhs+
H∑
h=1

∑
j∈rh

yhj

)
(3.18)

=
H∑
h=1

∑
j∈rh

(m̂hj − yhj) (3.19)

=
H∑
h=1

∑
j∈rh

((m̂hj −mhj) + (mhj − yhj)) (3.20)

and taking expectation yields

Eξ

(
ŶLP − Y

)
=

H∑
h=1

∑
j∈rh

Eξ (m̂hj −mhj) +
H∑
h=1

∑
j∈rh

Eξ (mhj − yhj) (3.21)

=
H∑
h=1

∑
j∈rh

Eξ (m̂hj −mhj) (3.22)

since Eξ (yhj) = mhj

i.e.

Eξ

(
ŶLP − Y

)
=

H∑
h=1

∑
j∈rh

Eξ (m̂hj −mhj) (3.23)

which is the bias associated with ŶLP .

Approximating mhj by Taylor series expansion about a point xhj and assuming

further that nh −→∞ and b −→ 0, then observe that

m̂hj ≈ mhj +m
′

hj(xhj − xhi) + (1/2)m
′′

hj(xhj − xhi)2 + ...... (3.24)
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Letting u = (xhj − xhi) /b =⇒ ub = xhj − xhi, then

m̂hj ≈ mhj +m
′

hj(ub) + (1/2)m
′′

hj(ub)
2 +O(b2) (3.25)

=⇒ m̂hj −mhj ≈ m
′

hj(ub) + (1/2)m
′′

hj(ub)
2 +O(b2) (3.26)

and applying expectations then

Eξ (m̂hj −mhj) = Eξ

(
(m

′

hj(ub) + (1/2)m
′′

hj(ub)
2)
)

+O(b2) (3.27)

Theorem 3 of Fan and Gijbels (1996) allows that under conditions (1) − (4) if

b −→ 0 and nhb −→∞,

Eξ
(
m

′

hj(ub) + (1/2)m
′′

hj(ub)
2
)

+O(b2) −→

m
′

hjb

ˆ
uKb(u)du+ (1/2)m

′′

hjb
2

ˆ
u2Kb(u)du+O(b2) (3.28)

= (1/2)m
′′

hjb
2

ˆ
u2Kb(u)du+O(b2) (3.29)

So that

Eξ (m̂hj −mhj) = (1/2)m
′′

hjb
2

ˆ
u2Kb(u)du+O(b2) (3.30)

It implies that Eξ (m̂hj −mhj) −→ 0 provided that b −→ 0 and nh −→ ∞, and

thus ŶLP is asymptotically model-unbiased.

3.4.2 Mean Square Error (MSE) of ŶLP

The estimator (3.6) has the MSE

MSE(ŶLP ) = Eξ

(
ŶLP − Y

)2

(3.31)
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which can be decomposed as

MSE(ŶLP ) =
[
Bias

(
ŶLP

)]2

+ V ar
(
ŶLP

)
(3.32)

Theorem 1 of Fan (1993) allows that under Condition (1), if the bandwidth, b is

optimal i.e. b = dn−γh for 0 < γ < 1, then

MSE(ŶLP ) =
(
b4

4

) H∑
h=1

∑
j∈rh

(
m

′′

hj

∞́

−∞
u2Kb(u)du

)2

+

1

b

H∑
h=1

∑
j∈rh

1

nh
f−1(xhj)σ

2(xhj)

∞̂

−∞

K2
b (u) +O

(
b4 +

1

nhb

)
(3.33)

Observe that Equation (3.33) tends to zero if b −→ 0 and nhb −→ ∞ and thus

MSE(ŶLP ) −→ 0.

This shows that ŶLP is statistically consistent and thus useful.

3.5 Existing Estimators under Stratified Random Sam-

pling

3.5.1 The Horvitz-Thompson Estimator

Under stratified random sampling, the Horvitz-Thompson (HT) estimator (Horvitz

and Thompson, 1952) is given by,

ŶHT =
H∑
h=1

nh∑
j=1

yhj
Πhj

(3.34)

Since the strata are independent, the variance of the HT estimator becomes

V ar
(
ŶHT

)
=

H∑
h=1

[
Nh∑
i=1

Nh∑
j=1

(πij − πiπj)
yi
πi

yj
πj

]
(3.35)
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An unbiased estimator of V ar
(
ŶHT

)
is given by,

ˆV ar
(
ŶHT

)
=

H∑
h=1

[∑
i∈sh

∑
j∈sh

(
πij − πiπj

πij

)
yi
πi

yj
πj

]
(3.36)

if πij > 0 ∀ i, j ∈ Uh, for h = 1, 2, ..., H.

3.5.2 The Linear Regression Estimator

In Cochran (1977, p. 200), a regression estimate is given for each stratum popu-

lation mean, i.e.

ˆ̄YREGh
= ȳhs + βoh

(
X̄h − x̄h

)
(3.37)

where ȳhs and x̄h are stratum sample means; X̄h is stratum population mean for

the auxiliary variate, x; βoh is the regression coefficient in the hth stratum.

The sample estimate for βoh is taken as

boh =

∑
j

(yhj − ȳhs) (xhj − x̄h)∑
j

(xhj − x̄h)2 (3.38)

Then given that Wh = Nh

N
,

ˆ̄YREG =
H∑
h=1

Wh
ˆ̄YREGh

(3.39)

This estimation is appropriate when the true regression coefficients, βoh are thought

to be varying from stratum to stratum.

From equation (3.39), a regression estimator for the total is given by,

ŶREG =
H∑
h=1

Nh
ˆ̄YREGh

=
H∑
h=1

Nh

(
ȳhs + βoh

(
X̄h − x̄h

))
(3.40)
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The variance V ar(ŶREG) is given by

V ar
(
ŶREG

)
=
∑
h

N2
h (1− fh)
nh

S2
yh

(
1− ρ2

h

)
(3.41)

provided nh is large enough in all strata; where ρh is the population correlation

between yhj and xhj, and Syh is the population variance of yhj.

And an estimator of V ar
(
ŶREG

)
becomes

ˆV ar
(
ŶREG

)
=
∑
h

N2
h (1− fh)

nh (nh − 1)

∑
j

[(yhj − ȳhs)− boh (xhj − x̄h)]2 (3.42)

3.5.3 The Mixed Ratio Estimator

The mixed ratio estimator (Orwa et al., 2010) is based on the model

E(yhj) =m(xhj) (3.43)

Cov(yhj, yh′j′) =


σ2(xhj), for

0, otherwise

h = h′ and j = j′

(3.44)

where σ2(x) and m(x) are assumed to be continuous and twice differentiable

functions of x, and σ2(x) > 0 .

Letting the smoothing weight in the hth stratum be given by

whj(x) =
Kb

(
xhj−xhi

b

)
∑
s

Kb

(
xhj−xhi

b

) (3.45)
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Then an estimator for the nonsampled units in the hth stratum becomes

m̂(xhj) =
∑
s

whj(x)yhj (3.46)

Hence, the nonparametric regression estimator, ŶPE, for the finite population

total becomes

ŶPE =
H∑
h=1

nh∑
j=1

yhj+
H∑
h=1

Nh∑
j=nh+1

whj(xj)yhj (3.47)
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CHAPTER 4

SIMULATION STUDY

4.1 Introduction

In this section, a study is carried out on the practical performance of several

estimators:

ŶHT Horvitz-Thompson Equation (3.34)

ŶREG Linear regression Equation (3.40)

ŶPE Mixed Ratio Equation (3.47)

ŶLP Local polynomial with degree, p = 1 Equation (3.17)

Horvitz-Thompson estimator is design-based, linear regression estimator is

parametric and model-based while both mixed ratio and local polynomial regres-

sion estimators are nonparametric and model-based.

4.2 Description of the Population

For comparison of the proposed estimator with the Horvitz-Thompson estimator

(Horvitz and Thompson, 1952), the linear regression estimator (Cochran, 1977, p.

200), and the mixed ratio estimator of Orwa et al. (2010), simulated populations

are used. The working model is taken to be E(yhj) = m(xhj), Cov(yhj, yh′j′) = σ2,

for h = h′ and j = j′ (i.e. constant variance).
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In this study, four populations are considered, which are generated from the

regression model given by

yi = m(xi) + ei (4.1)

1 ≤ i ≤ 2, 000 with the following mean functions

Linear: m1(x) = 1 + 2(x− 0.5)

Sine: m2(x) = 2 + sin(2πx)

Bump: m3(x) = 1 + 2(x− 0.5) + exp(−200(x− 0.5)2)

Jump: m4(x) = 1 + 2(x− 0.5)I{x≤0.65} + 0.65I{x>0.65}

with x ∈ [0, 1]. They represent a class of correct and incorrect model

specifications for the estimators being considered. If it is assumed that the

model is linear, then it would be interesting to check how much efficiency is lost

by deviating from this assumption of linearity and assuming that the underlying

model is smooth. For m1, ŶREG is expected to be the best estimator, since the

model assumed is correctly specified. The rest of the mean functions:- m2, m3

and m4 represent various deviations from the linear model, m1. These

populations are plotted in Fig. 4.1. They were used by Breidt and Opsomer

(2000) and the Sine, Bump and Jump populations were used by

Sánchez-Borrego and Rueda (2009).

The errors are assumed to be independent, identically distributed (i.i.d)

normal variables with mean 0 and standard deviation σ = 0.1. They contain

2, 000 units and the population xi is simulated as i.i.d uniform random variables.

The populations, y′is, are generated from the mean functions by adding the errors

e′is in each of the cases.
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Data simulations, the estimators and computations were obtained using R Soft-

ware on a desktop.

In order to study the practical performance of the proposed estimator, each

of the populations (i.e. y′is) is divided into 10 equal, disjoint and mutually ex-

clusive strata which are made as homogenous as possible to ensure that units

in each stratum vary little from each other. A sample of size, n = 200 is then

taken with each stratum contributing a sample size of nh = 20, (h = 1, 2, ...., 10).

1000 samples are simulated using simple random sampling without replacement

for each case.

Epanechnikov kernel,

K(u) =
3

4

(
1− u2

)
I{|u|≤1},

is used for kernel smoothing on each of the populations. In each case, bandwidth

values b = n−1/5 (see Rady and Ziedan, 2014b) (with n = 200), b = 0.4, b = 1

and b = 2 (see Orwa et al., 2010) are considered.
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Figure 4.1: Plot of Linear, Sine, Bump and Jump populations

4.3 Performance Criteria of the Proposed Estimator

To analyze the performance of the proposed estimator against some specified

estimators, relative absolute bias (RAB) is computed as

RAB(θ̂) =
R∑
i=1

∣∣∣∣∣∣
(
θ̂(si)− Y

)
Y

∣∣∣∣∣∣ (4.2)
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and the relative efficiency (RE) with respect to the Horvitz-Thompson (HT)

estimator is computed as

RE(θ̂) =

R∑
i=1

(
θ̂(si)− Y

)2

R∑
i=1

(
ŶHT (si)− Y

)2
(4.3)

θ̂ is the estimator of the finite population total being considered; Y is the true

population total and R is the number of replications.

The relative efficiency is meant to examine the robustness of the various estima-

tors against the proposed estimator.
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4.4 Results

The results of this simulation study are summarized in Table 4.2. For each

populations, y′is (i = 1, 2, 3, 4), the performance of each estimator is analyzed

using the RAB and RE. The RAB indicates the measure of how close the estimator

being considered is from the actual value, while the RE is used to check the

robustness of the estimator. For instance, an estimator, θ̂1, will be said to be

“better” or more preferrable than another one, θ̂2, if its RE is comparably smaller.

That is, if RE(θ̂1) < RE(θ̂2), where θ̂1 and θ̂2 are estimators, then θ̂1 is said to

be “better” than θ̂2.

Estimator Formulae

Horvitz-Thompson, ŶHT ŶHT =
H∑
h=1

nh∑
j=1

yhj
Πhj

Linear regression estimator, ŶREG ŶREG =
H∑
h=1

Nh

(
ȳhs + βoh

(
X̄h − x̄h

))
Mixed Ratio Estimator, ŶPE ŶPE =

H∑
h=1

nh∑
j=1

yhj+
H∑
h=1

Nh∑
j=nh+1

whj(xj)yhj

Proposed Model-based local polynomial, ŶLP ŶLP =
H∑
h=1

yhs+
H∑
h=1

Nh∑
j=nh+1

m̂hj

Table 4.1: Summary of the formulae used in computing the respective population

totals of the various estimators

The following plots demonstrate the effects of increasing the bandwidth on the

proposed estimator (ŶLP ). They demostrate the effects of bandwidth on the

complexity or “jaggedness” of the fit. Figures 4.2 - 4.5 represent the graphs of

samples from various simulated y− populations (Linear, Sine, Bump and Jump

populations respectively) against the samples from the x− population. In this

illustration, four bandwidth values are used: b = n−1/5 (with n = 200), b = 0.4,

b = 1 and the data-driven bandwidth computed using the function “regCVB-

wSelC” in the R package “locpol”. Smaller values of bandwidth, b, results to

less smoothing while larger values yield curves with fewer sharp changes (see
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Figures 4.2 - 4.5). In this illustration, high bandwidth values oversmooths the

nonparametric regression curves as expected.
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Figure 4.2: Plots of the Simulated data (Stratum 1 of Linear population) with the

true regression curve (gray line) and local linear smoother using an Epanechnikov

kernel and various bandwidth values (red line)
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Figure 4.3: Plots of the Simulated data (Stratum 1 of Sine population) with the

true regression curve (gray line) and local linear smoother using an Epanechnikov

kernel and various bandwidth values (red line)
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Figure 4.4: Plots of the Simulated data (Stratum 1 of Bump population) with the

true regression curve (gray line) and local linear smoother using an Epanechnikov

kernel and various bandwidth values (red line)
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Figure 4.5: Plots of the Simulated data (Stratum 1 of Jump population) with the

true regression curve (gray line) and local linear smoother using an Epanechnikov

kernel and various bandwidth values (red line)
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The estimators ŶPE and ŶLP are tested under the same bandwidth choice

i.e. b = n−1/5 (with n = 200), b = 0.4, b = 1 and b = 2. Results of this simulation

are shown in Table 4.2.
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Population b ŶHT ŶREG ŶPE ŶLP

Linear

RAB RE RAB RE RAB RE RAB RE

0.3465724 0.03212401 1 0.005778929 0.03155733 0.03321496 1.067811 0.03201888 0.9959899

0.4 0.03212401 1 0.005778929 0.03155733 0.0335352 1.089573 0.0320533 0.9965037

1 0.03212401 1 0.005778929 0.03155733 0.03434122 1.144951 0.03210449 0.9991698

2 0.03212401 1 0.005778929 0.03155733 0.03272264 1.037753 0.03212023 0.9997907

Estimated Total

b = 0.3465724 1941.427 1943.161 1939.52 1941.248

b = 0.4 1941.427 1943.161 1938.807 1941.167

b = 1 1941.427 1943.161 1937.391 1941.419

b = 2 1941.427 1943.161 1940.336 1941.424

Population Total 1943.052

Sine

0.3465724 0.01855193 1 0.03836453 4.286723 0.02072086 1.243534 0.01657321 0.7990398

0.4 0.01855193 1 0.03836453 4.286723 0.02082649 1.255919 0.01685303 0.826246

1 0.01855193 1 0.03836453 4.286723 0.0201947 1.183826 0.01810882 0.9576443

2 0.01855193 1 0.03836453 4.286723 0.01895357 1.043951 0.0184607 0.9908383

Estimated Total

b = 0.3465724 4071.066 4114.031 4080.316 4056.493

b = 0.4 4071.066 4114.031 4081.685 4054.513

b = 1 4071.066 4114.031 4079.156 4066.007

b = 2 4071.066 4114.031 4073.04 4070.166

Population Total 4071.383

Bump

0.3465724 0.03109618 1 0.01449569 0.2130984 0.03243536 1.085912 0.03100986 0.9935966

0.4 0.03109618 1 0.01449569 0.2130984 0.03289121 1.116063 0.03319303 1.123072

1 0.03109618 1 0.01449569 0.2130984 0.03357809 1.165075 0.0321397 1.061732

2 0.03109618 1 0.01449569 0.2130984 0.03165829 1.036739 0.03106365 0.9988702

Estimated Total

b = 0.3465724 2186.49 2192.769 2188.266 2172.2

b = 0.4 2186.49 2192.769 2195.394 2151.329

b = 1 2186.49 2192.769 2200.689 2161.91

b = 2 2186.49 2192.769 2189.318 2182.232

Population Total 2187.923

Jump

0.3465724 0.004845022 1 0.02483609 26.07389 0.005616896 1.353566 0.007676967 2.274792

0.4 0.004845022 1 0.02483609 26.07389 0.0056205 1.35023 0.007750974 2.329744

1 0.004845022 1 0.02483609 26.07389 0.005181882 1.155266 0.005505162 1.259671

2 0.004845022 1 0.02483609 26.07389 0.004852543 1.006773 0.004872778 1.006966

Estimated Total

b = 0.3465724 3299.185 3321.699 3288.857 3322.128

b = 0.4 3299.185 3321.699 3288.415 3322.202

b = 1 3299.185 3321.699 3291.326 3309.116

b = 2 3299.185 3321.699 3297.485 3300.881

Population Total 3300.252

Table 4.2: Relative absolute bias (RAB) and Relative efficiency (RE) based on 1000

replications of simple random sampling within strata from four fixed populations of size

N = 2000. Sample size is n = 200. The nonparametric estimators are computed with

bandwidths b = 0.3465724, b = 0.4, b = 1 and b = 2, and Epanechnikov kernel.
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Table 4.2 shows the RAB’s and RE’s of the various estimators with respect to the

Horvitz-Thompson estimator (ŶHT ). In most scenarios, ŶLP is better than the

parametric estimators, but the parametric estimator- ŶREG performs best when

the model is correctly specified. This occurs both in the linear and the bump

populations, where in the former, a strong linear relationship holds between the

variables while in the latter, the function is linear over most of its range despite

a “bump” for a small part of the range of x′his.

When the model is completely misspecified as in the Sine and Jump pop-

ulations, a greater efficiency can be achieved by the nonparametric regression

estimators and Horvitz-Thompson estimator. This can be seen in Table 4.2 for

the Sine and Jump populations: the Horvitz-Thompson estimator (ŶHT ) and the

nonparametric estimators (ŶLP and ŶPE ) are more efficient than their parametric

opponent, ŶREG.

When the underlying superpopulation model is completely unknown, a rea-

sonable choice for finite population total estimation would be the nonparametric

estimators such as ŶLP and ŶPE with small bandwidth choices.

In this study, ŶLP is sometimes seen to perform much better but not as

worse as ŶPE, and hence the proposed estimator, ŶLP emerges as the best per-

forming among the nonparametric estimators being considered here. A good

overall performance is observed with the proposed estimator, with smaller values

of RAB and RE than the model-based competitor ŶPE for every population and

fixed bandwidth under consideration.

Despite ŶLP being relatively the best estimator, its performance is signifi-

cantly affected by the bandwidth choices. As the bandwidth size increases, some

amount of efficiency is lost. Additionally, a keen look at the estimated totals

in Table 4.2 shows that: as the bandwidth increases, the local linear regression

estimator, ŶLP becomes equivalent to the linear regression estimator, ŶREG. This

shows that the bandwidth has an effect on the mean square error of ŶLP . Partic-
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ularly, for whichever bandwidth that is considered in this study, ŶLP essentially

dominates ŶREG for all the populations except Linear and Bump populations,

where ŶREG is competitive. Further, ŶLP essentially dominates ŶHT for all popu-

lation except in the Jump population, where ŶHT dominates all estimators being

considered. The overall performance of ŶLP is consistently good as long as the

bandwidth remains small in this particular study.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The main objective of this study was to investigate the theoretical prop-

erties of a local polynomial regression estimator of the finite population total

under stratified random sampling. To achieve this, a model-based estimator of

the finite population total using local polynomial regression was determined in

the case of stratified random sampling. The resulting estimator was found to

be asymptotically model-unbiased and consistent, and therefore a useful tool in

sample surveys.

Through a simulation experiment, performance of the proposed estimator was

investigated against some design-based and model-based regression estimators.

The RE values of the proposed estimator are in general close to one. It has been

shown that for whichever bandwidth value considered, ŶLP essentially dominates

ŶREG for all the populations except Linear and Bump populations, where ŶREG

is competitive. Further, ŶLP essentially dominates ŶHT for all populations except

in the Jump population, where it dominates all estimators being considered. This

shows that the proposed local linear estimator, ŶLP can likely be an improvement

over the linear regression estimator, ŶREG and the Horvitz-Thompson estimator,

ŶHT when the relationship between the survey variable of interest and the aux-

iliary variable is non-linear. Generally, use of the proposed estimator leads to

relatively smaller values of RE compared to other estimators. We conclude that

nonparametric regression approach under stratified random sampling using the

proposed estimator yields good results.
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5.2 Recommendations and Suggestions for further study

Firstly, the bandwidths used in this study were predetermined. There is

need to investigate the performance of the proposed estimator under optimal

bandwidths generated from the data.

Secondly, a single auxiliary variable was used. The use of two or more

auxiliary variables need to be investigated and then performance of the resulting

estimator be determined against other rival estimators under stratified random

sampling.

Thirdly, in the simulation study, the error variances were considered to be

constant (i.e. homoscedastic). It will be interesting to investigate the performance

of the estimators when the error variances are functions of the auxiliary variable

(i.e. heteroscedastic).
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