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Nomenclature

S Susceptible.

E Exposed group to the disease.

I Infected.

R Vaccinated and recovered.

N Total population.

P Vaccination rate at birth.

β1 Susceptible contact rate of disease from exposed group.

β2 Susceptible contact rate of disease from infected group.

µ Natural death rate for all the groups.

γ Progression rate from infected to recovered group due to treatment.

π Proportion of susceptible that are vaccinated at birth.

Rv Vaccination reproduction number.

R0 Basic reproduction number.

α The death rate due to disease infection.

δ Progression rate from exposed to infected group.

Pc Critical vaccination proportion point.

E0 Disease-free equilibrium.

Eu Endemic equilibrium.
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Abbreviations

ADM Adomain Decomposition Method.

RK4 Fourth order Runge-Kutta integration Method.

WHO World health organization.

UNICEF United nations children’s fund.

OVP Oral polio vaccine.

IVP Inactivated polio vaccine.

MCV Measles-containing vaccine.

SIR Susceptible, infective and recovered population.

SIV Susceptible, infective and vaccinated population.

KEMRI Kenya medical research institute.

EE Endemic Equilibrium.

DFE Disease-free equilibrium.

LAS Locally Asymptotically stable.

SEIR Susceptible, exposed, infective and recovered population.

SIRV Susceptible, exposed, infective and vaccinated population.

HAM Homotopy analysis method.
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Abstract

Childhood diseases are increasingly becoming the most common form of infectious diseases.

These diseases include measles, mumps, Influenza, smallpox, chicken pox, Rubella, Polio etc., which

take special interest to children under-five years who are born highly susceptible. Childhood vaccina-

tion programs and campaigns have yielded in high levels of permanent immunity against childhood

diseases. Childhood diseases have several characteristics which make them well fit for mathematical

modeling such as a relatively short incubation and infectious periods and confer permanent immunity

when vaccinated. In this study, a SEIR model that monitors the temporal transmission dynamics of

a childhood disease in the presence of preventive vaccine was formulated and analyzed. We normal-

ized the governing model. Maple was used in carrying out the simulations. Semi-numerical Adomain

Decomposition method was used to compute an approximate solution of the non-linear system of

differential equations governing the model. The results obtained by Adomain Decomposition method

are compared with the pure numerical classical fourth order Runge-Kutta integration method to gauge

it’s effectiveness in describing the transmission dynamics of the model. Graphical results were pre-

sented and discussed to illustrate the solution of the problem. The achieved results reveals that the

disease will die out within the community if the vaccination coverage is above the critical vaccination

proportion, Pc.
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Chapter 1

Introduction

1.1 Background of the study

Mathematical models are considered to be viable frameworks for describing the temporal dynamics

and control spread of infectious diseases. Models in modern days play a crucial role in policy making,

planning for emergency outbreaks risk assessment, evaluation of control programs and optimizing

control methods (Al-Sheikh (2012)).

Childhood diseases are increasingly becoming the most common form of infectious diseases.

These diseases include measles, mumps, Influenza, smallpox, chicken pox, Rubella, Polio etc., (as in

Hethcote (2000); Zhang et al. (2015); May et al. (1979); Krämer et al. (2009); Bai and Ren (2015);

Arafa et al. (2012); Makinde (2007)) which take special interest to children under-five years who are

born highly susceptible. Children under five are frequently in close contact with others, at home,

at school and playground hence such childhood diseases can spread faster. According to UNICEF

(2012), it is estimated that out of 6.9 million deaths in children under-five in 2011, infectious diseases

such as measles, poliomyelitis, diarrhea etc. account for almost two-thirds (64%) of the deaths as in

UNICEF (2012) and Organization et al. (2010) .

Childhood diseases have several characteristics which make them well fit for mathematical mod-

eling such as a relatively short incubation and infectious periods, confer permanent immunity etc. as

shown by May et al. (1979) in Table 1.1.
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Table 1.1: Characteristics of some common infectious childhood diseases, adopted from (May

et al. (1979))

Disease Incubation Infectiousness Infectiousness Immunity Mortality rate

Measles 9− 12 days 5− 7 days high permanent low-high

Smallpox 12− 14 days 10 days medium permanent high

Rubella 17− 20 days 14 days medium permanent low

Mumps 10− 20 days 7 days medium permanent low

Whooping cough 7− 10 days 14+ days high permanent medium

Poliomyelitis 5− 20 days long high permanent medium

Chicken pox 13− 17 days 20− 30 days high permanent low

As in most childhood diseases, there is a time delay between an individual becoming infected

and developing disease symptoms. The exposed group only have the disease virus in the body due to

exposure to the virus but have not developed the disease symptoms physically ( Krämer et al. (2009);

Yano et al. (2016)). We have both the exposed and infected groups being infectious, but the exposed

group is less infectious than the infected group since the infected individuals are already showing the

symptoms of the disease.

The disease is in the incubation period at the exposed group, an illustrative example is incubatory

carriers (individuals who are going to show symptoms, but transmit infection before their symptoms

begin) such as measles infected individuals who start transmitting the virus through nasal and throat

secretions a day or two before any rashes are observed. For inapparent infections, individuals never

develop any symptoms but they transmit infections to others. These occur in diseases such as po-

liomyelitis and Hepatitis A, children under-five years are effective spreaders since transmission is

mainly through feces regardless of the presence of symptoms Yano et al. (2016). In Influenza, the

onset of symptoms begins one day after the infected individuals have become infectious i.e. the

incubation period is one day longer than the latent period ( Krämer et al. (2009)).

Vaccination is in most cases effective and safe strategy against most childhood infectious diseases

Yano et al. (2016), an illustrative example of vaccine-preventable childhood disease is Poliomyelitis.
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This disease affects the central nervous system of an infected person with attributes of being highly

contagious, an incurable viral infection that paralyzes a child permanently or leads to deaths shortly

after infection. Significant steps have been taken towards global elimination of poliovirus. In 2013,

sudden outbreaks were witnessed in Somalia, Ethiopia, Kenya, Syria and Cameroon. This occurrence

was due to imports of polio virus from endemic countries. Kenya reported 14 polio cases in 2013 as

in Organization et al. (2010) and UNICEF (2015).

To combat the outbreak polio immunization programs were implemented, thanks to Kenyan min-

istry of health with the support of UNICEF that helped to immunize children under-five in most parts

of the country including refugee camps and slums which are more vulnerable UNICEF (2015). An

estimated 530,000 children under-five in Kenya were vaccinated in December 2013 with oral polio

vaccine (OPV), in addition to 120,000 children under the age of five who received inactivated polio

vaccine (IPV) (Organization et al. (2010); WHO (2015a)).

World Health Organization (WHO) advice OPV to be the vaccine of choice for routine child

immunization in many countries. However, for endemic countries and in countries vulnerable to re-

infection, WHO advice an OPV dose at a birth of a child followed closely by three primary doses of

OPV with at least one IPV dose as demonstrated by UNICEF (2015) and Organization et al. (2010)).

Figure 1.1: Picture showing children receiving inactivated polio vaccine (IPV) and oral polio
vaccine (OPV) in Daadab refugee camp in Kenya on 26 February 2014 and Pakistan,
adopted from UNICEF and WHO.

A medical officer at the world Health Organization, Dr. Okiror, remarked “This time we are

including the injectable polio vaccine, when IPV is combined with OPV, or polio drops, the immunity
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of the target group improves a lot. We want to make sure that there is better immunity gained among

the children” UNICEF (2015).

Figure 1.2 shows that polio remains endemic in two countries-Afghanistan and Pakistan as of

December 2015, this implies that unless poliovirus is eradicated completely in these countries, all

countries worldwide remain vulnerable to infection, especially developing countries with weak public

health institutions and immunization programs and those countries that have trade links or make visits

to the endemic countries (Organization et al. (2010)).

Figure 1.2: Map showing polio endemic countries in 2013 and 2015

Measles is described by WHO (2015a) as one of the most deadly of all childhood diseases.

Measles is a highly contagious vaccine-preventable viral disease. The mode of transmission is by

droplets or person-person contact with infective persons. Measles is an infectious disease which

has been observed to be endemic in many countries worldwide both developing and industrialized

countries. Measles is estimated to have caused 145, 700 deaths in 2013 with a confidence interval of

81, 100−335, 400. Surprisingly, more than half of the deaths witnessed in Africa, as given by ( WHO

(2015b) and WHO (2015a)).

Prevention strategies that can lower measles child mortality rate in developing nations include the

administration of at least two doses of measles-containing vaccine (MCV1) to all children, these will

help under-five to acquire long lasting immunity against measles. Vaccinations have increasingly been
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effective in controlling the spread of Measles, thus there is a need for optimizing vaccination coverage

levels in many countries. WHO report of 2015, estimates 85% vaccination coverage of children with

one dose of measles-containing vaccine in 2014 globally, up from 73% coverage recorded in 1990 as

in WHO (2015a).

Table 1.2: Shows the estimates of vaccination coverage with the first and second doses of
measles-containing vaccine (MCV) administered through routine immunization ser-
vices, reported cases and incidence by who regions, 2000 and 2014 (adopted from
WHO (2015b) and WHO (2015a)).

As shown in Table 1.2, the vaccination coverage with the second dose of measles-containing

vaccine is estimated to be 56% globally as compared to 15% recorded in 2000. The level of vaccines

coverage is 93% as seen in Western Pacific region, in comparison to 11% in the African region (WHO

(2015b,a)).

Another illustrative example of a childhood vaccine-preventable disease is the mumps infection

( Ma et al. (2013); WHO (2015a)). A SEIR model of invasion of mumps in China was studied by

Ma et al. (2013). They estimated the model parameters using the demographic and epidemiological

data in China ranging from 2005 to 2010. Mumps is attributed to be a respiratory childhood disease

which is viral and spreads by secretions of mouth and noses. It then matures to develop swelling
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of the parotid salivary gland as described by WHO (2015a). The main symptoms of mumps are the

swollen, painful and sore salivary glands in the face. The infectiousness period of mumps lasts for

10 to 14 days. The susceptible people will attain permanent immunity after they receive vaccinations

or are recovered from the infection. It is estimated that 121 countries worldwide have received and

administered mumps vaccine by the end of 2014 as shown by WHO (2015a) and Ma et al. (2013). The

SEIR model best describes the infection of mumps and other childhood diseases due to its incubation

period and permanent immunity when vaccines and treatment are administered (Ma et al. (2013)).

Childhood diseases are continually becoming endemic in many parts of the world and causes

thousands of child deaths yearly. For instance, currently polio is endemic in Afghanistan and Pakistan

and measles being persistent in many countries globally with outbreaks that result to deaths occurring

in developing nations. Births and deaths are often ignored in the formulation of their models since

the “clock of the disease” are much shorter than the demographic changes. To formulate a plausible

model for a disease which may be persistent we need to take into account deaths due to diseases. The

possibility of eliminating the endemic scenario of the disease and controlling spread or eradication of

the disease in a population is a worthy field for research ( Brauer et al. (2001); Allen et al. (2008);

Anderson et al. (1992)).

The occurrence of the endemic nature in measles is due to the inflow of susceptible individuals

into the population, and a plausible model must consider births to the population and deaths due

to diseases in the model. To include births and deaths in an infectious disease model we assume

a varying population size so that births remain unequal to deaths as described by Makinde (2007);

May et al. (1979); Hethcote (2000). This is vital in developing regions such as African and Asian

regions with a very high mortality rate for childhood diseases such as measles. The inclusion of

realistic control methods in mathematical models is significant in order to ascertain the intervention

of public health authorities. The control strategies available to control the spread of infectious diseases

include pharmaceutical interventions e.g. Drugs, vaccines etc. and non-pharmaceutical interventions

such as social distancing, quarantine or isolation (Anderson et al. (1992); Hethcote (1976); May

et al. (1979)). Vaccination is the most effective preventive strategy in most cases. Low levels of

vaccine coverage among children with an inconsistent supply of preventive vaccines are considered

to be the main reasons that contribute to the re-emergence of many childhood diseases, this implies
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that a combination of high vaccination coverage levels with the application of constant vaccination

strategy may lead to total eradication of childhood vaccine-preventable diseases. Since vaccination

is considered quite often to be the most effective strategy against childhood diseases, the need to

understand optimal ways to control the spread of these diseases, therefore, presents itself stronger

than ever in the twenty-first century (May et al. (1979)).

In this study, a SEIR epidemic model for childhood diseases with a preventive vaccine that poses

long-life immunity to the disease was studied. The focus is to use this model to predict the optimal

vaccine coverage required to assure that the disease is controlled or dies out. The four-dimensional

model monitors the temporal dynamics of the susceptible individuals, exposed individuals who are

also infectious, recovered individuals and infectious individuals.

1.2 Statement of the Problem

Childhood diseases are some of the most common infectious diseases worldwide. So far, efforts

to control the spread of childhood diseases through vaccination campaigns has resulted in a high

decline in child mortality rates caused by diseases like measles, polio, mumps etc. Presently the

incidence has been significantly lowered by vaccination. Childhood diseases still poses a problem for

public health authorities with outbreaks reported in a number of developing regions. Although, there

have been a number of studies over the years on childhood diseases, but the emphasis has been on

assuming the population size to be a constant hence disregarding deaths due to the diseases. Recent

studies have shown that using varying population size so that birth rates remain unequal to deaths to

model childhood diseases and applying different numerical methods can be described successfully

by (Makinde (2007, 2009); Moghadas and Gumel (2003); Hethcote (2000); May et al. (1979); Arafa

et al. (2012); Yano et al. (2016)). As in many diseases, there is a time delay between an individual

becoming infected and developing the symptoms of the disease physically. The exposed individuals

may present more risk for transmission of disease than the infected since their contacts are unaware

of the infection. The exposed individuals have an incubation period with the exposed group being

less infectious than the infected group. Thus, in this study, we introduce susceptible contact rate,
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β1 of disease from exposed group (Exposed individuals can be infectious) in addition to susceptible

contact rate, β2 of disease from an infective group. Since vaccination is considered in most cases as

an effective and safe strategy against childhood diseases, the development of a framework that would

predict the optimal vaccine coverage level needed to prevent the spread of these diseases is crucial.

1.3 Justification

The study focuses on the temporal dynamics of childhood diseases in a varying population size.

Childhood diseases are endemic and so many children under-five years are born highly susceptible,

especially in regions with weak economies and poor healthy policies and the successes of vaccination

as a preventive strategiy have been a boon to mankind. Low levels of vaccine coverage level among

children with an inconsistent supply of preventive vaccines are considered to be the main reasons that

contribute to the re-emergence of many childhood diseases. Childhood diseases remain a major public

health problem and needs informed policy making in the healthy sector on intervention strategies

including optimizing vaccine coverage in the population. In view of the above, the development

of a framework that would predict the optimal vaccine coverage needed to prevent the spread of

these diseases is crucial. This study formulates a mathematical model that can be used to analyze

most childhood diseases effectively. It contributes to the field of mathematical epidemiology since

it modifies the SEIR model to include more realistic variables. It develops a framework that would

predict the optimal vaccine coverage level needed to prevent the spread of these diseases. It also acts

as a basis for further research by students and researchers on modelling childhood diseases.

1.4 Objectives

1.4.1 General objective

The main objective of this study is to examine and analyze a SEIR model that monitors the temporal

dynamics of a childhood disease in the presence of preventive vaccine.
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1.4.2 Specific objectives:

1. To propose a SEIR epidemic model for childhood diseases.

2. To determine the existence and stabilities of the disease-free equilibrium point and endemic

equilibrium point.

3. To apply Adomain Decomposition method and compare its results with the classical Runge-

Kutta method to determine its effectiveness in describing childhood disease transmission dy-

namics.

4. To perform a sensitivity analysis of the model variables to determine the effect of each param-

eter on the control or die out of the childhood disease.

1.5 Limitations of the study

1. Uncertainty in the parameters since the incubation period varies

2. The SEIR model does not work with all infectious diseases.

3. In this study, we only consider the temporal transmission dynamics of the childhood diseases

in a community with varying population thus the spatial diffusion spread of disease is not con-

sidered in this study.

1.6 Scope of the Thesis

Chapter one has an introduction to a mathematical role in epidemiology modeling and SEIR

model. We give an overview of the research problem, justification and the objectives of this thesis.

In Chapter two, we present a literature review of some epidemic mathematical models. We present
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the most important contributions on modeling childhood diseases and other infectious diseases, and

some methods of qualitative and quantitative analysis and interpretation. Also, we present and dis-

cuss some research work related to incorporating vaccination and treatment into models. In Chapter

three, we provide some mathematical concepts that are used in this thesis. We highlight some def-

initions, theorems and notation about dynamical systems and stability analysis, and related theories

which analyze such systems. We present some computations using the semi-numerical Adomain De-

composition method and a pure numerical Fourth order Runge-Kutta integration method applied on

the normalized system of non-linear differential equations. We also display a bifurcation diagram

by using Maple (Shahin (2014)). In Chapter four, we present and discuss the graphical and tabular

computational results. Chapter five is devoted to conclusions and recommendations of the study.

In the next chapter, we highlight some of the recent studies that have been conducted on childhood

infectious diseases.
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Chapter 2

Literature Review

2.1 Introduction

Childhood diseases have become a serious health problem globally and researchers have focused their

attention on developing mathematical models that play a significant role in describing the temporal

dynamics of infectious diseases and understanding how vaccination programs can be used to control

the spread of childhood diseases. A number of studies have been conducted to highlight the interven-

tion strategies and control of the infectious diseases.

2.2 Literature relevant to this study

Moghadas and Gumel (2003) presented a modified SEIR model for childhood diseases with waning

immunity. A qualitative and quantitative study for the deterministic model was done. Using the

Jacobian approach and Routh-Hurwitz criteria it was established that the disease-free and endemic

equilibrium are locally asymptotically stable for R0 < 1 and R0 > 1 respectively. Construction of

a suitable Lyapunov function for the disease-free equilibrium was done and shows that the global

stability was asymptotic. The local and global stability analysis confirmed that the disease free is

stable given that the vaccination coverage level exceeds the critical point, pc. A robust semi-explicit

second-order finite difference method was used to construct approximate solutions in the SEIR model.

Numerical simulations based on the estimated parameter values proved that the numerical scheme
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was unconditionally convergent to the disease-free equilibrium when R0 < 1 and converging to the

endemic point when R0 > 1.

Makinde (2007) presented a SIR model for childhood diseases with varying population size us-

ing constant vaccination strategy. A qualitative study was done to analyze the stability of the model.

Using the Jacobian approach it was found that the disease-free equilibrium point is locally asymptot-

ically stable if the reproduction number Rv < 1 and global stability determined using the Bendixon-

Dulac argument for Rv < 1. Then the SIR model’s endemic equilibrium was determined to be locally

asymptotically stable when reproduction number Rv > 1. The analysis revealed that there is a critical

vaccination proportion pc = (β−γ−π)/β above which the disease-free equilibrium is stable i.e. p > pc.

To successfully prevent disease, the vaccination proportion should be large enough. Adomain De-

composition method was used to construct approximate non-perturbative solutions of the differential

equations developed in the SIR model. The numerical simulations were performed using a set of rea-

sonable parameter values that considered presence and absence of infection, vaccination reproduction

number less than unity and greater than unity and also used vaccination proportion less and greater

than critical value. The results suggest that vaccination has a positive impact on the decrease of the

number of infectives, an increase in the recovered individuals and a decrease in the number of sus-

ceptible. The use of varying population size is realistic and assures that the study is feasible in any

given changing population. However, the study failed to consider deaths due to fatal childhood dis-

eases such measles, Influenza etc. A plausible model for a disease that may be fatal needs to consider

deaths due to diseases. The exposed individuals, when considered, can push such models to further

realism.

Arafa et al. (2012) presented a fractional order SIR model for childhood diseases with constant

vaccination strategy. Fractional-order was introduced to derive the SIR model. The analysis of the

model showed that there is a critical vaccination proportion pc above which the disease-free equilib-

rium is stable. To successfully prevent disease, the vaccination proportion should be large enough

(p > pc). Homotopy Analysis Method was implemented to examine the impact of vaccination on

the transmission dynamics of a childhood disease described by the fractional SIR model. The results

achieved by HAM are compared with the classical fourth order Runge–Kutta method to gauge its

effectiveness. The numerical simulations were performed using a set of reasonable parameter values.
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The results suggest that the disease will persist within the population if the vaccination coverage level

is below a certain threshold.

Makinde (2009) presented a mathematical model that described the dynamics of infectious dis-

eases with waning immunity. A qualitative study was done to analyze stability of the model. It was

found that the disease-free equilibrium point is locally and globally asymptotically stable if the re-

production number Rv < 1. Then the SIR model’s endemic equilibrium is locally asymptotically

stable when reproduction number is Rv > 1. The analysis reveals that disease eradication depends

on vaccination coverage level as well as the efficacy of the vaccine. To successfully prevent disease,

the vaccination proportion should be large enough. Adomain decomposition method coupled with

Padé approximation and He’s Variational iteration method was used to construct approximate non-

perturbative solutions of the non-linear system of equations developed in the SIV model. The numer-

ical simulations were performed using a set of reasonable parameter values. The results suggested

the reliability and efficacy of the non-pertubative methods. In addition, the simulations supported the

analytic findings and thus illustrated possible behavior scenarios of the SIV model.

Ongau et al. (2014) presented a mathematical model of the control of measles by vaccination: A

case of Kisii County, Kenya. A qualitative study was done to analyze stability of the SEIR model. It

was found that the disease free equilibrium point is locally and globally asymptotically stable if the

reproduction number Rv < 1. Routh-Hurwitz criteria of stability was used to determine the SEIR

model’s endemic equilibrium local stability. The analysis reveals that elimination of measles is by

exceeding the level of mass vaccination. To successfully prevent disease, the mass vaccination should

be large enough. The numerical simulations were performed using a set of reasonable parameter

values obtained from research institutions. The results suggest that mass vaccination has a positive

impact on the decrease of the number of infected individual and Herd Immunity for measles in the

county was found to be 93.75%.

Bakare (2015) studied optimal control of vaccination and treatment for a SIR epidemic model. A

qualitative study was undertaken to establish the existence and stability of equilibria. It was found that

in the absence of infected immigrants the disease-free equilibrium exists and is locally and globally

stable. Sensitivity indices of the basic reproduction number to the parameters in the model were

computed which revealed the most sensitive parameters to be the transmission rate and the recruitment
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rate. Optimal control analysis was done. The existence, uniqueness and necessary conditions of

the control were established. They characterized the controls and obtained the optimality system.

The resulting optimality system numerically solved. The optimal control analysis revealed that a

combination of vaccination and treatment strategies were crucial in driving infectious diseases like

measles and other childhood diseases towards eradication.

Yang et al. (2010) presented a SIRV epidemiological model with vaccination and varying popu-

lation. A qualitative study was done to determine the existence and stability of equilibria. The study

confirmed the existence and local stability of Disease free and endemic equilibrium. The global dy-

namics of the model were investigated. The main results shows that the global dynamics of the model

with the proportionate transformed system, the correlation between the fractions and population size

in disease eradication and persistence and the impact of different vaccination strategies on the control

of disease. Numerical simulations done for the system revealed that the disease eradication occurs

when the vaccination rate φ > φ1c and disease persists when φ < φ1c .

Sun and Hsieh (2010) studied a SEIR model with vaccination strategy that incorporates distinct

incidence rates for infected and exposed individuals. A qualitative study revealed that that the diseases

free equilibrium is locally and globally asymptotically stable if R0 < 1. This study took into account

the effectiveness of the vaccine. It also revealed that the model system has a unique endemic equilibria

which is locally stable. By using a suitable Lyapunov function and applying the Lasalle’s invariance

set theorem , they proved the global stability for disease-free equilibrium. The compound matrix

theory was used to provide the sufficient conditions for global stability of the endemic equilibrium.

Direct numerical simulations using estimated parameters revealed that there is a periodic solution,

when the model has three equilibrium points.

Zhang et al. (2015) studied the global dynamics of a SEIR epidemic model with discontinuous

treatment strategies. A qualitative study was done to determine the feasibility region, positivity of

model variables and stability of equilibria. The study revealed that the disease free and the endemic

equilibrium are locally asymptotically stable if R0 ≤ 1 and R0 > 1 respectively. Lyapunov stability

theory was used to establish the global stability of Disease free equilibrium, together with the basic

reproductive number, R0 which proved to be a sharp threshold value that determines the dynamics

of the model. Numerical simulation using estimated parameter values revealed that strengthening
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treatment measures after infective individuals reach some level is significant to disease control. The

study also reveals that a die out of the disease in a finite time contrary to the continuous treatment in

SEIR model which leads to die out of disease asymptotically.

Concluding this chapter we can observe that the models of Makinde (2007); Arafa et al. (2012)

and Makinde (2009) are very similar to the model we present in this study. We extend the work

of Makinde Makinde (2007) from a SIR model to a SEIR model and study the temporal dynamics.

However, the mathematical model we formulate in this research thesis advances from previous studies

by incorporating an infectious exposed group of children and we compare the effectiveness of the

Adomain Decomposition method with the classical fourth order Runge-Kutta integration method to

gauge its effectiveness in describing the temporal dynamics of childhood diseases with preventive

vaccines as a control strategy. The main question to be addressed is whether vaccination coverage can

influence disease spreading and inform health authorities on prevention and eradication strategies.

In the next chapter, we discuss the methodologies used in analysis and discussion of the governing

model.
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Chapter 3

Methodology

3.1 Introduction

In this Section, we highlight some basic mathematical tools and methods. The definitions and theory

from dynamical systems associated with monitoring and analysis of the temporal dynamics of epi-

demiological modeling that are used in this study are presented. For more information, we refer the

reader to the books of Martcheva (2015), Perko (2013),Allen et al. (2008), Brauer et al. (2001) and

Boyce et al. (2001).

Definition 3.1. (Dynamical Systems) A dynamical system is a system which evolves with time and

satisfies the following:

(i) Its future depends only on the past phenomena or the present time.

(ii) For a deterministic system ,each given initial condition at a fixed time (i.e. at a present

instant) is going to correspond at each later time to one and only one possible future state

( Perko (2013); Boyce et al. (2001)).

Definition 3.2. (Basic Reproduction Number) The basic reproduction number is defined as the

average number of Secondary infections generated by one infective introduced into a completely

susceptible population to the disease (Yang et al. (2010); Martcheva (2015)).
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Definition 3.3. (Equilibrium points) An equilibrium point of a system of differential equations

X
′

= f(s, e, i, r) ( f(s, e, i, r) is a differentiable function) is a point (se, ee, ie, re) such that s(t) =

se,e(t) = ee,i(t) = ie and r(t) = re is a constant solution of the system of differential equations i.e.

(se, ee, ie, re) is a point at which s′(t) = 0, e
′
(t) = 0, i

′
(t) = 0 and r′(t) = 0 (Perko (2013); Boyce

et al. (2001)).

Definition 3.4. (Stability of equilibrium points) Suppose we consider a system of differential equa-

tions X ′ = f(s, e, i, r) with an equilibrium point (se, ee, ie, re). The equilibrium point is said to be

stable when a small change or perturbations of the populations of the equilibrium values, results in

the populations remain in the neighborhood of equilibrium points as time increases ( Perko (2013);

Boyce et al. (2001)).

Definition 3.5. (Asymptotic stability) A critical point x∗ = (se, ee, ie, re) is said to be asymp-

totically stable if it is stable and if there exists a ξ0, with 0 < ξ0 < ξ , such that if a solution

x = f(t, s, e, i, r) satisfies:

‖ f(0)− x∗ ‖< ξ0, then lim
t→∞

f(t, s, e, i, r) = x∗ ( Boyce et al. (2001)).

Definition 3.6. (Global asymptotic stability) An equilibrium point x∗ is said to be globally asymp-

totically stable if it is asymptotically stable and that lim
t→∞

f(t, s, e, i, r) = x∗ for almost all conditions,

not just those initial conditions that are close to the critical point (Perko (2013); Boyce et al. (2001)).

Definition 3.7. (Bifurcation Diagram) This is a way to study how a differential equation depends

on a parameter. In this study, we will study how the governing differential equations of model depend

on the parameter, Rv, the vaccination reproduction number (Perko (2013)).

Definition 3.8. (Normalized forward sensitivity index) The normalized forward sensitivity index

of a variable, P , which depends differentially on a parameter, K, defined as: ZP
K = ∂P

∂K
× K

P
( Chitnis

et al. (2008); Bakare (2015)).

The sensitivity indices serve as determinants of the significance of each parameter in the dynamics and

prevalence of the diseases. They measure the change in model variables when a parameter changes

(Chitnis et al. (2008)).
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Routh-Hurwitz criteria

Theorem 3.9. Suppose we consider the kth-degree polynomial with real constant coefficients i.e.

P (λ) = λk + a1λ
k−1 + ...+ ak−1λ+ ak

then, we define k Hurwitz matrices using the coefficients of the characteristic polynomial,

H1 = (a1), H2 =

 a1 1

a3 a2

 and Hk =



a1 1 0 0 . . . 0

a3 a2 a1 1 . . . 0

a5 a4 a3 a2 . . . 0

. . . . .

. . . . . . . .

. . . . .

0 0 0 0 . . . ak



,

where ai = 0 if i > k. All roots of the polynomial P (λ) are negative or will have negative real part

iff determinants of all Hurwitz matrices are positive i.e. DetHi > 0, i = 1, ..., k ( Boyce et al. (2001);

Martcheva (2015)).

Lyapunov stability theorem

Theorem 3.10. If a function V (s, e, i) is globally positive definite and radially unbounded and its

time derivative is globally negative,

i.e. V
′
(s, e, i) < 0, for all (s, e, i) 6= (s∗, e∗, i∗) , then the equilibrium (s∗, e∗, i∗) is globally stable

(see Boyce et al. (2001); Martcheva (2015))

Krasovkii-Lasalle Theorem

Theorem 3.11. We consider the autonomous system X
′

= f(s, e, i), where x∗ = (s∗, e∗, i∗) is an

equilibrium i.e. f(s∗, e∗, i∗) = 0. We suppose there exists a continuously differentiable function

V : Rn → R and that this function is positive definite in the entire space and radially unbounded and

satisfying,

V
′
(s, e, i) ≤ 0, ∀t and all (s, e, i) ∈ R3.

Then, the invariant set Γ = {(s, e, i) ∈ R3 : V
′
= 0},

if Γ contains only the equilibrium x∗, then the equilibrium is globally stable (Martcheva (2015);

Boyce et al. (2001)).
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3.2 Model Derivation

A SEIR model is formulated and analyzed to study the temporal transmission dynamics of childhood

diseases in a varying population size. The model has four epidemiological compartments: The sus-

ceptible S, an exposed group E, an infected group I , and a removed groupR, denoting the vaccinated

and recovered group who poses permanent immunity to the disease. This SEIR model assumes the

efficacy of the vaccine to be 100% and death rates µ due to causes other than the disease in the classes

remain unequal to births, so that a population size N is realistically not constant. Citizens are born

into the population with the proportion of susceptible that are vaccinated as P (with 0 < P < 1) and

assume the rest are susceptible. We assume the population is uniform and mixes homogeneously and

the vaccination rate at birth each year as π . A susceptible individual will move into the exposed group

through contact with an infected individual, approximated by an average contact rate β2 or through

contact with an exposed individual, approximated by an average contact rate β1 . An exposed indi-

vidual Progresses from exposed to the infective group at a rate δ. An infected individual progresses

from infected to the recovered group due to treatment at a rate γ. We also assume α to be death rate

due to disease infection. The resulting differential equations for the model are

dS
dt

= (1− P )πN − (β1E+β2I
N

)S − µS,

dE
dt

= (β1E+β2I
N

)S − (δ + µ)E,

dI
dt

= δE − (α + γ + µ)I,

dR
dt

= PπN + γI − µR,

(3.1)

satisfying S(0) = S0,E(0) = E0,I(0) = I0and R(0) = R0,

with the relation N = S + E + I + R and assuming µ, β1,β2,π, α, δ, γ are all positive constant

parameters.

Adding the equations of model system (3.1) we have,
dN

dt
= (π − µ)N − αI. (3.2)

We are now dealing with a varying population size, as demonstrated by Makinde (2007), with deaths

due to fatal diseases. A flow chart for the process is drawn in Fig.(3.1).
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Figure 3.1: SEIR model flow chart

For simplicity we scaled the compartments by population N using the new variables, s = S/N, e =

E/N, i = I/N and r = R/N.

The population is now normalized with s+ e+ i+ r = 1 and we formulate the new system,

ds
dt

= (1− P )π − (β1e+ β2i)s− πs+ αis,

de
dt

= (β1e+ β2i)s− (δ + π)e+ αie,

di
dt

= δe− (α + γ + π)i+ αi2,

dr
dt

= Pπ + (γ + α)i− πr.

(3.3)

We observe that the variable r does not appear in the first three equations of system (3.3). Thus, we

can analyze the system qualitatively by studying the subsystem,

ds
dt

= (1− P )π − (β1e+ β2i)s− πs+ αis,

de
dt

= (β1e+ β2i)s− (δ + π)e+ αie,

di
dt

= δe− (α + γ + π)i+ αi2,

(3.4)

where r can be determined from r = 1− s− e− i or dr
dt

= pπ + (γ + α)i− πr.

Remark. We remark that β1 < β2 so that the exposed group is less infectious than the infected group.

This is natural since the infected individuals are already showing the symptoms of the disease hence

they are more infectious than exposed group.
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3.3 The Model Properties

3.3.1 Feasibility Region

In this section, we seek a region in which the solutions of the model system are non-negative and

uniformly bounded.

Let (S,E, I, R) ∈ R4
+ be any solution with initial conditions S(0) = S0,E(0) = E0,I(0) =

I0, R(0) = R0 ≥ 0,

with relation N = S + E + I +R.

Adding the differential equations of the system (3.1) , we have
dN

dt
= (π − µ)N − αI. (3.5)

or
dN

dt
≤ (π − µ)N. (3.6)

On integrating equation (3.6), we have

N ≤ N0 exp(π − µ)t, (3.7)

where N0 is the initial population computed at the initial conditions (S0,E0,I0, R0).

Hence, as t → ∞ in equation (3.7), the population size N is such that 0 ≤ S + E + I + R ≤

N0 exp(π − µ)t or 0 ≤ s+ e+ i+ r ≤ 1.

This implies, all the feasible solutions of the system (3.1) in R4
+ are confined in the region,

Γ =
{
s, e, i, r ∈ R4

+ : 0 ≤ s+ e+ i+ r ≤ 1
}
. (3.8)

Thus, we have the following result.

Theorem 3.12. The solutions of the governing model system (3.3) are uniformly bounded in a set Γ,

where Γ is defined in equation (3.8).

Lemma 3.13. The region Γ ⊂ R4
+ is positively invariant with respect to the model system (3.1) with

initial conditions in R4
+.
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3.3.2 Positivity of Model Variables

In this subsection, we seek a model that is biologically and mathematically feasible. Thus, we prove

that all the model variables and parameters are non-negative at all time since the model deals with a

population as demonstrated by ( May et al. (1979)).

Lemma 3.14. Let the initial conditions be {{s(0), e(0), i(0), r(0) ≥ 0} ∈ R4
+} then, the solution set

{s(t), e(t), i(t), r(t)} of the normalized model system (3.3) is positive for all t > 0.

Proof. From the differential equations of system (3.3) we have,
ds

dt
= (1− P )π − (β1e+ β2i)s− πs+ αis, (3.9)

or
ds

dt
≥ −(β1e+ β2i)s− πs, (3.10)

ds

s
≥ (−(β1e+ β2i+ π)) dt, (3.11)

on integrating equation (3.11), we have

ln s(t) ≥ −(πt+ β1

ˆ t

0

e dt+ β2

ˆ t

0

i dt), (3.12)

s(t) ≥ K exp(−(πt+ β1

ˆ t

0

e dt+ β2

ˆ t

0

i dt)), (3.13)

when t = 0 we obtain,

s(t) ≥ s(0) exp(−(πt+ β1

ˆ t

0

e dt+ β2

ˆ t

0

i dt)) ≥ 0, (3.14)

since

(πt+ β1

ˆ t

0

e dt+ β2

ˆ t

0

i dt) > 0

.
de

dt
= (β1e+ β2i)s− (δ + π)e+ αie, (3.15)

or
de

e
≥ −(δ + π) dt, (3.16)

on integrating equation (3.16) yields,

ln e(t) ≥ −(δ + π)t, (3.17)
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e(t) ≥ C exp(−(δ + π)t), (3.18)

at t = 0 we have,

e(t) ≥ e(0) exp(−(δ + π)t) ≥ 0, (3.19)

since

(δ + π)t > 0

.
di

dt
= δe− (α + γ + π)i+ αi2, (3.20)

or
di

i
≥ −(α + γ + π) dt, (3.21)

on integrating equation (3.21) yields,

ln i(t) ≥ −(α + γ + π)t, (3.22)

i(t) ≥ D exp(−(α + γ + π)t), (3.23)

at t = 0 we have,

i(t) ≥ i(0) exp(−(α + γ + π)t) ≥ 0, (3.24)

since

(α + γ + π)t > 0

.
dr

dt
+ πr = Pπ + (γ + α)i, (3.25)

The integrating factor ϕ(t) = exp(πt), multiplying both sides of equation (3.25) by the integrating

factor gives,
d

dt
(rϕ(t)) = (Pπ + (γ + α)i)ϕ(t), (3.26)

on integrating we have,

r(t) = Pt+ (γ + α)

´ t
0
iϕ(t) dt

ϕ(t)
≥ 0, (3.27)
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since

Pt+ (γ + α)

´ t
0
iϕ(t) dt

ϕ(t)
> 0

.

Hence, s(t), e(t), i(t) and r(t) are positive for all t ≥ 0.

3.4 Equilibrium Points and Stability Analysis

To undertake stability analysis of the model, we first compute the equilibrium points of the normal-

ized system (3.3) of differential equations. We determine the Disease-free equilibrium point (i.e. in

absence of infection) and Endemic equilibrium (i.e. in presence of infection). The study considered a

sub-system (3.4).

3.4.1 Disease-free equilibrium (DFE)

At the disease-free equilibrium, we consider the case when the disease dies out which implies that

e = 0, i = 0, the model has disease-free equilibrium, where s = s0, e0 = 0 and i0 = 0 which is

obtained by setting the sub-system to zero. i.e. ds
dt

= de
dt

= di
dt

= 0,
(1− P )π − (β1e0 + β2i0)s0 − πs0 + αi0s0 = 0,

(β1e0 + β2i0)s0 − (δ + π)e0 + αi0e0 = 0,

δe0 − (α + γ + π)i0 + αi20 = 0.

(3.28)

Substituting e0 = 0 and i0 = 0 into equations in system(3.28) we have,

(1− P )π − πs0 = 0, which implies s0 = 1− P .

Thus, the disease-free equilibrium solution E0 = (s0, e0, i0) = (1− P, 0, 0).

3.4.2 Vaccination Reproduction number

This is defined as the average number of secondary infections generated by an infective individual

introduced into a susceptible population to the disease with vaccination as a control measure (Van den

Driessche and Watmough (2002)). This is the threshold value that determines the spread or die out of
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childhood diseases in a susceptible population (Martcheva (2015)).

We compute the vaccination reproduction number, Rv using the Jacobian approach at the disease-free

equilibrium and we pose the condition that all the eigenvalues of the corresponding characteristic

equation must have negative real parts i.e. trace of Jacobian (TrJ < 0) and determinant of Jacobian

(DetJ > 0) ( Martcheva (2015); Boyce et al. (2001)). The vaccination reproduction number serves as

a threshold parameter that predicts whether an infection dies out or keeps persisting in the community

(Martcheva (2015)). The Jacobian of the governing model system is given by,

J =


a −β1s (α− β2)s

β1e+ β2i b β2s+ αe

0 δ c

 , (3.29)

where a = −(β1e+ β2i)− π+αi, b = β1s− (δ+ π) +αi and c = −(α+ γ + π) + 2αi.

The Jacobian of the system at the disease-free equilibrium E0 = (1−P, 0, 0) is given by,

JE0 =


−π −β1(1− P ) (α− β2)(1− P )

0 β1(1− P )− (δ + π) β2(1− P )

0 δ −(α + γ + π)

 . (3.30)

We consider | JE0 − λI |= 0 which yields,

(−π − λ)

∣∣∣∣∣∣∣
β1(1− P )− (δ + π)− λ β2(1− P )

δ −(α + γ + π)− λ

∣∣∣∣∣∣∣ = 0, (3.31)

which implies λ1 = −π,

or

λ2 + [(α + γ + π)− β1(1− P ) + (δ + π)]λ− β1(α + γ + π)(1− P )+

(δ + π)(α + γ + π)− δβ2(1− P ) = 0. (3.32)

where

TrJE0 = (α + γ + π)− β1(1− P ) + (δ + π)
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and

DetJE0 = −β1(α + γ + π)(1− P ) + (δ + π)(α + γ + π)− δβ2(1− P ).

We now apply the conditions that are sufficient to guarantee the eigenvalues of equation

(3.32) to have negative real parts i.e.(TrJE0 < 0) and DetJE0 > 0). Using DetJE0 > 0

gives,

−β1(α + γ + π)(1− P ) + (δ + π)(α + γ + π)− δβ2(1− P ) > 0. (3.33)

This condition results to the threshold parameter Rv given by,

Rv =
β1(α + γ + π)(1− P ) + δβ2(1− P )

(δ + π)(α + γ + π)
. (3.34)

Using the Jacobian approach, the conditions forReλ < 0 are TrJE0 < 0 andDetJE0 > 0 (Martcheva

(2015)). It is easy to see that the condition Rv < 1, clearly implies that DetJE0 > 0. We note that if

Rv > 1, then

β1(α + γ + π)(1− P ) + δβ2(1− P ) > (δ + π)(α + γ + π)⇒ DetJE0 < 0 (3.35)

Hence, the necessary and sufficient conditions for the eigenvalues to have negative real parts are

satisfied when Rv < 1. Thus, the Jacobian approach ( Boyce et al. (2001); Martcheva (2015)) shows

that the disease-free equilibrium is locally asymptotically stable if Rv < 1 and unstable if Rv > 1 .

Hence, we have achieved the following result.

Lemma 3.15. If Rv < 1, the disease-free equilibrium of the model subsystem (3.4) is locally asymp-

totically stable and unstable if Rv > 1.

From equation (3.34) we can obtain the critical vaccination proportion (Pc) when Rv = 1

given by,

Pc = 1− 1

R0

, (3.36)

where

R0 =
β1(α + γ + π) + δβ2
(δ + π)(α + γ + π)

,
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R0 is the basic reproductive number.

This implies, Rv < 1⇔ P > Pc and Rv > 1⇔ P < Pc.

3.4.3 Global stability of disease free equilibrium

We note that there are no established procedures for calculating a Lyapunov function, and often find-

ing a Lyapunov function is tedious and tricky when using trial and error approach (Martcheva (2015)).

We consider the following Lyapunov function:

V = (α + γ + π)e+ β2i. (3.37)

We note that V is positive definite since V = 0 at E0 and V > 0 otherwise. Moreover, V is also

radially unbounded. Therefore, V is a Lyapunov function. Its derivative is given by,

V
′
= (α + γ + π)[(β1e+ β2i)s− (δ + π)e+ αie] + β2[δe− (α + γ + π)i+ αi2], (3.38)

or

V
′
= β1(α + γ + π)es+ β2(α + γ + π)is− (δ + π)(α + γ + π)e+ (α + γ + π)αie}+

β2δe− β2(α + γ + π)i+ β2αi
2, (3.39)

or

V
′
= {β1(α + γ + π)s+ β2δ − (δ + π)(α + γ + π)}e+ {β2(α + γ + π)s+

(α + γ + π)αe− β2(α + γ + π) + β2αi}i, (3.40)

or

V
′ ≤ e{ Rv

(1− P )
− 1}(δ + π)(α + γ + π) ≤ 0, (3.41)

with P 6= 1and for all (e, i) ≥ 0.

⇒ V
′
< 0, (3.42)

if

Rv < 1 (3.43)
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.

Clearly, V ′ = 0 if e = 0, i = 0. Therefore, the maximum invariant set contained in the set

{(s, e, i) ∈ Γ : V
′

= 0} is reduced to the disease free equilibrium. Being in a compact invariant

set, the global asymptotic stability of E0 follows from Lassalle’s invariance principle (Boyce et al.

(2001); Martcheva (2015); Shuai and van den Driessche (2013); Brauer et al. (2001)). Therefore, the

following result was achieved.

Lemma 3.16. If Rv < 1 the Disease-free equilibrium E0 = (1 − P, 0, 0) is Globally asymptotically

stable on the closed set Γ.

3.4.4 Existence of endemic equilibrium

Theorem 3.17. Suppose that Rv > 1. Then the model subsystem (3.4) has a unique endemic equilib-

rium Eu = (s∗, e∗, i∗).

Proof. In the presence of infection (e 6= 0, i 6= 0) the model has endemic equilibrium Eu =

(s∗, e∗, i∗) obtained by setting the subsystem (3.4) to zero.
(1− P )π − (β1e

∗ + β2i
∗)s∗ − πs∗ + αi∗s∗ = 0,

(β1e
∗ + β2i

∗)s∗ − (δ + π)e∗ + αi∗e∗ = 0,

δe∗ − (α + γ + π)i∗ + αi∗2 = 0,

(3.44)

with s∗ > 0,e∗ > 0 and i∗ > 0.

The variables (s∗, e∗) can be determined uniquely as follows:

From the third equation of (3.44) we have,

e∗ =
(α + γ + π)i∗ − αi∗2

δ
(3.45)

and the second equation of (3.44) yields,

s∗ =
[(δ + π)− αi∗][(α + γ + π)− αi∗]
β1(α + γ + π) + δβ2 − αβ1i∗

. (3.46)

Adding equations of subsystem (3.44) yields,

(1− P )π − π(s∗ + e∗ + i∗) + αi∗s∗ + αi∗e∗ + αi∗2 − γi∗ − αi∗ = 0, (3.47)
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or

(π − αi∗)(1− s∗ − e∗ − i∗) = γi∗ + Pπ, (3.48)

which results to the following range of i∗,

0 < i∗ < min{1, π
α
}. (3.49)

We refer the reader to (Li and Muldowney (2000)) for a proof of (3.49).

Adding the first two equations of system (3.44) we have,

(1− P )π + (−π + αi∗)s∗ + (−(δ + π) + αi∗)e∗ = 0, (3.50)

substituting equations (3.45) and (3.46) into equation (3.50) we obtain,

(1− P )π + (−π + αi∗)
[(δ + π)− αi∗][(α + γ + π)− αi∗]
β1(α + γ + π) + δβ2 − αβ1i∗

+

(−(δ + π) + αi∗)
(α + γ + π)i∗ − αi∗2

δ
= 0, (3.51)

or

β1(1− P )παi∗ + (π − αi∗)[(δ + π)− αi∗][(α + γ + π)− αi∗] +
1

δ
[β1(α + γ + π) + δβ2−

αβ1i
∗][(δ + π)− αi∗][(α + γ + π)− αi∗]i∗ = [β1(α + γ + π) + δβ2](1− P )π. (3.52)

Dividing equation(3.52) by π(δ + π)(α + γ + π) gives,
β1(1− P )α

(δ + π)(α + γ + π)
i∗ + (1− α

π
i∗)(1− α

δ + π
i∗)(1− α

α + γ + π
i∗)+

1

δ
(1− β1(1− P )α

Rv(δ + π)(α + γ + π)
i∗)(1− α

δ + π
i∗)(1− α

α + γ + π
i∗)i∗ = Rv. (3.53)

We have that i∗ satisfies,

f(i∗) = Rv (3.54)

with

f(i∗) =
β1(1− P )α

(δ + π)(α + γ + π)
i∗ + (1− α

π
i∗)(1− α

δ + π
i∗)(1− α

α + γ + π
i∗)+

1

δ
(1− β1(1− P )α

Rv(δ + π)(α + γ + π)
i∗)(1− α

δ + π
i∗)(1− α

α + γ + π
i∗)i∗ (3.55)
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and Rv is as defined in (3.34).

The roots of f(i∗) are i∗1 = π
α

, i∗2 = δ+π
α

, i∗3 = α+γ+π
α

and i∗4 = Rv(δ+π)(α+γ+π)
β1(1−P )α

. We note that the roots

i∗2, i
∗
3 and i∗4all lie outside [0, π

α
] when Rv > 1.

We observe that

f(0) = 1 (3.56)

and

f(
π

α
) = ωRv +K > Rv, (3.57)

where

ω =
π2

αδ(1− P )
+
π(α + δ + γ + 2π)

αδ(1− P )
+

1

δ

(δ + π)(α + γ + π)

(1− P )
− π3

αδ(α + γ + π)

and

K =
1

αδ(δ + π)(α + γ + π)
{ δπ3β2

(α + γ + π)
+π2(β1(α+δ+γ+2π)−δπ)+π[β1(δ+π)(α+γ+π)−

αδ(α+ δ + γ + 2π)] + δβ1(1− P )πα− αδ[π(δ + π) + π(α+ γ + π) + (δ + π)(α+ γ + π)]}+ 1.

Also,

f(1) = $Rv + L > Rv, (3.58)

where

$ =
α2

πδ(1− P )
+
α(α + δ + γ + 2π)

πδ(1− P )
+

α

δπ

(δ + π)(α + γ + π)

(1− P )
− α3

πδ(α + γ + π)

and

L =
1

δπ(δ + π)(α + γ + π)
{ δα3β2

(α + γ + π)
+α2(β1(α+δ+γ+2π)−δπ)+α[β1(δ+π)(α+γ+π)−

αδ(α+ δ + γ + 2π)] + δβ1(1− P )πα− αδ[π(δ + π) + π(α+ γ + π) + (δ + π)(α+ γ + π)]}+ 1.

The above observations implies that, when Rv > 1, the line f(i) = Rv has exactly one intersection
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point (i∗, f(i∗)) with the graph of f(i) as demonstrated by Figure 3.2.

The endemic equilibrium satisfies the following polynomial,

P (i∗) = Ai∗
4

+Bi∗
3

+ Ci∗
2

+Di∗ + E = 0, (3.59)

where

A =
α3

πδ(δ + π)(α + γ + π)

[
δβ2

α + γ + π
− Rv(δ + π)

(1− P )

]
,

B =
α2

δπ
[
Rv

1− P
+
β1(δ + α + γ + 2π)− δπ

(δ + π)(α + γ + π)
],

C =
α

δπ
[
Rv(α + δ + γ + 2π)

1− P
+
β1(δ + π)(α + γ + π)− δα(3π + δ + α + γ)

(δ + π)(α + γ + π)
],

D =
α

δπ
{ Rv

1− P
(δ+π)(α+γ+π)+

δβ1(1− P )π − δ[π(δ + π) + π(α + γ + π) + (δ + π)(α + γ + π)]

(δ + π)(α + γ + π)
},

and

E = 1−Rv.

Figure 3.2: The existence and uniqueness of i∗ in the interval 0 < i∗ < min{1, π
α
}
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3.4.5 Local stability of endemic equilibrium

Theorem 3.18. If Rv > 1, then the endemic equilibrium Eu = (s∗, e∗, i∗) of the governing model

(3.4) is locally asymptotically stable.

Proof. We note that Rv > 1 implies that β2 > α. The Jacobian of (3.3) at Eu = (s∗, e∗, i∗) is given

by,

JEu =


− (1−P )π

s∗
−β1s∗ (α− β2)s∗

β1e
∗ + β2i

∗ −β2 s
∗i∗

e∗ β2s
∗ + αe∗

0 δ − (δe∗−αi∗2)
i∗

 . (3.60)

We show the stability of the matrix JEu by verifying the Routh-Hurwitz conditions, that is, all the

roots of the resulting characteristic equation must have negative real part.

The resulting polynomial is,

| JEu − λI |= λ3 + A1λ
2 + A2λ+ A3 = 0, (3.61)

where,

A1 = β2
s ∗ i∗
e∗

+ (α + γ + π) +
(1− P )π

s∗
,

A2 = β2
s∗i∗

e∗
[(α + γ + π) +

(1− P )π

s∗
+

(α + γ + π)(1− P )π

s∗
]−

(δβ2s
∗ + δαe∗ + β2

1s
∗e∗ + β1β2s

∗i∗),

and

A3 = β2
s∗i∗

e∗
(α + γ + π) + (α + γ + π)(β2

1s
∗e∗+

β1β2s
∗i∗)− δ(α− β2)s∗(β1e∗ + β2i

∗)− δβ2s∗ − δαe∗.

Clearly, A1 > 0 and if Rv > 1 then A3 > 0 and A1A2 − A3 > 0.

A1A2 − A3 = {[β2
s ∗ i∗
e∗

+ (α + γ + π) +
(1− P )π

s∗
][β2

s∗i∗

e∗
((α + γ + π) +

(1− P )π

s∗
+

(α + γ + π)(1− P )π

s∗
)− (δβ2s

∗ + δαe∗ + β2
1s
∗e∗ + β1β2s

∗i∗)]− (β2
s∗i∗

e∗
(α + γ + π)+
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(α + γ + π)(β2
1s
∗e∗ + β1β2s

∗i∗)− δ(α− β2)s∗(β1e∗ + β2i
∗)− δβ2s∗ − δαe∗)}. (3.62)

Hence, by Routh-Hurwitz criteria as in Martcheva (2015); Boyce et al. (2001), we have that the

eigenvalues of JEu have negative real parts when Rv > 1. This shows that the endemic equilibrium

Eu, which exists if Rv > 1 is locally asymptotically stable.

3.4.6 Global stability of Endemic equilibrium

Theorem 3.19. If Rv > 1 , the endemic equilibrium Eu of the model subsystem (3.4) is globally

asymptotically stable.

Proof. We determine the global stability of the endemic equilibrium Eu, by defining the following

Lyapunov function:

V (s∗, e∗, i∗) = (s− s∗ − s∗ log
s∗

s
) + (e− e∗ − e∗ log

e∗

e
) + (i− i∗ − i∗ log

i∗

i
). (3.63)

We observe that V is positive definite since V = 0 when (s, e, i) = (s∗, e∗, i∗) and V > 0 otherwise;

We also note that V is radially unbounded. Hence, V is a Lyapunov function.

Next, we prove that the derivative of V with respect to t is negative. The derivative of V , by direct

calculation along the solution of system (3.3) is,

V
′
= (

s− s∗

s
)s
′
+ (

e− e∗

e
)e
′
+ (

i− i∗

i
)i
′
. (3.64)

Substituting the expressions of the model (s
′
, e
′
, i
′
) into the equation (3.64) we have,

V
′
= (

s− s∗

s
)[(1− P )π − (β1e+ β2i)s− πs+ αis] + (

e− e∗

e
)[(β1e+ β2i)s−

(δ + π)e+ αie] + (
i− i∗

i
)[δe− (α + γ + π)i+ αi2], (3.65)

or

V
′
= F −G, (3.66)

where F represents the positive terms andG the negative terms of equation (1.5.30). Hence, if F < G

in equation (3.66), then we have that V ′ ≤ 0. We note that V ′ = 0 if and only if s = s∗, e = e∗, i = i∗.
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Thus, the largest compact invariant set in Eu = {(s∗, e∗, i∗) ∈ Γ : V
′

= 0} is the singleton Eu where

Eu is the endemic equilibrium of the model system (3.3). By Lasalle’s Invariant principle Martcheva

(2015); Boyce et al. (2001); Shuai and van den Driessche (2013); Brauer et al. (2001), it follows that

Eu is globally asymptotically stable in Γ if F < G.

3.5 Sensitivity Analysis

Uncertainties when estimating certain parameter values demands that we investigate how sensitive

the vaccination reproductive number Rv is with respect to its parameters. We determine the changes

occurring in childhood disease temporal dynamics by computing the sensitivity indices of the basic

reproduction Number , with respect to the parameter values in the model. The sensitivity indices serve

as determinants of the significance of each parameter in the dynamics and prevalence of the diseases.

They measure the change in model variables when a parameter changes ( Chitnis et al. (2008); Bakare

(2015)). Sensitivity analysis is essential in determining certain key parameter values that are highly

sensitive and influence the outcome of a disease outbreak and must be targeted by control strategies

(Chitnis et al. (2008)).

The sensitivity indices of Rv to parameter values for the SEIR model were computed using the fol-

lowing estimated parameter values; β1 = 0.2, β2 = 0.3, α = 0.04, γ = 0.1, δ = 0.1, π = 0.1,

P = 0.3846.

Using the normalized forward sensitivity index (Chitnis et al. (2008); Bakare (2015)) of a variable,p,

which depends differentially on a parameter,q, defined as:

Zp
q =

∂p

∂q
× q

p
. (3.67)

From (3.67), we derived an expression for the sensitivity index of Rv given by ZRv
q = ∂Rv

∂q
× q

Rv
with

respect to each of the parameters contained in Rv. Some illustrative examples of sensitivity index of

Rv with respect to β1 and P are given by; ZRv
β1

= ∂Rv

∂β1
× β1

Rv
= 0.615385 and ZRv

P = ∂Rv

∂P
× P

Rv
=

−0.624959.

The other indices are given by: ZRv
β2
, ZRv

α , ZRv
γ , ZRv

δ and ZRv
π are computed using the same approach.
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Table 3.1: Sensitivity indices of Rv.

Parameter Parameter description sensitivity indices

π Proportion of susceptible that are vaccinated at birth −0.660256

P Vaccination rate at birth −0.624959

β1 Susceptible contact rate of disease from exposed group 0.615385

β2 Susceptible contact rate of disease from infected group 0.384615

γ Progression rate from infected to recovered group −0.160256

δ Progression rate from exposed to infected group −0.115385

α The death rate due to disease infection −0.064103

3.5.1 Interpretation of sensitivity indices

Table 3.1 shows the numerical values of sensitivity indices of Rv to the parameter values for the SEIR

model. The parameters are arranged from the most sensitive to least. The most sensitive parameters

are the proportion of susceptible that are vaccinated at birth π, followed by vaccination coverage, P

and then susceptible contact rate of disease from exposed group, β1 while the least sensitive parameter

is the death rate due to disease infection, α . From Table 3.1, we see that when the parameters β1

and β2 are increased while keeping the other parameters constant, the computational value of Rv

increases. Hence, they increase the persistence of the childhood diseases in the community since they

have positive indices. Also, the parameters α, δ, γ, P and π decreases the computational value of Rv

when increased while holding the other parameters constant. Thus, they decrease the endemicity of

the disease as they have negative indices.

3.6 Bifurcation Diagram

To analyze a bifurcation diagram, we considered the computed equilibrium points for the differential

equations obtained in the model i.e. the disease-free and endemic equilibrium. We illustrate the phe-

nomenon of Bifurcation (Hethcote (2000); Martcheva (2015)) by considering the polynomial (3.59)

resulting from the endemic equilibrium. The estimated parameter values of Table 4.1 are used to plot
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the diagram.

We observe that equation (3.59) has a unique positive solution when Rv > 1, since the constant term

is negative. We considered equation (3.59) to define a curve of i∗ against Rv in the positive quadrant.

Figure 3.3: Forward Bifurcation diagram for SEIR childhood disease model.

Figure 3.3 clearly shows the existence of a unique locally asymptotically stable equilibrium when

Rv < 1 , confirming that the governing model (3.3) undergoes the phenomenon of forward bifurcation

(Martcheva (2015); Hethcote (2000)).

The diagram exhibits a globally stable disease-free equilibrium when Rv < 1 and an unstable state

if Rv > 1, while it is evident that a unique stable endemic equilibrium emerges from the bifurcation

point Rv = 1 and increases rapidly when Rv > 1. It is clear that the disease-free state exists for

all Rv while an endemic equilibrium only exists for Rv > 1. An increase in Rv through the critical

reproduction number i.e. Rv = 1 results to a transcritical bifurcation.

3.7 Methods of Solution

3.7.1 Adomain Decomposition Method

In this subsection, the Semi-numerical solution of the considered model problem was completely

determined using Adomain Decomposition Method ( Jiao et al. (2002); Haldar (2015); Wazwaz (1999,
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2000); Cherruault (1989); Cherruault and Adomian (1993)). Adomain Decomposition Method was

used to construct approximate solutions of the normalized system of Equations.

The method is efficient since it can be applied directly to all types of differential and integral equa-

tions, linear or nonlinear, homogeneous or inhomogeneous, with constant coefficients or with variable

coefficients. The approach is capable of reducing the size of computation work while maintaining

high levels of accuracy of the semi-numerical solution (Cherruault (1989); Jiao et al. (2002); Wazwaz

(1999)).

We rewrite the system of differential equations (3.3) in operator form as follows:

Ls = (1− P )π − (β1e+ β2i)s− πs+ αis,

Le = (β1e+ β2i)s− (δ + π)e+ αie,

Li = δe− (α + γ + π)i+ αi2,

Lr = Pπ + (γ + α)i− πr,

(3.68)

where

L =
d

dt
, (3.69)

and

L−1(.) =

tˆ

0

(.) dt. (3.70)

By applying the inverse operator L−1 on both sides of system (3.68) yields,

s(t) = s(0) + (1− P )πt− β1
ˆ t

0

es dt− (β2 − α)

tˆ

0

is dt− π
ˆ t

0

s dt, (3.71)

e(t) = e(0) + β1

ˆ t

0

es dt+ β2

ˆ t

0

is dt− (δ + π)

ˆ t

0

e dt+ α

ˆ t

0

ie dt, (3.72)

i(t) = i(0) + δ

ˆ t

0

e dt− (α + γ + π)

ˆ t

0

i dt+ α

ˆ t

0

i2 dt, (3.73)

r(t) = r(0) + Pπt+ (γ + α)

ˆ t

0

i dt− π
ˆ t

0

r dt. (3.74)

Applying Adomain Decomposition Method, the solutions of equations (3.71)-(3.74) are found as the

sum of the following series

The linear terms:
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s =
∞∑
n=0

sn, e =
∞∑
n=0

en, i =
∞∑
n=0

in, r =
∞∑
n=0

rn. (3.75)

And we approximate the non-linear terms as follows:
si =

∑∞
n=0An(s0, ..., sn, i0, ..., in), ei =

∑∞
n=0Bn(e0, ..., en, i0, ..., in),

se =
∑∞

n=0Cn(s0, ..., sn, e0, ..., en), i2 =
∑∞

n=0Dn(i0, ..., in).

(3.76)

where

An =
1

n!

[
dn(
∑∞

k=0 skλ
k)(
∑∞

k=0 ikλ
k)

dλn

]
λ=0

,

Cn =
1

n!

[
dn(
∑∞

k=0 skλ
k)(
∑∞

k=0 ekλ
k)

dλn

]
λ=0

,

Bn =
1

n!

[
dn(
∑∞

k=0 ekλ
k)(
∑∞

k=0 ikλ
k)

dλn

]
λ=0

,

and

Dn =
1

n!

[
dn(
∑∞

k=0 ikλ
k)2

dλn

]
λ=0

.

The Adomain polynomials are the non-linear functionsAn, Bn, Cn andDn. Substituting the Adomain

polynomials and the linear terms in equtions (3.71)-(3.74) we have,
∞∑
n=0

sn = s(0) + (1− P )πt− β1
ˆ t

0

∞∑
n=0

Cn dt− (β2 − α)

tˆ

0

∞∑
n=0

An dt− π
ˆ t

0

∞∑
n=0

sn dt, (3.77)

∞∑
n=0

en = e(0)+β1

ˆ t

0

∞∑
n=0

Cn dt+β2

ˆ t

0

∞∑
n=0

An dt− (δ+π)

ˆ t

0

∞∑
n=0

en dt+α

ˆ t

0

∞∑
n=0

Bn dt, (3.78)

∞∑
n=0

in = i(0) + δ

ˆ t

0

∞∑
n=0

en dt− (α + γ + π)

ˆ t

0

∞∑
n=0

in dt+ α

ˆ t

0

∞∑
n=0

Dn dt, (3.79)

∞∑
n=0

rn = r(0) + Pπt+ (γ + α)

ˆ t

0

∞∑
n=0

in dt− π
ˆ t

0

∞∑
n=0

rn dt. (3.80)

Using equations (3.77)-(3.80) we define the following initial conditions and recursive relationship:

s0 = s(0) + (1− P )πt, e0 = e(0), i0 = i(0), r0 = r(0) + Pπt, (3.81)

sn+1 = −β1
ˆ t

0

Cn dt− (β2 − α)

tˆ

0

An dt− π
ˆ t

0

sn dt, (3.82)

38



en+1 = β1

ˆ t

0

Cn dt+ β2

ˆ t

0

An dt− (δ + π)

ˆ t

0

en dt+ α

ˆ t

0

Bn dt, (3.83)

in+1 = δ

ˆ t

0

en dt− (α + γ + π)

ˆ t

0

in dt+ α

ˆ t

0

Dn dt, (3.84)

rn+1 = (γ + α)

ˆ t

0

in dt− π
ˆ t

0

rn dt. (3.85)

We compute the adomain polynomials as follows:

A0 = s0i0, A1 = s0i1 + s1i0, A2 = s0i2 + s1i1 + s2i0, A3 = s0i3 + s1i2 + s2i1 + s3i0, A4 =

s0i4 + s1i3 + s2i2 + s3i1 + s4i0, A5 = s0i5 + s1i4 + s2i3 + s3i2 + s4i1 + s5i0, ...,

B0 = e0i0, B1 = e0i1 + e1i0, B2 = e0i2 + e1i1 + e2i0, B3 = e0i3 + e1i2 + e2i1 + e3i0, B4 =

e0i4 + e1i3 + e2i2 + e3i1 + e4i0, B5 = e0i5 + e1i4 + e2i3 + e3i2 + e4i1 + e5i0, ...,

C0 = s0e0, C1 = s0e1 + s1e0, C2 = s0e2 + s1e1 + s2e0, C3 = s0e3 + s1e2 + s2e1 + s3e0, C4 =

s0e4 + s1e3 + s2e2 + s3e1 + s4e0, C5 = s0e5 + s1e4 + s2e3 + s3e2 + s4e1 + s5e0, ...,

D0 = i20, D1 = 2i0i1, D2 = 2i0i2 + i21, D3 = 2i0i3 + 2i1i2, D4 = 2i0i4 + 2i1i3 + i2i2, D5 =

2i0i5 + 2i1i4 + 2i2i3, ....

substituting equations (3.81)-(3.85) and the Adomain polynomials into equation (3.77)-(3.80), by use

of Maple we approximate the solution as follows:

sN =
N∑
n=0

sn, eN =
N∑
n=0

en, iN =
N∑
n=0

in, rN =
N∑
n=0

rn, (3.86)

where

s(t) = lim
N→∞

(sN), e(t) = lim
N→∞

(eN), i(t) = lim
N→∞

(iN), r(t) = lim
N→∞

(rN). (3.87)

3.7.2 Fourth order Runge-Kutta integration method

The numerical solution of the considered model problem was completely determined using the clas-

sical fourth order Runge-Kutta Method (Atkinson (2008); Christodoulou (2009)).

The pure numerical technique was used to solve the differential equations of system (3.3) of the form:

ds
dt

= f(t, s, e, i), de
dt

= f(t, s, e, i) , di
dt

= f(t, e, i) and dr
dt

= f(t, i, r) satisfying s(0) = s0, e(0) =

e0, i(0) = i0 and r(0) = r0.

We let h = tn+1 − tn, n = 0, 1, 2, ... so that the Taylor series of s(tn+1) = sn+1 about sn is given

by,
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sn+1 = sn + hf(tn, sn) +
1

2!
h2f

′
(tn, sn) + ...., (3.88)

with f(t, s, e, i, r).

Then, the RK4 integration method ( Atkinson (2008); Christodoulou (2009)) for the equation

(3.88) yields,

sn+1 = sn +
h

6
(k1s+ 2k2s+ 2k3s+ k4s), (3.89)

en+1 = en +
h

6
(k1e+ 2k2e+ 2k3e+ k4e), (3.90)

in+1 = in +
h

6
(k1i+ 2k2i+ 2k3i+ k4i), (3.91)

rn+1 = rn +
h

6
(k1r + 2k2r + 2k3r + k4r), (3.92)

where

k1s = fs(tn, sn, en, in),

k1e = fe(tn, sn, en, in),

k1i = fi(tn, en, in),

k1r = fr(tn, in, rn),

k2s = fs(tn + h
2
, sn + h

2
∗ k1s, en + h

2
∗ k1e, in + h

2
∗ k1i),

k2e = fe(tn + h
2
, sn + h

2
∗ k1s, en + h

2
∗ k1e, in + h

2
∗ k1i),

k2i = fi(tn + h
2
, en + h

2
∗ k1e, in + h

2
∗ k1i),

k2r = fr(tn + h
2
, in + h

2
∗ k1i, rn + h

2
∗ k1r),

k3s = fs(tn + h
2
, sn + h

2
∗ k2s, en + h

2
∗ k2e, in + h

2
∗ k2i),

k3e = fe(tn + h
2
, sn + h

2
∗ k2s, en + h

2
∗ k2e, in + h

2
∗ k2i),

k3i = fi(tn + h
2
, en + h

2
∗ k2e, in + h

2
∗ k2i),

k3r = fr(tn + h
2
, in + h

2
∗ k2i, rn + h

2
∗ k2r),
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k4s = fs(tn + h, sn + h ∗ k3s, en + h ∗ k3e, in + h ∗ k3i),

k4e = fe(tn + h, sn + h ∗ k3s, en + h ∗ k3e, in + h ∗ k3i),

k4i = fi(tn + h, en + h ∗ k3e, in + h ∗ k3i),

k4r = fr(tn + h, in + h ∗ k3i, rn + h ∗ k3r),

with fs = ds
dt

, fe = de
dt

, fi = di
dt

and fr = dr
dt

.

The error in this method is proportional to h5, this implies that the accuracy of the method can be

improved by using small values of h (Atkinson (2008); Christodoulou (2009)).

The next chapter will display achieved results in tabular form and graphically and analyse the

transmission dynamics of diseases based on the study findings.
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Chapter 4

Results and Discussion

This chapter focuses on the display of findings in tabular form, graphically and its analysis. We esti-

mate the parameters, implement the ADM scheme and fourth order Runge-Kutta integration scheme

to plot the figures showing the effects of various parameter variation on each group of the popula-

tion. This analysis was used to illustrate our results on stability, as well as numerical simulation and

graphical representation of the system of normalized non-linear differential equations.

4.1 Estimation of parameters

The estimated parameter values and initial conditions of variables used for computations and numer-

ical simulation purposes are shown in the Table 4.1,

Table 4.1: Effects of vaccination coverage on disease transmission, Pc = 0.3846.

Case s0 e0 i0 r0 β1 β2 γ α π δ P Rv Comments

1 0.4 0.2 0.1 0.3 0.2 0.3 0.1 0.04 0.1 0.1 0.7 0.4875 LAS (E0)

2 0.4 0.2 0.1 0.3 0.2 0.3 0.1 0.04 0.1 0.1 0.5 0.8125 LAS (E0)

3 0.4 0.2 0.1 0.3 0.2 0.3 0.1 0.04 0.1 0.1 0.3 1.1375 Unstable (E0)

4 0.4 0.2 0.1 0.3 0.2 0.3 0.1 0.04 0.1 0.1 0.1 1.4625 Unstable (E0)
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4.2 Computational Results

In this section, we study the effects of parameter variation on each group of the population using esti-

mated parameter values and plotting their figures to demonstrate their impact on disease transmission

and control. We also plot their phase portrait. Therefore, we monitor the effect of vaccination cov-

erage on the dynamics of a childhood disease as shown by the SEIR model equations in (3.3) using

the semi-numerical Adomian Decomposition Method in comparison with the classical Fourth order

Runge-Kutta method to gauge its effectiveness.

The parameter values in Table 4.1 were used in the numerical simulations of the qualitative results

obtained in the study.

Table 4.2: Comparison between ADM solution and 4th Order R-K numerical solution for Case-

1, (P = 0.7, Pc = 0.3846)

ADM Solution 4th order R-K solution

t s e i r s e i r

0.1 0.396380 0.202877 0.099658 0.305370 0.396396 0.198871 0.099638 0.305370

0.3 0.389262 0.208615 0.099083 0.315939 0.389403 0.196567 0.098906 0.315936

0.5 0.382300 0.214333 0.098645 0.326284 0.382687 0.194204 0.098162 0.326273

0.7 0.375491 0.220034 0.098340 0.336414 0.376240 0.191791 0.097405 0.336384

1.0 0.365552 0.228559 0.098114 0.351223 0.367050 0.188088 0.096244 0.351137

1.5 0.349689 0.242709 0.098310 0.374935 0.352944 0.181745 0.094242 0.374654

2.0 0.334653 0.256809 0.099151 0.397527 0.340236 0.175257 0.092157 0.396885

Table 4.2 depicts case-1 and shows the comparison between ADM solution and fourth order

Runge-Kutta numerical solution. The results for the case P > Pc shows that the adomain series

solution only agreed with the fourth order Runge-Kutta solution for very small values of time, t, i.e.

t = 0.1 and 0.3. We note that the ADM series only agree with RK4 solutions as t → 0 i.e. for very

small values of time,t. Furthermore, as the values of time increases the Adomain solution diverge and

does not agree with the fourth order Runge-Kutta numerical solution.

We observe that the fourth order Runge-Kutta solution converges to the Disease-free equilibrium.
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It is noteworthy that unlike the ADM solution which fails to converge as time increases , the fourth

order Runge-Kutta method gave results that are in agreement with the qualitative analysis results of

the model as demonstrated by Lemma 3.15 and 3.16. In order to improve the ADM series radius

of convergence, several series summations and enhancement methods such as Padé Approximation

Technique (Makinde (2009)) may be applied. By this manipulation and improvement, we gain more

information that describes the mathematical behavior of the solution (Makinde (2009)).

The Results obtained by using classical fourth order Runge-Kutta method are shown in Figures

4.1, 4.2, 4.3, 4.4 and 4.5.

Figure 4.1 Describes case-1 and demonstrates the impact of high vaccination coverage (P > Pc)

on the temporal dynamics of the population fractions with increasing time. The Susceptible group

gradually increases by a small amount as time increases and asymptotically attains a steady state.

The increase is due to the recruitment of susceptible children/new-born babies. The gradual small

increase is due to high vaccination coverage i.e. P = 0.7 which led to low recruitment rates of

susceptible children/newborn babies. The population fractions of the exposed and infective groups

display a sharp decrease as time increases and finally attains a disease free state i.e. e = 0 and i = 0.

The rapid decrease of exposed and infective populations is due to the high vaccination coverage and

recovery due to the treatment of infected children. The recovered group displays a sharp increase
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as time increases, it attains a peak and a slightly decreases to a steady state. The rapid rise is due

to recruitment of more children/newborn babies into the recovered group through vaccination, in

addition to the removed/treated children that confer permanent immunity. The slight decrease is due

to losses by natural deaths. It is noteworthy that the disease-free equilibrium state is attained when

we have a high vaccination coverage (P > Pc) and the entire population attains disease-free state

asymptotically.

Figure 4.2 Displays Case 1 − 4 and illustrates the effects of varying vaccination coverage on

susceptible population proportion. We observe that an increase in vaccination proportion results in a

decrease in the number of susceptible children/newborn babies i.e. s(t). The decrease is due to the

low recruitment of susceptible children/new-born babies as the vaccine coverage is increased.
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Figure 4.3 Displays Case 1− 4 and illustrates the effects of varying vaccination coverage on the

removed/vaccinated population. An increase in the vaccination coverage led to an increase in the

recovered population (r(t)), it attains a peak and a steadily decreases to a steady state. The increase

is due to recruitment of more children / newborn babies into the r(t) group through vaccination and

treatment.

Figure 4.4 Displays Case 1 − 4 and illustrates the effects of varying vaccination coverage on

exposed population proportion. An increase in the vaccination coverage led to a decrease in the

exposed population (e(t)). Figure 4.5 Displays Case 1 − 4 and illustrates the effects of varying

vaccination coverage on infective population fraction. An increase in the vaccination coverage led

to a decrease in the infective population (i(t)). The decrease of exposed and infective populations

is due to the increased vaccination coverage which leads to low recruitment and recovery due to the

treatment of infected children.

The Figures 4.4 and 4.5 confirms that the exposed (e(t)) and infective population (i(t)) experience

a rapid decrease on application of high vaccination coverage (P > Pc) to attain a disease-free state

i.e. if P is large enough then the disease will die out in the population.

4.2.1 Phase portrait

In this subsection, we study the phase portrait of the model differential equations of system (3.3). The

phase portrait displays the set of solutions plotted as trajectories which trace the path of each solution

on the phase plane. We use the phase portrait to visualize how the solutions of the model system of

differential equations behave as time increases ( Boyce et al. (2001); Martcheva (2015)). The plotted

phase portraits are demonstrated in Figures 4.6, 4.7, 4.8, 4.9 and 4.10,
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The phase portraits in Figures 4.6-Figure 4.10 Depicts Case 1− 4 and illustrates the trajectories

of susceptible, exposed, infective and recovered population from their initial states with increasing

vaccination proportion. We observe that the trajectories starting from their initial states approach the

disease-free state when the vaccination proportion is large enough i.e. P > Pc and move away from

the disease-free state when P < Pc. Therefore, we conclude that in order to successfully prevent

disease, the vaccination coverage needs to be large enough (P > Pc).

The results achieved in this study are in agreement with the findings obtained by Makinde (2007,

2009) when solving a SIR childhood disease model using Adomain Decomposition approach and

an SIV model solved using ADM approach coupled with He’s Variational Iteration Method and Padé

Approximation Technique, while Arafa et al. (2012) solved a fractional order childhood disease model

using Homotopy Analysis Method. The studies confirmed that there is a certain critical threshold, Pc

above which the childhood diseases will be successfully eradicated from the community. In addition,

their results confirmed that the childhood diseases persists within the community if the vaccination

coverage, P , is below the critical vaccination threshold value, Pc.

The next chapter was devoted to conclusions and recommendations for the study.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

A SEIR deterministic model that monitors the temporal dynamics of childhood diseases in the pres-

ence of preventive vaccine was analyzed. The model incorporates the fact that exposed individuals

are infectious to the community. We prove the existence of a feasible region that is mathematically

and biologically feasible. The existence and uniqueness of the disease free and endemic equilibrium

were determined.

A qualitative analysis revealed that the disease-free equilibrium was globally asymptotically stable

provided that the critical vaccination threshlod value is exceeded. The global stability of endemic

equilibrium was achieved via Lyapunov method under certain conditions.

A forward bifurcation diagram reveals a stable disease free state if vaccination reproduction num-

ber is less than unity and unstable if vaccination reproduction number is greater than unity, while the

endemic equilibrium attains a unique stable state if vaccination reproduction number is greater than

unity. A sensitivity analysis reveals that the proportion of susceptible that are vaccinated at birth is

the most sensitive parameter and death rate due to disease infection is the least sensitive.

Adomain Decomposition Method and fourth order Runge-Kutta Method are employed to compute

the approximate solution of the model problem. The computations revealed that the Adomain Decom-

position series only converge and agree with fourth order Runge-Kutta Method for very small values

of time and does not agree as time increases. The fourth order Runge-Kutta scheme gave results that
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were in agreement with the qualitative analysis and converged for all time. The results confirm the

high level of accuracy, reliabilty and efficiency of fourth order Runge-Kutta Method when combined

with a small step-size in computing the approximate solution of non-linear system of Equations.

5.2 Recommendations

· Public health authorities can use the formulated model to understand the spread and preven-

tion/control of childhood diseases. The SEIR model can help the policy makers or public health

agencies offer travel advisories since they will have a better understanding of how to optimize

the allocation of vaccines to prevent an outbreak of an epidemic and be aware of how to respond

to a changing dynamics of childhood diseases.

· A successful eradication of childhood diseases demands that the vaccinated proportion of the

population must be large enough. The threshold value will be significant in decision making

and policy analysis in under-resourced communities.

· There is need for more mathematical studies to optimize the use of vaccines that is crucial in

ensuring successful global eradication of childhood diseases such as measles, mumps, polio

etc.

· Researchers and students can apply the governing model equations formulated and results

achieved in this study to further advance studies on childhood disease re-emergence burden.

· In order to improve the ADM series radius of convergence, we recommend the application of

enhancement methods such as Padé Approximation Method which has proven to give a better

and converging approximation of polynomials.
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Appendix

According to the Estimated parameter values in Table 4.1, the following Adomain Decomposition

Method approximate series solutions were obtained:

Case1:

s(t) =
2

5
− 91

2500
t+

5141

2500000
t2 − 419219

3750000000
t3 +

65906323

7500000000000
t4 +O(t5)

e(t) =
1

5
+

18

625
t− 737

2500000
t2 +

228073

3750000000
t3 − 53761001

7500000000000
t4 +O(t5)

i(t) =
1

10
− 9

2500
t+

1161

625000
t2 − 287453

1875000000
t3 +

38544821

3750000000000
t4 +O(t5)

r(t) =
3

10
+

27

500
t− 369

125000
t2 +

723

3906250
t3 − 3747371

375000000000
t4 +O(t5)

Case2:

s(t) =
2

5
− 41

2500
t+

991

2500000
t2 − 265369

3750000000
t3 +

50195873

7500000000000
t4 +O(t5)

e(t) =
1

5
+

18

625
t+

1013

2500000
t2 +

273323

3750000000
t3 − 41249251

7500000000000
t4 +O(t5)

i(t) =
1

10
− 9

2500
t+

1161

625000
t2 − 243703

1875000000
t3 +

34601071

3750000000000
t4 +O(t5)

r(t) =
3

10
+

17

500
t− 61

31250
t2 +

14227

93750000
t3 − 3128621

375000000000
t4 +O(t5)

Case3:

s(t) =
2

5
+

9

2500
t− 3159

2500000
t2 − 37173

1250000000
t3 +

7995141

2500000000000
t4 +O(t5)
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e(t) =
1

5
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18
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t+

2763

2500000
t2 +

106191

1250000000
t3 − 6079167

2500000000000
t4 +O(t5)

i(t) =
1
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625000000
t3 +
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1250000000000
t4 +O(t5)

r(t) =
3
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7
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t2 +
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t3 − 2509871

375000000000
t4 +O(t5)

Case4:

s(t) =
2
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t2 +

42331

3750000000
t3 − 12725027

7500000000000
t4 +O(t5)
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t2 +
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t3 +
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7500000000000
t4 +O(t5)

i(t) =
1
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− 9
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625000
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t3 +
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t4 +O(t5)
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3
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3
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