Sensitivity of Reference Evapotranspiration to Global Warming in the Caspian Region, North of Iran

P. Attarod ^{1*}, F. Kheirkhah¹, Sh. Khalighi Sigaroodi ², and S. M. M. Sadeghi ¹

ABSTRACT

The goal of this study was to estimate the sensitivity of reference evapotranspiration (ET_{θ}) to changes in meteorological parameters in the Caspian region. Long-term meteorological data (1961-2008) were obtained from three synoptic meteorological stations. The region was primarily classified into three climatic zones, based on De Martonne climate classification. The Penman-Monteith equation was applied to calculate the ET_{θ} and the sensitivity of ET_{θ} was studied in terms of changes in air temperature, solar radiation, wind speed and vapor pressure within a possible range of ±20% from the normal long-term meteorological parameters. The results indicated that the Caspian region could be classified into the three climatic classes: Mediterranean, humid, and extremely humid. During the last half century, meteorological parameters and, in particular, temperature of the Caspian region has changed dramatically and the ET_{θ} has increased as a result of climate change. The study suggests that an increase in temperature by 20% (approximately 3.3 °C) will result in ET_{θ} demand increase by 16%. Changes in vapor pressure (20%) represented the highest inverse effect on annual ET_{θ} throughout the Caspian region (-19% in the Mediterranean, and -30% in other climates). The Mediterranean and extremely humid climates of the Caspian region showed an increase of 2 and 5% of the total ET_0 respectively, in response to 20% change in the wind speed. It is quite essential for managers to take into consideration the expected change in evapotranspiration owing to global warming while planning for development of artificial and natural ecosystems in the Caspian region.

Keywords: Climate change, Meteorological parameters, Penman-Monteith.

INTRODUCTION

Global warming is currently one of the world's most challenging issues. The effect of anthropogenic changes to the land and atmosphere on climate change is being pursued as a dynamic multi-disciplinary problem. Increases in atmospheric greenhouse gases, *i.e.* water vapor, carbon dioxide, methane, nitrous oxide and ozone are considered the major reason for global warming (IPCC, 2013).

Atmospheric temperature is probably the most widely used indicator of climate

change at both global and regional scales. According to the fourth assessment report of the IPCC (2013), global temperature has increased by 0.3 to 0.6°C since the late 19th century and by 0.2 to 0.3°C over the past forty years. Global land-surface air temperature has increased in the Northern Hemisphere by 0.3°C per decade from 1979 to 2005 (Hansen *et al.*, 2001; Smith and Reynolds, 2005; Brohan *et al.*, 2006; Lugina *et al.*, 2007).

Previous research suggests that climatic change may have a significant impact on hydrological parameters; namely runoff,

¹ Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.

² Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Islamic Republic of Iran.

^{*}Corresponding author; e-mail: attarod@ut.ac.ir

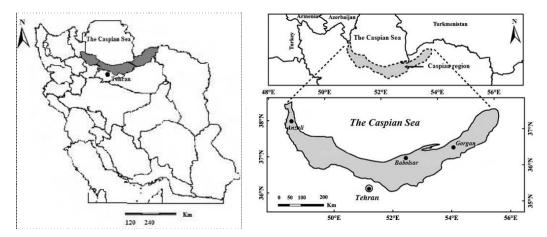
evapotranspiration (ET) soil moisture, and ground water (Nemec and Schaake, 1982; Gleick, 1986; Bultot et al., 1988). ET is a major component of the hydrological cycle and one of the most important elements for quantifying available water since it generally constitutes the largest components of the terrestrial water cycle (Tabari, 2010). ET is also critical to many applications including water resource management, irrigation scheduling, and environmental studies (Sabziparvar and Tabari, 2010). The principal factors that influence crop water requirements depend upon several climatic parameters such as rainfall, temperature, humidity, sunshine hours, and wind speed. Therefore, any change in climatic parameters due to global warming will likely affect ET (Goyal, 2004). Eventually, climate change will increase the dry conditions in the world's arid regions by increasing potential evapotranspiration, aggravating the process of desertification in conjunction with the ever-growing impact of humans and domestic animals on fragile and unstable ecosystems (Tabari et al., 2011).

Small changes in ET may have important consequences in arid climates. For example, Goyal (2004) reported that a five percent increase in air temperature could increase reference ET by 3.6% in arid regions of Rajasthan, India, where the annual rainfall varies from 100 to 400 mm and mean yearly air temperature is 25°C. According to Anderson et al. (2008), a 3°C rise in the air temperature in California resulted in approximately 19% increase in reference ET where annual average precipitation is 640 mm and mean yearly air temperature is 15°C. Furthermore, Martin et al. (1989) and Rosenberg et al. (1989) reported that a 3°C increase in air temperature resulted in around 17% increase in reference ET over a grassland in Northeastern Kansas, USA, during the summer with an air temperature range between 24 and 35°C.

Global warming may increase dry conditions in the world's arid regions by increasing *ET*, thereby aggravating the processes of desertification.

To evaluate the effect of global warming on ET, the predictions/forecasts of the change in climatic parameters is necessary. The forecast for the overall spatial and temporal changes in climate owing to the global warming is challenging. However, recent studies provide a range of likely temperature, changes in humidity, precipitation, radiation and wind velocity. These changes will likely affect ET. The objective of the present study was to the sensitivity of reference estimate evapotranspiration ET_0 in the Caspian region, north of Iran, as a consequence of changes in climatic parameters due to global warming.

MATERIALS AND METHODS


Characteristics of the Study Area

The research was conducted in the Caspian region, north of Iran (Figure 1). The region is located in the north facing slopes of Alborz Mountains and south of the Caspian Sea. The average annual precipitation varies with approximately 600 mm in the east to more than 2,000 mm in the western Caspian region (Zohary, 1973).

Meteorological Data

Long-term meteorological data (1961-2008) from three meteorological stations were used to parameterize the De Martonne Aridity index [Equation (1)] (Croitoru *et al.*, 2013):

$$I_{DM} = P / (T_a + 10)$$
 (1)

Figure 1. Location of the Caspian region, north of Iran. The names on the lower image represent the locations of synoptic meteorological stations.

Where, I_{DM} is De Martonne Aridity index, P is the total annual precipitation (mm), and T_a is the mean annual air temperature (°C). The De Martonne index was used to classify the climate for the region surrounding each station (Table 1)

Sensitivity of ET_0 to climate change was studied in relation to changes in air temperature, net solar radiation, wind speed and vapor pressure. The range of future meteorological variables was based upon literature review and as used by other researchers. Accordingly, air temperature, net solar radiation, wind speed, and vapor pressure were selected for analysis in a range of variation between +20% to -20%

(Goyal, 2004).

Change in precipitation was not considered in this study since it is indirectly related to changes in the other meteorological parameters.

Evapotranspiration Model

We used the Penman-Monteith combination equation to calculate daily ET_0 . The FAO Penman-Monteith combination equation is a reliable method for worldwide determining reference ET(Inman-Bamber and McGlinchey, 2003). According to the FAO Penman-Monteith combination equation, ET_0 can be expressed through the following equation (2):

$$ET_0 = \frac{0.408\Delta(R_n - G) + \gamma(900/(T_a + 273))u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)} \tag{2}$$

Table 1. Characteristics of the synoptic meteorological stations located in the Caspian region, north of Iran.

Station	Lat (North)	Long (East)	Elevation asl (m)	I_{DM}	Climate classification ^a	Range of meteorological data
Gorgan	36° 51′	54° 16′	13	21	Mediterranean	1961-2008
Babolsar	36° 43′	52° 39′	-21	33	Humid	1961-2008
Anzali	37° 28′	49° 28′	-26	67	Extremely humid	1961-2008

^a Climate classification is according to the De Martonne Aridity index (I_{DM}) after Croitoru et al. (2013).

— Attarod et al.

Where, ET_0 (mm day⁻¹) is the reference ET; R_n (MJ m⁻² day⁻¹) is the net radiation at the crop surface; G (MJ m⁻² day⁻¹) is the soil heat flux density; T_a (°C) is the mean daily air temperature at a height of 2 m; u_2 (m s⁻¹) is the wind speed at a height of 2 m; e_s (kPa) is saturation vapor pressure; e_a (kPa) is actual vapor pressure; e_s - e_a (kPa) is vapor pressure deficit (VPD); Δ (kPa °C⁻¹) is the slope of vapor pressure curve at the daily mean air temperature; and γ (kPa °C⁻¹) is the psychrometric constant calculated as 0.665×10^{-3} P; in which P (kPa) is the atmospheric pressure.

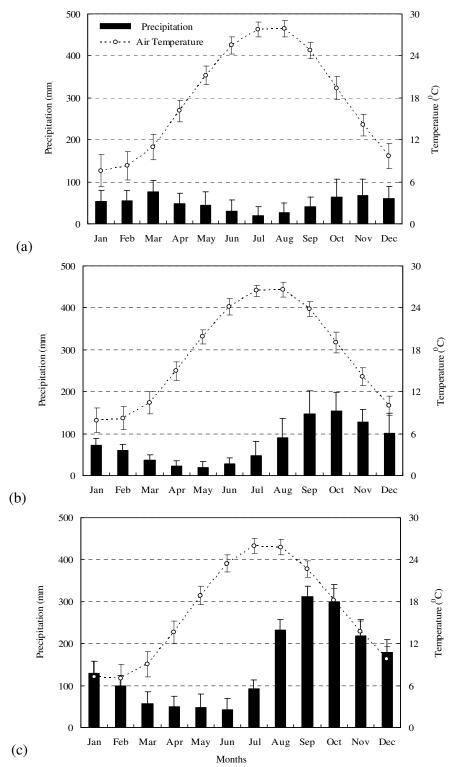
To calculate daily ET_0 , daily mean air temperature, humidity, wind speed at 2 m height, and sunshine hours were employed. Sensitivity of ET_0 was estimated by changing one meteorological parameter between the ranges of $\pm 20\%$ and keeping the remaining three parameters constant. The sensitivity of ET_0 was considered both in the growing (April-September) and non-growing (October-March) seasons.

RESULTS

Example 2.1 Long Term Trends of Meteorological Parameters and ET_{θ}

Figure 2 shows monthly mean precipitation and air temperature recorded

by meteorological stations located in the Caspian region, from east (Gorgan) to west (Anzali), during 48 years (1961-2008). The long-term trends of the meteorological parameters and ET_0 recorded in the three synoptic meteorological stations throughout the Caspian region can be seen in Figures 3 and 4. The mean values of meteorological parameters within the growing and nongrowing seasons are shown in Table 2.


Table 3 shows the changes in meteorological parameters, ET_0 and De Martonne Aridity index in the Caspian region in the recent years (fifteen years) data (1994-2008).

Mean annual air temperature and wind speed increased at all stations during the past 48 years (Figures 3 and 4). Air temperature has increased in all stations during the two past decades (Table 3). The maximum increase in the air temperature (1°C) was recorded in the central part of the Caspian region, Babolsar station (Table 3). Furthermore, wind speeds increased in all stations, with the highest increase occurring in Gorgan station (1.6 m s⁻¹). Relative humidity marginally increased in Gorgan (+4.9%), but

 $\textbf{Table 2.} \ Long \ term \ (1961\text{-}2008) \ average \ and \ standard \ errors \ (\pm SE) \ of \ meteorological \ parameters \ as \ well \ as \ reference \ evapotranspiration in the Caspian region of northern Iran.$

Meteorological Station	Season ^a	Mean annual air temperature (° C)	Mean annual precipitation (mm)	Mean annual relative humidity (%)	Wind speed (m s ⁻¹)	Reference evapotranspiration (mm day ⁻¹)
0	G	23.9 ± 0.10	207 ± 9.21	70 ± 0.71	3.4 ± 0.20	4.4 ± 0.11
Gorgan	N - G	11.7 ± 0.14	375 ± 12.03	73 ± 0.74	2.5 ± 0.17	1.6 ± 0.04
	A	17.8 ± 0.10	582 ± 16.35	70 ± 0.69	3.0 ± 0.18	3.0 ± 0.07
Babolsar	G N - G A	22.6 ± 0.10 11.6 ± 0.13 17.2 ± 0.10	354 ± 16.14 550 ± 18.82 906 ± 22.67	80 ± 0.28 85 ± 0.30 83 ± 0.27	4.1 ± 0.13 3.5 ± 0.12 3.8 ± 0.12	3.8 ± 0.05 1.5 ± 0.01 2.6 ± 0.03
Anzali	G N - G A	21.7 ± 0.09 10.8 ± 0.14 16.3 ± 0.09	777 ± 31.75 984 ± 34.28 1763 ± 48.30	82 ± 0.44 87 ± 0.37 84 ± 0.38	4.4 ± 0.12 4.7 ± 0.12 4.5 ± 0.12	4.5 ± 0.13 1.6 ± 0.60 3.1 ± 0.08

^a G: Growing season (April-September); N-G: Non-Growing season (October-March), A: Annual.

Figure 2. Monthly mean precipitation and air temperature recorded during 48 years (1961-2008) by the Synoptic Meteorological Stations located in the Caspian region [(a) Gorgan; (b) Babolsar, and (c) Anzali]. Error bars show the standard deviation (SD) of monthly precipitation and temperature during the recorded periods.

Table 3. Changes in meteorological parameters, reference evapotranspiration and De Martonne Aridity index in the Caspian region, northern Iran, in the recent years (fifteen years) data (1994-2008).

	Gorgan	Babolsar	Anzali
Mean air temperature (1961-1993) (°C)	17.7	16.8	16.1
Mean air temperature (1994-2008) (°C)	18.1	17.8	16.7
Air temperature changes (°C)	0.4	1	0.6
Air temperature changes (%)	2.2	6	3.5
Mean relative humidity (1961- 1993) (%)	68.5	83.2	84.7
Mean relative humidity (1994- 2008) (%)	73.4	80.9	83.7
Relative humidity changes (%)	4.9	-2.3	-1
Relative humidity changes (%)	7.2	-2.8	-1.2
Mean wind speed (1961- 1993) (m s ⁻¹)	2.5	3.4	4.2
Mean wind speed (1994- 2008) (m s ⁻¹)	4.1	4.6	5.1
Wind speed changes (m s ⁻¹)	1.6	1.2	0.9
Wind speed changes (%)	64.1	35.7	21.1
Mean precipitation (1961-1993) (mm)	608.5	891.6	1792.9
Mean precipitation (1994- 2008) (mm)	524.5	938.3	1696.4
Precipitation changes (mm)	-84	46.6	-96.5
Precipitation changes (%)	-13.8	5.2	-5.4
Reference evapotranspiration (1961- 1993) (mm day ⁻¹)	2.7	2.5	3
Reference evapotranspiration (1994- 2008) (mm day ⁻¹)	3.3	2.8	3.3
Reference evapotranspiration changes (mm day ⁻¹)	0.6	0.3	0.3
Reference evapotranspiration changes (%)	22	12.4	9.7
De Martonne Aridity index (1961-1993)	21.9	33.2	68.5
De Martonne Aridity index (1994-2008)	18.7	33.7	63.5

decreased in Babolsar and Anzali (-2.3 and 1%, respectively) during the past fifteen years.

Due to changes in meteorological parameters, ET_0 demonstrated increasing trends throughout the Caspian region (Figure 4). The greatest increase was observed in Gorgan station (22%) (Table 3). Our results indicated that De Martonne Aridity index has decreased in eastern and western parts of the Caspian region, however, rose slightly in the center of the Caspian region (Babolsar).

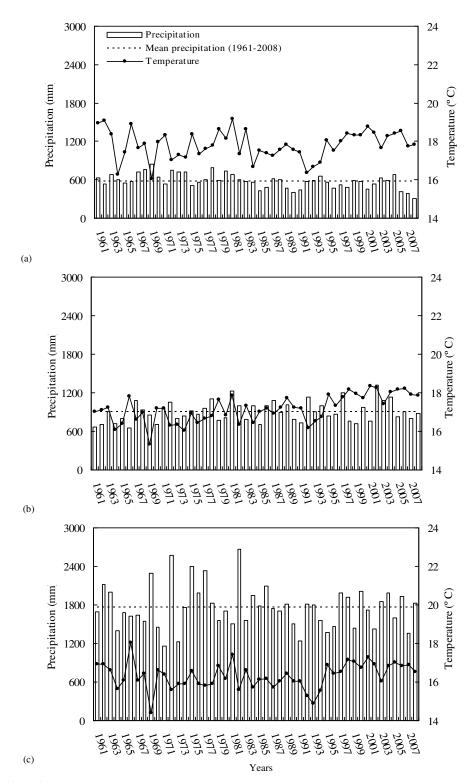
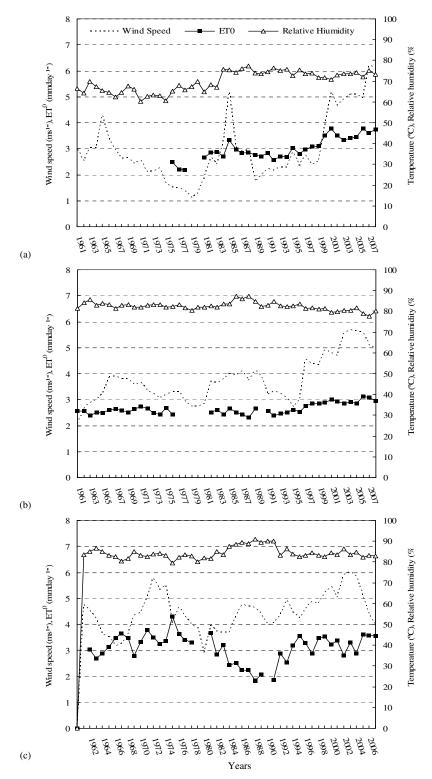

Sensitivity of Reference Evapotranspiration

Table 4 represents the future possible changes in the seasonal and annual ET_0 in response to expected changes in meteorological parameters due to global

warming. The relative changes in seasonal and annual ET_0 owing to the relative changes in meteorological parameters are presented in Figure 5 (a-e).


The long-term average annual ET_0 (1961-2008) for the three stations in the Caspian region was 960 mm (Table 3). The minimum ET_0 values were observed in Anzali, very humid climate, (902 mm) and the maximum values happened in Gorgan (1126 mm). Seventy percent of the annual ET_0 occurred in the growing season, and July had the highest mean monthly ET_0 ; approximately 15% of the total annual ET_0 was in July.

In response to the change in net radiation $(\pm 20\%)$, ET_0 varied approximately $\pm 12\%$ in all stations. The change in net radiation had more effect on ET_0 during the non-growing season (approximately $\pm 15\%$) than the growing season (approximately $\pm 12\%$).

Figure 3. Long-term (1961–2008) trends of mean annual precipitation and air temperature in the Caspian region of northern Iran [(a) Gorgan; (b) Babolsar, and (c) Anzali].

Figure 4. Long-term (1961–2008) trends of mean annual wind speed, relative humidity, and reference evapotranspiration in the Caspian region of northern Iran [(a) Gorgan; (b) Babolsar, and (c) Anzali].

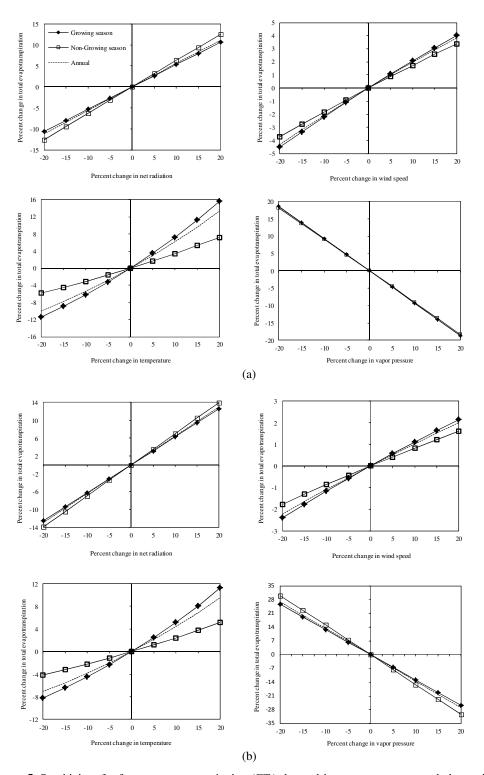


Table 4. Estimated total reference evapotranspiration (ET_0) in response to expected changes in each meteorological parameter (in isolation) due to global warming change [(a) Gorgan; (b) Babolsar, and (c) Anzali].

Meteorological	G "	Change in total evapotranspiration (mm) in relation to a percent change in each meteorological parameter									
_	Seasons ^a	2007	1.50/	100/		-		100/	1501	200	
parameters	G	-20%	-15%	-10%	-5%	0% 823	5%	10%	15%	200	
Net radiation	G N - G	736 265	758 275	779 284	801 294	303	845 313	867 322.6	889 332	34	
Net faulation	A	1001	1033	1063	1095	1126	1158	1189.6	1221	125	
	71	1001	1033	1003	1073	1120	1130	1107.0	1221	12.	
	G	786	796	805	814	823	832	840	848	85	
Wind speed	N - G	292	295	298	301	303	306	3088	311	31	
	A	1078	1091	1103	1115	1126	1138	3928	1159	11'	
	_										
m .	G	729	750	772	797	823	852	883	916	95	
Temperature	N - G	286	290	294	298	303	308	314	319	32	
	A	1015	1040	1066	1095	1126	1160	1197	1235	12	
	G	976	938	900	862	823	785	746	707	66	
Vapor pressure	N - G	358	345	331	317	303	290	276	262	24	
vapor pressure	A	1334	1283	1231	1179	1126	1075	1022	969	91	
	71	1334	1203		b)	1120	1073	1022	707	/ / /	
		Ch	ange in tota			mm) in re	elation to a	nercent ch	nange in e	ach	
Meteorological	Seasons ^a		Change in total evapotranspiration (mm) in relation to a percent change in each meteorological parameter								
parameters	Beasons	-20%	-15%	-10%	-5%	0%	5%	10%	15%	20%	
	G	617	639	661	683	705	727	749	771	793	
Net radiation	N - G	228	237	247	256	265	274	284	293	302	
	A	845	876	908	939	970	1001	1033	1064	1095	
	G	688	692	697	701	705	709	713	716	720	
Wind speed	N - G	260	262	263	264	265	266	267	268	269	
	A	948	954	960	965	970	975	980	984	989	
	G	647	660	674	689	705	722	741	762	784	
Temperature	N - G	254	257	259	262	265	268	272	275	279	
remperature	A	901	917	933	951	970	990	1013	1037	1063	
	••	,01	71,	,,,,	,,,,	,,,	,,,	1010	1007	1000	
	G	885	840	795	750	705	660	614	569	523	
Vapor pressure	N - G	345	325	305	285	265	245	225	205	184	
1 1	A	1230	1165	1100	1035	970	905	839	774	707	
				(c)	_					
Meteorological		Ch	ange in tot	al evapotra	nspiration (mm) in re	elation to a	a percent ch	nange in e	ach	
Meteorological	Seasons ^a				meteorol	ogical par	rameter				
parameters		-20%	-15%	-10%	-5%	0%	5%	10%	15%	20%	
	G	577	598	619	640	661	682	703	724	745	
Net radiation	N - G	209	217	225	233	241	249	257	265	273	
	Α	786	815	844	873	902	931	960	989	1018	
	G	648	652	655	658	661	664	667	670	672	
Wind speed	N - G	237	238	239	240	241	242	243	244	245	
	A	885	890	894	898	902	906	910	914	917	
Temperature		600	(21	(22	616	661	677	604	710	72	
	G N - G	609 230	621 233	633 235	646 238	661 241	677 244	694 248	712 251	731 255	
	N - G A	839	233 854	235 868	238 884	902	921	248 942	963	25: 980	
	Α	039	0.54	000	004	902	741	744	903	201	
	G	848	802	755	708	661	614	567	519	47	
	N - G	337	313	289	265	241	217	193	169	145	
					_00				- 07	- 1.	
Vapor pressure	A	118	111	104	973	902	831	760	688	61	

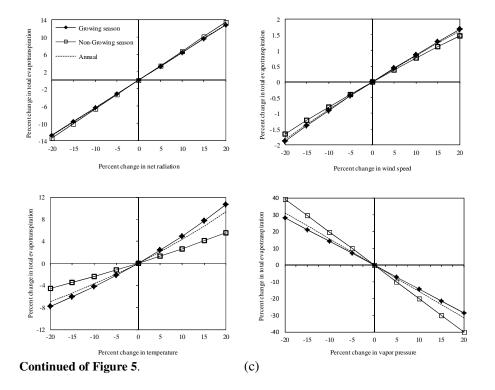

 $^{^{}a}$ G, N-G, and A refer to the Growing season (April-September); Non-Growing season (October-March), and Annual estimates, respectively.

Figure 5. Sensitivity of reference evapotranspiration (ET_0) demand in response to expected change in each meteorological parameter (in isolation) due to global warming [(a) Gorgan; (b) Babolsar, and (c) Anzali].

Continued...

Our results showed that ET_0 was very sensitive to the change in actual vapor pressure in the Caspian region. Changes in actual vapor pressure (±20%) represented the highest effect on annual ET_0 throughout the Caspian region (±19% in Gorgan compared to $\pm 30\%$ in other stations). ET_0 increased with the decreases in actual vapor pressure. The behavior of ET_0 in response to the change in vapor pressure, however, was different from the eastern to the western Caspian region. The sensitivity of ET_0 to the change in actual vapor pressure (20%) during the non-growing season in western region near Anzali (±40%) was higher than those of other more eastern stations (Gorgan: ±18%, Babolsar: ±30%).

At all of the stations, changes in wind speed had the least effect on ET_0 . The maximum and minimum sensitivity to ET_0 in response to changes in the wind speed ($\pm 20\%$) were observed in Gorgan ($\pm 5\%$) and Anzali ($\pm 2\%$), respectively.

In response to the change in air temperature, the eastern Caspian region, with the Mediterranean climate (Gorgan), showed the highest sensitivity of ET_0 , *i.e.* $\pm 16\%$ changes in ET_0 against $\pm 20\%$ change in the air temperature. ET_0 was more sensitive to increasing air temperature relative to decreasing air temperatures.

DISCUSSION

Throughout the Caspian region, we observed increasing trends in ET_0 . Tabari *et al.* (2011) considered the annual, seasonal, and monthly trends in the ET_0 at 20 meteorological stations in the western half of Iran and showed that the magnitude of significant positive trends in annual ET_0 varied from +11.28 to +2.30 mm per year. Changes in ET_0 can have a profound effect on agriculture, forests, and water resources in the Caspian region and this may put a pressure on existing water resources.

Attarod et al.

Understanding the impact of climate change on ET_0 rates is essential for water resources planning. For example, increases in ET_0 may increase the water requirements of the agricultural crops. Since crop water requirements depend upon several climatic parameters including rainfall, radiation, temperature, humidity, sunshine hours, and wind speed, any change in climatic parameters attributed to climate change will also affect ET_0 (Moratiel *et al.*, 2010).

Meteorological parameters have changed in the Caspian region in the past half century. In this region, 70% of the annual ET_0 typically occurs within the growing season, from April to September, and around 15% of the total annual ET_0 happens in July. Since the greatest water need for crops occurs in July, any changes in the monthly ET rate can affect the distribution and/or sizing of the irrigation system (Moratiel *et al.*, 2010).

There was a variation in ET_0 sensitivity in response to changes in meteorological parameters in the Caspian region, so that the highest effect on annual ET_0 was attributed to the change in actual vapor pressure during the non-growing season. Saturation vapor pressure increases exponentially with increasing temperature. If all other factors remain unchanged, warming causes drier air and hence higher ET_0 .

Historically, wind speed in the Caspian region is 3-4 m s⁻¹, and a 20% change in wind speed has only a minimal effect on annual ET_0 . During the growing season, the typically hot and dry wind results in more ET_0 relative to the cold wind during the nongrowing season.

Some past research reports state that evapotranspiration over grasslands increased by 17% while air temperature increased up to 3°C (Martin *et al.*, 1989, Rosenberg *et al.*, 1989). However, the present study revealed that in response to the increasing air temperature of approximately 3°C, ET_0 varied around $\pm 16\%$ in the Caspian region. In eastern Caspian region, ET_0 was the most sensitive to a change in the air temperature because of the climate in Gorgan being drier

and warmer than other stations. Since the mean air temperature in the non-growing season throughout the Caspian region was low, a percent change in air temperature had a lower effect on ET_0 during the non-growing season as compared to the growing season.

Forest ET_0 is generally larger than those of other vegetation types such as grassland (Zhang et al., 2001; Matsumoto et al., 2008). Forests cover about 30% of the total global land area, but ET_0 from forests accounts for 45% of the total ET_0 from the global land surface (Oki and Kanae 2006; Matsumoto et al., 2008). The temperate deciduous and broad-leaved forests of Iran are located in the Caspian region. These natural commercial forests cover an area of around 2 million hectares in a narrow strip over 800 km long and 20-70 km wide. Changes in ET_0 will certainly affect the natural forest ecosystems in the Caspian region. The composition of the species, ecophysiological characteristics of the trees as well as the spatial distribution of the tree species may be threatened by climate change in the Caspian region.

The results are also informative for the forest managers in the Caspian region. Determining the forest ecosystems most sensitive to the global climate change may be one of the available solutions in this regard. Climate change is often evaluated as one of the serious risks that threaten the sustainable development in various aspects of environmental, human health, food security, economic activities, natural resources and the underlying structures (Jafari, 2008).

Increased concentration of greenhouse gases is expected to alter the radiation balance of atmosphere, causing increases in temperature and changes in precipitation patterns and other climatic variables such as ET_0 . Any change in ET_0 will be likely to have a deep effect on agriculture and water resources planning as well as on forest ecosystems. This study provides a preliminarily idea about the likely changes in evapotranspiration demand of the humid

region of Iran by considering a wide spectrum of possible scenarios. Although the results shown in this study are estimates, they may be useful in future for planning, designing, and operating irrigation systems and crop planning.

Increases in temperature, wind speed, and solar radiations and decreases in vapor pressure will likely cause an increase in evapotranspiration in this region of Iran. The long-term changes in evapotranspiration demand may have profound implications for this humid zone of Iran. Due to the increase in evapotranspiration, the agricultural activity will suffer. The Caspian region receives good amounts of precipitation and evapotranspiration rate is relatively low as compared to the other parts of Iran. The long-term meteorological data analysis of this region showed the increasing trend of evapotranspiration due to global warming.

ACKNOWLEDGEMENT

Sincere appreciation is extended to Dr. Thomas Grant Pypker, the academic member of Thompson Rivers University, Canada, for his beneficial comments and his assistance in English editing of the manuscript.

REFERENCES

- Anderson, J., Chung, F., Anderson, M., Brekke, L., Easton, D., Ejeta, M., Peterson, R. and Snyder, R. 2008. Progress on Incorporating Climate Change into Management of California's Water Resources. Climatic Change, 87: 91–108.
- Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. and Jones, P. D. 2006. Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Dataset from 1850. J. Geophys., doi/10.1029/2005JD006548/full
- Bultot, F., Dupriez, G. L. and Gellens, D. 1988. Estimated Annual Regime of Energy Balance Components, Evapotranspiration and Soil Moisture for a Drainage Basin in Case of a CO₂ Doubling. *Climatic Change*, 12: 39–56.

- 4. Croitoru, A. E., Piticar, A., Imbbroane, A. M. and Burada D. C. 2013. Spatiotemporal Distribution of Aridity Indices Based on Temperature and Precipitation in the Extra-Carpathian Regions of Romanis. *Theor. Appl. Climatol.*, **112**: 597-607.
- Gleick, P. H. 1986. Methods for Evaluating the Regional Hydrologic Impacts of Global Climatic Changes. J. Hydrol., 88: 97–116.
- Goyal, R. K. 2004. Sensitivity of Evapotranspiration to Global Warming: A Case Study of Arid Zone of Rajasthan (India). Agr. Water Manage., 69: 1–11.
- Hansen, J. E., Ruedy, R., Sato, M., Imhoff, W., Lawrence, D., Easterling, T. and Peterson, T. 2001. A Closer Look at United States and Global Surface Temperature Change. J. Geophys., 106: 23947–23963.
- 8. Inman-Bamber, N. G. and McGlinchey, M. G. 2003. Crop Coefficient and Water-Use Estimates for Sugarcane Based on Long-term Bowen Ratio Energy Balance Measurements. *Field Crop. Res.*, **83**: 125-138.
- IPCC (2013) Climate change 2013: the physical science basis. IPCC, Geneva . http://www.ipcc.ch/pdf/assessmentreport/ar5/wg1/WG1AR5_ALL_FINAL.pdf.
- Jafari, M. 2008. Investigation and Analysis of Climate Change Factors in the Caspian Zone Forests for Last Fifty Years. *Iranian J. For. Pop. Res.*, 16: 314–326.
- 11. Lugina, K. M., Groisman, P. Y., Vinnikov, K. Y., Koknaeva, V. V. and Speranskaya, N. A. 2007. Monthly Surface Air Temperature Time Series Area-averaged over the 30-degree Latitudinal Belts of the Globe, 1881–2006. In: "Trends: A Compendium of Data on Global Change". Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN. Available at: http://cdiac.ornl.gov/trendstemp/lugina/lugina.html
- Mahmood, R. 1997. Impacts of Air Temperature Variations on the Boro Rice Phenology in Bangladesh: Implications for Irrigation Requirements. Agr. Forest. Meteorol., 84: 233–247.
- Martin, P., Rosenberg, N. J. and Mc Kenney, M. S. 1989. Sensitivity of Evapotranspiration in Wheat Field, Afforest and a Grassland to Change in Climate and Direct Effect of Carbon Dioxide. *Climatic Change*, 14: 117–151.
- 14. Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H.,

- Kononov, A. V., Molen, M. K., Kodama, Y., Maximov, T. C., Dolman, A. J. and Hattori, S. 2008. Energy Consumption and Evapotranspiration at Several Boreal and Temperate Forests in the Far East. *Agr. Forest. Meteorol.*, **148**: 1978–1989.
- Moratiel, R., Durán, J. M. and Snyder, R. L. 2010. Responses of Reference Evapotranspiration to Changes in Atmospheric Humidity and Air Temperature in Spain. *Clim. Res.*, 44: 27–40.
- 16. Nemec, J. and Schaake, J. 1982. Sensitivity of Water Resources System to Climate Variation. *Hydrolog. Sci. J.*, **27**: 327–343.
- 17. Oki, T. and Kanae, S. 2006. Global Hydrological Cycles and World Water Resources. *Sci.*, **313**: 1068–1072.
- Rosenberg, N. J., Mc Kenney, M. S. and Martin, P. 1989. Evapotranspiration in Greenhouse Warmed World: A Review and a Simulation. Agr. Forest. Meteorol., 47: 303– 320.
- Sabziparvar A. A. and Tabari, H. 2010.
 Regional Estimation of Reference Evapotranspiration in Arid and Semi-Arid

- Regions. J. Irrig. Drain. E-ASCE, 136: 724-731.
- Smith, T. M. and Reynolds, R. W. 2005. A Global Merged Land–Air–Sea Surface Temperature Teconstruction Based on Historical Observations (1880-1997). J. Climate., 18: 2021–2036.
- Tabari, H. 2010. Evaluation of Reference Crop Evapotranspiration Equations in Various Climates. Water Resour. Manage., 24: 2311-2337
- 22. Tabari, H., Marofi, S., Aeini, A., Hosseinzadeh Talaee P. and Mohammadi K. 2011. Trend Analysis of Reference Evapotranspiration in the Western Half of Iran. *Agr. Forest. Meteorol.*, **151**: 128–136.
- Zhang, L., Dawes, W. R. and Walker, G. R. 2001. Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale. Water. Resour. Res., 37: 701–708.
- Zohary, M. 1973. Geobotanical Foundations of the Middle East. Fischer Verlag, Stuttgart, Amsterdam.

تعیین میزان حساسیت تبخیر و تعرق مرجع نسبت به گرمایش جهانی در ناحیه خزری

پ. عطارد، ف. خيرخواه، ش. خليقي سيگارودي، س. م. م. صادقي

چکیده

را سبب خواهد شد. همچنین نتایج حاکی از آن است که تغییرات پارامتر فشار بخار (1 درصد) بیشترین تاثیر را بر ET_0 داشته است (1 درصد کاهش در اقلیم مدیترانهای و 1 درصد کاهش در دو اقلیم مرطوب و خیلی مرطوب). پارامتری که تغییرات آن کمترین تأثیر را بر ET_0 در ناحیه خزری نشان داد، سرعت باد بود بطوری که افزایش 1 درصدی آن منجر به افزایش 1 و 1 درصدی ET_0 به تر تیب در اقلیمهای مدیترانهای و خیلی مرطوب گردید. در برنامهریزیهایی که درجهت توسعه اکوسیستمهای طبیعی و مصنوعی در ناحیه خزری صورت می گیرد، باید تغییرات احتمالی تبخیر تعرق در نتیجه گرم شدن جهانی در نظر گرفته شود.