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ABSTRACT 

Movement of sediment in the river causes many changes in the river bed. These changes 

are called bedform. River bedform has significant and direct effects on bed roughness, 

flow resistance, and water surface profile. Thus, having adequate knowledge of the 

bedform is of special importance in river engineering. Several methods have been 

developed by researchers for estimation of bed form dimensions. In this investigation, 

bedform has been estimated using Artificial Neural Network (ANN) and Support Vector 

Machine (SVM) methods. The results obtained from these two methods were compared 

with empirical formulas of Van Rijn. The accuracy of the model was evaluated using 

(RMSE), (MSRE), (CE), (R2) and (RB) statistical parameters. Higher values of statistical 

parameters indicated that the SVM model with RBF kernel function predicted the 

bedform more accurately than the other method. The values calculated for R2, RMSE, 

MSRE, CE and RB parameters were 0.79, 0.024, 0.066, 0.786, -0.081, respectively. 

Comparison of the results of the SVM model with RBF kernel with other models 

indicated that SVM had a higher capability for estimating and simulating height of the 

bedform than Artificial Neural Networks. 

Keywords: Bed roughness, RBF kernel function, River engineering.  

 INTRODUCTION 

Rivers are one of the most important 

resources of water supply and have played 

an important role in the development of 

human societies. A river is a dynamic 

system governed by hydraulic and sediment 

transport processes. Over time, the river 

responds to changes in channel cross 

section, longitudinal profile, flow regime, 

general shape, and increased or decreased 

sediment carrying capacity, all of which 

affect bank stability and river morphology. 

Important changes in rivers caused by 

sediment transportation consist of erosion 

and sedimentation (Azamathulla et al., 

2008).  

Bedform in a river is created due to flow 

movement and has a significant effect on 

bed roughness and resistance to flow and 

water surface profile. Therefore, 

computation of the river stage and flow 

velocity relies on the determination of 

bedform roughness, therefore, knowledge of 

the bedform is very important (Chang, 

1988). The accurate prediction of the 

geometric characteristics of bed forms is an 

essential component for estimating the flow 

resistance and the consequent flow 

conditions (Karamisheva et al., 2005). 

Water surface elevation is the main factor in 

the determination of flood plains boundaries 

and in the design of important river 

structures such as flood control structures, 

diversion dams, power plant projects, and 

bridges. This elevation is closely related to 

the resistance of erodible fluvial beds 

against water flow (Talebbeydokhti et al., 

2006). The prediction of water level during 

floods depends primarily on hydraulic 

roughness caused by the dimension of 



 
Figure 1. General form of bed form in Regimes of turbulent flow 

 

bedforms such as dunes and ripples. In turn, 

the length and height of the dunes is viewed 

as a complex function of hydraulic and 

sediment parameters pertaining to sediment 

motion in alluvial rivers (Julien, 1992). The 

mutual interaction between the flow and the 

erodible bed through sediment transport 

phenomena in a sand-bed channel causes a 

variety of bed forms, starting with ripples, 

and gradually increases shear stress or water 

velocity, dunes, washed out the dunes, flat 

bed, anti-dunes, and standing waves 

(Talebbeydokhti et al., 2006). 

Ripples are known to occur for "small" 

values of the grain size Reynolds number � � �∗� �� (�	 	
 	5.5.): dunes. On the other 

hand, they are known to occur for "large" 

values of X (X >
 30). For "intermediate" 

values of X (5.5 
< X <
 30), both ripples 

and dunes occur, in the form of ripples 

superimposed on the dunes Figure 1 shows 

the existence of regions  of ripples and 

dunes, as determined by X (Zhang, 1999). 

Different approaches have been used to 

find bedform dimensions by a lot of 

researchers. Their results differ drastically 

from each other and from field observations. 

The difference between laboratory and field 

conditions, lack of a reliable method for the 

estimation of bedform dimensions, the 3D 

nature of the bedform development, 

practical difficulties in measuring bedform 

dimensions, especially in the field, the role 

of suspended sediment in bed form creation, 

and the lack of knowledge about turbulence 

at the interface between flow and bed are 

among the reasons of differences in the 

results. Thus, the complexity of this problem 

indicates the need for additional research 

(Talebbeydokhti et al., 2006). 

The phenomenon of bedforms in alluvial 

rivers was perhaps first described in the 

classic research of Gilbert in 1914. Brooks 

in 1958 showed that the flow-induced 

roughness did not always increase with the 

velocity, since it might also decrease as the 

velocity increases. Forms of bed roughness 

observed in the flumes and in alluvial 

streams are illustrated by Simons and 

Richardson in 1961. Based on similarities in 

form, resistance to flow, and sediment 

transport, these bedforms are divided into 

categories of lower flow regime, transition 

zone, and upper flow regime in the order of 

increasing velocity (Chang, 1988). In 1961, 

Engelund
 
and hansen illustrated the results 

of his study on resistance of different 

bedforms. Based on this graph, one could 

determine the type of bed form with Froude 

number, Flow velocity, and shear velocity 

(Julien, 1992). Richards (1980) predicted the 

maximum velocity growth of turbulent flow 

with a combination of bed’s effective 

roughness and one dimensional turbulent 

model in analysis of resistance for two types 

of bedforms, dunes (under the effect of flow 

depth), and ripples (independence of flow 

depth). Karim (1995) concluded that dune 

height is a function of the rate of shear 

velocity to fall velocity. Coleman and 

Melville (1996) studied two types of 

sediment with uniform grading and mean 

diameters of 0.2 and 0.82 mm. The sand 

waves developing started with getting a 
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random mass of sediments, that frequently 

the more amount of sediment adds to this 

mass and they become two dimensional 

rapidly. The wave lengths of sands depend 

on the amount of bed shear stress and it is 

mainly a function of sediment grain size. 

The results of Coleman and Melville (1996) 

are similar to Richards (1980) unstable flow 

analyses. Karamisheve et al. (2005) 

compared between prediction formulas of 

bedform height in the straight channels and 

meandering channels. Talebbeydokhti et al. 

(2006) found that length of dune depends on 

combination of three parameters consisting 

of Froude number (Fr), energy gradient line 

slope, and the ratio of sediment mean 

diameter to flow depth (D50/H). Tuijnder et 

al. (2008) concluded that bed form would be 

limited when the amount of sediment 

movement is less than the required volume 

for its formation. The results of Singh et al. 

(2011) showed that flow ratio and 

compounds of bed sediment had a 

significant effect on multi scale dynamic, 

nonlinear degree and the complexity of 

bedform evolution. Van Rijn (1984) 

developed a method based on the analysis  

of experimental  data  and  a limited number 

of field data. In van Rijn approach, the 

classification of bed form is assumed to be 

controlled mainly by bed-load transport. 

Van Rijn method is one of the most 

commonly used methods for prediction of 

bedform dimensions which has been 

investigated by many researchers. Dunes 

height and length parameters in Van Rijn 

method are given below: 

∆
� � 0.11 ����� �

�.� �1 � ��.����25 � �� (1) 

∆
� � 0.015����� �

�.� �1 � � �.����25 � ��  
(2) 

Where, 
∆
� is ratio of bedform height to 

wave length, 
���
�  is the ratio of sediment 

mean diameter to flow depth, and T is the 

bed shear stress parameter. 

Although Van Rijn method is based on 

experimental data, Julien and Klaassen in 

1995 investigated the capability of this 

method for prediction of bedform 

dimensions in large rivers in flood condition 

and with high values of Shields parameter or 

movement parameter. These researchers 

found better results than Van Rijn method 

by definition of dune height and length 

parameters for prediction of wide bedforms 

dimensions. 

∆� β"�#50" �
0.3

    (3) 

λ � α∆� "#50�
0.3

    (4) 

Where,	β	and	) � 2.5. Since λ � αβ" 

can be obtained from relationships (3) and 

(4), so λ ≅ 6.25". In the above 

relationships, α and β are dune coefficients 

of height and length. The results show that 

the average height parameter of dune has 

good agreement with the average depth of 

flow. Opposite of van Rijn diagram, the 

height of the dune for T>10 will not 

decrease with discharge and those not 

change to T>40, (Julien et al., 2002). 

Support Vector Machine (SVM) is one 

of intelligent data-driven approaches 

which was introduced in 1995 by Vapnik. 

It is an effective method for data 

modeling. SVM makes an integrated space 

for most models by increasing the 

dimensions of problems and using kernel 

function. Botsis et al. (2011) compared the 

performance of support vector regression 

(SVR) and multilayer feed-forward neural 

network (MFNN) in the prediction of 

rainfall and runoff. Kakaei Lafdani et al. 

(2013) predicted daily suspended sediment 

load using SVM and ANN. Moharrampour 

et al. (2012) used SVM method for 

prediction of daily flow of Ghara-Soo 

river in north of Iran. 

The aim of this study was the estimation 

of bedform dimensions using SVM and 

ANN, using statistical software with three 

types of kernel function for data 

simulation with SVM model. Also, the aim 

was to develop a model based on ANN in 

Matlab with MLP trained with a back 

propagation algorithm to estimate the bed 

form height.  
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MATERIALS AND METHODS 

Artificial Neural Network 

The ANN technology is an alternate 

computational approach inspired by studies of 

the brain and nervous systems. The beginning 

of the artificial neural network theory belongs 

to the 1940s, when Mcculloch, the famous 

psychologist, and Walter Pitts, a 

mathematician, founded it in 1943 and then 

Rosenblatt in 1962s proposed the idea of 

perceptron (Kakaei Lafdani et al., 2013). The 

main theme of ANN research focuses on 

modeling of the brain as a parallel 

computational device for various 

computational tasks that are performed poorly 

by traditional serial computers. ANNs have a 

number of interconnected processing elements 

(PEs) that usually operate in parallel and are 

configured in regular architectures. The 

collective behavior of ANN, like a human 

brain, demonstrates the ability to learn, recall, 

and generalize from training patterns or data. 

The advantage of neural networks is that they 

are capable of modeling linear and nonlinear 

systems (Riad and Mania, 2003). In the 

present study, after training of neural networks 

with different number of neurons in the middle 

layer, it was observed that the structure of a 

neural network with a hidden layer and six 

neurons in the middle layer and MLP trained 

with a back propagation algorithm had the best 

performance among the other neural networks. 

Support Vector Machines 

In recent years, a modern tool regarding 

artificial intelligence, called a support vector 

machine (SVM), has had many applications 

in learning method machines. This method 

successfully has been used in information 

categorization and, lately, in regression 

problems. Mathematically, SVM is placed in 

classification and regression algorithms 

range which is formulated using the 

principles of statistical learning theory by 

Vapnik in 1995 (Botsis et al., 2011). This 

model was used for water resources 

management firstly by Sivapragasam and 

Liong (2000), Dibike et al. (2001), and Han 

and Yang (2001) and its new model is called 

reference vector machines used by Han et al. 

(2002). 

SVM is a classification and regression 

method, which has been derived from 

statistical learning theory. The SVM 

classification methods are based on the 

principle of optimal separation of classes. If 

the classes are separable, this method 

selects, from among the infinite number of 

linear classifiers, the one that minimizes the 

generalization error, or at least an upper 

bound on this error, derived from structural 

risk minimization. Thus, the selected hyper 

plane will be the one that leaves the 

maximum margin between the two classes, 

where margin is defined as the sum of the 

distances of the hyper plane from the closest 

point of the two classes. The SVM can also 

be applied to regression problems. Goel et 

al., 2012). 

Vapnik in 1995 proposed Support Vector 

Regression (SVR) by introducing an 

alternative: the Insensitive Loss Function. 

This loss function allows the concept of 

margin to be used for regression problems. 

SVR differs from conventional regression in 

that it maps input data into a high 

dimensional reproducing kernel Hilbert 

space and uses an ε-insensitive loss function. 

As a result, SVR has a sparse representation 

of solutions, and hence is relatively fast in 

training/testing. For a given training data 

with k number of samples, represented by 

(x1,y1),…….,(xk,yk), a linear decision 

function can be represented by: ,�-, /� � 〈1, -〉 3 4   (5) 

Where,	1 ∈ 67 and 4 ∈6〈1, -〉represents the dot product in space 

RN. A smaller value of w indicates the 

flatness of Equation 5, which can be 

achieved by minimizing the Euclidean norm 

as defined by‖9‖:. Thus, an optimization 

problem in regression can be written as: 
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Figure 2. Structure of SVM model. 

 

;<=<><?�	 @: A|1|A: Subject 

to	CDE � 〈1, -E〉 � 4 F G〈1, -E〉 3 4 � DE F G		   (6) 

The optimization problem in Equation 6 is 

based on the assumption that there exists a 

function that provides an error on all training 

pairs which is less than G. In real life 

problems, there may be a situation like the 

one defined for classification. So, to allow 

some more error, slack variablesHI,HÌ can be 

introduced and the optimization problem 

defined in Equation 6 can be written as: 

;<=<><?�	 @: A|1|A: 3 K ∑ �ME 3 MÈ�NEO@  

Subject to CDE � 〈1, -E〉 � 4 F G 3 ME〈1, -E〉 3 4 � DE F G 3 MÈ 	 (7) 

Where, HI,HÌ P Q for all i=1,2,…. k. 

Parameter C is determined by the user and it 

decide the tradeoff between the flatness of 

the function and the amount by which the 

deviations to the error more than ɛ can be 

tolerated. The optimization problem in 

Equation 7 can be solved by replacing the 

inequalities with a simpler form determined 

by transforming the problem to a dual space 

representation using Lagrangian multipliers. 

The prediction problem in Equation 5 can 

now be written as: ,�-, 4� �∑ �RS E � RE�〈�-E , -�〉 3 4NEO@    (8)  

Where, RE, 	RET  are positive Lagrange 

multipliers. The techniques discussed above 

can be extended to allow for non-linear 

support vector regression by introducing the 

concept of the kernel function. This is 

achieved by mapping the data into a higher 

dimensional feature space, thus performing 

linear regression in feature space. The 

regression problem in feature space can be 

written by replacing-E . -Uwith Φ�-E� ∗ΦW-UX.  Where,Y�-E , -U� ≡ Φ�-E� ∗ ΦW-UX 
(9) Regression function in this case can now 

be written as (Botsis et al., 2011): 

,�-, 4� � ∑ �RSE � RE�Y�-E , -� 3 4NEO@   

 (10)  

The general structure of these models is 

shown in Figure 2.  

Data Set  

In this study, the parameters given below 

were used as input variables for evaluating 

the performance of SVM and ANN models 

for estimating bedform height:  

• Shields parameter [ � \
0

]^�_ @�   
• Bed shear stress parameter 	� � \� \`

\`   

• Particle parameter a∗ � #�b�_ @�cd �@ ��   

• Suspension parameter e � f
Ng∗  

The ratio of bedform height to flow depth 

(
∆
	�) is used as output variable. Each set of data 

consisted of 257 data. The data set was 

collected from Julien study at Rhine and 

Meuse rivers (Julien, 1992). In both models, 

85 percent of data set was used for network 

training and 15 percent of the data set was 

used for network testing. The statistical 

parameters of a data set are shown in Tables 1, 

2, and 3 and consist of minimum, maximum, 

mean, standard deviation, and coefficient of 

variation.  

In order to assess the accuracy of the 

models, various statistics have been developed 

and used, of which the best known and most 

widely used will be presented in the following. 

These statistics were appropriately used in the 

calibration phase to determine the parameters 

and structures.  

1. Root Mean Square Errors (RSME)  

2. The correlation between predicted and 

actual values (R
2
)  



Table 1. Statistical parameters of all data set. 

All data set Statistical 

Parameters ∆ "�  a∗ � e [ 

0 0 0 0 0 Min 

1 1 1 1 1 Max 

0.131 0.458 0.276 0.277 0.139 Mean 

0.088 0.254 0.201 0.247 0.1996 Sd 

0.670 0.553 0.728 0.892 1.435 Cv=Sd/Mean 

Table 2. Statistical parameters of Train data set. 

Train data set Statistical 

Parameters ∆ "�  a∗ � e [ 

0 0 0 0 0 Min 

1 1 1 1 1 Max 

0.133 0.464 0.268 0.284 0.134 Mean 

0.092 0.258 0.198 0.253 0.195 Sd 

0.690 0.557 0.741 0.891 1.460 Cv=Sd/Mean 

Table 3. Statistical parameters of Test data set. 

test data set Statistical 

Parameters ∆ "�  a∗ � e [ 

0.056 0.019 0.064 0.002 0.008 Min 

0.290 0.810 0.811 0.700 0.899 Max 

0.117 0.425 0.324 0.235 0.173 Mean 

0.053 0.219 0.208 0.205 0.222 Sd 

0.454 0.515 0.642 0.871 1.285 Cv=Sd/Mean 

 

 

3. Mean Square Relative Error(MSRE) 

4. Coefficient of Efficiency (CE)  

5. Relative Bias (RB) 

Normalized using the equation: -ET �ij ikjl
ikmn ikjl     (11) 

Where, xmin and xmax are the maximum and 

minimum values at the time i, respectively.  

RESULTS AND DISCUSSION  

In this study, a model was developed for  

simulating the bedform height in rivers 

using Artificial Neural Network ANN and 

SVM Support Vector Machine. Statistical 

values of the test period for ANN and SVM 

methods and Van Rijn empirical formula are 

given in Table4. Statistical criteria show that 

support vector machine with the RBF kernel 

function has better results than a support 

vector machine with the polynomial kernel 

function, Artificial Neural Network and 

empirical formula Van Rijn for estimating of 

the bedform height of the river.   

The comparison of observed and estimated 

ratio of the bedform height to flow depth by 

SVM and ANN models in test period are 

shown in Figure 3 to 6 in the form of 

hydrography and scatter plot. It is seen from 

the fit line equations and R2 
values in scatter 

plots that the SVM (RBF kernel) estimates 

are closer to the observed values than the 

other models. The SVM (RBF kernel) 

performs much better than the other models. 

It can be obviously seen from the fit line 

equations that the estimates of the SVM 

(RBF kernel) are much closer to the exact 

fit, in line with a higher R2 value of 0.79, 

than the support vector machine with the 

polynomial kernel function, Artificial Neural 
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Table4. Statistical values of the test period for ANN and SVM methods and empirical formula of Van 

Rijn. 

 

 

Best Indices 

SVM
 a
  

 

 

Van Rijn            ANN
 g
 

      RBF                     

C=10, = 0.1       

GAMMA=0.25 

Polynomial 
C=10, =0.1, 

degree=2 

GAMMA=0.25  

Polynomial 
C=10, =0.1, 

degree=2 

GAMMA=0.25 

MSRE 
b
 0.066 0.07 0.097 8.93 0.164 

RMSE c 0.024 0.772 0.681 -71.35 0.490 

CE
 d
 0.786 -0.078 -0.091 -2.323 -0.250 

RB
 e
 0.081 0.0253 0.030 0.230 0.038 

R2
 0.79 0.77 0.71 0.11 0.66 

a
 Support Vector Machine,  

b
 Mean Square Relative Error; 

c
 Root Mean Square Errors; 

d
 Coefficient of 

Efficiency; e Relative Bias; f The Correlation between predicted and actual values; g Artificial Neural Network. 

Figure 3. Scatter plot of observed and 

estimated data for test period from SVM 

model (RBF kernel). 

 

 

Figure 4. A comparison of observed and estimated data for a test period curve by SVM (RBFkernel).  

Network and empirical formula of Van Rijn.  

To evaluate the accuracy of the developed 

model, the maximum and minimum values 

of observed and estimated bedform height 

was investigated. Relative errors for all 

estimated values were calculated and 

absolute errors were added. Based on total 

absolute values, the best model with lowest 

error was chosen. It is clear from Table 4  

that the RBF estimates are closer to the 

corresponding peak of bedform height 

values than the Polynomial Degree2,  

Polynomial Degree3, ANN, and Van Rijn. 

The RBF, Polynomial Degree2, Polynomial  

Degree3, ANN and Van Rijn predict the 

maximum peak at 0.276, 0.255, 0.218, 0.319 

and 0.314 instead of the measured 0.290, 

with underestimations of -5%, -12%, -25%, 

and overestimation of 10% and 8%, 

respectively. The RBF estimation is almost 

equal to the observed values. In Table4, C, G, 

and GAMMA are kernel functions constant 

parameters. Table 5 compares the accuracy of 

the SVM model with RBF, Polynomial 

Degree2 and Polynomial Degree3 kernel, 

ANN and Van Rijn models in the estimation 

of the peak of bedform height with 

 



 

Figure 6. A comparison of observed and estimated data for a test period curve by ANN.  

Table 5. Comparison of SVM with different kernel functions, ANN, and Van Rijn results for peak 

estimation for test period.  

Observed  

height 

bed form  

peaks 

RBF 
Pol. 

Deg. 2 

Pol. 

Deg. 3 
ANN 

Van 

Rijn 

Relative error (%) 

RBF
 b
 

Pol. 

Deg. 2 

Pol. 

Deg. a 3  
ANN 

a
 

Van 

Rijn 

0.290 0.276 0.255 0.218 0.319 0.314 -5 -12 -25 10 8 

0.249 0.269 0.247 0.212 0.289 0.352 8 -1 -15 16 41 

0.254 0.251 0.254 0.253 0.253 0.420 -1 0 -1 -1 65 

0.190 0.118 0.106 0.103 0.104 0.240 -38 -44 -46 -45 26 

Total absolute 52 57 87 72 140 

aArtificial Neural Network; b Radius Basis Function. 

Figure 5. Scatter plot of observed and 

estimated data for test period of ANN mode. 

dimensionless values.  

CONCLUSION  

In this study, a model for simulating the   

bedform height in rivers was developed 

using the methods of Artificial Neural 

Network (ANN) and Support Vector 

Machine (SVM). In bedform modeling by 

using ANN and SVM models, there are not 

limitations like empirical methods such as 

sediment grain size, flow conditions, etc. It  

was also observed that the kernel function 

selection in the case of SVR had a 

significant effect on the performance of the 

model. In particular, this investigation 

concludes that the RBF kernel function has 

the best performance in simulation of 

bedform height. The accuracy of the results 

demonstrates high performance of 

developing an SVM model with RBF kernel 

function and the values calculated for R2, 

RMSE, MSRE, CE and RB parameters are 

0.79, 0.024, 0.066, 0.786, and -0.081, 

respectively. Results of the comparison of 

SVM model with RBF kernel with other 

models indicated that SVM had a higher 

capability for estimating and simulating 
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bedform height than artificial neural 

networks.  

It can be concluded that SVR can replace 

some of the neural network models for 

bedform height estimation applications, but 

it is clear that there are still many knowledge 

gaps in applying SVR to bedform height. 

The generalization capability of the SVR 

and ANN models is the biggest open 

question in bedform height estimation. It is 

essential to test these models in a variety of 

different regions in order to improve the 

understanding of this potentially powerful 

tool for the machine learning community.  
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و  (ANN)پيش بيني ارتفاع فرم بستر رودخانه با استفاده از شبكه عصبي مصنوعي

 (SVM)ماشين بردار پشتيبان

 ف. جوادي، م. م. احمدي، ك. قادري

  چكيده

گردد. اين تغييرات سوبات در بستر رودخانه باعث ايجاد تغييرات زيادي در بستر رودخانه ميحركت ر

بستر تاثير مستقيم و مهمي روي زبري بستر، گيرد. فرمبستر رودخانه مورد بررسي قرار ميتحت عنوان فرم

تر از اهميت بسمقاومت در مقابل جريان و پروفيل سطح آب دارد. بنابراين شناخت هرچه بيشتر فرم

-خاصي در مهندسي رودخانه برخوردار است. روش هاي متعددي توسط محققان براي برآورد ابعاد فرم

هاي عصبي بستر رودخانه با استفاده از شبكهبيني ابعاد فرمبستر توسعه داده شده است. در اين تحقيق پيش

ارزيابي  ن انجام شده است.راي) و فرمول تجربي فنSVM(بردار پشتيبان و ماشين )ANNمصنوعي(

انجام شده  RBو  RMSE ،MSRE  ،CE، :6نتايج بدست آمده با استفاده از معيارهاي آماري 

، RB 79/0و  RMSE ،MSRE  ،CE، :6با مقادير آماري  RBFبا تابع كرنل  SVM روشاست. 

از دقت بالايي  مصنوعيو شبكه عصبي  SVMهاي نسبت به ساير مدل - 081/0، 786/0، 066/0، 024/0

 ها برخوردار است.بستر در رودخانهبيني ارتفاع فرمدر پيش


