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Abstract

Financial markets are known to be far from deterministic but stochastic and hence ran-

dom models tend to perfectly model the markets. The most recent development in

stochastic models is the Wishart Stochastic Volatility Model which is a n dimensional

model. The study aimed at modelling returns volatility in emerging financial market

using Wishart Stochastic Volatility Model. Pricing in one dimension and two dimen-

sion was explored. A suitable Wishart Stochastic Volatility Model for an emerging

financial market was constructed basing on the characteristics of an emerging financial

market. Foreign Exchange derivative pricing was done under constant and stochas-

tic correlation using finite difference method called the Crank Nicolson method. The

study compared the modified Model (with stochastic correlation) to the Black scholes

model (with constant correlation) using real data from emerging financial markets that

is the exchange rates data for Kenya as the domestic currency and South Africa as the

foreign currency. The modified model provide better volatility smiles compared to the

Black scholes model and outperformed the Black scholes model as observed from the

smallest AIC and BIC values.

xii



Chapter 1

Introduction

1.1 Background

The Wishart process was originally studied by Bru (1991) and was introduced in fi-

nance by Gourieroux in 2004. Since it was introduced in finance, different authors have

developed stochastic volatility models using it and this paper focuses on the Wishart

Stochastic Volatility Model presented by Da Fonseca and others. Due to the weakness

of Black-Scholes model of not incorporating the observable phenomenon that implied

volatility of derivative products is strike and maturity dependent, various models have

been introduced such as local volatility and stochastic volatility models to reproduce

some market conditions. The first step was the introduction of local volatility mod-

els by Dupire (1994) where the underlying volatility σ(t, S) depends on the level of

the underlying S itself. The most famous one is the Constant Elasticity of Variance

model (CEV) in which the volatility is proportional to Sα, where α is a positive con-

stant. Stochastic volatility models appear where volatility is assumed to be a stochastic

process. Thus, models became more complex because of the market incompleteness

which implies that traders cannot hedge their products by dealing only with the asset.

The model by Heston (1993) presents a volatility with an effect of mean reversion,
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and is commonly used in financial markets because of its flexibility. However, these

models cannot fit accurately market data for short or long maturities, and recent re-

search have been carried out to improve this point. A way to solve this problem was

the introduction of a multifactor stochastic volatility model. Gouriéroux (2006) devel-

oped a multifactor version of the Heston model. It was assumed that volatility follows

a Wishart process introduced in 1991 so that the model preserves its linear properties

and consequently its tractability. da Fonseca, Grasselli, and Tebaldi (2005) have im-

proved the model by considering that the volatility of the asset is the trace of a Wishart

process. This allows to take into account stochastic correlation between the underly-

ing asset with the volatility process and provides a wealthy but complex model. The

simplistic case where the matrix of mean reversion, the volatility of volatility matrix

and the correlation matrix are diagonal matrices gives a small intuition of the model

performance given that the diagonal components of the Wishart process are in fact

Cox-Ingersoll-Ross processes : by considering the volatility as the trace of the Wishart

process, the model is equivalent to a simple multifactor Heston model.

However, the multifactor Heston model is not flexible enough in regard to the stochas-

tic correlation. Indeed, in a classic extension of a multifactor Heston model, the factors

appearing in the stochastic correlation formulae are exactly the same as the volatility

expression’s ones. The model is extended by focusing on a specification of the Wishart

Stochastic Volatility Model of allowing to add freedom degrees concerning the stochas-

tic correlation.

Given a filtered probability space (Ω, F, Ft,P) and a n × n matrix Brownian motion

W (i.e. a matrix whose entries are independent Brownian motions under P), a Wishart

process on Σ+
n is governed by the Stochastic differential equation (The matrix-valued

process Σ is said to be a Wishart process if it satisfies the following SDE)

dΣ(t) = (KQ′Q+MΣ(t) + Σ(t)M ′)dt+
√

Σ(t)dW (t)Q+Q′dW (t)′
√

Σ(t) (1.1)
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where Σ(0) = c0 ∈ Σ+
n , t ≥ 0, Q ∈ GLn(R), M ∈Mn (the set of real n×n matrices)

with all eigenvalues on the negative real line in order to ensure stationarity, and where

the (Gindikin) real parameter K > n − 1. The condition K > n − 1 is introduced to

ensure existence and unicity of the solution Σt ∈ Σ+
n of equation (1.1).

1.2 Statement of the problem

Due to the importance of the study on volatility, there has been numerous research and

various approaches on it see Ahmed and Suliman (2011), Abdalla and Winker (2012),

Koleva and Nicolato (2012) and others. Among them, the two main approaches are

deterministic models and stochastic models. Deterministic models assume that volatil-

ity at a particular time follows a deterministic function of the past, She (2013) whereas

stochastic models assume that the volatility follows certain random process, Eisler,

Perelló, and Masoliver (2007). Different authors have thoroughly modeled volatility

using different deterministic models but little attention has been given to the stochastic

volatility models due to their complexity especially to empiricists. However, finan-

cial markets are known to be far from deterministic and hence random models tend

to perfectly model the market. The most recent development in stochastic models is

the Wishart Stochastic Volatility Model. Notwithstanding, there has not been a com-

prehensive study on the suitability of Wishart Stochastic Volatility Model to emerging

financial markets.

1.3 Objectives of the research

1.3.1 Main objective

To model volatility in the emerging financial markets using Wishart Stochastic Volatil-

ity Models.
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1.3.2 Specific objectives

The specific objectives of this study are:

1. To construct a Wishart Stochastic Volatility Model for emerging financial mar-

kets.

2. To apply the newly constructed Wishart Stochastic Volatility Model in pricing of

European call options.

3. To compare results of a newly constructed Wishart Stochastic Volatility Model

to the Black-Scholes model using data from emerging markets.

1.4 Significance of study

Volatility refers to the measure for price fluctuation of specific financial instrument

over time. It is a very important factor that can greatly influence investors decisions

and concerns every other participant in the financial markets. The higher the volatility,

the riskier the security which means that volatility is related to risks (volatility is used

as a measurement of risk).

Many financial time series exhibit volatility clustering which means that the series

have periods where volatility is low and other periods where volatility is high. Due

to usefulness of volatility, various models have been developed since the introduction

of the Autoregressive Conditional Heteroscedasticity (ARCH) model by Engle (1982)

especially for data that shows volatility clustering that is the deterministic models and

stochastic models. In emerging financial markets, the price movements affect people

making it important to model volatility of returns using the stochastic models which

assumes that volatility follows certain random process. The study will help in under-

standing the suitability of Wishart Stochastic Volatility Model to emerging financial

markets.
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Chapter 2

Literature Review

The literature review is presented in two aspects: Volatility analysis and Wishart pro-

cess. In volatility analysis, the existing literatures on both deterministic volatility mod-

els and stochastic volatility models are discussed. And in the section of wishart pro-

cess, the existing literatures on wishart process are discussed.

2.1 Volatility Analysis

Engle (1982) introduced the Autoregressive Conditional Heteroscedasticity (ARCH)

model to model volatility by relating the conditional variance of the disturbance term

to the linear combination of the squared disturbances in the recent past. Bollerslev

(1986) generalized the ARCH model by modeling the conditional variance to depend

on its lagged values as well as squared lagged values of disturbance. Since the works

of Engle (1982) and Bollerslev (1986), various variants of GARCH model have been

developed to model volatility. Some of the models include EGARCH originally pro-

posed by Nelson (1991), GJR-GARCH model introduced by Glosten, Jagannathan,

and Runkle (1993), Threshold GARCH (TGARCH) model by Zakoian (1994) among

others. Following the success of the ARCH family models in capturing behaviour of

volatility, Stock returns volatility has received a great attention from both academies
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and practitioners as a measure and control of risk both in emerging and developed

financial Markets. Although the GARCH model has been very successful in captur-

ing important aspect of financial data, particularly the symmetric effects of volatility,

it has had far less success in capturing extreme observations and skewness in stock

return series. The Traditional Portfolio Theory assumes that the (logarithmic) stock

returns are independent and identically distributed (iid) normal variables which do not

exhibit moment dependencies, but a vast amount of empirical evidence suggest that

the frequency of large magnitude events seems much greater than is predicted by the

normal distribution.

Kama, Haq, Ghani, and Khan (2012) modelled volatility of the Pakistani Rupee and

US Dollar using the GARCH in mean model, EGARCH and TARCH models. Ac-

cording to their results, it was concluded that EGARCH model was the best model

in explaining the volatility behaviour of the exchange rate of Pakistan against the US

Dollar. However financial markets are far from deterministic but stochastic.

Stochastic volatility models are those in which the volatility follows a random process.

They are used in the field of mathematical finance to evaluate derivative securities,

such as options. The name is derived from the models’ treatment of the underlying

security’s volatility as a random process, governed by state variables such as the price

level of the underlying security, the tendency of volatility to revert to some long-run

mean value, and the variance of the volatility process itself, among others. Stochas-

tic volatility models are important since they resolve the shortcomings of the Black-

Scholes model. In particular, models based on Black-Scholes assume that the underly-

ing volatility is constant over the life of the derivative, and unaffected by the changes

in the price level of the underlying security. However, these models cannot explain

long-observed features of the implied volatility surface such as volatility smile and
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skew, which indicate that implied volatility tend to vary with respect to strike price and

expiry. By assuming that the volatility of the underlying price is a stochastic process

rather than a constant, it becomes possible to model derivatives more accurately. The

stochastic volatility models family were proposed by several different researchers via

various models for example Ahn and Wilmott (2005), Philipov and Glickman (2006b),

Gouriéroux, Jasiak, and Sufana (2009), Asai, McAleer, and Yu (2006), Philipov and

Glickman (2006a), among others.

Among the stochastic models, one kind of process called the Wishart process with dif-

ferent construction has been proposed by several independent researchers. The basic

assumption of Wishart process is that returns follow a multivariate distribution, while

the covariance matrix obey a one order autoregressive Markov chain.

Philipov and Glickman (2006), proposed a high dimensional factor multivariate stochas-

tic volatility (MSV) model in which factor covariance matrices are driven by Wishart

random processes. Their framework allows for unrestricted specification of inter tem-

poral sensitivities, which can capture the persistence in volatilities, kurtosis in returns,

and correlation breakdowns and contagion effects in volatilities. The factor structure

allows addressing high dimensional setups used in portfolio analysis and risk man-

agement, as well as modeling conditional means and conditional variances within the

model framework.

It is widely recognized that volatility of returns responds differently to bad news and

good news. In particular, bad news tends to increase the future volatility while same-

sized good news will only increase the future volatility by a smaller amount, or even

cause decrease in the future volatility. The news impact function (NIF) is a powerful

tool for analyzing the volatility asymmetry for GARCH-type models. The idea of the

NIF is to examine the relationship between conditional volatility in period t+1 and the

standardized shock to returns in period t in isolation. The asymmetric effect in volatil-

ity is that the effects of positive returns on volatility are different from those of negative

returns of a similar magnitude and leverage refers to the negative correlation between
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the current return and future volatility. Therefore leverage denotes asymmetry, but not

all asymmetric effects display leverage.

2.2 Wishart process

According to Benabid, Bensusan, El Karoui, et al. (2010), the Wishart process is an ex-

tension of a multidimensional Cox- Ingersoll-Ross process. Thus, the Wishart volatil-

ity model is also an extension of a multidimensional Heston model by considering

diagonal matrices. There is a bijection concerning the volatility parameters between

the Heston model and the Wishart volatility model with this restricted specification.

The Wishart volatility model in the general case has additional properties. Indeed, in

a multidimensional Heston model, the correlation is stochastic but depends on factors

that generates the volatility dynamics. In the case of the Wishart volatility model, the

correlation depends on the volatility factors but depends also on the non diagonal com-

ponents of the Wishart process. It is an important property allowing degrees of freedom

for the correlation and consequently for the skew and the smile. For example, in the

Heston model, the change of sign of the skew is constrained by the correlation coeffi-

cients and the volatility factors whereas in the Wishart volatility model, the change of

sign does not have this constraint.

Wishart processes belong to the class of affine processes and they generalise the no-

tion of positive factor insofar as they are defined on the set of positive semidefinite real

d × d matrices, denoted by S+
d , Gnoatto (2012). Bru proved many interesting proper-

ties of the Wishart process, like non-collision of the eigenvalues (when α = n + 1 )

and the additivity property shared with square Bessel processes. Moreover, she (2013)

computed the Laplace transform of the Wishart process and its integral (the Matrix

Cameron-Martin formula using her terminology), which plays a central role in the ap-

plications. Positive (semi)definite matrices arise in finance in a natural way and the
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nice analytical properties of affine processes on S+
n opened the door to new interest-

ing models which are able to overcome the shortcomings of previous affine models. In

fact, the non linearity of S+
n is the key ingredient that allows for non trivial correlations

among positive factors.

The method based on analysis of the conditional characteristic function of the log-

price given volatility level was introduced by Kang and Kang (2013). In particular,

they found an explicit expression for the conditional characteristic function for the He-

ston model and also perform numerical experiments to demonstrate the performance

and accuracy of their method. They derived the conditional Laplace transform of log-

price YT given the terminal volatility XT using the affine transform formula and the

change of measure techniques. She (2013) presented two kinds of coupled Wishart

process to model volatility that is the homogenous coupled Wishart process and het-

erogenous coupled Wishart process. The authors developed corresponding algorithms

based on the models. The homogenous coupled Wishart process refers to model that

our target objects belong to the same category. A two-chain coupled Wishart process

was introduced. Within such a model, the matrix in one chain is not only related with

the past one from its own chain but also from its neighbors. Unlike the homogenous

one, in such a model, the covariance matrices are coupled with vectors, scalars or even

a system. They modelled how the outside influence from other kinds of data affect the

evolving of covariance matrices and made a simplified setup to illustrate how the het-

erogeneous coupling works and constructed the learning algorithm based on the setups

and tested it on synthetic data.

Da Fonseca, Gnoatto, and Grasselli (2015), priced for different affine stochastic volatil-

ity models some derivatives that recently appeared in the market. These products were

characterised by payoffs depending on both stock and its volatility. Using a Fourier-

analysis approach, they recovered in a much simpler way some results already es-

tablished in the literature for the single factor specification of the volatility and pro-

vided closed-form solution for different products and two multivariate Wishart-based

9



stochastic volatility models. They implemented the formulas for realistic model pa-

rameter values and put results in the broader perspective of model risk.

From the existing literatures, there is still a gap on Wishart Stochastic Volatility Mod-

els with applications to emerging financial markets data. This thesis, therefore, con-

tributes and extends the existing literature on stochastic models specifically on Wishart

Stochastic Volatility Models with applications to emerging financial markets data.
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Chapter 3

Emerging Market Derivatives Pricing

The World Bank classifies countries on the basis of their Gross National Income per

capita into low, middle and high income economies, Lehkonen (2014). According

to Lehkonen(2014), emerging market economies can be classified as countries with

low to middle per capita income. The term refers to a situation in which economy

emerges from a lower income per capita level to higher level that is from developing

to developed economy. It should be noted that the definition of the emerging market

does not necessary mean that the country is small or poor. For example such economic

giants as China and Russia are classified as emerging. Often the term emerging markets

refers, but is not limited, to the countries which opened their financial markets during

late 1980s and early 1990s providing access for foreign investors to domestic markets

as well as allowing domestic investors to trade in international markets. According to

De Santis et al. (1997), an emerging financial market is a term that investors use to

describe a country in which investments would be expected to a achieve higher returns

but accompanied by greater risks.

The following are the characteristics of an emerging financial market:

1. Expected returns are independent of any market risk measures which means that

it is not possible to dependent on the market risk measures to estimate the returns

11



which is very possible in the developed markets.

2. Interest rate is volatile which means that interest rates are not stable.They keep

changing every time.

3. Returns are higher. Returns are the benefit to an investor. High returns means the

investment gains compare favorably to investment cost. As a performance mea-

sure, returns are used to evaluate the efficiency of an investment or to compare

the efficiency of a number of different investments. In purely economic terms, it

is one way of considering profits in relation to capital invested.

3.1 Derivative pricing under one risky asset

Consider a financial market consisting of a risk-free asset S0 and a risky asset S. The

price dynamic of the standard risk free asset with price process S0 is given by;

dS0(t) = r(t)S0(t)dt (3.1)

where the short rate r(t) is allowed to be either a deterministic process or a stochastic

process.

The price dynamic of the standard risky asset with price process S is given by;

dS(t) = µS(t)dt+ S(t)σdW (t) (3.2)

where W (t) is a wiener process. Applying Ito’s lemma to the function C = C[S, t],

gives the option dynamic as:

dC =
∂C

∂t
dt+

∂C

∂S
dS +

σ2

2
S2∂

2C

∂S2
dt (3.3)
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Consider a portfolio given by;

Π = −C + bS

The dynamics of this portfolio are;

dΠ = −dC + bdS (3.4)

Substituting equation (3.3) into equation (3.4) gives ;

dΠ =

(
−∂C
∂t
− σ2

2
S2∂

2C

∂S2

)
dt+

(
b− ∂C

∂S

)
dS (3.5)

Substituting equation (3.2) into equation (3.5);

dΠ =

(
−∂C
∂t
− σ2

2
S2∂

2C

∂S2
+

[
b− ∂C

∂S

]
µS

)
dt+

(
b− ∂C

∂S

)
σSdW (3.6)

Let b = ∂C
∂S

, So;

dΠ =

(
−∂C
∂t
− σ2

2
S2∂

2C

∂S2

)
dt

For the absence of arbitrage, it must hold that;

dΠ = rΠdt

So

∂C

∂t
+ rS

∂C

∂S
+

1

2
S2σ2∂

2C

∂S2
− rC = 0 (3.7)

Equation (3.7) is a second-order partial differential equation (PDE). What determines

how the equation applies to a particular derivative is given by the boundary condition.

13



For the call option, the boundary condition at maturity is given by;

C(S(T ), T ) = Max(S(T )−K, 0) (3.8)

where K is the exercise price.

According to Björk (2009), solving the second order differential equation (3.7) to-

gether with the boundary condition in equation (3.8) gives the Black-Scholes formula.

Let S(t) = s where t is the initial time;

C(t, s) = sN(d1)− e−r(T−t)KN(d2)

d1(t, s) =
1

σ
√
T − t

[
ln(

s

K
) + [r − 1

2
σ2](T − t)

]
d2(t, s) = d1(t, s)− σ

√
T − t

3.2 Multidimensional derivative pricing

In this section, a generalization of the Black Scholes model to the case where apart

from the risk free asset, two underlying risky assets are considered. Analysis is carried

out using the classical approach and pricing when the interest rates are stochastic.

Assume a financial market consisting of two risky traded assets: S1(t), S2(t).

The entire asset price vector given by S(t) and in matrix notation given by;

S(t) =

(
S1(t) S2(t)

)′

Under the objective probability measure P , the S- dynamics are given by;

dSi(t) = µiSi(t)dt+ Si(t)
2∑
j=1

σijdW
p
j (t) (3.9)
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for i = 1, 2. W p
1 , W p

2 are independent wiener processes.

The coefficients µi called the vector drift term and σij called the volatility matrix are

assumed to be adapted and volatility matrix σ = {σij}2
i,j=1 is non singular (invertible).

The dynamic of standard risk free asset with price process S0, is given in equation (3.1)

Let W P (t) denote the column vector

W P (t) =

(
W P

1 (t) W P
2 (t)

)′

and define row vector σi = [σi1,σi2]

According to Contreras, Llanquihuén, and Villena (2015), the price dynamics can be

written more compactly as;

dSi(t) = µiSi(t)dt+ Si(t)σidW
P
j (t) (3.10)

for i = 1, 2 and j = 1, 2

Or Come up with the two equations

dS1(t)

S1(t)
= µ1dt+ σ11dW

P
1 (t) + σ12dW

P
2 (t) (3.11)

dS2(t)

S2(t)
= µ2dt+ σ21dW

P
1 (t) + σ22dW

P
2 (t) (3.12)

Before getting the prices, equations (3.11) and (3.12) need to be transformed to risk

neutral which can be done with the help of the multidimensioal Girsanov’s theorem.

Theorem 3.2.1. (Papaioannou (2012, Page 4)) Multidimensional Girsanovs Theorem

Consider a filtration z(t) over a period [0, T ] where T <∞.

Let Λ(t) = (λ1(t), λ2(t), ..., λn(t)) be an n-dimensional process that is z(t)-measurable

15



and satisfies a condition:

E

{
exp

[
1

2

∫ t

0

n∑
i=1

λ2
i (s)ds

]}
<∞,

t ∈ [0, T ]

Define a random process M(t):

M(t) = exp

[
n∑
i=1

(
−
∫ t

0

λi(s)dW
P
i (s)− 1

2

∫ t

0

λ2
i (s)ds

)]

t ∈ [0, T ], where W P
i (t) for i = 1, ..., n is an n-dimensional Brownian motion un-

der probability measure P . Then under the measure Q, WQ
i (t) is a multidimensional

Wiener process defined by:

WQ
i (t) = W P

i (t) +

∫ t

0

λi(u)du

t ∈ 0, T and i = 1, 2, ..., n

Using Theorem 3.2.1 to transform the two equations (3.11) and (3.12) from physical

measure P to risk neutral measure Q gives;

dS1(t)

S1(t)
= rdt+ σ11dW

Q
1 (t) + σ12dW

Q
2 (t) (3.13)

dS2(t)

S2(t)
= rdt+ σ21dW

Q
1 (t) + σ22dW

Q
2 (t) (3.14)
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3.2.1 Infinitesimal generator

Given a markov process whose dynamics in vector form satisfies

dS(t) = K(t, S(t))dt+H(t, S(t))dWt, S(t) ∈ Rn (3.15)

S(0) = m ∈ Rn

A is called an infinitesimal generator of S if given h ∈ C1,2(Rn)

Ah(t, S) =
n∑
i=1

Ki(t, S(t))
∂h(t, S(t))

∂Si
(t, S) +

1

2

n∑
j=1

(H.H ′)ij
∂2h

∂Si∂Sj
(3.16)

where K(t, S) is a vector and H(t, S) is a matrix.

So the infinitesimal generator A is given by

A =
n∑
i=1

Ki(t, S(t))
∂

∂Si
+

1

2

n∑
j=1

(H.H ′)ij
∂2

∂Si∂Sj

If h ∈ C2(R) then equation (3.16) become:

Ah(t, S) = K(t, S(t))
∂

∂S
+

1

2
(H2)

∂2

∂S2

Theorem 3.2.2. (Björk (2009, Page 75)) Multi-Dimensional Feynman-kac formula

Assume F is a solution to the boundary value problem

∂F

∂t
(t, S) +

n∑
i=1

Ki(t, S(t))
∂F (t, S(t))

∂Si
(t, S) +

1

2

n∑
j=1

(H.H ′)ij
∂2F

∂Si∂Sj
− rF = 0

(3.17)

with the boundary condition

17



F (T, S) = φ(S) = φ(S1, ..., Sn) and where S satisfies the stochastic differential equa-

tion (3.15)

Then F has a representation

F (t, S) = e−r(T−t)Et,s(φ(S(T ))) (3.18)

From Theorem(3.2.2), the Feynman-kac formula of the two equations (3.13) and (3.14)

becomes:

∂F

∂t
+rS1

∂F

∂S1

+rS2
∂F

∂S2

+
1

2

(
S2

1C11
∂2F

∂S2
1

+ 2S1S2C12
∂2F

∂S1∂S2

+ S2
2C22

∂2F

∂S2
2

)
−rF = 0

(3.19)

where

HH ′ =

 σ11 σ12

σ21 σ22


 σ11 σ21

σ12 σ22

 =

 σ2
11 + σ2

12 σ11σ21 + σ12σ22

σ21σ11 + σ22σ12 σ2
21 + σ2

22



=

 C11 C12

C21 C22



=
∂F

∂t
+r

(
S1
∂F

∂S1

+ S2
∂F

∂S2

)
+

1

2

(
S2

1C11
∂2F

∂S2
1

+ 2S1S2C12
∂2F

∂S1∂S2

+ S2
2C22

∂2F

∂S2
2

)
−rF = 0

with the boundary condition F (T, S) = φ(S) = φ(S1, S2)

The exchange option payoff φ[S1(T ), S2(T )] = [S1(T )− S2(T )]+

Remark

Black scholes formula can not be used because the strike price is stochastic.

Assume that the contract function φ is homogeneous of degree 1, and that the volatility
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matrix σ is constant. Then the pricing function F is given by:,

F (T, S) = φ(S) = (S1 − S2)
+

= S2

(
S1

S2

− 1

)+

Ft = S2Gt

FS1 = S2GS1(T, Z) = S2GZZS1

FS2 = G+ S2.GZ .

(
−S1

S2
2

)

FS1S1 = GZZ .
1

S2

FS1S2 = GZZ .

(
−S1

S2
2

)

FS2S2 = GZZ .
S2

1

S3
2

Substituting in equation (3.19) gives:

Gt + 0 +
1

2
GZZZ

2(C11 + C22 − 2C12)

G(T, S) = (Z − 1)+, where σz =
√
C11 + C22 − 2C12

G is given by Black Scholes formula:

G(t, Z) = ZN(dZ1 )− e0[1.N(dZ2 )]

where the strike price is 1 , T is the time of maturity and N is the cumulative density

function for a normal distribution N(0, 1)
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dZ1 =
1

σZ
√
T − t

(
ln
Z

1
+

1

2
(σZ)2(T − t)

)
dZ2 = dZ1 − σZ(T − t)

The price of the exchange option

F (t, S1, S2) = S2G

(
t,
S1

S2

)
= S2

(
S1

S2

N(dZ1 )−N(dZ2 )

)
= S1N(dZ1 )− S2N(dZ2 )

3.2.2 Stochastic Interest rates

In this subsection interest rates are considered to be stochastic. Stochastic Interest rates

follow a certain random process and are denoted by r(t).

Definition 3.2.1. A zero coupon bond with maturity date T , also called a T-bond, is

a contract which guarantees the holder 1 dollar to be paid on the date T . The price at

time t of a bond with maturity date T is denoted by p(t, T ) and given by;

P (t, T ) = EQ
t (e−

∫ T
t r(s)ds)

The dynamics of r(t) can be given by:

1. Vasicek interest rate model :dr(t) = [a − br(t)]dt + σrdW
Q(t) which has low

probability that interest rate will be negative and applies to short term normally

distributed interest rates.

2. Cox Ingersoll Ross (CIR) model: dr(t) = [a − br(t)]dt + σr[
√
r(t)]dWQ(t)

which has positive interest rates and applies to long time non-gaussian dis-

tributed interest rates.
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Both models that is Vasicek interest rate model and Cox Ingersoll Ross model have

affine term structure which in this case means that the bond price can be written in

such a way that the logarithm of the bond price is an affine function of r.

3.2.3 Affine term structure

Definition 3.2.2. According to Björk (2009), if the term structure p(t, T ); 0 ≤ t ≤ T, T > 0

has the form

p(t, T ) = F (t, r(t), T )

where F has the form

F (t, r(t), T ) = eA(t,T )−B(t,T )r

where A and B are deterministic functions then the model is said to possess an affine

term structure (ATS).

Proposition 3.2.1. Consider the Q− dynamics

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dw(t)

Assume that µ and σ are of the form

µ(t, r) = α(t)r + β(t)

σ(t, r) =
√
γ(t)r + δ(t)

Then the model admits an ATS of the form F (t, r(t), T ) = eA(t,T )−B(t,T )r, where A

and B satisfy the system

Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1
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At(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T )

B(T, T ) = 0, A(T, T ) = 0

Therefore from the proposition (3.2.1), the ATS of the dynamics:

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW (t) (3.20)

exists if µ and σ2 are both affine that is linear plus a constant functions of r.

Vasicek interest rate model: dr(t) = (a− br(t))dt+ σrdW
Q(t) has an ATS

proof 3.2.1. The term structure equation of the model is given by:

∂F

∂t
+ (a− br(t))∂F

∂r
+

1

2
σ2∂

2F

∂r2
− rF = 0 (3.21)

F (T, r) = 1

Since µ and σ2 are affine then F (t, r(t), T ) = eA(t,T )−B(t,T )r

Therefore:
∂F

∂t
= Ft = (−Bt(t, T )r + At(t, T ))F

∂F

∂r
= Fr = −B(t, T )F

∂2F

∂r2
= Frr = B2(t, T )F

Substituting in equation (3.21), gives;

Bt(t, T )− aB(t, T ) = −1 (3.22)
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At(t, T ) = bB(t, T )− 1

2
σ2B2(t, T ) (3.23)

B(T, T ) = 0, A(T, T ) = 0

Equation (3.22) is, for each fixed T, a simple linear ODE in the t-variable which can be

solved.

Bt(t, T )− aB(t, T ) = −1

Let B(t, T ) be Y

Then equation (3.22) become:

dY

dt
+ aY = −1 (3.24)

The integrating factor is given by e
∫
adt = eat

Multiplying equation (3.24) by the integrating factor, gives;

dY

dt
.eat + aY.eat = −1.eat (3.25)

The left hand side of the equation (3.25) is the same as d
dt

(Y eat)

Therefore:
d

dt
(Y eat) = −eat

Y eat =

∫ T

t

−eaudu

Y eat = −1

a
[eaT − eat]

Y = −1

a

eaT − eat

eat

Y = −1

a
(ea(T−t) − 1)
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Which implies that:

B(t, T ) = −1

a
(ea(T−t) − 1)

B(t, T ) is substituted in equation (3.23) to get A(t, T ).

so A(t, T ) become:

A(t, T ) = b

∫ T

t

B(u, T )du− 1

2
σ2

∫ T

t

B2(u, T )du

3.2.4 Zero Coupon bond pricing using Cox-Ingersoll-Ross(CIR)

model

Cox-Ingersoll-Ross(CIR) model also called squared bessel process is given by:

dr(t) = (a− br(t))dt+ σ(
√
r(t))dWQ(t)

Suppose that

P (t, T ) = EQ
t (e−

∫ T
t r(s)ds) = F (t, r, T )

The term structure equation of the model is given by:

∂F

∂t
+ (a− br(t))∂F

∂r
+

1

2
σ2r

∂2F

∂r2
− rF = 0 (3.26)

F (T, r) = 1

Since the model is affine then:

P (t, T ) = EQ
t (e−

∫ T
t r(s)ds) = F (t, r, T ) = eA(t,T )−B(t,T )r (3.27)

From equation (3.27):
∂F

∂r
= −BF
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∂2F

∂r2
= B2F

∂F

∂t
=

(
∂A

∂t
− ∂B

∂t
r

)
F

Substituting in equation (3.26),gives:

(
∂A

∂t
− ∂B

∂t
r

)
F −BF (a− br) +

1

2
B2Fσ2

2r − rF = 0 (3.28)

Therefore the Riccati ordinary differential equations of the equation (3.28) are given

by

−∂B
∂t

+ bB +
1

2
σ2

2B
2 − 1 = 0 (3.29)

∂A

∂t
− aB = 0 (3.30)

A(T, T ) = B(T, T ) = 0

Solving equations (3.29) and (3.30), gives A and B which is substituted in equation

(3.27) to get the price.

The CIR model can be seen as the square of Vasicek interest rate model. Thus consid-

ering the equality

CIR model = Vasicek interest rate model where the Vasicek interest rate model is given

by

dS(t) = (a− bS)dt+ σdW (t)

Let Σ = S2

Then let f = Σ = S2, it implies that ft = 0, fs = 2s, fss = 2

Applying Ito’s formula gives;

df = dΣ = 0dt+ 2sds+
1

2
2dt
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dΣ = 2sds+ 1dt

But S =
√

Σ and S = W . So:

dΣ = 2
√

ΣdW + 1dt

Therefore for CIR model to be the square of Vasicek interest rate model,

The parameters of CIR must be as below:

a = 1, b = 0 and σ = 2

If S ∈ R then Σ ∈ R > 0 since Σ = S2. And if S ∈ R2, is Σ ∈ R2 > 0?

But if S ≥ 0 then there exist S ∈ R2, such that S2 = Σ

⇒ S.S = Σ, which is not a well defined product.

So a vector product such that the result is another vector is defined

Consider S ∈ Sym2×2 that is S = S ′. Recall that if S = W and Σ = S2 then

dΣ = 2
√

ΣdW + 1dt (square root process), this idea is extended.

Let S =

 W11 W12

W21 W22

 where Wij 6= Wem ∀(i, j) 6= (e,m)

Let S(t).S ′(t) = Σ(t) with dS(t) = MSdt+QdW (t) an Ornstein-Uhlenbeck process.

Then:

dΣ(t) = Σ(t+ dt)− Σ(t)

dΣ(t) = S(t+ dt).S ′(t+ dt)− S(t).S ′(t)

dΣ(t) = (S(t) +MSdt+QdW (t))(S(t) +MSdt+QdW (t))′ − S(t).S ′(t)

But dt.dt = 0, dW.dt = 0 and dW.dW = dt

Therefore:

dΣ(t) = S(t).S ′(t)M ′dt+MS(t).S ′(t)dt+KQQ′dt+ SdW ′Q′ +QdWS ′
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dΣ = (KQ′Q+MΣ(t) + Σ(t)M ′)dt+Q
√

Σ(t)dW + dW ′
√

Σ(t)Q′ (3.31)

Equation (3.31) is called Wishart stochastic differential equation where K ∈ R > 0,

M ∈Mn×n and Q ∈Mn×n.

Equation (3.31) can be written as:

dΣ = (ΩΩ′ +MΣ(t) + Σ(t)M ′)dt+Q
√

Σ(t)dW + dW ′
√

Σ(t)Q′ (3.32)

where

ΩΩ′ = KQ′Q, Ω is invertible

Computations in the two dimensional case for the Wishart stochastic differential equation(3.32)

are developed. This means that the Wishart process Σt satisfies the following SDE:

dΣ = d

 Σ11 Σ12

Σ21 Σ22

 =


 Ω11 Ω12

Ω21 Ω22


 Ω11 Ω21

Ω12 Ω22

+

 M11 M12

M21 M22


 Σ11 Σ12

Σ21 Σ22


 dt

+


 Σ11 Σ12

Σ21 Σ22


 M11 M21

M12 M22


 dt+

√√√√√√
 Σ11 Σ12

Σ21 Σ22


 dW11 dW12

dW21 dW22


 q11 q12

q21 q22



+

 q11 q21

q12 q22


 dW11 dW21

dW12 dW22


√√√√√√
 Σ11 Σ12

Σ21 Σ22

 (3.33)
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Let:

 σ11 σ12

σ21 σ22

 =

 σ11 σ12

σ12 σ22

 =

√√√√√√
 Σ11 Σ12

Σ21 Σ22

 =

√√√√√√
 Σ11 Σ12

Σ12 Σ22

 (3.34)

This is because Σ is symmetric.

So from equation (3.34);

 Σ11 Σ12

Σ12 Σ22

 =

 σ11 σ12

σ12 σ22


2

=

 σ2
11 + σ2

12 σ11σ12 + σ12σ22

σ11σ12 + σ12σ22 σ2
12 + σ2

22



dΣ = d

 Σ11 Σ12

Σ12 Σ22

 =


 Ω11 Ω12

Ω21 Ω22


 Ω11 Ω21

Ω12 Ω22

+

 M11 M12

M21 M22


 Σ11 Σ12

Σ12 Σ22


 dt

+


 Σ11 Σ12

Σ12 Σ22


 M11 M21

M12 M22


 dt+

 σ11 σ12

σ12 σ22


 dW11 dW12

dW21 dW22


 q11 q12

q21 q22



+

 q11 q21

q12 q22


 dW11 dW21

dW12 dW22


 σ11 σ12

σ12 σ22

 (3.35)

dΣ11 = (Ω2
11+Ω2

12+2M11Σ11)dt+2σ11(q11dW11+q21dW12)+2σ12(q11dW12+q21dW22)

(3.36)

Since (dt)2 = 0, (dW )2 = dt then:
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d < Σ11,Σ11 >= (dΣ11)2 = 4Σ11(q2
11 + q2

21)dt

dΣ11 = (Ω2
11 + Ω2

12 + 2M11Σ11)dt+ α
√

Σ11dW̃

d < Σ22,Σ22 >= 4Σ22(q2
12 + q2

22)dt

d < Σ11,Σ22 >= 4Σ12(q11q12 + q21q22)dt

These will be applied in the generating of the infinitesimal generator of the process.

3.2.5 Infinitesimal generator of Wishart process

The infinitesimal generator is used in the getting of the moment generating function.

Recall that if

dS(t) = K(t, S(t))dt+H(t, S(t))dWt

then;

A = K
∂

∂S
+

1

2
H2 ∂

2

∂S2

Consider;

dΣ = (ΩΩ′ +MΣ(t) + Σ(t)M ′)dt+Q
√

Σ(t)dW + dW ′
√

Σ(t)Q′ (3.37)

The infinitesimal generator of equation (3.37) is given by;

A = Tr[(ΩΩ′ +MΣ(t) + Σ(t)M ′)D + 2ΣDQ′QD] (3.38)

where;

Tr(2ΣDQ′QD) = 2Tr(ΣDQ′QD)
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and;

D =

 ∂
∂Σ11

∂
∂Σ12

∂
∂Σ21

∂
∂Σ22

 (3.39)

D is a matrix differential operator and not symmetric

2ΣDQ′QD = 2

 Σ11 Σ12

Σ12 Σ22


 ∂

∂Σ11

∂
∂Σ12

∂
∂Σ21

∂
∂Σ22


 q11 q21

q12 q22


 q11 q12

q21 q22


 ∂

∂Σ11

∂
∂Σ12

∂
∂Σ21

∂
∂Σ22


(3.40)

After some computations gives:

Tr(2ΣDQ′QD) =
1

2
{< Σ11,Σ11 >

∂2

∂Σ2
11

+4 < Σ12,Σ12 >
∂2

∂Σ2
12

+ < Σ22,Σ22 >
∂2

∂Σ2
22

+4 < Σ11,Σ12 >
∂2

∂Σ11∂Σ12

+2 < Σ11,Σ22 >
∂2

∂Σ11∂Σ22

+4 < Σ12,Σ22 >
∂2

∂Σ12∂Σ22

}

(3.41)

3.2.6 Derivative pricing using a Wishart process

Computing the moment generating function given in equation (3.42) below is needed.

ϕ(t,Λ, Λ̃) = Et(e
Tr(ΛΣT )+Tr

∫ T
t Λ̃Σsds) (3.42)

But Wishart process being affine gives;

ϕ(t,Λ, Λ̃) = F (t,Σ) = eTr(A1(t,T )Σt+A2(t,T )) (3.43)
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Apply the Feynman Kac formula;

∂F

∂t
+ AF + Tr(Λ̃Σ)F = 0 (3.44)

F (T,Σ) = eTr(ΛΣ)

Tr(
∂A1

∂t
Σ +

∂A2

∂t
)F + Tr[(ΩΩ′ +MΣ + ΣM ′)D + 2ΣDQ′QD]F + Tr(Λ̃Σ)F = 0

(3.45)

Tr(
∂A1

∂t
Σ+

∂A2

∂t
)F+Tr[(ΩΩ′+MΣ+ΣM ′)DF+(2ΣDQ′QD)F ]+Tr(Λ̃Σ)F = 0

(3.46)

That is

DeTr(A1Σt+A2) =

 ∂(eTr(A11Σ11+A2 ))
∂Σ11

∂(eTr(A12Σ12+A2))
∂Σ12

∂(eTr(A21Σ21+A2))
∂Σ21

∂(eTr(A22Σ22+A2))
∂Σ22



=

 A11e
Tr(A11Σ11+A2) A12e

Tr(A12Σ12+A2)

A21e
Tr(A21Σ21+A2) A22e

Tr(A22Σ22+A2)



Tr(
∂A1

∂t
Σ+

∂A2

∂t
)+Tr[(ΩΩ′+MΣ+ΣM ′)A1+2ΣA1Q

′QA1]+Tr(Λ̃Σ) = 0 (3.47)

Tr(Σ(
∂A1

∂t
+ A1M +M ′A1 + 2A1Q

′QA1 + Λ̃)) + Tr(
∂A2

∂t
+ ΩΩ′A1) = 0 (3.48)

The matrix Riccati equations are:

∂A1

∂t
+ A1M +M ′A1 + 2A1Q

′QA1 + Λ̃ = 0 (3.49)

A1(T, T ) = Λ

∂A2

∂t
+ ΩΩ′A1 = 0 (3.50)

A2(T, T ) = 0
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Implying ∫ T

t

A2(T ) = −
∫ T

t

ΩΩ′A1ds

A2(t, T ) =

∫ T

t

ΩΩ′A1ds (3.51)

Solve for A1 by Riccati matrix linearlization

Let A1 = H−1G

Then HA1 = G

∂G

∂t
=
∂H

∂t
A1 +

∂A1

∂t
H (3.52)

∂G

∂t
=
∂H

∂t
A1 −H(A1M +M ′A1 + 2A1Q

′QA1 + Λ̃) (3.53)

∂G

∂t
=
∂H

∂t
A1 −HA1M −HM ′A1 − 2HA1Q

′QA1 −HΛ̃ (3.54)

∂G

∂t
=
∂H

∂t
A1 −GM −HM ′A1 − 2GQ′QA1 −HΛ̃ (3.55)
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Implying

∂H

∂t
A1 −

∂G

∂t
=

(
∂H
∂t

∂G
∂t

) A1

1



=

(
H G

) M ′ −Λ̃

2Q′Q −M


 A1

−1


 ∂H′

∂t

∂G′

∂t



=

 M 2QQ′

−Λ̃′ −M ′


 H ′

G′



H(T ) = 1, G(T ) = Λ

Recall that given:

Ẋ = aX , with X(T ) = b

XT = e(T−t)aXt

Xt = e−(T−t)aXT

So in matrix case,

 H ′

G′

 (t) = e

−(T−t)


M 2QQ′

−Λ̃′ −M ′



H ′(T )

G′(T )


(3.56)

 H ′

G′

 (t) = e

−(T−t)


M 2QQ′

−Λ̃′ −M ′




1

Λ′


(3.57)
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So after getting the values of G and H , A1 can be got.

3.3 Wishart Stochastic Volatility Model

According to Da Fonseca et al. (2015), Wishart Stochastic Volatility Model extends

the original Heston (1993) model to the case where the volatility is described by the

Wishart process, a matrix-valued stochastic process introduced by Bru (1991). Within

the model the dynamics for the price are given by the following SDE:

dSt = Stµdt+ StTr(
√

Σt(dWtR
′ + dBt

√
1−RR′)) (3.58)

where Wt, Bt ∈ Mn (the set of square matrices) are composed by n2 independent

Brownian motions under the risk-neutral measure (Bt and Wt are independent), R ∈

Mn represents the correlation matrix and Σt belongs to the set of symmetric n × n

positive semi-definite matrices. In this specification the volatility is multi-dimensional

and depends on the elements of the matrix process Σt, which is assumed to satisfy

the dynamics given in the stochastic differential equation (1.1). However, the existing

Wishart Stochastic Volatility model does not cater for some of the characteristics of

the emerging financial markets like interest rate being volatile. Basing on these char-

acteristics, a modified model was got which accounts for risk premium (the volatility

matrix in the drift term of the price dynamic accounts for risk premium). The joint

dynamics of logSt and Σt is given by the stochastic differential system:

d logSt = [µ+ (Tr(D1Σt), ..., T r(DnΣt))
′]dt+

√
ΣtdW

s
t (3.59)

dΣt = (KQ′Q+MΣt+ΣtM
′)dt+

√
ΣtdW

σ
t

√
(Q′Q)+

√
(Q′Q)(dW σ

t )′
√

Σt (3.60)

where W s
t and W σ

t are a n-dimensional vector and a (n, n) matrix, respectively, whose

elements are independent unidimensional standard Brownian motions, µ is a constant

n-dimensional vector, K is a scalar such that K > n − 1, and Di, i = 1, ..., n, M , Q
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are (n, n) matrices with Q′Q invertible. Σ
1
2
t is the positive symmetric square root of

the volatility matrix Σt.

3.4 Foreign Exchange derivative pricing

In this section, the newly constructed model is applied in the pricing of European call

option. But since our model is n dimensional, consider n = 2.

Consider the European call C to be a function of S(t)A∗(t, T ), A(t, T ), X, T where

S(t) is the spot domestic currency price of a unit of foreign exchange at time t,A∗(t, T )

is the foreign currency price of a pure discount bond which pays one unit of foreign

exchange at time t+T , A(t, T ) is the domestic currency price of a pure discount bond

which pays one unit of domestic currency at time t + T , X is the domestic currency

exercise price of an option on foreign currency, t is the initial time and T is the expira-

tion time.

The following assumptions are to be considered

C has the general functional form

C = C [S(t)A∗(t, T ), A(t, T ), X, T ]

subjected to the boundary conditions

C [S(t+ T ), X, 0] = max [0, S(t+ T )−X] (3.61)

C [0, A(t, T ), X, T ] = 0 (3.62)

Where equation (3.61) is the terminal value of the call option, which has to be greater

than zero or the strike value and equation (3.62) means that when the spot exchange

value is zero, then option to be bought has a zero value.
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The second assumption has to do with the dynamics of S, A∗, and A. Let dW1, dW2,

dW3 denote standardized Wiener processes with unit instantaneous variances and cor-

relation matrix 
1 ρ

SA∗ ρ
SA

ρ
SA∗ 1 ρ

A∗A

ρ
SA

ρ
A∗A 1

 dt

where ρw = ρw(t, T ) can be a known function of time (t) and the time to maturity of

the bond (T). Assume S, A∗, A follow the Geometric Brownian Motions

dS

S
= µ

S
(t)dt+ σ

S
(t)dW1 (3.63)

dA∗

A∗
= µ

A∗ (t, T )dt+ σ
A∗ (t, T )dW2 (3.64)

dA

A
= µ

A
(t, T )dt+ σ

A
(t, T )dW3 (3.65)

Basing on the assumption above, new variables dH , dW4 can be defined and using

Ito’s product rule,

dH

H
=
d(SA∗)

SA∗
= (µ

S
+ µ

A∗ + ρ
SA∗σS

σ
A∗ )dt+ σ

S
dW1 + σ

A∗dW2

with a correlation coefficient between them ρ
SA∗dt = dW1dW2

dH

H
= µ

H
(t, T )dt+ σ

H
(t, T )dW4 (3.66)
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and write the correlation matrix of dW4, dW3 as

 1 ρ
HA

ρ
HA

1

 dt

where ρ
HA

= ρ
HA

(t, T ).

Applying Ito’s lemma to the function

C = C [S(t)A∗(t, T ), A(t, T ), X, T ] = C [H(t, T ), A(t, T ), X, T ]

gives the option dynamic as:

dC =
∂C

∂t
dt+

∂C

∂H
dH+

∂C

∂A
dA+

1

2

(
∂2C

∂H2
H2σ2

H + 2
∂2C

∂H∂A
HAρ

HA
σHσA +

∂2C

∂A2
A2σ2

A

)
dt

(3.67)

Let θ represent elements involving second derivative and τ = T − t then dt = −dτ , so

equation (3.67) becomes:

dC =
∂C

∂τ
dτ +

∂C

∂H
dH +

∂C

∂A
dA− 1

2
θdτ

Let F be a portfolio composed of one option, b units of H , and p units of A, then:

F = C + bH + pA

The dynamics of this portfolio are :

dF = dC + bdH + pdA
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Choose b, p such that b = − ∂C
∂H

, p = −∂C
∂A

, then:

dF =

(
∂C

∂τ
− 1

2
θ

)
dτ

If the portfolio F uses no wealth, then in equilibrium it should yield a zero return.

F = C − ∂C

∂H
H − ∂C

∂A
A (3.68)

That is, if F = 0, then dF = 0 which implies that

∂C

∂τ
=

1

2
θ (3.69)

Look for a function C(H,A,X, T ) that solves equation (3.69) and is also subjected to

the boundary conditions (3.61- 3.62). According to Grabbe (1983), the solution to the

European call is given by:

C(t) = S(t)A∗(t, T )N(d1)−XA(t, T )N(d2) (3.70)

where N(di) is the cumulative standard normal distribution with mean 0 and variance

1 and

d1 =
ln(SA

∗

XA
) + σ2

2
T

σ
√
T

d2 =
ln(SA

∗

XA
)− σ2

2
T

σ
√
T

σ2 =

∫ T

0

1

T
[σ2
H(t+ T − u, u) + σ2

A(t+ T − u, u)

− 2ρ
HA

(t+ T − u, u)σH(t+ T − u, u)σA(t+ T − u, u)]du
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But equation (3.69) shall be solved numerically and compared with that of stochastic

correlation.

3.4.1 Stochastic correlation

Consider equation (3.66) and (3.65)

dH

H
= µH(t, T )dt+ σH(t, T )dW4

dA

A
= µA(t, T )dt+ σA(t, T )dW3

with a correlation coefficient between them

dW3dW4 = ρdt

where

dρ = a(m− ρ)dt+ c
√

1− ρ2dW5 (3.71)

a(m−ρ) is the drift term, c
√

1− ρ2 is the volatility term and the bound for correlation

is −1 ≤ ρ ≤ 1. Assume

dW4dW5 = ρ1dt

dW3dW5 = ρ2dt

where ρ1 and ρ2 are constants.

The correlation matrix become


1 ρ ρ1

ρ 1 ρ2

ρ1 ρ2 1

which must be positive definite that is

its determinant is zero or positive. Using Ito’s Lemma, a three-dimensional stochastic
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differential of the differential equations 3.66, 3.65 and 3.71 is obtained.

dC =
∂C

∂H
dH +

∂C

∂A
dA+

∂C

∂ρ
dρ+ (

∂C

∂t
+

1

2

∂2C

∂H2
H2σ2

H +
1

2

∂2C

∂A2
A2σ2

A +
1

2

∂2C

∂ρ2
ρ2σ2

ρ

+
∂2C

∂H∂A
HAρσHσA +

∂2C

∂H∂ρ
Hρ1σHσρ +

∂2C

∂A∂ρ
Aρ2σAσρ)dt (3.72)

where σρ = c
√

1− ρ2

Assume that, under the risk-neutral measure Q, H and A are geometric Brownian

motions with mean r (the risk-free interest rate) and constant volatilities σH > 0,

σA > 0, with respect to Brownian motions W4, W3 satisfying;

dH

H
= rdt+ σH(t, T )dW4 (3.73)

dA

A
= rdt+ σA(t, T )dW3 (3.74)

Substituting equations (3.73), (3.74) and (3.71) in equation (3.72) gives;

dC = [
∂C

∂t
+
∂C

∂H
rH +

∂C

∂A
rA+

∂C

∂ρ
a(m− ρ) +

1

2

∂2C

∂H2
H2σ2

H +
1

2

∂2C

∂A2
A2σ2

A +
1

2

∂2C

∂ρ2
ρ2σ2

ρ

+
∂2C

∂H∂A
HAρσHσA +

∂2C

∂H∂ρ
Hρ1σHσρ +

∂2C

∂A∂ρ
Aρ2σAσρ]dt+

∂C

∂H
σHHdW4

+
∂C

∂A
σAAdW3 +

∂C

∂ρ
σρdW5 (3.75)

To obtain the price of the option, following the Black-Scholes analysis, consider two

different options, C1(H,A,K1, T1) and C2(H,A,K2, T2) on H ,A, ρ ;

Define a portfolio F by

F = C1 + λ1C2 + λ2H + λ3A
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where λ1, λ2 and λ3 are units

Assume that F is self-financing. It follows that the dynamics of this portfolio are :

dF = dC1 + λ1dC2 + λ2dH + λ3dA

dF = [
∂C1

∂t
+
∂C1

∂H
rH +

∂C1

∂A
rA+

∂C1

∂ρ
a(m− ρ) +

1

2

∂2C1

∂H2
H2σ2

H +
1

2

∂2C1

∂A2
A2σ2

A +
1

2

∂2C1

∂ρ2
ρ2σ2

ρ

+
∂2C1

∂H∂A
HAρσHσA +

∂2C1

∂H∂ρ
Hρ1σHσρ +

∂2C1

∂A∂ρ
Aρ2σAσρ]dt+ λ1[

∂C2

∂t
+
∂C2

∂H
rH

+
∂C1

∂A
rA+

∂C1

∂ρ
a(m− ρ) +

1

2

∂2C2

∂H2
H2σ2

H +
1

2

∂2C2

∂A2
A2σ2

A +
1

2

∂2C2

∂ρ2
ρ2σ2

ρ +
∂2C2

∂H∂A
HAρσHσA

+
∂2C2

∂H∂ρ
Hρ1σHσρ +

∂2C2

∂A∂ρ
Aρ2σAσρ]dt+ λ2rHdt+ λ3rAdt+ [

∂C1

∂H
σHH +

∂C2

∂H
λ1σHH

+ λ2σHH]dW4 + [
∂C1

∂A
σAA+

∂C2

∂A
λ1σAA+ +λ3σAA]dW3 + [

∂C1

∂ρ
+ λ1

∂C2

∂ρ
][σρ]dW5

For the portfolio F to be risk neutral, the factors in front of dW3,dW4 and dW5 need

to be zero. This can be achieved by letting λ1, λ2 and λ3 to be;

λ1 = −∂C1/∂ρ

∂C2/∂ρ

λ2 =
∂C1/∂ρ

∂C2/∂ρ

∂C2

∂H
− ∂C1

∂H

λ3 =
∂C1/∂ρ

∂C2/∂ρ

∂C2

∂H
− ∂C1

∂H
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The choices of λ1, λ2, λ3 above makes the portfolio risk neutral, so by absence of

arbitrage it must hold that dF = rFdt. This means that

Φ1dt−
∂C1/∂ρ

∂C2/∂ρ
Φ2dt+ (

∂C1/∂ρ

∂C2/∂ρ

∂C2

∂H
− ∂C1

∂H
)rHdt+ (

∂C1/∂ρ

∂C2/∂ρ

∂C2

∂H
− ∂C1

∂H
)rAdt

= r[C1 − C2(
∂C1/∂ρ

∂C2/∂ρ
) + (

∂C1/∂ρ

∂C2/∂ρ

∂C2

∂H
− ∂C1

∂H
)H + (

∂C1/∂ρ

∂C2/∂ρ

∂C2

∂H
− ∂C1

∂H
)A]dt

(3.76)

where Φ1, Φ2 refer to the dt terms of dC1 respectively dC2.

Simplifying equation (3.76), gives;

Φ1 − rC1

∂C1/∂ρ
dt =

Φ2 − rC2

∂C2/∂ρ
dt (3.77)

Clearly the left-hand side of equation (3.77) does not depend on C2, and the right-hand

side does not depend on C1, so both sides of the equation do not depend on C1 and C2,

so are equal to a function y(H,A, ρ, t) = ρy, which can be considered a premium for

correlation risk. This tells us that the price process of a derivative C is a solution of

the PDE

Φ− rC − yρ∂C
∂ρ

= 0 (3.78)

where Φ is the dt term of dC. Writing equation (3.78) out fully gives us;

∂C

∂t
+
∂C

∂H
rH +

∂C

∂A
rA+

1

2

∂2C

∂H2
H2σ2

H +
1

2

∂2C

∂A2
A2σ2

A +
1

2

∂2C

∂ρ2
ρ2σ2

ρ

+
∂2C

∂H∂A
HAρσHσA+

∂2C

∂H∂ρ
Hρ1σHσρ+

∂2C

∂A∂ρ
Aρ2σAσρ−rC+[a(m−ρ)−yρ]

∂C

∂ρ
= 0

(3.79)
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Since bonds are with zero coupon bonds, equation (3.79) becomes;

∂C

∂t
+

1

2

∂2C

∂H2
H2σ2

H +
1

2

∂2C

∂A2
A2σ2

A +
1

2

∂2C

∂ρ2
ρ2σ2

ρ

+
∂2C

∂H∂A
HAρσHσA+

∂2C

∂H∂ρ
Hρ1σHσρ+

∂2C

∂A∂ρ
Aρ2σAσρ+[a(m−ρ)−yρ]

∂C

∂ρ
= 0

(3.80)

Equation (3.80) is valid for any option on foreign exchange with underlying measured

in foreign currency but paid in domestic one. Since A is the only one which can be

hedged, a solution independent of the exchange rate could be figured out. Rewriting

the solution C(H,A, t) = V (H, t) and letting τ = T − t, gives:

∂V

∂τ
=

1

2

∂2V

∂H2
H2σ2

H +
1

2

∂2V

∂ρ2
ρ2σ2

ρ +
∂2V

∂H∂ρ
Hρ1σHσρ + [a(m − ρ) − yρ]

∂V

∂ρ

(3.81)

The payoff at expiration time C(H,T ) = ĀMax[H(T ) − X, 0], where Ā is a fixed

exchange rate

Equation (3.81) is solved by finite difference methods that is the Crank-Nicolson method

to increase the accuracy and stability of the solution .
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3.4.2 Crank-Nicolson Method

Since equation (3.81) has three variables, three indices are employed. Let the time

variable be indexed as i, H as j and ρ as k so that our equation is then discretized as;

V i+1
j,k − V i

j,k

∆τ
=
H2σ2

H

2

(
1

2

[
V i+1
j+1,k − 2V i+1

j,k + V i+1
j−1,k

(∆H)2
+
V i
j+1,k − 2V i

j,k + V i
j−1,k

(∆H)2

])

+
ρ2σ2

ρ

2

(
1

2

[
V i+1
j,k+1 − 2V i+1

j,k + V i+1
j,k−1

(∆ρ)2
+
V i
j,k+1 − 2V i

j,k + V i
j,k−1

(∆ρ)2

])

+ Hρ1σHσρ

(
1

2

[
V i+1
j+1,k − 2V i+1

j,k + V i+1
j,k−1

∆H∆ρ
+
V i
j+1,k − 2V i

j,k + V i
j,k−1

∆H∆ρ

])

+ [a(m− ρ)− yρ]
V i+1
j,k − V i

j,k

∆ρ
(3.82)

Equation (3.82) can be organized as;

V i+1
j,k

∆τ
− (

H2σ2
H

4(∆H)2
(V i+1

j+1,k − 2V i+1
j,k + V i+1

j−1,k) +
ρ2σ2

ρ

4(∆ρ)2
(V i+1

j,k+1 − 2V i+1
j,k + V i+1

j,k−1)

+
Hρ1σHσρ
2∆H∆ρ

(V i+1
j+1,k − 2V i+1

j,k + V i+1
j,k−1) +

[a(m− ρ)− y]

∆ρ
V i+1
j,k )

=
V i
j,k

∆τ
+

H2σ2
H

4(∆H)2
(V i

j+1,k − 2V i
j,k + V i

j−1,k) +
ρ2σ2

ρ

4(∆ρ)2
(V i

j,k+1 − 2V i
j,k + V i

j,k−1)

+
Hρ1σHσρ
2∆H∆ρ

(V i
j+1,k − 2V i

j,k + V i
j,k−1) +

[a(m− ρ)− ρy]

∆ρ
V i
j,k

Now let

W = ∆τ
H2σ2

H

4(∆H)2
, X = ∆τ

ρ2σ2
ρ

4(∆ρ)2
, Y = ∆τ

Hρ1σHσρ
2∆H∆ρ

, Z = ∆τ
[a(m− ρ)− ρy]

∆ρ
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such that;

V i+1
j,k − [W (V i+1

j+1,k − 2V i+1
j,k + V i+1

j−1,k) +X(V i+1
j,k+1 − 2V i+1

j,k + V i+1
j,k−1)

+ Y (V i+1
j+1,k − 2V i+1

j,k + V i+1
j,k−1) + ZV i+1

j,k ]

= V i
j,k +W (V i

j+1,k − 2V i
j,k + V i

j−1,k) +X(V i
j,k+1 − 2V i

j,k + V i
j,k−1)

+ Y (V i
j+1,k − 2V i

j,k + V i
j,k−1) + ZV i

j,k (3.83)

3.4.3 Algorithms for solving the equations

In this subsection, the way of how to write and structure the programs required for

solving the equations is considered. The program written for the numerical solution

works as follows:

1. Define variables and ask user for input

2. If the user has chosen a Swaption, ask for spot rates and calculate value with

which to multiply the final call solution

3. Resize matrices and vectors appropriately

4. Fill in τ , ρ and H vectors with step values

5. Fill in the initial values

6. Loop through all τ steps

(i) Enter in boundary values

(ii) Define entries of M (M is a tri-diagonal matrix)

(iii) Define entries in right hand side vector

(iv) Use the Gauss-Seidel iteration to calculate solution

(v) Insert solution back into for V for that time step
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(vi) Set previous solution to be new solution for use in the next time step

7. Output final row of solution to file to get prices for V at time t = 0.

3.4.4 Testing for stationarity

Exchange rates data and returns were tested for stationarity using the Augumented

Dickey Fuller (ADF). The Dickey Fuller unit roots test are based on the following

three regression forms:

1. With out constant and trend is4Yt = σYt−1 + ut

2. With constant is4Yt = α + σYt−1 + ut

3. With constant and trend4Yt = α + βT + σYt−1 + ut

For Augmented Dickey Fuller (ADF) test, the following hypothesis is used:

H0 : σ = 0(unitroot)

H1 : σ 6= 0

Decision rule

1. If the ADF statistic> ADF critical value, it implies not to reject null hypothesis

and hence implying non stationarity.

2. If the ADF statistic< ADF critical value, it implies reject null hypothesis and

hence implying stationarity.

3.4.5 Model Estimation

Under this study, the models will be estimated using Maximum Likelihood Estimation.

The black scholes model under risk neutral probability is given by:

dS(t) = rS(t)dt+ S(t)σdW (t) (3.84)
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Using Itô lemma, the exact solution is given by:

S(t) = S(0) exp[(rt −
1

2
σ2)t+ σW (t)] (3.85)

In the black scholes model, the unknown parameters are r and σ and denote them by

θ = (r, σ). Before we estimate the parameters, we have to take the logarithm of the

stock prices and calculate the returns of the Black Scholes Model which is given by:

R(t+ dt) = lnS(t+ dt)− lnS(t) (3.86)

(r − 1

2
σ2)dt+ σW (t) (3.87)

where s = 1, µ = r − 1
2
σ2, dt = 1, R(t+ dt) is also a Geometric Brownian motion.

The conditional mean and conditional variance are:

E[R(t+ dt)|R(t)] = µ (3.88)

V ar[R(t+ dt)|R(t)] = σ2 (3.89)

and R(t+ dt) ∼ N(µ, σ2).

The log-likelihood function is defined by:

lnL(θ) = −n
2

ln 2Πs− n lnσ − 1

2

n∑
t=1

R(t+ dt)− µdt
σ2dt

(3.90)

3.4.6 Model Selection

Model selection was done using the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC).
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Akaike Information Criterion

The Akaike information criterion (AIC) is a measure of the relative quality of sta-

tistical models for a given set of data. Given a collection of models for the data, AIC

estimates the quality of each model, relative to each of the other models. Hence, AIC

provides a means for model selection. Let L be the maximized value of the likelihood

function for the model; let k be the number of estimated parameters in the model. Then

the AIC value of the model is given by:

AIC = 2k − 2 lnL (3.91)

Given a set of candidate models for the data, the preferred model is the one with the

minimum AIC value. Hence AIC rewards goodness of fit (as assessed by the likelihood

function), but it also includes a penalty that is an increasing function of the number of

estimated parameters. The penalty discourages overfitting (increasing the number of

parameters in the model almost always improves the goodness of the fit).

Bayesian Information Criterion (BIC)

The Bayesian information criterion (BIC) is a criterion for model selection among

a finite set of models. The model with the lowest BIC is preferred. It is based on the

likelihood function and it is closely related to the Akaike information criterion (AIC)

(AIC and BIC feature the same goodness-of-fit). When fitting models, it is possible

to increase the likelihood by adding parameters, but doing so may result in overfitting.

The BIC value of the model is given in equation 3.92,where n is the number of obser-

vations or the sample size.

BIC = k lnn− 2 lnL (3.92)
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Chapter 4

Numerical Results

Data from the daily closing exchange rates of Kenya and South Africa was used which

was got from OANDA (https://www.oanda.com/solutions-for-business/historical-

rates/main.html) starting from 1st - January - 2010 to 31st - December - 2015 and in

total 1837 observations. Matlab and R softwares were used. Exchange rates for Kenya

was considered to be the domestic currency and South Africa, the foreign currency. In

financial time series there are trends and the trends are nearly impossible to predict and

difficult to characterize mathematically. So log-returns are usually analysed, that is the

logged-value of todays value divided by the one of yesterday. Let pt and pt−1 denote

the closing exchange rate at the current time (t) and previous day (t− 1) respectively,

log returns or continuously compounded returns at any time are given by:

rt = log

(
pt
pt−1

)
(4.1)
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Table 4.1: Descriptive statistics of returns

Statistic USD.KES USD.ZAR

Maximum 0.04538 0.0736700

Minimum -0.05215 -0.1136000

Mean 0.00004111 -0.0000063

Standard deviation 0.004345903 0.01012737

Kurtosis 44.01931 13.91015

Skewness -0.3129154 -0.1390287

Table 4.1 presents the summary statistics for the daily closing exchange rates returns

of kenya and South Africa . These include the mean, standard deviation, Kurtosis and

skewness. Kurtosis is significantly greater than three which implies that they are heav-

ily tailed which is characteristic of financial market data (All series display significant

leptokurtic behavior as evidenced by the large kurtosis with respect to the Gaussian

distribution). All returns series have an observation of 1836. They are all left skewed

that is the left tail is longer and the mass of the distribution is concentrated on the right

of the figure.

4.0.7 Stationarity Testing Results

The results of test is given in the table 4.2
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Table 4.2: ADF test results

Series t-statistic or critical value USD.KES USD.ZAR

Exchange rates t- statistic −0.757708 −1.707412

Exchange rates 1% −3.431295 −3.431290

Exchange rates 5% −2.861842 −2.891840

Exchange rates 10% −2.566973 −2.566972

Returns t-statistic −13.17461 −63.60072

Returns 1% −3.431295 −3.431290

Returns 5% −2.861842 −2.891840

Returns 10% −2.566973 −2.566972

From Table (4.2), the null hypothesis of a unit root for the two exchange rates series

is accepted meaning that exchange rates series are non-stationary and the null hypoth-

esis of a unit root for the two return series is rejected meaning that return series are

stationary.

Figure 4.1: Distributions of the exchange rates
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Figure 4.1 shows the evolution of the daily exchange rates that is for Kenya and South

Africa respectively. Both series have trends (which implies that the mean is non con-

stant). Generally, the trend of the Kenya exchange rates data exhibit a decline between

2010 and 2011 and between 2013 and 2014. However, the South Africa exchange rates

data exhibit an upward trend in 2012. From a visual analysis, the graph reveals that

there is a co-movement of the trends in a similar direction either upward or downward

within the period under consideration.

Figure 4.2: Distributions of the returns

Daily log returns on exchange rates data are presented in Figure 4.2 and exhibits no

trends. The two graphs reveal the features of financial time series where volatility large

clusters and asymmetric are evident.
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Figure 4.3: Distributions for serial correlation

Figure 4.3 presents the serial correlation of the returns. There is evidence of short serial

correlation according to auto correlation function as seen clearly from Figure 4.3.

4.0.8 Testing for serial correlation

The BreuschGodfrey serial correlation LM test was done to test for serial correlation.

The null hypothesis of the test is the there is no serial correlation in the residuals upto

order 2.

Below is the output;
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Figure 4.4: Serial correlation testing for South Africa exchange rates

The test rejects the null hypothesis of no serial correlation up to order two according to

Figure 4.4. The Q-statistic and the LM test both indicate that the residuals are serially

correlated this is because there probabilities is less than 0.05.
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Figure 4.5: Serial correlation testing for Kenya exchange rates

The test rejects the null hypothesis of no serial correhylation up to order two according

to Figure 4.5. The Q-statistic and the LM test both indicate that the residuals are

serially correlated this is because there probabilities is less than 0.05.

The following values of the parameters were used:

Table 4.3: Parameters used

σH ρ
HA

σA a m y

0.01 −0.0027 0.0043 0.001
1−ρ 1 2

Data was used to compute parameters such as σH , ρ
HA

and σA. And parameters a, m

and y were assumed after knowing the interval of the parameters of Cox-Ingersoll-Ross

(CIR) process since our correlation dynamics is a CIR process.
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The parameters above were used to solve equation (3.83) and the one for constant

correlation (Black scholes model). The output is given in the Figures 4.6, 4.7 and 4.8:

Figure 4.6: Prices for European options under constant correlation

Figure 4.6 gives the mesh for the prices of the European call for the Black scholes

model at maturity time T = 10 which is not different from the known shape of the Eu-

ropean call option prices where a = A is the domestic currency price of a pure discount

bond which pays one unit of foreign exchange at time t+ T and H = S(t)A∗(t, T ).

S(t) is the spot domestic currency price of a unit of foreign exchange at time t and

A∗(t, T ) is the foreign currency price of a pure discount bond which pays one unit of

foreign exchange at time t + T . It can be seen clearly that as H increases, the prices

also increase which implies that prices depend on H .
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Figure 4.7: Prices for European options under stochastic correlation

Figure 4.7 gives the mesh for the prices of the European call for the modified model

at maturity time T = 10 which is not different from the known shape of the European

call option prices where ρ is the stochastic correlation and H = S(t)A∗(t, T ).

S(t) is the spot domestic currency price of a unit of foreign exchange at time t and

A∗(t, T ) is the foreign currency price of a pure discount bond which pays one unit of

foreign exchange at time t + T . It can be seen clearly that as H increases, the prices

also increase which implies that prices depend on H .
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Figure 4.8: The comparison of implied volatilities for the two models to the market
volatilities of the Call-options.

Implied volatilities for both models are compared to the market volatilities in Fig-

ure 4.8. It is observed that the implied volatilities for the modified model are much

more closer to the market volatilities than the implied volatilities for the Black scholes

model. The modified moodel provide better volatility smiles compared to the black

scholes model.

4.0.9 Model Selection Results

Model selection was done using the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC).

And the table 4.4 gives the results:
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Table 4.4: Model Selection

Model lnL AIC BIC

Stochastic Correlation 8311.865 −16619.73 −16608.7

Constant correlation 6767.971 −13531.94 −13520.91

From the table 4.4, model with stochastic correlation outperformed the model with

constant correlation as observed from the smallest AIC and BIC values.
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Chapter 5

Conclusion and Recommendation

5.1 Conclusion

The main objective of the study was to model volatility in emerging financial mar-

kets using Wishart Stochastic Volatility Model. This was divided into three specific

objectives that is to construct a suitable Wishart Stochastic Volatility Model for emerg-

ing financial market, applying the newly constructed Wishart Stochastic Volatility

Model in pricing of European call options and to compare results of a newly con-

structed Wishart Stochastic Volatility Model to the Black-Scholes model using real

data from emerging markets. Pricing derivative in one and two dimension was dis-

cussed. Modified model was constructed basing on the characteristics of the emerging

financial markets and the original Wishart Stochastic Volatility Model. Since Wishart

Stochastic Volatility Model is a multidimensional model, n = 2 was considered. For-

eign exchange derivative pricing was done for both constant and stochastic correla-

tion where the prices for European call options for constant and stochastic correla-

tion were derived numerically that is using the finite difference method called the

Crank Nicolson method. Implied volatilities for both models was compared to the

market volatilities in Figure 4.8 using exchange rates real data of Kenya and South
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Africa Real data which was got from OANDA (https://www.oanda.com/solutions-for-

business/historical-rates/main.html) starting from 1st - January - 2010 to 31st - Decem-

ber - 2015 and in total 1837 observations. Matlab and R softwares were used. Ex-

change rates for Kenya was considered to be the domestic currency and South Africa

to be the foreign currency. The data was first tested statistically and graphically before

it was used. It was found that returns were heavily tailed, stationary and had evi-

dence of short serial correlation. Pricing equation for the European call with stochastic

correlation provide better volatility smiles compared to the Black scholes model and

model with stochastic correlation outperformed the model with constant correlation as

observed from the smallest AIC and BIC values as given in table 4.4.

5.2 Recommendation

From the study, models with stochastic correlation need to be considered before those

with constant correlation.

Further work need to be done in this area such as pricing derivatives for n ≥ 3 where

n represents the number of assets, using different maturity time when comparing the

modified model with the black scholes model.
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Eisler, Z., Perelló, J., & Masoliver, J. (2007). Volatility: a hidden markov process in

financial time series. Physical Review E, 76(5), 056105.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of united kingdom inflation. Econometrica: Journal of the Econometric

Society, 50(4), 987–1007.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between

the expected value and the volatility of the nominal excess return on stocks. The

journal of finance, 48(5), 1779–1801.

Gnoatto, A. (2012). Wishart processes: theory and applications in mathematical fi-

nance.

Gouriéroux, C. (2006). Continuous time wishart process for stochastic risk. Econo-

metric Reviews, 25(2-3), 177–217.

Gouriéroux, C., Jasiak, J., & Sufana, R. (2009). The wishart autoregressive process of

multivariate stochastic volatility. Journal of Econometrics, 150(2), 167–181.

Grabbe, J. O. (1983). The pricing of call and put options on foreign exchange. Journal

of International Money and Finance, 2(3), 239–253.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility

with applications to bond and currency options. Review of financial studies,

6(2), 327–343.

Kama, Y., Haq, H., Ghani, U., & Khan, M. (2012). Modeling the exchange rate

63



volatility, using generalized autoregressive conditionally heteroscedastic (garch)

type models: evidence from pakistan. African J Bus Manage, 6(8), 2830–2838.

Kang, C., & Kang, W. (2013). Exact simulation of wishart multidimensional stochastic

volatility model. arXiv preprint arXiv:1309.0557.

Koleva, D., & Nicolato, E. (2012). Option pricing under heston and 3/2 stochas-

tic volatility models: an approximation to the fast fourier transform. Masterks

thesis, Aarhus University.

Lehkonen, H. (2014). Essays on emerging financial markets, political institutions and

development differences.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach.

Econometrica: Journal of the Econometric Society, 347–370.

Papaioannou, D. (2012). Applied multidimensional girsanov theorem.

Philipov, A., & Glickman, M. E. (2006a). Factor multivariate stochastic volatility via

wishart processes. Econometric Reviews, 25(2-3), 311–334.

Philipov, A., & Glickman, M. E. (2006b). Multivariate stochastic volatility via wishart

processes. Journal of Business & Economic Statistics, 24(3), 313–328.

She, Z. (2013). Volatility modeling and analysis via coupled wishart pro-

cess (Unpublished doctoral dissertation). University of Technology, Sydney.

http//:handle.net/10453/24166.

Zakoian, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dy-

namics and control, 18(5), 931–955.

64


