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ABSTRACT 

Mitochondrial DNA (mtDNA) is an important genetic marker in population and 

evolutionary biology. To test the feasibility of two mitochondrial gene markers (COI and 

Cytb) for Rhopalosiphum padi, we collected 275 individuals of the insect species from 15 

locations, which cover most of the species’ distribution range in China, and analyzed the 

diversity of the two genes. Seven COI haplotypes and 15 Cytb haplotypes were identified 

by 13 and 36 polymorphic sites, respectively. Across the entire samples, the average 

haplotype diversities (Hd) of COI and Cytb were 0.491 and 0.607, and the nucleotide 

diversities (π) of COI and Cytb were 0.147% and 0.160%, respectively. Relatively low 

levels of genetic diversity and genetic differentiation were observed among all R. padi 

populations based on the two genes. Moreover, parsimony networks of the COI and Cytb 

haplotypes of R. padi all supported a single clade. Although the nucleotide variation of 

mitochondrial genes has been used in other insect species, reviewing the recent literatures 

on mitochondrial diversity in aphid species, we found that the population and 

evolutionary biology of aphids including R. padi, could not be elucidated by analyzing 

mtDNA alone, mostly because of the low genetic variation of mitochondrial genetic 

markers among populations. We suggest the combined use of mtDNA and other genetic 

markers, such as microsatellites, to overcome the low genetic information provided by 

mtDNA in evolutionary studies on aphid populations.  
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INTRODUCTION 

Population genetics has undergone 

considerable progress over the past decades. 

Population biology can effectively reveal the 

micro-evolution and ecological adaption 

strategies of insect pests in agroecosystems 

(Harrison, 1989; Gueguen et al., 2010; 

Zheng et al., 2013). Generally, a good 

population genetic study starts with an 

appropriate genetic marker, including 

mitochondrial, multilocus nuclear, and 

single-locus nuclear markers, which are 

commonly used in molecular population 

biology studies (Sunnucks, 2000). 

Mitochondrial DNA (mtDNA), representing 

a very small fraction of the organism’s 

genome, is a popular marker of molecular 

diversity in animals. It has strict maternal 

transmission (Birky, 2001) with high 

mutation rates due to a limited repair system 

(Brown et al., 1979). A simple, conserved 

structure (Mandal et al., 2014), lack of 

genetic recombination, and relatively 

infrequent rearrangements are also 

characteristics of mtDNA (Mandal et al., 

2014). In natural environments, insect 

population genetics can be affected by 

various factors, including geographical 
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Table 1. Sample information for 15 R. padi geographical populations in China. 

Province Location Population code Sample size Latitude Longitude Date 

Chongqing Beibei CQB 30 29° 49′ N 106° 25′ E 2013.04.02 

Henan Nanyang HNN 19 33° 14′ N 112° 36′ E 2013.04.18 

Anhui Chuzhou AHC 22 32° 21′ N 118° 20′ E 2013.04.21 

Hubei Wuhan HBW 24 30° 29′ N 114° 19′ E 2013.04.14 

 Zaoyang HBZ 20 32° 08′ N 112° 47′ E 2013.04.16 

Shaanxi Xianyang SAX 27 34° 17′ N 108° 05′ E 2013.07.18 

 Hanzhong SAH 21 33° 11′ N 107° 27′ E 2013.04.08 

Shandong Heze SDH 18 35° 10′ N 115° 29′ E 2013.05.04 

 Zibo SDZ 21 37° 06′ N 118° 02′ E 2013.05.10 

Shanxi Taigu SXT 22 37° 25′ N 112° 34′ E 2013.05.27 

 Hongtong SXH 23 36° 13′ N 111° 41′ E 2013.05.28 

Hebei Baoding HBB 20 38° 49′ N 115° 26′ E 2013.06.07 

Jilin Baicheng JLB 18 45° 39′ N 122° 52′ E 2013.07.10 

Qinghai Xining QHX 18 36° 38′ N 101° 37′ E 2013.08.14 

Xizang Lasa XZL 24 29° 38′ N 91° 02′ E 2013.08.10 

 

distance, migration, the host plant, 

reproductive mode, among others 

(Llewellyn et al., 2003; Miller et al., 2003; 

Duan et al., 2017). Native insects usually 

have high genetic diversity, while invasive 

and/or exotic species often show reduced 

genetic diversity (Puillandre et al., 2008; Li 

et al., 2015). 

The bird cherry-oat aphid, Rhopalosiphum 

padi (L.), is an important wheat pest (Van 

Emden and Harrington, 2007) affecting 

yield and quality, as it can transmit the 

Barley Yellow Dwarf Virus (BYDV). This 

virus can become epidemic over a large 

area, leading to serious economic losses due 

to damage to wheat production (Leather et 

al., 1989). R. padi has been distributed 

among most wheat-producing regions 

worldwide (Wang et al., 2016) and has been 

reported in almost all wheat-growing regions 

in China (Duan et al., 2017). Martinez-

Torres et al. (1996; 1997) examined the 

genetic variation of R. padi among European 

populations and different breeding systems 

via restriction enzyme analysis of mtDNA. 

Our previous study using microsatellite 

marker assays showed significant genetic 

differences between populations with 

obligate parthenogenesis and those with 

cyclical parthenogenesis, as well as an 

association between significant genetic 

structures and different reproductive modes 

(Duan et al., 2017). These differences are 

also significantly related to the synergistic 

effect of Isolation-By-Distance (IBD) (Duan 

et al., 2017). There are no previous studies 

on the mitochondrial genetics of R. padi in 

China. 

In the present study, we aimed to evaluate 

the feasibility of using mtDNA markers for 

the study of R. padi population genetics, by 

selecting two mitochondrial genes 

[Cytochrome Oxidase subunit I (COI) and 

Cytochrome b (Cytb)], and analyzing 

mitochondrial genetic diversity of 15 R. padi 

geographical populations throughout the 

main wheat-producing regions of China 

revealed by these two genes. We also 

planned to discuss the possible factors 

involved in the limitation of mtDNA 

diversity in R. padi with regard to 

population and phylogeographic studies. 

MATERIALS AND METHODS  

Insect Sampling 

R. padi samples were collected from wheat 

fields (Triticum aestivum L.) in the major 

wheat-producing areas of China from May 

to August 2013 (Table 1). We sampled 15 R. 

padi geographical populations. To ensure 

the representativeness of the samples, only 
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one apterous adult aphid was collected per 

site, and the distance between each site was 

at least 30 m. Each geographical population 

consisted of at least 15 collection sites to 

obtain a sufficient number of aphids for the 

analyses. All samples were preserved in 

absolute ethanol and stored at –20°C prior to 

the study.  

DNA Extraction 

Genomic DNA was extracted from single 

aphid individual using the EasyPure
TM

 

Genomic DNA Kit (TransGen Biotech Co., 

Ltd., Beijing, China). DNA extraction was 

performed according to the bench protocol 

for animal tissues. DNA was eluted in 

deionized water and stored at –20°C. 

PCR Amplification and Mitochondrial 

Gene Sequencing 

Four mitochondrial gene-based primers 

were used in the analysis. The mitochondrial 

COI gene was amplified using the primers 

LepF (5′-

ATTCAACCAATCATAAAGATATTGG-

3′) and LepR (5′-

TAAACTTCTGGATGTCCAAAAAATCA

-3′) (Foottit et al., 2008) and the 

mitochondrial Cytb gene was amplified 

using the primers CP1 (5′-

GATGATGAAATTTTGGATC-3′) and CP2 

(5′-CTAATGCAATAACTCCTCC-3′) 

(Harry et al., 1998).  

All PCR amplifications were carried out in 

a total volume of 25 μL containing 12.5 μL 

2X Taq Mastermix (CoWin Biotech., 

Beijing, China), 2.0 μL of each 

oligonucleotide primer (0.2 μM), 2 μL 

genomic DNA (10–30 ng μL
-1

) and 6.5 μL 

ultra-pure water. The thermal profile 

consisted of an initial denaturation step at 

94°C for 2 minutes, followed by 35 cycles of 

denaturation at 94°C for 30 seconds, 

annealing at 51 (COI) or 48°C (Cytb) for 30 

seconds, extension at 72°C for 1 minute, and 

a final extension at 72°C for 10 minutes. The 

amplified fragments were electrophoresed 

on 1.0% agarose gels, checked under UV 

light and sequenced on the ABI 3730 

automated DNA sequencer (Applied 

Biosystems, Foster City, CA, USA). 

Data Analysis 

The sequencing data were aligned using 

ClustalX version 2.0 (Larkin et al., 2007). 

The aligned COI and Cytb sequences were 

585 and 666 bp in length, respectively. 

Population genetic parameters, including the 

number of haplotypes, number of 

polymorphic sites, π, and Hd, were 

calculated using the DnaSP, version 5.0, 

software (Librado and Rozas, 2009). 

Median-Joining (MJ) networks of mtDNA 

haplotypes were constructed using the 

Network software based on statistical 

parsimony (Bandelt et al., 1999). 

RESULTS 

Sequence Variation 

A statistical analysis using the COI gene 

(585 bp) and of the Cytb gene (666 bp) from 

275 R. padi individuals revealed low levels 

of π among individuals and populations of 

R. padi in China. No insertions or deletions 

were found in either of the two 

mitochondrial genes. A total of 13 variable 

sites were inferred from the COI gene, three 

of which were parsimoniously informative 

sites, while the Cytb gene contained 36 

variable sites, seven of which were 

parsimoniously informative sites.  

Mitochondrial Gene Haplotypes  

We obtained seven haplotypes for the COI 

gene (GenBank accession numbers 

KX827346–KX827352) and 15 haplotypes 

for the Cytb gene (GenBank accession 

numbers KX827353–KX827367). With 

regard to the geographical distribution of 
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Table 2. Distribution of the COI gene haplotypes in different R. padi georgraphical populations.
a
  

H 
Number of individuals from each population 

CQB HNN AHC HBW HBZ SAX SAH SDH SDZ SXT SXH HBB JLB QHX XZL 

H1 1 1 5 2  6 6 4 4  8 1 3  17 

H2 17 15 15 21 15 18 13 5 11 16 12 14 13 1  

H3 8   1   2       14 1 

H4               1 

H5            1    

H6     2           

H7        1        

a 
Population codes are explained in Table 1. H: Haplotype. 

 

COI haplotypes in China, H2, the most 

common haplotype, was shared by 186 

individuals distributed in nearly all 15 

geographical populations (except XZL). 

This haplotype was dominant in 11 R. padi 

geographical populations (Table 2). H1 was 

dominant in XZL, with an occupancy of 

89.5% (17 of 19 individuals), while H3 was 

detected in 14 R. padi samples from QHX, 

with one individual characterized as 

haplotype H2. Moreover, the three common 

haplotypes H1, H2, and H3 shared only one 

or two polymorphic sites among them. The 

remaining haplotypes, i.e. H4, H5, H6, and 

H7 were found in single populations at low 

frequencies (one or two individuals). Except 

for H4 (one individual in XZL) with eight 

polymorphic sites compared with H1, there 

were few differences (Figure 1-A). 

For the Cytb gene, H1 and H3 were 

dominant in the samples, with H1 detected 

in all R. padi populations and H3 in all 15 

populations, except for XZL. H3 was the 

main haplotype in 11 populations. The main 

haplotype in populations JLB and XZL was 

H1, while haplotypes H2 and H6 were 

dominant in populations CQB and QHX, 

respectively, although each was only 

detected in its single population. Nucleotide 

comparisons of these dominant haplotypes 

(H1, H2, H3, and H6) in different R. padi 

populations showed only one or two 

mutation sites (Table 3). In addition, except 

for H9, which was found in three individuals 

from CQB and QHX, the remaining nine 

haplotypes were rare, represented by only 10 

of the total 275 samples (Table 3). 

Genetic Diversity 

The average Hd values of COI, Cytb and 

the combined COI and Cytb partial 

sequences in the entire sample were 0.491, 

0.607 and 0.689, respectively (data not 

shown). Among the populations of R. padi, 

the Hd of COI ranged from 0.000 (SXT) to 

0.552 (SAH) (Table 4). For the Cytb gene, 

HBB had the lowest Hd (0.125), while QHX 

had the highest Hd (0.629) (Table 4). The 

haplotype diversity of the combined COI 

and Cytb partial sequences varied from 

0.125 (SXT) to 0.743 (SAH) (Table 4). 

Compared with Cytb, the COI gene had a 

relatively lower Hd in both the total sample 

and in different geographical populations. 

For π, COI varied from 0.000 (SXT) to 

0.217% (SDH), Cytb from 0.019% (SXT) to 

0.258% (SXH), and the combined COI and 

Cytb partial sequences ranged from 0.010% 

(SXT) to 0.218% (SXH) (Table 4). At the 

whole population level, the π values of COI, 

Cytb and the combined COI and Cytb partial 

sequences were 0.147%, 0.160% and 

0.154%, respectively (data not shown). The 

various populations and mitochondrial 

markers both showed low levels of π. 

Network of Mitochondrial Gene 

Haplotypes 

The MJ network of COI haplotypes 

(Figure 1-A) revealed no apparent clades, 

and all haplotypes were grouped together.  
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Figure 1. Median-joining network based on mitochondrial gene haplotypes. (A) Statistical parsimony 

network of seven R. padi COI haplotypes. (B) Statistical parsimony network of 15 R. padi Cytb haplotypes. 

(C) Statistical parsimony network of 21 R. padi haplotypes for the combined COI and Cytb partial sequences. 

Each circle represents a haplotype, and the area of the circle is proportional to the number of observed 

individuals. Colors within the nodes refer to R. padi sampling regions. Each line indicates a single variable 

site or is given when there is more than one variable site.

Table 3. Distribution of the Cytb gene haplotypes in different R. padi geographical populations.
a
  

H 
Number of individuals from each population 

CQB HNN AHC HBW HBZ SAX SAH SDH SDZ SXT SXH HBB JLB QHX XZL 

H1 7 5 5 3 3 8 8 3 4 1 8 1 11 1 16 

H2 14               

H3 2 9 14 21 14 16 12 7 9 15 11 15 4 1  

H4  1              

H5         2       

H6              9  

H7               1 

H8               2 

H9 3             3  

H10              1  

H11           1     

H12             1   

H13       1         

H14  1              

H15   1             

a 
Population codes are explained in Table 1. H: Haplotype. 

 

H2 was dominant in all populations, while 

the other haplotypes, which showed few 

genetic differences compared with H2, 

indicated no correlation with geographical 

distribution. There was only one haplotype 

(H4) with any genetic distance, but it was 

only detected in a single sample from the 
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Table 4. Genetic diversity of 15 R. padi populations as revealed by mitochondrial COI and Cytb genes.
a
 

PC
 a
 N

 b
 

COI  Cytb  Combined gene
 g

 

H
 c
 V

 d
 Hd

 e
 π (%) 

f
  H V Hd π (%)  H V Hd π (%) 

CQB 26 3 2 0.495 0.094  4 4 0.643 0.164  6 6 0.677 0.131 

HNN 16 2 2 0.125 0.043  4 3 0.617 0.106  5 5 0.650 0.077 

AHC 20 2 2 0.395 0.135  3 2 0.468 0.074  4 4 0.489 0.103 

HUW 24 3 2 0.236 0.066  2 1 0.228 0.034  3 3 0.236 0.049 

HUZ 17 2 1 0.221 0.038  2 1 0.309 0.046  3 2 0.485 0.042 

SAX 24 2 2 0.391 0.134  2 1 0.464 0.070  4 3 0.572 0.100 

SAH 21 3 2 0.552 0.158  3 2 0.552 0.092  6 4 0.743 0.123 

SDH 10 3 3 0.644 0.217  2 1 0.467 0.070  4 4 0.711 0.139 

SDZ 15 2 2 0.419 0.143  3 2 0.590 0.100  3 4 0.590 0.120 

SXT 16 1 0 0.000 0.000  2 1 0.125 0.019  2 1 0.125 0.010 

SXH 20 2 2 0.505 0.173  3 13 0.563 0.258  3 15 0.563 0.218 

HBB 16 3 4 0.242 0.085  2 1 0.125 0.019  3 5 0.228 0.047 

JLB 16 2 2 0.325 0.111  3 2 0.492 0.079  4 4 0.692 0.094 

QHX 15 2 1 0.133 0.023  5 4 0.629 0.192  5 5 0.629 0.113 

XZL 19 3 9 0.205 0.162  3 14 0.292 0.235  4 23 0.380 0.201 

a 
Population Code; 

b
 Sample size of each population; 

c
 Number of haplotypes; 

d
 Number of polymorphic 

sites; 
e
 Haplotypes diversity; 

f
 Nucleotide diversity, 

g
 the combination of COI and Cytb partial sequences. 

 

XZL population and was not very 

informative. 

Similarly, the Cytb haplotype network 

(Figure 1-B), based on statistical parsimony, 

supported the existence of only one clade. 

The two most common haplotypes (H1 and 

H3) were shared by most populations and 

possessed only one polymorphic site. Four 

restricted haplotypes (H4, H5, H14, and 

H15) evolved from H3 with one 

polymorphic site each. Several haplotypes 

also evolved from H1, and four restricted 

haplotypes (H2, H8, H12, and H13) each 

shared only one polymorphic site with H1. 

In addition, a small haplotype group (H6, 

H9, and H10) found mostly in QHX, also 

evolved from H1 with several polymorphic 

sites (≤ 3 sites). Two restricted haplotypes 

(H7 and H11) were genetically distant from 

H1, with 13 and 12 polymorphic sites, 

respectively, and despite being similar to 

haplotype H4 in terms of the COI gene, they 

were found only in a single sample and were 

not very informative. For the haplotypes of 

the combined COI and Cytb partial 

sequences, all the haplotypes gathered 

together (Figure 1-C).  

DISCUSSION 

In this study, we explored the genetic 

diversity of 15 R. padi populations from 

most of the wheat-growing areas in China 

using mtDNA markers. The low level of 

genetic variation in R. padi was corroborated 

by the low degree of Hd and π based on the 

COI and Cytb partial sequences. Moreover, 

we found that the seven COI haplotypes and 

15 Cytb haplotypes from the 275 examined 

individuals were clustered together for the 

most part, with no clear clade structure. 

Using the combined results for COI and 

Cytb partial sequences, we can infer that the 

mitochondrial haplotypes of R. padi do not 

show obvious geographical distribution 

patterns. Every shared haplotype was 

distributed in various populations, rather 

than one population predominantly. 

The π values of the COI and Cytb genes 

were 0.147%  and 0.160%, respectively. 
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This provides powerful evidence of low 

mitochondrial polymorphism. There are 

several scenarios that may account for the 

low level of genetic variation in aphids. 

First, the mtDNA of aphids may be highly 

conserved with low divergence. A 

divergence of only 0.4% was found in the 

COI gene of the pea aphid, Acyrthosiphon 

pisum (Boulding, 1998), and a divergence of 

only 1.5% was found in the COI genes of 

Sitobion miscanthi and S. avenae (Sunnucks 

and Hales, 1996). Furthermore, phylogenetic 

studies based on barcoding sequences also 

revealed limited intraspecific genetic 

divergence among Aphidinae species (Lee et 

al., 2011; Wang et al., 2011). For R. padi, 

the average intraspecific divergence was 

only 0.61% among individuals collected 

from 11 countries (Rakauskas et al., 2014).  

Based on studies of genetic diversity in 

other aphids, low mitochondrial variability 

is common in most aphid species. Xu et al. 

(2011) sequenced part of the COI gene from 

269 S. avenae individuals, collected from 17 

geographical populations, and defined 16 

haplotypes. Phylogenetic analysis also 

showed that all of these haplotypes were 

highly related to each other, with an absence 

of phylogeographical structure. Moreover, 

zero variation was found in a 332 bp 

sequence of the COI gene from 83 Russian 

wheat aphid species collected in the US 

between 1986 and 2006. Surprisingly, no 

new mtDNA haplotypes were found in the 

US over a 20-year period (Shufran et al., 

2007). Zhao (2014) found no differences in 

the mitochondrial COI/II genes from 27 M. 

persicae populations in China. Simon et al. 

(1996) found only three mtDNA haplotypes 

among 176 R. padi clones, while Martinez-

Torres et al. (1996) found four mtDNA 

haplotypes in R. padi. Rakauskas et al. 

(2014) found four COI haplotypes in R. padi 

populations from the entire eastern Baltic 

region. In our study of two mitochondrial 

genes, COI and Cytb, only seven and 15 

haplotypes, respectively, were found in 275 

individuals collected from 15 geographical 

populations. Moreover, as in a study of S. 

avenae (Xu et al., 2011), all haplotypes 

indicated little genetic difference with no 

obvious geographical pattern. The very low 

genetic diversity among the samples does 

not allow for resolution of the genetic 

structure of R. padi. 

There was a greater frequency of 

polymorphisms in Cytb than COI, based on 

the number of haplotypes and Hd. Thirteen 

insect mitochondrial protein-coding genes 

can be classified into three groups of good 

(ND4, ND5, ND2, Cytb, and COI), medium 

(COB, COIII, NDl, and ND6), and poor 

phylogenetic performers (ATPase6, ND3, 

ATPase 8, and ND4L) in terms of 

recovering the expected trees among 

phylogenetically distant relatives (Mandal et 

al., 2014). COI is the best molecular marker 

for evolutionary studies in most insects, 

although in this study, Cytb performed 

slightly better than did COI in R. padi. The 

mitochondrial COI gene appears to be 

among the most conserved protein-coding 

genes in the mitochondrial genome, which 

may make it more suitable for DNA 

barcoding rather than genetic evolution in 

some insects, including aphids. Studies of S. 

avenae and Diuraphis noxia also 

demonstrated this. The Cytb sequence may 

be more effective and informative than the 

COI sequence in the study of aphid 

population genetics, especially within 

populations, as shown for the Lachninae 

(Chen et al., 2012). 

The haplotype network analysis of COI 

and Cytb all revealed no distinguishable 

cluster and no obvious geographical 

distribution among the R. padi haplotypes, 

similar to the distribution pattern of 

Schlechtendalia chinensis in China (Li, 

2009). This type of haplotype distribution 

pattern is characterized as “phylogenetic 

continuity, lack of spatial separation”, with 

relatively extensive and recent historical 

interconnections through gene flow (Avise 

et al., 1987).  

Migration may be one factor explaining 

the relatively low mitochondrial genetic 

diversity in R. padi. Radar detection of mass 

migration of aphids in Finland showed that 

R. padi was capable of long-range 
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migration, and this seasonal migration may 

affect the genetic structure of long-distance 

geographical populations (Nieminen et al., 

2000). With regard to flight behavior, many 

factors need to be considered, including 

winter temperatures, density of insects in the 

air, wind conditions, among others 

(Llewellyn et al., 2003). Different 

environmental conditions also influence 

population differentiation, such as complex 

topography (mountains, unpopulated areas, 

and deserts), climate (arid or frigid), and 

different agricultural landscapes (Cardé and 

Minks, 1995), which may influence the 

differentiation of local R. padi populations. 

The reproductive mode of aphids may also 

be a factor contributing to the low 

polymorphism frequency. Aphids have 

alternate pathways of adaptation to specific 

environments between sexual and asexual 

forms. The different lifecycles and fast rate 

of reproduction contribute to high rates of 

population increase and the success of 

aphids as a very successful group of 

organisms and as the most destructive insect 

pests (Afshari et al., 2009; Loxdale, 2008; 

Kaldeh et al., 2012). We previously showed 

that most R. padi populations in China are 

anholocyclic with only parthenogenic 

females, and a few populations were able to 

produce gynoparae, males, or eggs (Duan et 

al., 2017). mtDNA exhibits strict maternal 

transmission with a limited repair system, 

and natural hybridization and introgression 

may result in the formation of new hybrid 

mitochondrial haplotypes (Shearer et al., 

2002). The reproductive mode can influence 

genetic diversity and genetic structure and 

lead to significant genetic differentiation. In 

France, significant genetic differentiation 

was found between sexual and asexual R. 

padi populations, with multilocus FST 

estimates ranging from 0.103 for allozymes 

to 0.144 for microsatellites (Delmotte et al., 

2002). The genetic variation in fitness of R. 

padi was higher in asexual genotypes 

compared with sexual genotypes (Carter et 

al., 2012). 

Symbionts can also influence the mtDNA 

diversity of the host. Hurst and Jiggins 

(2005) reviewed the extent of symbiont 

shaping of mtDNA evolution, and most 

cases (17/19) indicated symbiont-driven 

decreases in mtDNA diversity, symbiont-

driven increases in diversity, symbiont-

driven changes in mtDNA variation over 

geographical areas, and symbiont-associated 

paraphyly of mtDNA. Once the host 

populations acquire one or more symbionts, 

patterns of mitochondrial polymorphism 

may be altered by natural selection. The 

selective sweeps of symbionts running 

through the population reduce mtDNA 

diversity, which is similar to the pattern 

produced by population bottlenecks (Hurst 

and Jiggins, 2005). Wolbachia-uninfected 

species were found to harbor more diverse 

mitochondria than host individuals of 

Solenopsis invicta, S. richteri, Acraea 

encedon, and Drosophila recens (Shoemaker 

et al., 1999, 2004; Jiggins, 2003). Aphids, as 

a model system for the study of insect–

bacterium interactions, have been 

particularly well studied with regard to an 

obligate symbiont (Buchnera aphidicola) 

and various facultative symbionts, including 

several commonly studied species: 

Hamiltonella defensa, Regiella insecticola, 

Serratia symbiotica, Rickettsia, 

Spiroplasma, X-type, Arsenophonus, and 

Wolbachia. We detected S. symbiotica and 

Wolbachia in some R. padi populations used 

in this study (Liu, 2014). Such single 

infections or co-infections may facilitate 

host-parasite coevolution, resulting in strong 

directional selection.  

The plasticity of genetic diversity is also 

influenced by the host plant or family 

(Charaabi et al., 2008; Carletto et al., 2009). 

Unitary host selective pressure is not 

beneficial for genetic differentiation or 

diversity (Valentine, 1976). Genetic 

variability of the green citrus aphid Aphis 

spiraecola assessed by Random Amplified 

Polymorphic DNA (RAPD) and COI 

revealed that the host plant had a significant 

effect on the pattern of genetic diversity 

(Mezghani-Khemakhem et al., 2012). 

Generally, the host plant of R. padi is wheat, 

although this species may use alternative 
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hosts in autumn. In fact, all R. padi 

individuals collected from wheat showed 

low host selection pressure on genetic 

variation. Recently, anthropogenic selective 

pressures have been taken into account, such 

as the development of resistant plants and/or 

the use of insecticides, which kill most 

individuals in the field, thereby reducing the 

genetic diversity of Aphis gossypii and 

Myzus persicae (Brévault et al., 2008; 

Zamoum et al., 2005). Genetic hitchhiking 

by advantageous genotypes could reduce π 

(Martínez-Torres et al., 1997). Meanwhile, 

the impact of human activities, such as 

agricultural activities, variety selection, and 

pest management techniques, on genetic 

differentiation cannot be ignored (Chen et 

al., 2007a, b; Lu and Gao, 2009). Human-

aided dispersal may also accelerate 

differentiation. The global presence of the 

melon fly Bactrocera cucurbitae is 

associated with human-mediated dispersal, 

and the very low genetic variation may be 

related to large-scale management 

techniques (Prabhakar et al., 2012).  

R. padi is a notorious pest insect widely 

distributed throughout the wheat-growing 

regions of China. We analyzed the partial 

sequences of the mitochondrial COI and 

Cytb genes of R. padi to determine the 

extent and nature of the genetic variation in 

this species in China. We observed low 

levels of polymorphism in R. padi field 

populations. This phenomenon was also 

found in other aphids, such as Aphis 

spiraecola, Diuraphis noxia, and Sitobion 

avenae, indicating that mtDNA is not an 

effective or informative molecular marker. 

Evaluation of microsatellite markers in 

nuclear genes and single nucleotide 

polymorphisms at the genome level, 

together with next generation sequencing, 

may yield more promising molecular 

markers for population genetics.  
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 Bird Cherry-Oat Aphid Rhopalosiphumتنوع ژنتیکی در میتوکوندری شته 

padi (L.) در چین 

 ک. وانگ، گ. م. لین، س. م. سونگ، س. سو، و م. ه. چن

 چکیده

در زیست شىبسی جمؼیتی ي تکبملی بٍ  وشبوگر شوتیکی مُمی (mtDNA)دی.ان.ای میتًکىدریب 

( برای  Cytbي COIی از دي وشبوگر شن میتًکىدریبیی )شمبر می ريد. بٍ مىظًر آزمًن امکبن سىج

Rhopalosiphum padi،  محل کٍ شبمل بیشتر مىبطق 15ومًوٍ از ایه گًوٍ حشرٌ را از  275مب 

يگسترٌ پراکىش تحت پًشش ایه حشرٌ در چیه بًد جمغ آيری کردیم ي تىًع شن َبی مسبًر را 

ي  13بب، بٍ ترتیب، Cytbَپلًتیپ  15ي COIجًر( َپلًتیپ) تک  7تجسیٍ يتحلیل کردیم. دروتیجٍ، 
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ي  COI( مربًط بٍ Hdمکبن پلی مًرفیک شىبسبیی شد. در َمٍ ومًوٍ َب میبوگیه تىًع َپلًتیپ ) 36

Cytb  بًد ي 607/0ي  491/0بٍ ترتیب ( برای تىًع وًکلئًتیدπ ٍمربًط ب )COI يCytb  147/0برابر %

سطح تىًع شوتیکی ي  R. padiبی ایه دي شن، در میبن َمٍ جبمؼٍ بًد. میتًان گفت کٍ بر مبى %160/0ي 

در  Cytbي COIَپلًتیپ َبی  parsimonyتمبیس شوتیکی وسبتب پبییه بًد. افسين بر ایه، شبکٍ َبی 

R. padi ( َمگی از یک َم ویبی ياحدsingle clade بًد. َرچىد تغییرات وًکلئًتید شن َبی )

بٍ کبر بردٌ شدٌ، بب بررسی مىببغ ػلمی جدید در مًرد تىًع  در حشرات دیگر میتًکًودریبیی

را  R. padiدر گًوٍ شتٍ آشکبر شد کٍ زیست شىبسی جمؼیتی ي تکبملی شتٍ َب مىجملٍ  میتًکًودری

ريشه سبخت ي ایه امر بیشتر بٍ ػلت کم بًدن تىًع شوتیکی مربًط  mtDNAومی تًان تىُب بب تحلیل 

کًودری در جبمؼٍ است. بٍ ایه قرار، پیشىُبد می شًد کٍ در بررسی َبی بٍ وشبوگر َبی شوتیکی میتً

برای جبران مشکل کمبًد اطلاػبت شوتیکی بٍ دست آمدٌ از  تکبملی ريی جمؼیت َبی شتٍ،

mtDNA  ػلايٌ بر ،mtDNA .از وشبوگر َبی دیگر مبوىد ریسمبًَارٌ َب ویس استفبدٌ شًد 

 
 




