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ABSTRACT 

In Iran, applying geostatistics to regional analysis is said to be in its early stages. The 

fundamental principle of this technique emphasizes the interpolation of hydrological 

variables in physiographical, instead of geographical, spaces. This paper deals with the 

adaptation, application, and comparison of two regional analysis methods based on 

geostatistics. In this study, data from 38 gauging stations located in the north of Iran were 

used to investigate the performance of geostatistical methods in two physiographical 

spaces. Two multivariate analysis methods, namely, Canonical Correlation Analysis 

(CCA) and Principal Components Analysis (PCA), were used to identify physiographical 

spaces. Gaussian and exponential models were selected as the best theoretical variogram 

models in CCA and PCA spaces, respectively. Ordinary and simple kriging geostatistical 

estimators were also used for regional estimations in both physiographical spaces. Using 

the interpolation methods in CCA and PCA spaces, regional flood estimations were made 

for different return periods (10, 20, 50, and 100 years). Finally, performance of both 

models was studied using five statistical indices. The results showed that both methods 

had similar and satisfactory performance; however, regional estimations in CCA had 

higher accuracy and less uncertainty than those in PCA-space. Furthermore, the results 

indicated that the ordinary kriging method had better performance than the simple 

kriging method in both spaces and the best interpolation efficiency was observed in the 

CCA space. 

Keywords: Interpolation, Kriging, Physiographical space, Principle Component Analysis 

(PCA). 
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INTRODUCTION 

Lack of data at sites of interest is one of the 

problems that hydrologists often face during 

estimation in many river basins. To solve this 

problem, regional analyses have been 

proposed (Stedinger and Tasker, 1985; Burn, 

1990; Rosbjerg and Madsen, 1994; Alila, 

2000). Several techniques, which seek 

similarity between sites by attributes of 

catchment and at-site flow statistics, have been 

developed for regionalization. Such 

application of regionalization can be observed 

in several recently published papers, including 

those by Malekinezhad et al. (2011), Yan and 

Moradkhani (2015), and Mosaffaie (2015). 

According to recent research, geostatistical 

interpolations, apart from their primary role in 

interpolation of point data (De Marsily and 

Ahmed, 1987), are effective means to solve 

the issue of regionalization of hydrometric 

data (Skøienet al., 2006; Chokmani and 

Ouarda, 2004). Geostatistical methods were 

developed firstly for the mining industry 

(Journel and Huijbregts, 1978).However, the 

catchment hydrology is applied quite 

differently (Skøienet al., 2006). In other 

words, hydrological variables are 

discontinuous variables in the geographical 

space. Since flood generation mechanisms are 
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Figure 1. Location of the study area and 

distribution of hydrometric stations. 

 

specific to each catchment, they may change 

dramatically from a catchment to an adjacent 

catchment. Consequently, the direct 

application of interpolation methods in the 

geographical space does not seem practical 

(Sauquet, 2000). In order to resolve this 

problem, Chokmani and Ouarda (2004) 

proposed a new approach to regionalize 

hydrological data using geostatistical methods. 

In this method, based on the concept of 

hydrological neighborhood (Burn, 1990; 

Castellarin et al., 2001) and using 

geostatistical methods, hydrological variables 

are interpolated in physiographical space, 

instead of conventional geographical space. In 

classical statistics, there is no relationship 

between the measured values of a quantity in a 

specific sample and values of the same 

quantity in another sample with specific 

distance. On the other hand, in geostatistics, it 

is assumed that there is a relationship between 

various values of a quantity in the population 

of samples and their distance and placement 

direction at some specific distance. This 

spatial relationship is called spatial structure in 

mathematical definitions. In a geographical 

space, flood is a quantity with the feature of 

discontinuity which lacks any spatial structure. 

Responses to these hydrological events also 

vary even in the neighboring basins, because 

the flood generation mechanism and its 

effective parameters are unique in each 

specific basin. The occurrence of flood at a 

specific site indicates a hydrological response 

to the dominating climate of the area and 

reflects the effect of physical and 

geomorphological properties of basins. Thus, 

although flood does not have a continuous 

nature in geographical spaces, it will have a 

continuous nature within the physiographic 

space, which can be considered a hydrological 

reaction to the regional climatic and 

physiographical variables and its interpolation 

will be possible (Chokmani and Ouarda, 

2004). Physiographical Space-Based 

Interpolation (PSBI) methods hold much 

promise for many aspects of hydrology. This is 

a topical issue in hydrology, which is 

increasingly gaining attention from the 

scientific community. 

After successful application of a PSBI 

method, this method has attracted the attention 

of other researchers for instance Skøienet al. 

(2006), Joseph et al. (2006), Shu and Ouarda 

(2007), Skøien and Bloschl (2007), Ouarda et 

al. (2008), Hundecha et al. (2008), Castiglioni 

et al. (2009), Kamali Nezhad et al. (2010, 

2011), Castiglioni et al. (2011), Vormoor et al. 

(2011); Laaha et al. (2013); Archfield et al. 
(2013), Pugliese et al. (2013), Laaha et al. 

(2014), and Castellarin (2014). 

Although geostatistical methods are getting 

increasing attention in the field of regional 

frequency analysis, they are not regarded as 

popular among Iranian researchers, and 

virtually there are nostudies done on the 

application of such methods in Iran. The 

current study was undertaken to shed light on 

the knowledge gap here in this region, and it 

aimed to apply geostatistical methods 

(ordinary and simple kriging) in CCA and 

PCA physiographical spaces to regionalize the 

catchments located east of the Caspian Sea. 

Additionally, we aimed to determine the best 

approach to estimate the regional flood and 

investigate the efficiency of the interpolation 

methods in two physiographical spaces. 

MATERIALS AND METHODS 

Study Region 

The study area consisted of the catchments 

of Mazandaran, located in the north of Iran 

(see Figure 1). The study area covers a wide 
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geographical region (over 23,756.4 km
2
) 

which includes 1.46% of the whole territory of 

Iran. The Mean Annual Rainfall (MAR) in the 

region ranges from more than 1,500 mm in the 

west to 180 mm in the east of Mazandaran.  

Data and Statistical Analyses 

The study area included 78 gauging stations 

(7.1 to 4,028 km
2
) for which daily stream 

flows were available. The annual maximum 

daily discharge series from 38 gauging stations 

with greater than 15 years of records were 

used to estimate flood frequency quantiles 

corresponding to 10, 20, 50, and 100 year 

return periods. Table 1 contains a summary of 

catchment properties for selected stations in 

this region. Moment Ratio Diagrams (MRDs) 

(Hosking and Wallis, 2005) for all stations are 

shown in Figure 2, based on which, a high 

degree of heterogeneity can be identified from 

the L-moment ratio diagrams. The 

distributions presented in Figure 2 include 

GEV (Generalized Extreme Value 

distribution), GLOG (Generalized Logistic 

distribution), LOGN (Three-parameter Log 

Normal distribution), and PIII (Pearson type 

III distribution). 

Local flood quantiles for each gauging 

station were calculated by fitting the best 

appropriate statistical distribution to the 

historical flood record (Kouider et al., 2002; 

KamaliNezhad et al., 2011).The following 

distributions were considered at each site: 

Normal (N), Weibull (WE), Exponential 

(EXP), Gamma (GA), Logistic (LOG), 

Generalized Logistic (GLOG), Two-Parameter 

Log-Normal (LN2), Log Pearson type III 

(LP3), and GEV. These distributions were 

fitted with the Maximum Likelihood method 

and the method of L-Moments. The 

distributions that were selected most 

frequently wereN, LOG, GEV and LN2. 

Probability distributions for flood frequency 

analysis were defined through applying chi-

square and Kolmogorov-Smirnoff tests. 

Finally, considering the best distributions, at-

site flood Quantiles (Qloc) corresponding to the 

return periods of 10, 20, 50 and 100 years 

were obtained. In Figure 3, at-site quantiles 

plots of two stations are shown, using the 

following plotting position formula (Rao and 

Hamed, 1997): 

Pi:n= (1−0.35)/n    (1) 

Where, Pi:n is the plotting position estimator 

of observation i in the sample of size n.  

In addition to hydrological data, in each 

river basin, a number of physiographic and 

climatic descriptors were collated for each site. 

The set of physiographic and climatic 

descriptors included: MAR (mm year
-1

), Mean 

Monthly Rainfall (MMR in mm month
-1

), 

latitude and longitude (La, Lo in UTM), 

Maximum, Mean and Minimum Elevations 

(MaE, MeE, MiE in m), Catchment Mean 

Slope (CMS in %), Catchment Area (CA in 

km
2
), Catchment Perimeter (CP in km), Main 

Channel Length (MCL in km),Slope of Main 

Channel (SMC in %), Height of Station (HS in 

m), and Percentage of the basin occupied by 

Lakes and Forest (PL, PF in %). 

PSBI Method 

The regionalization steps based on PSBI are 

illustrated in Figure 4. In particular, the 

regional analysis method using geostatistical 

methods is composed of two major steps of 

constructing physiographical space and 

employing interpolation methods within that 

physiographical space. 

Physiographical space is a multi-

dimensional space defined by the effective 

climatic and physiographical parameters for 

the considered quantity and its coordinate is 

obtained by geomorphological descriptors of 

each basin and multivariate statistical methods. 

As a result, basins with similar climatic and 

physiographical properties would have equal 

coordinates in this space. There are numerous 

methods for constructing physiographical 

space, which include PCA and CCA. 

Accordingly, in the physiographical space, 

each basin can be positioned as one point and 

the empirical values for the considered 

quantity (at-site flood Quantiles (Qloc) with 

different return periods) are regarded as the 

third axis (Z). Hence, interpolation can be 

carried out using a standard interpolation 

algorithm, such as simple or ordinary kriging 

methods (Castiglioni et al., 2009).Coordinates 

of physiographic space are obtained as the 
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Table 1.The characteristics of the 38 study catchments. 

Longitude  latitude 
Elevation 

(m) 

Drainage 

Area 

(km2) 

Record 

Length 

(Years) 

Station Code Number 

53° 52' 58" 36° 35' 55" 1030 1036.918 34 Sefidchah 13-005 1 

53° 37' 29" 36° 35' 19" 600 1427.736 27Gelevard 13-009 2 

53° 17' 41" 36° 38' 54" 50 1905.605 30Abeloo 13-013 3 

53° 14' 31" 36° 48' 38" -15 2017.318 34Nozarabad 13-006 4 

53° 13' 41" 36° 15' 12" 400 1248.253 46Soleiman-Tangeh 13-019 5 

53° 10' 31" 36° 22' 31" 270 2715.254 48Rig-Cheshmeh 13-025 6 

53° 09' 54" 36° 26' 17" 175 876.788 26Garmrood 13-027 7 

53° 06' 17" 36° 42' 36" -5 4026.573 35Kordkheil 13-029 8 

53° 15' 07" 36° 33' 32" 110 27.573 28Darbkola 13-017 9 

53° 01' 13" 36° 08' 29" 570 566.639 22Kerikela 14-021 10 

52° 48' 41" 36° 33' 34" -5 2386.789 54Kiakola 14-007 11 

52° 53' 14" 36° 18' 05" 220 342.896 54Kasilyan-Shirgah 14-005 12 

52° 53' 10" 36° 17' 57" 220 1776.156 50Talar-Shirgah 14-001 13 

52° 48' 04" 36° 14' 14" 130 211.338 15Pashakola 14-071 14 

52° 46' 23" 36° 18' 18" 102 406.617 53Ghoran-Talar 14-011 15 

52° 39' 49" 36° 32' 43" 1 1625.154 54Koshtargah 14-017 16 

51° 49' 14" 36° 12' 18" 1360 752.74 28Baladeh 14-013 17 

52° 10' 49" 36° 11' 47" 1240 1182.311 36Razan 15-015 18 

52° 14' 41" 36° 05' 46" 860 235.523 29Panjab 15-011 19 

52° 22' 05" 36° 16' 25" 375 3986.658 55Karesang 15-017 20 

52° 25' 32" 36° 21' 32" 175 82.061 15Boliran 15-041 21 

52° 05' 00" 36° 29' 00" 200 140.623 46Aghozkoti 16-003 22 

51° 28' 41" 36° 39' 27" -10 75.495 34Noshahr 16-011 23 

51° 18' 56" 36° 13' 57" 1900 84.839 21Harijan 16-017 24 

51° 18' 10" 36° 14' 00" 1750 181.099 21Valiabad 16-081 25 

51° 15' 21" 36° 19' 50" 980 586.186 22Abshar 16-083 26 

51° 20' 14" 36° 29' 41" 375 627.434 28Dooab 16-019 27 

51° 20' 13" 36° 30' 38" 350 1583.362 56Polezoghal 16-021 28 

51° 07' 21" 36° 28' 57" 1380 190.465 48Kelardasht 16-023 29 

51° 12' 45" 36° 32' 31" 975 330.512 27Valet 16-085 30 

51° 21' 54" 36° 38' 43" -23 419.008 30Zavat 16-025 31 

51° 06' 03" 36° 40' 11" 70 151.349 20Mashallh-Abad 16-033 32 

50° 50' 13" 36° 45' 53" 140 776.2 38Haratbar 16-041 33 

50° 43' 05" 36° 49' 07" 80 409.227 32Ganegsar 16-049 34 

50° 37' 43" 36° 54' 49" 100 135.818 35Ramsar 16-051 35 

50° 58' 36" 36° 41' 47" 160 224.689 25Dinarsara 16-089 36 

52° 18' 27" 36° 23' 26" 215 81.302 18Oskomahaleh 16-200 37 

50° 48' 52" 36° 45' 28" 120 108.192 15Rezapat 16-203 38 
 

(a) (b) 

Figure 2. (a) LCv–LCs moment ratio diagram, and (b) L-skewness versus L-kurtosis moment ratio diagram 

for 38 stations in the north of Iran. 
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Figure 3. At-site plotting positions and quantile estimations of twostations. 

 

Figure 4. Flowchart of regional analysis based on geostatistical methods. 

 
function of geomorpho-climatic catchment 

descriptors. Therefore, basins with similar 

characteristics have similar coordinates in 

physiographic space (Chokmani and Ouarda, 

2004).Finally, by employing interpolation 

methods (e.g. kriging) within CCA and PCA 

physiographical spaces, regional flood 

analysis is obtained according to different 

return periods. 

Analysis and Evaluation of Results 

The jack-knife cross-validation procedure, 

which is also referred to as delete-one cross-
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Figure 5. Scatter plot of site characteristics and flood quantiles. 

 

 

validation in the literature, is extremely 

versatile and capable of providing adequate 

evaluation of the performance of interpolation 

techniques (Castiglioni et al., 2009). Five 

indexes were adopted to study the relative 

performances of the various regionalization 

approaches. These include the mean Bias 

(BIAS), the relative mean Bias (BIASr), the 

Root Mean Square Error (RMSE), the relative 

Root Mean Square Error (RMSEr) as well as 

the Nash criterion, which can be written as 

follows: 
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Where,
)(iQloc ,

)(iQreg correspond, 

respectively, to the local and regional 

estimates of the discharge Q (corresponding to 

a given return period T) at station i, and ns is 

the number of stations (Ouarda et al., 2008). 

RESULTS AND DISCUSSION 

Designing physiographical space is the most 

important step in the PSBI process. In this study, 

multivariate statistical methods (CCA and PCA) 

and geomorpho-climatic variables were used to 

design physiographical spaces. 

Based on the correlations between the 

hydrologic and physiographic/climatic variables, 

the variables for designing the physiographical 

spaces were identified. Results showed that the 

catchment area was strongly correlated to flood 

quantiles. The addition of CA, CP, MCL, SMC, 

MiE, CMS, Lo and HS showed to be highly 

correlated to flood quantiles. The correlation 

coefficient between the hydrologic and 

geomorpho-climatic variables presented in Table 

2 and Figure 5 denotes the interrelations between 

the chosen geomorpho-climatic variables and the 

hydrological variables.  
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Table 2. The correlation coefficients between the selected variable and flood quantiles. 

Variable CP CA MiE CMS SMC MCL HS Lo 

R
2 

0.588 0.657 -0.365 -0.329 -0.513 0.533 0.371 0.350 

Sig 0.000 0.000 0.012 0.022 0.000 0.000 0.011 0.016 

 

  

Figure 6.The distribution of stations in the PCA and CCA physiographical space, respectively. 

 

PCA-space was constructed considering 6 

physiographical variables of CA, BMS, MCL, 

SMC, MiE, and HS. In this method, PCA-

space was a two-dimensional space 

constructed based on the first and second 

principle components. These two components 

accounted for 73.74% of the total variance 

(41.73 and 32%, respectively). 

Additionally, CCA was used to construct the 

physiographical space. This method defines 

the relationship and correlation between two 

sets of dependent and independent variables. 

The independent variables considered included 

CA, CP, MCL, MiE, CMS, and HS. The 

dependent variables were two hydrological 

variables of the Q20 and Q10. The two-

dimensional space formed by the first (V1) and 

second (V2) canonical variables was made 

through CCA-space, where V1 and V2 are the 

linear combination of two sets of 

physiographical variables with maximum 

correlation with the selected hydrological 

variables. Figures 6-a and -b indicate the 

position of the hydrometric stations in PCA 

and CCA spaces, respectively. The 

identification number specified for each 

hydrometric station is presented in Table 1.  
After designing the physiographical space, 

physiographical coordinate of each station was 

obtained according to its position in the 

physiographical space. Then, the spatial 

structure of hydrological quantity was 

examined using GS
+
 software (GS

+TM
) based 

on empirical variograms. The variograms 

fitted to the quantity of local flood for different 

return periods in PCA and CCA spaces are 

shown in Figures 7 and 8, respectively. 

After calculating the empirical variograms, 

the theoretical model must be fitted to them. 

Spherical, linear, exponential, and Gaussian 

theoretical models were tested for fitting by 

empirical variograms. The most common 

variogram model is said to be the spherical 

variogram. This variogram, which begins from 

the origin of the coordinate system, has linear 

behavior close to the origin. The exponential 

model is mostly analogous to the spherical 

model. Although exponential variogram has a 

linear behavior, the rising rate in variograms is 

slower than that of the spherical model. While 

the linear variogram is a sill-less model, the 

Gaussian model is considered as a transitional 

model which reaches its sill asymptotically 

and exhibits a parabolic behavior near the 

origin. More details are available in Isaaks and 

Srivistava (1989)  

The results of fitting the variogram models 

are presented in Table 3. Considering the 
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(a) (b) 

  

(c) (d) 

Figure 7. Variograms fitted to the quantity of local flood in PCA-physiographical space (with return 

periods a= 10, b= 20, c= 50, d= 100 years). 

 
 

(a) (b) 

  
(c) (d) 

Figure 8. Variograms fitted to the quantity of local flood in CCA physiographical space (with return 

periods a= 10, b= 20, c= 50, d= 100 years). 

 

 spatial pattern demonstrated by empirical 

variograms and correlation coefficient indices 

(r
2
), sum of the Residual Squares (RSS), 

spatial structure (C/C0+C), and the exponential 

and Gaussian models were evaluated to be 

appropriate in the PCA and CCA spaces. 

According to Table 3, in order to select the 

best variogram model, maximum r
2
, lowest 

value of RSS, and spatial structure of close to 

one were taken into account. Fitting of the 



Geostatistical Methods in Regional Flood Analysis ________________________________  

869 

Table 3.Results of fitting variogram models based on physiographical space. 

Physiographical 

Space Variable Model 

Nugget 

effect 

(C0) 

Sill 

(C) 

C/C0+C 

(Spatial 

structure) 

r
2 

(Correlation 

coefficient) 

RSS 

(sum of 

residual 

squares) 

CCA 

Q10 

Spherical 0.13380 0.26860 0.502 0.230 0.0118 

exponential 0.15310 0.30720 0.502 0.112 0.0137 

Linear 0.13772 0.19745 0.302 0.226 0.0101 

Gaussian 0.04370 0.18040 0.757 0.514 
3-

10 ×7.531 

Q20 

Spherical 0.13570 0.27240 0.502 0.392 0.0118 

exponential 0.06900 0.19300 0.642 0.497 8.081×10
-3 

Linear 0.13934 0.20601 0.324 0.283 0.0105 

Gaussian 0.03260 0.1822 0.821 0.508 
3-

10 ×8.029 

Q50 

Spherical 0.14090 0.28280 0.502 0.269 0.0137 

exponential 0.05260 0.19920 0.736 0.532 8.791×10
-3

 

Linear 0.14560 0.21274 0.318 0.259 0.0118 

Gaussian 0.03350 0.18900 0.822 0.540 
3-

10 ×8.226 

Q100 

Spherical 0.14610 0.29320 0.502 0.259 0.0151 

exponential 0.06190 0.20580 0.699 0.534 9.535×10
-3

 

Linear 0.15001 0.21926 0.316 0.250 0.0127 

Gaussian 0.0392 0.19940 0.803 0.609 7.574 ×10
-3

 

PCA 

Q10 

Spherical 0.00010 0.10120 0.902 0.702 1.985 ×10
-3

 

exponential 0.00010 0.10520 0.999 0.769 1.882 ×10
-3

 

Linear 0.04685 0.11675 0.599 0.470 0.0165 

Gaussian 0.00990 0.10080 0.902 0.716 3.561 ×10
-3 

Q20 

Spherical 0.00010 0.1120 0.999 0.712 3.485 ×10
-3 

exponential 0.00010 0.11320 0.999 0.765 2.176 ×10
-3 

Linear 0.05526 0.1244 0.556 0.409 0.0171 

Gaussian 0.00880 0.10860 0.919 0.699 3.724 ×10
-3 

Q50 

Spherical 0.00010 0.14220 0.999 0.716 4.055 ×10
-3 

exponential 0.00010 0.14420 0.999 0.748 3.583 ×10
-3 

Linear 0.08279 0.15759 0.475 0.317 0.0219 

Gaussian 0.00120 0.14040 0.991 0.709 4.740 ×10
-3 

Q100 

Spherical 0.00010 0.14920 0.999 0.657 4.481 ×10
-3 

exponential 0.00010 0.15320 0.999 0.728 4.019×10
-3 

Linear 0.09539 0.16548 0.424 0.265 0.0212 

Gaussian 0.10990 0.2208 0.502 0.157 0.0115 

 

theoretical Gaussian model as the best 

variogram in CCA-space indicated maximum 

spatial structure for the hydrological variables 

in this space. After fitting the theoretical 

models, regional flood analysis estimates were 

made using Ordinary (OK) and Simple (SK) 

Kriging techniques in the physiographical 

spaces. Cross analysis of the flow values 

estimated based on ordinary kriging method in 

PCA and CCA spaces along with the observed 

flow values is shown in Figures 9 and 10, 

respectively   

Results of cross validation based on jack-

knife and five statistical indices are presented 

in Table 4. Among BIASr, BIAS, RMSE, and 

RMSEr indices, the least value indicates the 

best performance. The negative values 

obtained by BIAS and BIASr indices show 

overestimates. It must be noted that, when 

evaluating the performance of regional flood 

quantity, performance of relative indices  
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(a) (b) 

 
 

(c) (d) 

Figure 9. Cross validation results of ordinary kriging in PCA-physiographical space (with return periods 

a= 10, b= 20, c= 50, d= 100 years). 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 10. Cross validation results of ordinary kriging in CCA-physiographical space (with return 

periods a= 10, b= 20, c= 50, d= 100 years). 
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Table 4.The results of the cross validation of regional flood estimation based on geostatistical 

methods [Ordinary (OK) and Simple Kriging (SK)] in the physiographical spaces. 

NASHRMSErRMSEBIASrBIASVariable
Meth

od 

Physiographi

cal space 

0.53 17.38 0.25 2.46 0.0029 Q10   
0.51 16.85 0.26 2.46 0.0043 Q20 OK PCA 

0.51 19.88 0.29 3.29 0.0057 Q50 

 

 

0.44 20.22 0.32 3.57 0.0073 Q100 

      

0.52 18.15 0.25 2.71 0.0011 Q10  
0.51 17.29 0.26 2.69 00031 Q20 

0.48 21.39 0.30 3.87 0.0070 Q50 SK PCA 

0.47 20.31 0.31 3.84 0.0089 Q100 
 

 

      

0.97 3.95 0.06 0.54 0.0052  Q10   
0.99 2.29 0.03 0.31 0.0038 Q20 

0.97 4.27 0.06 0.15 -0.0030 Q50 OK CCA 

0.94 5.24 0.10 0.10 -0.0052 Q100 
 

 

      

0.97 4.06 0.06 0.47 0.0042 Q10  

0.98 2.95 0.04 -0.11 -0.0060 Q20 SK CCA 

0.95 5.43 0.09 0.54 -0.0095 Q50   

0.91 6.11 0.12 -0.95 -0.0108 Q100 

 
(BIASr and RMSEr) have particular 

importance, since employing relative, instead 

of deterministic, indices (RMSE and BIAS) 

eliminates any potential scale effect of the 

results (Ouarda et al., 2008). 

Results shown in Table 4 indicate that 

increasing the return period caused the values 

of BIAS and RMSE indices to have an 

increasing trend in both physiographical 

spaces. This issue indicated that uncertainty of 

regional estimates was increasing with the 

increase in return period. However, results of 

the relative indices (BIASr and RMSEr) 

showed the improved performance of PSBI 

methods had a direct relationship with the 

increase in return period. These results were in 

good agreement with the results reported by 

Ouarda et al. (2008) and Martel et al. (2011). 

The findings stated by Ouarda et al. (2008) 

demonstrated that, although values for RMSE 

and BIAS indices increased with an increase in 

return period, the performance of geostatistical 

techniques improved according to BIASr and 

RMSEr relative indices. Moreover, results 

presented by Martel et al. (2011) showed that, 

based on BIASr and RMSEr indices, the 

relative efficiency of geostatistical technique 

was improved by increasing the return period; 

however, BIAS and RMSE values were 

increasing anyway.  
The performance of the interpolation 

techniques in two physiographical spaces was 

evaluated based on five statistical indices. The 

performance of the NASH index in CCA and 

PCA spaces was more than 0.9 and 0.4-0.5, 

respectively. According to the results of the 

NASH index, the performance of interpolation 

methods in the PCA-space was relatively 

satisfactory; while in the CCA-space, it 

provided accurate and acceptable flood 

prediction. 

According to the results of the statistical 

indices, it can be concluded that the regional 

analysis based on CCA-space had better 

performance than the ones in the PCA-space. 

The main reason for this can be attributed to 

the different nature of multivariate statistical 

methods. Moreover, one can relate the weaker 

performance of kriging in PCA-space to the 

uncomfortableness with the stationary 

assumption. Thus, the PCA method used in 

designing physiographical space sought to 

maximize variance along the axes of the space, 

while the main objective of CCA method was 



  _________________________________________________________________ Yazdani and Sheikh 

872 

to maximize the correlation between climatic, 

physiographical, and hydrological variables, 

which could be also the reason for better 

performance of interpolation techniques in the 

CCA physiographical space. The better 

performance of regional estimations in the 

CCA-space, compared to the PCA-space, is in 

complete agreement with the results by 

Chokmani and Ouarda (2004) and Guillemette 

et al. (2009). In addition, the comparison of 

performance between the two interpolation 

techniques (ordinary and simple kriging) 

showed that ordinary kriging had better 

performance than the simple kriging in both of 

the physiographical spaces.  

In the current study, identified problematic 

gauging stations had high observed relative 

mean square error in both spaces. Seven 

stations (Identification numbers: 13009, 

13017, 14017, 16017, 16081, 16019, and 

16025) were found to have very high relative 

errors. Further research showed that three 

stations (13017, 16017 and 16081) had basin 

areas of less than 200 km
2
. It seems that the 

200 km
2
 threshold is not adequate and the area 

limit under which the basin can be considered 

as small should be redefined. Another possible 

reason of the underestimation of quantiles 

from small basins lies in the fact that the 

surfaces of these basins are themselves 

underestimated (Chokmani and Ouarda, 2004). 

The elimination of these seven stations 

improved the results significantly. For 

instance, the NASH calculated 0.4-0.5 

estimated within the PCA-space drops from 

0.5 to 0.7 and the relative mean bias from 2-3 

to 1-2%.Additionally, the range of RMSE 

values decreased from 0.25-0.32 to 0.18-0.26. 

This means that the method presented in this 

study is rather sensitive to the quality of 

physiographical and meteorological data. 

CONCLUSIONS 

The present study was conducted to apply and 

develop physiographical space based 

geostatistical methods for regional flood 

frequency analysis in ungauged basins. 

Continuity of hydrological variables throughout 

the physiographical space is considered as one of 

the most important characteristics of 

physiographical spaces. In this regard, 

physiographical coordinates of each basin are 

obtained based on the characteristics of the 

basins that had the most similar properties to the 

target basin; therefore, in this case, regional 

estimations will have more accuracy and less 

uncertainty. Designing physiographical space is 

one of the most important and influential stages 

of implementing physiographical space based 

interpolation method, since the type of 

physiographical space directly affects the 

accuracy and validity of the results. This issue 

can be confirmed by different performances of 

interpolation methods in CCA-space from those 

in PCA-space. In addition to the nature of 

multivariate statistical methods, the geomorpho-

climatic variables used for designing 

physiographical space also affect the efficiency 

of geostatistical methods. Investigating the type 

and number of geomorpho-climatic variables for 

designing physiographical space requires a 

comprehensive study. Fitting the exponential 

theoretical model to empirical variograms in 

PCA-space and fitting the Gaussian model in 

CCA-space show that the physiographical space 

influences not only the accuracy and validity of 

regional estimations, but also the spatial structure 

of hydrological variables. Thus, hydrological 

variables in CCA-space have higher spatial 

continuity than PCA-space. The results of this 

study demonstrated that the application of 

geostatistical methods can be an effective and 

efficient approach for the regional flood 

frequency analysis. In this approach, for any 

ungauged site, the flood quantiles can be 

estimated through interpolation of local quantile 

estimates with physiographical neighborhood. 

To achieve this, physiographical and 

meteorological characteristics of ungauged sites 

were used to estimate the coordinates of the sites 

in the physiographical space. It can be claimed 

that this method has the required potential for the 

regional estimation of hydrological data and 

provides more accurate and reliable estimates 

than other conventional methods in this regard. 
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 ایران شمال در سیلاب ای مىطقٍ فراياوی تحلیل در آمار زمیه َای ريش کاربرد

 )مازوذران آبخیسَای: مًردی مطالعٍ)

 م. ر. یسداوی، ي ز. شیخ

 چکیذٌ

ای در ایران ثسیبر وًپبست. پبیٍ ياسبس ایه تکىیک ثر دريویبثی  َبی مىطقٍ تحلیلثرایآمبر  کبرثرد زمیه

بی فیسیًگرافی ثجبیفضبی جغرافیبیی استًار است. َذف ایه مطبلعٍ متغیرَبی َیذريلًشیکی در فض

ای ثر پبیٍ زمیه آمبر است. در مطبلعٍ حبضر، مجمًعٍ  اوطجبق، کبرثرد ي مقبیسٍ دي ريشتحلیل مىطقٍ

آمبری در  َبیسمیه ایستگبٌ دارای آمبر ياقع در شمبل ایران ثٍ مىظًر ثررسی عملکرد ريش83اطلاعبت 

 رافی مًرد استفبدٌ قرار گرفت. دي ريش تحلیلچىذمتغیرٌ تحلیل َمجستگی کبوًویدي فضبی فیسیًگ

(CCA) ٍَبی اصلی ي تجسیٍ مًلف (PCA)  ثُمىظًر تجییه فضبی فیسیًگرافی مًرد استفبدٌ قرار
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 َبی گًسی ي ومبییجعىًان ثُتریه مذلُبی تئًری ياریًگرام ثٍ ترتیت در فضبی فیسیًگرافی گرفت. مذل

CCA ي PCA آمبری کریجیىگ معمًلی ي کریجیىگ -اوتخبة گردیذوذ. ثرآيردگرَبی زمیه

ای در َر دي فضبی فیسیًگرافی مًرد استفبدٌ قرارگرفت. ثب استفبدٌ از  َبی مىطقٍ سبدَجٍ مىظًر تخمیه

ای سیلاة ثرای ديرٌ  ،ثرآيردَبی مىطقPCAٍ ي CCA یبثی در فضبَبی فیسیًگرافی َبی درين ريش

سبل( ثذست آمذ. در وُبیت عملکرد َر دي مذل ثب استفبدٌ از 011ي  01، 01، 01لف )َبی مخت ثبزگشت

پىج شبخص آمبریمًرد ثررسی قرار گرفت. وتبیج وشبن داد کٍ َر دي ريش عملکرد مشبثٍ ي قبثلقجًلی 

از دقت ثبلاتر ي عذم  CCA ای در فضبی فیسیًگرافی کىىذ؛ ثب ایه حبل ثرآيردَبی مىطقٍ ارائٍ می

ثبشذ. علايٌ ثرایه وتبیج وشبن داد کٍ   ثرخًردارمی PCA ت کمتری وسجت ثٍ فضبی فیسیًگرافیقطعی

کىذ ي  ريش کریجیىگ معمًلی عملکرد ثُتریىسجت ثٍ ريش کریجیىگ سبدٌ در َر دي فضب ارائٍ می

 .مشبَذٌ شذ CCA ثُتریه عملکرددريویبثی در فضبی فیسیًگرافی

 


