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ABSTRACT

In various papers some authors have previously investigatd determined the spectrum
of weighted mean matrices considered as bounded operai@eious sequence spaces.
It is evident that no much research has been done on the gpecfrNorlund matrices.
In this study, we have investigated and determined the eajees of a Norlund matrix
as a bounded operator over the sequence smgasdc. This was achieved by apply-
ing eigenvalue problem i.Ax= Ax. whereA are numbergreal or complex and vector
columnsx(x # 0);such that xc cp and ¢ Also A*x = Ax such thaix € cjand ¢ where
cg, € =I1. The results obtained arec B(cp) , A € B(bvg) and A< B(l1) have no eigen-
values while the set of eigenvalus #t € B(I1) whereci =11is{A € C: [A +1| < 2}U
{1}. Furthermore the set of eigenvalues foE B(c) is the singleton sefl} and that
of A* € B(l1) wherec* = |1 is the sef{A € C: |A +1| < 2} U{1} .The results from this
research will provide useful information to engineers t@iove on areas of application
of eigenvalues and eigenvectors in engineering. It wilbdde useful to mathematicians

when solving similar problems.
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CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW

1.1 Background of the Study

Concepts used in this research emanated from modern foattamalysis as well as
summability theory and hence a list of pertinent definitiansl theorems in these areas

of research are given below:

1.1.1 Eigen values

Given a square matriA, let us consider the problem of finding numbargq real or

complex ) and vectors ( vector columns jx # 0) such that

AX= AX (1.1.1)

This problem is called the eigenvalue problem, the numbare called the eigenvalues
of the matrixA, and the non-zero vectarare called the eigenvectors corresponding to the

eigenvaluesg\.

To find eigenvalues; we note thak = Alx , wherel is the identity matrix. Then we can

rewrite equatior{1.1.1) in the form

Ax—AIx=0
or

(A= A1)x=0 (1.1.2)

Matrix equation(1.1.2) ( which infact represents the linear system ) has a noratrivi

solutionx # 0 if and only if the matrixA— Al of this system is singular, which is the case



if and only if

det(A—Al)=0 (1.1.3)

Thus we have the equation for finding eigenvaldeg&quation(1.1.3) is called the char-

acteristic equation.

1.1.2 Classical Summability

The central problem of summability is to find means of assigi limit to a divergent
sequence or sum to a divergent series. In such a way thatqhersee or series can be
manipulated as though it converges, (Ruckel, 1981), pp-189 The most means of
summing divergent series or sequences , is that of usindfiartémmatrix of complex

numbers.
Definition 1.1.1. Sequence to Sequence transformation

Let A= (an),n,k=0.1,2,... be an infinite matrix of complex numbers. Given a sequence

X = (X) o define

Yn = Zankxk, n=0,1,2,... (1.1.4)

If the series (1.1.4), converges for aithen we call the sequengg);,_,, theA-transform
of the sequencex);” . If further, y, — aasn — o, we say thatx),_q is summableA

toa.

There are various sequence to sequence transformatiores weeonly state Norlund

means.

Definition 1.1.2. (Norlund means)



The transformation given by

1 n
= — _ =012 .. 1.1.5
Yn Pn kgo Pn—kXk, N s Ly &y ( )

where R = po+ p1+....+ pn # 0, is called a Norlund means and is denoted(byp).

Its matrix is given by

Pk 0<k<n

Ank = - (1.1.6)
0 , k>n
In matrix (1.1.6) ifp =1,p1 = —2,p2 = p3 = ... = 0, then A= (ay) i.e
(
1, n=k=0
2, n—1<k<n
ank =
-1 n=Kk
0 otherwise
\
or
1 0 0 0 O
2 -1 0 0 O
0 2 -1 0 O
A=
O 0 2 -1 O
O 0 0 2 -1

it transforms the unbounded sequer(eg)y o = (1,2,4,8,16,...) to zero which is the

matrix of our interest in this research.

Definition 1.1.3. (series to series transformation)

The transformation of the seri€gy_, X« into a convergent seri§s_oyn by an infinite

matrix A = (ank) So that



Yn= ) ani (1.1.7)
k=0

is called series to series transformation. For more inféionan series to series transfor-

mation see (Vermes, 1949)

1.1.3 General Results in Classical Summability

Definition 1.1.4. (regular method , conservative method)

Let A= (an),n,k=0,1,2, ... be an infinite matrix of complex numbers.

I. If the A transform of any convergent sequence of complexbers exists and converges

then A is called a conservative method . We then wAite (c, c)
ji. If
lim yn = limp0Xy = @, a € C; where(yn)n_o (1.1.8)
is the A transform of the convergent sequeixgs,_,, thenA is called regular . We then
write A € (c,c; P)
Theorem 1.1(silverman - Toeplitz) A& (c,c; P) if and only if
i. limp_.ank = 0 for each fixeck =0,1,2,...
i iMoo Spp ank=1
jil.sup=0{>kola, |} <M< MeR".
Proof: (Hardy, 1948), pp.44-46, (Petersen, 1966) and (Madt970), pp. 165-166.

Remark: The Silverman - Toeplitz theorem gives the complete classatrices(an)
which transforms all convergent sequencas)g’ such that lim__, Xy = liMp__cYn by

means of the linear equatiqi.1.4).



Theorem 1.2( Kojima - Shur)A € (c,c)if and only if
I. ank — a asn —» oo for each fixedk > 0;

li. Yo ank —> aasn —

ii. suph>0 {Sk-o|ank|} <o

Proof: (Maddox, 1970), pp. 166 - 167; (Ruckel, 1981), pp. 1085; (Powell and Shah,
1972) and (Wilansky, 1984), pp. 5-6

Theorem 1.3A € (cp,Cp) if and only if

I. limp—~ank = 0 for each fixed k

ii. sup>0 {Jk_o | @nk |} <o

Proof: (Hardy, 1948), pp. 42 - 60; (Maddox, 1970), pp. 165%.16

1.1.4 Banach Spaces

Definition 1.1.5. (Paranorm)

A paranorm p, on a linear spa#g is a functionp : X — R such that

iv. p(x+y) < p(x)+p(y)

v. If (An)g is a sequence of scalars with — A and(x,);’is a sequence of points X

with xp— X, thenp(AnX, — AX) — 0 (continuity of multiplication)



Definition 1.1.6. (seminorm/norm)

A seminormp, on a linear spack, is a functionp : X — Rsuch that
. p(x) = 0

ii. p(x+y) < p(X)+p(Y)

iii. p(AX) =] A | p(x), A € K(RorC)

If in addition to these conditions a seminorm satisfies theld@n thatp(x) = 0 iff x= 0,

then we call it a norm@ denotes the zero vector.

Definition 1.1.7. (linear Topological space)

A linear topological space is a linear spat&hich has a topology , such that addition
and scalar multiplication iXX are continous. I is given a metric, we speak of a linear

metric space.

Example 1.5.1¢cp andc are all normed linear spaces . Their norfiixg|= sup>o0{| Xn |}

Definition 1.1.8. (Banach Space)

A Banach space is a complete normed linear space. Compdstemeans that if| X, —

Xn ||—> 0 asm,n — o wherex, € X, then there exists € X such that,

[|Xn - X || — 0 asn —co.

1.1.5 Linear operators and Functionals

Definition 1.1.9. (Linear operator)

Let X andY be linear spaces. Then a functibn X — Y is called a linear operator or

map or transformation if and only if foraly € X and allA, u € K

F(AX+py) =AF(x) +pf(y).



Definition 1.1.10. (Linear functional)

fis alinear functional oiX if f : X — K is a linear operator , i.e a linear functional is a

real or complex valued linear operator.

Definition 1.1.11. (Bounded linear operator)

A linear operator A X — Y is called bounded if there exists a constishsuch that
IAX) [[< M [ x]],¥x e X
NOTE: A bounded functional oK satisfies

[ f(¥) [<M ][ x]],¥xe X



1.2 Literature Review

This section contains the previous work that has been daoué on areas relating to our

research.

In 1960, E.K. Dorff and A. Wilansky showed that the spectruima@ertain mercerian
Norlund matrix witha,, = 1, contains negative numbers, (Dorff et al, 1960) and (Wilan
sky, 1984), Theorem 3. In 1965, Brovet al, determined the spectrum and eigenvalues
of the Cesaro operatocy( operator) of spact of square summable sequences, (Brown
et al, 1965). Sharma (1972) determined the spectra of ceatser matrices and in par-
ticular showed that the spectrum of any Hausdorff methodh®euncountable or finite.

Sharma (1975) determined the isolated points of the spett@nservative matrices.

Wenger (1975) computed the fine spectra of Holder summwlaiperators orc - the
space of convergent sequences . Deddens (1978) computepetiea of all Hausdorff
operators ori%. Rhodes (1983) extended Weger’'s work by determining thespeetra

of weighted mean operators an Reade (1985) determined the spectrum of Cesaro op-
erator oncy - the space of null sequences. Okutoyi (1985) determinedpketrum of
Cionwp(0), (1< p< ). Gonzale (1985) computed the fine spectrum ofGheoper-
ator onl p(1 < p< ). In (1989) , Okutoyi, J. | and Thorpe, B. computed the spectru
of the Cesaro operator of order two;goperator) onco(cp) - the space of double null
sequences. Okutoyi (1990) determined the spectru@j operator orbvy space. In 1992
Okutoyi extended his work by determining the spectrunCpbperator orbv space. In
1996, Shafiquel Islam obtained the spectrunCgiperator on., - the space of bounded
sequences, (Shafiquel, 1996). In his PhD thesis Mutekhe, K. extended Okutoyi’s
work by determining the spectrum Gf operator orc(c) - the space of double sequences
which converge. He went further and determined the fine speéC; 1 operator orc(c) -

the space of double sequence which converge, (Mutukhed®)1th 2003, Coskun deter-
mined the set of eigenvalues of a special Norlund Matrix asusmtled operator over some
sequence spaces especially the eigen valueg,onand by, (Coskun, 2003). In 2005,

Okutoyi, and Akanga computed the spectrum of@@perator on - the space of strongly



Cesaro summable complex sequences of order 1, (Okutoyi &adga, 2005). In 2010
Akangaet al, determined the spectrum of a special Norlund matrix as aded operator
on ¢y especially the eigen values @y, (Akangat al, 2010). In 2014, Akanga, deter-
mined the spectrum of a special Norlund matrix as a boundetatqr onc by obtaining

the eigen values oq (Akanga, 2014).



1.3 Statement of the Problem

From the literature review a lot has been done on the spetwaighted mean matrices
such as Cesaro and Holder means. But not much have beenetimeMorlund means.
In this thesis eigen values of a Norlund matrix acting as aeratpr on the sequence

spacexy andc are determined.

1.4 Justification

Apart from the more obvious benefits i.e., the solution otays of linear equation of
which the spectrum of linear operators is all about, theeeraore equally important
applications of the research. A central problem in the widlenathematics and even
science and engeneering ; is the determination of conveegennon-convergence of
sequences and series. Many applicaations of matrices imdrgineering and science
utilize eigen values and sometimes eigen vectors. Vibmadiwalysis and stress tensors
are just a few of the application areas. Mathematics, eajpedathematical analysis,
developes and is maintained via the concept of convergdrsarjaence and series. Even
in applied Science and Engineering , one is interested indheergance of a sequence or
series of results generated during experimentation. Esialol theorems such as the ratio
theorems and integral theorem, are not applicable in atyasfesequences and series.
Even where they apply they just determine convergence anthadimit or sum of the
convergent sequence or series. Tauberian theorems in Suthitynheory handle this
problem well. The convergence and even the limit of a corergequence or series is

determined from the convergence of some transform of itttegevith a side condition.

10



1.5 Objectives

1.5.1 General Objective

To investigate and determine the eigenvalues of an infingir(special Norlund matrix)

as an operator on sequence spmsdco

1.5.2 Specific Objectives

1. To determine the eigenvalues of a Norlund matrix as anabpeon the sequence space

Co.

2. To determine the eigenvalues of a Norlund matrix as arnedpeon the sequence space

C.

11



CHAPTER TWO

THE BOUNDEDNESS OF OPERATOR A ON ¢co AND THE
EIGENVALUES OF AON ¢y

The chapter is divided into two sections. Section one dedls mvatrix A see(1.1.6)
considered bounded operator on the null convergent sequepace,. In section two we

workout eigenvalues of matriX see(1.1.6) on the sequence spacg

2.1 Boundedness of on sequence space)

In this section we show tha@t< B(cp). The corollary below arises from theorgh3), in

chapter 1.

Corollary 2.1.1. Itis clear that Ac B(cp) since limya,x=0 for each fixed k (see matrixl.1.6)

| All=Sumz0 Y | an|=Sup1,333,..)=3 (2.1.1)
k=0

Also, || Al=[ A" =3

Hence all the conditions of theorem 1.3 are satisfied.

Lemma 2.1.2. Each bounded linear operator TX — Y, where X=cp,/;,cand Y=
Co, /p(1 < p < ), e, determines and is determined by an infinite matrix of commplen-

bers.

Proof. see ( Taylor, 1958) pages 217-219 O

Lemma 2.1.3.Let T: cp — Cp be a linear map and define*T. /1 — /1 by Tfog=
goT, g€ cj=/¢1. then T must be given by a matrix by lemf2al.2) and moreover

T*: {1 — (1is the transposed matrix of T.

Proof. see (Wilansky, 1984) page 266. O

12



Corollary 2.1.4. Let A: co — co where A is the Norlund matriidl.6.6). Then A € B(¢1),

moreover
1 2 O
0 -1 2
0 0 -1
A=
0 0 O
0 0 O

Proof. It follows from lemma 2.1.3 usiné on substitutingl' for matrix A

2.2 Eigenvalues ofA on the sequence spaog)

Theorem 2.2.1.A € B(cp) has no Eigenvalue.

Proof : Suppos@&x= Axfor x+# 0 incyandA € C then

1 0 0 0 O X0
2 -1 0 0 O X1
0 2 -1 0 O X2
0O 0 2 -1 O X3
O 0 0 2 -1 X4

13

X1
X2

X3

(2.1.2)

(2.2.1)



Implies

2X0 — X1 = AX1

2X1—X2 :)\Xz

2X2—X3:)\X3

2X3—Xa = AX4

21— X =AXy , h>1 (2.2.2)

solving system(2.2.2) we have that ifxg is the first non zero entry of , thenA =

1, butA =1 impliesthat y=x1 =X =...=X,=...

14



X0 1

X1 1

X2 1
= Xo

which shows thax is in the span 0® . Butd = (1,1,1,...) ¢ ¢p. That isx does not tend

to zero as tends to infinity , so\ = 1 is not an eigenvalue & € B(cp).

If xnr 1, N=0,1,2,3,...is the first non zero entry, theh= —1 . Solving the system
withA = —1resultsinx,=0,n=0, 1, 2, 3, ... a contradiction . Hencgé = —1 cannot

be an eigenvalue & € B(cy) .

ThusA € B(cp) has no eigenvalues i.e the set of eigenvalues is empty:

Corollary 2.2.2. The set of Eigenvalues ofAB(bvy) and Ac B(l1) is empty

Proof : This follows from the fact that € B(cg) =0, and by C cp, Also/1 C ¢

Theorem 2.2.3.The Eigenvalues of*Ac B(/1) is the set

(AeC:A+1<2yu{1}

Proof : Suppos@&*x=Ax forx#0and A € C

Then
Xo Xo
1 2 0 0 O
X1 X1
0 -1 2 0 O
X2 X2
0O 0 -1 2 O
X3 | =A| x3 (2.2.3)
o o o0 -1 2
0O 0 0 o0 -1

15



That is

X0+ 2% = AXo

—X1+ 2% =AXq

—Xo+2X3 = AXo

—X3+2X4 = AX3

—Xn+ 211 = AXy where n>1

16

(2.2.4)

(2.2.5)



Solving the systelf2.2.4) for xq, X2, X3, . .., Xyinterms of ¥ gives:

=271\ <1— )\1) X0

1 1
_9-2y2 _ - =
Xo =2"°“A (1 A)(l—i—)\)xo
1 1\?2
_ 9333 _ = =
X3 =2"°A (1 A)(1+A) X0

1 1\3
x4:2_4)\4(1—x) (HX) X0

In general

o 1 1\ "1
=27\ (1_X) (HX) X0 (2.2.6)

By ratio test

2727 M (1+ )M (1-3) %o

Xn+1

liMn_ e =liMp_0
n%‘ n| n— ‘2 ”)\n(l—l— ) (1+ ) 1(1 )%)XO
i 2-1)
= liMn_so0] T —|
x)

1 1
All+—||=I VIeRstI >
> <+A)| VIeRstl >0

17



By ratio testx, € /1 iff 1 <1
Thatisiff [3A +1| <1
or [A+1/<2

(o]

That is the seriesy |x,| converges for allk in the circular disc centred at the point

n=
(—1, 0) of radius 2.

It is clear thatA = 1 is an eigenvalue corresponding to the eigenve{9ro, 0, O, . . .)t.
Wherexg is any real or complex number . This is the case sifge0, 0,0, . . .)t C

{1 forany» e C

Hence the Eigenvalues 8f € B(l) is the set

(A eC:A+1 <2yu{L}

18



CHAPTER THREE

THE BOUNDEDNESS OF OPERATOR A ON c AND THE EIGEN
VALUES OF AONc.

The chapter is divided into two sections. Section one deitls matrix A see(1.1.6)
considered bounded operator on the convergent sequence sp#n section two we

workout eigenvalues of matrik see(1.1.6) on the sequence space

3.1 Boundedness of on the sequence space

In this section we show th@e B(c). The corollary below arises from theordm?2), in

chapter 1.

Corollary 3.1.1. A € B(c), moreover

IAl=lA"=3

Proof. sincea— 0 asn— o for fixed k>0

also

00 n
Zoank: Z)ank: 1, foreachn (3.1.1)
K= K=

so thatlim, Y gak=1

finally || Afl=supm=o{Yko | ank[} =3
Therefore all the conditions of theorgih 2) are satisfied. Henck € B(c) O

Theorem 3.1.2.Let T : ¢ — ¢ be a linear map and define*T. ¢c* —c¢c* i.e. T :
¢1 — ¢1 by T*(g) = goT, g € c* = /1. Thenboth T and Tmust be given by a matrix.
See lemmd2.1.2) . Moreover T : {1 — /1iS given by the matrix. see lemni21.3).

Moreover T' : /1 — /1 is given by the matrix

19



X(lima) Vo w1 W
do dpo a1o0 axo

. - a1 do1 a1 ax
X(lima)  (Vn)g

A =T"= = a ag2 A ax» . . . (3.1.2)
(a); A

where:

X (limp) = lima(8) — ; limad® (3.1.3)
=0
Vn = X(PoT) ; (3.1.4)
ank = Pa(T(8%) = (T(8%)n (3.1.5)
and
a = liman, (3.1.6)
n—oo

Proof. See (Wilansky, 1984) page 267 O

20



Corollary 3.1.3. Let A: c—c. Then X € B(¢1) and

10 0 0 O
01 2 0 O
A= 00 -1 2 0. .. (3.1.7)
00 0 -1 2
Proof. By theorem(3.1.2)
X(lim Vn)o
pe = [ XM (s (3.1.8)

But for A matrix, vy, = 6 and (ax)g = 8, since lim_oank=0VY k> 0.

(POT)6=1,¥n>0;

And

(o]

(PoT)oK =1,
P

So that
Vn - X(PnOT)

:PnTcS—anTc‘Sk
(PhoT) kZO( oT)

Which implies that

V=1-(14040+..)=1-1=0

21



vi=1-(2+(-1)40+0+..)=1-1=0

Vo=1—(042+(~-1)+0+0+..)=1-1=0 (3.1.9)

V3=1—(04+0+2+(-1)+0+..)=1-1=0

Vh=0,n>0
Hence matrix3.1.8) becomes
X 6
Af = (3.1.10)
6 A
Where
X = (limoA)d— ¥ (limoA)s* (3.1.11)
k=0
lim € c*. Thatis
X:Iim5—Z)ak:1—O:1 (3.1.12)
k=
So that matrix3.1.10) becomes matrix3.1.7) O

22



3.2 The Eigenvalues oA onc

Theorem 3.2.1.A € B(c) has one Eigenvalue , igl} . WhereA = 1 which corresponds

to the Eigenvectorx o =(1,1,1, ., .,.)

Proof. Supposéx=Ax, X# 0 incandA € C. Then solving the system as in the proof
of theorem(2.2.1) we have that ikg is the first non-zero entry of the vectorthenA = 1.
ButA = 1limpliesthatxg =x1 =X =--- =X, = --- . Which shows thax is in the span
of somed. Butd = (1,1,1,---) € c. HenceA = 1 is an Eigenvalue oA corresponding

to the Eigenvectod = (1,1, 1, ---). O

Whenx,,1, n=0,1,2, 3, --- is the first non-zero entry of, thenA = —1. Solving the
system witl = —1resultsink, =0, n=0, 1, 2, 3, --- which is a contradiction . Hence

A = —1 cannot be an Eigenvalue Afc B(c)

ThereforeA = 1 is the only Eigenvalue ok € B(c)

Theorem 3.2.2.The Eigenvalues of*Ac B(l;) form the set

{(AeC:|A+1<2bu{1}

Proof : Suppose X =AXx, x# 8andA € C. Then

Xo Xo
10 O 0 0 X1 X1
01 2 0 0 X2 X2
00 -1 2 0 X3 X3
=A (3.2.1)
00 0 -1 2 X4 X4
00 O O -1

23



X1+ 2% = AXq

—Xo+2X3 = AXo
—X3+2X4 = AX3
—X4+2%5 = AXq

In general

—Xn+ X1 =AXy VNn>2

Solving the systeni3.1.14) with A = 1 andxp # 0 gives the vector

x=(x0,0,0,0,0,...)

Wherexpis any real or complex number. This is the case since

(%0,0,0,0,0,..) cly VxeC

HenceA = 1 is an Eigenvalue oA* € B(l3) .
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Also solving the sysytent3.1.14) for xn, n > 2 in terms ofxy, yields

Xo = 271\ <1— )\1) X1

1 1

_ 9252 - -
X3=2"“A (1-1-)\)(1 )\)Xl

1\2 1

_ 5333 + -
Xg=2"7A (1+/\) (1 )\)Xl

3
1
X5 = 2744 (1-1— )\1) (1— X) X1

In general
1\ "2 1
Xg =2 -Dpn-1(14 = 1-= )% Vvn>2
A A
Now ,
liMp—o | X';;l |=1
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(3.2.3)

(3.2.4)

(3.2.5)



A(1+3)
| — <1
A +1]=2

By ratio testx, € lLiiff | < 1i.e| 2 | or | A +1|< 2 That is the serie§ o | X |
converges for ali in the circular disc centred at the poif#t1,0) of radius 2 . Hence

{A € C:|A+1] <2} uU{1} form the Eigenvalues o&* € B(l1).
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CHAPTER FOUR

CONCLUSIONS AND RECOMMENDATIONS

4.1 Introduction

Some conclusions of this study and suggestions of areasffivet research are given in

this chapter.

4.1.1 Conclusions

In chapter two the following results are obtained

i. A€ B(cp) has no Eigenvalues

ii. Also A € B(bw) andA € B(l1) has no Eigenvalues

iii. The set of Eigenvalues fok* € B(I1) is{A € C: |A +1| <2} U{1}
In chapter three we obtain the following results

i. The set of Eigenvalues & € B(c) is the singleton sef1}

ii. The Eigenvalues oA* € B(l1) formthe se{A € C: |A +1| < 2} U{1}

4.1.2 Recommendations

We recommend to extend the results obtained in this thesis by
i. Investigating the spectrum &< B(cp)

ii. Investigating the spectrum & < B(c)
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