
SOFTWARE PRODUCT QUALITY ASSESSMENT

USING SCOPED CLASS COHESION METRIC (SCCM)

RAPHAEL NGIGI WANJIKU

MASTER OF SCIENCE

(Software Engineering)

JOMO KENYATTA UNIVERSITY OF

AGRICULTURE AND TECHNOLOGY.

2017

Software Product Quality Assessment Using Scoped Class Cohesion

Metric (SCCM)

Raphael Ngigi Wanjiku

A Thesis Submitted in Partial Fulfillment for the Degree of Master

of Science in Software Engineering in the Jomo Kenyatta University

of Agriculture and Technology.

2017

ii

DECLARATION

This thesis is my original work and has not been presented for a degree in any other

university.

Signature: Date:

Raphael Ngigi Wanjiku

This thesis has been submitted for examination with my approval as university

supervisor.

Signature: Date:

Dr. George Okeyo

JKUAT, Kenya

Signature: Date:

Dr. Wilson Cheruiyot

JKUAT, Kenya

iii

DEDICATION

I dedicate this thesis to my wife Ann and son Caleb. You were the inspiration behind

this research.

iv

ACKNOWLEDGEMENTS

I would like to thank all those who supported me in any way during the writing of this

thesis. Special acknowledgement goes to Dr. George Okeyo and Dr. Wilson Cheruiyot

for their insightful opinions, criticism and guidance. Special thank you to Dr. Michael

Kimwele for his efforts and encouragement during the research process.

v

TABLE OF CONTENTS

DECLARATION .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF APPENDICES .. xiv

LIST OF ABBREVIATIONS ... xv

ABSTRACT .. xvii

CHAPTER ONE .. 1

INTRODUCTION .. 1

1.1 Background Information .. 1

1.2 Problem Statement .. 5

1.3 Justification ... 5

1.4 Research Objectives.. 6

1.4.1 General Objective .. 6

1.4.2 Specific Objectives .. 6

1.5 Research Questions ... 7

1.6 Scope of the Study .. 7

1.7 Structure of Thesis .. 7

vi

CHAPTER TWO ... 9

LITERATURE REVIEW ... 9

2.1 Software Quality ... 9

2.1.1 Maintainability ... 10

2.1.1.1 Scalability ... 10

2.1.1.2 Modifiability ... 12

2.1.1.3 Testability ... 12

2.1.2 Performance ... 13

2.1.3 Security .. 14

2.1.4 Availability .. 14

2.1.5 Integration .. 16

2.1.6 Understandability ... 16

2.1.7 Usability ... 17

2.2 Class Members.. 19

2.2.1 Attribute Members ... 19

2.2.2 Member Functions ... 20

2.3 Software Metrics ... 22

2.4 Class Cohesion ... 24

2.3.1 Functional perspective ... 24

2.3.2 Sequential perspective ... 25

2.3.3 Communicational perspective ... 26

2.3.4 Procedural perspective ... 27

2.3.5 Temporal perspective... 28

vii

2.3.6 Logical perspective .. 29

2.3.7 Coincidental perspective .. 30

2.4 Existing Metrics .. 31

2.4.1 Lack of Cohesion Metrics-LCOM 1 and LCOM 2 31

2.4.2 Lack of Cohesion 3 Metric (LCOM3) ... 34

2.4.3 Lack of Cohesion 4 Metric (LCOM4) ... 36

2.4.4 Lack of Cohesion Metric 5(LCOM5) .. 38

2.4.5 Tight Class Cohesion and Loose Class Cohesion Metrics 40

2.4.6 Relative lack of Cohesion in Methods (RLCOM) 42

2.4.7 Coh Metric ... 44

2.4.8 DCD and DCI Metrics ... 45

2.4.9 Class Cohesion (CC) Metric .. 47

2.4.10 Distance Design-based Direct Class Cohesion (D3C2) Metric 49

2.5 Research Gaps .. 51

2.6 SCCM Conceptual Framework... 53

2.7 Conclusion .. 54

CHAPTER THREE ... 55

METHODOLOGY .. 55

3.1 Introduction... 55

3.2 Research Design ... 55

3.2.1 Sample Population ... 55

3.2.2 Sample Size ... 56

3.2.3 Data Collection Methods ... 56

viii

3.2.4 Scoped Class Cohesion Metric .. 57

3.2.5 SCCM Algorithm .. 58

3.2.6 Data Collection Instrument .. 59

3.2.6.1 SCCM Tool Development Process ... 59

3.2.6.1.1 SCCM Tool Specification.. 60

3.2.6.1.2 SCCM Tool Design ... 63

3.2.6.1.3 SCCM Tool Implementation and Testing.. 67

3.2.6.1.4 SCCM Tool Operation and Maintenance .. 69

CHAPTER FOUR .. 70

EXPERIMENT, RESULTS AND DISCUSSION ... 70

4.1 Introduction... 70

4.2 Experiment Design ... 70

4.3 SCCM Raw Collected Data .. 71

4.4 Experiment Processed Data .. 76

4.4.1 Geometric Means on SCCM/COH .. 77

4.4.2 Pearson’s Coefficient on SCCM/COH .. 79

4.5 Results .. 83

4.5.1 Effects of Public Methods on SCCM Value .. 83

4.5.2 Effects of Total Class Variables on SCCM Values 87

4.5.3 Effects of Public Variables on SCCM Values ... 90

4.5.4 Effects of Private Variables on SCCM Values .. 94

4.5.5 Effects of Local Variables on SCCM Values .. 96

4.6 Discussion ... 99

ix

4.6.1 Discussion of Results of the Effects of Public Methods............................ 99

4.6.2 Discussion of Results of the Effects of Total Class Variables 102

4.6.3 Discussion of Results of the Effects of Public Variables 103

4.6.4 Discussion of Results of the Effects of Private Variables 107

4.6.5 Discussion of Results of the Effects of Local Variables 107

CHAPTER FIVE ... 109

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 109

5.1 Summary and Conclusion ... 109

5.2 Recommendations for Future Work ... 111

REFERENCES ... 112

APPENDICES .. 119

x

LIST OF TABLES

Table 2.1: AccountDialog Class matrix. .. 50

Table 4.1: SCCM and COH values from the Java Cluster ... 74

Table 4.2: SCCM and COH values from the C++ Cluster ... 74

Table 4.3: SCCM and COH values from the JavaScript Cluster 75

Table 4.4: SCCM and COH values from the PHP Cluster ... 75

Table 4.5: SCCM and COH geometric mean values from the Java Cluster 77

Table 4.6: SCCM and COH geometric mean values from the C++ Cluster 78

Table 4.7: SCCM and COH geometric mean values from the JavaScript Cluster 78

Table 4.8: SCCM and COH geometric mean values from the PHP Cluster 79

Table 4.9: Pearson coefficient values on SCCM matrix of C++ systems 80

Table 4.10: Pearson coefficient values on SCCM matrix of Java systems 81

Table 4.11: Pearson coefficient values on SCCM matrix of C++ systems 82

Table 4.12: Pearson coefficient values on SCCM matrix of PHP systems 82

xi

LIST OF FIGURES

Figure 2.1: An illustration of functional cohesion view ... 25

Figure 2.2: An illustration of sequential cohesion view. .. 26

Figure 2.3: A diagram of communicational cohesion perspective 27

Figure 2.4: A diagram showing procedural cohesion perspective 28

Figure 2.5: A diagram showing temporal cohesion perspective 28

Figure 2.6: A diagram showing logical cohesion perspective. 29

Figure 2.7: Code sections showing three unrelated methods. 30

Figure 2.8: An illustration of a class components interaction 32

Figure 2.9: A code snippet used in calculating LCOM1 .. 33

Figure 2.10: An illustration of the LCOM 3 Metric components interaction 35

Figure 2.11: An illustration of the LCOM 4 Metric components interaction 37

Figure 2.12: An illustration of LCOM 5 metric components 39

Figure 2.13: An illustration of TCC and LCC metrics. .. 41

Figure 2.14: Illustration of RLCOM ... 43

Figure 2.15: An illustration of the COH Metric components interaction 44

Figure 2.16: An illustration of the DCD and DCI Metric components interaction .. 46

Figure 2.17: An illustration of the CC Metric components interaction 48

Figure 2.18: SCCM conceptual framework .. 53

Figure 3.1: SCCM algorithm .. 59

xii

Figure 3.2: Incremental iterative development (Adapted from Sommerville, 2015) 60

Figure 3.3: Activity diagram for the SCCM software .. 62

Figure 3.4: An Abstract model for the SCCM software. .. 63

Figure 3.5: Pipe and Filter architecture pattern SCCM software 65

Figure 3.6: High-level architecture of the SCCM software 66

Figure 3.7: Web interface for the SCCM software ... 68

Figure 3.8: The output console of SCCM calculated values. 69

Figure 4.1: A screen shot of the interface of the SCCM software tool. 72

Figure 4.2: A screen shot showing the uploaded class, the compressed code

(minified class) and the console output. .. 73

Figure 4.3: Influence of public methods on the SCCM/COH values; a case of Java

classes .. 83

Figure 4.4: Influence of public methods on the SCCM/COH values; a case of

JavaScript classes. ... 84

Figure 4.5: Influence of public methods on the SCCM/COH values; a case of PHP

classes. ... 85

Figure 4.6: Influence of public methods on the SCCM/COH values; a case of C++.

 ... 86

Figure 4.7: Influence of total class variables on the SCCM/COH values; a case of

PHP. ... 87

Figure 4.8: Influence of total class variables on the SCCM/COH values; a case of

C++. ... 88

xiii

Figure 4.9: Influence of total class variables on the SCCM/COH values; a case of

Java. ... 89

Figure 4.10: Influence of total class variables on the SCCM/COH values; a case of

JavaScript. ... 90

Figure 4.11: Influence of public variables on the SCCM/COH values; a case of C++.

 ... 91

Figure 4.12: Influence of public variables on the SCCM/COH values; a case of Java.

 ... 92

Figure 4.13: Influence of public variables on the SCCM/COH values; a case of

JavaScript. ... 93

Figure 4.14: Influence of public variables on the SCCM/COH values; a case of PHP.

 ... 94

Figure 4.15: Influence of private variables on the SCCM/COH values; a case of

JavaScript. ... 95

Figure 4.16: Influence Of Private Variables On The SCCM/COH Values; A Case Of

PHP. ... 96

Figure 4.17: Influence of local variables on the SCCM values; a case of Java. 97

Figure 4.18: Influence of local variables on the SCCM values; a case of JavaScript.

 ... 98

Figure 4.19: Influence of local variables on the SCCM values; a case of PHP. 99

Figure 4.20: A diagram illustrating the Law of Demeter.-Adapted from Lostechies

 ... 102

Figure 4.21: An illustration of singleton pattern in OO class design-Adapted from

tutorialspoint.com .. 105

xiv

LIST OF APPENDICES

Appendix A: Abstract of publication on IJCSI .. 119

xv

LIST OF ABBREVIATIONS

SCCM Scoped Class Cohesion Metric

LCOM Lack of Cohesion Metric

PO Parameter Occurrence

TCC Tight Class Cohesion

LCC Loose Class Cohesion

RLCOM Relative Lack of Cohesion in Methods

DCD Degree of Cohesion Direct

DCI Degree of Cohesion Indirect

D3C2 Distance Design-based Direct Class Cohesion

PM Public Method

PRM Private Method

PA Public Attribute

PRA Private Attribute

PO Public Occurrence

PRO Private Occurrence

TPC Total Public Cohesion

TPRC Total Private Cohesion

PC Public Cohesion

PRC Private Cohesion

TC Total Cohesion

LV Local Variable

COH Class Cohesion

HTML5 Hypertext Markup Language 5

xvi

CSS3 Cascading Style sheet 3

OOP Object Oriented Programming

IDE Integrated Development Environment

PHP Hypertext Preprocessor

xvii

ABSTRACT

Class Cohesion is an important software quality that can be used to improve software

development process and assess the software product: process merit assessment and

dependable software product. Many Class cohesion metrics measuring the relationship

between methods and attributes have been developed and extensively researched.

However, the use of relationships among attributes in measuring class cohesion from

class scopes has been ignored and the effects of local variables on class cohesion need

to be factored in the measurements. This thesis presents a new class cohesion metric

that uses attributes relationships within class scopes. The data was collected from

JavaScript, PHP, C++ and Java cluster classes using the Scoped Class Cohesion Metric

(SCCM) software tool. The browser accessible JavaScript tool allows the user to select

any cluster valid class, scans for the methods and attributes and output a metric value

on the browser console. The analysed values of Scoped Class Cohesion Metric

(SCCM) and Cohesion Metric (COH) showed that development of large classes with

many attributes and methods possess low class cohesion compared to the small classes.

Moreover, as the number of local variables increase within a class, the value of

cohesion decreases and they should therefore be introduced or used only and only

when necessary. This makes the software product more understandable, it improves

class testing as well as easier maintenance consequently leading to an overall good

quality software product.

1

CHAPTER ONE

INTRODUCTION

1.1 Background Information

The quality of a software product can be traced from its process and the set software

metrics that measures its effectiveness in fulfilling customers’ requirements and

adherence to acceptable development standards. One of the software metrics is

cohesion. Cohesion refers to the degree of relatedness among modules of a software

product (Kaur & Kaur, 2013). Cohesion measures the usage of a module and its

elements within another module in terms of imported or exported functionality.

According to Briand, Daly and Wust (1997), high cohesion within a module makes it

easier to develop, facilitates comprehension (Dasari &Vasanthakumari, 2011),

enhances maintenance, testing (Badri etal., 2011), components reusability (Rosenberg

and Hyatt, 2012), improved process merit assessment (Patidar, 2013) and reduces

fault-proneness ensuring independent components with less complexities (Pena,

2006).

Cohesion has been a subject of study for almost four decades with Yourdon and

Constantine (1978) classifying measures on an ordinal scale for component cohesion

to normalized Hamming Distance cohesion metric (Counsell et al., 2006). Cohesion is

measured in terms of the degree to which methods and attributes (fields or variables)

of a class belong together through their interactions. Interaction between class

elements can occur in three ways as described by Dallal (2010):

2

(i) Method to attribute interaction –this interaction occurs when an attribute

type presented in a class matches its value in the method parameter or the

return of a method. For example given a class with method m1,m2 and m3

with two attributes a1 and a2, the presence of attribute a1 may be detected

in method m1 while that of a2 may be noted in method m2.This would then

give an interaction of 2 attributes in two methods.

(ii) Method to method interaction –this interaction occurs when two or more

methods and their parameters or returns share the same attribute type. For

example, if a class has method m1 and method m2 and there is an attribute

a1 that is present in both methods, then by the fact that this attribute appears

in both methods then that is considered as a method to method interaction

via the attribute type of a1.

(iii) Attribute to attribute interaction – this interaction occurs when two or more

attributes share the same type in a method. For example, if a class has two

string attributes a1 and a2 and they happen to appear within one method

m1 or in another method m2 of the same class, then by the appearance of

a1 or a2 within the same method m1 or m2, then it is considered as an

attribute to attribute interaction of that class.

 High class cohesion manifests a well-designed class (Scott, 2009). A theoretically

validated cohesion metric is characterised by four properties (Briand et al., 2006):

(i) Non-negativity and normalization- cohesion measure should be confined

within a range that involves a non-negative value and a given maximum range

i.e. a range [0,max]

3

(ii) Null value and maximum value- cohesion of a class should hold a value of zero

(0) if the class is non-cohesive and a maximum value if the class has all possible

interactions between the class elements (Dallal, 2010).

(iii) Monotonicity- cohesion within a class cannot be reduced by adding cohesive

interactions to a module. For example if a class has five cohesive modules and

two extra modules are added to the class that contains the five modules then

the resultant cohesion should be the same as that of the five despite the addition

of the final class modules.

(iv) Cohesive modules- when two or more modules are combined through a union

then the two or more unrelated modules should not decrease the new formed

module cohesion.

Lack of Cohesion Metrics (LCOM) 1&2 (Chidamber & Kemerer, 1994) introduces

calculation of lack of cohesion within a class using pairs of methods that normally

calculates the difference in method pairs for lack of cohesion metric 1 (LCOM1) and

a difference of lack of cohesion metric 1 (LCOM1) to the number of similar method

pairs in calculating lack of cohesion metric 2 (LCOM2). Lack of cohesion metric 3

(LCOM3) (Li &Henry, 1993) uses undirected graph and its value calculation is based

on connected components of the edges and vertices adding up class cohesion. Lack of

cohesion metric 4 (LCOM4) extends lack of cohesion metric 3 (LCOM3) by adding

an edge between pairs of methods while lack of cohesion metric 5 (LCOM5)

(Henderson-Sellers, 1996) sums up definite attributes in its calculation. Other metrics

include light class cohesion (TCC) and loose class cohesion (LCC) by Bieman and

4

Kang (1995) which uses directly and transitively connected pairs of methods

respectively.

Relative lack of cohesion metric (RLCOM) calculates the ratio of non-similar method

pairs to the total number of similar pairs. Class cohesion (COH) calculates the ratio of

total number of attributes within a class to the product of the total number of attributes

and methods of that given class. Direct class direct (DCD) and Direct cohesion indirect

(DCI) metrics calculate the fraction of directly connected pairs of methods direct

cohesion direct (DCD)while the direct cohesion indirect (DCI) calculates the fraction

of both directly and indirectly connected method pairs.

Class cohesion metric (CC) calculates a fraction of the number of shared attributes to

the number of distinct reference attributes by the total number of method pairs

identified within a class. Distance design-based direct class cohesion (D3C2) normally

calculates the total cohesion of a class by adding up the value of cohesion from

attributes to attributes interaction, method to attributes interaction and method to

methods interaction.

Despite the development of the many class cohesion metrics discussed in this chapter,

the interaction of various attributes (within global and local scopes) needs to be

factored in measuring cohesion within a class. In a close attempt to address the

interaction between attributes within a class Rajnish (2014) conducted a study that

gave a clear interaction measure but failed to address the scoping issue within a class

during the interaction.

5

A class scope refers to a region within a class text where a class member can be

referenced without necessarily qualifying its name. (Msdn, 2016).Scope of the class

elements is done to give visibility of a given member element. In this research, a review

of the class cohesion metrics that use attributes-attributes and attributes-methods

classification is done and a metric is developed that addresses the use of attributes in

the global and local scopes of a class.

1.2 Problem Statement

The use of scopes and locally defined class attributes is an overlooked facet of

consideration in the measurement of class cohesiveness. Majority of class cohesion

metrics focus on class methods and attributes in general, for example Chidamber and

Kemerer (CK) metrics that measure lack of class cohesion and Class Cohesion (COH)

metric that measure cohesion within methods for unique types. The interaction of

locally defined attributes with other attributes and scoping of class components has not

been addressed by the current existing class cohesion metrics, an element that is

addressed in this research.

1.3 Justification

Class cohesion is an important consideration in the design of a class. It describes the

binding of the elements defined within a class (Chandrika et al., 2011). The use of

class attributes in different scopes is an important consideration in measuring effective

relatedness among attributes and methods of a class (Bonja and Kidanmariam,

2006).While there are other class cohesion metrics that have been used in determining

software structural quality, the use of Scoped Class Cohesion Metric (SCCM) is

6

important in showing where and how class cohesion is influenced by the class member

elements in the various class scopes. This in the long run helps developers in

evaluating various software quality attributes among them reusability, testability and

understandability of where to increase or reduce data access in the various scopes of

the class.

1.4 Research Objectives

1.4.1 General Objective

The general objective of this research was to investigate the use of scopes within a

class in measuring class cohesion. It was done with an aim to assess the software

product quality using scoped class cohesion metric (SCCM).

1.4.2 Specific Objectives

The specific objectives of this research were to:

i) Investigate the different class cohesion metrics that use high level design in a

class.

ii) Investigate the class members’ effects on class cohesion.

iii) Formulate the scoped class cohesion metric.

iv) Evaluate the effectiveness of the scoped class cohesion metric (SCCM) in the

software quality assessment.

7

1.5 Research Questions

i) What are the various class cohesion metrics that exist at high level design for a

class?

ii) What are the factors behind the axiomatic formalism of the scoped class cohesion

metric?

iii) What are the parameters involved in formulating the scoped class cohesion

metric?

iv) How does scoped class cohesion metric (SCCM) perform in measuring class

cohesion compared to the existing class cohesion metrics in software quality

assessment?

1.6 Scope of the Study

This research will be investigating class cohesion metrics based on the class scopes.

The various class members’ relationship will be investigated and how each member’s

role affects the cohesion values. It also discusses the development of the scoped class

cohesion metric (SCCM) tool that will be used for data collection and calculation of

the scoped cohesion metric (SCCM) values on the various systems classes.

1.7 Structure of Thesis

This thesis is presented in chapters; Chapter two introduces software quality and

quality attributes discussing class cohesion from its various perspectives ranging from

8

functional to coincidental cohesion. It further discusses the existing metrics and the

research conceptual framework.

Chapter three outlines the methodology; the research design, the metric tool to be

created, the tool’s development setup and each stage of the development process as

well the formulation of the scoped class cohesion metric (SCCM). Chapter four

discusses the descriptive statistics to be used in the experiment, the experimental raw

and processed data, experimental results and their interpretation which is done through

the results discussion.

 Lastly, chapter five gives the summary of the research work, deducted conclusion and

recommendations for extension of this work.

9

CHAPTER TWO

LITERATURE REVIEW

2.1 Software Quality

Software quality refers to the desirable attributes of a software product (Houston,

2015) and the degree to which the product is able to meet the specified requirements

to fulfil the user’s needs (IEEE, 2016).Whenever a software is said to be of high quality

then it must reflect how well it is able to conform to the standards of design and

development in meeting the needs of the user as per the specification. These specified

requirements can be functional or non-functional. Software quality can be evaluated

from either a defect management approach or the attributes approach reflecting on the

failure to addressing end-user requirements and desirable features of the end product

to the stakeholders respectively. Software quality can be categorized into functional,

structural and process qualities.

According to Chappell (2012), functional software quality evaluates the correctness of

tasks performed by the software as intended to the end-users. Its attributes include

meeting the specified requirements, creating software with few defects, good and

enough performance and ease of learning and use.

Process software quality refers to the value received by the users, sponsors and the

development teams. Some of the attributes include; meeting delivery dates, meeting

budgets and repeatable development process that guarantees quality.

10

Structural software quality refers to the well structuredness of the code. A quality

software product’s attributes gives it the benchmarks that describes its intended

behaviour as well as its operational environment. A well-structured class is said to

have the following quality attributes;

2.1.1 Maintainability

According to Advoss (2015), maintainability refers to the ability of a software product

to conform to new changes. The changes may be as a result of addition of new features

and correction of emerging errors during its maintenance. Maintainability of a class is

based on its scalability, testability (Barbacci, 2004) and modifiability (sqa, 2010).As

cited by Gueye, Badri and Badri (2008), highly cohesive components have been

observed to have high maintainability.

2.1.1.1 Scalability

This refers to the ability of extending the system architecture. A scalable software

product is one that can be able to add more functionality to the existing modules of the

system. A high quality software should allow extension of its functionality in order to

meet the changing needs of the user as well as the expectations (Msdn, 2015).

Scalability of a software can be observed from various views;

i) Request Load: In a case where a software is intended to receive a given number

of requests for example 5000 requests and ends up getting more requests for

example 15000 requests, then the extra number of requests needs to be catered for

as well as to ensure that users expectations are met. In the working environment

11

of a software, it is expected that as the load increases then the throughput of the

software product should remain relatively accommodating. Therefore a quality

software should be able to handle the extra amount of load of requests that is added

to the existing system. This request load handling is normally defined and

actualized in the classes and therefore a good design of the system classes should

ensure that the proper requests load is addressed.

ii) Simultaneous connections: Most systems in one way or another are designed to

support multi user environments. A multi user environment is one that allows

multiusers to connect to the software through multiconnections. This functionality

is defined and implemented in the software classes. A good example is a software

that allows network users by an internet service provider (ISP). In this case, the

provider should be able to monitor all the connected clients and the different

activities that are consuming the allocated data bandwidth. As the number of users

grows, the software should also keep up in supporting these new multi connections.

In such a case, the software is said to be of high quality compared to another that

cannot support these newly created connections.

iii) Data Size: The amount of data that a software interacts with affects the quality of

software depending on the data to be used in the processing. A software product

that is tasked with processing huge amounts of data require lots of processing

memory from the housing computer system. It is therefore important to consider

proper design of the system classes and ensure that they use the right data structures

and is supplemented with the right number of methods and variables. A software

that is highly scalable should be able to work efficiently as the data grows without

compromising on the performance of the system.

12

2.1.1.2 Modifiability

Due to the changing needs of the customers, a high quality software should be able to

accommodate changes whenever they have been presented for implementation on the

system. A software classes should allow modification of its members with ease and it

is then said to be of high quality. If a class is flexible to accommodate changes then it

becomes less expensive to make those changes. Modifiability gives a measure of how

easy it may be in changing a software to cater for new requirements (Gorton, 2011).

2.1.1.3 Testability

This refers to a measure of how easy it is to create some test criteria for a given system

and it composing modules (Msdn, 2016). Testing is normally done with a goal of

finding out if the system meets the criteria of execution as per the user’s specifications.

Classes that have been well designed should be highly testable and high class cohesion

ensures that this attribute is catered for in a given software product.

When a developer is conducting tests on the class, a couple of issues need to be

addressed. Firstly, a proper test plan of the class need to be prepared; this involve

coming up with the mock objects to be used in the testing and the elements of the

testing process ought to be constructed in a simple and a structured manner. Secondly,

the developer should ensure that the testing process is automated as possible on the

areas that requires the user’s interaction. Thirdly, the developer should understand or

improve the understandability of the input elements into the software product and the

expected output of the processed data. This understandability helps in minimizing the

input/output inconsistencies.

13

2.1.2 Performance

Performance refers to a measure of the amount of work that an application must

perform in a given time and which must be met during the operation (Gorton,

2011).Some softwares are critical in performing some operations for example, if a life

support machine software was to cause any delay in executing a specific instruction

due to poor performance, then the patient’s life would be in danger as a result of real-

time constraints. This could also be a case for the space navigation system where if a

software was to cause a delay in estimating the right trajectory, a very huge mileage

deviation could consequently occur.

Performance in systems is defined within the classes that have implemented it and can

be measured through the following facets:

i) Throughput: This refers to a measure of the amount of work performed by an

application in a unit time. This is normally measured in transactions per second.

ii) Response time: This refers to a measure of time delay experienced in executing a

transaction by a software. If a software takes less time in giving a response to the

user then it is said to be highly responsive and one that possesses high quality.

iii) Deadlines: This is normally associated with batch systems where a given batch

process is supposed to take a given time interval in order to give a measurable

expected result. If a software is supposed to take one minute in executing a payroll

batch transaction process for staff and the observed time is two minutes, then this

software is said to be having poor performance and it is not able to meet the set

deadlines.

14

2.1.3 Security

Security refers to a software product’s capability to reduce the chances of any action

that can negatively affect the system. These negative effects can include stealing of

information, siege of the system or its components. Factors that affect a systems

security are its availability, confidentiality and its data integrity. It is a measure that is

based on the following attributes as described by Gorton (2011);

i) Authentication: this verifies the identity of the software users and any other

application that is connected to the software.

ii) Authorization: this allows an identified user or any application that accesses the

software in accessing resources provided via the software.

iii) Encryption: this codes the messages sent or received by the software.

When the developers are addressing the above software security issues, they should be

able to design system classes that allow users to authenticate in the best recommended

methods as well as get the right authorization in accessing the system resources.

2.1.4 Availability

This is a software quality attribute that measures the reliability of a software by the

users (Msdn, 2016). It represents the proportion of time that a software is said to be

functioning and working. Availability of a software system should be 100% which

represents an all uptime availability. A high quality software should have minimal

failures as much as possible and the length of time of unavailability is normally

measured as the interval between the failure detection and when the system restarts.

This time interval is known as mean to recover.

15

When developers are designing and implementing a software product they need to

cater for system errors, malicious attacks that may be directed by unauthorized users,

infrastructural problems that may arise when the software is operational and increase

in the software load in the class designs. When designing the classes the following can

be done as described on Msdn (2016);

i) A failover mechanism can be implemented to ensure availability of an alternate

way of accomplish the intended task. For example in a case of a software that is

connected to a network with two differentiated links, there should be a failover so

that in case one fails then the unaffected link picks up automatically. For example

in a class that connects a mobile phone application to the internet or even a locally

connected server, several methods can be defined by the developer to cater for the

several available links and during the connection if one method does not return the

connection the other existing connection methods can be polled until a connection

is established.

ii) The classes can be designed to handle unexpected or unknown exceptions. If the

unknown exceptions are used within a class, they can be customized to detect any

unexperienced behaviours by the system. This is in the long run can assist in

detecting anomalies such as denial of service attacks as well as any malicious

activities that may be directed to a system through the software.

iii) The classes can also be designed in a way that bugs and faults are detected before

the software enters into an unrecoverable state. This design would involve proper

error handling that detect application failures.

16

2.1.5 Integration

This is concerned with the ease in merging or connecting two or more software systems

(Gorton, 2011). This can be done through data integration or through the use of

application programming interface (API). A software product that is able to work well

with other software makes it easier for data to be exchange internally (within the

software product between its modules) or externally (with the other softwares).When

developers are developing interoperable classes they should ensure that proper

standards and protocols have been taken into consideration. These protocols may

include data formats and interfaces.

For proper interoperability there exist several key issues that may need to be observed

(Msdn, 2016); firstly, the difference in data formats. This can be handled by data

translation as well as use of canonical data model for handling large number of

different data formats. Secondly, the use of services interoperability need to be used

to diffused between the different systems as well making the classes as cohesive as

possible in order to maximize the flexibility of the system. This ultimately facilitates

replacement and reusability of the software product classes.

2.1.6 Understandability

This refers to the easiness of the user in understanding the software product logical

concept and applicability (Belander etal, 20015). In a class, every module’s purpose

should be easily understandable in terms of how it accomplishes the tasks which are

defined as the class methods and conditions that have to be followed in order for the

behavior to be seen. The code should be well commented to make it easier for any

17

developer who may later be charged to conduct changes on the code. The developer

should ensure that proper naming of the class, attributes and the methods has been

adopted in line with the set standards of the implementation language. If these

standards are followed and it becomes easy for a developer to follow what has been

coded then that class is said to be of high quality

2.1.7 Usability

Every high quality software is said to be highly usable. According to Msdn (2015)

usability refers to how well a software product is able to meet the needs and

requirements of the user as specified. The software product should at the same time be

as intuitive as possible during the user’s interaction. The software product should be

easy to localize and globalize, providing the ease of use to the disabled users with an

overall good overall user experience.

When a developer is designing a class, they should ensure that for an effective

usability; user interaction is kept at an acceptable level and the use of multistep

operations is implemented. Multistep operation involves a long process that is broken

down into several sub process that don’t disorient the user during interaction. The

developer ought to take into consideration the use of proper and appropriate feedback

to the user. This should be implemented in the design of the class methods to ensure

that each action that is performed by a given task has the appropriate inputs and the

expected outputs.

18

2.1.10 Reusability

In object oriented programming (OOP) the development process is normally

characterised with reusability of the class modules for any given system. Reusability

refers to the chance that a given module will be used in other modules or even a

scenario to give more functionality with little or no change to the module being reused

(Msdn, 2015). Highly cohesive classes allow maximum probability of class reuse in

other classes and their modules within them and in other classes. When a class and its

components are highly reusable, it minimizes the modules and attributes duplication

which can otherwise add unwanted redundancy therefore increasing coupling. Class

and modules reuse also reduces the amount of time that a given software product takes

to be implemented since some of the modules or components can be easily extended

or called for use in the system. This is in the long run translates to reduced development

efforts which lower the maintenance costs of the software since a required part of the

system does not have to be developed or implemented from scratch.

When designing a class in favour of high cohesion, a developer should be careful with

reusability implementation in order to avoid duplication of code and especially when

the functionality is not well layered. It is also important for developers to reuse the

classes and components through the use of services instead of mere traditional

reusability. The use of services in reusability ensures that the system or class

functionality is not entirely reused but a service component acts as a broker for the

system classes and modules. The use of service brokering has been reported to have

positive effects on the performance of the software products in terms of system loading

and response whenever a specific method is invoked or called by another class module.

19

This research looks into the structural quality of the software at the class level; class

cohesion.

2.2 Class Members

A class refers to a blueprint of creating objects (Oracle, 2015) which is normally

designed to accomplish a specific task. A class is normally declared using a keyword

class (Msdn, 2015) and by default every class is publicly accessed. Apart from the use

of the class keyword in its definition, a class also contains other members; fields or

attributes, properties, events and methods.

2.2.1 Attribute Members

An attribute member of a class is also known as a variable, an instance (in object

oriented programming) or a field of a class. Variables within a class or program can

exist within two scopes: global and local scopes. In the global scopes, these storage

locations are accessible through the entire class for usage and are therefore within the

class overall environment (Msdn, 2015). This accessibility could result to unwanted

mutual dependencies within the code which ultimately leads to unnecessary

complexity. The use of global attributes in a class can change the assigned values

throughout the class hence their value is not known when they are declared and can be

overridden by local definitions (PHP, 2017). For high class cohesion, the class global

variables must be used within its methods otherwise, if it has not used any field then

its cohesion is said to be zero (Okike, 2010). Furthermore the more the interaction of

these variables in class methods the higher the cohesiveness of the class as pointed out

by (Briand, 98).In a proposal by Dallal (2010),he noted that the higher the interaction

20

between variables of a class the higher the cohesion as a result of attribute to attribute

interaction (AAC). Global variables are also declared within the top section of the class

or code.

Local attributes are those variables that are normally visible within the local scopes of

a class or program code. Local variables reference the block or the function where they

are declared (PHP, 2017). Just like the global variables, the more the number of local

attribute reference within a method, the higher the module cohesion (Lustman, Keller

& Kabaili, 2001).These attributes are also unknown to the rest of the class or even

other functions of the class. The values assigned to the local variables are often

recreated whenever the function is called or even executed.

2.2.2 Member Functions

A method refers to a section of a class that performs a specific task (Msdn, 2015). A

class must have at least one method. In most programming languages, a valid class

normally contains a main method which acts as a starting point of its execution. There

are two classifications of methods;

i) System defined method – these types of functions are inbuilt within a given

programming language and are available for use when needed. If a programmer

wants to use a system defined method, all they do is to import that function within

their class and the importation is also language specific.

ii) User defined methods – these types of functions are normally designed by a

programmer intended to accomplish a specific task that cannot be done by the

inbuilt function.

21

Methods can be further classified on the basis of their return type;

i) Value return methods – these group of methods have a specific type of return for

example string returned value or even an integer returned value.

ii) Void or a null value returning methods – these group of methods are not expected

to return any value within their definition.

Methods are also known as functions and they normally accept some data input, does

the process and return some data usable within the class or within another module of

the class or to another class through inheritance.

Methods have different access modifiers that allow them to be scope (visible) from

within the sections of a class or even through inheritance to and from another class.

These modifiers are; public, protected and private. Public methods do not have any

restrictions in passing their data from one module of the class to the other and are

therefore globally available to the entire class and its inherited class. A class is said to

be more cohesive when attributes are referenced more within it methods (Okike, 2010).

Protected methods are normally limited to their class of definition and any other

derived class from the defined class. Private methods are only available to their class

of definition and cannot be inherited by other classes. The effect of private and

protected methods in measuring class cohesion is similar to that of public methods and

it only changes when and if the class is to be used through inheritance since private

and protected methods cannot be used in the derived classes (Lustman, Keller &

Kabaili, 2001). The higher the number of public methods and any other method usable

within a class leads to lower cohesion (Briand, 98). As pointed out by Chae et al

22

(2004), the use of special methods for example constructors and destructors increase

cohesion values due to the indirect methods links. The use of method calls in

measuring class cohesion also increases its value as noted by Badri and Badri (2004).

2.3 Software Metrics

Software metric refer to a property of a software, its documentation or its development

process that can be objectively measured (Sommerville, 2015). Measurements involve

acquiring a value from one product or part of the product and comparing it with another

similarly developed product in regard to the standards that should be used so that

conclusions can be made on the effectiveness of the process activities, tools and

methods employed in delivering the final software product.

As stated by Sommerville (2015), there are two types of software metrics; control

metrics and predictor metrics. Control metrics deal with managing the software

process and are normally used in assisting software project managers in deciding if the

software process used in the development should be changed or not whereas predictor

metrics deal with predicting available characteristics of a given piece of software.

Predictor metrics are normally used in deciding and determining the required efforts

that are needed in making the changes identified on the software process.

The use of measurements on software systems is very important since they;

i) Allow the development team and the users of the product to assign a value to

quality attributes. For example, a software can be said to have low scalability on

the basis of how it is designed and its sub systems. It can also be said to be highly

secure on the basis of authorization and authentication of its users. The use of low

23

as a scalability value and high as a security value have been assigned to the two

attributes.

ii) Can be used to identify attributes that do not conform to the set software product

standards. For example in the previous case of a system having low scalability and

it is expected to have high scalability; low scalability would call for a review of

the low scalable components of the system and a subsequent redesign or

reengineering until they conform to what is expected before its intended use. The

same case would happen for the security if it was noted as poor.

In this research, the product metrics which form part of predictor metrics are

investigated. Product metrics are used to measure the internal characteristics of the

product. For example number of methods associated with a given class can be

calculated. There exists two types of product metrics (Sommerville, 2015):

i) Static product metrics – this metrics deal with measurements that are normally

collected from the representations of the system. In this study the attributes and

methods that make up the class will be measured and used as part of cohesion

values for the scoped class cohesion metric (SCCM).

ii) Dynamic product metrics – this metrics deal with measurements that are normally

collected during the program’s execution. Examples include bugs detection or

execution time which could mostly or only occur when the programming is in its

running state.

In this research static product measurements are collected and used in coming up with

the scoped class cohesion metric (SCCM). The scoped class cohesion metric (SCCM)

24

measures the cohesion of the class by calculating the number of methods and attributes

and their interaction.

2.4 Class Cohesion

Class cohesion is one of the software product metrics. Many class cohesion metrics

have been developed that look into the use of attributes and methods in a class. Meyers

and Binkley (2007) point out that, a good cohesion metric helps in identification of

modules that require reconstruction. This research study has introduced a new class

cohesion metric that accounts for class cohesion from a scoping perspective based on

the interaction of the class methods and attributes.

Singh and Kaur (2012) outline that class level cohesion metrics are based on two

assumption views;

i) Type of method parameter match accessing attributes types.

ii) Set of attribute types accessed by a method as an intersection of set of attribute

types and methods parameters types.

According to Badri and Gueye (2008), class cohesion can be evaluated from different

views namely;

2.3.1 Functional perspective

This is the most desirable cohesion view. As described by Perepletchikov etal (2007)

it involves every element’s or part of a module contribution to a single unit of a well-

defined task. Normally the module or the function performs only one operation.

25

As shown in the figure 2.1, the elements A, B and C are input elements to be used in

the method 1 whose sole functionality is to give out a specific output.

Figure 2.1: An illustration of functional cohesion view

2.3.2 Sequential perspective

This type of cohesion involves one module whose functions are related such that the

outputs of one function are the input of the next module (take a particular order) as

described by Daghaghzadeh, Dastjerdi and Daghaghzadeh (2011).

26

Figure 2.2: An illustration of sequential cohesion view.

The class accepts element details which act as its inputs; they are consumed by method

A whose outputs become the inputs of method B which ultimately gives a single output

of the module.

2.3.3 Communicational perspective

This type of cohesion involves each module of a class performing its own function

(different function from another) but referencing the same data input or information

output (Daghaghzadeh, Dastjerdi, & Daghaghzadeh, 2011).

27

Figure 2.3: A diagram of communicational cohesion perspective

In figure 2.3, a method A consumes data from input A and B which can also be

consumed by any other additional function within the same class. Outputs 1, 2 and 3

can also be targeted towards one functionality outside the class which could be targets

from more than one methods in the class relayed as these outputs.

2.3.4 Procedural perspective

This type of cohesion involves a module whose elements perform different

functionalities, but the activities are implemented in a sequential way (Perepletchikov,

Ryan, & Frampton, 2007). As shown in figure 2.4, an action performed in method B

can only be executed when all the actions in method A or a required action in method

A is executed. It is sequential in nature with strict emphasis on A happening before B.

28

Figure 2.4: A diagram showing procedural cohesion perspective

2.3.5 Temporal perspective

This type of cohesion involves a module or class whose tasks are all related in time

(Perepletchikov, Ryan, & Frampton, 2007).

Figure 2.5: A diagram showing temporal cohesion perspective

29

In this perspective, methods A, B, C and D must happen nearly or at the same time.

For example, if the class is an authentication class for a system user then A could be

checking if the username and password are as required, B could be verifying the user’s

account while C and D could be starting a user’s session and redirecting them to their

customized homepage. All these activities are performed closely and nearly within the

same time frame even without the user’s awareness combined into one task of user

login.

2.3.6 Logical perspective

This type of cohesion involves grouping together class elements that perform similar

activities into one module (Perepletchikov, Ryan, & Frampton, 2007). Each action

within the module is logically executed ensuring that any incoming data is used for a

specific action or invocation.

Figure 2.6: A diagram showing logical cohesion perspective.

30

In figure 2.6, the class module has various methods A, B, C and D. Each of these

methods is supposed to accomplish a specific role towards single task completeness.

Within the logical perspective data to be used by each method gets into the class

(variables of the class) and is consumed specifically by each method.

2.3.7 Coincidental perspective

This type of cohesion involves a module or a class whose elements or functions do not

bear any meaning relationships whatsoever, but in the process give ultimate and

specific functionality to the module (Perepletchikov, Ryan, & Frampton, 2007). This

cohesion should be avoided since any change in the overall functionality may affect

more than one element interactions in the different modules.

Coincidental cohesion perspective can be illustrated using the code section below

which shows one class that has several methods which are not connected in any way

but are within one class (one task, with different modules).

Figure 2.7: Code sections showing three unrelated methods.

31

The first method gets the details of the employee, while the second gets the age and

lastly the employee’s salary. The three methods are not called or referenced in each

other, but they all work to support the employee object.

2.4 Existing Metrics

2.4.1 Lack of Cohesion Metrics-LCOM 1 and LCOM 2

These are known as the Chidamber and Kemerer (CK) metrics. They were introduced

by Chidamber and Kemerer and pioneer the use of metrics in classes. As outlined by

Sharma and Srinivasan (2013), they are inverse cohesion measures based on the

number of pairs of methods that do not have any common attribute (Uthariaraj et al.,

2013).

According to Sridaran and Sreeja (2012), a class with zero value indicates that none of

its methods use any of the attributes, therefore lacking cohesion.

Lack of cohesion metric 1 (LCOM1) counts the number of pairs of methods that do

not share common attributes as outlined by Chidamber and Kemerer (1991).

Considering a class C with methods Ma, Mb,…, Mn, let = set of instance variables

used by method MI; then, there exists n sets such that ,…, and LCOM is the

measure of disjoint sets formed from the intersection of the sets.

When a class is noted to have high value of lack of cohesion metric 1 (LCOM1) then

that class indicates the functionality disparity of the class. This disparity could be as a

result of many objectives that a class is trying to implement and should be broken

down into smaller classes with small number of methods.

32

This metric has been criticized to having zero values when used on different classes

and is also based on the method to data interaction. It is also not well suited for class

that accesses data through the class properties.

Lack of cohesion metric 2 (LCOM2) was the second class cohesion metric proposed

by Chidamber and Kemerer (1994).The total class cohesion is measured by subtracting

the number of pairs of methods that share common attributes from Lack of cohesion

metric 1 (LCOM1).When the value of Lack of cohesion metric 2 (LCOM2) is low then

the class is said to highly cohesive and also indicates that encapsulation is decreased,

but also increases complexity consequently increasing chances of errors.

 LCOM2(C) = P – Q. (2.1)

Where, P (LCOM1) is the number of pairs of methods that do not share common

attributes and Q is the number of pairs of methods that share common attributes.

Figure 2.8: An illustration of a class components interaction

33

In figure 2.8, the represented class is made up of four methods (m1, m2, m3 and m4)

and four attributes (a1, a2, a3 and a4) and the value of Lack of cohesion metric 1

(LCOM1) is calculated as shown below in equation 2.2:

 LCOM1= P=NP-Q (2.2)

Where NP is the number of method pairs. The value of NP in this case is 6 while the

value of Q is 1. Therefore, the value of Lack of cohesion metric 1 (LCOM1) is 5 while

that of Lack of cohesion metric 2 (LCOM 2) is 4 (following Equation 2.1).

The above illustration can also be illustrated with the code snippet shown in the figure

2.9;

Figure 2.9: A code snippet used in calculating LCOM1

34

These two metrics use pairs of methods that do not share common attributes while the

scoped class cohesion metric (SCCM) will use all the methods of a class to identify

the use of attributes(direct and indirect) within local and global scopes.

The two metrics also do not cater for the scope factor within their calculations, but

focus solely on the attributes commonality. The scoped class cohesion metric (SCCM)

will primarily focus on the scope factor in the measurement.

Both Chidamber and Kemerer (CK) metrics are anchored on the use of attributes

within their methods much the same as what will be factored in the scoped class

cohesion metric (SCCM). This will account for the usage of attributes within local

(within methods) and global (class-wide) scopes.

Both the Chidamber and Kemerer (CK) metrics use a parameter occurrence matrix in

the class cohesion measure.

The scoped class cohesion metric (SCCM) will measure class cohesion from attributes

usage view within a class. However; the Chidamber and Kemerer (CK) metrics looks

at the absence of these attributes and does not include the aspect of scopes within their

calculations.

2.4.2 Lack of Cohesion 3 Metric (LCOM3)

This metric measure is based on the use of undirected graph (Dallal and Briand, 2010)

and was proposed by Li and Henry (1993).Each class method is represented as a graph

node (vertice) and any shared instance attribute(s) is represented as an edge. The total

class cohesion (LCOM3) is the number of connected graph components.

35

Lack of cohesion metric 3 (LCOM3) uses a graph concept to represent class methods

(vertices) and attributes (edges) while the scoped class cohesion metric (SCCM) will

use a parameter occurrence (PO) matrix with rows to represent class methods and

while the matrix columns will represent the class attributes in their scopes.

Figure 2.10: An illustration of the LCOM 3 Metric components interaction

In figure 2.10, there are four attributes a1, a2, a3 and a4 and also contains methods m1,

m2, m3 and m4. Lack of cohesion metric 3 (LCOM3) calculates the total cohesion as

the total number of connections of the graph and the value of lack of cohesion metric

3 (LCOM 3) is 1; the number of disjoint (attribute 4 and method 4) methods is one (1)

which is not connected to the other graph nodes. The scoped class cohesion metric

(SCCM) will calculate the total cohesion from the total number of occurrences of

direct and indirect usage of attributes in the scopes.

36

Both the scoped class cohesion metric (SCCM) and the lack of cohesion metric 3

(LCOM3) metric will account for class cohesion from the interaction of the attributes

and the methods.

The scoped class cohesion metric (SCCM) will use both class members (methods,

attributes) just like the lack of cohesion metric 3 (LCOM3), but it will also add scope

view measure which will give a better interpretation of inner and outer sections of class

members’ interactions.

2.4.3 Lack of Cohesion 4 Metric (LCOM4)

This cohesion metric extends Chidamber and Kemerer (CK’s) work where a class X

has a set of instance attributes I (x) and a set of methods M (x). An undirected graph

G (v, e) is used where M(x) represents vertices .The graph edges are formed when two

vertices access the same instance attribute (Chandrika et al., 2011). Lack of cohesion

metric 4 (LCOM4) is measured as the number of connected components of G(x). It

further proposes that large classes should be divided into smaller, more cohesive

classes if LCOM4>1.

An illustration of lack of cohesion metric 4 (LCOM 4) is shown in figure 2.11 where

two disjoints are seen. Disjoint 1 comprises of attributes a1, a2 and a3 while disjoint 2

is made up of attribute a4.Therefore the value of lack of cohesion metric 4 (LCOM 4)

is 2. If a class has two or components then it should be broken down into smaller

classes with each hiding the connected component (Ducasse, Anquetil, Bhatti, & Hora,

2011)

37

Figure 2.11: An illustration of the LCOM 4 Metric components interaction

Unlike the SCCM which will use a PO matrix, LCOM4 uses the graph concept in its

cohesion calculation. It extends Li and Henry’s work by adding an edge between pair

of methods (Yadav, 2014) if and only if any of the methods invokes the other. Lack of

cohesion metric 4 (LCOM4) also does not include the aspect of scope in calculating

class cohesion.

When the value of lack of cohesion metric 4 (LCOM4) is equal to 1, then the class is

said to have a perfect cohesion and represents a high quality class. When the value is

0, it shows that the class has no cohesion and should be reviewed and redesigned.

Both metrics will use attributes and methods in calculation of class cohesion. This

metric also uses an undirected graph like lack of cohesion metric 3 (LCOM3). Lack of

cohesion metric 4 (LCOM4) uses the concept of a graph to calculate the class cohesion.

38

This gives a general view of class cohesiveness unlike the scoped class cohesion metric

(SCCM) which will give an inner and outer view of the class cohesiveness through the

interaction of direct and indirect attributes.

2.4.4 Lack of Cohesion Metric 5(LCOM5)

This metric was proposed by Henderson-Sellers (1996).It outlines that a given class

has a cohesion measure (LCOM5) zero (0) if its every method references all its

attributes (perfect cohesion). A one (1) class cohesion value is given, if every class

method references only one attribute. This metric uses a normalized range of 0 to 1

and the measure varies as a percentage of the perfect cohesion.

The total cohesion(C) is given by;

 C= (mh – a) (mh-h) (2.3)

Where m=number of methods, h=number of attributes and a=summation of the

definite attributes accessed by each class method.

39

Figure 2.12: An illustration of LCOM 5 metric components

In the illustration shown in figure 2.12, the value of lack of cohesion metric 5 (LCOM

5) is given by;

a= (2 methods accessing a1) + (2 methods accessing m3) + (1 method accessing a3) +

(1 method accessing a4), k=4 and l=4; Therefore the value of LCOM5 is 0.833.

Lack of cohesion metric 5 (LCOM5) uses summation of definite attributes in its

calculation and does not mention the use of indirect attributes and their scope usage, a

concept which will be introduced in the scoped class cohesion metric (SCCM). The

lack of cohesion metric 5 (LCOM5) metric only checks the usage of global attributes

within the local scope ignoring the impact of local attributes.

40

The scoped class cohesion metric (SCCM) will measure the presence of class

cohesiveness while the lack of cohesion metrics (LCOM) measures the absence of

class cohesion (Baig, 2005).

Both metrics will involve the use of attributes within methods and summation of

methods in calculating total class cohesion.

The scoped class cohesion metric (SCCM) will observe all the core properties of a

good cohesion metric identified by Briand (1996).However, lack of cohesion metric 5

(LCOM5) does not normalize its values in the range of 0 and 1 (Eladawy et al., 2012).

The scoped class cohesion metric (SCCM) will also cater for scopes (global and local)

as well as the usage of indirect attributes, an ignored factor in the lack of cohesion

metric 5 (LCOM5).

2.4.5 Tight Class Cohesion and Loose Class Cohesion Metrics

These two metrics were proposed based on the lack of cohesion metrics (LCOM) by

Bieman and Kang (1995).

Tight class cohesion (TCC) – it measures the percentage of pairs of public methods in

a class with no common attribute usage. It calculates the percentage of the relative

number of directly connected methods (those sharing at least one attribute) (Dallal,

2010).

Loose class cohesion (LCC) –it measures the percentage of pairs of public methods in

a class with transitive closure of common attribute usage. LCC calculates the

percentage of relative number of indirectly connected methods (two methods that share

at least one attribute directly or transitively).

41

Figure 2.13: An illustration of TCC and LCC metrics.

In figure 2.13, the value of tight class cohesion (TCC) is given by the number of

disjoint sets of method pairs whose value is 2 divided by the total possible maximum

method pairs whose value is 6 giving a tight class cohesion (TCC) value of 0.333.The

value of loose class cohesion (LCC) is given by the number of transitively joint method

sets whose value is 3 divided by the total possible maximum method pairs whose value

is 6 giving an LCC value of 0.5.

As surveyed by Baig (2005), the cohesion of a class is measured as the relative number

of connected pairs of methods to the maximum possible number of pairs.

When the value of TCC and LCC is equal to 1 then the class is said to be highly

cohesive which means that all the methods are connected to each other. When the value

of LCC is less than one, then all the existing connections are direct even though not all

42

of the concerned class methods are connected. Since not all methods are directly

connected in a class in many instances then the value of LCC is normally lower than

that of TCC although there may exist some indirect methods connection. When both

LCC and TCC are 0, then it means that none of the class method is connected either

directly or even indirectly.

The TCC and LCC metrics are based on the pair of methods sharing at least one

attribute while the SCCM will be based on the usage of attributes(direct and indirect)

within the local and global scopes. The SCCM will not compare pair of methods, but

will work with all the methods of a class.

While the TCC works on the absence of attributes within pairs of methods, the SCCM

will calculate the presence of class cohesion through attributes interactions.

All the three metrics integrate the use of attributes and methods in their cohesion

measure. The metrics also use direct and indirect attributes within their measures.

The SCCM will integrate scope level calculation unlike the TCC and LCC which only

accounts for global scope despite the use of direct and indirect attributes.

2.4.6 Relative lack of Cohesion in Methods (RLCOM)

This was proposed by Li (2006) and modifies LCOM where the total cohesion (C)

(Gui & Scott, 2009) is calculated by the formula below.

 C=
total number of non-similar method pairs

total number of method pairs
 (2.4)

43

Figure 2.14: Illustration of RLCOM

In figure 2.14, the value of RLCOM is given by the number of disjoint sets of method

pairs whose value is 3 divided by the total possible maximum method pairs (following

equation 2.4) whose value is 6 giving a RLCOM value of 0.5.

The RLCOM metric works with the use of pairs of methods borrowing the LCOM

concept of measuring the absence of class cohesion. The SCCM will use all the

methods without pairing them. It will also measure the presence of class cohesion and

not its absence. The RLCOM also does not integrate the aspect of scopes in measuring

class cohesion, which will be the basis of the SCCM. Both metrics will also cater for

methods and attributes in calculation of class cohesion.

44

2.4.7 Coh Metric

This class cohesion metric enhances the LCOM3 metric by normalizing it in the range

of 0 and 1(Ibrahim et al., 2012).It was proposed by Briand et al (1997);

 Coh=
a

kl
 (2.5)

Where a = summation of the number of distinct types accessible by each class method,

k =number of methods and l =number of attributes.

Figure 2.15: An illustration of the COH Metric components interaction

Using figure 2.15, the Coh value is given by;

a= 6, k=4 and l=4

45

Therefore, Coh value is 0.375 (following equation 2.5). The Coh approaches the

measurement of class cohesion from the usage of distinct types for each method in a

class while the SCCM will approach the attributes from the scope level and interaction

(direct and indirect).

Both metrics will use the interactions of the class members in measuring the class

cohesion. They will also cater for attributes usage by each method despite the measure

scale (to global view) to be used in the SCCM.

Both metrics will also use a normalized range of 0 to 1(perfect cohesion).

The SCCM will involve attributes interactions (direct and indirect attributes) and their

contribution to class cohesion measure in local and global scopes an issue which is not

addressed by Coh.

2.4.8 DCD and DCI Metrics

They were proposed by Badri and Badri (2004) and enhance TCC and LCC metrics

by including the method invocations; when one method invokes the other (Eladawy et

al., 2012):

DCD (Degree of Cohesion Direct) – it measures the fraction of the directly connected

pairs of methods where two methods are directly connected if they are directly

connected to an attribute or if they directly or transitively invoke the same method.

DCI (Degree of Cohesion Indirect) – it measures the fraction of the directly and

transitively connected pairs of methods where the two methods are transitively

connected if they are directly or indirectly connected to an attribute or if the two

methods directly or transitively invoke the same method (Marsic, 2013).

46

Figure 2.16: An illustration of the DCD and DCI Metric components interaction

Using the illustration in figure 2.16, the value of DCD is given by;

Directly connected pairs=4, total number of methods=6; the value of DCD=4/6=0.667

The value of DCI is given by;

Directly or transitively connected pairs=4, total number of methods=6; the value of

DCI=4/6=0.667.

These two metrics work with pairs of methods for direct (DCD) connection and indirect

or transitive connection of methods (DCI) while the SCCM will consider all the

methods of a class.

47

The two metrics also do not factor in the aspect scope within their calculations, a key

component which will be employed in the SCCM. The two metrics will utilise both

class members in the class cohesion measure, a similar approach that will be

implemented in the SCCM.

The two metrics also use direct and indirectness between methods, while the SCCM

will use direct and indirect usage of attributes within the various scopes.

The SCCM will be based on scoping as a key component in measuring class cohesion.

This will ensures that cohesion within a class is holistically calculated from the inner

and outer views of the class members.

2.4.9 Class Cohesion (CC) Metric

This metric was proposed by Bonja and Kidanmariam (2006).Cohesion is measured

as the degree of similarity between methods.

 Similarity =
number of shared attributes

number of distinct reference attributes by the methods pair
 (2.6)

48

Figure 2.17: An illustration of the CC Metric components interaction

Using the illustration in figure 2.17, the value of CC is given by;

Number of shared attributes=1, number of distinct referenced attributes by shared=2;

the value of CC=1/2=0.5.

This metric measures the similarities between pairs of methods while the SCCM will

focus on the use of attributes in a class and method scopes without pairing them. The

SCCM will also focuses on the attributes usage in the various scopes as well.

Both metrics focus on the use of attributes despite the pairing of methods by the CC

and general usage of attributes by the CC metric.

49

Both metrics will also consider all the class methods despite the pairing by the CC

metric.

The SCCM will not only considers the use of common attributes by the methods, but

also the use of attributes within the whole class in order to understand the usage within

the methods and their distribution.

2.4.10 Distance Design-based Direct Class Cohesion (D3C2) Metric

This cohesion metric was proposed by Dallal(2010).It uses a direct attribute type

(DAT) matrix that measures the interaction between methods caused by sharing

attributes; attribute to attribute interactions(AAC) ,method to method through

attributes interactions(MMAC) and attribute to method interactions(AMC). The DAT

matrix is a k (number of methods) by l (number of distinct attributes).

The metric is not defined if it has zero methods and zero attributes and it uses the

distance between pairs of methods and pairs of attributes to compute the percentage of

similarity .The total cohesion (C) of the class is the summation of the AAC, MMAC

and AMC.

 C = AAC + MMAC + AMC (2.7)

50

Table 2.1: AccountDialog Class matrix.

From table 2.1, the class AccountDialog shows the distribution of attribute usage by

the four methods; showInfo () accesses three of the four available attributes,

showAddress () uses one and readName () also accesses one attribute.

The value of total cohesion is then calculated as the total of method to method

(MMAC) interaction, method to attribute (AAC) interaction and attribute to method

(AMC) interactions (following equation 2.7) as shown below;

MMAC=
2(1)+1(0)+1(0)+1(0)

4(4)(3)
 =0.042

AAC=
3(2)+1(0)+0(−1)+1(0)

4(4)(3)
 =0.125

AMC=
5

16
 = 0.313

Total D3C2 =
4(3)(0.042)+4(3)(0.125)+2(4)(4)(0.313)

3(3)+4(3)+2(4)(4)
 = 0.227

This metric is based on the Hamming distance and measures the attribute differences

between method pairs while the SCCM will be based on the scoping aspect and will

not use pairs of methods, but utilize all the class methods.

51

Both metrics use a matrix that is used as occurrence entry. They also use all their class

members (methods and attributes) in the measurement.

The D3D2 metric combines interactions from three views (AAC, MMAC and AMC)

while the SCCM will combine the interactions from the global and scope view.

This metric gives more emphasis of pairs of methods in measuring cohesion while the

SCCM will give a more specified approach of capturing class cohesion from the

attributes(direct and indirect) interaction within methods and outside the methods.

2.5 Research Gaps

The LCOM1 and LCOM2 use pairs of methods that do not share common attributes.

The two metrics also do not cater for the scope factor within their calculations, but

focus solely on the attributes commonality.LCOM3 uses a graph concept to represent

class methods (vertices) and attributes (edges). LCOM3 calculates the total cohesion

as the total number of connections of the graph. LCOM4 uses the graph concept in its

cohesion calculation and does not include the aspect of scope in calculating class

cohesion.

The LCOM5 uses summation of definite attributes in its calculation. The LCOM5

metric only checks the usage of global attributes within the local scope ignoring the

impact of local attributes.LCOM5 also does not normalize its values in the range of 0

and 1 (Eladawy et al., 2012).

The TCC and LCC metrics are based on the pair of methods sharing at least one

attribute. The TCC works on the absence of attributes within pairs of methods.

52

The RLCOM metric works with the use of pairs of methods borrowing the LCOM

concept of measuring the absence of class cohesion.

The Coh approaches the measurement of class cohesion from the usage of distinct

types for each method in a class and their contribution to class cohesion measure in

local and global scopes which has not been address by Coh.

The DCD and the DCI metrics work with pairs of methods for direct connection and

indirect or transitive connection of methods.

The CC metric measures the similarities between pairs of methods.

The D3D2 metric measures the attribute differences between pairs of methods. The

D3D2 metric combines interactions from three views (AAC, MMAC and AMC).

The SCCM will calculate the total cohesion from the total number of occurrences of

direct and indirect usage of attributes in the scopes. SCCM will primarily focus on the

scope factor in the measurement. The SCCM will use both class members (methods,

attributes) just like the LCOM3, and adds scope view measure which gives a better

interpretation of inner and outer sections of class members’ interactions.

The SCCM will use all the methods without pairing them. It also measures the

presence of class cohesion and not its absence. The SCCM will not only focus on the

shared attributes, but also on their usage and distribution in the various scopes. The

SCCM will combine the interactions from the scopes view.

53

2.6 SCCM Conceptual Framework

Figure2.18 shows the conceptual framework of the metric.

Figure 2.18: SCCM conceptual framework

There exists many class cohesion metrics as discussed in this work; most of the metrics

work on the basis of methods-attributes interaction while others are based on

attributes-attributes interaction and the SCCM metric is one of the class metrics that

will based on class members interaction (Attributes-Attributes interaction).The SCCM

calculations will be based on the occurrence of attributes (global and local scopes) and

their interactions with the methods of a class.

54

2.7 Conclusion

From the above literature it is clear that the aspect of attributes scope and their direct

and indirect interactions has not been addressed: The use of pairs of methods (D3C2)

is not a conclusive measure of class cohesion. Even with the use of the LCOM (1-5)

metrics, they do not give a clear interpretation of class cohesion due to the various

interpretations of the original CK metric (LCOM1) which result to a measure of

absence rather than presence of class cohesion.

Some of the methods that almost will come close to those of the SCCM; those that use

of direct and indirect attributes, combine pairs of methods, but fail to capture the

attributes interactions from global and local scopes of a class.

55

CHAPTER THREE

METHODOLOGY

3.1 Introduction

In conducting this research, quantitative process was followed in coming up with the

scoped class cohesion metric. This involved data collection from Github.com which

was the main source of data. Github is an open source web platform that allows

software developers to develop their software and host them for free on the site for use

by other developers as well allowing other contributors to extend the functionality of

the softwares through documentation and other software activities that are involved in

software engineering.

3.2 Research Design

3.2.1 Sample Population

The sample population refers to the number of units collected for use in the experiment.

In this research, the population consisted of sixty software systems classes that were

extracted from sixty software systems.

Github was used as the source of data since it hosts a huge collection of open source

systems and data sources that record the various software activities which have been

used in many systems (Yang, Bai & Zhang, 2016). For example, Ruby on Rails (web

scripting language source code), AngularJS (Google developed web frontend

framework) and Bootstrap (Twitter developed frontend framework) are some of the

56

biggest and highly used open source systems. In addition, the data source has huge

number of best software engineering practitioners who use and make contributions to

the software systems.

The population was then clustered into four groups with each cluster containing fifteen

classes representing four of the several object oriented programming languages. The

four languages selected were; PHP, Java, Java Script and C++ and selected on the basis

of being the most widely used object oriented programming (OOP) languages by

developers (Hiscott, 2014).

3.2.2 Sample Size

A sample refers to a proportion of the research population that can be used to

generalize certain characteristics on the research population after a study. In order to

gather enough data that could be used for conclusive analysis, a total of forty classes

were selected from the four clustered programming languages and each cluster was

represented by ten classes. The selected classes were also verified to comply with

object oriented development of classes to assist in generalization of the results.

3.2.3 Data Collection Methods

The data collection method that was adopted in this research was experimental and

used a software to automate the collection process. The various classes were scanned

for the methods and attributes and their counts were used in calculating the metric

values.

57

3.2.4 Scoped Class Cohesion Metric

The SCCM is based on a rational scale with a minimum value of natural 0 and a

maximum value of 1(Eladawy, 2012). Since a class defines data which is stored in

variables (attributes) and behaviours (behaviours) which are expressed as methods

(Msdn, 2015) the two elements can be public, private or protected. Most metrics in the

high level class design make use of methods and attributes as evident in the LCOM1-

LCOM5, COH and others and SCCM is not an exception.

The following parameters were used in the development of the metric;

PM - public methods

PRM - private methods

PA - public attributes

PRA - private and local attributes

PO - public occurrences (of both PA and PRA in public methods and the

invocations of any class methods)

PRO - private occurrences (both PA and PRA in private methods and the invocations

of any class methods).

TPC - Expected total public cohesion

 𝐓𝐏𝐂 = (𝐏𝐀 + 𝐏𝐑𝐀) ∗ 𝐏𝐌 (8)

TPRC - Expected total private cohesion

58

 𝐓𝐏𝐑𝐂 = (𝐏𝐀 + 𝐏𝐑𝐀) ∗ 𝐏𝐑𝐌 (9)

PC - Observed total public cohesion

 𝐏𝐂 =
𝐏𝐎

𝐓𝐏𝐂
 (10)

PRC - Observed total private cohesion

 𝐏𝐑𝐂 =
𝐏𝐑𝐎

𝐓𝐏𝐑𝐂
 (11)

SCCM - Total class cohesion

 𝐒𝐂𝐂𝐌 = 𝐏𝐂 + 𝐏𝐑𝐂 (12)

 In the development of the scoped class cohesion metric (SCCM) metric, a close

derivative of lack of cohesion metric 5 (LCOM5): Class cohesion (COH) was

identified as a good reliability tool for the acquired results. The class cohesion (COH)

metric calculates the occurrences of class attributes within its methods and a

summation is done. However, the class cohesion (COH) metric omits the use of scopes

and use of local attributes, a key aspect in the development of the metric.

3.2.5 SCCM Algorithm

The SCCM algorithm is illustrated using figure 3.3.

59

Figure 3.1: SCCM algorithm

3.2.6 Data Collection Instrument

In this research, a JavaScript tool was designed and developed to collect and analyze

the data from various files: the scoped class cohesion (SCCM) tool.

3.2.6.1 SCCM Tool Development Process

The SCCM software tool developed for this research study used an incremental

development process model. This methodology was chosen on the basis of having to

deliver the application that involves four different implementations due to syntactical

differences, faster delivery and useful software to a user through the acquired

feedback. Incremental development involves coming up with an initial software

product that is released to a user (Sommerville, 2015) and through their feedback

60

iterations are done taking into account of their views and suggestions until a final

product is developed as shown in figure 3.2.

Figure 3.2: Incremental iterative development (Adapted from Sommerville,

2015)

This development was plan driven in nature since the components were already

known. With the adoption of this process model, the iterated process activities were

mainly; software specification, development and validation.

3.2.6.1.1 SCCM Tool Specification

This is one of the interleaved activities that is iterated during the development process.

The stage involves understanding the services that are provided by the software and

identification of the constraints during its development (Sommerville, 2015).It takes

into account the satisfiability of the users from the software product to be developed

(feasibility studies) and elicitation(acquiring information from the users) in order to

understand the required system specifications. This then provides a thorough

61

understanding of the user requirements from the system and the functionalities that the

system must have (system requirements).

The following requirements were considered necessary in the iterative development

process of the SCCM software:

3.4.1.1 Functional Requirements

i) The system should be able to only recognize files developed in PHP, Java,

JavaScript and C++ languages.

ii) The user should be able to select files from a saved location.

iii) The system should automatically calculate the metric value for a given selected

class.

iv) Third party plugins used (i.e. Bootstrap front-end framework) should support

mobile interfaces.

3.4.1.2 Non-functional Requirements

i) The system should be able to process any file size uploaded for metric calculation.

ii) The system should allow the user to copy and paste file content provided it is in

C++, Java, PHP or JavaScript format.

iii) The software should be accessible on any browser, although it is primarily tested

on Google Chrome and Mozilla Firefox browsers.

iv) The hosting service should be done on a local machine and a copy of the file hosted

on an online repository: Github to be accessed by other users.

v) All system responses to the user should be handled on the console.

62

vi) The system user should be provided with a simple manual for reference (support)

that describes how the system works as well as any other technical support that

may arise.

3.4.1.3 Activity diagram for the SCCM

Figure 3.3: Activity diagram for the SCCM software

In figure 3.3, the following activities are performed on and by the system:

i) The user selects the file from a storage location in the computer.

ii) The class file is validated removing the white space characters giving a

compressed class as an output.

iii) The metric is then calculated and an output is returned to the user.

63

3.2.6.1.2 SCCM Tool Design

Software design gives software’s structural description, system’s structures and data

models, components interfaces and algorithms. (Sommerville, 2015).

The following diagram shows an abstract architectural model of the SCCM software.

Figure 3.4: An Abstract model for the SCCM software.

In the diagram, the system (SCCM software tool) is subdivided into five sub-systems

namely:

(i) Web browser system

This subsystem is responsible for the user interface where the user is able to

interact with the system. It has been implemented with the Bootstrap

framework.

64

(ii) File chooser system

This subsystem is responsible for allowing the user to upload a file and decode

the contents of the file. The result of this subsystem is the raw code from the

file which is later compressed into minified code.

(iii) File compressing system

This subsystem involves minimization of the decoded code. The main aim of

this subsystem is to remove whitespace and any untokenized characters from

the raw code. The result of this entire process is the minified tokenizable code

that can be placed under a parser for analysis.

(iv) Metric calculator system

This subsystem involves the actual metric mathematical operations. The set

components that makeup the metric are measured and used in the formula to

produce the SCCM metric value which is fed into the output subsystem.

(v) Console output system

This subsystem involves giving the actual metric value to the user. This is done

by the web console of the browser.

 The SCCM system design used a pipe and filter architectural pattern as shown in

figure 3.5.

65

Figure 3.5: Pipe and Filter architecture pattern SCCM software

i) The user selects a file through the web browser and passed on to the next stage.

ii) The file is validated through class file checkers and passed on to the next stage.

iii) The validated file is compressed to remove the white spaces and untokenizable

characters and passed on to the next stage

iv) The compressed code is scanned for the various components that make up the

metric, mathematical calculations are done and passed to be used as the SCCM

value.

Having identified the architectural pattern, the following high level design was

developed:

66

Figure 3.6: High-level architecture of the SCCM software

In figure 3.6, all the five subsystem are interconnected by the web browser subsystem

which acts as the user interface.

i) The user through the browser is able to access the form containing the file

chooser input which selects a file stored within a directory in the computer.

ii) The result of that is raw class code which is displayed on the browser as shown

on figure 4.2

iii) The user can then compress the code by clicking a compress button as shown

in figure 4.2 which gives compressed code ready for analysis phase.

iv) The user then clicks a SCCM calculate button also shown in figure 3.7.

v) The user can finally get the class calculated SCCM value via the console of the

browser.

67

3.2.6.1.3 SCCM Tool Implementation and Testing

Implementation of a computer system means developing of the system using the

existing technologies in order to realize the design and the intended system. During

the implementation stage an executable version of the software (system) is actualized.

The developed SCCM system was made of two parts: the library/scanner and the

view/presentation parts.

The Library or Scanner

This system was developed in pure JavaScript that involved regular expressions for

scanning and matching text. This module was made up of four separate files that hold

each individual implementation. In order to use any of the four files, the user has to

import a specified file on the view based on the scanning file.

The View (Presentation)

This was developed using Bootstrap framework. This is a HTML5 and CSS3

developed HTML page style render.

Testing

This was done using Mocha. Mocha is a JavaScript testing library that is used in

creating mocks for testing code.

68

Figure 3.7: Web interface for the SCCM software

The software works by allowing a user to select a valid source code file from a storage

location, the user then compresses the code in order to remove white spaces and

comments that do not form part of the tokenized source code and then calculates the

metric values which are output on the web console.

The implemented system generated the following output on the console.

69

Figure 3.8: The output console of SCCM calculated values.

3.2.6.1.4 SCCM Tool Operation and Maintenance

The system was mainly run on the local machine and a copy also hosted publicly on

Github for users utilization. Since the system involved iterations maintenance was

done during the several iterations to correct emerging errors that were reported by the

users as well as improvements.

70

CHAPTER FOUR

EXPERIMENT, RESULTS AND DISCUSSION

4.1 Introduction

This chapter discusses the conducted experiment that was involved in calculating the

value of SCCM. This involved data collection using the SCCM software tool. With

the defined parameters of the metric included in the tool, data was filtered and

allocation of counts was done and a value of the metric returned. This section gives

the collected filtered data by the tool which was then analysed using graphs and charts

and discussed in order to understand the observed chart patterns.

4.2 Experiment Design

 During the experiment setup, the following control environments were observed:

i) A computer with a JavaScript enabled browser since the data collection tool was

developed in JavaScript; it was also important for the browser to have a web

console that would allow the visibility of the output.

ii) Hosting of the files was done on the local machine as well as Github to enable the

researcher to test the data collection tool on the local computer as well as for other

interested tool users to download and test how it works.

iii) All the data files used (for the four clusters) were acquired from Github; a total of

ten standard classes per cluster from ten different object oriented systems.

iv) A sublime text editor was used as the main software development IDE (as a

researcher preference), though any other text editor can be used.

71

Once the control environments were availed, the researcher used the SCCM tool and

followed the SCCM algorithm to generate the metric values using the following steps;

i) The user selects a file from a storage location in the computer. This is done

through the web browser and the file chooser subsystems discussed in sections

3.2.6.1.2

ii) Once a validated file has been selected from the computer directory, the file

compressing system removes the white space characters giving a compressed

class as an output.

iii) The compressed class is then analysed by the scoped class cohesion metric

(SCCM) tool. The tool calculates the number of each metric parameters

(outlined in the algorithm- figure 3.3) and computes a class cohesion value

which is then returned as an output to the user on the web browser console.

4.3 SCCM Raw Collected Data

This section shows the data collected using the SCCM tool. Figures 4.1 and 4.2 shows

the interface and the console output respectively while tables 4.1, 4.2, 4.3 and 4.4 show

the collected raw data.

The data in these tables is described as follows:

o SCCM – the calculated value of the research metric.

o COH – the calculated value of the cohesion metric (a comparative metric used

in the study).

o PM – the number of public methods that are contained in the minified class

and one of the components used in the calculation of the metric value.

72

o PRM - the number of private methods in the minified class and one of the

components used in the calculation of the metric value.

o PA – the number of public attributes in the minified class and one of the

components used in the calculation of the metric value.

o PRA – the number of private attributes in the minified class and one of the

components used in the calculation of the metric value.

o PO – the number of public attributes occurrence in the minified class and one

of the components used in the calculation of the metric value.

o LV – the number of local variables or attributes in the minified class. LV is

used in making comparison with the other global variables in order to identify

the effects of local variables on the metric value.

Figure 4.1: A screen shot of the interface of the SCCM software tool.

73

Figure 4.2: A screen shot showing the uploaded class, the compressed code

(minified class) and the console output.

igure 4.1 shows the home interface that the user firstly interacts with when they open

the tool. Figure 4.2 shows the interface after the user calculates the metric value as a

result of series of events; the user loads a valid file or class, it is compressed and the

cohesion is calculated through a triggered event once the user clicks on the calculate

metric button.

Uploaded class Minified (compressed)

class

SCCM metric output

values

74

Table 4.1: SCCM and COH values from the Java Cluster

 Table 4.2: SCCM and COH values from the C++ Cluster

75

Table 4.3: SCCM and COH values from the JavaScript Cluster

Table 4.4: SCCM and COH values from the PHP Cluster

76

The above four tables namely table 4.1, 4.2, 4.3 and 4.4 show the distribution of the

factors that affect the SCCM and their corresponding values. This is done on ten

systems for each cluster of programming language. Table 4.1 shows the values that

represent factors in the java systems, table 4.2 shows values that represent factors in

the C++ systems, table 4.3 shows values that represent factors in the JavaScript

systems and table 4.4 caters for PHP systems factors representative values.

4.4 Experiment Processed Data

In this section, the collected raw data is refined further in order to identify the various

relationships that exist within the data. This will then assist in making an informed

decision on the effects of the various components that make up the SCCM and the

possible explanation of these effects.

In order to identify the effective metric among the two, descriptive statistics have been

used for data interpretation. In measuring the central tendency; the geometric mean is

used to approve the effective metric among SCCM and COH whereas the relationship

between the metric values and its various constituents uses Pearson’s coefficient. The

COH metric has been considered since its formulation is closely related to the SCCM.

The COH metric is also chosen to enhance the study’s reliability despite the fact that

it does not account for scopes and use of local variables.

77

4.4.1 Geometric Means on SCCM/COH

A geometric mean is an average that indicates a typical value of a set of numbers

through the use of their values product (Geometric Mean, 2011). It is often used to

show which item is superior or has a higher merit than the other. For example, if two

items A and B have values 1 and 2 and their geometric mean is 1.5, then B is superior

than A. The geometric mean has been considered for use in this research in order to

identify which metric values are higher between the SCCM and the COH metrics.

Tables 4.5, 4.6, 4.7 and 4.8 shown in this section indicate the various calculated

geometric means from the four clusters of the systems classes.

 Table 4.5: SCCM and COH geometric mean values from the Java Cluster

The geometric values acquired from the Java systems for the SCCM and COH show

that both SCCM and COH do not differ in the ten systems. However, CHOC system

shows a different value due to availability of extra private variables.

78

 Table 4.6: SCCM and COH geometric mean values from the C++ Cluster

The geometric mean values were lower compared to the values of SCCM in the ten

C++ systems. The SCCM values were also noted to be higher than those of the COH

metric. This difference shows that the SCCM metric performs better than the COH

metric.

 Table 4.7: SCCM and COH geometric mean values from the JavaScript

Cluster

The geometric mean values were lower than the SCCM values in all the ten systems

which shows that SCCM compared better than its comparative COH metric.

79

Table 4.8: SCCM and COH geometric mean values from the PHP Cluster

The values of SCCM were noted to be higher that the geometric mean which reflects

that the values acquired are superior to those of COH.

4.4.2 Pearson’s Coefficient on SCCM/COH

Pearson Correlation coefficient refers to a measure of the strength of the linear

relationship between two variables (Lane, 2016).The coefficient ranges between -1

and 1 with a -1 giving a perfect negative relationship and +1 a positive relationship

respectively.

In this research the Pearson correlation values have been used to identify the linear

relationship between values of a given component of the SCCM metric as shown in

tables 4.9, 4.10, 4.11 and 4.12.

80

Table 4.9: Pearson coefficient values on SCCM matrix of C++ systems

In table 4.9 above, the correlation coefficient of public variables and the local variables

give a very poor positive correlation coefficient value to the values of SCCM.

81

 Table 4.10: Pearson coefficient values on SCCM matrix of Java systems

In table 4.10, the number of public methods (PM) and the private variables (PRA)

and the local variables gave a negative correlation coefficient values. This is a clear

indicator that as the number of PM and LV increase within a class, then the cohesion

value of both SCCM and COH decreases and vice-versa.

82

 Table 4.11: Pearson coefficient values on SCCM matrix of C++ systems

In table 4.11, the number of public methods (PM), public attributes (PA), private

variables (PRA) all indicate a negative correlation coefficient value such that as the

number of these three increase then the value of SCCM cohesion decreases

significantly.

 Table 4.12: Pearson coefficient values on SCCM matrix of PHP systems

83

4.5 Results

The following section is informed by the data acquired in sections 4.1 and 4.2.The

results have been categorized according to the effects of components that make up the

SCCM metric: Effects of public methods, effects of total class variables, effects of

public variables, effects of private variables and the effects of local variables.

4.5.1 Effects of Public Methods on SCCM Value

Figures 4.3, 4.4, 4.5 and 4.5 show the graphical representation of the number of public

methods against the SCCM and COH metric values. The data used in these

representations has been acquired from tables 4.1, 4.2, 4.3 and 4.4.

Figure 4.3: Influence of public methods on the SCCM/COH values; a case of

Java classes

84

It is noted that the Java classes with high number of public methods from the ten

systems used in the research gave lower values of the SCCM compared to those with

low number of public methods. This trend is noted in all the classes with classes having

smaller methods being more cohesive. In figure 4.3, systems 1 and 2 with 17 and 18

methods give the least cohesion values compared to systems 3 and 5 that give the

highest cohesion values.

Figure 4.4: Influence of public methods on the SCCM/COH values; a case of

JavaScript classes.

85

As depicted on the figure 4.4, JavaScript classes with lower public methods were found

to have higher cohesion values for example, systems number 2 and number 9 have

which have 4 and 2 public methods respectively. These two systems classes were also

among the classes with high metric values.

Among systems classes in the PHP cluster, the same was evident with classes having

higher number of methods giving lower SCCM values as shown in the figure 4.5

below.

Figure 4.5: Influence of public methods on the SCCM/COH values; a case of

PHP classes.

86

In figure 4.5, it was noted that classes with higher number of public methods still

exhibited lower cohesion values compared to those classes with lower numbers of

public methods.

Figure 4.6: Influence of public methods on the SCCM/COH values; a case of

C++.

Lastly in the C++ classes, the systems with lower number of public methods also

exhibited higher cohesion values compared to those classes with higher number of

public methods. It can therefore be stated that lower cohesion was associated with

higher number of methods within the four clusters.

87

4.5.2 Effects of Total Class Variables on SCCM Values

Figure 4.7: Influence of total class variables on the SCCM/COH values; a case

of PHP.

As the total number of variables within a class increased, the values of the SCCM

decreased as evident in figure 4.7 with systems 2, 5, 7 and 10 (acquired from table 4.4)

giving high values of the SCCM. This trend is also noted in figure 4.8 when

considering C++ classes (acquired from table 4.2).

88

Figure 4.8: Influence of total class variables on the SCCM/COH values; a case

of C++.

The same trend is also seen in the Java Systems classes (acquired from table 4.1) as

depicted in figure 4.9. One of the reasons why the variables increment could be

associated with very low cohesion value is possibly due to the fact that the class

members’ distribution within the class becomes more therefore increasing

communication coupling which ultimately leads to reduced cohesion within the class.

89

Figure 4.9: Influence of total class variables on the SCCM/COH values; a case

of Java.

In the JavaScript classes high total number of variables was also noted to have the

least cohesion with system classes 6 and 7(acquired from table 4.3) in figure 4.10

having the highest number of variables but also the least cohesion among the ten

studied JavaScript systems. This trend is a similar trend like the one seen among the

90

public variables.

Figure 4.10: Influence of total class variables on the SCCM/COH values; a case

of JavaScript.

4.5.3 Effects of Public Variables on SCCM Values

The number of public variables within a class also displayed a similar trend like the

effects of public methods: As the number of variables got lower, the values of the

SCCM also decreased. This was evident in many systems (acquired from table 4.2) in

the C++ cluster of systems as shown in figure 4.11.

91

Figure 4.11: Influence of public variables on the SCCM/COH values; a case of

C++.

Similarly the trend was noted in the Java Systems (acquired from table 4.1) as evident

in figure 4.12.

92

Figure 4.12: Influence of public variables on the SCCM/COH values; a case of

Java.

However, in Java the values of SCCM were influenced by private variables in the

classes giving an unusual changes compared to the C++ systems classes shown in

figure 4.11.Despite that trend, classes with higher number of public variables still gave

lower SCCM values compared to those with lower number of public variables.

93

Figure 4.13: Influence of public variables on the SCCM/COH values; a case of

JavaScript.

In the JavaScript systems the values of SCCM increased significantly with reduction

in the number of public variables within a class. As evident in figure 4.13, system 2

(acquired from table 4.3) which had private variables gave the highest cohesion value

compared to other for example, system 7 that had the highest number of public

variables but with the lower SCCM values. However, the effects of private variables

within a class cannot be ignored in the contribution towards high or lower cohesion

values.

In the figure 4.14 below, the SCCM values of classes with lower number of public

variables are still lower compared to those of classes with higher number of public

94

variables. SCCM distinction among the PHP classes is noted where despite some

classes having zero (0) number of public methods, they still possess different SCCM

values. This is a trend noted from previous cases where a class has some private

methods that influence the values of SCCM of that given class.

Figure 4.14: Influence of public variables on the SCCM/COH values; a case of

PHP.

4.5.4 Effects of Private Variables on SCCM Values

Private members of a class have been noted to have some effect on the SCCM values

in the previous mentioned results. Moreover, when looked critically from a private

members perspective, these variables behave in a similar manner just like the public

95

variables. An increase in the number of private variables of a class leads to lower

cohesion values of the SCCM as evident in the figure 4.15.

Figure 4.15: Influence of private variables on the SCCM/COH values; a case of

JavaScript.

The same trend is noted on the PHP values with private variables increment leading to

lower cohesion values as represented in figure 4.16.

96

Figure 4.16: Influence of private variables on the SCCM/COH values; a case of

PHP.

4.5.5 Effects of Local Variables on SCCM Values

Local variables within a system class are vital since they add muscle to a specific

module of their usage. In this research, local variables effects were studied and their

contributions recorded in order to give an insight of their influence. Figure 4.17 gives

a trend of the number of local variables in a class increased the values of the SCCM

decreased accordingly. This trend is similar to the increase in the number of public and

private variables noted earlier.

97

Figure 4.17: Influence of local variables on the SCCM values; a case of Java.

Among the JavaScript systems, similar results are also achieved with systems 2, 5 and

9 giving very high cohesion values compared to the other systems that had very high

number of local variables.

98

Figure 4.18: Influence of local variables on the SCCM values; a case of

JavaScript.

In the PHP systems (shown in figure 4.19) the same trend was noticed with value

spikes noted on the systems that had high values compared to those that had low

values. This trend had been noticed on the previous cases with the number of public

variables within a class in figure 4.18.

99

Figure 4.19: Influence of local variables on the SCCM values; a case of PHP.

4.6 Discussion

4.6.1 Discussion of Results of the Effects of Public Methods

Public methods are functionalities or modules that are explicitly available in a class

(PHP, 2016). Classes with higher number of public methods were noted to have the

least SCCM values whereas classes that possess private methods and variables were

found to be more cohesive than those that did not utilize both scoped variables and

methods. This effect had been reported in COH and LCOM5 metrics where if the

100

number of methods increase without equal or more proportionate increase in the

number of fields occurrences leads to lower cohesion (Okike, 2010).

A small class (one with fewer numbers of methods) is able to handle things much better

as stipulated by Cunningham(2004).Furthermore, Cunningham outlines a class with

more than 20 methods is considered “overworked” whereas a class with 10 methods is

said to be doing a lot of work. In an extension review of modularity by Pressman

(2010) on the modularity principles of design, a given module can be exploded into

two or more modules which results when shared processing is noticed in two or more

modules. Exploding the module reduces coupling creating well maintainable and

cohesive modules.

A class found with many methods makes it hard to maintain and to adapt to an

environment. This can be well explained by the Law of Demeter. This law states that

given for any class A, a method M may only invoke other methods belonging to the

following:

o Class A

o Members of A

o Parameters of M

o Objects created by M

o Objects created by other methods of class A called by M

o Globally accessible objects

This law therefore ensures that a given object has the least knowledge of another object

and never places a call to another object through an intermediate object as outlined by

101

Lieberherr (2006).This law enables the designing of systems to be loosely coupled

hence increasing cohesion of a class. When the objects of a given class know less about

another object(a provision that is provided through the methods of a class) then the

reliance is reduced on the internal structures of that class and even changes on that

object negatively result to very light issues that may emerge making the code fairly

maintainable. This therefore gives a good reason to have fewer methods in a class

ensuring objects independence is enhanced reducing any anticipated “ripple effect”

through the entire class. (Bock, 2012).

Following the Demeter Law is crucial and important in class design since

encapsulation is improved. Information hiding or encapsulation is one of the key

concepts that object oriented systems try to achieve and if it can be done through a

reduction in the number of methods of a class, then it is considered a key thing to be

done on a system.

When the number of methods in a class is reduced, the code becomes more

maintainable and cleaner as stated by Miskov (2011) during one of the Google Tech

talks. In a paper written by Guo etal (2011), following this concept in the development

of object oriented systems is one of easiest ways of bugs’ reduction and not following

makes it one of the easiest ways of increasing bugs within a system which ultimately

leads to poor quality software. Figure 4.20 shows a representation of this concept.

102

Figure 4.20: A diagram illustrating the Law of Demeter.-Adapted from

Lostechies

It can therefore be concluded that presence of many methods within a class makes that

class a good candidate for inspection due to a higher likelihood of bugs. The class also

becomes strenuous to maintain (Rosenburg, 2012) and adapt to environments which

increases coupling among modules and consequently lower cohesion.

4.6.2 Discussion of Results of the Effects of Total Class Variables

Every instance of a class shares a class variable (Oracle, 2015).When a class is

developed, objects can be created from it. When accounting for class cohesion, a class

is expected to achieve one common thing which is defined in it and its actualization is

done through the object. As noted from the results, a class with lower number of

variables was noted to be more cohesive than one with higher numbers of variables a

similar case reported by Lustman, Keller and Kabaili (2001) and cohesion values only

increase if the number of their reference within the methods is higher and not just their

numbers.

103

As the total number of variables within a class increased, the values of SCCM were

noted to reduce as evident in figures 4.5, 4.6, 4.7 and 4.8. This is because as the

variables and their usage increase within the various modules, then the dependence

among them also increase which consequently leads to higher coupling and reduced

cohesion.

Although communication is increased when variables communicate with each other

and resultant data flow increase, cohesion reduces because as one element is changed

then changes occur and due to the high number of elements that exist then chances of

many errors bulge, interdependencies increase and even the functional cohesion of

each module is reduced. However, if a small number of variables are used and even

reused (via inheritance); data control is enhanced since each module is able to work

within its functionalities and roles to the system and only passes what is required to

the next module (Washington, 2013).When there are too many variables within a

system then the interdependencies weaken these roles for the different modules.

4.6.3 Discussion of Results of the Effects of Public Variables

Public variables are those class members that can be accessed anywhere within a class.

Classes from systems with higher public attributes gave lower SCCM values a similar

situation reported in the CC metric. The use of high number of public variables in a

class was also noted to have a negative correlation with cohesion values.

High usage of public variables has been cited by Cunningham (2013) to breaking

immutability of objects consequently affecting encapsulation of an OOP class whereas

a class with low number of public variables has also been proven to yield clearer,

104

understandable code of high maintainability when global variables are avoided

(Cunningham, 2013).This is as a result of reduction in the non-locality of variables

that can be read and modified by any member of module of the class which makes it

easier to remember in its every possible usage.

The use of high public variables also makes it hard to control the access of data within

a class since they are accessible by any other module or element within the class. This

may breach the security of the system and possible intrusion by bugs. Furthermore,

public variables should be avoided since they introduce implicit coupling due to lots

of inter-variables dependencies between modules and variables. Whenever there is

high coupling then cohesion of a class reduces significantly.

A class with high number of public variables makes bug tracking a very strenuous

process since an error could be anywhere within the entire code. It can therefore be

conclude that values of SCCM tend to decrease with increase in the number of public

variables occurrences due to implicit and common coupling (access of global

communication) which makes it difficult to understand the use of data, causes

inflexibility, introduces dependence clusters (Binkley,2009) and causes potential

ripple effect (Bansal,2013).It should be noted that public variables within a class

should only be introduced and used when and only when it is absolutely required.

In a paper done by Kulkarani and Hemaiyar (2013), global variables have been

negatively campaigned for use within a class due to the following reasons. Firstly, they

increase the mental effort necessary in the undertaking abstraction in a program

making understandability by developers cumbersome. Secondly, the use of public

variables makes it hard for developers to test their code and even verification of the

105

software. This is coupled with difficulties in modifications of the memory locations

since it is hard to know their usage state due to their explicitness as they are passed

and returned to functions. Thirdly, they also increase program dependence which

connects one module to another.

Despite the condemned usage of public variables in a class two alternatives have been

offered by Cunningham (2013); the singleton pattern and the hidden objects. Singleton

pattern involves creation of a single global object which is accessible through stateful

procedures. Stateful procedures involve the use of global getters and setters or

functionalities that implicitly act over the underlying state. The use of stateful

procedures ensures that globals are localized thereby minimizing many probable

linking problems. According to tutorials point (2015), this class provides a way of

accessing the object directly without the need to instantiate the object directly.

Figure 4.21: An illustration of singleton pattern in OO class design-Adapted

from tutorialspoint.com

106

The second option is the use of hidden objects. Hidden objects are used where globals

are tamed for local use. When the globals have been localized they are passed as

arguments to the various functions that require them in their local scope. This is a

concept that has been successfully implemented in creation of JavaScript objects that

uses a self-referencing this prefix. The prefix is used for creating an object’s properties

creating abstraction of the public variables despite the negative data storage

ramifications (Gravelle, 2014).The effect of localizing these variable is that they are

then visible within the method scope where they are needed which greatly reduces the

dependence on the other sections of the program.

There are other two usefulness of global variables namely; efficiency and convenience

as discussed by Kukarni and Hemaiyer (2013).in improving code efficiency, global

variables have been shown to boost program efficiency and at the same time lowering

the storage memory space through reduction or elimination of arguments passed to

functions as well as values that are returned or called by the functions. Convenience

within the program is added to the code by the global variables through the their

declaration in the outer scope which makes access of the stored values more easier as

compared to the local variables which can only be declared and used within a given

function. However, even with this convenience it may still cause trouble in the long

run, but it keeps the worry of deciding when to declare the variables and the developer

is now only concerned with using them.

107

4.6.4 Discussion of Results of the Effects of Private Variables

According to George (2013), private variables are class members that are normally

declared as private and cannot be referred to from other classes. Within the SCCM

metric, private attributes were noted to contribute to class cohesion negatively as

shown on tables 4.1 and 4.3 with the negative Pearson’s coefficient and they also non-

influenced the metric if the class is inherited. This is because private members cannot

be accessed outside a class (Dammers, 2012). However, the calculation of the SCCM

values does not account the use of constructors and destructors because they artificially

increase the cohesion value (Dallal, 2011). Inherited attributes and methods (directly

or indirectly) were factored in to cater for inheritance- which is a major concept in

object oriented software development (Ibrahim etal, 2012). Classes with lower

numbers of both public and private attributes gave higher SCCM values and as the

total number of attributes increased, the values of SCCM also decreased.

4.6.5 Discussion of Results of the Effects of Local Variables

A local variable refers to a storage location that is declared within a method or is used

as one of the method’s arguments (Calvin, 2012).These variables can only be used

within the function in which they have been declared in and cannot be able to store

persistent data about an object between method calls.

From the analysed data, the presence of high local variables is associated with low

SCCM values. However, just like reported by Lustman, Keller and Kabaili (2001), a

higher usage and interaction between attributes in a given module leads to higher

cohesion. This trend follows what had been previously identified in the results of the

108

effects of public and private variables as noted in tables 4.1 to 4.4 in the LVUSAGE

column.

Furthermore the importance of local variables and their usage in calculating class

cohesion value is also reflected by the negative Pearson’s correlation value given in

tables 4.6 and 4.7.This clearly shows that they are equally important just like the public

and private attributes when calculating SCCM values.

109

CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusion

In all the four sampled clusters, the values of SCCM were found to be slightly higher

than those of COH this is evident from the tables 4.1,4.2,4.3 and 4.4 where the values

of SCCM are higher than the geometric mean which is an average of both SCCM and

COH. This is as a result of accounting method calls by SCCM, a factor that is not

incorporated by the COH metric. However, with the consideration of the new

methodology that integrates the scoping of the occurrences’ and adding up of local

variables and their usage, new metric gains have been achieved by the SCCM

compared to its derivative: the COH metric.

From the conducted research it can therefore be summarized that:

i) Class cohesion can be evaluated from a scoping perspective through the use of

visibility of elements that make up a class. Scoping in this research has been

evaluated from the local or global scopes.

ii) With slight adjustments to the SCCM tool, the values of LCOM 5 can also be

achieved; since the COH metric is its derivative. This gives an easier way of

collecting the data for developers when conducting class design tests.

iii) Classes with higher number of public methods were noted to have the least

SCCM values compared to those with lower number of public methods.

Therefore, classes with large number of methods need to be broken down into

110

smaller classes with fewer number of methods if higher cohesion in classes is

to be achieved.

iv) As the total number of variables within a class increased, the values of SCCM

decreased accordingly as a result of increased communication which ultimately

leads to increased coupling and subsequently lower class cohesion.

v) The use of high number of public variables in a class was noted to have a

negative correlation with cohesion values since high number of variables

increased communication coupling and subsequently led to lower cohesion.

vi) Classes with lower numbers of both public and private attributes gave higher

SCCM values and as the total number of attributes increased, the values of

SCCM also decreased.

vii) From the analyzed data, it has also been found out that local variables also

play a critical role similarly to the public and private variables in enhancing

data control and that large classes do not necessary mean they are cohesive

compared to smaller classes. This is therefore important for developers to

introduce them when necessary if at all understanding, easier maintenance,

better testing and good class design is to be achieved in the long run.

Therefore, a cohesive class is characterised by low coupling (independence between

modules),only introduces attributes when necessary, has a better chance of reusability,

enables faster and effective testing, flexible modifiability with low maintenance costs

and enhances a developer’s understanding of the software product. All this attributes

make up a quality software product.

111

5.2 Recommendations for Future Work

The future scope of this work can be extended by in the following ways. Firstly, a

source code parser for the four clustered languages can be created to cater effectively

for semantic and syntactical analysis of each language instead of just a JavaScript tool.

Secondly, class cohesion can be evaluated from the methods perspective using the

local attributes. Lastly, the analysis of the COH metric using the SCCM software can

be done to enable the calculations of other metrics for example the LCOM5.

112

REFERENCES

Badri, L., Mourad, B., & Fadel, T. (2011). An Empirical Analysis of Lack of Cohesion

Metrics for Predicting Testability of Classes. International Journal of

Software Engineering and Its Applications, 5(2), 69-86.

Baig, I. (2005). Measuring Cohesion and Coupling of Object-Oriented Systems:

Derivation and mutual study of cohesion and coupling (Master’s thesis.

School of Engineering, Blekinge Institute of Technology Sweden).

Retrieved from https://pdfs.semanticscholar.org/3873/723f33cfc541d

76a3535d1f04ae0d6b978d3.pdf

Badri, L., & Badri, M. (2004). A Proposal of a new class cohesion criterion: an

empirical study. Journal of Object Technology, 3 (4).

Barbacci, R. M. (2004). Software Quality Attributes: Modifiability and Usability.

Software Engineering Institute Carnegie Mellon University. Retrieved from

http://www.ieee.org.ar/downloads/Barbacci-05-notas1.pdf

Bansal, G. (2013). Software Design Coupling/Cohesion in Software Engineering.

Retrieved from

http://girdhargopalbansal.blogspot.co.ke/2013/02/software-design-

couplingcohesion-in.html

Basili, V.R., Briand, L.C., & Melo, W.L. (1996). A Validation of Object-Oriented

Design Metrics as Quality Indicators. IEEE Transactions on Software

Engineering, 22(10), 751-761.

Bieman, J., & Kang, B. (1995).Cohesion and reuse in an object-oriented system.

Proceedings of the 1995 Symposium on Software Reusability, Seattle,

Washington, United States, 259–262.

https://pdfs.semanticscholar.org/3873/723f33cfc541d
http://www.ieee.org.ar/downloads/Barbacci-05-notas1.pdf
http://girdhargopalbansal.blogspot.co.ke/2013/02/software-design-couplingcohesion-in.html
http://girdhargopalbansal.blogspot.co.ke/2013/02/software-design-couplingcohesion-in.html

113

Binkley, D., Harman, M., Hassoun, Y., Islam, S., & Zheng, Li. (2009). Assessing the

Impact of Global Variables on Program Dependence and Dependence

Clusters.

Bock, D. (2012). The Paperboy, the Wallet, and the Law of Demeter. Retrieved from

http://www.ccs.neu.edu/research/demeter/demeter-

method/LawOfDemeter/paper-boy/demeter.pdf

Bonja, C., & Kidanmariam, E. (2006). Metrics for class cohesion and similarity

between methods. Proceedings of the 44th Annual ACM Southeast

Regional Conference, Melbourne, Florida, 91-95.

Briand, L.C., Daly, J.W., & Wust, J. (1997). A Unified Framework for Cohesion

Measurement in Object-Oriented Systems. Software Metrics Symposium,

Proceedings, Fourth International, 43-53.

Calvin, A. (2012). Local and Global variables. Retrieved from

http://pages.cs.wisc.edu/~calvin/cs110/LOCAL_GLOBAL.html

Chandrika, S.M., Babu, E.S., & Srikanth, N. (2011). Conceptual Cohesion of Classes

in Object Oriented Systems. International Journal of Computer Science

and Telecommunications, 2(4), 38-44.

Chappell, J. (2012).An Introduction Software Quality. Retrieved from

http://www.infoq.com/news/2012/04/An-Introduction-Software-Quality

Chidamber, S.R., & Kemerer, C.F. (1991). Towards a metrics suite for object-oriented

design. Object-Oriented Programming Systems, Languages and

Applications (OOPSLA), 26,197–211.

Chidamber, S.R., & Kemerer, C.F. (1994). A metrics suite for object oriented design.

IEEE Transactions on Software Engineering, 20, 476–493.

Class Scopes. (2015).Retrieved from https://msdn.microsoft.com/en-

us/library/b7kfh662.aspx

http://www.ccs.neu.edu/research/demeter/demeter-method/LawOfDemeter/paper-boy/demeter.pdf
http://www.ccs.neu.edu/research/demeter/demeter-method/LawOfDemeter/paper-boy/demeter.pdf
http://pages.cs.wisc.edu/~calvin/cs110/LOCAL_GLOBAL.html
https://msdn.microsoft.com/en-us/library/b7kfh662.aspx
https://msdn.microsoft.com/en-us/library/b7kfh662.aspx

114

Counsell , S., Swift, S., & Crampton, J.(2006).The interpretation and utility of three

cohesion metrics for object-oriented design, ACM Transactions on

Software Engineering and Methodology (TOSEM), 15(2), 123-149.

Cunningham, C. (2004).Many Short Methods per Class. Retrieved from

http://c2.com/cgi/wiki?ManyShortMethodsPerClass

Cunningham, C. (2013).Global Variables are Bad. Retrieved from

http://c2.com/cgi/wiki?GlobalVariablesAreBad

Daghaghzadeh, M., Dastjerdi, A., & Daghaghzadeh, H. (2011). A Metric for

Measuring Degree of Service Cohesion in Service Oriented Designs. IJCSI,

83-89

Dallal, A.J. (2011). Validating Object-Oriented Class Cohesion Metrics

Mathematically. Recent Advances in Software Engineering, Parallel and

Distributed Systems.

Dallal, A.J, & Briand, L.C. (2010). An object-oriented high-level design-based class

cohesion metric. Information and Software Technology, 1346–1361.

Dallal, A.J. (2010). A Design-Based Cohesion Metric for Object-Oriented Classes.

International Journal of Computer Science and Engineering, 1(2), 195-

200.

Dammers, T. (2012). Retrieved from

http://programmers.stackexchange.com/questions/143736/why-do-we-

need-private-variables

Dasari, R., & Vasanthakumari, G. (2011). Fault Prediction in Object-Oriented Systems

Based on C3 (Conceptual Cohesion of Classes).International Journal of

Modern Engineering Research (IJMER), 1(1), 113-119.

http://c2.com/cgi/wiki?ManyShortMethodsPerClass
http://c2.com/cgi/wiki?GlobalVariablesAreBad
http://programmers.stackexchange.com/questions/143736/why-do-we-need-private-variables
http://programmers.stackexchange.com/questions/143736/why-do-we-need-private-variables

115

Design Pattern-Singleton Pattern. (2016). Retrieved from

http://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

Ducasse, S., Anquetil, N., Bhatti, U., & Hora, A., C. (2011).Software Metrics for

Package Remodularisation. Cutter ANR 2010 BLAN 0219 02.

George, R. (2013).Using private class variables. Retrieved from

http://www.pp.rhul.ac.uk/~george/PH2150/html/node47.html

Geometric mean. (2011). Retrieved from

http://www.meracalculator.com/math/geometric-mean.php

Gravelle, R. (2014).Class Member Encapsulation in JavaScript: Data hiding.

Retrieved from http://www.htmlgoodies.com/beyond/javascript/class-

member-encapsulation-in-javascript-data-

hiding.html#fbid=5GG3z4kvPOv

Greer, D. (2008). Distilling the Law of Demeter. Retrieved from

https://lostechies.com/derekgreer/2008/06/10/distilling-law-of-demeter/

Gorton, I. (2011). Essential Software Architecture. 2nd Ed. Springer Science.

Gueye, B.A., Badri, M., & Badri, L. (2008).Revisiting Class Cohesion: An Empirical

investigation on several systems. Journal of Object Technology, 7(6).

Gui, G., & Scott, P. (2009). Measuring Software Component Reusability by Coupling

and Cohesion Metrics. Journal of Computers, 4(9).

Guo. (2011). An Empirical Validation of the Benefits of Adhering to the Law of

Demeter.18th Working Conference on Reverse Engineering.

Henderson-Sellers, B. (1996).Object-Oriented Metrics Measures of Complexity.

Prentice-Hall, Inc., Upper Saddle River, NJ.

http://www.tutorialspoint.com/design_pattern/singleton_pattern.htm
http://www.pp.rhul.ac.uk/~george/PH2150/html/node47.html
http://www.meracalculator.com/math/geometric-mean.php
http://www.htmlgoodies.com/beyond/javascript/class-member-encapsulation-in-javascript-data-hiding.html#fbid=5GG3z4kvPOv
http://www.htmlgoodies.com/beyond/javascript/class-member-encapsulation-in-javascript-data-hiding.html#fbid=5GG3z4kvPOv
http://www.htmlgoodies.com/beyond/javascript/class-member-encapsulation-in-javascript-data-hiding.html#fbid=5GG3z4kvPOv
https://lostechies.com/derekgreer/2008/06/10/distilling-law-of-demeter/

116

Houston, D. (2015).Software Quality. Retrieved from http://www.asq.org/learn-about-

quality/overview/overview.html

Hiscott, R. (2014).10 Programming Languages You Should Learn Right Now.

Retrieved from http://mashable.com/2014/01/21/learn-programming-

languages/

Ibrahim, S.M., Salem, S.A., Manal, A.I, & Eladawy, M. (2012). Identification of

Nominated Classes for Software Refactoring Using Object-Oriented

Cohesion Metrics. International Journal of Computer Science Issues

(IJCSI), 9(2), 68-76.

Kaur, K., & Singh, H. (2012). An investigation of Design Level Class Cohesion

Metrics. The International Arab Journal of Information Technology, 9(1).

Kaur, R., & Kaur, T. (2013). Comparison of various lacks of Cohesion Metrics.

International Journal of Computer Trends and Technology (IJCTT), 4(5).

Kaur, A., & Kaur, P. (2013). Class Cohesion Metrics in Object Oriented Systems.

IJSWS, 2(3), 78-82.

Kayarvizhy, N., Kanmani, S., & Uthariaraj, R.V. (2013). High Precision Cohesion

Metric. WSEAS TRANSACTIONS on INFORMATION SCIENCE and

APPLICATIONS, 10(3), 79-89.

Hemaiyer, S., & Kulkarni, P. (2013). Source-to-Source Refactoring and Elimination

of Global Variables in C Programs. JSEA.

Lane, D. (2016).Values of the Pearson Correlation. Retrieved from

http://onlinestatbook.com/2/describing_bivariate_data/pearson.html

Li, W. & Henry, S.M. (1993). Maintenance metrics for the object oriented paradigm.

Proceedings of 1st International Software Metrics Symposium, Baltimore,

52–60.

http://onlinestatbook.com/2/describing_bivariate_data/pearson.html

117

Li, X., Liu, Z., Pan, B., & Xing, B. (2006). A Measurement Tool for Object Oriented

Software and Measurement Experiments with It. Proc. IWSM 2000.

(Lecture Notes in Computer Science 2006, Springer-Verlag, Berlin,

Heidelberg, 2001), 44-54.

Lieberherr, K., Palm, J., & Skotionitis, T. (2006). Demeter Interfaces: Adaptive

programming without surprises. European Conference on Object-Oriented

Programming, 477-500.

Marsic, I. (2013).Class Cohesion Metrics. Retrieved from

http://www.ece.rutgers.edu/~marsic/books/SE/instructor/slides/lec-

16%20Metrics-Cohesion.ppt.

Meyers, M., & David, B. (2007). An Empirical Study of Slice-Based Cohesion and

Coupling Metrics. ACM Transactions on Software Maintenance, V (N), 1-

25.

Miskov, H. (2011). Clean Code Talks- Don’t Look For Things. Retrieved from

https://www.youtube.com/watch?v=RlfLCWKxHJ0

Patidar, K., Gupta, R., & Chandel, G. (2013).Coupling and Cohesion Measures in

Object Oriented Programming. International Journal of Advanced

Research in Computer Science and Software Engineering, 3(3).

Perepletchikov, M., Ryan, C., & Frampton, K. (2007).Cohesion Metrics for

Predicting Maintainability of Service-Oriented Software. Seventh

International Conference on Quality Software (QSIC 2007).

Pena, R., & Fernandez, L. (2006) A sensitive Metric of Class Cohesion. International

Journal “information Theories & Applications”, 13.

Rajnish, K., & Sandip, M. (2014). New Class Cohesion Metric: An Empirical View.

International Journal of Multimedia and Ubiquitous Engineering. 9(6),

367-376.

https://www.youtube.com/watch?v=RlfLCWKxHJ0

118

Sharma, S., & Srinivasan, S. (2013). A review of Coupling and Cohesion metrics in

Object Oriented Environment. International Journal of Computer Science

& Engineering Technology (IJCSET), 4(8), 1105-1111.

Sreeja, S., & Sridaran, R. (2012). A survey on different approaches of determining

cohesion based object oriented metrics. International journal of

engineering research and development, Vol 4.

Software Quality Attributes. (2015). Retrieved from http://advoss.com/software-

quality-attributes-maintainability.html

Sommerville, I. (2015). Software Engineering (10th Ed.). Pearson Education.

ISO 9126 Software Quality Characteristics. (2010).Retrieved from

http://www.sqa.net/iso9126.html

Understanding Class Variables. (2015). Retrieved from

https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html

Visibility. (2016). Retrieved from

http://php.net/manual/en/language.oop5.visibility.php

Yadav, S., Sunil, S., & Uttpal, S. (2014). A Review of Object-Oriented Coupling and

Cohesion Metrics. International Journal of Computer Science Trends and

Technology (IJCST), 2(5).

Yourdon, E., & Constantine, L. (1978). Structured Design. Yourdon Press.

Zhang, J., Bai, X., Yu, S., & Yang, Z. (2016).Influence analysis of Github repositories.

Springerplus, 5(1):1268.

http://advoss.com/software-quality-attributes-maintainability.html
http://advoss.com/software-quality-attributes-maintainability.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
http://php.net/manual/en/language.oop5.visibility.php

119

APPENDICES

Appendix A: Abstract of publication on IJCSI

Figure A-1: Extract of SCCM publication abstract

