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Abstract 
This paper presents work done to address two issues of interest to both Programming Language (PL) theory and 
software development: 1) The inadequacies of mainstream Object Oriented Programming Languages used in the 
software industry such as Java, C# and C++ and 2) The design and implementation of a statically typed Object 
Oriented Programming Language that addresses some of the issues identified above. Research was conducted 
through critical analysis of existing Object Oriented Programming Languages (OOPL) as well as a literature review 
of journal and conference publications in that area. The aim was to elicit evidence of PL constructs that had been 
found through previous experience to lead to poor Software Engineering practices such as increased amount of 
bugs, poor maintainability, late (i.e. runtime) detection of errors, poor usability and low programmer productivity. 
This work has produced key benefits that include a deeper understanding of PLs specifically OOPLs, and an 
improved comprehension and appreciation of the nuances of PL design. The findings have the potential to benefit 
PL researchers and designers in various ways. The contributions of this work are that a list of the language 
constructs (e.g., Static Variables, Lack of Object Level Encapsulation, Presence of Primitive Types) that seem to lead 
to poor Software Engineering practices with current OOPL have been identified. A further significant contribution 
is the production of a new OOPL designed to act as proof of concept to illustrate how these issues can be 
addressed. 
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design and construction 
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1.0 Introduction 
Most programming languages can be classified into families based on their model of computation (Scott,2000). 
Declarative languages focus on instructing the computer what to do while imperative languages focuses on how 
the computer should do it. 
 
Declarative languages can further be divided into the following sub-categories: 
Functional languages employ a computational model based on the recursive definition of functions. They take 
their inspiration from the lambda calculus (Barendregt, 1981). In essence, a program is considered a function from 
inputs to outputs, defined in terms of simpler functions through a process of refinement. Languages in this 
category include Lisp (Harrison, 1967), ML (Milner et al, 1990) and Haskell (O’Sullivan et al, 2008). 
 
Dataflow languages model computation as the flow of information (tokens) among primitive functional nodes. Val 
(Ackerman and Jack, 1979) is an example of a  language from this category. 
 
Logic or constraint-based languages take their inspiration from predicate logic. They model computation as an 
attempt to find values that satisfy certain specified relationships, using a goal-directed search through a list of 
logical rules. Prolog (Clocksin and Mellish, 1981) is the best-known logic language. 
 
Imperative languages are divided into the following subcategories: 
von Neumann languages are the most familiar and commonly used programming languages. They include 
FORTRAN (Chivers and Sleighthome, 2005), Ada 83 (Barnes, 2008), C (Kernighan and Dennis, 1978), and all of the 
others in which the basic means of computation is the modification of variables (Scott,2000) 
 
Object-oriented languages are comparatively recent, though their roots can be traced to Simula 67(Dahl et al, 
1968) .Most are closely related to the von Neumann languages but have a much more structured and distributed 
model of both memory and computation. Rather than picture computation as the operation of a monolithic 
processor on a monolithic memory, object-oriented languages picture it as interactions among semi-independent 
objects, each of which has both its own internal state and subroutines to manage that state. Smalltalk (Goldberg, 
A, and David R , 1985) is the purest of the object-oriented languages; C++ (Stroustrup , 1997) and Java (Gosling et 
al , 2005) are the most widely used. 
 
Programming Languages can also be categorized based on if they have a type system or not. In typed languages, 
program variables have an upper bound on the range of values that they can assume. On the other hand, un-typed 
languages do not restrict the range of variables (Cardelli, 1996). 
 
In Typed languages, the compiler can enforce good behavior by performing static (i.e., compile time) checks to 
prevent unsafe and ill behaved programs from ever running. These languages are said to be statically checked 
(Cardelli, 1996).On the other hand, the type checking may be delayed until runtime, in which case the language is 
said to be dynamically typed (Cardelli, 1996). 
 
Examples of Object Oriented Languages that are statically typed include Java and C++ while those that are 
dynamically typed include Clojure (Halloway, 2009) and Smalltalk. 
According to research done by the TIOBE Index , Object-oriented statically typed languages have been the most 
popular category of Programming Languages for more than 4 years now. Due to the fact that these are the most 
popular languages, it makes sense to invest time and energy in improving such languages so that we can improve 
the programmer’s productivity. 
 
2.0 Contributions 
The ISO/IEC 9126-1:2001 Standard identifies a set of non-functional requirements which enhances the quality of 
the software program. Some of these requirements are: 
(I) Maintainability - Effort required to locate and fix an error in a program. 
(II) Testability - Effort required for testing the programs for their functionality. 
(III) Portability - Effort required for running the program from one platform to other or to different hardware. 
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(IV) Reusability - Extent to which the program or its parts can be used as building blocks for other programs. 
(V) Interoperability - Effort required to couple one system to another. 
(VI) Security - The capability of the software product to protect information and data so that unauthorized 

persons or systems cannot read or modify them and authorized persons or systems are not denied access to 
them. 

(VII) Expandability - The ease with which the software can be modified to add functionality. 
(VIII) Simplicity - Degree to which a program is understandable without much difficulty. 
(IX) Integrity - Degree to which a program can continue to perform despite some violation of the assumptions in 

its specification. This implies, for example, that the program will properly handle inputs out of range, or in 
different format or type than defined, without degrading its performance of functions not dependent on the 
non-standard inputs (Boehm et al., 2006). 

It’s important that a programming language be able to provide constructs that enable the programmer to develop 
systems that observe the above software engineering principals. Further, the language should make it difficult for 
the programmer to implement systems that violate the above principles as much as possible. 
 
Historically, Statically Typed Object Oriented Programming Languages (STOOPL) have included some features that 
have been known to lead to software systems that violate the above software engineering principles. 
 
The contributions of this paper are as follows: 
Identify language constructs whose use in writing programs violate the Software Engineering principles of 
Testability, Reusability, Security and Expandability; In Section II, we give a detailed list describing the issues 
identified; demonstrate through case studies and literature review ways in which such constructs affect the design 
principles identified above. In Section III of the paper, we delve in details into several case studies illustrating the 
effect of some of the identified constructs in real life large open source software projects and then how the issues 
were addressed; design the syntax and semantics of a language that solves the identified issues. We then continue 
to give a detailed overview of both the syntax and semantics (Section IV) of the new language and develop a 
prototype compiler for the languages. In Section V, we give an overview of the design of the compiler and the 
challenges experienced and tradeoffs made in the design and implementation. 
 
2.1 Critique of the State of the Art 
This research was undertaken using two key methods; first is the analysis of programming language theory and 
second experimenting with open source programming languages. We were able to identify several language 
constructs in most modern widely used Programming Languages that if used in the development of a software 
system they could lead to violation of some of the software engineering principles specified in the ISO/IEC 9126-
1:2001 Standard. 
 
2.2 Presence of Static Variables 
If a field is declared static, there exist exactly one incarnation of the field, no matter how many instances (possibly 
zero) of the class may eventually be created. A static field, sometimes called a class variable, is incarnated when 
the class is initialized (Gosling et al , 2005).In Java, static means one per class, not one for each object no matter 
how many instance of a class might exist. This means that a static variable can be used without creating an 
instance of the class. Static variable present a number of challenges in the language: 
 
2.3 Static variables increase cases of security vulnerabilities 
This is due to two factors, there is no way to check whether the code that changes such variables has the 
appropriate permissions and any mutable static state can cause unintended interactions between supposedly 
independent subsystems. 
 
The key idea is that static state represents an ambient capability to do things to a system that may be taken 
advantage of by unauthorized persons or systems.  Static variables leads to systems that are not re-entrant, i.e., 
it’s not possible to have several concurrent executions of the software in the same VM. In the paper (Odersky and  
Zenger , 2005), the authors describe the following disadvantages that they encountered due to use of static 
variables in the first version of the Scala (Odersky et al., 2008) compiler. 



 382

 
Since all references between classes were hard links, they could not treat compiler classes as components that can 
be combined with different other components. This, in effect, prevented piecewise extensions or adaptations of 
the compiler and since the compiler worked with mutable static data structures, it was not re-entrant, i.e. it was 
not possible to have several concurrent executions of the compiler in a single VM. This was a problem for using the 
Scala compiler in integrated development environment such as Eclipse. 
 
2.4 Static Variables Complicate Memory Management 
 According to the Java Language Specification (Gosling et al , 2005) section 12.7, Class unloading is an optimization 
that helps reduce memory use. However, if a class or interface C was unloaded while its defining loader was 
potentially reachable, then might be reloaded. This reloading needs to be transparent. However, reloading may 
not be transparent (and hence the class cannot be unloaded) if the class has; static variables (whose state would 
be lost); static initializers (which may have side effects) and native methods (which may retain static state). 
 
2.5 Static Variables Increase the Startup Time 
They encourage excess initialization up front. The Java Virtual Machine Specification (Lindholm and Yellin, 1999) 
specifies that: The static initializers and class variable initializers are executed in textual order. They may not refer 
to class variables declared in the class whose declarations appear textually after the use, even though these class 
variables are in scope. This restriction is designed to catch, at compile time, most circular or otherwise malformed 
initializations. Not to mention the complexities that static initialization engenders: it can deadlock, applications can 
see uninitialized state, and its hard to compile efficiently (because there is need to test if things are initialized on 
every use). 
 
Use of static variables can easily lead to concurrency problems e.g. deadlocks; static variables are bad for 
distribution. Static state needs to either be replicated and synced across all nodes of a distributed system, or kept 
on a central node accessible by all others, or some compromise between the former and the latter. This is all 
difficult, expensive and unreliable; static variables make it difficult to do testing of code. The reason is that states 
in static values may be kept between unit tests because the class or dll is not unloaded and reloaded between each 
unit test. This violates the principle that unit tests should be independent of each other, and can result in tests 
passing and failing depending on the order in which they are run and static variables encourages designs using 
global variables hence makes it harder to re-use code. 
 
3.0 Lack of Object Level Encapsulation 
Most mainstream Object Oriented languages use class based encapsulation. The idea is that privacy is per class, 
not per object. This makes it possible to violate data abstraction as shown below. 

class C { 
private i :String ; 
def public m1(v : C) : Unit= { v.i = "XXX"} 
} 

As the above code illustrates, class based encapsulation does not protect one object from another since one object 
is able to access (and modify) the private attributes of another object. An alternative to class-based encapsulation 
is object based encapsulation. Privacy is per object. A member M marked with private modifier can be accessed 
only from within the object in which it is defined. That is, a selection p.M is only legal if the prefix is this or O.this, 
for some class O enclosing the reference. 

class C { 
private i : String ; 
def public m1(v : C) : Unit= { v.i = "XXX"} //Error 
def public m2():Unit = { this.i = "YY";} //Ok 
} 

A member labeled private is visible only inside the object that contains the member definition. 
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4.0 Method Lookup Strategy 
In general, the semantics of a method invocation that has no explicit target (receiver) are that method lookup 
begins by searching the inheritance hierarchy of self (this); if no method is found, then the lookup procedure is 
repeated recursively at the next enclosing lexical level. This notion is described in detail in the Java Language 
Specification (Gosling et al, 2005) in section 15.12 (Method Invocation Expressions). Situations like the following 
can arise:  

class Sup { } 
class Outer { 

int m(){ return 91} 
class Inner extends Sup { 

int foo(){return m()}// case 1: new Outer.Inner().foo() = 91 
} 

} 
} 

The expectation is that a call to foo will yield the result 91, because it returns the result of the call to m, which is 
defined in the enclosing scope (Bracha, 2010). Consider what happens if one now modifies the definition of Sup: 

class Sup { 
int m(){ return 42}// case 2: new Outer.Inner().foo() = 42 

} 
The result of calling foo is now 42. This is undesirable; since the behavior of the subclass changes in a way that its 
designer cannot anticipate. The classic semantics whereby inherited members may obscure lexically visible ones 
are counterintuitive. Lexically visible definitions should be given priority over inherited ones, either implicitly via 
scope rules or by requiring references to inherited features to explicitly specify their intended receiver. Retain 
implicit receivers for both self sends and outer sends, but reverse the priority so as to favor sends to names with 
locally visible definitions. 
 
5.0 Presence of Primitive Types 
Most mainstream statically typed object oriented languages divide their types into two categories, primitive (built 
in) types e.g. int, char, long, double, float,short and reference types, e.g., Integer, String. 
 
This dichotomy presents a number of problems: 
Dichotomy of basic semantics 
Features of the language carry different meaning depending on the type of entity being dealt with. For example 
the built in operator == means different things depending on whether the variable types are primitives or 
reference types (Gosling et al., 2005) . 
Primitives cannot be used where objects are expected. For example, in the Java Language the container Vector 
cannot be used to store variables of primitive types, since it’s designed to store variables of reference type Object. 
 
Primitive types advertise their representation to the world 
As one example, consider type char. When Java was introduced, the Unicode standard (Rossum and Drake, 2010) 
required 16 bits. This later changed, as 16 bits were inadequate to describe the world’s characters. In the 
meantime, Java had committed to a 16 bit character type. Now, if characters were objects, their representation 
would be encapsulated, and nobody would be very much affected by how many bits are needed. 
 
Primitive types necessitate the existence of special code which leads to the undoing of polymorphism.  
This is due to the fact that we cannot send messages to variables of primitive type. For example the String class has 
a static method valueOf that produces a String representation of its argument. For reference arguments, the 
Objects toString method is invoked. 

public static String valueOf(Object o){ 
return o == null? null :o.toString(); 

} 
But this breaks down for primitive types necessitating overloading the valueOf() method 
for each of the primitive type. 
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public static String valueOf(boolean o){ 
return o ? true :false; 

} 
1) The inclusion of primitive types forces Java Reflection API to be inconsistent and 

essentially broken to accommodate them. 
String s =” test”; 
s.getClass(); // this is ok 
int i = 20; 
i.getClass();// compile error 

 
6.0 Existence of Null Pointers 
In current imperative languages, references (or pointers) can hold a special value meaning reference to nothing. 
This value is called null in Java. The null type has one value, the null reference, represented by the literal null 
(Gosling et al, 2005).Dereferencing a null at runtime results to a runtime error (NullPointerException) causing the 
current thread to exit if the exception is not handled. 
 
Disadvantages of Null Pointers include, makes Java programs unsafe because when it occurs at runtime it causes 
system to crash; exceptions due to dereferencing a null pointer are the most common type of error in Java 
programs (Hovemeyer and Spacco , 2006;Cielecki et al ,2006) and It’s among the Top 10 web application security 
risks. 
 
 
7.0 Improving Opportunities for Reuse 
Inheritance is commonly regarded as one of the fundamental features of object-oriented programming 
(Taivalsaaril, 1996). Over the years, researchers have developed various inheritance models (Borning and Ingalls 
,1982; Keene, 1989 ; Meyer, 1997) and mixin inheritance (Schaffert et al,1986;Ancona et al, 2000; Bracha and 
Cook, 1990;Flatt and Felleisen, 1998;Mens and van Limberghen,1996).All of these models have their conceptual 
and practical shortcomings with respect to reusability (Scharli  et al, 2003). Inheritance also has other problems 
such as implementation difficulties (Cardelli, 1997; Taivalsaari, 1996) and conflicts between inheritance and sub-
typing. 
Single Inheritance - A class can inherit from at most one superclass. It is not expressive enough to allow the 
programmer to factor out all the common features shared by classes in a complex hierarchy. Hence single 
inheritance sometimes forces code duplication (Scharli  et al, 2003). 
 
Multiple Inheritance - enables a class to inherit features from more than one parent class, thus providing the 
benefits of better code reuse and more flexible modeling. However, multiple inheritance uses the notion of a class 
in two competing roles: the generator of instances and the unit of code reuse. This gives rise to the following 
difficulties (Scharli et al., 2003), conflicting features; accessing overridden features and factoring out generic 
wrappers.  
Mixin Inheritance,Total ordering,dispersal of glue code; ragile hierarchies. 
 
Traits (Scharli  et al., 2003; Scharli  et al., 2002) improve code-sharing in Smalltalk by providing a means to reuse 
such behavior. Traits are a mechanism for code reuse that complements single inheritance. Traits, like classes, are 
containers for methods. But, unlike classes, traits have no fields. Traits, like abstract classes, cannot be instantiated 
directly; instead, they are composed into classes (which are instantiable). 

 
Presence of Type Based Overloading 
Constructor and method overloading is a type of polymorphism where different functions with the same name are 
invoked based on the data types of the parameters passed. 

class VehicleUtilities { 
int numberOfAxles(Vehicle v) { return 2;} 
int numberOfAxles (Truck t){ return 3;} 

} 
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In general, overloading means that a function name or an operator has two or more distinct meanings. When you 
use it, the types of its operands are used by the language to determine which meaning should apply. In Java, the 
programmer can declare several different functions, in the same scope, with the same name, but different 
parameter types. A call using this function name is resolved at compile time to one of the several functions by 
looking at the types of the actual parameters (Gosling et al., 2005). 
 
Problems with type based method overloading include: 
Risk of ambiguity 
In most overloading schemes, you can create situations where you cannot decide which method to call and 
therefore declare the call illegal. Unfortunately, as the type hierarchy evolves, legal code can become illegal, or 
simply change its meaning. This means that existing code breaks when you recompile, or does the wrong thing if 
you do not. 
Overloading is open to abuse 
It allows you to give different operations the same name. 
Overloading makes it hard to interoperate with other languages. 
It’s harder to call the overloaded methods from another language. Such a language may have a different type 
system and/or different overload rules. 
Dynamic language 
JRuby (Nutter et al, 2010) implement multimethod dispatch to approximate the behavior of overloaded methods it 
needs to call. This is costly at run time, and is a burden on the language implementer. 
 
Overloading adds complexity to the language 
It tends to interact with all sorts of other features, making those features harder to learn, harder to use, and 
harder to implement. In particular, any change to the type system is almost certain to interact with type based 
overloading. 
 
8.0 case studies 
8.1 Static Variables : Scala Compiler 
This section is based on the experience of the Scala Team in the implementation of two different versions of the 
Scala compiler as described in the paper Scalable Component Abstractions (Odersky and  Zenger , 2005). The Scala 
compiler consists of several phases. All phases after syntax analysis work with the symbol table module. The table 
consists of a number of modules including, names module that represents symbol names. A name is represented 
as an object consisting of an index and a length, where the index refers to a global array in which all characters of 
all names are stored. A hashmap ensures that names are unique, i.e. that equal names always are represented by 
the same object; symbols modules that represent symbols corresponding to definitions of entities like classes, 
methods, variables in Scala and Java modules; a module Types that represents types, and a module definitions that 
contains globally visible symbols for definitions that have a special significance for the Scala compiler.  Examples 
are Scala's value classes, the top and bottom classes Scala.Any and Scala.All. The structure of these modules is 
highly recursive. For instance, every symbol has a type, and some types also have a symbol.  
 
In previously released versions of the Scala compiler, all modules described above were implemented as top-level 
classes (implemented in Java), which contain static members and data. For instance, the contents of names were 
stored in a static array in the Names class.  This technique has the advantage that it supports complex recursive 
references. But it also has two disadvantages. Firstly, since all references between classes were hard links, the 
compiler classes could not be treated as components that can be combined with different other components. This 
prevented piecewise extensions or adaptations of the compiler. Second, since the compiler worked with mutable 
static data structures, it was not re-entrant, i.e., it was not possible to have several concurrent executions of the 
compiler in a single VM. This was a problem for using the Scala compiler in an integrated development 
environment such as Eclipse. 
 
The Scala Team solved the above problem introduced by static references through the use of nested classes and 
doing away with static references. In that way, they arrived at a compiler without static definitions. The compiler is 
by design re-entrant, and can be instantiated like any other class as often as desired. 
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8.2 Method Lookup Strategy : Newspeak Programming Language 
In the paper (Bracha, 2010), Gilad Bracha provides his experience on the implementation of method lookup 
mechanism for the Programming Language Newspeak. Newspeak is a dynamically typed class based language 
which is a descendant of Smalltalk. The paper presents alternative interpretations of the semantics of method 
lookup: 
(i) Require all sends to have an explicit receiver as in Smalltalk. The problem with this solution is that it’s overly 

verbose. 
(ii) Require outer sends to have an explicit receiver. This also solves the problem. 
(iii) Require all self sends to have an explicit receiver. Given that outer sends have an implicit receiver, it makes no 

sense to treat locally defined self sends differently, so we interpret this as only requiring all inherited self 
sends to have an explicit receiver. 

(iv) Retain implicit receivers for both self sends and outer sends, but reverse the priority so as to favor sends to 
names with locally visible definitions. In Newspeak an identifier refers to the nearest lexically visible 
declaration, subject to overriding by subclasses. If no lexically visible binding exists, they interpret it as a self 
send. If one wishes to refer to an inherited method of an enclosing class, an explicit outer send expresses this 
intent unambiguously. 

 
8.3 Uniform Object Model 
Kava: In OOPL there has always been distinction between” primitive” or ”built-in” and user defined types. The 
paper (Bacon, 2003), shows how an object-oriented language can be defined without any primitive types at all, and 
yet achieve the same run-time efficiency as languages that make use of primitive types (at the expense of greater 
compile-time effort). The authors’ quote the following as advantages of having a uniform object model in a 
language: 
(i) The programming model is simplified because the distinction between primitives and objects has been 

removed; and 
(ii) The language design is simplified and more easily verifiable because a larger amount of the language is in 

libraries, and there is no need for large numbers of rules for primitive types that must be included in the 
language specification and verified on an ad-hoc basis. 

 
Scala: The paper (Odersky et al, 2006) describes how Scala uses a pure object-oriented model. Every value is an 
object and every operation is a message send. 
(iii) Classes Every class in Scala inherits from class Scala.Any. Subclasses of Any fall into two categories: the value 

classes which inherit from scala.AnyVal and the reference classes which inherit from scala.AnyRef. 
(iv) Operations Another aspect of Scala’s unified object model is that every operation is a message send, that is, 

the invocation of a method. For instance the addition x + y is interpreted as x. +(y) i.e. the invocation of the 
method + with x as the receiver object and y as the method argument. 

 
9.0 Language Syntax and Semantics 
The language syntax and semantics is based on C, C++, C# and Java family but with a few differences, i.e., in 
variable declaration, the type comes after the variable name and not before e.g. var i:int instead of int i. This is 
useful in type inference; addition of Traits (Scharli  et al, 2003) to the type system; unlike C#, C++ and Java, there is 
no separation of computation into Expressions and Statements; these are unified into Expression; no support for 
static variable and static methods; uniform object model, there is no dichotomy of primitive and non-primitive 
types. 

 
9.1 Lexical Structure 
The Lexical Structure of the language closely resembles that of Java; in particular 
(i)   Line Terminators: Lines are terminated by the ASCII characters CR, or LF, or CR LF. 
(ii) White Space: White space is defined as the ASCII space, horizontal tab, and form feed   characters, as well as 

line terminators. 
(iii) Comments: Supports both single-line comments and multi-line comments 
(iv) Identifiers: can be composed of a sequence of characters beginning with an alphabet and followed by 

alphabets or digits 
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(v) Keywords 
(vi) Literals: There are four types of literals: Integer, Floating Point, Boolean, Character and String literals. 

 
9.2 Type System 
The language has a nominal type system (Pierce, 2006) with some elements of structural typing. In particular, it has 
the following kind of types: 
(i) Class types: The Class Type is introduced through a Class declaration. The name of the Class is the type. A class 

type e is a subtype of every type that appears on its extends clause. 
(ii) Trait types: The Trait Type is introduced through a Trait declaration. The name of the Trait is the type. A trait 

type is a subtype of every type that appears on its extends clause. 
(iii) Function types: The Function type is introduced through block closure declaration. 
 
9.3 Declarations 
(i) Compilation Unit: A Compilation Unit consists of a package declaration, followed by a sequence of type 

definitions. 
CompilationUnit ::= package QualId ; 
[TopStatSeq] 
TopStatSeq ::= TopStat {; TopStat} 
TopStat ::= {Modifier} TypeDef 

(ii) Programs: A program is a top-level class that has the method main of type Array[String]Unit. Program 
execution begins from the main method. 

(iii) Class Declaration: The syntax for class declaration: 
ClassDef ::= id [Modifier] ClassParamClause 
[ExtendClause] ClassBody 
ExtendClause ::= extends TraitTypes 
TraitTypes ::= TraitType {, TraitType} 
ClassParamClause ::= ( [ClassParams] ) 
ClassParams ::= ClassParam {, ClassParam} 
ClassParam ::= [{Modifier} (val | var)] 
id : ParamType [= Expr ] 
Modifier ::= (public|protected|private) 
ClassBody ::= { [ClassBodyDecls] } 
ClassMemberDecl ::= FieldDecl 
| MethodDecl 
| ConstructorDecl 
| FunctionDecl 
| ClassDef 
A Class declaration has the following components (in the given order): 

(i) id : The name of the class. 
(ii) modifier (Optional): This restricts the visibility of the class constructor. 
(iii) ClassParamClause: Contains a list of formal value parameters for the default constructor. The scope of the 

formal parameter is the whole class declaration id. 
(iv) ExtendClause (optional): A List of well-formed trait names that are accessible from this class declaration. 
(v) ClassBody : Defines the class members i.e. fields, methods, constructors and nested class definitions 
 
9.3.1 Trait Declaration 

TraitDef ::= id [TypeParamClause] 
[ExtendClause] TraitBody 
ExtendClause ::= extends TraitTypes 
TraitTypes ::= TraitType {, TraitType} 
TraitBody ::= { [MethodDecls] } 
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A Trait declaration contains the trait name followed by an optional type parameter clause and an extend clause 
finally followed by the trait body. When a trait extends others, it means that it inherits the methods from those 
traits, and that the type defined by that trait is a subtype of the types of traits it extends. 
 
9.4 Expressions 
We give an overview of the expressions in the language, namely: 
a. Instance Creation Expression: Instance Creation Expression has the form new c where c is a constructor 

invocation. Let T denote the type of c, then T must denote a non-abstract subclass of Object. 
SimpleExpr ::= new Id( [Exprs] ) 

b. This and Super 
SimpleExpr ::= [id .] this 
| [id .] super . id 

 
this refers to the object reference of the inner most class or trait enclosing the expression. The type of this is 
the type of the class or trait. A reference super.m refers statically to a member m in the super-type of the 
innermost class or trait containing the reference. It evaluates to a member m’ that has the same name as m. 

c. Method Invocation: 
Expr ::=id( [Exprs] ) 
Exprs ::= Expr {, Expr} 

A Method Invocation expression has the form e.m(e0,...,en).The expression e, if present, must evaluate to an object 
expression. Let the expression e have the type T given by the definition D. Then: 

a. D must be either a Trait or a Class. 
b. Further, D must define a method of the form m(e:T0,...,el: Tl). 

where: 
 l must be equal to n 
 for every i in 0...n, the type of the parameter value expression ,e in e.m(...,ei,...) must conform to 

the expected type of the corresponding formal parameter declaration m(...,ei:Ti,...). 
If the method invocation expression has the form m(e0,...,en). 
Then search for m in the following order: 

 Search for a field named m in the enclosing class declaration. 
 If m is a field, then its type must be function type and the expression is a Lambda Invocation . 
 Else, search for a method named m recursively in the outer class enclosing this class declaration 

if any. 
 If not found, search the Traits that this class extends for a method named m. 
 If still not found, return the error method not found. 
d. Blocks 

Block ::= {BlockStat ;} 
BlockStat ::= Def 
| {LocalModifier} TypeDef 
| Expr1 

A Block expression has the form  
{s0,... sn, e0}. The result of evaluating the Block expression is the value of the evaluation of the last expression in the 
block. The type of the last expression in the block must conform to the type of the Block expression. Let the 
expected type of the Block expression e = {s0,...,sn,e0;} be T, then the type of the expression e0 must conform to T. 

e. Assignments 
 [SimpleExpr .] id = Expr 
An Assignment Expression has the form x= e .The assignment changes the current value of x to 
be the result of evaluating the expression e. The type of e is expected to conform to the type of x. 

f. If Expressions:  
if ( Expr ) { Expr } [ else { Expr }] 
An if expression has the form: if (e0) e1 else e2.The expression e0  
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must conform to a Boolean type. The type of the expression e1 and e2 must conform to the 
expected type of the if expression. 
The expression to be executed is chosen based on the results of the evaluation of the Boolean 
expression e0 

g. While Loop Expression 
while ( Expr ) { Expr } 
A While loop has the form while(e0){ e1}.The expression e1 is repeatedly evaluated until the 
evaluation of the expression e0 results in a false value. If e0 evaluates to false, then the 
expression e1 is not evaluated. The type of the expression e0 must conform to a Boolean type. 
The type of the e1 expression must conform to the type of the while expression. 

h. Do Loop Expressions 
do { Expr } while ( Expr ) 
A Do Loop has the form do{e1}while(e0). 
The expression e1 is evaluated; if e0 evaluates to false, the expression e1 is not evaluated. 
Otherwise the expression e1 is repeatedly evaluated until the evaluation of the expression e0 

results in a false value. The type of the expression e0 must conform to a Boolean type. The type of 
the e1 expression must conform to the expected type of the do loop expression. 

i. Lambda Expression 
Expr ::=’#’(Bindings) => Expr 
Bindings ::= ( Binding {, Binding} ) 
Binding ::= id : Type 
Lambda Expression has the form #(p0: T0,...,p1: Tn) ⇒ e . 
The formal parameters #(p0: T0,...,p1: Tn) must be pairwise distinct. The scope of  
the parameters is the expression e. The expression must conform to the expected type of the 
Lambda expression. 

 
10.0 Compiler 
The compiler is written in Java. It compiles programs and generates JVM bytecodes (Lindholm and Yellin, 1999) 
which can execute on the JVM. The compilation is done over a number of phases. These phases include: 
 
10.1 Lexical Analysis 
The source program is transformed to a stream of tokens: symbols such as identifiers , literals, operators, 
keywords and punctuation. Comments and blank spaces are discarded. 
 
10.2 Parsing 
The parser constructs the Abstract Syntax Tree(AST) from the token stream. 
 
10.3 Semantic analysis 
Name Analysis: When defining a name if the name is already in the local environment: the identifier is already 
declared. Else, the new name is inserted in the environment. When looking up a name, first look in the local 
environment. If it is found we are done, otherwise repeat in the next environment on the search path. If there are 
no more environments the identifier is not declared. 
 
10.4 Name analysis algorithm 

(i) Build a global class and trait environment. 
(ii) Resolve uses of types. 

(iii) Check well-formedness of the class hierarchy. 
(iv) Disambiguate uses of names. 
(v) Resolve uses of locals and formals variables. 

(vi) Resolve uses of methods and fields. 
 
Type Analysis: The part of the compiler that does the type analysis is called a typechecher. The Typechecker 
performs the following tasks: 
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(i)   Determine the types of all expressions.  
(ii) Check that values and variables are used consistently with their definitions and with the language 

semantics.  
Type checking is performed bottom-up on the AST. 
Reachability Analysis 
This phase involves carrying out a conservative flow analysis to make sure all statements are reachable. There 
must be some possible execution path from the beginning of the constructor, method or instance initializer that 
contains the expression to the expression itself. 
 
Definite (un)assignment analysis: consists of two parts, I.e., DefAssign where each local variable and every blank 
val must have a definitely assigned value before any access of its value occurs and DefUnassign where every blank 
val variable must be assigned at most once; it must be definitely unassigned when an assignment to it occurs. 
 
Uncurry/Closure Conversion: Closure conversion transforms a program in which functions can be nested and have 
free variables into an equivalent one containing only top level functions. 
 
Algorithm 
The closing of functions through the introduction of environments. Functions are closed by adding a parameter 
representing the environment, and using it in the function’s body to access free variables. Function abstraction 
must create and initialize the closure and its environment; Function application must extract the environment and 
pass it as an additional parameter. 
 
The hoisting of nested, closed functions to the top level. Once they are closed, nested anonymous functions are 
hoisted to the top level and given an arbitrary name. The original occurrence of the nested function is replaced by 
that name. 
Bytecode Generation 
The input to the bytecode generation is an attributed AST. The algorithm traverses this AST generating bytecode 
for each of the constructs found in the tree. The algorithm uses object web byte code generation library. 
 
10.5 Related Work 
The concept of traits were first introduced by Smalltalk, but the version used here is based on (Scharli  et al, 2003; 
Scharli  et al., 2002). 
 
The syntax closely follows that of Scala (Odersky et al., 2008) 
 
Object based encapsulation is an extension of the one implemented in Scala (Odersky et al., 2008) and also an 
adaptation of the one in Newspeak. 
 
Elimination of static state is partly an adaptation of work by Bracha (Bracha, 2010) in which he does the same for 
his dynamically typed language. In this paper, the same idea is applied to statically typed language. 
 
Uniform object model was inspired by Smalltalk (Goldberg and David, 1985), Newspeak(Bracha, 2010) and Scala 
(Odersky et al., 2008). 
 
In implementing the compiler, a lot was learnt from browsing javac compiler source code from the OpenJDK 
project and Fortress project. 
 
11.0 Conclusion and Further Work 
We have presented several programming language constructs that we believe when used in large software 
projects they can lead to software that is of poor quality. We then demonstrated by use of four case studies the 
problems caused by some of the constructs based on real life large software projects. Each of this construct is 
avoided in some of the existing Statically Typed Object Oriented Programming Language, but we believe we are 
the first to eliminate all of them in one STOOPL language. 
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There are several issues that need to be addressed through further research, i.e., a formalization of the design of 
the language along with proofs of type safety and implementation of a production quality compiler. 
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