RESEARCH, PRODUCTION AND EXTENSION - JKUAT

Prof. Esther Murugi KAHANGI, DVC RPE, JKUAT

PRESENTATION OUTLINE:

INTRODUCTION;

JKUAT RPE DIVISION;

GRANTS;

RESEARCH THEMES;

INSTITUTES AND CENTRES;

EXTENSION, TECH EXPO., LINKAGES;

ONCLUSIONS & FUTURE.

INTRODUCTION

knowledge-based economies, universities have become key ements of innovation systems both as human capital providers nd as seedbeds of new businesses.

eveloped countries are now focusing on the potential of the niversities in enhancing innovation environments and creating regime of science based economic development.

ne way for universities to become entrepreneurial is by ommercializing research outputs.

ORY OF UNIVERSITY RESEARCH

awing on experience of US research oriented universities, we find that

or to world war II, universities undertook research for academic vancement without regard to its use in societal improvement

er world war II and on the basis of the 1945 report by Vannevar Bush cience, The Endless Frontier", the US government decided to support search on the following basis:

- Support of basic science, and Industry's focused on applied research
- Though patents increased in number, they were owned by government and few were ever commercialised.

CORY OF UNIVERSITY RESEARCH

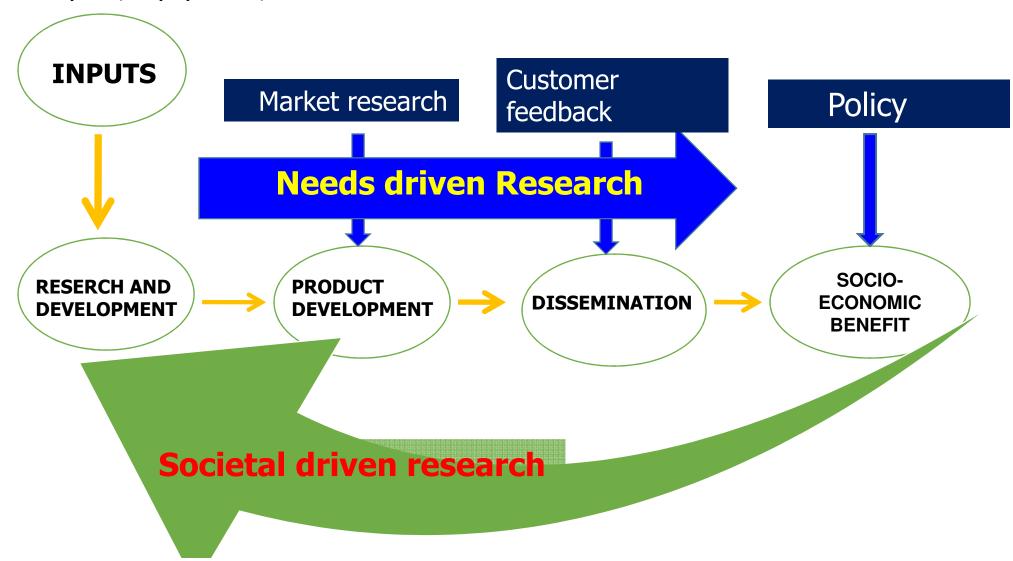
The enactment of the Bayh-Dole Act (Patent and Trademark Amendments of 1980) invigorated the technology transfer process from universities and fed laboratories to business and industry

- Universities now benefit as they co-own patents with researchers/innovators
- Private sector could commercialise patents/innovations
- Country benefits from economic growth arising from new jobs, new streams of income and increased competitiveness in international markets.

DRY OF UNIVERSITY RESEARCH- THE CASE OF STANFORI

tcomes of technology transfer (US)

over the years universities have become entrepreneurial creating many Jobs throu commercialization of innovations


Stanford university currently generate 3 million jobs annually worth USD 2.1 trilli

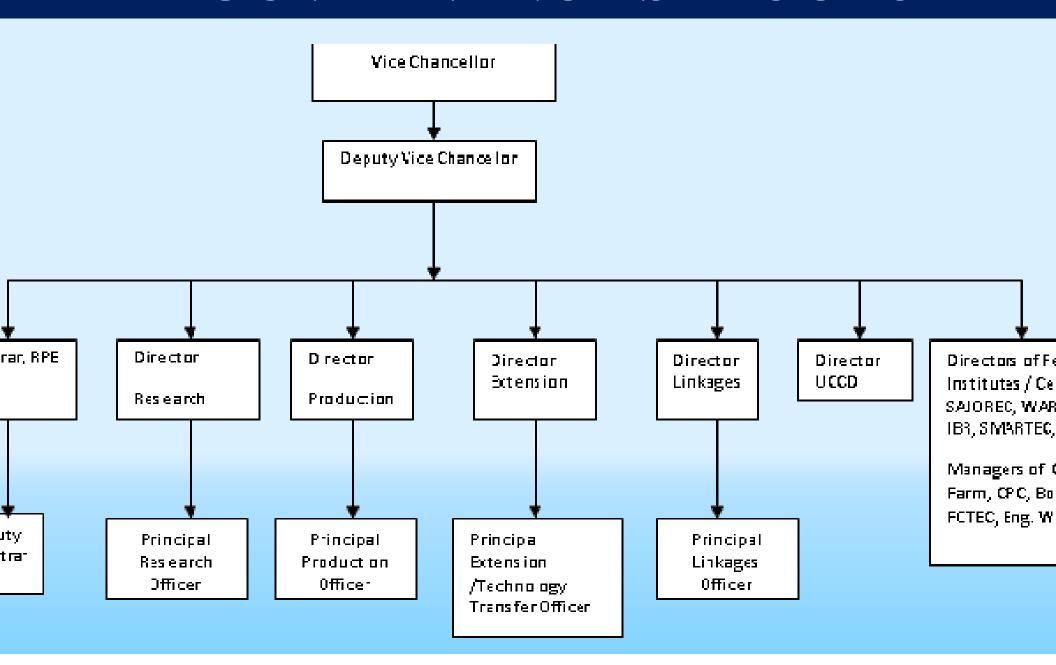
StanFord innovative Warmers to Reduce Infant Mo

E INNOVATION PROCESS

Capital, equipment, scientists

THE JKUAT RPE DIVISION

PE division is in charge of management and administration of all rch, innovation, technology transfer and collaboration activities in JKUAT. Then was established by JKUAT Act 1994.


in objectives of the division are:

y an effective role in the development of Agriculture and Technology in nction with industry;

ovide extension services to contribute to the social and economic developm nya.

mendable that the drafters of this Act clearly appreciated the emerging importance of units in modern HEIs.

RPE GOVERNANCE STRUCTURE

JATRPE DIVISION Production/Innovations

Linkages

Extension Research Co-ordinates Technology Tr

Directorate / Departments of RPE

Research Centers

Thematic

- Institute of Energy & Environmental Technology (IEET)
- Institute for Biotechnology Research (IBR)
- Sino-Africa Joint Research Center (SAJOREC)
- Water Research & Resource Center (WARREC)

Sustainable Materials Research and Technology Centre (SMARTEC)

Income

Generat

Chei

Proc

Cent

Food

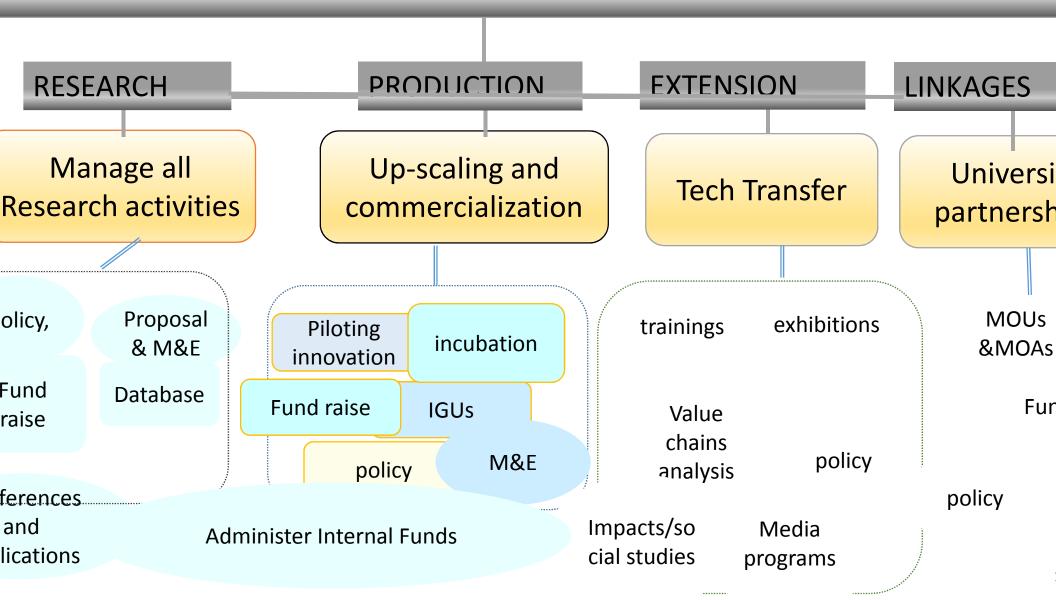
Tecl

Cent

(FO

JKU

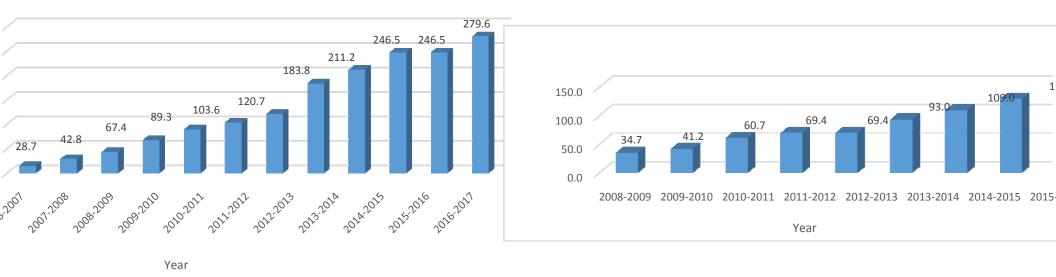
Nur:


scho

Uni Bo

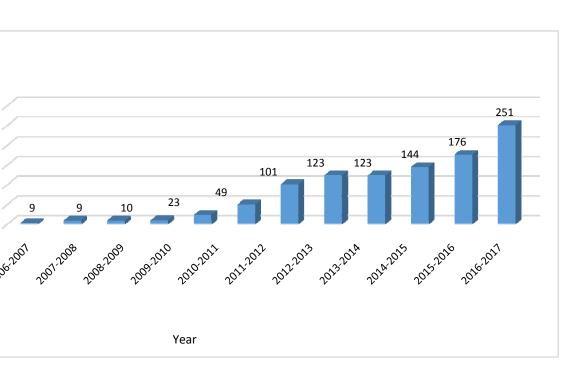
- 1. Research
- 2. Production
- 3. Extension
- 4. Linkages
- 5. University Community
 - Collaboration Department (UCCD)
- 6 University Farm

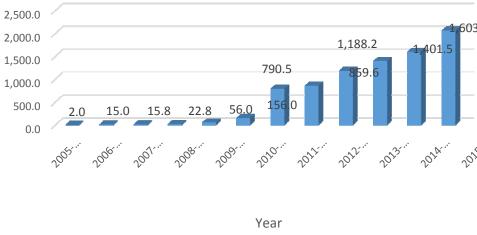
ROLE OF RPE DIVISION



GRANTS

ants grew exponentially in terms of funding levels in the last ten years. There are three main sources of researce resity namely, JKUAT, Government of Kenya (through NACOSTI) and more recently the National Research F other local and external international donors. The innovation projects are mainly funded by JKUAT.


imulative research funding (2005 to 2016


JKUAT, Cumulative Innovation funding (2008 to

GRANTS

TI, Cumulative research funding (2005 to 2016). International donor, Cumulative research funding (2005 to

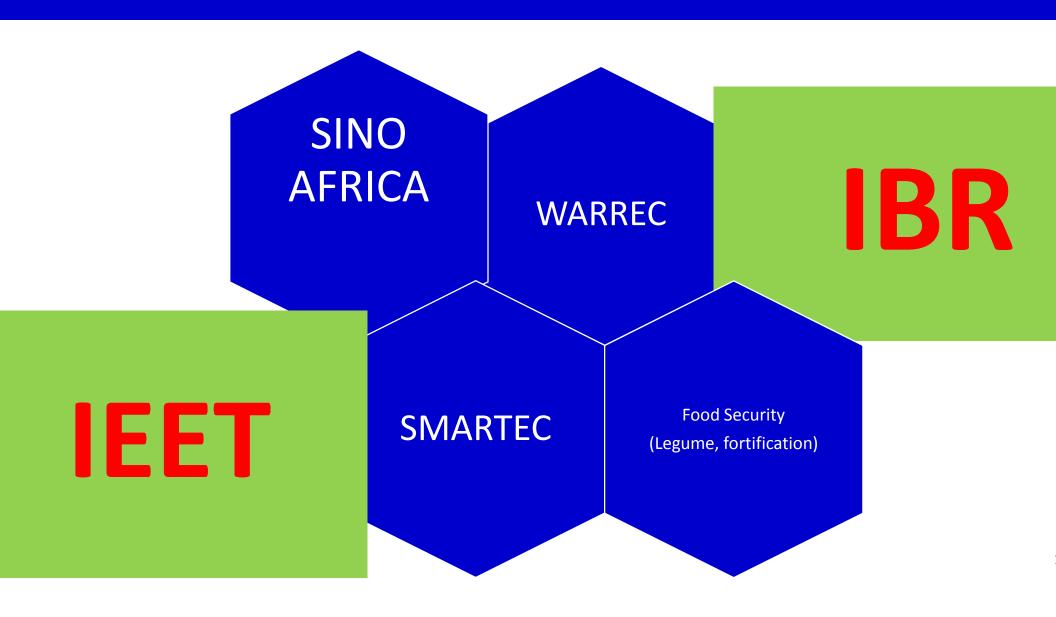
Agric and Food Security

Human and Animal Health

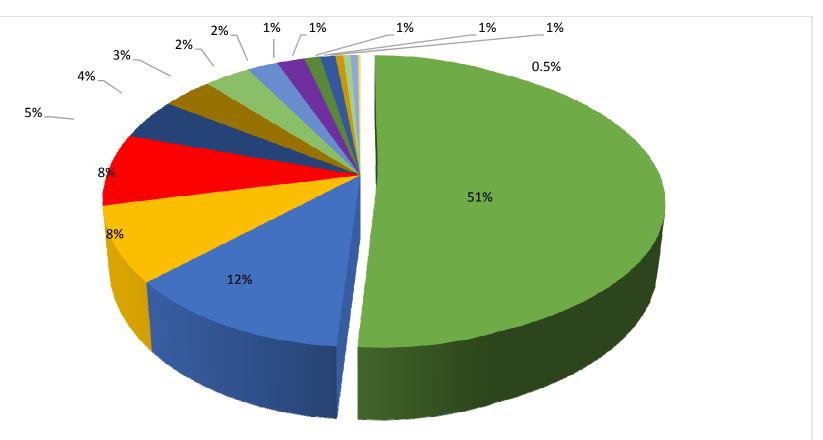
Nanotechnology

ICT

Natural products

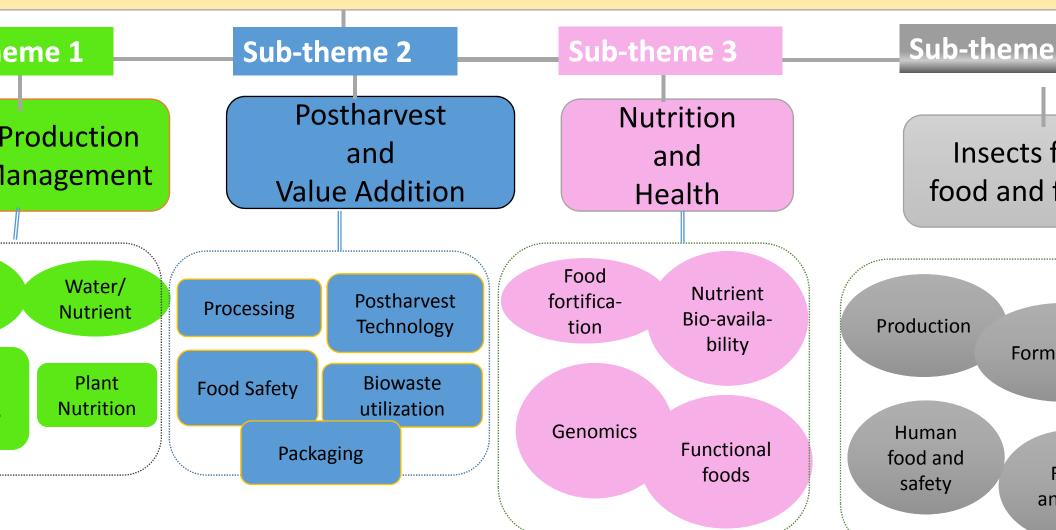

Built Environment

Water Resources


Social Science

Engineering Tech & Industrial Development

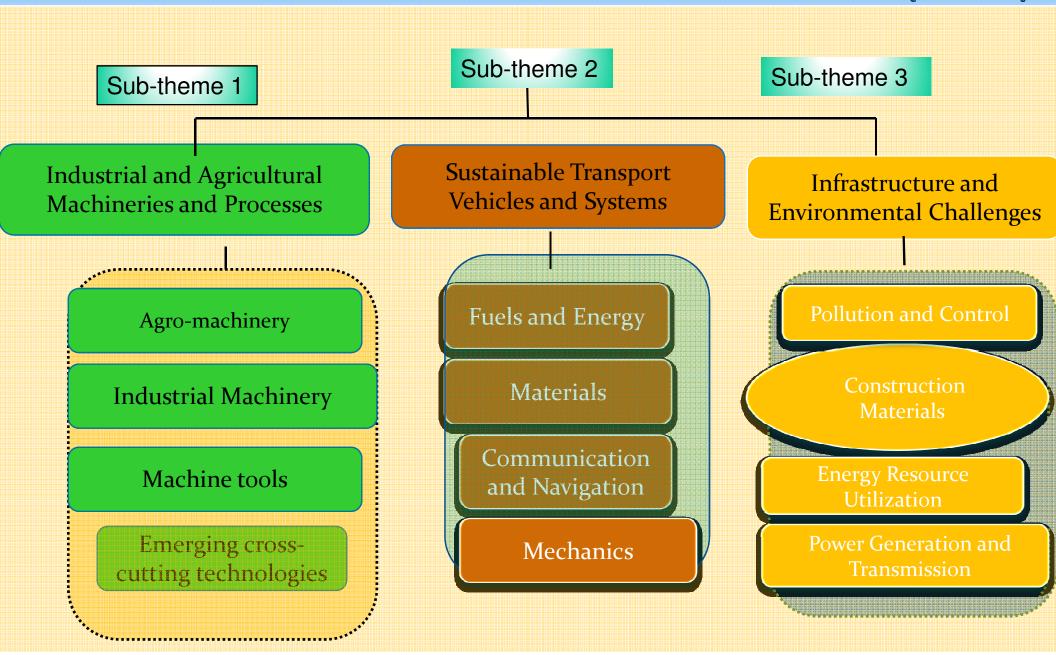
JKUAT CENTRE OF EXCELLENCE


istribution of Research funding

- iculture and food security rgy, climate and environment OREC
- nan and animal health echnology
- ial sciences tainable materials

- Extension and technology transfer
- Engineering technologies
- Infrastructure technologies
- Natural products
- Water resources
- Tech Expo
- Nanotechnology

Food Security Theme (KES: 1.086 b)



y building	Quantity
ctoral students	4
	40
	21
	14
ians	4
nips	2
	85
ey Performance Indicators	Quantity
tions in peer reviewed journal and nce proceedings	113
r of products developed	17
qualifying for patent/ plant breeders	4
ucture developed	7
ogy development	2

PRODUCTS

RESEARCH THEME: ENGINEERING AND TECHNOLOGY (199 m)

KEY PERFORMANCE INIDCATORS AND PRODUCTS

Capacity Building		
Ds	3	
Sc	15	
chnicians Trained	10	
ernships	8	
Total	36	

Other Key Performance Indicators

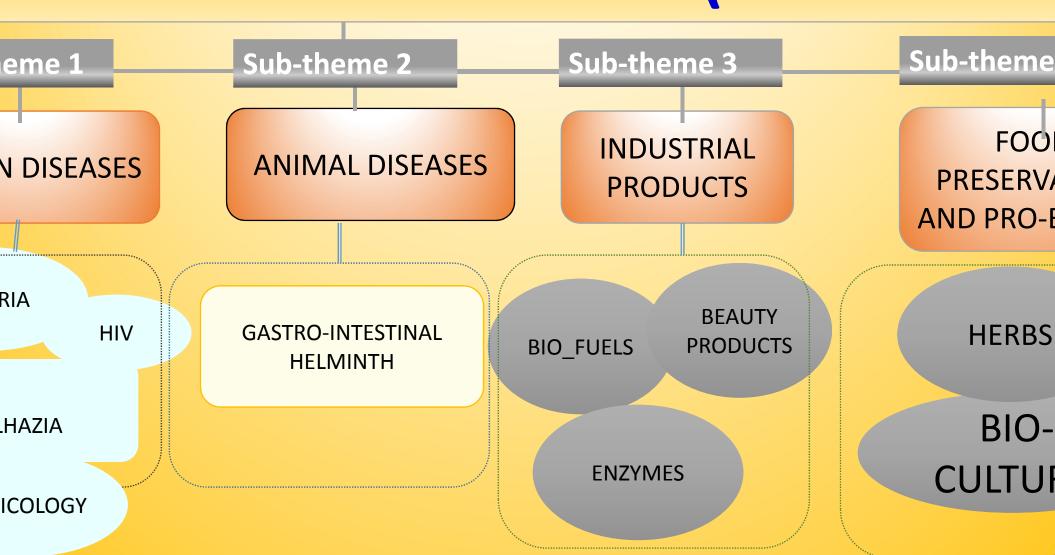
blication in peer reviewed and conference proceedings	50
oducts developed	12
oducts filed for patents	3
ture developed/maintained	10
gy development	5

Electrical Discharge Machine

Reinforced earth block

Fruit pulper

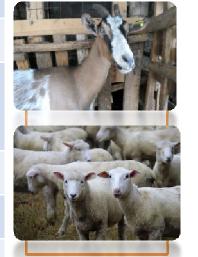
Plant mills



Blow molding machine

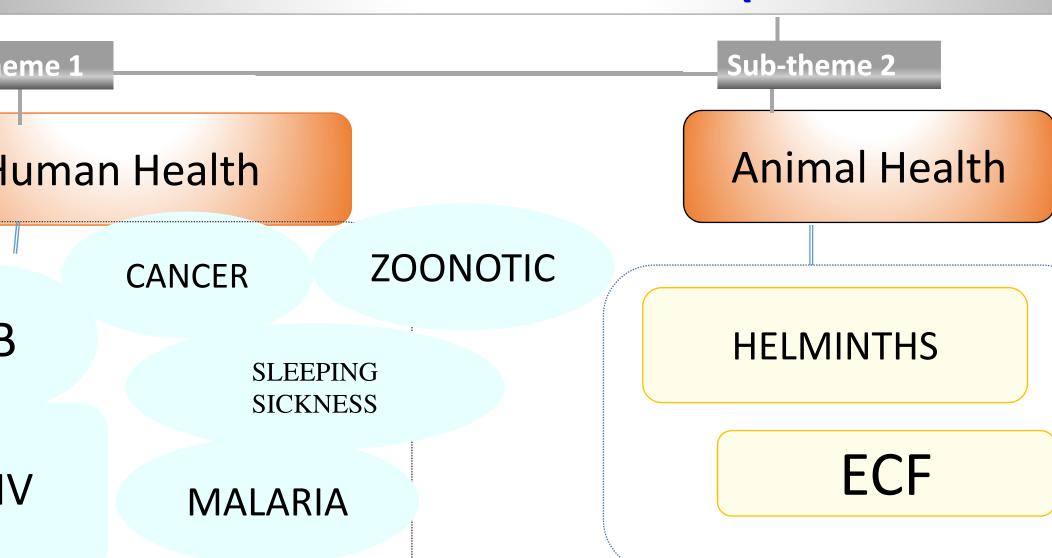
Tricycle with carrier

latural Products Theme (KES: 66.3 m



city building	Quantity
doctoral students	0
	7
	11
	17
nicians	4
nships	2
	36
r Key Performance Indicators	Quantity
cations in peer reviewed journal conference proceedings	39
ber of products developed	9
uct qualifying for patent	2
nology development	Yes

PRODUCTS

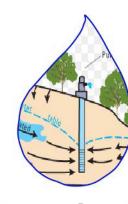


HUMAN AND ANIMAL HEALTH (KES:118.6 m

city building	Quantity	PRODUC
r Key Performance Indicators cations in peer reviewed journal onference proceedings per of products developed act qualifying for patent	5 20 2 Quantity 14 9 6	 Biomarker for late sickness LAMP test for diagrasickness. A cyrobank for parasite bradyzoites. Accurate method for safety of herbal preparates. Three drugs compound
		three for Leishmanias

- staging
- gnosis of
- ites (tacyz
- r establis ations
 - ds for Ma (Patents for 4 & 5)

Vater Resources Theme (KES: 34.2 m


or agriculture: harvesting irrigation

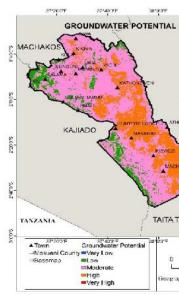
Catchment management, soil erosion and sedimentation

Water management and business linkages

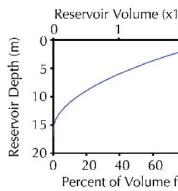
Groundwat manageme

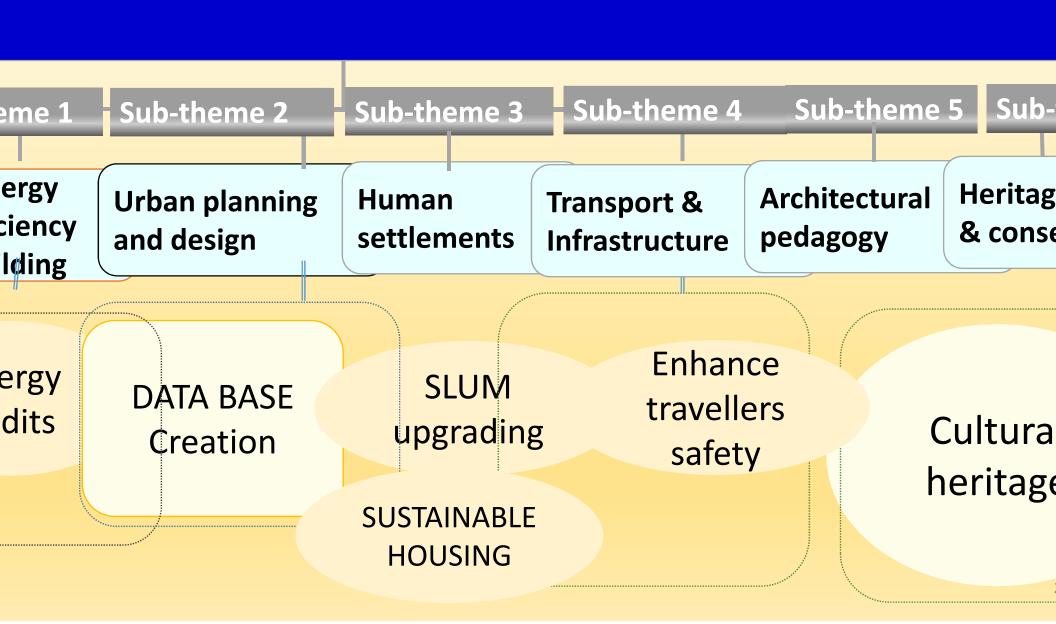
Climate change and water resources

Water for cities



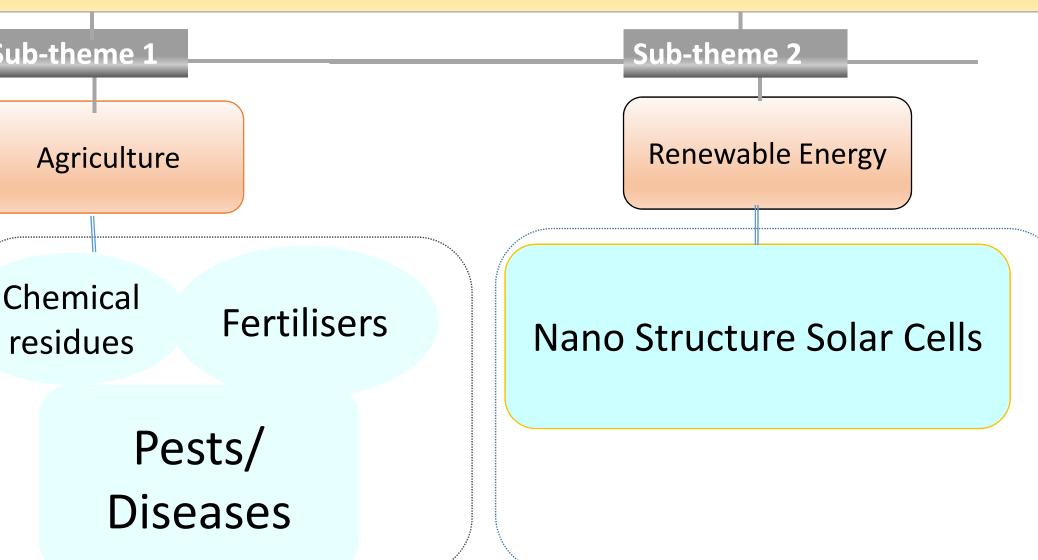
Water for sanitation, hygiene and health


city building	Quantity
doctoral students	7
	16
	76
	45
nicians	12
nships	11
r Key Performance Indicators	Quantity
cations in peer reviewed journal conference proceedings	98
ber of products developed	7
nology development	2



IVIRONMENT AND INFRASTRUCTURE TECHNOLOGIES (94.4 i

ty building	Quantity	PRODUCTS
	3	
	18	1. Energy use in Buildings data base.
hips	4	
	25	2. Urban planning, design and development dat
Key Performance	Ougatity	3. Design-build curriculum (Training of trainers
ors	Quantity	4. Students design prototype construction
Itions in peer reviewed land conference	63	5. Good school, good neighborhood handbook
dings		6. Guidelines for achieving "good school, good
er of products developed	6	neighborhood" model
tancies	6	


ICT Theme (KES: 21.2 m)

Sub-theme 1 Sub-theme 2 Sub-theme 3 Human computer Internet of Big Data, cloud interaction and things, ubiquitous computing cognitive computing and robotics Maize info. robotics **Drones PANCAKE** repository automation Store room GIS **DATA** VIOSIONLIZATION

apacity building	Quantity	
ost-doctoral students	1	
hD.	9	
1Sc.	4	
echnicians	1	
nternships	2	
otal	17	
ther Key Performance Indicators	Quantity	
ublications in peer reviewed journal and onference proceedings	20	
umber of products developed	1	
echnology development	2	

- 1. Maize information rep system
- 2. Mobile application for recording poultry data
- 3. Opportunities and Res
 Portal for Kenyan Uni
 Students

NANOTECHNOLOGY (KES: 9.4 m)

ity building	Quantity
	3
	5
	1
icians	1
ships	1
	11
Key Performance Indicators	Quantity
ations in peer reviewed journal and ence proceedings	4
er of products developed	3
cts patented	1
ology development	Yes

PRODUCTS

IBR (KES: 56m)

PLANT BIOTECHNOLGY

ANIMAL BIOTECHNOLGY

Tissue Crop Rabbit and chicken

Tissue culture

Crop improved

Pests/ Diseases Rabbit and chicken improvement

Genetic studies on wildlife

ty building	Quantity
	4
	2
Key Performance Indicators	Quantity
tions in peer reviewed journal and ence proceedings	9 (1 nature)
er of products developed	2

PRODUCTS

TISSUE CULTURE BANANA SEEDLINGS GROWING IN A GREENHOUSE IN JKUAT

JKUAT RESEARCHER E INDIGENOUS CHICKEN RE GENETIC TRAITS

THE LEAD RESEARCHER ON RHINO DNA MARKERS AT WORK

STUDENTS COLLECTING D.

IEET (KES: 235.2m)

Sub-theme 1 _____

ENEWABLE ENERGIES

ENVIRONMENT

Sub-theme 2

olar ergy

Mini-

Hydros

omas

Solar wind

hybrids

Training

Environme ntal audits

Climate change

Waste manage ment

Trainings

Occupational safety and health

ity building	Quantity	PRODUCTS
	13	
	70	
icians	1380	

Quantity

112

10

6

Key Performance Indicators

er of products developed

cts patented (Applied)

ructural development

rence proceedings

ations in peer reviewed journal and

Factory visit by IEET Solar Water heating trainees at Steelstone Ltd.(Nairobi)

JKUAT researchers at the N show exhibiting a rice husk

RTEC

SAJOREC

WARREC

LCEFO

o-Housing.

Asphalt Concrete.

bilized soil Blocks,

Biodiversity studies.

Floristic investigation.

genomics.

Fog Harvesting. SRI promotion.

Groundwater Risk Management.

Bathymetric Reservoir Survey Breeding

Storage value addition

Nutrition and hea

tension and Technology Transfer Activities (359.5 n

NS

Nissin Noodles

Trainings

Social Studies

Promotion Material

Dairy, Cow Milk, value chain studies

THE JKUAT TECH EXPO.

THE JKUAT TECH EXPO.

ORIGINATING COMPANIES

vation	output
TARI	Medical Services Digitization Platfo
ILE GAMING SOLUTION	Software for Mobile Gaming
ECENTRE	Remote management of clien services via a call center
TO BRICKS	Composite construction mater from plastic wastes and sand
ARILO Products	Food grade Flavours from Tre Tomato

UNIVERSITY LINKAGES

Universities National Institutions

Private sector

GERMANY

CANADA

JAPAN

KALRO

NRF

KEMRI

SAFARICOM

Real IPM

FLORALIFE

SIEMENS AG

ELOMENT PARTNERS

ISAID

IDA DFID

EU DAAD

SIDA GIZ

LINE MINISTRIES

Agric.

Health

MoE

Industrialization

NCLUSIONS

Research and innovation culture in JKUAT has just began;

There is a long way to go before a research-based competence that generates innovations and new technologies that contribute to prosp is achieved;

Innovation is not a sudden flash of inspiration, but a long process of experimenting and learning and therefore must be carefully managed stages in order to deliver useful results;

The aim is develop an ecosystem of research and innovation culture we the university is interacting with stakeholders so that research and innovation products can turned into new businesses.

THE FUTURE

E ENTREPRENEUR UNIVERSITY CONCEPT

- echnologies moved from Lab. to the Market
- Through Licensing
- Encouraging inventors to start business from their innovation (SPIN -OFFS)

rsity Contribution

- Establish enabling Facilities e.g.(iLABS, wet-LABS, incubators).
- Establish Venture capital funds

JRE:-Venture Capitals Examples

/ERSITY	YEAR	Value (
BRIDGE -UK	2013	£ 50
ersity of California	2014	\$ 250
rd ISIS	2015	£ 300
ersity College London	2016	£ 50

AT Should Follow this Example

FUTURE-Focus

rsities	Startups
rsity of Cambridge UK	Life sciences
rsity of Munich	Mobile technology
rsity of Zurich -Swiss	Computing Technologi
University (Finland)	Energy and design
hagen and Malmo-Sweden	Life Sciences

FUTURE- JKUAT Focus

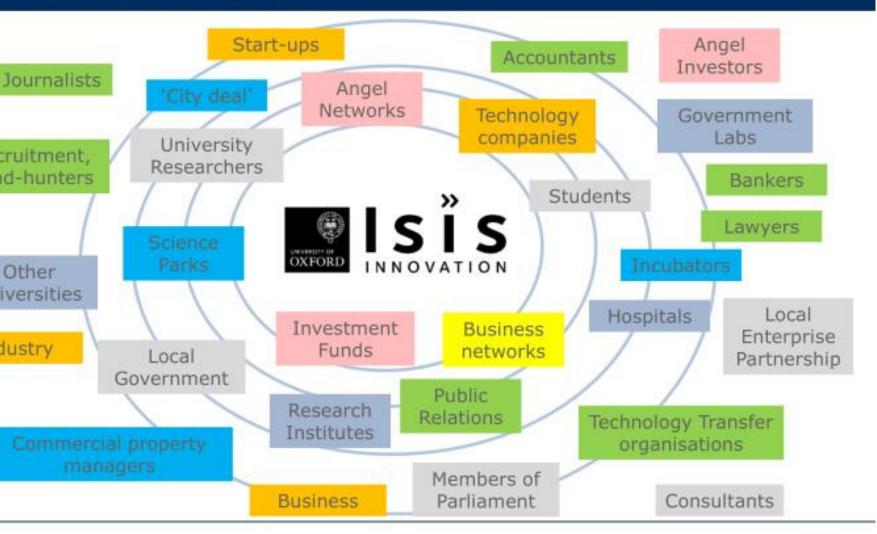
AS TO FOCUS ON

- oile Technologies
- ewable energies
- puting and information technologies
- Sciences

FUTURE- SPIN-OFFS

me from Spin-off and Licensing

PLES:


ISIS got £ 54.6 million in 2015

rd got \$16.1 m form 14 firms created from their own technologies in 2 come goes back to fund research but relatively small compared to her ts(\$ 4.5 Billion)

ff and licensing are mainly for creating impacts

IS innovation Itd., University of Oxfo

The Innovation System

PARTING SHOT

frontiers of the mind are before us, and if they are pioneered with the vision, boldness, and drive with which we have waged this war we do not a fuller and more fruitful employment and a fuller and more fruitful

IKLIN D. ROOSEVELT

mber 17, 1944.

ACKNOWLEDGEMENT

AT University Council

AT Chancellor

Chancellor

Staff

e JKUAT Community

AT Researchers and Innovators

AT Students Body esp. Tech. Expo.

AT Development Partner; NACOSTI and International Donors

THANK YOU