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ABSTRACT 

For planning purposes, accurate information regarding population parameters of interest 

is essential. This information can be obtained through census or survey sampling. In 

sample surveys, the sampling estimation employed in a research is important since it 

determines the degree of accuracy. Estimation can be parametric where pre-determined 

parameters have been utilized or otherwise nonparametric. In nonparametric estimation, 

the standard kernel smoothing function has been known to suffer from the boundary 

bias. To overcome this, a modified kernel smoother that does not suffer significantly 

from this boundary effect has been proposed. This approach was found appropriate 

since it allows both robustness and optimality to be achieved. These properties of the 

proposed estimator have been investigated and the characteristics of robustness and 

optimality confirmed. The estimator has also been compared with the ratio estimator, 

the standard Nadaraya-Watson estimator as well as the design-based Horvitz-Thompson 

estimator using relative bias. Further to this, the Mean Square Error (MSE) as well as 

conditional biases were also computed to gauge the performance of the estimators. The 

properties of the estimators were investigated empirically and comparative analysis was 

made using simulated data. It is shown that the finite population total estimator whose 

kernel smoother was modified using reflection technique significantly addresses the bias 

at the boundary. This was evident from the smaller values of MSE and narrower 

confidence intervals, noted in the study. The relative biases also supported these 

findings. The study showed that the proposed estimator generally performs better than 

the other estimators considered.  
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CHAPTER ONE 

INTRODUCTION 

In real life situation there are many problems that involve estimation of population 

parameters. These parameters include population totals, means or proportions among 

others. This study in particular concentrated on estimation of finite population totals. 

Quite a number of different approaches to estimation are available in literature. To 

obtain an appropriate estimator one needs to evaluate the properties of such an estimator 

from where the desirable one can be chosen. Usually the most common desirable 

properties include unbiasedness, small variance and MSEs. It should be noted that a 

survey strategy taken may enable one to construct an estimator that posses these 

desirable properties. A careful implementation of such strategies often yields better 

results. A suitable estimation procedure that enables one to achieve this in the presence 

of an auxiliary variable was sought and used accordingly as is evident in the various 

sections of this study. 

1.1 Background of the study  

Suppose there is a finite population of N distinct and identifiable units;  NU  ..., ,2 ,1 . 

Let each population unit have the characteristic or variable of interest Y. It is assumed 

that there exist an auxiliary variable, X, closely associated with Y, which is known for 

the entire population. 

 

Often researchers are faced with the problem of estimating a function of the population 

Y’s, for instance, the population total, 



N

i

iYT
1

, the population mean Y  or the 

population distribution function 



N

i

ii yYI
N

yF
1

)(
1

)(  . Some studies involving the 
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distribution functions may be found in (Chambers et al, 1992) and (Dorfman & Hall, 

1993). 

 

The focus is to estimate the finite population total, T. A sample S will be taken, so that 

the pair (xi, yi), i= 1, 2, .., n is obtained for the variable X and its corresponding variable 

Y. 

It has been assumed that X is a variable that is closely associated with the variable of 

interest Y and its observations are known for all elements of the population of interest. It 

may then be used in the design stage, estimation stage or both stages, (Hedayat & Sinha, 

1991). In the presence of such an auxiliary variable a researcher can use model called 

super population model (at the estimation stage) for inference. 

There are many statisticians who have used auxiliary information in their studies in the 

estimation stage of parametric super-population models.  They include (Chambers & 

Danstun, 1986; Wang & Dorfman, 1996; Rao et al, 1990) among others. 

 

It is known that under the parametric super-population, misspecification of the model 

can lead to serious errors in an inference as demonstrated in the empirical study done by 

(Hansen et al, 1983).  

In the recent years efforts have been made to explore alternative ways to alleviate such a 

problem. It includes the use of nonparametric regression in evolving robust estimators in 

finite population sampling. See for example (Odhiambo & Mwalili, 2000; Dorfman, 

1992; Breidt & Opsomer, 2000). Most of these researchers have used kernel smoothers. 

Nonparametric estimators have been found to be robust and more precise than their 

parametric counterparts. It is known, for instance, that a linear regression estimate will 

produce a large error for every sample size if the true underlying regression function is 

not linear and cannot be well approximated by linear functions (Lászlό et al, 2002).  

 The motivation behind the nonparametric approach in this study is that a regression 

curve obtained this way has four main purposes as detailed by (Härdle, 1994): - It 

provides a versatile method of exploring the general relationship between two variables; 
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secondly it enables one to make prediction of observations without any reference to a 

fixed parametric model; thirdly it is a tool for finding spurious observations by studying 

influence of isolated points and lastly it is a flexible method for interpolating between 

adjacent values of the auxiliary variable. The exploration of this approach is thus 

compelling to any researcher.  

1.2 Statement of the Problem 

Often researchers are faced with the problem of estimating population parameters such 

as population total, population mean or the population distribution function (Dorfman, 

1992). In the estimation process, many researchers take advantage of existing variables 

(auxiliary information) that have close association with the targeted parameter in 

enhancing the performance of their estimators. This auxiliary information on finite 

population parameters is often used to increase precision of estimators of the parameters 

(Cochran, 1977). A popular approach to developing robust estimators is the use of kernel 

smoothers in nonparametric regression estimation (Racine, 2008; Irizarry & Bravo, 

2010; and Breidt & Opsomer, 2009). It should however, be noted that kernel smoothers 

suffer from the boundary problem (Kyung-Joon & Schucany, 1998; (Karunamuni & 

Alberts, 2004; and Loader, 2004). Therefore, as a way of improving the nonparametric 

regression estimation, a robust estimator of finite population total, T, that does not suffer 

significantly from the boundary problem is necessary. 

1.3 Objectives 

1.3.1 General objective of the study  

To estimate a robust finite population total incorporating data-reflection technique in 

nonparametric regression. 

 1.3.2 Specific objectives of the study 

1. To identify an appropriate kernel for a nonparametric regression in the 

context of model-based estimation of finite population total. 
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2. To propose a nonparametric regression estimator for the finite population 

totals that does not suffer significantly from the boundary bias within the 

model-based framework. 

3. To derive the asymptotic properties of bias and variance of the proposed 

estimator. 

4. To compare the performance of the proposed estimator with the ratio, 

Horvitz-Thompson and the estimator due to (Dorfman, 1992) using the 

average relative bias, conditional bias and Mean Square Error (MSE) 

analyses. 

1.4 Significance of the study 

Usually kernel smoothers tend to perform poorly at the boundaries. This poor 

performance induces boundary bias in the estimator (Hastie & Loader, 1993). 

Researchers always endeavor to have estimators that are not biased. This study proposes 

a population total estimator that does not significantly suffer the drawback of this 

boundary bias. This is important to all research scientists and in particular the 

statisticians who are always keen in estimators that are of high accuracy and precision. 

  

Nonparametric regression estimation is applicable in many other areas; this study is for 

instance quite useful in pathological cases such as the analysis of tissue or cells, and 

body fluid samples. This in turn may help to determine the area affected in the body or 

the amount of such fluids as blood as well as the count of relevant cells e.g. CD4 cells in 

HIV/AIDS patients over time. Hydrologists as well can use this approach to investigate 

the relationship between groundwater level fluctuations and stream-flow time series 

observations. The study can also benefit personnel in Agricultural sectors who may wish 

to estimate amount of sugar to be consumed or weight of tea exported in a year in a 

country as a function of element of climate among others.   
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1.5 Scope of the study  

Kernel smoothers are commonly used in construction of nonparametric regression 

estimators. In this research the Nadaraya-Watson kernel estimator as used in 

nonparametric regression estimation was critically studied. Studies have shown that, 

Nadaraya-Watson estimator suffers from the boundary problem and hence requires 

modification. This thesis presents a nonparametric regression estimator with a simple 

modified kernel smoother for the population total under model-based framework. 

Specifically data-reflection technique has been used in modification. The asymptotic 

properties of the Nadaraya-Watson estimator and the proposed estimator have been 

investigated. Moreover the performance of this proposed estimator was assessed against 

the population total estimator due to (Dorfman, 1992), the ratio estimator and the design-

based Horvitz-Thompson estimator, using average relative bias, MSE and conditional 

bias on simulated data obtained from some selected commonly used distributions as 

given in Table 4.2.  

1.6 Limitation of the study       

The framework under which the estimator proposed is used is model-based. This has 

been analysed and a comparison made with the conventional technique of the design-

based approach. Although in literature there are many kernel functions that one can use, 

this study used the Gaussian kernel because of its convenience in determining the 

optimal bandwidth. Reflection of data technique was chosen in the modification of the 

kernel as a way of addressing the boundary problem induced by the standard kernel. 

Empirical analysis was also done using data simulated from commonly encountered 

distributions using Ms-Excel and R softwares as was necessary. This study limits itself 

to a finite population with univariate survey response variable (Y) and a univariate 

auxiliary variable (X), which is assumed to be available for all the population units.    
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1.7 Outline of the Thesis 

This thesis is organized into five chapters as follows:- 

The background and identification of the problem, significance and the scope of study 

have been done in this chapter. The notation, model used and a review of the related 

literature are presented in chapter two. The proposed estimator and the properties of 

kernel regression estimation have been derived in chapter three. The fourth chapter gives 

the empirical study of the estimator in simulated data. The results and discussion are 

given in chapter five as well as highlights of areas suggested for further research.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction  

In this chapter literature review has been done in areas relevant to survey sampling. 

Various survey strategies as well as the nonparametric regression estimation and kernel 

density estimation have been discussed. This chapter reviews the literature of the 

nonparametric regression estimation and the common survey strategies used in various 

statistical researches. 

2.2 Survey strategies and nonparametric regression estimation 

It is now well known to majority of researchers that sample surveys play a very 

important role in giving the much needed information in studies. Needless to say is the 

fact that in some occasions, its alternative (the census) technique may not be realistically 

practicable. To illustrate one advantage, for instance, if a doctor wanted to diagnose 

some disease that involves testing of blood, obviously the option to go for would be the 

blood sample and not all the blood from an individual as would be the case in census. A 

researcher using this method has four estimation approaches that can be used in 

statistical investigations involving survey sampling. These are the design-based 

approach, model-based approach, model-assisted approach and randomization-assisted 

approach. 

For the first three approaches, their merits and demerits have been discussed in 

(Chambers, 2011). (Brakel & Bethlehem, 2008) have also made some literature review 

on these approaches.  The fourth approach has been presented by (Kott, 2005). In what 

follows a brief account of each of them has been given. 
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2.2.1 Design-based approach 

In this approach the values of a variable of interest of the target population are viewed as 

fixed quantities (constants).This implies that selection probabilities introduced with the 

design are used in determining the properties  of estimators used to obtain expected 

values, variances, biases and so on. This approach is also known as classical or 

randomization theory. The randomization theory in a way provides a kind of 

nonparametric approach to inference in that no distributional assumptions are made 

about a random variable (Lohr, 2010). 

For instance, as done by (Cornfield, 1944), if 






elsewhere 0,

sample in the is unit  if ,1 i
Ii  

Then   

N

n
iPIP ii  sample)in  unit (select )1(     (2.1) 

where 
i  is the inclusion probabilities and Ii is the indicator variable 

Thus 







si

iiHT yT
1ˆ             (2.2)                    

is the design-based expansion estimator (Horvitz & Thompson, 1952). 

Statisticians, who have relied on design-based methods, like it for the capability of not 

only eliminating personal biases in selecting the sample but also, its use in situations 

where little may be known about the population. 
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It should, however, be noted that besides the above advantage obtaining an optimal 

strategy under this approach might be an impossible task where no restriction on sample 

size is made, a result first noted by (Godambe, 1955). 

2.2.2 Model-based Approach 

In this approach, the distribution is a structure innate to the population itself and is 

unknown but capable of being modeled. Model-based predictive inference has been 

discussed in detail by (Valliant et al, 2000). In this prediction approach as is also called, 

the expectations are over all possible realizations of a stochastic model (usually a linear 

regression model) which links a variable of interest, Y, with a set of auxiliary variables, 

X, (Cox, 1995). Values of interest are thought of as random variables Y1, Y2, …, YN 

generated by some model. The actual values for finite population y1, y2, …, yN are one 

realization of the random variables. In the presence of the auxiliary in formation this 

approach supplies the link between units in the sample and those not in the sample.  

The information obtained from the sample (yi, si ) is thus used to predict the 

information of the non-sample (yi, si ). 

Therefore under an SRS method one may assume that y is linear in x, hence a simple 

linear regression model of the form: 

iii exy    for Ni ,...,2 ,1      (2.3) 

With the assumptions that ei  is i.i.d with mean, 0 and variance, 2 , then an appropriate 

model-based estimator is of the form: 

  



si

i

si

i

N

i

ilin xYYT  ˆˆˆ

1

      (2.4) 

where ̂  and ̂  are the Ordinary Least Square Estimates for the parameters   and  . 
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Another alternative estimator that can be used under this approach is the ratio estimator. 

The estimator of finite population total under SRS may be given by: 

 



N

i

iR XBT
1

ˆˆ          (2.5) 

Where








n

i

i

n

i

i

x

y

B

1

1ˆ , is the ratio estimator for its equivalent population parameter, 


n

i

iy
1

is 

the sample total of the study variable while 


n

i

ix
1

is the equivalent for the auxiliary 

variable assumed to be known for the entire population. The entire population total of 

this auxiliary variable is given by


N

i

iX
1

. It is known that the ratio estimator is the Best 

Linear Unbiased Predictor (BLUP) (Cochran, 1977; Cox, 1995; and Brewer, 2002). 

It should be noted that in the parametric model such as that given in (2.3) and (2.4), the 

choice of a model and its robustness to misspecification, is a major concern. This 

problem that may arise due misspecification has been tackled using varying techniques 

but the most predominant of all is the nonparametric method. Some of the recent studies 

that employ this technique include (Dorfman, 1992; Chambers et al, 1993; Chandran & 

Prajneshu, 2004; and Breidt & Opsomer, 2009) among others. 

2.2.3 Model -Assisted Approach  

This is an approach that still depends exclusively on randomization-based inference and 

estimation but optimizes them under the explicit assumption that the finite population 

under study is itself a sample drawn from a super population generated by a specific 

stochastic model. 

Basically inferences are design-based while the model serves as a means to help choose 

between the randomization-based methods (Langat et al, 2007). It has been noted that 
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inadequacies in the super population models adopted, results in unacceptable biases 

(Brewer, 2002). Though researchers have suggested that selection of balanced samples 

could meet this difficulty, random sampling designs could make up for most of the 

difference by regressing on whatever variable the balanced scheme were balanced on. 

(Brewer, 1995) remarks that using the model assisted approach is like wearing both belt 

and braces to hold one’s trousers. If the belt (model) should break, then one is not going 

to be totally embarrassed, since the braces (design-unbiasedness) should still keep things 

in place. For a comprehensive coverage of this approach one can see (Särndal et al, 

1992) and (Chaudhuri & Stenger, 2005). A model assisted estimator for the population 

total is thus given by: 

 
1

)ˆ(ˆˆ 



  i

si

ii

Ui

i yyyT         (2.6) 

2.2.4 Randomization – assisted model –based approach 

The proponents of this approach argue that it makes little sense to average over all 

samples; that were not drawn as is suppose to be the case in the conventional design 

based approach. In this approach, therefore, inferences are made on the basis of the 

actual sample drawn and observed i.e the goal of the survey sampling here is that of 

model based. They only employ the design based method which focuses on the set of 

hypothetical samples that could have been drawn, to simply protect against model failure 

(Kott, 2005). Thus unbiasedness is the key issue. 

2.3 Model-based estimation and regression techniques 

The four approaches highlighted above basically stem from two broad strategies - the 

traditional design-based approach on the one hand which has its conceptual origin in the 

paper by (Neyman, 1934) and the sampling theory texts such as (Kish, 1965) and 

(Cochran, 1977), where inferences are based on the probability distribution induced by 

the sampling design with the population values being held constant. On the other hand is 

the other sampling strategy, model-based approach which is strongly linked to Royall 
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and his students, where inferences are model dependent. (Royall, 1970) gives a summary 

of the philosophy behind this approach. It should be noted that the nonparametric nature 

of the design-based Approach can easily make it an obvious methodology to robust 

inferences; however, there are no relevant optimality criteria that can be checked under 

this approach, (Chambers, 2011). Therefore, if one wants both optimality and 

robustness, the option is Model-based approach.  

Further to this and  in the presence of an auxiliary variable, it is well known that both 

model-based and model-assisted approaches perform better than the purely design-based 

approach provided that the assumed model that links study variable and auxiliary 

variables is appropriate, (Prasad & Subhash, 2011). This gives the basis of choosing the 

model-based approach in this study. Within the model-based framework, given the 

auxiliary variable that can inform one about the variable of interest, one can estimate the 

parameter required using a regression model. This can either be parametric or 

nonparametric.  

Parametric models involve making assumptions about the underlying distribution. For 

instance, one may assume that the underlying distribution is normally distributed with 

the mean, µ and variance, σ
2
. These two parameters are all that one needs to say 

everything about the distribution. If this assumption of normality is correct, the two 

numbers (mean and the variance) will be adequate as far as estimation of the parameter 

of interest is concerned. However, if such an assumption of the model is wrong then the 

resulting estimates can be seriously misleading, (DiNardo & Tobias, 2001). Fortunately 

on this, a promising alternative technique- the nonparametric approach that does not 

require specification of the underlying function is available. In this approach the data 

determines the functional form of the distribution required. This flexibility has made the 

approach popular among the statistical researchers. Nonparametric regression technique 

within the model-based approach often involves the use of a kernel regression estimator. 

Within this framework the techniques that have impressed many researchers include; the 

local polynomial regression estimator, spline regression and orthogonal series.  
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2.4 Kernel functions in nonparametric regression estimation 

There are many kernel functions in literature that a researcher can use in nonparametric 

regression estimation. A kernel is simply a smoothing function or weight-assigning 

function. Different researchers make different assumptions about the functions but most 

are common. The common assumptions include those that require it to be symmetric and 

unimodal. The existence of some moments is also another common assumption though 

(Fan & Gijbels, 1992) require the existence of all moments. Though not universal, some 

researchers assume a bounded support for the kernel and that kernel is smooth, (Avery, 

2010). The functions commonly used are the Gaussian function and those kernels 

normally derived from the Beta function with the parameter changing from 0, 1, 2, and 3 

which respectively yields the uniform, Epanechnikov, biweight, and triweight kernels. 

Another kernel, is the triangular kernel rarely used because it lacks smoothness property 

(Wand & Jones, 1995).  

Within the kernel window observations may receive the same weights as in histograms 

or weights that reduce gradually as one moves away from the target observation where 

the kernel is centred. The kernel used in histogram is typical of the uniform or the 

rectangular kernel- so called because it treats the points in a bin the same, in fact such a 

particular choice of a kernel is termed “naive” since weight of 2
1 is assigned to all points 

regardless of how far or close the point is from the central point of the bin or window of 

the kernel (DiNardo & Tobias, 2001).  

A variety of kernel functions are possible in general, but both practical and theoretical 

considerations limit the choice (Härdle, 1994). It is because of the thinking that points 

that are closer to the centre of the window of a chosen kernel, have closer association 

(can give more details or contribution) about the target observation. These points 

undoubtedly deserve to be given more weight than the ones further away (Irizarry & 

Bravo, 2010). This obviously cannot be done using rectangular or uniform kernels, but 

those that assign reducing weights further away from the centre, see Table 3.1 for the 
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common kernel functions.  It would also be desirable to use a kernel that optimizes the 

error criterion measurement such as AMSE. If this is the goal of the researcher then 

Epanechnikov would be the right choice.  

It is worth noting that the difference between this kernel and the others discussed and 

tabulated is not significant. In fact a slight increase in the sample size brings the 

corresponding efficiency at par with the optimal kernel. A disadvantage noted with 

Epanechnikov is that it has a discontinuous first derivative which may be undesirable 

(Wand & Jones, 1995). This results in the choice of Gaussian function instead and thus 

the reasons for its preference in this study. In addition, it can also be noted that this 

function has an optimal bandwidth choice in the event that the underlying distribution is 

normal. 

Researchers have found out that even with such an advantage the choice of the kernel 

function is not as important as that of the bandwidth itself (Faraway, 2006). It has been 

noted in literature that if one misses the optimal bandwidth that minimizes MSE (or 

other measure of accuracy) by ten percent, there is more drastic effect on the smoothing 

than if one selected one of the “suboptimal” kernels (Härdle, 1994).   

2.5 Nonparametric regression estimation of finite population total 

Nonparametric regression estimation has been carried out by many researchers in many 

studies. (Dorfman, 1992) did a comparison between the population total estimators 

constructed from the famous design-based Horvitz-Thompson estimator and the 

Nadaraya-Watson estimator- the nonparametric regression estimator where his findings 

show that the nonparametric regression estimator better reflects the structure of the data 

and hence yields greater efficiency. This regression estimator, however, suffered the so 

called boundary bias besides facing bandwidth selection challenges. (Breidt & Opsomer, 

2000) did a similar study on nonparametric regression estimation of finite population 

total under two-stage sampling. Their study also reveals that the nonparametric 

regression with the application of local polynomial regression technique dominated the 
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Horvitz-Thompson estimator and improved greatly the Nadaraya-Watson estimator. 

(Breidt & Opsomer, 2009) carried out estimation of population of finite population total 

under two-stage sampling procedure and their results also show that the nonparametric 

regression estimation performs better compared to the standard parametric estimators 

when the model regression function is incorrectly specified, while being nearly as 

efficient when the parametric specification is correct. In particular the local polynomial 

regression estimator was applied in their research.     

2.6 Asymptotic properties of estimators based on kernels 

The key properties that a statistician would be interested to check given an estimator, are 

the variance and the bias. These two can enable one to measure the amount of accuracy 

and precision that an estimator has. In fact at an arbitrary fixed point, a basic measure of 

accuracy that takes into account both the bias and variance is the Mean Square Error 

(MSE) (Tsybakov, 2009). Other texts that have such literature include (Härdle, 1994; 

Takezawa, 2006; and Härdle et al, 2005). This is one of the criteria of error 

measurement that can be used in such statistical researches. In nonparametric regression 

estimation one may be interested in the cumulative amount of bias and the variance over 

the entire regression line. This global measure called MISE is obtained by finding the 

integral value of the variance and the square of the bias of the estimator (Zucchini, 

2003). One can use Taylors’ expansion to obtain the Asymptotic Mean Integrated 

Square Error (AMISE). It is from this that an optimal bandwidth can be obtained. 

(Manzoor et al, 2013) carried out similar study using these measures. Given the 

asymptotic properties one can discuss the speed of convergence of the estimators and 

determine the price to pay in a given option. It is from this vast literature that this study 

uses these measures in the analysis stage to compare the proposed estimator against the 

standard ones reported in the next section.   
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2.7 Performance of estimators under model-based approach 

In assessing the performance of the estimators, measures that allow for comparison of 

the estimators are normally subjected to simulated data. (Dorfman, 1992) used the root 

average relative biases to make comparison between the design-based Horvitz-

Thompson estimator with the model-based nonparametric regression estimator derived 

using the smoother first proposed by (Nadaraya, 1964) and (Watson, 1964). This study 

used the average relative bias to make comparison between the same design-based 

estimator of Horvitz-Thompson, the model-based nonparametric estimator for finite 

population total due to (Dorfman, 1992) and the proposed population total estimator 

developed in the study using the data-reflected technique. Other measures used also 

include the MSEs, the conditional biases and the construction of the confidence lengths.  

2.8 Bandwidth selection 

2.8.1 Introduction 

Bandwidth selection is another area of concern in kernel estimation. These bandwidths 

vary with the kernel function chosen. An optimal bandwidth of one kernel function 

cannot be regarded in the same way for another function. Because of this, many 

researchers have been carrying out studies aimed at determining techniques of obtaining 

bandwidths that minimize MSE or AMSE functions that can be used with the different 

kernel functions preferred.  

Two common ways in which this problem can be tackled have been highlighted- the 

“plug-in” method and the cross validation method. See section 2.8.3 for the cross-

validation technique. The plug-in method simply involves the replacement of the 

unknown functions in the expression of interest. This is discussed in the next section. 

2.8.2 Direct plug-in methods 

Bandwidth selection that uses this technique has been recommended by (Wand & Jones, 

1995) as well as (Fan & Gijbels, 1992). To implement the plug-in method one requires 
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the minimizer of AMSE or more usually the AMISE.  The challenge is in the estimation 

of the unknown terms -the variance, 2 , 2)(xm   and )(xm itself. Research has shown 

that the best estimate of )(xm  depends on higher order derivative which implies infinite 

regression. In other words obtaining the best estimate is impossible. As an alternative in 

practice, a quick simple bandwidth is used to obtain a higher order derivative which is 

then used in the procedure of determining the estimates. The details have been discussed 

in (Wand & Jones, 1995). There are a number of plug-in bandwidths estimators such as 

the simple rule of thumb; direct plug-in and solve-the-equation, one can see the details in 

(Ruppert et al, 1995). From the literature review done by (Avery, 2010), all the three 

perform well in simulation, though the rule-of-thumb tend to “under-smooth.”  

2.8.3 Cross validation technique 

This technique of bandwidth selection is occasionally referred to as classical or 

conventional because it has been in use much earlier than the relatively more recent 

“plug-in” methods discussed in the section 2.8.2. Although the arguments fronted by the 

proponents of the above criteria is the tendency of the cross validation technique to 

“under-smooth,” (Loader, 1999) still recommends this technique and argues that the 

noise is due to the actual trend of data and how difficult it is to have data-based 

bandwidth selection. In the comprehensive bandwidth analysis done, the research reveal 

various weaknesses in the “plug-in” methods leaving the classical methods standing 

better chances of being more informative in their results, if used properly. (Li & Racine, 

2004) also proposed this data-driven bandwidth selection.   It is for this reason that this 

study adopts this bandwidth selection technique. Since bandwidth selection was not 

really the goal of this study, a brief approach of getting this selector is given next.  

Given the model in (3.3), to obtain the estimate )(ˆ xm requires iY . This scenario presents 

a problem in that iY is required to predict itself. By employing the leave-one-out 

estimator, )(ˆ xm iNW , cross-validation solves this problem by replacing )(ˆ xm with )(ˆ xm i
. 
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Thus the leave-one-out estimator for the Nadaraya-Watson estimator is given by: 
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This implies that at point x , the i
th

 observation is left out when estimating )(ˆ m . This 

leads to the following minimization problem of the cross-validation function. 

 



n

i

iiiNWi XwXmY
n

hCV
1

2
)()(ˆ

1
)(      (2.8) 

where )( iXw is a weighting function that may be used to assign less weight in regions of 

sparse data and at tail to counter large variance and boundary effect. Similarly for the 

reflection technique we replace )(ˆ xm iNW with )(ˆ xm iref  . This automatic bandwidth 

selection was adopted and used in the study. In the next chapter the kernel regression 

estimator used to construct the finite population total estimator due to (Dorfman, 1992) 

has been derived. The kernel estimator was also modified using reflection, a technique 

which has been discussed in the chapter. It was then used in constructing the proposed 

estimator. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

In this study, the general objective was to robustly estimate finite population total 

incorporating data-reflection technique in nonparametric regression models. This chapter 

focuses on the development of the nonparametric regression estimator of finite 

population total that is robust within the model-based framework. In proposing such an 

estimator, cognizance is given to the desired qualities of being more reliable as well as 

being flexible in terms of capturing well the structure of the data under consideration. As 

a result, data-driven estimators and concepts from nonparametric estimation have been 

adopted.  

Accordingly, a nonparametric estimator was obtained with the use of the kernel 

function. As is always in other applications, usually the kernel function should be 

continuous, bounded symmetric real function which integrates to one.  This kind of a 

function has been considered in nonparametric regression estimation constructed within 

the framework of the model-based inference. The standard Nadaraya-Watson regression 

estimator is known to suffer from the boundary bias. In the proposed estimator, 

modification has been made in an attempt to develop a population estimator that reduces 

this boundary bias significantly.   

Asymptotic properties of the standard and the proposed estimator have been studied. In 

particular, the variance and bias of the estimator of the finite population total constructed 

using the Nadaraya-Watson estimator and the proposed estimator which uses data 

reflected technique were derived. It is worth noting that order algebra have been 

employed in studying the said properties. This is given in the next subsequent sections. 
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3.2 Notations and the framework used 

Let U be a population of N units. That is,  NU  ..., ,2 ,1  where N . Let each 

population unit have the characteristic of interest Y. Suppose that X is an auxiliary 

variable associated with the study variable Y and which is accordingly assumed to be 

known for all the population units. Suppose that the intention is to obtain the finite 

population total: 





N

i

iN YYYYT
1

21 ...

       

(3.1) 

Since all the units sampled shall be observed, it is assumed that such units will be known 

without error, and the task therefore is to estimate the non-sampled units. In this 

paradigm, the population total can therefore be obtained using an equation of the form: 

 
 


si si

ii yyT         (3.2) 

where 
si

iy refers to the total of the sampled units whereas 
si

iy refers to the total non-

sampled units of the population. The non-sample part can be estimated using the 

regression model in (2.3), which is a parametric equation since the parameters  (the 

constant term) and  (the regression coefficient) have to be estimated using the LSE 

technique.  

With the assumptions on the regression model (2.3) correctly stated about the underlying 

distribution, the parametric technique would be good and easy to compute. This 

requirement is however not easy to achieve in real life data. Notably, the structural 

nature of the parametric models greatly reduces their flexibility and therefore under such 

models, estimators obtained are without loss of generality, not robust. Even in cases 

where regression is done the context of parametric super-population models, a problem 

of model failure may arise due to model misspecification. 
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To overcome this, many researchers have employed nonparametric regression methods 

which have over time, become very popular. This is because they adapt to the structure 

innate to the data sampled for the study hence becoming flexible and robust. This guards 

against misassumptions in the model which could lead to incorrect conclusion regarding 

the estimate. The nonparametric models also provide information, independent of the 

researcher’s thoughts or belief about the underlying distribution that relates the study 

variable and the auxiliary variable. Moreover, in these models, the only assumption 

made about the observations is that they are independent and identically distributed from 

an arbitrary continuous distribution.  

But even with these advantages, the computational intensity that the nonparametric 

regression demands could have slowed down the progress of many researchers on its use 

in the earlier years when the technology of computers was still at the infancy stage. 

Fortunately it is no longer the case currently.   

A model- based nonparametric model is conventionally of the form 

iii eXmY  )(   i=1, 2, …, n     (3.3) 

where   Yi- is the variable of interest 

              Xi-is the auxiliary variable 

             m-is an unknown function to be determined using sample data 

             ei-is error term-assumed to be N(0, 2 ) under the model in (3.3). 

Nonparametric regression involves the use of kernel functions discussed in the next 

section.  

3.3 Kernel functions commonly used in nonparametric regression estimation  

Choosing an appropriate kernel and a suitable bandwidth is quite important in 

nonparametric regression. It is known that the two (i.e. kernel function and the 
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bandwidth), do not have the same effects–in terms of their contribution in the estimate. 

Previous studies reveal that compared to the kernel function which has the least impact, 

bandwidth selection plays a more crucial part in obtaining good estimates (Wand & 

Jones, 1995).  

Some of the kernel functions and their efficiencies are given in the Table 3.1. 

Table 3.1: Common Kernel Functions 

Kernel Equation R(K) K2(K) Eff(K) 

Uniform  ]1|[|)( 2
1  zIzK  2

1  
3
1  0.9295 

Epanechnikov  ]1|[|)1()( 2

4
3  zIzzK  5

3  
5
1  1.0000 

Biweight ]1|[|)1()( 22

16
15  zIzzK  7

5  
7
1  0.9939 

Triweight  ]1|[|)1()( 32

32
35  zIzzK  429

350  
9
1  0.9867 

Gaussian )exp()( 2

2
1

2

1 zzK 


 
2

1  1 0.9512 

Triangular ]1|[||)|1()(  zIzzK  
3
2  

6
1  0.9859 

         Source: (Jann, 2007). 

It now well known to many statisticians in this field that the kernel that optimizes the 

MSE (or AMSE) - the measure of accuracy is the Epanechnikov kernel (Wand & Jones, 

1995). This fact has been shown by (Epanechnikov, 1969). In Table 3.1 it is important to 

note that Eff(K) which represents the efficiency of the kernel has been given relative to 

Epanechnikov kernel -the minimizer of AMSE and 



 dzzKKR 2)()(  is the roughness 

of the kernel. K2(K) is the second moment of the kernel- actually the spread (“variance”) 

of the kernel density. From this information one can see that there are no much 

differences in these efficiencies, an indication that kernel selection has rather limited 

impact on them.  
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It is clear in the table that the uniform (also called the rectangular kernel) has an 

approximate efficiency value of 93%. The interpretation for this is that for n = 93, one 

can obtain an optimal AMSE with Epanechnikov kernel, while n = 100 would be 

required to obtain approximately the same value using the uniform kernel. Since both 

eventually lead to roughly the same estimate, it implies that emphasis should not be so 

much on choice of a kernel function. This is the reason why in many researches the 

choice of kernel is based on other considerations like the desired smoothness (Alberts & 

Karunamuni, 2007; and Zucchini, 2003). 

Frequently researchers may not opt for the uniform kernel function because it assigns 

constant weights across the observations in its window. In particular weights of ½ are 

assigned to points within the distance of h (the bandwidth) away from x- the point at the 

centre of the window. Points farther away are all assigned zero weights because the 

indicator function, ]1|[| zI , is by definition equal to 0 for all values of the scaled 

distance,   hXxz i / , that are bigger than 1.  

The other functions, that is, the Epanechnikov, bi-weight, tri-weight, Gaussian and 

triangular kernels assign relatively smaller weights progressively away from the point at 

the centre. They assign more weight to the points closer to the centre. It should be noted 

that for all the kernels shown in the Table 3.1 their indicator functions, ]1|[| zI , are by 

definition also equal to 0 for all values of the scaled distance,   hXxz i / , that are 

bigger than 1, except for Gaussian which is unbounded. The individual graphs of the 

functions were obtained from R-software and presented in Fig. 3.1 parts (a)-(f).  
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(a)                                 (b) 

 

(c)                                 (d) 

 

(e)                                 (f) 

Figure 3.1: Graphs of some selected kernel functions  
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In Fig. 3.1 Graph (f), shows all the five selected graphs combined. Notice the shapes of 

each of the kernel function and how it will have an effect on the assignment of the 

respective weights.  

3.4 Review of the Nadaraya-Watson Estimator 

The idea of nonparametric regression has gained prominence in a couple of decades 

now. It was mentioned in the section preceding this that previous applications of the 

approach by the researchers were hampered by the tedious computational challenges. 

The recent advancement in technology and computers has enabled researchers to handle 

the massive computation experienced with this approach. This section gives a brief 

derivation of Nadaraya- Watson estimator. 

 Let K(.) denote a kernel function which is also twice continuously differentiable, such 

that: 

 (a)
    )(:)( (c)  0)( (b)     1)( 2

2 KKdzzKzdzzzKdzzK    (3.4) 

Further, let the smoothing weight be: 

      ni

h

Xx
K

h
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i ,...,2,1   ,)( 







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



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

 




               (3.5) 

A form of the kernel weight defined as in (3.5) was proposed by (Nadaraya, 1964) and 

(Watson, 1964).  Since then many researchers have explored the nonparametric 

regression technique in estimation. Some other references include (Härdle, 1990; 

Takezawa, 2006; Gámiz, et al, 2011; and Tsybakov, 2009) among others. Herein, a 

simple Nadaraya-Watson Kernel estimator of )(xm  has been considered.  
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Assume a model of the form specified in (3.3), where  
s

.  is the summation over all 

the sampled units and h is the bandwidth also referred to as the smoothing or tuning 

parameter, with .1)(
1





n

i

i xw  The Nadaraya-Watson estimator of m(x) is therefore given 

by: 
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Given the model in (3.3) and the conditions of the error term, the expression for the 

variable Y relative to variable X can be obtained as a joint p.d.f of f(x, y) as follows: 
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The estimator for ),( yxf  is given by: 
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Thus the numerator is obtained as: 
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Therefore 
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and from (3.4), the following can be obtained; 
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The denominator can similarly be derived as follows: 
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This is so since the integral part w.r.t. z equals one. 

Putting (3.11) and (3.12) together gives the Nadaraya-Watson estimator given in (3.6). 

The estimator is a linear smoother since it is a linear function of the observations, Yi. 

Given the sample and the Gaussian kernel function defined in Table 3.1, then at any 
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point x the corresponding y-estimate is given by the estimator in (3.6). This can be 

written as:    
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This gives a way of estimating the non-sample values of y given the auxiliary value of x.   

The nonparametric estimator for the finite population total is thus given by: 



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iNW
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inp xmyT
11

)(ˆˆ          (3.14) 

The estimator given in equation (3.14) was first suggested by (Dorfman, 1992). For 

kernel regression estimator, the estimate of m at point x is obtained using a weighted 

function of observations in the h-neighbourhood of x. The weight given to each 

observation in the neighbourhood depends on the choice of kernel function.  

For example a uniform kernel function would assign the same weights to all the points 

within its window while the bi-weight kernel function on the other hand, assigns more 

weight to the points closest to the target and diminishes the weights in those points that 

are “farthest away” from the centre of the kernel.  

3.5 The “oh” notations in order algebra 

This brief section gives a summary of common notations used in asymptotic theory in 

probability. The motivation behind it is that it helps one to approximate distribution of 

large sample statistics with a limiting distribution which is often much simpler to work 

with. Formal definitions of the “oh” notations and their variants, as well as how to work 

with the notations have been shown. Simple illustrations on their use have been given. 

Table 3.2 gives an overview of these notations. 
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Table 3.2: Common notations for asymptotic expressions 

Notational form The implication 

f(x) = O(g(x)) (x → x0) 

There exists a constant δ > 0 such that          

f(x) = O((g(x)) (|x → x0| ≤ δ). 

f(x) = O(g(x)) 

There exists a constant x0 such that              

f(x) = O((g(x)) (x ≥ x0). 

f(x) = o(g(x)) 
f(x) = o(g(x)) (x → ∞). 

 

3.5.1 The Big “Oh”-notation 

Let f(x) and g(x) be two functions of a real variable x. These functions are considered as 

x → ∞. Given such functions, defined for all sufficiently large real numbers x, the 

expression relating the two functions is given by: 

   f(x) = O(g(x))        (3.15) 

The implication of this is that: There exist constants c and x0 such that:    

)(for        )()( 0xxxgcxf       (3.16) 

If this expression holds, then f(x) is said to be of order O(g(x)) i.e the big O- estimate for 

f(x). The constant c is thus the O-constant while the range x ≥ x0, is referred to as the 

range of validity of the O-estimate. In mathematics, it is often important to handle the 

error term of an approximation.  

An illustration on the expanded form of the function of xe  to express the fact that the 

error is smaller in absolute value than some constant times x
3
 if x is close enough to 0 is 

written as  



30 

 

e
x
 = 1 + x + x

2
 / 2 + O(x

3
),    for x > 0  

3.5.2 The little “oh”-notation 

The o-notation in the expression   

   xxgoxf  as  )()(      (3.17) 

means that g(x) ≠ 0 for sufficiently large x and 0
)(

)(
lim 

 xg

xf

x
. If the relation holds, then 

f(x) is said to be of smaller order than g(x). The o-estimate is stronger than the 

corresponding O-estimate. Put differently, every function that is little-o of g is also big-

O of g, but not every function that is big-O of g is also little-o of g.   

The distinction between the earlier definition for the big-O notation and the current 

definition of little-o is that while the former has to be true for at least one constant c the 

latter must hold for every positive constant, ε, however small (Cormen, et al, 2001).  

These notations have been reviewed because they will be useful in the sections that 

follow. 

 

3.6 Some Important Results from the Theory of Kernel Estimation 

Condition 1  

(a) Suppose {Xi, i =1, 2, …, n} is a collection of random variables from a distribution 

that is  iid with the cdf M(x) and pdf m(x). 

b) In the neighborhood of x, m(x) is bounded and twice continuously differentiable with 

bounded derivatives.   

http://en.wikipedia.org/wiki/Little_o_notation#Formal_definition
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It is assumed that m(x) exists at x when discussing this function. The point of interest is 

to estimate this function without imposing assumptions on its functional form as in the 

parametric case.  

Since  )()( xXEIxM i          (3.18) 

then its estimator is given by: 

 



n

i

i xXI
n

xM
1

)(
1

)(ˆ       (3.19) 

which implies  

)()(ˆ xMxM
p
  

In fact stronger results can be obtained (Glivenko-Cantelli Theorem, see (Van der Vaart, 

1998)). 

 0)()(ˆsup
.



sa

x

xMxM  

By Central Limit Theorem hereby not stated, 

    )(1)((,0)()(ˆ2
1

xMxMNxMxMn
d

  

Furthermore, for 21, xx ,  )()(ˆ
11

2

1

xMxMn   and  )()(ˆ
22

2

1

xMxMn   are jointly 

asymptotically normal with mean zero and covariance )()()( 1121 xMxMxxM  , 

where 21 xx   is the minimum between 1x  and 2x . 

 

Since  
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Then the estimator is: 
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where the h in the )(ˆ xm is a function of the sample size n such that 0lim 


h
n

. Note that 

(3.21) may also be rewritten as an estimate of the unknown function m(x) as follows 

(Todd, 2014): 

  
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This is the class of standard kernel density estimators proposed by (Rosenblatt, 1956) 

and (Parzen, 1962). 

Now with the kernel functions and the kernel estimator as defined in the earlier sections, 

the following conditions must hold.  

Condition 2 (a)   1)( dzzK  

 (b) )()( zKzK   

 (c) K is compactly supported on [−1,1] and bounded. 

 (d)   0)(2 dzzKz say )(2 KK  

These conditions are used in the derivation of the properties of the density estimator as 

well as the regression estimator given in the next sections. 
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3.7 Standard kernel density estimator 

An insight on how the kernel density function works is given first. This idea has been 

illustrated using Fig. 3.2 constructed from an artificial data set. It should be noted that 

while the area under the density estimate is equal to one, each of the rescaled kernel 

function has an area equal to 
n
1 . This can be obtained by integration as follows. 

 dx
h

Xx
K

nh

i

 
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 = dzhzK

nh 
)(

1
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n
dzzKh

nh
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1
  (3.23) 

 

Figure 3.2: Kernel density estimate viewed as sum of bumps 

This is the sum over all the rescaled kernels (the little bumps). The estimated function is 

a result of the vertical sum of the bumps centred on the observed values of x.  

 

Unlike histograms, kernel estimates do not depend on the choice of the origin. They are 

smoother than histogram estimators since they inherit the smoothness of the kernel 

chosen and have a faster rate of convergence. As will be noticed, increasing the 
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bandwidth increases the amount of smoothing in the estimate (i.e. large h would give a 

flat estimate) while a small )0(h reveals the finer details of the distribution.  

 

As stated earlier the choice of the kernel function is not very crucial as the bandwidth 

itself (Wand & Jones, 1995). For this reason and that of its ease in obtaining the optimal 

bandwidth during the bandwidth selection, the Gaussian kernel function has been used in 

this study. It also has an advantage in that the weights are always positive (Todd, 2014). 

In this study density estimators have not been pursued beyond this point since the focus 

of this research is that of regression estimation. In the next section the theoretical 

properties of Nadaraya-Watson estimator have been derived. 

3.8. Properties of Nadaraya- Watson estimator 

Because of the property of symmetry and clarity of the estimator let the Nadaraya- 

Watson kernel estimator given in (3.6) be rewritten as: 
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For finite population total, the estimator is given in (3.14) that is 
npT̂ . 

The bias is then given by: 
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But from the model in (3.3), iii eXmY  )( . This can be rewritten as; 

    iii exmXmxmY  )()()(      (3.27) 

So that from (3.25), the first term in (3.26) before taking the expectation is given by: 
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This may be rewritten as: 
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Hence taking expectation of (3.29), the estimator becomes: 
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Theorem 1 

Under conditions 1 and 2 in section (3.6)                 
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Proof  

To tackle this theorem, the bias and variance terms have been derived separately as 

shown in the respective subsections. 

3.8.1 Bias term of 
npT̂   

From the fact that 0)/( iXeE , it will follow that   0)(ˆ
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the following can be obtained. 
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Applying Taylor’s expansion for the v
th

 order kernels the following can be obtained: 
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And similarly 
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For the second order kernels the expansions become: 

   22)(
2

1
)()()( zhxmhzxmxmhzxm      (3.35) 

And  

 
22)(

2

1
)()()( zhxfhzxfxfhzxf      (3.36) 

Restricting expansions to order )( 2ho  this implies that: 
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From equation (3.30) the expected value of the second term given by 
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From (3.26) the bias is given by   
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Undoubtedly the finite population total estimator using standard Nadaraya-Watson 

estimator is a biased estimator. A large amount of bias is induced at the boundary by the 

weighting function of the Nadaraya-Watson estimator. To give a pictorial view of this 

fact, data of size n = 100 was artificially generated using a cubic function given by the 

model eXY  310 , where )2,1(~ UX and )5.0,0(~ Ne . The model was chosen 

because it showed the boundary problem clearly. The three figures, Fig.3.3-3.5, were 

obtained from this data. From the Fig. 3.3 the fitted curve illustrates how the Nadaraya-

Watson estimator has failed to properly capture the trend on the two boundaries- there is 

underestimation on the left boundary and overestimation on the right. Clearly this bias 

term in this estimator still depends on the marginal density function of )(xf  and its 



39 

 

derivative )(xf  . It is also evident that the bias term is directly proportional to the square 

of the bandwidth h. This implies that the larger the bandwidth, the larger the bias and 

vice-versa. Cumulatively this affects the total estimator as well. This means therefore 

that to have a small bias one has to keep the bandwidth considerably small. The problem 

is how small should it be and does this small value have any effect on the other measure 

of variance? The insight of this has been given in Fig. 3.4 

 

Figure 3.3: Boundary bias of Nadaraya-Watson estimator with h=0.25 

From Fig. 3.3 it can be noticed the on the left boundary most of the points plotted are 

above the fitted line and are below it on the extreme right.  
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Figure 3.4: Nadaraya-Watson estimator with smaller bandwidth of 

h=0.15 

As stated above the direct variation of the bias and the bandwidth is shown on Fig. 3.4. 

The smaller bandwidth of h=0.15 has slightly reduced the bias although this 

improvement is still insignificant at the boundary. Also one can note how the fitted line 

has started showing some variation. 

 

Reducing the bandwidth to much smaller value even reduces the bias further, but the 

fitted line become more wiggly and unappealing. See Fig. 3.5 for this revelation. Such a 

curve characterized by a lot of variation is not desirable in estimation. It is clear that this 

reduction of the bandwidth worsens the situation and is therefore not a satisfactory 

solution of the problem. As to how small the bandwidth should be, depends on its impact 

on the variance that can be tolerated i.e. how the variance term behaves with respect to 
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this bandwidth. The relationship between the bandwidth and variance is shown in the 

derivation done in the next section. 

 

Figure 3.5: Nadaraya-Watson estimator with three different bandwidths 

3.8.2 Variance term of a 
npT̂  

 From (3.28) and (3.30), it can be noted that: 
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Writing (3.44) in terms of expectation gives the following results: 
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The second term in the right hand side reduces to zero since 0)/( iXeE . Note also that

 22)/( iXeE .  
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Again letting 

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h
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The variance of  
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And by change of variables and Taylor’s expansion, this gives: 
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This is of an order smaller than 
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in (3.47), hence the variance of the 

population total,
npT̂ , stated in (3.14) is therefore given by: 
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From equation (3.47), this gives:  
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A critical study at this term shows that the variance still depends on the marginal density 

function )(xf . Besides this and unlike the bias, the variance is inversely proportional to 

the bandwidth, h so that an increase in the bandwidth results in a smaller variance while 

a larger variance is obtained for a smaller bandwidth. The implication of this is that the 

two components of bias and the variance cannot be looked at in isolation. It would have 

been quite straight forward to reduce or eliminate the bias by just reducing the 

bandwidth if it were not for the fact that the same action would result on an increase on 

the variance. This means that finding a bandwidth that allows a compromise between the 

two is inevitable. See Fig. 3.6 for this insight on bias-variance trade-off in relation to the 

size of the bandwidth. The measure that combines both the bias and the variance is the 

mean square error. This is explored next. 

3.8.3 Mean Square Error and AMSE of  
npT̂  

               2ˆˆ TTETMSE npnp     

    2]ˆ[]ˆ[ˆ TTETETE npnpnp   

    22  ]ˆ[ ]ˆ[ˆ TTEETETE npnpnp   

                 TTETETE npnpnp  ]ˆ[.]ˆ[ˆ2  

               0ˆˆ 2  npnp TBiasTVar     (3.52) 

From (3.42) and (3.51), one can have:  
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This completes the proof of the theorem. 

For large sample, that is as n approaches N, and a sufficiently small bandwidth MSE

 )(ˆ xm  in (3.53) become: 
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        (3.54)                 

=AMSE  npT̂  since this is based on asymptotic expansions. 

Equation (3.54) clearly indicates that as 0h  and Nn , the MSE of the kernel 

regression estimator approaches zero. Hence the estimator is consistent. It should also be 

noted, though unfortunately, that in addition to the marginal density of )(xf and its 

derivative )(xf  , MSE still depends on the functions )(xm  and )(xm   both of which 

being unknown in practice. Obtaining an optimum value of h does not drop these 

functions either, and further depends on x making it a local bandwidth. See more details 

in (Härdle et al, 2005).  
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Figure 3.6: Impact of the bandwidth on the bias, variance and MSE. 

3.9 Boundary Effects due to use of the Nadaraya-Watson Estimator 

It is now clear that the above estimator due to (Dorfman, 1992) suffers from the 

boundary problem induced by the Nadaraya-Watson estimator used. It has been noted 

that it is necessary to have an optimal bandwidth to solve the problem of bias-variance 

trade-off. This bandwidth, however, does not eliminate the boundary bias. This study, 

therefore, proceed to propose an estimator that minimizes this effect significantly. If K is 

a symmetric function and fixed across the support estimation then inference are 

generally simplified for unbounded support i.e. (-   , ). But )(ˆ xm is inconsistent at the 

boundary [0, h] for such a choice of K (Malec & Melanie, 2012). For  hx ,0 , the bias 

of )(xm is of order )(ho rather than )( 2ho . 

In literature many techniques of removing boundary effects in density estimation have 

been proposed. Four common techniques have been mentioned briefly in this study. 
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These are: - Reflection of Data technique, Transformation of data technique, Pseudo 

data methods, and Boundary kernel methods. For an overview of these techniques see 

(Karunamuni & Alberts, 2004). Of all these none has been taken further to regression 

estimation. The idea behind the Reflection of data technique is a motivation in this 

study. The proposed population estimator uses this technique to modify the smoothing 

weight. These techniques have been briefly highlighted as used in density estimation.  

3.9.1 Reflection of Data Method  

This technique has been proposed by researchers such as (Cline & Hart, 1991), 

(Schuster, 1985) and (Silverman, 1986). It is also referred to as the data-reflected 

technique. In this method one has to simply add –X1, -X2, …, -Xn to the data set. This 

addition of data is made because the kernel estimator is penalizing for lack of data on the 

negative axis and is therefore gradually using reduced amount of data in its window as it 

approaches the boundary thus resulting in a boundary bias. The estimator for this 

method is given by: 
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 0)(ˆ xm , for 0x         

  

It can be shown that 0)(ˆ  xm . Hence it is a very good method if the underlying density 

has the property 0)0(' m . 

3.9.2 Transformation of data Method  

This is a technique that has been studied by (Wand et al, 1991), and (Marron & Ruppert, 

1994). In this method one can take a one-to-one continuous function     ,0,0:g . A 

regular kernel estimator is then used with the transformed data set {g(X1), g(X2), …, 

g(Xn)}. 

The estimator is thus given by: 
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It should be noted that the estimator is not estimating the p.d.f of X, but instead that of 

g(X). This therefore leaves room for manipulation where one can choose g so as to get 

the data produce what one needs. 

3.9.3 Pseudo Data Methods 

The technique is due to (Cowling & Hall, 1996). It involves generating of data beyond 

the left end point of the support of the density. It is a kind of a “reflection transformation 

estimator,” which transforms the data into a new set, then puts it on the negative axis. 

The estimator is given by: 
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where nm  and  
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where X(t) linearly interpolates among 0, X(1), X(2), …, X(n) 

3.9.4 Boundary Kernel Method  

This technique has been explored by many researchers including (Gasser & Müller, 

1979; Gasser et al, 1985; Jones, 1993; Müller, 1991; Zhang & Karunamuni, 2000). In 

this method a different kernel for estimating function is used at each point in the 

boundary region. In the investigations so far carried out, it has been noted that new 

kernels give up the symmetry property and put more weight on the positive axis. The 

estimator for this technique is given by:  
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where x=ch, 10  c , and b(c) = 2-c 

Also K(c) 
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The major drawback of this method is that the estimates might be negative.  

In this study the use of the reflection technique has been explored in the investigation. 

This is because it is straight forward to calculate and implement compared to the other 

three techniques. Before reviewing the properties of this reflection technique, the 

estimator of the finite population total constructed using this technique is proposed in the 

next section. 

3.10 Proposed estimator of finite population total (
nprT̂ ) 

Let the variables X and Y be auxiliary and the study variables respectively as earlier 

stated. To obtain a robust nonparametric regression estimator for the finite population 

total  that addresses the boundary effect, the function given in equation (3.55) has been 

modified and used to construct the required estimator so that the non-sample part in 

equation (3.2) can be estimated using it, to give the following proposed estimator: 
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Where the first term 


n

i

iy
1

is the sample total observed and therefore under model-based 

approach it will not be necessary to be estimated while the second term 


N

ni

iref xm
1

)(ˆ  is the 

non-sample total term that is to be estimated nonparametrically using the reflection 

technique. As noted earlier the Nadaraya-Watson estimator induces a bias at the 

boundary. This is because at the boundary the interval where ),0[ hx , the symmetric 
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kernel has decreased amount or lacks data on part of its window. The data-reflected 

technique therefore provides the data through reflection method so that this information 

is put on the negative axis thereby supplying the kernel with the information required on 

this section.  The following steps give the procedure on how it works. 

 Let the {(X1,Y1), (X2, Y2),…, (Xn ,Yn)} be the set of n observations in the sample. The 

data is augmented by adding the reflections of all the points in the boundary, to give the 

set {(X1, Y1), (-X1, Y1), (X2, Y2), (- X2, Y2) ..., (-Xn, Yn), (Xn , Yn)}. If a kernel estimate 

m*(x) is constructed from this data set of size 2n, then an estimate based on the original 

data can be given by putting )(*2)(ˆ xmxm  , for 0x , and zero otherwise. This gives 

the modified general weight function given by:  
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It can be shown that the estimate will always have zero derivative at the boundary, 

provided the kernel is symmetric and differentiable. In practice it will not usually be 

necessary to reflect the whole data set, since if Xi/h is sufficiently large, the reflected 

point - Xi/h will not be felt in the calculation of m*(x) for x> 0, and hence reflection of 

points near 0 is all that is needed. (Silverman, 1986) in his example, states that if K is the 

Gaussian kernel there is no practical need to reflect points beyond Xi > 4h. 

The next section reviews some properties that are unique to this modified kernel density 

estimator.  

3.11 Properties of data-reflected estimator for population total (
nprT̂ ) 

3.11.1 The kernel estimator at the boundary   

The interest in this study is in the boundary problem which occurs in the interval [0, h). 

This is as a result of lack of information which follows due to truncation of such 
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information at this interval, i.e. the density function is continuous on [0, ∞) and is 0, for 

x< 0. This reduced amount of information leads to serious bias during the estimation and 

as such the estimate becomes inaccurate. The boundary problem arises when the value 

of x is smaller than the chosen value of the bandwidth. In the case of the standard kernel 

estimator of )(xm  given by (3.23) consider ).(ˆ hcm  for )1,0[c , where x = c.h, then for 

h

ux
z


 , 

 one can have  

 zczchu )(00  

For a kernel function which has the support [-1, 1], the variable z must lie within [-1, 1]. 

But )1,0[c , hence 1 zc . 

This implies that for the density estimation the expectation of the estimator is: 
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Taylor’s expansion yields: 
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For the case of regression estimation considered in this study, it can be deduced from 

(3.30) that (3.64) results in: 
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This estimator will only be unbiased and consistent asymptotically if 1 i.e.  chx . The 

implication of this is that the expected value can only reach half the original value. 
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That is: 
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1
)]0(ˆ[ hOmmE        (3.66) 

It should be noted that: 
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an indication that the density does not live up to the condition of being a p.d.f about its 

support at the boundary. One way of correcting this boundary problem is by use of data-

reflected technique. Due to symmetry of the kernel function one can look at the 

reflection estimator as: 

      )(ˆ)(ˆ)(ˆ xmExmExmE ref       (3.68) 

3.11.2 The Bias of Data-reflected Estimation Technique in Regression   

It can be shown that this reflection estimator being symmetric around the origin further 

has the condition: 

 )()( zKzK          (3.69) 

So that 
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The implication of this is that the reflection estimator satisfies the so-called shoulder 

condition always. At the boundary the decreased amount of the data suggest concavity 

of the density in the vicinity of the origin. As a consequence, these kernels tend to 

misinterpret the local concavity as an indication of a mode over the strictly positive 

region, (Hirukawa & Sakudo, 2015). This is a condition where a given density, say m, 

has a shoulder at 0, i.e. 0)0( m . See for instance (Mack et al, 1999). The graphs in 

Fig. 3.7 show this impression. It should be noted that except for the graph on 

exponential data, the other two on cauchy and normal data satisfy the shoulder 

condition.  
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Figure 3.7: Shoulder condition 
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The first term in the right hand side of equation (3.68) is already given in (3.65); 

therefore, proceeding to look at the second term and noting that 

  iii exmXmxmY  )()()(  gives. 
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But x = ch, )1,0[c . 

Thus  
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Taylor’s expansion yields: 
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Therefore the product of this expansion is: 
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Because of the property of symmetry the following equality holds: 
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where   0)(:)(

1

1

2

2  
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dzzKzKK , see  equation (3.4) 

Thus putting together the results in (3.77) with that of (3.65) yields in the following:  
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The bias for the estimator of the finite population total, nprT , given in equation (3.61) 

would therefore be given by: 
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This clearly shows that within the boundary interval, the estimator still has a bias of 

order h while at the interior interval the expectation coincides with that of the standard 

kernel estimator. Notably, however, if the underlying density, m, has a shoulder at 0, i.e.  

0)0( m , the term of order h drops out thereby making the bias to be order 2h . 
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3.11.3 The variance of data-reflected kernel regression estimation technique   

Similarly the variance can be computed as follows: 
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The second term of (3.81) is zero, thus procedure of computing the first term is as 

follows: 
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And from the property of symmetry of the kernel function, the following equality is 

obtained: 
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With this, therefore, the variance is given by: 
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1

1

2)()( dzzKKR .  

From the derivation of the bias and the variance, it was noted that the estimated function 

always fulfills the shoulder condition. This condition unfortunately is imposed even for 

functions whose true density does not satisfy the shoulder condition. Further to this, is 

that while the reflection estimator has a low variance its bias is fairly high, but still better 

than the Nadaraya-Watson estimator, where the shoulder condition is not satisfied. 

Though so, it should be noted that an impressive thing with this technique is that it is 

easy to calculate and at the same time very good for densities that fulfill the shoulder 

condition. 

Moreover, the other advantage of the technique is that the estimate is a density i.e. it 

integrates to 1 over the whole real axis without assigning any mass on the negative axis.  

3.11.4 Illustration 

We illustrate the standard kernel and the effect of modifying it in the following example 

whose data has been simulated. The resulting curve is shown in Fig. 3.8 and Fig. 3.9. 

  Table 3.3: Simulated data Xi~U(0,1), Yi=m(Xi)+ei,  m(Xi)= 10+Xi
3
, ei ~ N(0, 1) 

X 0.08 0.12 0.15 0.29 0.38 0.49 0.50 0.56 0.61 0.74 

Y 9.31 10.34 11.08 10.98 9.59 10.95 11.79 9.52 10.47 10.28 
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Figure 3.8: Showing Nadaraya-Watson kernel smoother with the 

bandwidth of h=0.5.  

Note that a population of size N=100 was generated from where a simple random 

sample of size n=10 was taken and the corresponding pairs of x and y were as shown in 

Table 3.3.This data subjected to Kernel smoothing function used by (Dorfman, 1992). 

The figure also shows a scatter diagram of the actual pairs of points plotted for purposes 

of showing boundary effects of the kernel smoothing. Clearly there is a bias at the 

boundaries. Most points lie above the curve on the left and below the line on the right. 

Fig.3.9 shows both the regression estimation obtained using the NW-estimator and that 

modified using the reflection technique. 
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Figure 3.9: Effect of kernel modification in regression estimation  

In Fig. 3.9 the graph of the standard Nadaraya-Watson and the modified kernel 

regression estimators which uses reflection technique given by (3.62), have been shown. 

It clearly addresses the bias at the boundary and some sections of the interior part of the 

curve especially where the observations taken are not equally spaced. The bandwidth of 

h=0.5 was maintained. The standard kernel regression estimation fit is given by the 

broken line while the modified one is given by the continuous line. It should be noted 

that the biggest impact is at the boundary. In the next chapter more analytical graphs 

have been given and discussed based the techniques and theories derived in this chapter. 
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CHAPTER FOUR 

EMPIRICAL STUDY 

4.1 Introduction  

In this chapter an empirical analysis has been done using data simulated using the R 

software (R Core Team, 2014) and in some limited cases where it was convenient Ms-

Excel was also used. Some few graphs have been done using Ms-Excel while majority 

of them have been done using the R software. The datasets were artificially generated, 

using selected distributions and whose importance and/or the use in similar researches 

has been explained, were used during the analysis of this study. R-codes used to obtain 

figures and tabulated values presented, have been given at the appendix section of this 

thesis. 

4.2  Kernel functions in regression estimation  

Identification of an appropriate kernel was part of the objectives dealt with on in this 

study. Within the theoretical framework and because of its smoothness property, 

Gaussian kernel function was identified. With a normal random sample of size 100, 

simulation using the R software was done and this kernel function was compared with 

the rest. The influence of the different selected kernel functions was checked, with the 

bandwidths and data kept constant. The resulting graphs on this study are given in Fig. 

4.1 for the density estimation and regression estimation in the subsequent graphs in Fig. 

4.2. Other graphs have been given in Fig. 4.3-4.4.  
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(a) Gaussian       (b) Epanechnikov 

                                                                             

(c) Rectangular      (d) Triangular  

                                                         

(e) Biweight          (f) Combined Graphs     

Figure 4.1: Graphs obtained using various kernel functions with 

bw=0.39 
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Two models namely; quadratic and exponential were chosen for this purpose. This was 

done because the regression curves of the figures of these models were clearer than the 

others at the boundary. The graphs in Fig. 4.1 are from an artificial data set simulated 

using a random normal distribution with mean 20 and standard deviation of 1.  Note, 

however, that every kernel function has its own optimal bandwidth. These bandwidths 

may not necessarily be the same. The histograms only serve to give a rough picture on 

the data used in the density plot. 

      

(a)                                                                           (b) 

Figure 4.2: Comparative regression Graphs for Nadaraya-Watson and 

Reflection estmators 

In Fig. 4.2 the sample size of n = 100, was kept constant for the exponential model in (a) 

and the quadratic model in (b). The two graphs in the figure show how the reflection 

technique addressed the boundary problem.   
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4.3 Nadaraya-Watson and Data-reflection Technique in regression 

In this section the Nadaraya- Watson and data-reflection technique were compared. To 

achieve this data was simulated artificially and regression curves were fitted to reveal 

how best each of the techniques could capture the data. The bandwidths were obtained 

using the cross-validation technique whose merits had been discussed under the 

literature review.  The simulation was done for varied sample sizes ranging from n = 50 

to n = 500, for two of the models chosen to facilitate this comparison. The quadratic and 

the exponential models were chosen because they reveal the boundary biases clearly. 

The resulting graphs are presented in Fig. 4.3 for the exponential model and Fig. 4.4 for 

the quadratic model. 
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 (a) (b) 

 

 

  (c) 

Figure 4.3: Comparing Nadaraya-Watson with Reflection estimator in 

regression estimation (Exponential Model with varying sample sizes)  
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Fig. 4.3 show the graphs of the exponential model for the same estimators of Nadaraya-

Watson and data-reflection technique, but with varying sample sizes of (a) n = 500, (b) n 

= 200 and (c) n = 50 respectively. Fig 4.4 has similar sample sizes for the respective 

parts for the quadratic model. 

   

                          (a) (b)  (c) 

Figure 4.4: Comparing Nadaraya-Watson with Reflection estimator in 

regression estimation (Quadratic Model with varying sample sizes)  
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to this comparison was made between the three model-based nonparametric regression 
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2000 simple random samples of size n=500 were drawn and used for estimation. In each 

case estimates of population totals were obtained using the designed-based Horvitz-

Thompson estimator, HTT̂ , the other three model-based estimators, that is, the ratio 

estimator, RT̂ , nonparametric regression estimator due to (Dorfman, 1992), 
npT̂ , and the 

nonparametric regression estimator proposed in this study, 
nprT̂ . The average relative 

biases of the finite population totals got using the three estimation techniques were 

obtained using the relation: TTT
i

i /2000ˆ
2000

1






















  where T is the actual population 

total and iT̂ is one of the estimators of the population total computed from the i
th 

sample. 

A cross validation data generated bandwidth was used in the simulation. Table 4.1 gives 

the summary of these results. 

Table 4.1: Summary of respective estimators and their average relative biases for 

population totals 

MODEL nprT̂  
npT̂  

HTT̂  RT̂  

LINEAR 0.09731943 -0.06678663 0.6766549 -0.05929314 

QUADRATIC -0.1741573 -2.458993 -0.8319519 0.4905587 

SINE -0.002352638 -1.150008 -0.9798779 -1.39459 

EXPONENTIAL -0.1586322 -2.716807 -0.269894 -0.2317445 

JUMP 0.4267462 -0.862683 0.2380192 1.351407 

BUMP -0.1310614 1.265547 -0.1032644 0.2410446 

It can be noticed that some of the values of the average relative biases are negative while 

others are positive representing underestimation or overestimation respectively. It can 

also be seen that for the data simulated most of the estimates obtained using the 

estimator due to (Dorfman, 1992) and those of the ratio estimator had slightly larger 
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biases in most of the models. The designed-based Horvitz-Thompson estimator had 

biases that were fairly smaller than ratio estimator in three of the models but leaves the 

proposed standing out as the best among these estimators in overall performance.      

4.5 MSE (AMSE) of the different population total estimators studied 

In this section the study focuses on assessing the performance of the proposed 

estimators. Data was simulated to compare the standard kernel estimator and the 

modified kernel estimator. To make this comparison possible the measures for the MSEs 

were computed for the six models whose details are given in Table 4.2. These 

distributions have been chosen because they are often applicable in reality especially in 

social and behavioural sciences. Bumps and the jumps are often useful during events 

such as bio-surveillance where there may be an unusually high rate of occurrence of 

certain events like disease outbreaks or rainfall within certain period in a given region of 

a country. Time taken between two successive breakdowns of a machine after repair is 

an example that can constitute an exponential distribution, while sine distributions are 

useful in phenomena whose occurrences are periodic. It is for such useful applications of 

the distributions that motivated us to simulate data using them. The other functions were 

useful in facilitating comparison of the estimators. The summary of the results are given 

in Table 4.3 

Table 4.2 Equations of models simulated 

Model Equation 

Linear )1,0(~)5.0(21 Nex   

Quadratic )1,0(~)5.0(21 2 Nex   

Jump )1,0(~65.0)5.0(21 65.065.0 NeIIx xx    

Sine )1,0(~)2sin(2 Nex    

Exponential )1,0(~)8exp( Nex   

Bump   )1,0(~)5.0(200exp)5.0(21 2 Nexx   
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Table 4.3 Summary of the results for the unconditional MSE (Obtained from 2000 

iterations and sample sizes of n=500) 

MODEL nprT̂  
npT̂  

HTT̂  RT̂  

LINEAR 10.09797 12.39128 332.0872 8.85685 

QUADRATIC 10.74908 17.59172 29.24937 8338.517 

SINE 11.40551 32.64659 505.6168 10154.5 

EXPONENTIAL 10.71374 19.90012 54.49664 1035.598 

JUMP 11.1304 14.55378 22.88779 13395.2 

BUMP 11.28804 42.52958 396.9592 92.61349 

 

It was noted earlier on that it is not adequate to look at the bias term without considering 

the variance of an estimator. MSE is the measure of accuracy that puts the two 

properties into perspective. From the values presented in Table 4.3, the designed-based 

Horvitz-Thompson estimator and the model-based ratio estimators have large values. 

This scenario reveals that for the data obtained from the models considered, 

nonparametric regression estimators are better. The two estimators 
nprT̂  and 

npT̂  

generally have smaller values. Comparing the two, shows that 
nprT̂ has even smaller 

values than 
npT̂ .   

4.6 Unconditional 95% C.I for the respective population total estimators 

The 95% confidence interval of each of the estimators was also computed using the 

formula given by; )ˆ(ˆ
2

TVarZTT   and the interval length is therefore the difference 

between the upper limit and the lower limit. The results are presented in Table 4.4. 
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Table 4.4 Summary results for the unconditional confidence interval lengths 

MODEL nprT̂  
npT̂  

HTT̂  RT̂  

LINEAR 10.70248 11.51506 60.75419 10.4797 

QUADRATIC 10.67005 11.09624 18.99733 72.39773 

SINE 10.77354 19.22728 75.80554 185.6727 

EXPONENTIAL 10.47873 12.36678 25.15132 30.85746 

JUMP 11.18108 12.98228 16.63127 97.24218 

BUMP 11.12733 20.55477 65.69977 31.66942 

From Table 4.4, the values of the estimators 
nprT̂ and

npT̂ reveal shorter confidence lengths 

compared to  HTT̂  and RT̂ . This is also an indication that the nonparametric regression 

estimators dominate the other estimators. As well, it is clear that 
nprT̂ has the smallest 

figures overall except in the linear model where RT̂  has the least value. In other words 

RT̂  would only be better for the linear model while being poor in all others. 

4.7 Conditional performance of the respective population total estimators  

To study the conditional performance of the estimators, the sample means sxi ' were 

calculated from 10,000 samples taken from the population already generated and ranked 

in ascending order while maintaining the corresponding estimates, sTi '
ˆ , of the finite 

population totals. Fifty groups of 200 samples each were then obtained as per the new 

order of the rankings.  From each of these groups the sample means of the auxiliary 

variable were averaged to give, jx , the mean of the sample means of the j
th

 group (j= 1, 

2, …, 50). The corresponding population totals i.e  sT j '
ˆ

 for the various population 
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estimators studied were also computed and used to calculate the respective conditional 

biases for the models given. The resulting graphs have been plotted in the Fig. 4.5-4.7. 

 

(a)                                                          (b) 

Figure 4.5: Comparison of conditional bias for the respective finite 

population total estimators (linear & Quadratic models)  

 

(a)                                                                    (b) 

Figure 4.6: Comparison of conditional bias for the respective finite 

population total estimators (Jump & Bump models) 
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 (a) (b) 

 Figure 4.7: Comparison of conditional bias for the respective finite 

population total estimators (Sine & Exponential models) 

It can be noted that from the results obtained from all the models simulated the reflection 

estimator dominates the rest of the estimators considered in that it is almost 

conditionally unbiased except for the linear model in Fig. 4.5 part (a) where the ratio 

estimator is better. In this model the proposed estimator comes close at the second 

position after it.  
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CHAPTER FIVE 

RESULTS, DISCUSSION AND RECOMMENDATION 

5.1 RESULTS AND DISCUSSION 

From the onset of this research, it was noted that estimators that utilize the standard 

kernel estimators such as that due to (Dorfman, 1992) suffer from the boundary problem. 

It was therefore inevitable that a better estimator ought to be sought. In particular, 

modification of the Nadaraya-Watson kernel estimator was proposed with a view to 

alleviating the problem.  

The first objective set out was that of identifying the appropriate kernel for a 

nonparametric regression in the context of model-based estimation. The study revealed 

that quite a number of them have the suitable features such as that of assignment of 

weights so that the farthest point is given the least while that closest to the central point 

of the window of the kernel function receives the most. These kernel functions included 

the Gaussian, Epanechnikov, bi-weight, and the tri-weight among others. There is the 

so-called “naive” kernel function also variously referred to as the uniform or rectangular 

kernel function which assigns weights of ½ uniformly within the window. The constant 

assignment of the weights is not a pleasant thing as it is believed that the points closer to 

a given observation have more information than those that are farther away. Also the 

density function, and in the case of this study the regression curve is not smooth because 

of the jumps over the short intervals of the window while being constant elsewhere. This 

can be seen in Fig. 4.1 part (c). These jumps often end up affecting the smoothness of 

the estimate. Also noted in previous study by (Wand & Jones, 1995) is the triangular 

function which (Avery, 2010) reports to be lacking the smoothness property. On such 

grounds these kernels were dropped. 
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As for the others stated they have almost similar characteristics but Epanechnikov is the 

optimal kernel. This function posses smooth properties but has discontinuous first 

derivative thus making the Gaussian function to be the best substitute.  

Secondly the next objective of this study was to propose a nonparametric regression 

estimator that uses the modified kernel estimator and the identified kernel within the 

model-based approach. This study developed a robust estimator of finite population total 

whose kernel estimator was modified using data reflection technique and as evidenced 

from the analysis of the relative biases presented in Table 4.1, it was possible to 

significantly reduce the boundary bias. The relative biases indicate that the proposed 

estimator is superior to the other estimators in all the models used except for the linear 

model where the ratio estimator dominated. But though so, it is known in literature that 

the ratio estimator is the Best Linear Unbiased Predictor and therefore is expected to 

perform better in that case. It is worth noting that even though the proposed estimator is 

not the best under the linear model, the results obtained are still satisfactory. The graphs 

of the conditional biases in Fig. 4.5-4.7 also indicate that the proposed estimator 

dominates the other estimators. The graphs show that while the other estimators have 

larger conditional biases, the proposed estimator is almost conditionally unbiased. This 

good performance of the reflection estimator was also evident with the comparative 

regression graphs given in Fig. 4.2 and those given in Fig. 4.3-4.4 where the boundary 

correction reveals itself. 

The proposed technique can therefore be recommended for removal of the boundary 

effect in regression estimation of finite population total. The tighter confidence interval 

lengths reported about this estimator in Table 4.4 is an indication of how it is better in 

terms of efficiency and reliability. 

To enable the investigation on the asymptotic properties to be carried out simulation 

based on the theoretical results derived in the study was done. The smaller values of the 

MSEs reported for the proposed finite population total estimator, nprT , in Table 4.3 
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proved that this estimator is far much better than the rest of the estimators compared 

across the models used.  From the simulated data it was found out that change in the 

sample size does not have any impact on the bias. 

From the nonparametric point of view, it can therefore, be concluded that the proposed 

estimator performs better than the one of (Dorfman, 1992) and can therefore be 

recommended for bias correction at the boundary. This adds knowledge to the already 

existing techniques in regression estimation. 

5.2 RECOMMENDATION 

From this study it would be recommended that a suitable bandwidth that strikes a 

balance between the bias and the variance should be found for optimal results. As noted 

from this study and previous ones, this can be achieved using various bandwidth 

selectors. Like many other researchers the data generated cross-validation approach was 

used, but though so, this remains an area that requires further research because currently 

no selector can be used universally. The graphs obtained using varied bandwidths in Fig. 

5.1 can be compared. The smaller bandwidth notably reduced the bias to a certain extent 

but a further reduction on this bandwidth came with a cost of increased variance. 
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APPENDICES 

Appendix 1: Graph on boundary correction 

 

Figure 5.1: Reflection estimator in regression estimation (Exponential 

Model with sample size, n=100 and two different  bandwidths)  
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 (a) (b) 

   

 (c) (d) 

  

 (e) (f) 

Figure 5.2: Scatter plots for the respective models used in simulation (a) 
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Appendix 2: R-codes for various Graphs and results tabulated 

 

R-codes for Fig.3.3 

library(KernSmooth) 

 ##simulating data 

 set.seed(12) 

 x<-c(runif(100,1,2)) 

 e<-c(rnorm(100,0,0.5)) 

 y<-c(10-x^3+e) 

 plot(x,y) 

 nonpar.reg.nw1 <- ksmooth(x, y, kernel="normal", bandwidth=0.25) 

 lines(nonpar.reg.nw1,col=4) 

 

 

R-codes for Fig.3.4-3.5  

set.seed(12) 

 x<-c(runif(100,1,2)) 

 e<-c(rnorm(100,0,0.5)) 

 y<-c(10-x^3+e) 

 plot(x,y) 

 nonpar.reg.nw1 <- ksmooth(x, y, kernel="normal", bandwidth=0.25) 

 nonpar.reg.nw2 <- ksmooth(x, y, kernel="normal", bandwidth=0.15) 

 nonpar.reg.nw3 <- ksmooth(x, y, kernel="normal", bandwidth=0.05) 

 nonpar.reg.nw4 <- ksmooth(x, y, kernel="normal", bandwidth=0.02) 

 lines(nonpar.reg.nw1,col=1) 

 lines(nonpar.reg.nw2,col=3,lwd=2) 

 lines(nonpar.reg.nw3,col=2,lwd=2,lty=2) 

 lines(nonpar.reg.nw4,col=4,lwd=2,lty=2) 

 legend("topright", c("h=0.25",  

"h=0.05","h=0.15","h=0.02"), 

 col=1:4,lwd=2:2,lty=1:2, bty="n") 

*********************************************************************** 
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R-codes for comparison of various kernel functions in Fig 4.1 

set.seed(10) 

x<-rnorm(100,20) 

hist(x) 

hist(x, prob=T,  

main="Histogram With Fitted Density Curve", bw="nrd") 

density (x,bw="nrd", kernel="gaussian") 

density (x,bw="nrd", kernel="epanechnikov") 

density (x,bw="nrd", kernel="rectangular") 

density (x,bw="nrd", kernel="triangular") 

density (x,bw="nrd", kernel="biweight") 

 

lines(density(x, bw="nrd",kernel="gaussian"), 

         col="black", 

         lwd=1)  

lines(density(x, bw="nrd",kernel="epanechnikov"), 

         col="blue", 

         lwd=1)  

lines(density(x, bw="nrd",kernel="rectangular"), 

         col="dark green", 

         lwd=1)  

lines(density(x, bw="nrd",kernel="triangular"), 

         col="maroon", 

         lwd=1)  

lines(density(x, bw="nrd",kernel="biweight"), 

         col="red", 

         lwd=1) 

 

***********************************************************************

*  

R-codes for comparison of graphs of NW and reflection regression estimators in Fig. 

4.2-4.4  

library(MASS) 

library(sm) 

library(KernSmooth) 

set.seed(500) 
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E<-rnorm(1000,mean=0,sd=.1)    #the random error 

X<-runif(1000, min = 0, max = 1)  #the explanatory variable 

mx=1-X+exp(-200*(X-0.5)^2)  

mx=2+sin(2*pi*X)#Sine 

Ix <- function(x,h) 1*(x >= h) 

mx = 1 + 2*(X-.5)*Ix(X,.65) +0.65*(1-Ix(X,.65)) 

mx=2+sin(2*pi*X) 

mx=1+2*(X-0.5) 

mx=1+2*(X-0.5)+exp(-200*(X-0.5)^2) 

mx=exp(-8*X) 

mx=1+2*((X-0.5)^2) 

 

  #the regression function 

Y <- mx+E  

 

sindex=sample(1:1000,200) 

x.sample=X[sindex] 

xreflect=c(x.sample,-x.sample) 

xreflect 

xnosample=setdiff(X,x.sample) 

y.sample=Y[sindex] 

yreflect=c(y.sample,y.sample) 

yreflect 

ynosample=setdiff(Y,y.sample) 

data1=data.frame(xnosample) 

 

plot(x.sample,y.sample) 

title(main="Optimum cross validation bandwidth, n=200,Jump") 

#title(main="Bandwidth=0.02, n=00") 

hm1 <- hcv(x.sample,y.sample) 

hm1 

#H1=(ucv(x.sample,nb=1000,min(x.sample),max(x.sample))) 

#H1 

hm2 <- hcv(xreflect,yreflect) 

hm2 

 

#NADARAYA 

fit1 <- locpoly(x.sample, y.sample,degree=0, kernel = "normal",bandwidth = hm1) 

lines(fit1,col=1,lwd=2) 
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#fit2 <- locpoly(x.sample, y.sample, degree=1, kernel = "normal",bandwidth = hm) 

#REFLECTION 

fit3 <- locpoly(xreflect, yreflect, degree=0, kernel = "normal",bandwidth = hm2) 

lines(fit3,col="red",lty=2,lwd=2) 

#HT 

fit4=(length(Y)/length(y.sample))*y.sample 

legend("topright", c("Nadaraya-Watson",  

"Reflection"), 

 col=1:2,lwd=2:2,lty=1:2, bty="n") 

***********************************************************************

******* 

 

R-codes for results tabulated 

library(MASS) 

require(sm) 

E<-rnorm(1000,mean=0,sd=.1)    #the random error 

X<-runif(1000, min = 0, max = 1)  #the explanatory variable 

mx=1-X+exp(-200*(X-0.5)^2)  

mx=2+sin(2*pi*X)#Sine 

Ix <- function(x,h) 1*(x >= h) 

mx = 1 + 2*(X-.5)*Ix(X,.65) +0.65*(1-Ix(X,.65)) 

mx=2+sin(2*pi*X) 

mx=1+2*(X-0.5) 

mx=1+2*(X-0.5)+exp(-200*(X-0.5)^2) 

mx=exp(-8*X) 

mx=1+2*((X-0.5)^2) 

 

  #the regression function 

Y <- mx+E  

 

mf=mf2=TT=0 

j=0 

BIASR=BIASND=BIASHT=BIASRATIO=TOTALS=0 

  MSEND=0 

  MSER=MSEHT=MSERATIO=0 

TTND=TTR=TTHT=TTLL=TRATIO=0 
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  means=0 

  varND=varR=varHT=varRATIO=numeric() 

 

while(j<=10000) 

{ 

sindex=sample(1:1000,500)#Selection of the sample 

x.sample=X[sindex] 

xreflect=c(x.sample,-x.sample) 

xreflect 

xnosample=setdiff(X,x.sample) 

y.sample=Y[sindex] 

yreflect=c(y.sample,y.sample) 

yreflect 

ynosample=setdiff(Y,y.sample) 

data1=data.frame(xnosample) 

#H<-hcv(xnosample,ynosample) 

H3=(ucv(xreflect,nb=1000,min(x.sample),max(x.sample))) 

 

H1=(ucv(x.sample,nb=1000,min(x.sample),max(x.sample))) 

#H=(ucv(x.sample,nb=1000,min(x.sample),max(x.sample)))*100 

#H2=(ucv(xnosample,nb=1000,min(xnosample),max(xnosample))) 

 

 

#H2=(ucv(xreflect,nb=1000,min(xreflect),max(xreflect),tol=0.01))*100 

 

#H2=(ucv(xreflect,nb=1000))*100 

 

nad1=ksmooth(x.sample,y.sample,kernel="normal",bandwidth =0.2322215,x.points=xnosample) 

nad2=ksmooth(xreflect,yreflect,kernel="normal",bandwidth =0.03205294,x.points=xnosample) 

nad3=loess(y.sample~x.sample,span=.5) 

#nad4 <- locpoly(x.sample, y.sample, bandwidth = 0.25) 

#nad4<-locpoly(x.sample,y.sample,bandwidth=H) 

#model1=npreg(xdat=x.sample,ydat=y.sample,bws=H,regtype="ll") 

#pred=predict(model1,newdata=data.frame(x.sample),exdat=xnosample) 

 

#computing variance of ratio 

Vr=0 

for(i in 1:length(y.sample)) 

{ 
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f=length(y.sample)/length(Y) 

x_bar=mean(x.sample) 

r=mean(y.sample)/mean(x.sample) 

Vr[i]=(y.sample[i]-r*x.sample[i])^2 

} 

VAr=((1-f)/(length(y.sample)*(length(y.sample)-1))*x_bar^2)*sum(Vr) 

 

summary(nad3) 

mf=nad1$y 

mf2=nad2$y 

mf1=predict(nad3,data=data1,se=TRUE) 

    TTND[j]=sum(c(y.sample,as.vector(mf))) 

    TTR[j]=sum(c(y.sample,as.vector(mf2))) 

    TTHT[j]=sum((length(Y)/length(y.sample))*y.sample)   

    #TTLL[j]=sum(c(y.sample,as.vector(pred))) 

    TRATIO[j]=(sum(y.sample)/sum(x.sample))*sum(X) 

    varND[j]=var(c(y.sample)) +var(as.vector(mf)) 

    varR[j]= var(c(y.sample)) +var(as.vector(mf2)) 

    varHT[j]= var((length(Y)/length(y.sample))*y.sample) 

    varRATIO[j]=var((y.sample)/(x.sample)) 

 

    BIASND[j]=(TTND[j]-sum(Y)) 

    BIASR[j]=(TTR[j]- sum(Y)) 

    BIASHT[j]=(TTHT[j]- sum(Y)) 

    BIASRATIO[j]=(TRATIO[j]- sum(Y)) 

    MSEND[j]=varND[j]+(BIASND[j]^2) 

    MSER[j]=varR[j]+(BIASR[j]^2) 

    MSEHT[j]=varHT[j]+(BIASHT[j]^2) 

    MSERATIO[j]=varRATIO[j]+(BIASRATIO[j]^2) 

     TOTALS[j]=sum(x.sample) 

 

j=j+1 

} 

#MSERATIO=var(TRATIO)-(mean(BIASRATIO))^2 

 

Totals=cbind(sum(Y),mean(TTND),mean(TTR),mean(TTHT),mean(TRATIO)) 

Totals 
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uncond=c(mean(BIASND),mean(MSEND),mean(BIASR),mean(MSER),mean(BIASHT),mean(MSEHT),mean(BIAS

RATIO),mean(MSERATIO)) 

RESULTS<-matrix(uncond,1,8) 

colnames(RESULTS)=c("BIASND","MSEND","BIASR","MSER","BIASHT","MSEHT","BIASRATIO","MSERAT

IO") 

RESULTS 

M=sum(Y) 

V=mean(X) 

 

ptotals=c(mean(TOTALS[1:20])-V,mean(TOTALS[21:40])-V,mean(TOTALS[41:60])-V, 

mean(TOTALS[61:80])-V,mean(TOTALS[81:100])-V,mean(TOTALS[101:120])-V, 

mean(TOTALS[121:140])-V,mean(TOTALS[141:160])-V,mean(TOTALS[161:180])-V, 

mean(TOTALS[181:200])-V,mean(TOTALS[201:220])-V,mean(TOTALS[221:240])-V, 

mean(TOTALS[241:260])-V,mean(TOTALS[261:280])-V,mean(TOTALS[281:300])-V, 

mean(TOTALS[301:320])-V,mean(TOTALS[321:340])-V,mean(TOTALS[341:360])-V, 

mean(TOTALS[361:380])-V,mean(TOTALS[381:400])-V,mean(TOTALS[401:420])-V, 

mean(TOTALS[421:440])-V,mean(TOTALS[441:460])-V,mean(TOTALS[461:480])-V, 

mean(TOTALS[481:500])-V) 

ptotals 

 

 

 

condRbias=c(mean(TTR[1:20])-M,mean(TTR[21:40])-M,mean(TTR[41:60])-M, 

mean(TTR[61:80])-M,mean(TTR[81:100])-M,mean(TTR[101:120])-M, 

mean(TTR[121:140])-M,mean(TTR[141:160])-M,mean(TTR[161:180])-M, 

mean(TTR[181:200])-M,mean(TTR[201:220])-M,mean(TTR[221:240])-M, 

mean(TTR[241:260])-M,mean(TTR[261:280])-M,mean(TTR[281:300])-M, 

mean(TTR[301:320])-M,mean(TTR[321:340])-M,mean(TTR[341:360])-M, 

mean(TTR[361:380])-M,mean(TTR[381:400])-M,mean(TTR[401:420])-M, 

mean(TTR[421:440])-M,mean(TTR[441:460])-M,mean(TTR[461:480])-M, 

mean(TTR[481:500])-M) 

condRbias 

 

 

condNDbias=c(mean(TTND[1:20])-M,mean(TTND[21:40])-M,mean(TTND[41:60])-M, 

mean(TTND[61:80])-M,mean(TTND[81:100])-M,mean(TTND[101:120])-M, 

mean(TTND[121:140])-M,mean(TTND[141:160])-M,mean(TTND[161:180])-M, 

mean(TTND[181:200])-M,mean(TTND[201:220])-M,mean(TTND[221:240])-M, 

mean(TTND[241:260])-M,mean(TTND[261:280])-M,mean(TTND[281:300])-M, 



95 

 

mean(TTND[301:320])-M,mean(TTND[321:340])-M,mean(TTND[341:360])-M, 

mean(TTND[361:380])-M,mean(TTND[381:400])-M,mean(TTND[401:420])-M, 

mean(TTND[421:440])-M,mean(TTND[441:460])-M,mean(TTND[461:480])-M, 

mean(TTND[481:500])-M) 

condNDbias 

 

condHTbias=c(mean(TTHT[1:20])-M,mean(TTHT[21:40])-M,mean(TTHT[41:60])-M, 

mean(TTHT[61:80])-M,mean(TTHT[81:100])-M,mean(TTHT[101:120])-M, 

mean(TTHT[121:140])-M,mean(TTHT[141:160])-M,mean(TTHT[161:180])-M, 

mean(TTHT[181:200])-M,mean(TTHT[201:220])-M,mean(TTHT[221:240])-M, 

mean(TTHT[241:260])-M,mean(TTHT[261:280])-M,mean(TTHT[281:300])-M, 

mean(TTHT[301:320])-M,mean(TTHT[321:340])-M,mean(TTHT[341:360])-M, 

mean(TTHT[361:380])-M,mean(TTHT[381:400])-M,mean(TTHT[401:420])-M, 

mean(TTHT[421:440])-M,mean(TTHT[441:460])-M,mean(TTHT[461:480])-M, 

mean(TTHT[481:500])-M) 

condHTbias 

 

condTRATIObias=c(mean(TRATIO[1:20])-M,mean(TRATIO[21:40])-M,mean(TRATIO[41:60])-M, 

mean(TRATIO[61:80])-M,mean(TRATIO[81:100])-M,mean(TRATIO[101:120])-M, 

mean(TRATIO[121:140])-M,mean(TRATIO[141:160])-M,mean(TRATIO[161:180])-M, 

mean(TRATIO[181:200])-M,mean(TRATIO[201:220])-M,mean(TRATIO[221:240])-M, 

mean(TRATIO[241:260])-M,mean(TRATIO[261:280])-M,mean(TRATIO[281:300])-M, 

mean(TRATIO[301:320])-M,mean(TRATIO[321:340])-M,mean(TRATIO[341:360])-M, 

mean(TRATIO[361:380])-M,mean(TRATIO[381:400])-M,mean(TRATIO[401:420])-M, 

mean(TRATIO[421:440])-M,mean(TRATIO[441:460])-M,mean(TRATIO[461:480])-M, 

mean(TRATIO[481:500])-M) 

condTRATIObias 

 

******************************************************************* 

R-codes for conditional bias plots for the various models in Fig. 4.5-4.7  

 

#par(mfrow=c(2,3)) 

plot(sort(ptotals),sort(condNDbias),type='l',xlab='xbar.bar',ylab='Conditional bias',main="Plots of the conditional 

biases (Linear Model)",ylim=c(-10,15)) 

lines(sort(ptotals),sort(condNDbias),lty='dotted',xlab='xbar.bar',ylab='Conditional bias',lwd=c(2)) 

#plot(sort(ptotals),sort(condRbias),ltype='dotted',xlab='xbar.bar',ylab='Conditional bias',main="Plots of the 

conditional biases(Linear Model)") 

CHT=jitter(condHTbias, factor = 25000, amount = NULL) 
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RTT=jitter(condTRATIObias, factor = 10000, amount = NULL) 

lines(sort(ptotals),sort(condRbias),lty='solid',xlab='xbar.bar', 

ylab='Conditional bias',lwd=c(2)) 

 

lines(sort(ptotals),sort(condHTbias),lty='dotdash',xlab='xbar.bar', 

ylab='Conditional bias',lwd=c(2)) 

lines(sort(ptotals),sort(condTRATIObias),lty='dashed',xlab='xbar.bar', 

ylab='Conditional bias',lwd=c(2)) 

legend("topright",c("N-W EST","REF EST","HT EST","RATIO 

EST"),lty=c("dotted","solid","dotdash","dashed"),lwd=c(2,2,2,2)) 

NND<-sort(TTND) 

REFT<-sort(TTR) 

RRRT<-sort(TRATIO) 

HOV<-sort(TTHT) 

NNDCONFINT<-NND[9500]-NND[500] 

REFTCONFINT<-REFT[9500]-REFT[500] 

RATIOCONFINT<-RRRT[9500]-RRRT[500] 

HTCONFINT<-HOV[9500]-HOV[500] 

confs<-cbind(NNDCONFINT,REFTCONFINT,RATIOCONFINT,HTCONFINT) 

confs 

 

 

 

 

 

 


