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Abstract 

Reports on the natural and laboratory infection of cereals by rhizobium provided the 

impetus to embark on research using African landraces of sorghum and millet to study 

their interaction with rhizobia. Seven strains of root-nodule bacteria (namely Rhizobium 

GHR2, Bradyrhizobium japonicum Tal 110, Sinorhizobium meliloti strain 1, Rhizobium 

leguminosarum bv. viceae Cn6, R. leguminosarum bv. viceae strain 30, Rhizobium 

NGR234 and Azorhizobium caulinodans ORSS71, hereafter referred to as "rhizobia") 

that fix N2, were used to study rhizobial effects on sorghum and millet seedlings grown 

aseptically in Leonard jars with Yz strength Hoagland nutrient solution containing 1 mM 

KN03• 

The infection process was studied usmg light, scannmg and transmission electron 

microscopy on 10 or 94-d-old plants. These examinations revealed the presence of all 6 

test strains on root epidermal surfaces as well as inside the tissues of inoculated, but not 

uninoculated, sorghum and millet roots. Large numbers of bacteria were clearly visible 

around cracks on the root epidermis, suggesting that these cracks served as the route of 

entry and localization by bacteria in interior tissues. 

Koch's postulates were tested in a bioassay by applying root macerate prepared from 

sterile inoculated sorghum plants and this macerate successfully induced nodule 

formation and N2 fixation in soybean seedlings, thus authenticating these internally 

located root tissue bacteria as rhizobia. 

Inoculation of sorghum seedlings with 4 rhizobial test strains (i.e. B. japonicum Tal 110, 

S. meliloti strain 1, R. I. bv. viceae Cn6 and R.I. bv. viceae strain 30) significantly (P ::: 

0.05) promoted sorghum shoot growth by 11-S1% on fresh weight basis and 8-55% on 

dry weight basis. There was also 21-32% increase in root length of inoculated sorghum 

plants compared to uninoculated control. Additionally, root tissue concentrations of P 

and K were markedly (P ::: O.OS) increased by 17-2S0% in inoculated sorghum roots 
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relative to uninoculated plants, while in shoots Zn and eu were significantly (P :s 0.05) 

decreased. Bioassays of the test strains for indole acetic acid (IAA) showed that they 

produced biologically active concentrations of this growth-promoting molecule, ranging 

from 0.l8 to 2.26 ~g lAA per mL culture filtrate. However, the results of glasshouse 

studies involving the inoculation of unsterile potted soil with 3 strains from the Leonard 

jar experiment and 2 new rhizobial strains (Rhizobium NGR234 and Azorhizobium 

caulinodans ORS571) or the sugarcane endophyte, Gluconoacetobacter diazotrophicus 

PAL5, at 0.2 OD600 cell numbers, showed no positive effect on sorghum growth at 94 d 

after planting. This suggests that the active substance promoting plant growth was either 

released in high concentrations by indigenous soil rhizobia, or that the conditions of soil 

culture adversely affected its synthesis and release by the introduced strains. 

Taken together, the light, SEM, TEM, plant nodulation, and plant growth data 

demonstrate that rhizobia can infect roots of sorghum and millet plants and increase 

growth via improved P and K nutrition and also that soil populations of rhizobia such as 

those used in this study can potentially promote plant growth in landraces of important 

African cereal crops such as sorghum and millet under certain conditions in the 

rhizosphere. 

Lumichrome and riboflavin were shown to be widely produced by four rhizobial genera 

whose representatives were examined namely Rhizobium, Bradyrhizobium, 

Mesorhizobium and Sinorhizobium. Of the 14 rhizobial species tested, all of them 

produced measurable amounts ranging from 13.36 ng mL-1 to 37.65 ng mL-1 lumichrome 

and 3.36 ng mL-1 to 9.67 ng mL-1 riboflavin. It may be inferred from these data that 

lumichrome production is a common phenomenon among rhizobial bacteria. 

The stimulatory role of lumichrome, a rhizobia! metabolite, on the growth of legume and 

cereal seedling was also assessed in this study. At very low nanomolar concentrations (5 

nM), lumichrome elicited growth promotion in cowpea, soybean, sorghum, millet and 

maize, but not in common bean, Bambara groundnut and Sudan grass. In soybean and 

cowpea, the supply of 5 nM lumichrome caused early initiation of trifoliate leaf 
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development, an expanSIOn III unifoliate and trifoliate leaves, an increase in stem 

elongation and as a result, an increase in shoot and plant total biomass relative to control. 

The provision of 5 nM lumichrome also increased leaf area in maize and sorghum and 

thus raised shoot and total biomass. With sorghum and millet, however, root growth was 

also stimulated by the supply of 5 nM lumichrome. In contrast to these observations, the 

application of a higher dose (50 nM) of lumichrome depressed the development of the 

unifoliate leaves in soybean, the second trifoliate leaf in cowpea, and shoot biomass in 

soybean. The 50 nM concentration also consistently decreased root development in 

cowpea and millet. These data show that lumichrome is a novel signal affecting seedling 

development in both mono cots and dicots. 

Providing soybean and cowpea plants with their respective homologous rhizobia and/or 

purified lumichrome increased xylem concentration and leaf accumulation of this 

metabolite. Relative to control, rhizobial inoculation and lumichrome application 

significantly increased root respiration in maize, decreased it in lupin, but had no effect in 

cowpea, soybean, Bambara groundnut, pea and sorghum. Growing field plants of 

cowpea up to 63 d with 5 or 50 nM lumichrome decreased stomatal conductance which 

might have affected CO2 intake and reduction by Rubisco. Applying lumichrome (10 

nM), infective rhizobial cells (10 mL 0.2 OD600) or ABA (10 nM) to plants for 44 h in 

growth chambers altered leaf stomatal conductance and transpiration in cowpea, lupin, 

soybean, Bambara groundnut and maize, but not in sorghum or pea. Where stomatal 

conductance was increased by lumichrome, it led to an increase in leaf transpiration 

relative to control plants. The effect of rhizobial inoculation closely mirrored that of 

lumichrome application, indicating that rhizobial effects on these physiological activities 

were more likely due to lumichrome released into the rhizosphere. Treating plant leaves 

with ABA produced stomatal effects similar to those of lumichrome. Taken together, 

these findings show that lumichrome modulates stomatal function, and thus controls plant 

water relations and photosynthetic rates. 

Applying 5 or 50 nM lumichrome to field grown maize, sorghum, cowpea and soybean 

plants had no effect on plant growth. For the legume species, N nutrition and symbiotic 
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performance as measured by nodule weight, nodule number, OI5N, %N and nodule N 

were all unaffected by lumichrome application. In maize, % carbon in shoots and roots 

decreased significantly (P :::: 0.001) in response to lumichrome application and 

consequently, the C/N ratio in shoots and seeds decreased. By contrast, in sorghum C/N 

ratio of the seed increased in plants treated with 5 nM lumichrome. 

Lumichrome application effected significant changes in the mineral nutrient 

concentrations of the four test species. In sorghum shoot, P, K, Cu, Ca, and Al all 

increased significantly (P ::.:: 0.05) in response to 5 or 50 nM lumichrome while in 

sorghum root, P decreased in response to 50 nM application. Meanwhile in maize, only 

K in the shoot decreased in response to lumichrome. In cowpea, AI, Ca, Mg, Zn, Cu and 

B all decreased in the shoot of plants treated with 50 nM lumichrome, while in cowpea 

seeds, S decreased. In cowpea nodules K and Cu increased. In soybean though, only S 

decreased in the seeds of plants treated with 50 nM lumichrome, all the other mineral 

nutrients remaining unaltered. It therefore appears that lumichrome has a major influence 

on nutrient uptake of crops through as yet undetermined mechanisms. 

Finally Gluconoacetobacter diazotrophicus was shown to occur in coffee, tea and banana 

plants in numbers ranging from 104 to 106 per gram fresh weight of root. Analysis of the 

Restriction Fragment Length Polymorphism (RFLP) pattern of the nijHDK genes and of 

the 16S-23S rRNA intergenic region did not reveal any differences between the strains. 

Overall, this study demonstrated that rhizobia can infect roots of landraces of important 

African cereal crop like sorghum and millet,increase their growth and change their 

mineral nutrient concentration in tissues. Additionally, the rhizobial metabolite 

lumichrome was shown to influence the growth and development of different plants and 

alter their mineral nutrient concentration in organs. Soil populations of rhizobia such as 

those used in this study can therefore potentially promote plant growth in these crops. 
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1.1 Introduction 

Plants and microorganisms interact in various ways that results in plants obtaining the 

nutrients and other substances which they need from their environments for optimum 

growth. Most of these reactions are mediated through various molecules, either from the 

plants or from the microbe. Sometimes the plants and microbes communicate via signal 

molecules to effect the above. This is true also of plants and diazotrophic (i.e. N2 fixing) 

bacteria. This review focuses on the interaction between diazotrophic bacteria especially 

rhizobia and crop plants, and how these interactions improve plant growth and 

development. 

One of the major nutrients needed for the production of food and feed is nitrogen. For 

most leguminous species, nitrogen is provided through symbiotic fixation of atmospheric 

nitrogen (Vincent, 1982). Biological nitrogen fixation (BNF) accounts for 65% of the 

nitrogen currently utilized in agriculture and will be increasingly important in future crop 

productivity especially for sustainable systems. In Africa, grain legumes fix about 15-

210 kg N ha- I seasonally and therefore play a big role in the cropping systems of 

traditional farmers. Tree legumes also fix about 43-581 kg N ha- I i l making leaf 

prunings an important component of sustainability in agroforestry and alley cropping 

systems (Dakora and Keya, 1997). The N2 fixed by rhizobia in leguminous plants in 

many cases also benefits associated non-legumes like cereals (Eaglesham et al., 1981), 

and/or subsequent crops rotated with symbiotic legumes (Dakora and Keya, 1997). In 

many low imput grassland systems, the grasses depend on the N2 fixed by the legume 

counterparts for their N nutrition and protein synthesis which is much needed for forage 

quality in livestock (Paynel et al., 2001). 

The extension of nitrogen-fixing symbiosis into important crop plants such as cereals has 

been a long standing goal in the field ofBNF. Making cereals and other non-fixing crop 

plants self-sufficient in N nutrition would be of great benefit to resource-poor farmers in 

Africa. One approach for achieving this goal has involved the isolation and 

characterization of N2-fixing bacteria from a variety of wild and cultivated crops 
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(Stoltzfuz et al., 1997), an exercise which has produced a wide array of diazotrophs from 

plant organs including roots and stems. Some of those microbes so far identified from 

non-legumes include Gluconoacetobacter diazotrophicus (formerly Acetobacter 

diazotrophicus) from sugarcane (Cavalcante and Dobereiner, 1988; Gillis et al., 1989; 

Fuentes-Ramirez et al., 1993; Caballero-Mellado, 1994; James et al., 1994; Sevilla et al., 

1998, 2001; Reis et al., 2001; Riggs et al., 2001; Muthukumarasamy et al., 2002). 

Strains of G. diazotrophicus have also been isolated from roots and stems of coffee 

(Jimenez-Salgado et al., 1997). Azospirillum is another much studied diazotroph, 

especially the species /ipoferum and brasilense, which have been shown to infect a 

number of cereal plants including wheat, maize and sorghum (Reynders and Vlassak, 

1982; Pacovsky et al., 1985; Dobereiner and Boddey, 1981; Kapulnik et al., 1983; 

Christansen and Vanderleyden, 1993, Fallik and Okon 1996, Malik et al., 1997; Weber et 

al., 1999; Dobbelaere et al., 2001). Other known diazotrophs include Herbaspirillum 

seroped/cae (Dobereiner et al., 1993; Weber et al., 1999; Riggs et al., 2001), Klebsiella 

pneumoniae and Panotoea agglomerans (Riggs et al., 2001), Enterobacter sp, Klebsiella 

oxytoca, Azotobacter, Arthrobacter, Azoarcus, Bacillus and Zooglea (Mirza et al., 2001). 

Information on N2-fixation by these associative diazotrophs is rather scanty and amounts 

fixed disappointingly low, except for Gluconoacetobacter diazotrophicus which fixes 

ecnomical amounts of N2 in sugarcane (Boddey et al., 1988; Dobereiner et al., 1993; 

Sevilla et al., 1998; 2001). However, growth promotion has been observed with many of 

these diazotrophs even where N2-fixation could not be demonstrated. In general, these 

diazotrophs are reported to improve root growth and function, often leading to increased 

uptake of water and mineral nutrients. Plant inoculation with Azospirilum brasilense, for 

example, promoted greater uptake ofN03-, K+, and H2P04- in com, sorghum, wheat and 

setaria (Lin et al., 1983; Okon and Kapulnik, 1986; Murty and Ladha, 1988; Zavalin et 

al., 1998; Saubidet et al., 2000), leading to higher crop yields. Because rhizobia also 

produce various metabolites such as auxins, cytokinins, riboflavin and vitamins (Phillips 

and Torrey, 1970; Dakora, 2003), their invasion of legume and non-legume plant roots 

should promote an increase in plant growth. 
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1.2 Rhizobia and legumes 

Rhizobia comprises the species of Rhizobium, Mesorhizobium, Bradyrhizobium, 

Allorhizobium, Azorhizobium and Sino rhizobium. These organisms form intimate 

symbiotic relationships with legumes by responding chemotactically to flavonoid 

molecules released as signals by the legume host. These plant compounds induce the 

expression of nodulation (nod, nol and noe) genes in rhizobia which in tum produce lipo­

chito-o1igosaccharides (LCO) signals that trigger mitotic cell division in roots, leading to 

nodule formation (Dakora, 1995; Lhuissier et al., 2001). Nitrogen is fixed within these 

structures. Although rhizobia principally infect legumes, there are reports of them doing 

so in non-legumes. 

1.3 Rhizobial infection of non-legumes 

The first report of non-legumes forming a symbiotic relationship with rhizobia was by 

Trinick (1979) in the non-legume species Parasponia. Effective nodulation has also been 

observed in Parasponia andersonii, following Bradyrhizobium inoculation of plantlets 

from calii (Davey et al., 1993). The nodulation of Parasponia by both Rhizobium and 

Bradyrhizobium strains provided encouragement that rhizobial infection and nodule 

formation in non-legume crops is a possibility in the future and these observations have 

increased the search for rhizobium nodulation of non-legume plants such as cereals. 

Experimentally, a number of workers have demonstrated the ability of rhizobia to 

colonize roots of non-legumes and localize internally in the tissues including the xylem 

(Spencer et al., 1994). Following such success, several attempts have been made to 

extend nodulation and N2-fixing ability to non-legume crops (Ah-Mallah et al., 1990; 

Gough et al., 1997a; Antoun et al., 1998; Stone, 2001). Some of the early experiments 

successfully induced nodulation in oilseed rape, though only after treating the seedling 

roots with enzymes followed by inoculation with rhizobia (Ah-Mallah et al., 1990). 

Applying Bradyrhizobium japonicum to radish significantly increased plant dry matter by 

15%, but without nodulation (Antoun et al., 1998). Azorhizobium caulinodans ORS571, 

which induces stem and root nodules in the tropical legume Sesbania rostrata, has also 

been shown to colonize the internal tissues of Arabidopsis thaliana through cracks at 
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poins of lateral root emergence (Gough et at., 1997a; 1997b). The co-application of A. 

caulinodans and flavonoids such as naringenin and daidzein, even at very low 

concentration (5 x 10-5 M) significantly enhanced microsymbiont colonization of roots 

and promoted localization in the xylem of Arabidopsis thaliana (Stone, 2001). Other 

studies have demonstrated the ability of Rhizobium leguminosarum bv. phaseoli to 

colonize roots oflettuce plants (Chabot et al., 1996). 

1.4 Rhizobia and cereals crops 

Naturally occurring rhizobia, isolated from nodules of Parasponia and some tropical 

legumes, have also been shown to infect roots of many agricultural species such as rice, 

wheat and maize via cracks made by emerging lateral roots (Webster et al., 1997), 

although it is also possible that rhizobia and other diazotrophs can gain entry into the 

plant roots by other means like producing cellulase and pectinase which could aid in 

infection (Kovtunovych et al., 1999, Verma et al., 2001; McCulley, 2001). However, 

heavily suberized and/or lignified cell layers would still present a barrier for such bacteria 

(McCulley, 2001). 

Inoculation of rice and wheat with A. caulinodans strain ORS571 carrymg a lac Z 

reporter gene showed that a high proportion of the internal plant colonization occurred 

from lateral root cracks. Supplying the flavonone naringenin at 10-4 or 10-5 M 

concentration increased rhizobial entry via cracks and promoted intercellular localization 

in wheat roots (Webster et at., 1997; 1998). However the establishment of A. 

caulinodans in wheat roots is possible without the addition of flavonones (Sabry et al., 

1997). There has also been an intriguing report that the nod D1 gene product of 

Rhizobium strain NGR234 responds to activation by phenolic compounds isolated from 

wheat extracts (Ie Strange et al., 1990). Strains of Rhizobium leguminosarum bv. 

phaseoli harbouring lux genes were used to visualize in situ colonization of roots by 

rhizobia in maize as well as to assess the efficiency with which these bacteria infected 

maize roots. Their observations were consistent with findings on maize root colonization 

and infection by rhizobia (Schloter et al., 1997; Gutierrez-Zamora and Martinez-Romero, 

2001; Yanni et al., 2001) 
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Being a major food crop, rice has attracted a lot of interest and more nodulation studies 

with rhizobia have been conducted with rice compoared to any other non-legume speices 

(Chaintreuil et al., 2000; Yanni et al., 1997; 2001). Al-Mallah et al. (1989) were the first 

to successfully induce nodular structures on rice roots after treating 2-d-old seedling roots 

with a cell wall-degrading enzyme mixture followed by rhizobial inoculation in the 

presence of polyethylene glycol. In a later study, Weber et al. (1999) detected an 

increase in rhizobial infection of rice roots with the application of low concentration of 

naringenin (10-4 and 10-5 M). Later, the same flavonone was shown to enhance the 

colonization in the xylem by Azorhizobium caulinodans strain ORS571 (Gopalaswamyet 

al.,2000). Similar rice-rhizobial interactions have been reported by de Bruijn (1995) and 

Ladha et al. (1997). 

Observations in the laboratory studies that cereal roots could be infected with rhizobia led 

to the hypothesis that during legume-cereal rotations and/or mixed intercropping, 

rhizobia are brought into close contact with cereal roots, and this probably results in non­

legume root infection by native rhizobial population in soil. Attempts have therefore 

been made to determine if rhizobia naturally infect roots of cereals and other major food 

plants. The study by Yanni et al. (1997) was the first to isolate Rhizbobium 

leguminosarum bv. trifolii as a natural endophyte from roots of rice in the Nile delta. 

Because rice has been grown in rotation with berseem clover for about seven centuries in 

the Nile delta, this practice probably promoted closer affinity for this cereal as a "host 

plant". This hypothesis is re-enforced by the fact that the clover-nodulating rhizobia 

isolated from rice could occur up to 2.5 X 10-7 cells g -\ fresh weight of root, 

concentrations similar to those obtained for bacteroids in legume root nodules. 

Chaintreiul et al. (2000) similarly isolated photosynthetic bradyrhizobia from roots of the 

African brown rice, Oryza glaberrima, which generally grows in the same wetlands as 

Aeschynomene sensitive, a stem-nodulated legume associated with photosynthetic strains 

of Bradyrhizobium. Again this may well suggest a co-evolution of Aeschynomene 

bradyrhizobia and wild genotypes of African brown rice. 
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Apart from rice, rhizobia have also been isolated as natural endophytes from roots of 

other non-legume species such as cotton, sweet com (McInroy and Kloepper, 1995), 

maize (Martinez-Romero et ai., 2000), wheat (Biederbeck et ai., 2000) and canola 

(Lupwayi et ai., 2000) either grown in rotation with legumes or in mixed cropping 

systems involving symbiotic legumes. 

In many cases, diazotrophic bacteria including rhizobia promote the growth of their host 

plants by a variety of mechanisms. Unfortunately, in many studies reported in literature, 

the mode of action of growth promotion is not addressed. Ultimately, understanding of 

the mode of action at the physiological and genetic level will be most useful. In the cases 

where the mode of action for growth promotion has been identified, these can be 

categorized broadly as improving the nutrient supplies of the plant and then there are 

cases where the diazotroph produces certain molecules which enhance plant growth in 

one way or another. 

1.5 Rhizobial endophytes as mediators of plant nutrient supply 

Many diazotrophs improve plant growth by acting as biofertilizers which refers to the use 

of soil micro-organisms to increase the availability and uptake of mineral nutrients for 

plants (Vessey, 2003). Among the nutrients whose uptake has been enhanced by such 

diazotrophs include N, P and Fe. Perhaps the most important of these is N which is 

required in huge amounts by plants. Nitrogen is required for cellular synthesis of 

enzymes, proteins, chlorophyll, DNA and RNA, and is therefore important in plant 

growth and the production of food and feed. It is therefore no wonder that the most 

studied and longest exploited plant growth promoting bacteria are rhizobia because of 

their ability to fix N2 in their legume hosts. Indeed commercial rhizobia inoculants have 

been available since the 1890's (Vessey, 2003). 

It is interesting though, that although many plant-growth promoting diazotrophs have the 

ability to fix N2, rarely is their mode of action for the stimulation of plant growth credited 

to BNF or nitrogenase activity. This is also the case of interactions between non-legumes 

and Rhizobium sp. (Antoun et ai., 1998; Yanni et ai., 2001). Indeed, there is still little 
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evidence of inoculation of non-legumes with rhizobia leading to agronomically 

significant levels ofBNF in most crops (Vessey, 2003). 

In some of the associative relationships, although there has been no evidence of N­

fixation, there has sometimes been increased N uptake most probably from improved root 

architecture due to the presence of the rhizobia. Such observations were made by Murty 

and Ladha (1988) on rice while Yanni et al. (2001) recently reported that inoculating rice 

with strains of R. leguminosarum bv. trifolii improved the agronomic fertilizer N-use of 

Giza 175 hybrid rice in a field experiment. 

Phosphorus is second only to nitrogen in mineral nutrients most commonly limiting the 

growth of terrestrial plants (Vessey, 2003). The low availability ofP to plants is because 

the vast majority of soil P is found in insoluble forms and plants can only absorb P in two 

soluble forms; monobasic H2P04 -and the dibasic HPol- ions. Because of the relative 

immobility of this element and its very low concentration in soil solutions, substantial 

amounts of phosphate fertilizers are applied to agricultural soils (Antoun et al., 1998). 

Large quantities of phosphorus therefore accumulate in the soil of which 20-80% is in the 

organic form. Availability of this phosphorus depends largely on microbial activity. 

Phosphate solubilizing bacteria are common in the rhizosphere and secretion of organic 

acids and phosphatases are the most common method of facilitating the conversion of 

insoluble forms of P to plant-available forms (Kim et al., 1998). The solubilization of P 

in the rhizosphere is the most common mode of action implicated in plant growth 

promoting rhizobacteria (PGPR) that increase nutrient availability to the host plant 

(Richardson, 2001). Inoculation of plants with phosphate solubilizing microorganisms 

frequently stimulates plant growth by increasing uptake (Chabot et al., 1993; Antoun et 

al., 1998). A large number of rhizobia and bradyrhizobia are able to solubilize inorganic 

phosphate. In a field study by Chabot et al. (1996), it was observed that phosphate 

solubilization by strains of R. leguminosarum bv. phaseoli was the most important 

mechanism of maize and lettuce growth promotion in moderately to very fertile soils. Of 

266 strains of plant growth promoting bacteria examined by Antoun et al. (1998), 54% 

were found to solubilize phosphorus. In this study, TAL 629 of B. japonicum 

8 

Univ
ers

ity
 of

 C
ap

e T
ow

n



significantly increased (15%) the dry matter content. In another study, strains of R. 

leguminosarum bv phaseoli effectively colonized maize and lettuce roots. These strains 

were selected in vitro for their phosphate solubilizing abilities (Chabot et al., 1996). 

Another important element microorganisms assist in the acquisition of is iron. Although 

iron is the fourth most abundant element in the earth's crust, in the soil, the solubility of 

Fe is primarily controlled by Fe oxide. Nevertheless, the extreme insolubility of ferric 

hydroxide limits free Fe at pH 7 or higher in an aerobic aqueous environment at an 

equilibrium concentration of approximately 10-18 M (Guerinot, 1991; Loper and Buyer, 

1991). Minimal concentrations of iron required for normal plant growth range from 10-9 

to 10-4, depending on other nutritional factors. Iron deficiency if severe can lead to 

reduction or even complete failure in crop yield (Chen et al., 1998). 

Most microorganisms use siderophores and corresponding membrane receptors for iron 

acquisition. Many reports have shown that Fe, chelated by microbial siderophores can 

also be utilized by plants (Chen et al., 1998). Many nodule producing bacteria have also 

been shown to produce siderophores. In a study by Antoun (1998), of 266 such strains 

tested, 83% were found to produce siderophores. Indeed, iron-containing proteins feature 

prominently in the nitrogen-fixing symbioses between rhizobia and their respective host 

plants. 

Yanni et al. (2001) found that inoculating rice with strains of R. leguminosarum bv 

trifolii improved the acquisition several mineral nutrients namely N, P, K, Mg, Ca, Zn, 

Na, and Mo. 

1.6 Classical phytohormones from rhizobia as plant growth enhancers 

Many actual and putative PGPR produce phytohormones that are believed to be related to 

their ability to stimulate plant growth. In most cases, these phytohormones are believed 

to cause changes in assimilate partitioning patterns in plants and affect growth patterns in 

roots resulting in bigger roots, more branched and/or plants with greater surface area 

(Vessey, 2003). 
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Some of the traditional phytohormones - traditional in the sense that they have been 

known for a long time ~ that have been reported to be produced by bacteria include 

auxins, cytokinnins, and gibberellins. These phytohomomes synthesized by bacteria 

influence the host root respiration rate, metabolism, root proliferation and hence better 

mineral and water uptake by the plants harbouring them (Tien et ai., 1979; Okon and 

Itzigsohn, 1995). In the tropics, many soils are extremely low in nutrients and this is 

often a great contraint on the growth and development of plants. Since most mineral 

nutrients are absorbed by plants through the rhizosphere, the roots playa crucial role in 

the uptake of these mineral nutrients (Dakora and Phillips, 2002). Hence any substance 

secreted by rhizobacteria that enhances root architecture is likely to improve mineral 

uptake. 

In the rhizobium-legume interaction, plant hormones have been known to be part of the 

nodulation process since Thimann (1936) reported that pea nodules contain elevated 

levels of auxins. Rhizobia produce both auxins and cytokinins (Phillips and Torrey 1970; 

1972; Reddy et ai., 1997; Hirsch et ai, 1997; Antoun et ai., 1998). However, mutants 

defective in IAA synthesis have been described but none of them are Nod-, suggesting 

that auxin production by rhizobia is not essential for nodule morphogenesis (Hirsch et ai, 

1994). In addition, certain early nodulin genes in legumes have been found to be induced 

by cytokinins, which may be one of the functions of the rhizobial produced cytokinins in 

these symbioses. 

Indole-3-acetic acid (IAA) is a phytohormone which is known to be involved in root 

initiation, cell division and cell enlargement is commonly produced by PGPR (Barazani 

and Friedman, 1999). Law and Strijdom (1989) reported the production ofIAA in yeast­

mannitol medium by each of two isolates of indigenous Bradyrhizobium sp. Evidence of 

stimulation of wheat and cowpea root growth on agar by Bradyrhizobium strain CB756, 

commonly used as a commercial inoculant was obtained. IAA has also been detected in 

culture filtrates of Rhizobium and in relatively high amounts in root nodules (Prinsen et 

ai., 1991), while a study using a selected rhizobial strain (Ell) of R. ieguminosarum bv. 
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trifolii, results indicated that it produced auxin (IAA) and gibberellins. When inoculated 

into rice roots, this strain produced promotion of growth (Yanni et al., 2001). 

Ethylene is the only gaseous hormone and its production in the plant can be induced by 

wounding or chemical stress (Vessey, 2003). Among its myriad effects on plant growth 

and development, ethylene can cause inhibition of root growth. Glick et ai. (1998), put 

forward the theory that the mode of action of some PGPR was the production of 1-

aminocyclopropane-l-carboxylate (ACC) deaminase, an enzyme which could cleave 

ACC the immediate precursor to ethylene in the biosynthetic pathway for ethylene in 

plants. They submitted that ACC deaminase activity would decrease ethylene production 

in the roots of host plants and result in root lengthening. In some cases, the growth 

promotion effects of ACC-deaminase-producing PGPR appear to be best expressed in 

stressful situations such as flooded (Grichko and Glick, 2001) or heavy metal­

contaminated soils (Burd et al., 1998). 

The discovery that PGPR produce phytohormones other than IAA and cytokinins has 

opened the possibility that even more plant-growth regulating substances may be 

produced by these bacteria and may influence plant growth. Of late, several such 

molecules have been described. 

1.7 Novel rhizobial molecules as plant growth enhancers 

In recent times, certain bacterial molecules which were not previously recognized as 

having a growth-promoting effect on plants have been shown to exert a powerful 

influence on various aspects of plant growth and development. Some of these molecules 

have been known for some time but their role in plant growth promotion had not been 

previously determined. However, evidence is mounting that more and more bacterial 

molecules have a growth promoting effect on plants. Most of this work has been carried 

out on rhizobia (Dakora, 2003). All legumes that form symbiotic relationships with 

microsymbionts use signal molecules to induce the expression of nodulation genes in 

their respective homologous microsymbionts during nodule formation (Dakora, 2002). 

Signal exchange begins with the secretion of phenolic compounds, flavonoids and 
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isoflavonoids by host plants. These induce the nod genes, resulting in the production of 

bacteria-to-plant signal molecules (Lhuissier et ai., 2001). 

One such group of molecules are the lipo-chito-oligosaccharides (LeOs). These are 

bacteria-to-plant signal molecules essential for the establishment of the rhizobia-legume 

symbioses. Leos invoke a number of physiological changes in the host plants These 

include root hair deformation, cortical cell division and ontogeny of complete nodule 

structures (Prithiviraj et ai., 2000). They also mediate host specificity. In experiments 

using R.feguminosarum bv. viciae, it was found that a nodE-determined highly 

unsaturated fatty acid and a nodL-determined O-acetyl substitute are essential for the 

ability of the signal to induce nodule meristem on the host plant (Spaink et al., 1991). It 

has been observed that within minutes, nod factors change cell organization by acting on 

the actin cytoskeleton, enhancing tip cell wall deposition so that root hairs become longer 

for their species (Luissier et ai., 2001). Schlaman et af. (1997) showed that rhizobial 

Leos can induce cortical cell division. They used ballistic microtargeting as a novel way 

of delivering the Leo of R.leguminosarum bv. vidae in Vida sativa plants. Data have 

also been presented suggesting that at least part of the physiological role of the nod 

factors may be linked to molecular events involved in the control of the cell cycle. They 

showed that treatment of Medicago microcallus suspension with the cognate Rhizobium 

meliloti Nod signal molecule Nod Rm-IVee 16: 2, S can modify gene expression both 

qualitatively and quantitatively. At concentrations of 10-6 10-9 M, this host specific 

plant morphen, but not the inactive non-sulphated molecule, stimulated cell cycle 

progression (Savoure et ai., 1994). de Jong et al. (1993), also found Nod factors to be 

effective in rescuing the formation of ts 11 embryos. At temperatures that inhibit the 

development of these temperature sensitive carrot cell mutants, the presence of 

Rhizobium LeOs was found to enable these embryos, whose development was arrested, 

to proceed beyond the globular embryo stage. The role of Leo signal molecules in the 

development of root nodules indicates that they play an important role in organogenesis 

of plants (Spaink and Lugtenberg, 1994). 
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LCOs have also been reported to enhance the germination of various crops. At 

submicromolar concentrations of LCO, nod Bjv (CI8: 1: MeFeu) isolated from genistein 

induced cultures of Bradyrhizobium japonicum 532C enhanced germination and early 

growth of Zea mays, Glycine max, Phaseolus vulgaris, Beta vulgaris, Cucumis sativus, 

Gossypium sp., and Letuca sativa under laboratory, greenhouse and field conditions. In 

Cucumis sativus and Brassica napus, the LCO enhanced germination at 15°C, a 

temperature that is stressfully low for these crops. Irrigation of maize seedlings with a 

solution of the LCO (10-9 
- 1O-7M) doubled such variables as leaf area, plant height, root 

and shoot dry weight and root length (Prithiviraj et al., 2000). 

Another effect of these Nod factors is on flavonoid levels, which in tum affect the 

amount of Nod factors released by rhizobia. Treating G. max seedlings with pure Nod 

factor of B. japonicum in nano molar concentrations has been shown to increase the 

levels of flavonoids leading to enhanced levels of daidzein, coumestrol and genistein 

(Schmidt et al., 1994). 

Photosynthesis is yet another physiological aspect that has been reported to be enhanced 

by Nod factors. Spray application of LCOs at submicromolar concentrations improved 

photosynthesis rates of such diverse crops as soybean, maize, rice, bean, canola, apples 

and grape. On average, a 10-20% increase in the photosynthetic rate was observed and 

this was concomitant with an increase in stomatal conductivity and constant or decreased 

leaf internal CO2 concentration. Under field conditions, spray application of LCO at 

concentrations of 10-6
, 10-8 and 10-10 M resulted in increased soybean grain yield of up to 

40%. These results with LCOs suggest that there could be a possible use of these 

molecules in improving crop production (Smith et al., 2002). 

Apart from LCOs, another bacterial molecule to which plant growth promoting functions 

have recently been attributed is hydrogen. H2 is produced by many legume nodules as a 

by-product of l'h fixation. It is an obligate by-product of the N2 fixing enzyme, 

nitrogenase, claiming about 33% of the reducing power and ATP that flows to the 

enzyme. Many N2 fixing legume nodules evolve H2 due to the absence or low abilitiy of 
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the uptake hydrogenase (HUP} In a HUP- symbiosis, large amounts of H2 can diffuse 

out of the nodule and into the soil (Dong and Layzell, 2002). In order to study the fate of 

this H2 in the soil, a H2 treatment system was developed. With increasing pH2, a 5 fold 

increase was observed in O2 uptake and CO2 evolution declined such that net C02 

fixation was observed in treatments of 680 ppm H2 or more. At the exposure rate used to 

pretreat the soil, 60% of the electrons from H2 were passed to 02 and 40% were used to 

support C02 fixation. This effect of H2 on the energy and carbon metabolism of soil may 

account for the well-known effect of legumes in promoting soil carbon deposition (Dong 

and Layzell, 2001). 

Interestingly, more than 75% of the rhizobial strains isolated from major soybean 

production areas in the United States, as well as all clover and alfalfa symbiosis are 

HUP-. It has been shown that there is a a high microbial biomass of H2 oxidizing bacteria 

close to the nodule and this decreased exponentially with distance from the nodule. 

Since evolution and crop breeding programs have not favoured HUP+ symbioses over 

HLTP- ones, it has been suggested that H2 evolution by nodules is beneficial to the growth 

and yield of the symbiosis. To test this hypothesis, Dong and Layzell (2002) carried out 

field trials in which the soils were pretreated with H2. In seven week old barley and 

spring wheat plant, tiller numbers per plant increased compared with the air treated 

controls. In some instances, yield increases were also observed. The data indicated that 

soil H2 fertilization may playa significant role in contributing to the benefit that cereals 

derive when in rotation with legume crops. The mechanism by which this is achieved has 

yet to be elucidated but it probably involves the enhanced grO\vth of H2 oxidizing 

microorganisms in the soil, which in turn may improve the nutrient status of the soil or 

act as plant growth promoting rhizobacteria enhancing growth regulator balance. This 

study helps to explain the evolutionary questions surrounding why HUp· symbioses have 

thrived when there are genes, in many cases within the same genus and species, for the 

more energetically efficient HLTP+ symbioses (Dong and Layzell, 2002). 

Lumichrome and riboflavin have also been recently identified as molecules that enhance 

plant growth. Phillips et al(1999), reported that Sinorhizobium meliloti produces a signal 
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molecule that enhances root respiration in alfalfa (Medicago sativa L.) and which also 

triggers a compensatory increase in whole-plant net carbon assimilation. Lumichrome 

was identified as the molecule, a common breakdown product of riboflavin under many 

physiological conditions as well as being released by rhizosphere bacteria. Treating 

alfalfa roots with 3 nM lumichrome increased root respiration 21% (P ::::....0.05) within 48 

h. A closely linked increase in net carbon assimilation by the shoot compensated for the 

enhanced root respiration. Applying 5 nM lumichrome to young alfalfa roots increased 

plant growth by 8% (P S 0.01) over the same period. In both cases, significant growth 

enhancement was evident only in the shoot. Since S. meliloti requires C02 for growth, it 

may benefit directly from the enhaneed root respiration that is triggered by lumichrome, 

favouring an early association between micro symbiont and legume. Since riboflavin is 

rapidly degraded to lumichrome in many physiological conditions, and many rhizosphere 

bacteria release riboflavin, plant growth promotion by lumichrome may be widespread in 

cropping systems. 

Yang et al., 2002 have also reported that Sino rhizobium meliloti cells carrying extra 

copies of riboflavin genes (rib BA) and which released 10 to 20% more riboflavin than a 

control colonized roots to densities that were 55% higher than that of the control strain. 

Results supported the importance of extracellular riboflavin for alfalfa root colonization 

by S. meliloti and are consistent with the hypothesis that this molecule benefits bacteria 

indirectly through an effect on the plant. 

1.8 Legume molecules as plant and bacterial growth promoters 

Legume plants produce various molecules that have an effect on the growth and 

development of other plants around them and/or microbes in the soil which in tum affect 

them. Some of these molecules are from seeds while many others are in the root 

exudates. Some function as signal molecules to soil microbes and other organisms while 

others are involved in mineral procurement in a bid to optimize growth conditions 

(Dakora, 2003). Various such compounds already identified in root exudates include 

organic acid anions, phytosiderophores, sugars, vitamins, amino acids, purines, 

nucleosides, inorganic ions, gaseous molecules, enzymes and root border cells. Legume 
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crops also produce phenolics such as flavonoids and isoflavonoids and aldonic acids 

exuded by roots of N2 fixing legumes which serve as major signals to Rhizobiaceae 

bacteria which form root nodules where N2 is reduced to ammonia (Gagnon and Ibrahim, 

1998; Dakora 2000; Dakora and Phillips, 2002). The type of flavonoid and its specific 

sequence are some of the factors partly responsible for the host specificity of the legume­

rhizobia interaction (Long, 1989), which in turn induces nod genes, resulting in the 

production of bacteria to plant signals (Leon-Barrios et ai., 1993; Luissier et ai., 2001). 

Legume seeds also produce flavonoids and nitrogenous metabolites such as alkaloids, 

terpenoids, peptides and amino acids, conjugated forms of which are soluble in water and 

are therefore easily released as chemical signals following imbibition (Ndakidemi and 

Dakora, 2003). Luteolin, a flavonoid, is an active inducer in alfalfa seed extracts, while 

in pea, naringenin, hesperetin and luteolin are the major compounds in root exudates that 

induce nod genes of R. leguminosarum bv viceae at very low concentrations ranging from 

10-6 
- 10-7 (Maxwell et al., 1989). In soybean, genistein is the most effective plant- to­

bacteria signal (McDermott and Graham, 1990; Zhang and Smith, 1995; Zhang and 

Smith 1996; 1997; Pan and Smith, 2000; Belkheir et ai., 2001). 

Chemotaxis enables the microsymbiont to move towards the legume host and this too is 

influence by molecules from the plant. Hydroxycinnamic acids, which are universally 

present in higher plants where they function as intermediates in the isoflavonoid 

biosynthesis, have been found to be strong chemoattractants, while genistein, diadzein 

and coumestrol also induce some response (Kape et ai., 1999). 

In order for plants to develop optimally, they need an adequate supply of mineral 

nutrients from the soiL In the tropics, many soils are extremely low in nutrients and this 

is often a constraint on the growth and development of plants (Dakora and Phillips, 

2002). Roots play an active role in the acquisition of these and in some cases are able to 

bring about an increase in the concentration of these nutrients in the soils solution (Kirk, 

2002; Rengel, 2002). The root exudates may solubilize unavailable mineral nutrients, 

alter the pH in the rhizosphere so as to make them more available or increase availability 

through chelation (Dakora and Phillips, 2002) 
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Legumes make N available to other plants in the vicinity in intercrop systems or to 

subsequent crops during rotation (Eaglesham et al., 1981; Dakora 2003; Paynel et al., 

2001). Phosphorus is normally the most limiting nutrient for the growth of leguminous 

crops in the tropics and subtropics especially in soils of high iron or aluminium oxide 

content where P is strongly bound and largely unavailable to plants (Ae et al., 1990). 

However, certain plants like pigeon pea have root exudates with compounds such as the 

organic acids citric, malic, melonic, succinic as well as psi die acid and its derivatives 

which release P from Fe-P by chelating Fe3
+. The mineral status of the plant seems to 

dictate the types and amount or organic acid released. Such pigeon pea plants benefit 

others in the vicinity and subsequent crops (Ishikawa et al., 2002). 

Additionally, roots from P-deficient plants have a significantly greater acid phosphatase 

activity (Gilbert et al., 1999). Citric acid and malate have also been reported produced 

from roots to release unavailable forms of phosphorus (Neuman et al., 1999; Schulze, 

2002). 

Another very important plant nutrient is iron (Fe). However, its concentration in the soil 

is usually below what is required for adequate plant growth since it exists predominantly 

in the insoluble Fe(OH)3 form. Lack or iron leads to chlorosis and ultimately to plant 

death (Guerinot and Yi, 1994; Bernards et al., 2002). Some plants, when confronted by 

iron deficiency, extrude protons which lower the rhizosphere pH and solubilize iron 

(Guerinot and Yi, 1994; Masaoka et al., 1993). 

Yet another example of how plants deal with mineral nutrient problems is the way 

aluminum toxicity is handled by certain plants that show tolerance to it. In acid soils (PH 

< 5.0), Al is found as A13
+ ions which are phytotoxic, inhibiting root growth and leading 

to mineral deficiencies and water stress (Degenhardt et al., 1998). Various plants raise 

the pH value; e.g. Aspalanthus linearis was shown utilize OR" and HC03 ions to increase 

alkalinity. In this wasy, this plant is able to overcome the adverse effects of low pH 

while enhancing nutrient acquisition and reducing trace element toxicity (Muofhe and 

Dakora, 1999). 
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The study of this thesis was conducted to test the following hypotheses 

1. Rhizobia can infect roots of African landraces of sorghum and millet and colonize 

internal tissues and bring about growth promotion in these crops. 

2. Lumichrome, a rhizobial metabolite so far only reported from Sinorhizobium 

meliloti is produced by other rhizobial speices 

3. Lumichrome, though only reported to effect growth promotion in alfalfa, the host 

of Sinorhizobium meliloti can enhance growth in various other crop plants as well. 

4. Gluconoacetobacter diazotrophicus can be found in more crops than the ones 

already reported. 
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CHAPTER TWO 

RHIZOBIAL INFECTION OF AFRICAN LANDRACES OF 

SORGHUM AND MILLET PROMOTES PLANT GROWTH AND 

ALTERS NUTRIENT CONCENTRATION IN ORGANS 
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2.1 Introduction 

Rhizosphere interactions between plants and microbes play a vital role in plant 

development, with benefits ranging from nutrient acquisition to hormonal stimulation of 

growth. The symbioses between root nodule bacteria (i.e. rhizobia) and legumes 

represent a cheap source of N supply to agricultural crops via N2 fixation in nodules. 

While many earlier studies have addressed rhizobial inoculation of legumes for increased 

yields and N2 fixation (Beck and Materon 1988), recent experiments have started to 

explore the use of rhizobia as plant growth-promoting rhizobacteria in non-legume plants 

as well as their effects on grain yields of agriculturally important crops (Noel et ai., 1996; 

Schloter et ai., 1997; Antoun et ai., 1998). Various plant species have been used in 

inoculation studies with rhizobia, and these include wheat, maize, rice, potato, lettuce, 

radish, canola, and oilseed rape (Law and Strijdom 1989; AI-Mallah et ai., 1989, 1990; 

Spencer et al., 1994; Chabot et al., 1996; Reddy et ai., 1997; Yanni et al., 1997). Many 

of these species have presumably been bred for specific traits that could affect their 

rhizosphere response to rhizobial interaction. These reports nevertheless show that 

studies on rhizobia are rapidly extending beyond the traditional role of these microbes as 

N2 fixers in symbiotic legumes to include growth stimulation of non-legume plants. 

Because some studies (McInroy and Kloepper 1995; Yanni et ai., 1997) have identified 

rhizobia as natural endophytes of cotton, sweet com and rice, a wider use of un bred plant 

material such as landraces is likely to provide new insights into the benefits of rhizobial 

inoculation with various crop species. 

Like other soil bacteria, rhizobia are a source of phytohormones and other growth­

promoting molecules in the rhizosphere (Lynch and Clark, 1984; Loper and Schroth, 

1986; Law and Strijdom, 1989) can potentially influence plant development. Law and 

Strijdom (1989) have reported the ability of Bradyrhizobium strain CB756 to promote 

root growth in seedlings of cowpea (a legume) and wheat (a cereal) when cultured in 

Leonard jars or agar medium. In contrast, they also found that two local isolates of 

Bradyrhizobium sp., which produced higher concentrations of indole acetic acid (IAA), 

inhibited root development in the two species, indicating strain differences in root growth 

stimulation. A number of studies have also shown that rhizobia can infect roots of non-
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legume crop plants via cracks in the epidermis or at points of lateral root emergence 

(Spencer et al., 1994; de Bruijn et at., 1995; Reddy et al., 1997; Webster et al., 1997). 

Endophytic localization of rhizobia in intercellular spaces (Gough et al., 1997; Reddyet 

at., 1997) and the xylem (O'Callaghan et aI., 1997) of legume and non-legume plant 

roots has been observed, and this presumably enhances the growth-promoting effects of 

these bacteria on the host plants. Another report (Yanni et at., 1997) also suggests that 

clover rhizobia are natural endophytes or rice plants grown in the Nile delta. The 

findings of all those studies (Law and Strijdom, 1989; Gough et at., 1997; Reddy et al., 

1997; O'Callaghan et at., 1997; Webster et at., 1997; Yanni et al., 1997) indicate that 

rhizobia probably influence plant growth in more ways than just N supply via N2 fixation. 

The aim of this study was 1) to assess the effects of rhizobial inoculation on plant growth 

and mineral nutrition of a sorghum landrace, and 2) to study rhizobia colonization of 

host-plant roots, including endophytic localization of the bacteria in internal tissues of 

African sorghum and millet landraces, and 3) to establish using Koch's postulates 

whether the bacteria visualized inside cereal roots with TEM are indeed N2-fixing 

rhizobia. 

2.2 Material and Methods 

2.2.1 Studies of millet and sorghum root infection by 6 rhizobial strains 

2.2.2 Plant culture 

Seeds of African landraces of millet and sorghum (Sorgum bicolor (L.) obtained from 

Ruiru market, Kenya, were used in this study. The seeds were surface-sterilized by 

soaking in 75% ethanol for 2 min, in 10% sodium hypochlorite (bleach) solution for 10 

min, and rinsing 5 times with sterile de-ionised water. Autoclaved Leonard jars were 

then sown to the surface-sterilized seed of millet and sorghum, and seedlings thinned out 

to 2 plants per jar at 10 d after planting. The Leonard jars containing acid-washed sand 

and were assembled as described by Vincent (1970). The Hoagland nutrient solution 

consisted of 0.4NH4H2P04; 1.6Ca(N03)2; 0.8 MgS04; 0.1 Fe as Fe-chelate; 0.023 B as 
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B(OH)3; 0.0045 Mn as MnCh; 0.0003 Cu as CuCh; 0.0015 Zn as ZnCb; 0.0001 Mo as 

Mo03 or (NH4)6M070 24; CI as chlorides of Mn, Zn, and Cu. All concentrations are in 

units of mM/litre. This molar concentration was adjusted to VI strength nutrient solution 

containing 1 mM KN03. 

The rhizobia used in this study included Bradyrhizobium japonicum Tal 110, 

Sinorhizobium meliloti strain 1, Rhizobium leguminosarum bv. viceae strain 30, R. 

leguminosarum bv. viceae strain Cn6, Bradyrhizobium CB756, as well as strains with 

broad host range such as Rhizobium NGR234 and Rhizobium GHR2. Broth cultures were 

prepared from each of the 6 rhizobial strains by growing the strains in yeast extract 

mannitol broth medium (Vincent 1970) for 72 h, followed by measurement of the optical 

density at OD600. Cell turbidity was adjusted to 0.2 OD600 units, and 3 mL of the broth 

culture of each strain used to inoculate seedlings of sorghum and millet. Uninoculated 

control paints received 3 mL of sterile yeast extrace mannitol broth medium without 

rhizobia. The Leonard jars were then covered with sterile non-wettable cotton wool as 

anti-contamination mulch, and the plants placed in a growth chamber with 16 h light per 

day, 70% relative humidity, and 28°C/16°C day/night cycle. For each plant species, 4 

replicate Leonard jars were used per rhizobial strain. 

2.2.3 Microscopic studies of sorghum and millet root infection by rhizobia 

2.2.4 Scanning electron microscopy 

At 94 d after planting, root material (1 g fresh weight) of inoculated and uninoculated 

plants were harvested per replicate to study rhizobial colonization and infection of 

sorghum and millet roots using scanning electron microscopy (SEM). The 1 g root 

tissues from each replicate jar was chopped into small pieces (2-3 rum) and fixed in 2.5% 

glutaraldehyde in 10 mM phosphate buffer saline solution (PBS), pH 7.4, for 16 h. After 

washing in PBS, the specimens were post-fixed in 1% osmium tetroxide (Os04) for 1 h, 

washed again in PBS, and the samples dehydrated by passing through a series of 

increasing concentration of ethanol (30 - 100%). The samples were then dried in a 

Balzer's critical point dryer (Model CPD020, Leichtenstein, Germany), mounted on 
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aluminium stubs, gold-palladium coated, and viewed for bacterial colonization of root 

surface using a scanning electron microscope (Leica Stereoscan Model 440, Cambridge, 

UK). The root specimens were also sectioned and the inner tissues viewed for 

endophytic colonization by rhizobia using SEM techniques. 

2.2.5 Light microscopy 

The samples used for light microscopy were treated as described for SEM and tissue 

dehydrated in ethanol. After dehydration, they were embedded in Spurr's resin (Spurr, 

1969), and polymerized at 60°C for 24 h. Ultra-thin sections were cut from the 

embedded root tissue using Reichert ultracut microtome system (Reichert-Jung, Austria), 

fitted with glass knives. The sections were treated with chloroform vapour in order to 

stretch them, stained with Toluidine blue, mounted in a drop of water, covered with a 

cover slip, and then observed under the light microscope at the high and oil emersion 

powers. 

2.2.6 Transmission electron microscopy 

Root samples used for transmission electron microscopy (TEM) were also treated as 

described for SEM, and the tissues dehydrated in ethanol. Following dehydration, they 

were similarly embedded in Spurr's resin (Spurr, 1969), and polymerized at 60°C for 42 

h. Thin sections were cut from the embedded root tissue using Reichert ultracut 

microtome system (Reichert-Jung, Austria) fitted from glass knives. These sections were 

treated with chloroform vapour to stretch them. They were then placed on 100-mesh, 

Formvar-coated copper grid, and stained with 2% (w/v) uranyl acetate in 70% ethanol for 

10 minutes followed by 0.02% (w/v) lead citrate for 10 minutes. Each grid was washed 

in 6 drops of sterile distilled water and the excess blotted away before transfer to a drop 

of lead citrate. The lead citrate was kept in closed petri dishes to avoid reaction with 

excessive atmospheric carbon dioxide. Concentrated sodium hydroxide was used to 

remove any carbon dioxide that could cause formation of lead carbonate on the grid. The 

grids were then washed many times in a series of water drops and dried by blotting with 

clean filter paper. After staining with uranyl acetate followed by lead citrate, areas of 

ultra-thin sections were viewed and photographed with a transmission electron 
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microscope (200CX, Germany) using a magnification of 10,000. Photographic prints 

were then made of the bacteria inside root tissues. 

2.2.7 Leonard jar experiments on rhizobial inoculation of sorghum and millet and 

its effects on plant growth and mineral nutrition. 

Plant culture and growth analysis in Leonard jars with rhizobial inoculation 

One inoculation experiment was conducted with sorghum and millet using Leonard jars 

in growth chambers. As described above, seedlings of sorghum and millet landraces 

were raised in Leonard jars from surface-sterilized seed material, and inoculated with 10 

mL of the broth cultures of 4 rhizobial strains, namely B. japonicum Tal 110, S. meliloti 

strain 1, R.l. bv. viceae Cn6 and R. I. bv. viceae strain 30. Uninoculated controls received 

an equal volume of sterile yeast extract mannitol broth medium without rhizobia. Prior to 

sterilization, the nutrient solution in Leonard jars was adjusted to contain 1.0 mM N 0 3 for 

meeting the N requirements of the two cereal plants. In all, 4 replicate jars were used for 

each rhizobial strain. After inoculation, the plants were left to grow in a growth chamber 

under similar Ught and temperature conditions as indicated previously and harvested for 

growth analysis at 94 d after planting. Root length was measured, and the plants 

separated into shoots and roots for fresh weight determination. All samples were then 

oven-dried at 800C for 48 h, weighed and ground into very fine powder for nutrient 

analysis. 

2.2.8 Measurement of macro- and micro- nutrients in organs of inoculated 

sorghum plants in Leonard jars 

The preparation of plant samples for the determination of macro-nutrient (P, P, Ca, Mg 

and Na) and micro-nutrients (Fe, Cu, Zn, Mn and B) in organs was done by dry-ashing, 

followed by acid digestion. A weighed amount (l g dry matter) of plant material from 

each of the 4 replicates was ashed overnight in a crucible at 550°C in a muffle furnace, 

and the ash digested in 5 mL of 6 M HCI at 50°C for 30 minutes and filtered. The 

concentrations of nutrient elements were then determined after appropriate dilution, by 

24 

Univ
ers

ity
 of

 C
ap

e T
ow

n



direct aspiration on a calibrated simultaneous ICP spectrophotometer (IRIS/ AP HR DUO 

Thermo Electron Corporation, Franklin, Massachusettes, USA). 

2.2.9 Potted soil experiments and plant growth analysis with rhizobial inocnlation 

A pot experiment was carried out in the glasshouse with sorghum using unsterile soil. 

Surface-sterilized seeds were sown in free-draining potted soil, and after germination, the 

seedlings were thinned out to 2 plants per pot. Broth cultures of Bradyrhizobium 

japonicum Tal 110, Sinorhizobium meliloti strain 1, Rhizobium leguminosarum bv. viceae 

strain 30, R. leguminosarum bv. viceae strain Cn6, Rhizobium NGR234, Azorhizobium 

caulinodans ORS571 and the non-rhizobia! bacterium Gluconoacetobacter 

diazotrophicus P AL5 were adjusted to 0.2 OD6oo units and 10 mL of each strain used to 

inoculate sorghum seedlings grown under glasshouse conditions. Here, 10 replicate pots 

were used per strain, and plants irrigated with sterile de-ionized water thrice a week and 

harvested at 94 d after planting. At harvest, the plants from each replicate pot were 

separated into shoots and roots, oven dried at 80°C and dry matter determined. 

2.2.10 Soil chemical analysis 

The soil used in this study was collected from 0-15 em depth at the Agricultural Research 

Council (ARC) Nietvrobjie field station in Stellenbosch, a site that had not been 

cultivated for several years. The soil samples were taken to the laboratory, sieved (2 

mm) and analyzed for plant-available mineral nutrients using the technique described 

above for plant samples. Triplicate samples were analysed and averaged. 

2.2.11 Bioassay for indole acetic acid (IAA) production by rhizobial strains 

The rhizobial strains used in these experiments were analyzed for IAA production. For 

rapid quantitative estimation in broth culture, the colorimetric method of Gordon and 

Weber (1951) was used. The cultures were grown in the dark for 7 d, centrifuged at 15, 

000 x g for 10 min, and lAA assayed in duplicate supernatant samples. The presence of 

lAA in each supernatant was measured colorimetrically by adding two parts of 0.01 M 

FeCh in 35% HCI04 to one part supernatant followed by reading the optical density at 

530 nm after 25 min. The recorded absorbances were read off a standard curve prepared 
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from pure indole acetic acid. Three separate assays were performed, and their average 

used for estimating IAA formation. 

2.2.12 Nodulation bioassay of soybean seedlings using sterile sorghum root 

macerate 

In order to confirm that the bacteria observed microscopically inside sorghum roots were 

indeed rhizobia, root tissue from sorghum plants inoculated with B. japonicum Tal 110 

was surface-sterilized, and 1 g of material macerated under aseptic conditions for testing 

Koch's postulates. In each case, 15 mL of sterile distilled water was added to the 

macerate, thoroughly mixed, and 5 mL of the homogenate used to inoculate 5-d-old 

soybean seedlings grown aseptically in Leonard jars. Three replicate jars were used for 

each treatment including the controL The treatments used consisted of uninoculated 

soybean control (minus shorghum root macerate), un inoculated soybean (plus macerate 

of uninoculated sorghum root), and inoculated soybean (plus macerate of sterile 

inoculated sorghum root). The surface of each jar was covered with sterile cotton wool 

as anti-contamination mulch and maintained in the glasshouse. At 4 weeks after 

inoculation, the plants were harvested, checked for nodulation and photographed. The 

soybean plants from each Leonard jar were then separated into nodules, roots and shoots 

and oven-dried at 65°C for determination of dry matter. Ground plant samples were used 

for N analysis and fixed-N calculated as the difference between nodulated and non­

nodulated controL 

2.3 Results 

2.3.1 Soil characterization 

The soil used in this study was analyzed in triplicate for pH and mineral nutrients, and the 

following data were obtained: pH (CaCI2) 6.2; C, 0.99%; P (Citrate acid), 44.6 mg/kg; S, 

3.4 mg/kg; Ca, 3.6 (cmol +)lkg; Mg 0.88 (cmol +)/kg; K, 79.6 mg/kg; Na, 70.8 mg/kg; 

Fe, 124.5 mg/kg; Mn, 15.4 mg/kg; Zn, 3.1 mg/kg; B, 0.51 mg/kg; and Cu, 7.0 mg/kg. 
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2.3.2 Rhizobial colonization and infection of sorghum and millet roots 

2.3.3 Light microscopy 

After inoculating sorghum seedlings with B. japonicum Tal 110, bacterial cells were 

clearly visible inside sorghum root tissue using light microscopy (Fig 2.lA and B). 

However, attempts to visualize bacteria inside roots of millet plants proved difficult. 
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Fig 2.1. Light micrograph showing Bradyrhizobium japonicum Tal 110 bacteria located 

in epidermal cells of 10-d-old sorghum roots. Scale = 1000 11m. 
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Fig 2.2. Transmission electron micrograph of A) Bradyrhizobium japonicum Tal 110 

inside 10-d-old sorghum seedling root tissue, B) Bradyrhizobium japonicum Tal 110 

inside 10-d-oJd millet seedling root tissue. Bar = 20 11m. 

2.3.4 Transmission electron microscopy 

The use of transmission electron microscopy also revealed the presence of B. japonicum 

Tal 110 cells inside the roots of both sorghum and millet plants (Fig 2.2 A and B). 
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2.3.5 Scanning electron microscopy 

Scanning electron microscopy of sorghum roots showed a large number of rhizobial cells 

on the surface of both main and lateral roots of inoculated sorghum plants (Fig 2.3A and 

B), but not on those ofuninoculated controls. Millet showed similar results. Attempts to 

locate rhizobial cells on the inside of sectioned root tissue using SEM showed clumps of 

B. japonicum Tal 110 and single cells of Rhizobium GHR2 in the root (Fig 2.4A and B). 

Other rhizobial strains including Azorhizobium caulinodans ORS571, Rhizobium 

NGR234 and Rhizobium GHR2 applied to sorghum and millet plants could be similarly 

observed inside root tissue using SEM techniques. 

2.3.6 Plant growth response to rhizobial inoculation in Leonard jars 

With sorghum, shoot growth, measured as dry matter increased significantly (Table 2.1) 

by 8-54% in this species. All four rhizobia} strains used in this study caused a significant 

(P .::: 0.05) increase in the shoot dry matter of sorghum (Table 2.1). Although sorghum 

root dry matter was unchanged with rhizobia} inoculation, total biomass of plants 

inoculated with Rhizobium leguminosarum bv. viceae 30 and R. leguminosarum bv. 

viceae en) were significantly increased (P < 0.05) at whole-plant level relative to control 

(data not shown). Fresh weights showed a similar pattern, and were significantly (P < 

0.05) increased by 11-51% with rhizobial inoculation (Table 2.2). However, the shoot 

root and total biomass of millet plants were unaltered by rhizobial inoculation (Table 

2.2). 
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Fig 2.3. Scanning electron micrograph showing rhizobial cells on 60-d-old sorghum 

plant roots: A) Azorhizobium caulinodans ORS571, B) Rhizobium GHR2. Bar = 3 ).tm. 
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Fig. 2.4. Scanning electron micrographs showing rhizobial association within 60-d-old 

sorghum plant roots: A) Bradyrhizobium japonicum Tal 110 inside sorghum roots, B) 

GHR2 inside sorghum root. Bar = 311m. 
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Table 2.1. Fresh and dry matter yield of shoots and roots of sorghum grown aseptically 

with 1 mM N03 and inoculated with different rhizobial strains. Values followed by 

dissimilar letters in a column are significantly different at P :::: 0.05 (one-way ANOVA). 

Data are presented as Mean ± S.E. (n = 4). 

Fresh weight (g/plant) Dry weight (g/plant) 

Rhizobial strain Shoot Root Shoot Root 

No inoculation 3.7 ± 0.32a 4.2 ± 0.65a 1.28 + 0.13a 0.74 ± 0.11a 

Bradyrhizobium 4.5 ± 0.15b 4.4 ± 0.30a 1.63 ± 0.09b 0.76 ± 0.09a 

japonicum Tal 110 

Sinorhizobium meliloti 4.1 ± 0.22b 5.3 ± 0.40a 1.43 ± 0.09b 0.88 ± 0.07a 

strain 1 

Rhizobium 5.0±0.17b 4.9 ± 0.33a 1.65 ± 0.08b 0.85 ± 0.78a 

leguminosarum by. 

viceae strain 30 

R. leguminosarum by. 5.6 ± 0.32b 4.9 + 0.54a 1.98 + 0.13c 1.01 ± 0.09a 

viceae strain Cn6 
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Table 2.2. Fresh and dry matter yield of shoots and roots of millet grown aseptically with 

1 mM N03 and inoculated with different rhizobial strains. Values followed by dissimilar 

letters in a column are significantly different at P ::: 0.05 (one-way ANOV A). Data are 

presented as Mean ± S.E. (n = 4). 

Fresh weight (glplant) Dry weight (g/plant) 

Rhizobial strain Shoot Root Shoot Root 

No inoculation 4.0 ± 0.20a 2.S ± 0.12a 0.S6 + 0.22a 0.45 + 0.12a 

Bradyrhizobium 4.0 ± 0.31a 3.0 ± 0.16a O.SI ± 0.23a 0.55 ± O.l3a 

japonicum Tal 110 

Sinorhizobium meliloti 4.5 ± O.lSa 3.4 ± O.lla 1.00 ± 0.24a 0.50 ± 0.12a 

strain 1 

Rhizobium 4.3 ± O.l5a 3.7 ± O.lla 0.91 ± 0.19a 0.64 ± O.lla 

leguminosarum bv. 

viceae strain 30 

R. leguminosarum bv. 4.3 ± O.l2a 2.S ± O.l5a 1.16 + 0.24a 0.46 + 0.12a 

viceae strain Cn6 

The root lengths of sorghum plants were measured and found to increase significantly (P 

::: 0.05) with inoculation relative to uninoculated control. All the four rhizobial strains 

used in this study stimulated a significant (P ::: 0.05) increase in root length of sorghum 

plants (Table 2.3). However, the root lengths of millet plants were unchanged by 

rhizobial inoculation (Table 2.3). 
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Table 2.3. IAA production and effects of rhizobial inoculation on root length of sorghum 

and millet plants grown aseptically with 1.0 mM N03. Values followed by dissimilar 

letters in a column are significantly different at P :s. 0.05 (one-way ANOVA). Data 

presented are Mean + SE (n = 4). Each IAA value is an average of three separate assays. 

ND = not determined. 

Rhizobial strain 

Uninoculated 

control 

Bradyrhizobium 

japonicum Tal 110 

Sinorhizobium 

meliloti strain 1 

Rhizobium 

leguminosarum bv. 

viceae strain 30 

R. leguminosarum 

bv. viceae strain 

Cn6 

Bradyrhizobium 

CB756 

Rhizobium GHR2 

Azorhizobium 

caulinodans 

ORS571 

Rhizobium 

NGR234 

IAA produced Root length (cm) 

(~g mL-1
) Sorghum Millet 

63.73 + 2.89a 71.30 ± 3.83a 

0.95 81.15 ± 1.54b 75.97 ± 2.09a 

1.66 84.08 ± 2.46b 69.70 ± 2.68a 

0.68 80.15 ± 7.94b 61.98 ± 1.87a 

0.18 76.85 ± 2.93b 64.17 + 2.30a 

2.26 ND ND 

0.45 ND ND 

0.28 ND ND 

0.63 ND ND 
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2.3.7 Effects of rhizobial inoculation on the concentration of mineral nutrients in 

organs of sorghum plants 

Because sorghum showed a marked growth response to rhizobial inoculation, the 

mechanism of growth promotion was studied through analysis of mineral nutrients in 

tissues. Unlike legumes, inoculation of sorghum with Sinorhizobium meliloti strain 1 and 

R. leguminosarum bv. viceae strain Cn6 significantly (P S 0.05) decreased N 

concentration in shoots (Table 2.4). Both R. leguminosarum bv. viceae strain 30 and 

strain Cn6 also decreased shoot Na levels (Table 2.4). With micronutrients, however, all 

test strains markedly (P S 0.05) reduced the levels of Zn and Cu in shoot relative to 

control (Table 2.5). The shoot concentration of Mn and Al were also decreased by 

inoculation of sorghum with R. leguminosarum bv. viceae strain 30 and strain Cn6, 

respectively (Table 2.5). The data for sorghum roots were equally exciting, in that P and 

K concentrations were significantly (P < 0.05) increased by rhizobial inoculation relative 

to control (Table 2.6). Except for B. japonicum Tal 110, inoculating sorghum with all the 

other test strains markedly (P S 0.05) decreased Na in roots (Table 2.6). Of the 

micronutrients, Al concentration in roots was markedly reduced by rhizobia! inoculation 

of sorghum relative to uninoculated control (Table 2.7). 
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Table 2.4. Concentration of macro nutrients in shoots of sorghum plants grown aseptically with 1 mM N03 and inoculated with 

rhizobia! strains. Values followed by dissimilar letters in a column are significantly different at P :s. 0.05 (one-way 

ANOV A). Data are presented as ± S.E. (n =4) 

Bacterial strain N P K Ca Mg Na 

(%) (%) (%) (%) (%) (mg/kg) 

No inoculation 0.51± 0.04a 0.29 ± 0.03a 3.78 ± 0.38a 0.32 + 0.05a 0.17 I O.Ola 636.50 +- 103.82a 

Bradyrhizobium 0.41± O.Olab 0.28 ± 0.02a 3.85 ± 0.22a 0.32 ± O.Ola 0.14 ± O.OOa 503.75 ± 29.47a 

japonicum Tal 110 

Sino rhizobium meliloti 0.42 ± 0.02ab 0.30 ± 0.09a 3.71 :.t. 0.23a 0.37 + 0.04a 0.18 ± 0.06ab 512.75 ± 45.88a 

1 

Rhizobium leguminosarum 0.53 ± 0.06a 0.27 ± O.Ola 3.58 ± 0.13a 0.32 ± 0.03a 0.14 ± O.OOa 354.25 ±27.23b 

viceae strain 30 

Rhizobium leguminosarum 0.39 ± 0.02b 0.32 ± 0.02a 3.39 ± 0.34a 0.32 ± O.Ola 0.15 ± O.Ola 376.50 ± 50.85b 

by. viceae strain Cn6 
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Table Concentration of micronutrients in shoots of sorghum plants grown aseptically with I mM N03 and inoculated with 

different rhizobial strains. Values followed by dissimilar letters in a column are significantly different at P :s 0.05 (one-way 

ANOV A). Data are presented as Mean ± S.E. (n = 4) 

Bacterial strain 

No inoculation 

Bradyrhizobium japonicum 

Tal 110 

Sino rhizobium meliloti 

strain 1 

Rhizobium leguminosarum 

by. viceae strain 30 

Rhizobium leguminosarum 

by. viceae strain Cn6 

Cu 

(mg/kg) 

5.81 ± 0.53a 

4.50 + 0.07b 

4.47 ± 0.37b 

4.13 ± O.1lb 

4.73 + 0.28b 

Zn 

(mg/kg) (mg/kg) 

81.63 ±25.93a 32.lO ± 1.71a 

14.53 ± 0.75b 32.00 ± 1.06a 

14.63 ± 1.73b 39.08 ± 6.36a 

lO.73 ± 0.71b 24.83 ± 1.18ab 

11.70 ± 0.52b 27.70 ± 5.76a 

Fe 

(mg/kg) 

88.93 + 2.51 a 

142.80 38.09a 

90.28 + 12.15a 

108.90 + 16.86a 

llO.35 20.46a 

Al B 

(mg/kg) 

359.25 + 78.94a 36.73 + 2.99a 

247.00 + lO.79a 30.76 + 3.24a 

301.00 + 57.46a 31.09 + 5.71a 

225.75 + 13.35a 26.48 + 2.72a 

182.00 + 23.77b 27.74 + 4.13a 
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Table 2.6. Concentration of macronutrients in roots of sorghum plants grown aseptically with 1 mM N03 and inoculated with 

different rhizobial strains. Values followed by dissimilar letters in a column are significantly different at P :::: 0.05 (one-way 

ANOVA). Data are presented as Mean ± S.B. (n 4) 

Bacterial strain N P K Ca Mg Na 

(%) (%) (%) (%) (%) (mg/kg) 

No inoculation 0.51 ± 0.02a 0.06 ± 0.02a 0.40 ± O.OOa 0.11 + 0.06a 0.11 0.08a 1313.75 ± 169.43a 

Bradyrhizobium 0.44 ± 0.03a 0.07 + 0.02ab 0.40 + O.OOa 0.40 + O.OOa 0.12 0.02a 907.25 + 63.66b 

japonicum Tal 110 

Sino rhizobium meliloti 0.48 ± 0.09a 0.18 ± 0.03b 1.17 ± 0.43b 0.13 ± 0.08a 0.15 ± O.Ola 722.75 ± 96.85b 

strain 1 

Rhizobium leguminosarum 0.41 ± 0.02a 0.09 ±0.09b 0.97 ±. 0.32b 0.11 ± 0.03a 0.15 ± O.Ola 765.75 + 59.2Ib 

by. viceae strain 30 

Rhizobium leguminosarum 0.38 ± 0.03a 0.21 ± O.Olb 1.17 ± 0.44b 0.10 ± O.02a 0.12 O.Ola 520.75 + 35.52c 

by. viceae strain Cn6 
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Table 2.6. Concentration of macronutrients in roots of sorghum plants grown aseptically with 1 mM NO) and inoculated with 

different rhizobia} strains. Values followed by dissimilar letters in a column are significantly different at P < 0.05 (one-way 

ANOV A). Data are presented as Mean ± S.B. (n = 4). 

Bacterial strain P 

(%) 

No inoculation 0.51 + 0.02a 0.06 + 0.02a 

Bradyrhizobium 0.44 0.03a 0.07 ± 0.02ab 

japonicum Tal 110 

Sinorhizobium meliloti 0.48 ± 0.09a 0.18 ± 0.03b 

strain 1 

Rhizobium leguminosarum 0.41 ± 0.02a 0.09 ± 0.09b 

by. viceae strain 30 

Rhizobium leguminosarum 0.38 + 0.03a 0.21 ± O.Olb 

by. viceae strain Cn6 

K Ca 

0.40 + O.OOa 0.11 ± 0.06a 

0.40 ± O.OOa 0.40 ± O.OOa 

1.17 ± 0.43b 0.13 ± O.OSa 

0.97 ± 0.32b 0.11 ± 0.03a 

1.17 ± 0.44b 0.10 ± 0.02a 

Mg Na 

(mg/kg) 

0.11 + 0.08a 1313.75 ± 169.43a 

0.12 ± 0.02a 907.25 ± 63.66b 

0.15 ± O.Ola 722.75 ± 96.S5b 

0.15 + O.Ola 765.75 + 59.21b 

0.12 ± O.OIa 520.75 ± 35.52c 
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Table Concentration of micronutrients in roots of sorghum plants grown aseptically with 1 mM N03 and inoculated with different 

rhizobial strains. Values followed by dissimilar letters in a column are significantly different at P < 0.05 (one-way ANaYA). Data 

are presented as Mean S.E. (n 

Bacterial strain Cu Zn Mn Al B 

(mglkg) (mg/kg) (mglkg) (mg/kg) (mglkg) 

No inoculation 11.46 ± 1.08a 35.98 ± 2.35a 44.83 ± 1O.81a 1172.75±207.73a 10.75 ± 0.91a 

Bradyrhizobium 12.24 ± 2.07a 34.70 ± 6.65a 42.35 + 12.12a 1033.25 97.01a 792.25 + 134.44b 9.74 + 1.72a 

japonicum Tal 110 

Sinorhizobium meliloti 14.54 ± 2.76a 38.12 ± 4.30a 33.63 ± 6.48a 1334.50 + 99.79a 699.50 + 96.97b 11.11 ± 0.65a 

strain 1 

Rhizobium 12.35 ± O.72a 32.1 0 ± 1.49a 48.03 ± 4.15a 958.25 ± 103.22a 702.50 ± 70.72b 11.77 ± 2.04a 

leguminosarum bv 

viceae strain 30 

Rhizobium 11.38 + 1.54a 31.88 ± 6.09a 24.95 ± 5.22a 1188.00 ± 255.91a 492.75 + 44.07b 13.37 ± 4.31a 

leguminosarum bv 

viceae strain Cn6 Univ
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2.3.8 Response of plant growth to rhizobial inoculation in potted soil 

Inoculation of plants grown in unsterile potted soil in the glasshouse did not produce any 

significant differences in growth when compared to the uninoculated control (Table 2.8). 

The non-rhizobial diazotroph, G. diazotrophicus, which was included, did not also 

enhance growth of its host plant (Table 2.8). 
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Table 2.8. Dry matter yield of shoots, roots and whole sorghum plants grown in unsterile 

soil and inoculated with different rhizobial strains or the non-rhizobial diazotroph 

Gluconoacetobacter diazotrophicus. Values followed by dissimilar letters in a column 

are significantly different at P::s 0.05 (one-way ANOVA). Data are presented as Mean ± 
S.E. (n 9). 

Bacterial strain 

Shoot 

No inoculation 6.83 ± 0,42a 

Bradyrhizobium 7.09 ± 0.64a 

japonicum Tal 110 

Sinorhizobium meliloti 7.01 ± OA5a 

strain 1 

Rhizobium 

leguminosarum by. 

viceae strain 30 

Rhizobium 

feguminosarum by. 

viceae strain Cn6 

Rhizobium NGR234 

Azorhizobium 

caulinodans ORS571 

Gluconoacetobacter 

diazotrophicus PAL 5 

7046 ± OA3a 

7.55 ± 0.24a 

7.44 ± 0,47a 

6.65 ± 0.61a 

7.11 ± 0.32a 

Plant biomass (g/plant) 

Root Total 

7.07 ± 0.68a 13.91 ± 0.74a 

7.04 ± 0.53a 14.12 ± 0.88a 

6.94 + 0.52a l3.95 ± 0.91a 

7.10 + 0.34a 14.56 + 0.97a 

7.16 ± OAOa 14.08 ± 0.34a 

7.71 ± 0.95a 15.15 ± 1.03a 

6.18 ± 0.54a 12.83 ± 1.03a 

6.24 ± OA4a l3.35 ± OA6a 
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2.3.9 Soybean nodulation by surface-sterile sorghum root macerate 

The application of 5 mL macerate prepared from sterile roots of sorghum plants which 

had been inoculated with B. japonucum Tal 110 produced nodules on soybean plants (see 

Fig 2.5 A, B and Table 2.9). However, the uninoculated controls as well as soybean 

plants treated with the macerate of un inoculated sterile sorghum root showed no evidence 

of nodulation (Table 2.9 and Fig 2.5 C). Because the soybean plants were effectively 

nodulated by the surface-sterile sorghum root macerate, the root, shoot and total dry 

matter of these soybean plants were significantly greater than those of non-nodulated 

controls (Table 2.9), and led to a measurable amount of fixed-N in the nodulated plants 

(Table 2.9). 
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Table 2.9. Nodule numbers, dry matter of shoots, roots and whole soybean plants grown aseptically in Leonard jars and inoculated 

with surface-sterilized macerate of sterile ininoculated root or sorghum roots inoculated with Bradyrhizobium japonicum Tal 110. 

Values followed by dissimilar letters in a column are significantly different at P :s 0.05 (one-way ANOVA). Data are presented as 

Mean ± S.E (n = 3). Fixed-N was detennined as the difference between total N of inoculated and uninoculated non-nodulated soybean 

plants. 

Growth parameters 
Inoculation 
treatments 

Nodules Nodule dry matter Root dry matter Shoot dry matter Total dry matter Fixed 
(no.lplant) (mg/plant) (mg/plant} (mg/plant) (lng/plant) (mg/plant) 

Uninoculated 
(minus macerate of 
sterile sorghum 
root) O.Oa 
Uninoculated 
(plus macerate of 
uninoculated sterile 
sorghum root) O.Oa 
Inoculated 
(plus macerate of 
sterile inoculated 
sorghum root) 5.3 + 0.9b 

O.Oa 

O.Oa 

16.9b 

80.7 ±34.5a 340.0±23.la 456.7 + 20.3a 

76.7 ± 13.3a 230.0 + 45.1a 306.7 + 31.8a 

180.0 + 11.6b 530.0 + 49.3b 710.0 + 43.5c 53.1 + 3.0 
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Fig 2.5. Nodulated and non-nodulated roots of soybean plants inoculated with macerate 
from surface-sterilized roots of sorghum which had been inoculated with 
Bradyrhizobium japonicum Tal 110. Note the nodules observed on A and B, inoculated 
with sterile sorghum root macerate, but not on the uninoculated control C. 
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2.4 Discussion 

2.4.1 Rhizobial colonization and infection of sorghum and millet roots 

All the rhizobial strains tested successfully colonized the roots of both sorhgum and 

millet plants. The use of light, scanning and transmission electron microscopy 

revealed the presence of high numbers of bacteria on the surface and inside of main 

and lateral roots of inoculated sorghum and millet plants (Figs. 2.1 2.4), but not on 

uninoculated controls (data not shown). Under the SEM, small rod-shaped bacteria, 

typical of rhizobial cells, were seen as colonies on the root epidermal surfaces of the 

sorghum and millet plants and appeared invaded by infecting rhizobial cells (Figs. 

2.3). As found with rhizobial colonization of roots of non-legume plants (Spencer et 

al.,1994; de Bruijn et al., 1995; Yanni et al., 1997), these cracks probably served as 

entry points for rhizobia to invade and infect the plant's internal tissues. This is 

supported by the swamp of bacteria found around the cracks in a manner that 

suggested internal invasion of the sorghum and millet roots (Fig 2.3B). However, it is 

also possible that some enzymatic action by rhizobia is involved in the invasion of the 

internal tissues of these crops since rhizobia have been reported to produce multiple 

enzymes that cleave glycosidic bonds in plant cell walls (Mateos et al., 1992; 

limenez-Zurdo et ai., 1996). 

When fixed root tissues of sorghum and millet were sectioned and the surface and 

interior viewed using SEM techniques, the electron micrographs revealed localization 

of bacteria in the inner tissues. The bacteria observed in these inner tissues were 

assumed to be the applied rhizobial strains because uninoculated plants showed no 

evidence of bacteria on the root epidermins or in interior tissues. This assumption 

was validated when root macerate prepared from sterile inoculated sorghum plants 

successfully induced nodulation and N2 fixation in soybean seedlings (Fig 2.5A, B; 

Table 2.9). No nodules were however found on soybean plants inoculated with sterile 

root homogenate prepared from uninoculated sorghum roots (Fig 2.5e). This clearly 

indicates that the bacteria observed microscopically inside sorghum root tissues were 

indeed the authentic N2-fixing rhizobia applied to cereal plants. As shown in Fig 2.4 

A, B, single cells of R. t. bv. viceae (strain 30) could be seen next to the xylem vessels 

of both sorghum and millet roots (Fig 2.4A, B). A similar pattern of xylem 
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colonization was observed for the other test strains. Not uncommon was also the 

observation that rhizobia could occur in clumps of cells inside the xylem of sorghum 

and millet roots, as shown for R. I. bv. viceae strain 30 and Cn6 or B. japonicum Tal 

110 (Fig 2.4A). The detection of rhizobia as endophytes of inoculated sorghum and 

millet roots in this study, and their observed localization in the xylem, is consistent 

with other reports (James et al., 1994; Gough et al., 1997; Reddy et al., 1997; 

O'Callaghan et al., 1997; Schloter et al., 1997; Yanni et ai., 1997; Reis et al., 1999), 

which show that introduced rhizobia and non-rhizobial bacteria can invade and 

localize themselves in the xylem and intercellular spaces of their host-plant roots. 

However since rhizobia have also been reported to produce cellulase and 

polygalacturonase enzymes (Mateos et al., 1992; limenez-Zurdo et al., 1996) it is 

possible that these aid in its entry into root tissues of sorghum and millet. 

Rhizobium invasion of symbiotic legumes is generally via root hair infection in most 

members of the Leguminosae. However, with nodulating tree legumes and symbiotic 

groundnut, rhizobial entry into roots is via cracks, wounds or points of lateral root 

emergence (Sen and Weaver 1984; Sprent 1989). Irrespective of the mode of entry, 

Rhizobium invasion of legume roots is genetically controlled by gene expression and 

molecular signals produced by the host plant (Dakora, 1994). Whether rhizobial entry 

into roots of sorghum and millet and their localization in the xylem of those organs is 

similarly influenced by plant factors, remains unknown. It has however been 

suggested that with non-legume hosts, these entry events are accidental rather than 

biologically programmed (Spencer et al., 1994). Whatever the case, the findings of 

this study nevertheless demonstrate that rhizobia can naturally infect millet and 

sorghum roots via cracks or wounds, and localize themselves in the internal tissues of 

their host plants as found in studies with other plant species (Spencer et al., 1994; de 

Bruijn et al., 1995; Yanni et al., 1997). But whether rhizobial colonization and 

infection of sorghum and millet roots yields any benefits to those plants, as occurs in 

symbiotic legumes, remains to be determined. 

2.4.2 Rhizobial stimulation of plant growth promotion and mineral nutrition in 

sorghum 

The inoculation of asepically-grown seedlings of an African landrace of sorghum with 

infective cells of rhizobial strains promoted shoot growth by 11-51 % on fresh weight 
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basis, and 8-54% on dry weight basis. In fact, all the inoculated plants showed 

significantly (P :::: 0.05) greater shoot fresh and dry weight compared to uninoculated 

control, but their root masses remained unaffected (Table 2.1). These observations 

are consistent with a recent report (Yanni et al., 1997) which showed a significant 

promotion of shoot growth in rice plants inoculated with endophytic strains of R. I. 

bv. trifolii. 

Although root mass was unaffected in this study, there was a significant increase in 

root length of 21-32% with rhizobiaI inoculation of sorghum (Table 2.3), suggesting 

the release of a root-growth-promoting molecule by the test strains. In that regard, 

Bradyrhizobium strain CB756 was found to stimulate an increase in root length of 

wheat with inoculation (Law and Strijdom, 1989). Two clover rhizobia which occur 

as natural endophytes of rice similarly promoted root growth in that species (Yanni et 

al., 1997). While the findings of this study and others (Law and Strijdom 1989; 

Yanni et al. 1997) could imply that soil populations ofN2-fixing rhizobia are capable 

of stimulating root growth (mass or length) in non-legume plants, Law and Strijdom 

(1989) found that, only Bradyrhizobium strain CB756 out of 5 Bradyrhizobium sp. 

tested, consistently induced an increase in root length of wheat plants. The others did 

not. It was also established that the stimulatory substance produced by 

Bradyrhizobium strain CB756 was present in both cell suspensions and cell-free 

culture filtrates (Law and Strijdom, 1989). 

lAA is a phytohormone that stimulates root development in plants, and has been 

shown to be the common cause of com growth promotion following inoculation with 

Azospirillum (Okon et al., 1995). An assay for the production of this molecule in the 

presence of typtophan (Gordon and Weber, 1951) revealed the ability of the test 

strains to form IAA from oxidation of tryptophan. Although the method (Gordon and 

Weber, 1951) used here is less sensitive, in that it detects down to only 0.5 ug mL-I, 

the test strains were found to produce biologically significant amounts of IAA (Table 

2.3). Whether as a result of the IAA formed or some other active molecule released, 

rhizobial inoculation of sorghum stimulated root elongation relative to uninoculated 

control (Table 2.3), and increased P and K concentrations in sorghum roots, but 

decreased root Na and Al levels (Tables 2.5 and 2.6). Shoot Nand Na concentrations 

were similarly decreased by some rhizobial strains such as S. meliloti strain 1, R. 
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leguminosarum bv. viceae strain 30 and Cn6 (Table 2.4). However, other interactive 

effects of rhizobia and sorghum roots could have also promoted P and K uptake or 

decreased N, Al or Na uptake, noting that interaction between rice roots and the 

resident population of cyanobacteria (Anabaena and Nostoc sp.) in soil increased P 

supply to the rice plants (Yanni and Abd EI-Rahrnan 1993). To our knowledge, this is 

the first report of plant growth promotion and enhanced P and K nutrition in landraces 

of a major African cereal with rhizobial inoculation. Future studies using a wider 

collection of diverse landraces of sorghum and millet are likely to find greater 

benefits of rhizobial interaction with these important African crops. 

The promotion of shoot growth, root length, and P and K nutrition with the 

application of rhizobial to sorghum roots indicates great promise for increasing cereal 

yields through inoculation. This idea was tested in a pot experiment using different 

rhizobia! strains and G. diazotrophicus, a non-rhizobial bacterium, on sorghum 

seedlings growth in unsterile soil. The results of this pot experiment with unsterile 

soil were in sharp contrast to those obtained with sterile Leonard jars. Neither shoot 

nor root growth increased when soil-grown sorghum plants were inoculated with 

different rhizobial strains (Table 2.8), which included those that promoted sorghum 

growth in Leonard jars. This finding indicates that either the resident soil bacteria 

produced greater amounts of the growth-promoting molecule, or that its synthesis by 

the introduced rhizobia was adversely affected by the conditions of soil culture. The 

observed lack of response is nevertheless consistent with a report (Law and Strijdom, 

1989) that found Bradyrhizobium strain CB756 to promote wheat growth under sterile 

conditions in Leonard jars but not in sand culture. The findings of this study suggest 

that soil populations of rhizobia, such as those used in this study, can naturally 

stimulate growth of sorghum and millet plants under certain conditions in the 

rhizosphere. 
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CHAPTER 3 

LUMICHROME, A RHIZOBIAL SIGNAL MOLECULE, ALTERS 

DEVELOPMENAL CHANGES IN CEREAL AND LEGUME 

SEEDLINGS 
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3.1 Introduction 

Apart from their well-known role for N2 fixation in root nodules ofleguminous plants, 

rhizobia, (species of Rhizobium, Bradyrhizobium, Azorhizobium, Allorhizobium, 

Sinorhizobium and Mesorhizobium) affect fundamental processes in plant 

development through the release of powerful molecules. The role of some of these 

compounds such as the phytohormones cytokinin (Phillips and Torrey, 1970; 1972) 

and lAA (Law and Strijdom, 1989; Hirsch et al., 1997; Vessey, 2003) have been 

known for a long time. More recently, a number of novel rhizobial molecules have 

been identified to have similar promotive effects on seedling development and plant 

growth (Dakora, 2003). These rhizobial molecules include the nodulation factors lipo­

chito-oligosaccharides (Lopez-Lara et al., 1995; Dyachock et al.,2000; Prithiviraj et 

at., 2000; Smith et al., 2002) and hydrogen gas evolved as an obligate by-product of 

the activity of nitrogenase, the N2-fixing enzyme present in diazotrophs (Dong and 

Layzell, 2002). Lumichrome is another signal compound that has been identified 

from culture filtrates of Sinorhizobium meliloti cells (Phillips et at., 1999), with 

potency for stimulating plant growth. But lumichrome can also occur in soil as a 

breakdown product of riboflavin, a vitamin commonly produced by rhizobia as well 

as other bacterial species and plants. 

I'~OH 

H .. ~-OH 
H-;.~-OH 
H-C-OH 

2'1 
1'CH2 H 

HaC:©e9 ~Xi~O H3
C:©(09 !,,~~yo o 111 aNH ....... 5 3NH 

HaC 7 • N H:te7. N 

o 0 

Riboflavin Lumichrome 

Because riboflavin is easily converted enzymatically or photochemically into 

lumichrome (Phillips et at., 1999), the presence of the latter in soil is likely to be 

common due to its multi-origin from bacteria, plants and the degradation of 

riboflavin. The study by Phillips et at., (1999) showed an increase in growth of 

alfalfa plants with lumichrome supply; and this was attributed to enhanced root 

respiration and increased net C assimilation. But whether this growth response is 
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unique to alfalfa, is not known. The aim of this study was to test the effects of 

lumichrome on the growth of tropical grain legumes and cereals under glasshouse 

conditions. 

3.2 Materials and methods 

3.2.1 Glasshouse conditions 

The experiments were carried out during the summer of 2001 at the University of 

Cape Town, under uncontrolled conditions of light, temperature and humidity in the 

glasshouse. 

3.2.2 Plant species 

The legumes used in this study were cowpea, (Vigna unguiculata (L.) Walp), soybean 

(Glycine max L. Merril), Bambara groundnut (Vigna subterranean L. Verdc) and 

common bean (Phaseolus vulgaris L.). The cereals tested included finger millet 

(Eleucine coracana L.), sorghum (Sorghum bicolor (L.) Moench), maize (Zea mais 

L.) and Sudan grass (Sorghum bicolor subsp. sudanense L). 

3.2.3 Plant culture 

In all experiments, seeds were surface-sterilized by soaking in 70% ethanol for 90 s 

then in 1.5 % bleach for 15 min, and then rinsed 6 times with sterile distilled water. 

The seeds were then sown in sterile 1.0 L pots containing vermiculite and maintained 

inside the glasshouse. The pots were randomized in 6 blocks, watered every second 

day with liz strength modified Hoagland nutrient solution containing 1 mM NI-4N03 

and the antibiotics ampicillin (125 mglL) and rifampicin (10 mglL) to control 

microbial contamination. 

The effects of lumichrome on plants was tested by irrigating the roots of seedlings 

with this bacterial metabolite. Seedlings raised from surface-sterilized seeds were 

watered with nutrient solution adjusted to contain 0, 5 or 50 nM lumichrome as 

described by Phillips et al. (1999). For each treatment, six seeds were sown in each 

pot, and after germination, thinned out to 3 seedlings per pot. The pots were covered 
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initially with a transparent clear, plastic wrap, which was removed after 6 d. In all, 6 

replicates were used per treatment. Lumichrome was only applied to the roots. 

3.2.4 Plant harvest and growth analysis 

Plants were harvested at various time intervals and separated into shoots and roots. In 

some instances, leaf areas were determined for both unifoliate and trifoliate leaves 

and at whole-plant level. For dry matter determination, plants were oven-dried at 

65°C until constant weight. 

3.2.5 Statistical anlaysis 

Data collected on the effects of lumichrome on components of plant growth such as 

organ dry matter and leaf areas were analyzed by one-way ANOV A using 

STATISTICA statistical package. 

3.3 Results 

3.3.1 Growth of legumes supplied with lumichrome 

3.3.2 Cowpea growth response to lumichrome 

Culturing cowpea seedlings for 11 d and watering them with 5 nM concentration of 

lumichrome resulted in a significant (P :S 0.05) increase in shoot dry matter and total 

biomass relative zero-lumichrome control (Table 3.1). This increase in total biomass 

was due to early initiation of trifoliate leaves and their faster growth when plants were 

watered with 5 nM lumichrome (Fig.3.1C). As a result, those plants produced 

significantly (P:S 0.05) greater biomass than the control (Table 3.1). Root growth in 

cowpea was however not affected. But by 37 d after planting, the observed 

developmental changes in seedlings had evened off, except for root growth which was 

depressed by the application of 50 nM lumichrome (Table 3.2). 
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Table 3.1. Effect of lumichrome on dry matter yield of cowpea plants harvested at 11 

d after planting. Values (Mean ± SE, n 6) followed by dissimilar letters in a column 

are significantly different at P ~ 0.05. 

Lumichrome 

conc'n (nM) 

o 

5 

50 

Shoot 

116 + 12a 

164 + 75b 

105 ± 17a 

Dry matter (mg/plant) 

Root Total Trifoliate leaf 

35 ± 7a 151 + 15a 1.2 ± 0.3a 

65 ±7b 225 ± llb 2.0 ± O.lb 

31 ±4a 136 9a 

Table 3.2. Effect of lumichrome on dry matter yield of cowpea harvested at 37 dafter 

planting. Values (Mean ± SE, n = 6) followed by dissimilar letters in a column are 

significantly different at P < 0.05. 

Dry matter (mg/plant) 

Lumichrome Trifoliate Trifoliate Stem Root Total 

conc'n (nM) leaf 1 leaf 2 

o 346 ±J8a 59 ± lOa 441 ± 12a 268 ±12a 1066 ± 41a 

5 380 ±26a 66 ±.9a 484 + 29a 258 ± 5a 1125±37a 

50 340 + 22a 31±3.5b 418±31a 226 ± 14b 1015 ± 78a 
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Table 3.3. Effect oflumichrome on dry matter yield of soybean plants harvested at 37 d after planting. 

Values (Means ± SR, n = 6) followed by dissimilar letters in a column are significantly different at 

P :s 0.05. Shoot stem, unifoliate + trifoliate leaf. 

Dry matter (mg/plant) 

Lumichrome Unifoliate Trifoliate Stem Shoot Root Total 

conc'n (nM) leaf leaf 

o 174 ± 6a 65 + 7a 219 + 5a 457 + 12a 259 + 12a 3875 +161a 

5 171 ± 9a 132 ± 29b 253 ± 13b 557 ± BIb 232 ± 14a 5054 ± 443b 

50 143 ± 4c +4a 187 + 13a 392 ± 8c 235 ± 8a 3573 ± 114a 
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3.3.3 Soybean growth response to lumichrome 

As with cowpea, the application of lumichrome to soybean markedly altered seedling 

development (Fig.3.1A,B). At 37 d after planting, the dry matter yield of the first 

trifoliate leaf on soybean was significantly (P ::: 0.05) increased in plants watered with 5 

nM lumichrome (see Fig.3.lB). Similarly, stem and shoot showed a significant (P ::: 

0.05) increase with the supply of 5 nM lumichrome, which resulted in a pronounced (P ::: 

0.05) increase in overall biomass of soybean plants provided with 5 nM lumichrome 

relative to control (Table 3.3). In contrast, supplying soybean plants with a higher 

concentration of lumichrome (50 nM) decreased (P ::: 0.05) growth ofunifoliate leaf and 

shoot relative to control and the other lumichrome treatment (Table 3.3). 

When watered with 5 nM lumichrome, soybean also showed a significant (P < 0.05) 

increase in leaf area of unifoliate leaves and first trifoliate leaf compared to the control 

and other lumichrome treatment (Table 3.4). As a result, total leaf area on a per-plant 

basis was significantly (P ::: 0.05) greater in soybean plants watered with 5 nM 

lumichrome (Table 3.4). 

The stem length of soybean plants measured at 37 d after planting also showed an 

increase in elongation with lumichrome supply at 5 nM concentration (Table 3.4). 
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Fig. 3.1. A comparison of A) soybean seedlings watered with different concentrations of 

lumichrome, B) first trifoliate leaves of soybean seedlings watered with different 

concentrations of lumichrome, and C) first trifoliate leaves of cowpea seedlings watered 

with different concentrations of lumichrome. 
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Table 3.4. Effect of lumichrome on leaf area and stem length of soybean plants harvested 

at 23 (leaf area) and 37 (stem length) d after planting. Values (Mean + SE, n 6) 

followed by dissimilar letters in a column are significantly different at P < 0.05. 

Lumichrome 

conc'n CnM) 

o 

5 

50 

Unifoliate 

2.97 ± 0.07a 

3.47 ± 0.28b 

2.69 0.04a 

Leaf area (cm2/plant) 

Trifoliate Total 

0.91 ± 0.10a 3.88 + 0.16a 

1.59 ± 0.17b 5.05 ± 0.44b 

0.89 ± 0.07a 3.57 ± O.lla 

Stem length 

(em/plant) 

9.10 + 0.34a 

10.26 0.20b 

9.20 ± 0.35a 

3.3.4 Growth response of Bambara groundnut and common bean to lumichrome 

Unlike cowpea and soybean, Bambara groundnut and the common bean did not show any 

significant growth response to the different concentrations oflumichrome (Tables 3.5 and 

6). 

59 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Table 3.5. Effect of lumichrome on dry matter yield of Bambara groundnut plants 

harvested at 37 d after planting. Values (Mean SE, n 6) followed by dissimilar letters 

in a column are significantly different at P:5. 0.05. 

Lumichrome 

conc'n (nM) 

o 

5 

50 

Shoot 

1.69 ± O.lla 

1.71 ± 0.14a 

1.87 ± 0.20a 

Dry matter (mg/plant) 

Root 

0.49 ± 0.018a 

0.48 ± 0.029a 

0.55 ± 0.037a 

Total 

2.18 ± 0.17a 

2.19 ± 0.19a 

2.41 ± O.l5a 
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Table 3.6. Effect of lumichrome on dry matter yield of common bean plants harvested at d after planting. Values (Means ± SE, n 

6) followed by dissimilar letters in a column are significantly different at P:S 0.05. 

Dry matter (mg/plant) 

conc'n (nM) Unifoliate leaf Trifoliate leaf Stem Root 

o 492 _21a 92 +6a 373 ± 43a 395 + 29a 1357 + 114a 

5 523 + 39a 76+5a 374 + 28a 435 + 22a 1412 + 98a 

50 518 + 49a 57 + 3a 346 + 37a 356 ± 30a 1277 ± 87a 
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Table 3.7. Effects of lumichrome on dry matter yield (mg/plant) of sorghum plants harvested at either 11 or 37 d after planting. 

Values (Mean + SE, n = 6) followed by dissimilar letters in a column are significantly different at P:::: 0.05. 

Lumichrome 

conc'n (nM) 

o 

5 

50 

Shoot 

8.7 + 0.5a 

10.5 ± 0.5b 

8.9 + 0.7a 

II DAP 

Root Total 

9.7 + 0.3a 18.4+8a 

9.7 ± 0.3a 20.2 ± 6a 

8.7 + 0.3a 17.8 + la 

37DAP 

Shoot Root Total 

626 + 33a 448 + 24a 1074 + 48a 

687 ± 46b 628 + 24b 1316 ± 18b 

583 + 30a 513 ± 13a 1096 + 40a 

62 

Univ
ers

ity
 of

 C
ap

e T
ow

n



3.3.5 Growth of cereals supplied with lumichrome 

3.3.6 Sorghum growth response to lumichrome 

Sorghum showed growth promotion when treated with lumichrome. Exposing sorghum 

seedlings to 5 nM lumichrome caused a significantly (P ::s 0.05) increased shoot biomass 

relative to control and the 50 nM lumichrome concentration (Table 3.7). 

Irrigating sorghum plants with 5 nM lumichrome up to 37 d after planting markedly (P ::s 
0.05) increased shoot and root dry matter relative to control and the 50 nM lumichrome 

treatment (Table 3.7). As a result, plant total biomass was also significantly (P ::s 0.05) 

increased compared to the other lumichrome treatment (Table 3.7). 

3.3.7 Millet growth response to lumichrome 

Watering millet seedlings with 5 nM lumichrome increased (P::S 0.05) root, but not shoot, 

dry weight at 23 d after planting (Table 3.8). In contrast, the provision of 50 nM 

lumichrome significantly (P ::s 0.05) decreased root and total plant biomass relative to 

control (Table 3.8). A similar decrease in root growth was observed at 37 d after planting 

(Table 3.8). With the provision of 5 nM lumichrome, however, both root dry matter and 

plant total biomass were significantly (P < 0.05) increased relative to control at 37 dafter 

planting (Table 3.8). 
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Table 3.8. Effects of lumichrome on dry matter yield (mg/plant) of millet plants harvested at either 23 or 37 d after planting. Values 

(Mean + SE, n = 6) followed by dissimilar letters in a column are significantly different at P :::: 0.05. 

Lumichrome 

conc'n (nM) 

o 

5 

50 

Shoot 

150 +13a 

129 + 8a 

107 ± 4a 

11 DAP 

Root Total 

84±8a 235 ±16a 

104 + 6b 233 + 9a 

41 + 6c 158 + 4b 

37DAP 

Shoot Root Total 

755 +53a 334 + 24a 1088 +58a 

885 + 83a 391 + 12b 1276 + 75b 

713 + 29a 301 + 23c 1015 ± 46a 
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Table 3.9. Effect of lumichrome on dry matter yield and total leaf area of maize plants 

harvested at 23 d after planting. Values (Mean ± SE, n = 6) followed by dissimilar letters 

in a column are significantly different at P :s. 0.05. 

Lumichrome 

Concentration First leaf 

(nM) 

o 366 + 33a 

5 466 ± 45b 

50 352 ± 21a 

Dry matter 

(mg/plant) 

Second leaf 

429 ±28a 

484 ± 34a 

505 ± 34a 

Total 

796 ± 31a 

980± 46b 

857 ±24a 

T otalleaf area 

(cm2/plant) 

5.38 ± 0.49a 

6.77 ± 0.50b 

4.89 + 0.26a 

Table 3.10. Effect oflurnichrome on dry matter yield of Sudan grass plants harvested at 

23 d after planting. Values (Mean ± SE, n = 6) followed by dissimilar letters are 

significantly different at P < 0.05. 

Lumichrome 

conc'n CnM) 

o 

5 

50 

Shoot 

144 ± lla 

130 ± lOa 

108 ± 12a 

Dry matter (mg/plant) 

Root 

129 ± 14a 

144 ± 12a 

97 + 8a 

Total 

276±21a 

274 ± 19a 

206 ± 16a 
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3.3.8 Growth response of maize to lumichrome 

As with sorghum and millet, maize also showed a significantly (P < 0.05) positive 

response to lumichrome application. Relative to the control, shoot dry weight, but not 

root mass, was significantly (P .::s 0.05) increased in plants treated with 5 nM lumichrome 

up to 23 d after planting (Table 3.9). Unlike millet, however, maize plants did not show 

any decrease in shoot or root biomass at the higher 50 nM concentration of lumichrome. 

Measurement of leaf areas provided further evidence of maize growth response to 

lumichrome (Table 3.9). Compared to control, leaf areas increased with the supply of 5 

nM lumichrome to maize plants (Table 3.9). The total leaf area, measured on a per-plant 

basis, increased by 26% when plants were watered with 5 nM lumichrome. 

3.3.9 Growth response of Sudan grass to lumichrome 

Unlike sorghum, millet and maize, growth of Sudan grass was unaltered by lumichrome 

application (Table 3.10). 

3.4 Discussion 

Seedling development in plants is controlled by a number of biotic and abiotic factors, 

including the adequate supply of mineral nutrients, photosynthate and water. 

Superimposed on these basic requirements is the role of classical plant growth-promoting 

molecules called phytohormones. These compounds, which include auxins, cytokinins, 

gibberellins and abscicic acid, have been known for a long time to stimulate growth of 

plant organs such as leaves, roots and stems via cell division and cell expansion (Letham 

et al., 1978; Ross et al., 2002; Van der Graaff et al., 2003; Campanoni et al., 2003). This 

study has assessed the stimulatory role of luminchrome, a rhizobial metabolite, on growth 

of both legume and cereal seedlings. Even at very low nanomolar concentrations (5 nM) 

lumichrome was found to elicit growth promotion in a wide range of monocots and 

dicots. In both cowpea and soybean, the supply of 5 nM lumichrome caused an early 

initiation of trifoliate leaf development, an increase in trifoliate leaf expansion (Fig.3.1 A, 
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B, C), and consequently greater trifoliate leaf growth (Fig.3.lB, C) which led to increased 

dry matter accumulation in shoot (Tables 3.1, 3.2 and 3.3). Relative to cowpea, these 

developmental changes were found to be more pronounced in soybean, in that, unifoliate 

and trifoliate leaf expansion and size increased significantly with the supply of 5 nM 

lumichrome (Fig. 3.1A, B, C), and thus led to greater leaf areas for photoassimilation and 

photosynthate production (Table 3.4). 

In general, stem length of these seedlings were also markedly increased with the supply 

of 5 nM lumichrome (Fig. 3.1A and Table 3.5). Our findings are no doubt similar to the 

observed promotive effects of auxins and gibberellins on shoot growth of various plants 

(Letham et aI., 1978; Ross et ai, 2002). However, unlike most classical studies on 

phytohormones, which have established correlations between endogenous hormonal 

activity and organ growth rate (Mirov, 1941; van der Graaff et ai., 2003), this study did 

not assess lumichrome activity in shoots (stems and leaves) of both cowpea and soybean. 

Like phytohormones, however, lumichrome seems to affect growth in a wide range of 

plant taxa and species. The effects of nanomolar concentrations of lumichrome on 

cowpea and soybean, the natural symbiotic partners of rhizobia, was not different from 

those of non-homologous cereal hosts such as sorghum, millet and maize. 

Supplying 5 nM lumichrome to seedlings significantly (P ::: 0.05) altered developmental 

patterns in sorghum, millet and maize relative to control. Whether assessed at 11 or 37 d 

after planting, growth of sorghum shoot was significantly (P ::: 0.05) increased by 

lumichrome supply at 5 nM concentration (Tables 3.7). Shoots of maize seedlings were 

similarly increased by 5 nM lumichrome as a consequence of increased leaf development, 

which resulted in greater leaf areas (Tables 3.7). Unlike the legumes, however, root 

growth was considerably increased (P ::: 0.05) by the supply of 5 nM lumichrome to the 

cereals, especially sorghum and millet (Tables 3.7 and 3.8). It is possible that 

lumichrome supply to these species led to changes in assimilate partitioning thereby 

affecting growth patterns and resulting in larger root development (Vessey, 2003). 

However, root development in plants is known to be promoted by low concentrations of 

abscicic acid, but depressed by auxins and ethylene through inhibition of cell division and 
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DNA synthesis in apical meristems (Burg et al., 1971; Chadwick and Burg, 1970). The 

increased root growth with 5 nM lumichrome supply to millet and its decreased 

development with 50 nM closely mirrors the activity of abscicic acid, which promotes 

root growth at low concentrations but inhibits it at higher levels (Aspinall et al., 1967). 

Although the mechanism by which lumichrome elicits growth promotion in plants 

remains unknown, it must be transported in xylem from roots to shoots in order to effect 

changes in the growth of unifoliate and trifoliate leaves as well as stems, as observed in 

this study. Direct evidence is however needed to support this view. Alternatively, 

lumichrome could also bind to a receptor on the roots causing production and 

translocation of a plant-internal signal compound. 

The promotive effect of lumichrome on the growth of organs and of whole plants among 

monocots and dicots is consistent with the finding obtained by Phillips et al. (1999) for 

alfalfa. Apart from the possibility that lumichrome probably directly affects cell division, 

cell expansion and cell extensibility, it has been indicated that the increased growth of 

alfalfa plants by lumichrome was due to enhanced root respiration that led to increased 

net C assimilation (Phillips et al., 1999). Whatever the mechanism involved, the data 

obtained here have prospects for agricultural application. For example, rhizobial strains 

that release large quantities of lumichrome are more likely to affect growth of crop plants 

and possibly yield, irrespective of whether they are legumes or cereals. These results also 

confirm an earlier suggestion that rhizobial benefits in mixed plant cultures are likely to 

transcend the narrow boundaries of N2 fixation to include the release of molecules that 

serve as signals for enhanced plant development (Dakora, 2003). Apart from 

lumichrome, lipo-chito-oligosaccharides which are bacterial nodulation factors, have 

been reported to trigger cell division and somatic embryogenesis in the absence of auxins 

and cytokinins (Dyachok et al., 2000). Similar studies as done with lumichrome, further 

revealed that these Nod factors can promote seed germination and enhance seedling 

development when applied to a number of angiosperms belonging to different taxa 

(Zhang and Smith, 200 1). As with the promotive effect of lumichrome on root growth in 

sorghum and millet observed in this study, the application of low concentrations of Nod 

factors (10-7 
- 10-9 M) increased root mass and root length in soybean (Smith et al., 

68 

Univ
ers

ity
 of

 C
ap

e T
ow

n



2002). This was in addition to the fact that spraymg leaves of different plant taxa 

(soybean, common bean, maize, rice, canola, apple and grape) with submicromolar 

concentrations (10-6 
- 10-10 M) of Nod factors also increased photosynthate production 

and grain yield in field plants (Smith et ai., 2001). Those data and those of this study 

with lumichrome clearly indicate that novel molecules of bacterial origin exist that can 

promote plant growth to levels similar to or higher than those of classical phytohormones. 

Our findings with lumichrome also support the view that besides the classical 

phytohormones, additional signaling compounds are required to orchestrate plant 

development (Beveridge et ai., 2003). 

Many molecules may therefore exist in microbes and marine biota with potency far above 

phytohormone activity in plant growth promotion and with some potential for increasing 

yields of agricultural crops. What is needed, futuristically speaking, is intensified 

isolation, identification and characterization of microbial extracts for molecules that have 

the potential to revolutionize agriculture. It must however be indicated that, in this study, 

the growth of some plant species was unaffected by lumichrome. For example, with the 

Leguminosae, growth of Bambara groundnut and common bean (Table 3.5 and 3.6) was 

neither increased by the provision of 5 nM lumichrome nor depressed by the higher 50 

nM concentration, as observed for soybean, and, to a lesser extent, cowpea (Tables 3.1, 

3.2 and 3.4). Of the mono cots, development of Sudan grass was also not affected by 

lumichrome supply, indicating strong species differences in response to growth elicitation 

by lumichrome. However, just as auxin inhibition of root growth in many plant species 

can be overcome by antiauxins (Scott, 1972), it is possible that the lack of lumichrome 

effect on some species may be due to a neutralizing anti-lumichrome molecule or the 

effects of ions, such as silver ion, which can antidote the inhibitory effects of ethylene on 

Pisum root development (Beyer, 1976). Interestingly the application of silicate anions to 

symbiotic cowpea could induce an increase in ABA production and decrease zeatin 

ribose biosynthesis, leading to enhanced root development (Dakora and Nelwamondo, 

2003). In fact, ABA is also known to mediate the regulatory effects of nitrate on lateral 

root development in plants (Signora et ai., 2001). Clearly, it seems there are many 
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interactive processes m plant growth involving phytohonnones, nutrients ions, and 

lumichrome which act in concert to regulate organ growth and overall plant development. 
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CHAPTER FOUR 

XYLEM TRANSPORT AND SHOOT ACCUMULATION OF 

LUMICHROME ALTERS ROOT RESPIRATION, STOMATAL 

CONDUCTANCE, LEAF TRANSPIRATION AND 

PHOTOSYNTHETIC RATES IN LEGUMES AND CEREALS 
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4.1 Introduction 

Although bacteria are known to affect fundamental processes in plant development 

(Vedder-Weiss et ai., 1999; Vessey, 2003), the mode of action remains unknown. 

Recently, however, many diazotrophs, including rhizobia, have been shown to use 

chemical molecules to effect changes in plant development. For example, Phillips et al. 

(1999) showed that alfalfa growth was enhanced by a metabolite produced by its 

micro symbiont, Sinorhizobium meliloti. 

Symbiotic nitrogen fixation relies on photosynthate supply for biochemical functioning, 

and labelling experiments have shown that current photosynthate is rapidly transferred to 

root nodules. Thus, conditions that enhance photosynthesis could stimulate symbiotic N2 

fixation (Dakora and Drake, 1999), indicating that nitrogenase activity is directly linked 

to C supply (Voisin, 2003). 

It therefore means that any process that causes an increase in CO2 supply and uptake is 

likely to increase photosynthetic rates. In fact, the growth promotion in alfalfa observed 

by Phillips et al. (1999) was apparently due to lumichrome-induced increase in root 

respiration, which enhanced CO2 supply for net C assimilation. 

Joseph and Phillips (2003) have also reported that stomatal conductance and transpiration 

of bean seedlings were both markedly increased by 10 nM homo serine lactone 42 h after 

its supply to the plants. This increase in transpiration could have potentially led to the 

movement of certain diffusion-limited minerals such as phosphorus into the root, thus 

benefiting the plant and its associated bacteria (Joseph and Phillips, 2003). Root 

respiration is also known to be enhanced by certain microbes (Norman et ai., 1994), 

possibly through the effects of chemical molecules they release into the atmosphere. 

Incidentally, the CO2 so released can promote growth of symbiotic rhizobia (Lowe and 

Evans, 1962) and its increase in the rhizosphere from root respiration could directly 

benefit rhizobial growth in soil. Although bacterial products are known to stimulate plant 

growth (Dakora, 2003), their effect on physiological processes such as leaf stomatal 

conductance, transpiration and root respiration have remained unknown. 
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This study was conducted to detennine the effect of lumichrome on root respiration, leaf 

stomatal conductance and transpiration in five legumes and two cereals. Because the 

phytohonnone abscisic acid (ABA) is known to regulate stomatal opening and closure 

under conditions of water deficiency (Wigger et al., 2002), its effects were also tested on 

the seven species of monocots and dicots so as to have a direct comparison with effects of 

lumichrome. Furthennore, because lumichrome is a secretory product of rhizobia, the 

direct effects of infective rhizobia! cells was assessed as an additional treatment. Taken 

together, this study assessed whether lumichrome applied to roots of monocots and dicots 

was transported via xylem and accumulated in shoots. It also determined whether the 

application of lumichrome, ABA and rhizobial cells altered root respiration, stomatal 

conductance and leaf transpiration in legume and cereal plants. 

4.2 Materials and Methods 

4.2.1 Glasshouse experimental conditions 

The experiment was conducted out in the glasshouse of the Botany Department, 

University of Cape Town, under uncontrolled conditions of light, humidity and 

temperature. 

4.2.2 Phytotron experimental conditions 

Test plants were placed in a growth chamber with 16 h day light, 70% relative humidity, 

and 28°CI16°C day/night cycle. For each species, four Leonard jar replicates were used 

per rhizobial strain. 

4.2.3 Plant species 

The legumes used in this study included cowpea (Vigna unguiculata (L.) Walp), soybean 

. (Glycine max L. Merril), Bambara groundnut (Vigna subterranean (L.) Verde), pea 

(Pisum sativum L.) and lupin (Lupinus albus L.), while the cereals tested were sorghum 

(Sorghum bieolor (L.) Moench) and maize (Zea mais L.). 
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4.2.4 Plant culture for lumichrome identification in analysis of xylem sap and leaf 

tissue extracts 

Cowpea and soybean plants were grown to study lumichrome transport in xylem and its 

accumulation in leaf tissue. Seeds were surface-sterilized by soaking in 70% ethanol for 

90 s, in 1.5 % bleach for 15 min, and then rinsed 6 times with sterile distilled water. The 

seeds were sown in L pots which had been filled with a mixture of sand and 

vermiculite (3:1) and sterilized in the autoclave. 

The surface-sterilized seeds of soybean and cowpea were then inoculated with 

commercial inoculants of Bradyrhizobium japonicum strain WB74 and Bradyrhizobium 

strain CB756 respectively. The uninoculated control received sterile nutrient solution 

adjusted to contain 1 mM NH4N03. The inoculation with rhizobia was superimposed 

with the application of 5 nM lumichrome. The treatments used included uninoculated 

zero-lumichrome (IoLo), uninoculated + 5 nM lumichrome (IOL5) , inoculated + zero­

lumichrome (I,Lo) and inoculated + 5 nM lumichrome (IlLs). For lumichrome treatments, 

the seeds were surface-sterilized and soaked in 5 nM lumichrome solution for 2 h before 

planting, while plants receiving zero treatments were raised from seeds which had been 

soaked in plain sterile water. After germination, the seedlings were thinned out to 2 

plants per pot. For zero-lumichrome treatments, plants were watered every second day 

with only sterile Y2 strength modified Hoagland nutrient solution, or adjusted to contain 5 

nM lumichrome for those receiving lumichrome. The plants were then maintained under 

uncontrolled glasshouse conditions until harvest. 

4.2.5 Collection of xylem sap 

About 3 weeks after planting, the plants were decapitated at the crown level and the 

exuding xylem sap collected into ice-cold Eppendorf tubes, and vacuum-dried before 

analysis by HPLC techniques. 

4.2.6 Extraction of leaf tissue 

At harvest, leaves of the decapitated plants were detached for each replicate treatment, 

pooled, thoroughly mixed, and then a 10 g sample taken for extraction. The leaves were 
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ground and lumichrome and riboflavin extracted in 150 mL methanol! 1 M HCI (49: 1) 

medium. The extract was vacuum-dried, and analyzed for lumichrome using HPLC 

techniques. 

4.2.7 HPLC analysis of xylem sap and leaf extracts for lumichrome and riboflavin 

Lumichrome and riboflavin were quantified in vanous samples following HPLC 

separation on a reverse-phase, Lichrosorb CI8 column (250 x 4.6 mm; Alltech, 

Nicholasville, KY, USA). The leaf extracts were solubilized in 30% methanol, micro­

cetrifuged, and 100 Jll of each sample injected into the HPLC. The injected aliquots 

were separated on a gradient going from 30 to 100% methanol in 45 min. The eluting 

compounds were identified by UV-visible spectra (absorbance 240 - 500 nm) using a 

photodiode array detector (Model 996; Waters, Milford, MA, USA) and quantified at 249 

or 444 nm, respectively, relative to standards separated under the same conditions (see 

Fig. 4.1) 
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Fig. 4.1. An HPLC chromatogram showing A) a standard run of purified lumichrome 

and B) a run of xylem sap sample. 
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4.2.8 Plant culture for measurement of root respiration, stomatal conductance, 

and leaf transpiration in phytotron chambers 

The effects of lumichrome on root respiration, stomatal conductance and leaf 

transpiration were measured using plants grown in liquid culture and maintained under 

phytotron conditions. Seeds of Bambara groundnut, soybean, cowpea, maize, lupin, 

sorghum and pea were germinated in sand and watered with nutrient solution for 14 d 

under uncontrolled glasshouse conditions. The nutrient solution was adjusted to contain 

1 mM NH4N03. At 14 d after planting, the sand was gently washed off roots, and 

seedlings with uniform size and appearance selected and transferred to Yi strength 

modified Hoagland nutrient solution adjusted to 1 mM ~N03 and contained in 3.5 L 

plastic pots. 

The hydroponic culture solution was supplemented with the antibiotics rifampicin (125 

mglL) and ampicilin (10 mg/L) to avoid microbial contamination. The treatments 

included feeding plant roots with 10 nM lumichrome, 10 nM ABA, or 10 mL of infective 

rhizobial cells (0.2 OD600). A zero untreated control was included for comparison with 

treatments. 

Four seedlings were transferred to each pot and held in place on the lid with Bostik 

Prestic (Bostik Ltd., England). Four replicates were used per treatment. The nutrient 

solution was aerated by bubbling air through the system using a Shiruba aquarium air 

pump (Model SP 107, Japan). The experiments on root respiration, stomatal conductance, 

and leaf tranpiration were conducted in the phytotron chamber under the following 

conditions: 16 h day light, 70% relative humidity, and 28°C/16°C day/night cycle. 

4.2.9 Measurement of root respiration 

After 44 h of plant exposure to the lumichrome treatments in the hydroponic pots, the 

roots of test plants were cut off at the crown, wiped dry on absorbent paper and quickly 

weighed. They were then placed in the cuvette of an LCA3-type (ADC Co. Ltd., 

Hoddesdon, UK) infrared gas analyzer (IRGA) and the rate of respiration (i.e. volume of 
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CO2 released with time) measured. The IRGA was operated in the differential mode at 

an ambient CO2 concentration of 350 ppm. 

4.2.10 Measurement of stomatal conductance and transpiration in phytotron 

Stomatal conductance of the first trifoliate leaves of the legumes and the fourth leaves of 

the cereals (maize and sorghum) were measured using a sensitive and well calibrated LI-

6400 IRGA (LI-COR Biosciences, Inc, Nebraska, USA) equipped with a steady-state 

porometer containing a small leaf cuvette. With this system, measurement of stomatal 

conductance automatically provided data for transpiration. 

4.2.11 Measuring the effects of lumichrome application on stomatal conductance, 

transpiration and photosynthetic rates in field-grown legumes and cereals 

Soybean, cowpea, maize and sorghum plants were grown in the field and supplied with 0, 

5 or 50 nM lumichrome. At 53 d after planting, gas exchange measurements were 

performed on leaves of the field-grown plants to determine if this bacterial metabolite 

affects photosynthetic rates as reported for LCOs (Smith et al., 2002). Stomatal 

conductance and leaf transpiration were also measured. Additionally, soybean leaves 

from the zero-lumichrome treatment were dipped briefly in 0, 5 or 50 nM lumichrome 

and photosynthesis, transpiration, and stomatal conductance measured after 0.5, 1 and 2 

h. 

4.2.12 Statistical analysis 

All the data collected were analyzed by a one-way ANOV A using STA TISTICA 

statistical package. 

4.3 Results 

4.3.1 Detection of lumichrome in xylem sap and leaf tissue 

Cowpea plants inoculated with rhizobial cells at planting and supplied with 5 nM 

lumichrome showed significantly more (P::: 0.05) lumichrome concentration in the xylem 

stream compared to control (Fig. 4.2). Due to the very low exudation of sap by soybean 
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plants, it was not possible to statistically analyze the data as done for cowpea. However, 

plants inoculated with infective rhizobial cells and treated with lumichrome had a mean 

concentration of 61.2 )lmol lumichrome/mL sap, un inoculated plants receiving 

lumichrome had a value of 41.18 )lmol lumichrome/mL sap, while the uninoculated zero­

lumichrome treatment showed an average value of 26.81 )lmol lumichrome/mL sap. 

Analysis of leaf extracts showed that the concentration of lumichrome in soybean leaves 

was significantly (P ::: O.OS) greater than that of cowpea leaf irrespective of the treatments 

(Fig. 4.3) . 
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Fig. 4.2. Concentration of lumichrome in xylem sap of 44-d-old cowpea plants either 

inoculated or uninoculated and supplied with S nM lumichrome. Values are means from 

three replicates, each of which contained about 30 plants. Bars (± SE) with dissimilar 

letters are significant at P ::: O.OS. loLo = No inoculation and no lumichrome; loL5 = No 

inoculation but watered with S nM lumichrome; I,Lo = Inoculated but not watered with 

lumichrome; IlLS = Inoculated and watered with S nM lumichrome. 
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Fig. 4.3. Concentration of lumichrome in leaf tissue of 44-d-old cowpea and soybean 

plants supplied with 5 nM lumichrome. Values are means from three replicates, each 

sampled from 20 plants. Bars (± SE) with dissimilar letters are significant at P :s 0.05. 

4.3.2 Root respiration 

Of all the legume and cereal crops tested, only lupin and maize showed a significant 

response to lumichrome application. With lupin, there was a significant (P :s 0.05) 

decrease in the amount of CO2 produced by the roots following lumichrome application. 

A similar result was obtained when the species was inoculated with infective rhizobial 

cells (Table 4.1). Maize, on the other hand, responded with a significant increase (P ::: 

0.05) in root respiration in response to lumichorme application (Table 4.1) just as 

inoculating maize with rhizobia caused a marked increase in root respiration (Table 4.1). 

The rest of the species tested did not show any significant response to lumichrome 

application and inoculation (Table 4.1). 
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Table 4.1. Effect of applying lumichrome and rhizobial cells on root respiration of 

legume and cereal crop plants. C02 production by the roots of 14-d-oJd plants was 

measured 44 h after application. Values are means of 4 replicate pots, each containing 4 

plants. Values (± SE) with dissimilar letters in a row are significant at P:::: 0.05. 

Treatments 

Crop Control Lumichrome Rhizobial inoculation 

(10 nM) (10 mL of 0.2 OD600) 

~mol CO2 produced. h-I. g Fwrl 

Soybean 292.7 ± 53.6a 191.2 ± 14.0a 240.6 ± 12.4a 

Cowpea 265.6 ± 14.9a 282.5 ± 10.7a 310.3 ± 13.8a 

Bambara groundnut 137.4 5.25a 138.3 ± 9.50a 149.4 ± 4.85a 

Pea 260.5 ± 36.1a 292.9 ± 19.2a 210.8 + 12.8a 

Lupin 198.0 ± 19.2a 142.8 ± 13.0b 149.0 + 11.9b 

Sorghum 154.5 ± 1O.6a 156.0 ± 50.3a 153.3 ± 8.6a 

Maize 201.4 ± IO.1a 241.5 ± 12.9b 238.6 19.7b 
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4.3.3 Stomatal conductance and transpiration in growth chamber plants 

Plants grown hydroponically in growth chambers were treated to either lumichrome, 

ABA or rhizobial inoculation and their effects on stomatal conductance and leaf 

transpiration assessed relative control. The data showed species differences in response 

to these treatments. Transpiration increased significantly (P :s. 0.05) in cowpea III 

response to lumichrome, rhizobial inoculation and ABA application. Stomatal 

conductance was also increased but was significant for only ABA and inoculation 

treatments, but not lumichrome supply (Table 4.2). Transpiration in lupin similarly 

showed a significant (P :s. 0.05) increase in response to lumichrome and ABA, but not to 

root inoculation with rhizobial cells (Table 4.3). 

With soybean (Table 4.4) and Bambara groundnut (Table 4.5), both stomatal conductance 

and transpiration were significantly (P :s. 0.05) decreased in plants exposed to all three 

treatments, relative to control. However, the effect of ABA on transpiration in soybean 

was not significantly (P :s. 0.05) different from the untreated control (Table 4.4). Of the 

five legumes, pea was the only species that remained unchanged in transpiration and 

stomatal conductance in response to lumichrome, ABA, and rhizobial inoculation (Table 

4.6). 

Of the two cereal species tested, only maize showed a significant reponse to the applied 

treatments. Transpiration in maize was significantly decreased (P :s. 0.05) by the 

application oflumichrome and rhizobial cells to roots, but not by ABA (Table 4.7). 

Like pea, sorghum did not also show any significant response to the applied lumichrome 

treatments (Table 4.8). 
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Table 4.2. Stomatal conductance and transpiration of 14-d-old cowpea plants supplied with lumichrome, abscicic acid or rhizobial 

cells and measured 44 h after treatments. Values (Mean ± SE, n = 4, with each replicate having 4 plants) followed by dissimilar letters 

in a row are significantly different at P ::: 0.05. 

Treatment 

Physiological activity Control Lumichrome Rhizobial inoculation Abscicic acid 

(10 nM) (10 mL of 0.2 OD600) (10 nM) 

Stomatal conductance 

( I -2 -1) mmo m s 0.32 ± 0.02a 0.36 + 0.02a 0.39 ± O.Olb 0.44 ± 0.02b 

Transpiration 

( I -2 -1) mmo m s 4.28 + 0.002a 4.95 ± 0.002b 4.99 + 0.001b 5.86 ± 0.002c 
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Table 4.3. Stomatal conductance and transpiration of 14-d-old lupin plants supplied with lumichrome, abscicic acid or rhizobial cells 

and measured 44 h after trcatments. Values (Mean ± SE, n = 4, with each replicate having 4 plants) followed by dissimilar letters in a 

row are different at P ::: 0.05. 

Treatment 

Physiological activity Control Lumichrome Rhizobial inoculation Abscicic acid 

(10 nM) (10 mL of 0.2 OD600) (10 nM) 

Stomatal conductance 

( I -2 -1) mmo rn s 0.14 ± 0.006a 0.20 + O.Ola 0.17 + 0.04a 0.23 ± 0.03a 

Transpiration 

(mmol m-2 S-I) + O.OOla 3.42 ± 0.002b 2.38 ± 0.003a 3.93 ± 0.004b 
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Table 4.4. Stomatal conductance and transpiration of 14-d-old soybean plants supplied lumichrome, abscicic acid or rhizobial 

cells and measured 44 h after treatments. Values (Mean _ SE, n 4, with each replicate having 4 plants) followed by dissimilar letters 

in a row are significantly different at P :::. 0.05. 

Treatment 

Physiological activity Control Lumichrome Rhizobial inoculation Abscicic acid 

(10 nM) (10 mL of 0.2 OD600) (10 nM) 

Stomatal conductance 

(mmol m-2 S-I) 0.77 ± 0.05a 0.54 ± 0.03b 0.37 ± 0.03c 0.57 ± 0.04b 

Transpiration 

(mmol m-2 S-I) 8.49 ± 0.004a 6.83 ± 0.003b 4.63 ± O.OO4c 7.34 ± O.OOSa 
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Table 4.5. Stomatal conductance and transpiration of l4-d-old Bambara groundnut plants supplied with lumichrome, abscicic acid or 

rhizobial cells and measured 44 h after treatments. Values (Mean ± SE, n = 4, with each replicate having 4 plants) followed by 

dissimilar letters in a row are significantly different at P ::: 0.05. 

Treatment 

Physiological activity Control Lumichrome Rhizobial inoculation Abscicic acid 

(10 nM) (l0 mL of 0.2 OD600) (10 nM) 

Stomatal conductance 

(mmol m-2 S-I) 0.39 + 0.07a 0.18 + 0.03b 0.26 ± 0.03b 0.25 ± 0.04b 

Transpiration 

( 1 -2 -1) mmo m s 4.58 + 0.007a 1.88 ± 0.003b 2.96 ± 0.003b 2.70 ± 0.004b 
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Table 4.6. Stomatal conductance and transpiration of 14-d-old pea plants supplied lumichrome, abscicic acid or rhizobial cells 

and measured 44 h after treatments. Values (Mean + SE, n = with each replicate having 4 plants) followed by dissimilar letters in a 

row are significantly different at P ::: 0.05. 

Treatment 

Physiological activitv Control Lumichrome Rhizobia} inoculation Abscicic acid 

(10 nM) (10 ml of 0.2 OD600) (10 nM) 

Stomatal conductance 

(mmol m-2 SOl) 0.19 ± O.OSa 0.10 + 0.008a 0.09 ± O.Ola 0.10 ± O.Ola 

Transpiration 

(mmol m-2 sol) 2.27 + 0.56a 1.68 + O.l4a 1.37 ± O.18a 1.56 ± 0.18a 
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Table 4.7. Stomatal conductance and transpiration of 14-d-old maize plants supplied with lumichrome, abscicic acid or rhizobial cells 

and measured 44 h after treatments. Values (Mean ± SE, n = 4, with each replicate having 4 plants) followed by dissimilar letters in a 

row are significantly different at P S 0.05. 

Treatment 

Physiological activity Control Lumichrome Rhizobial inoculation Abscicic acid 

o mL of 0.2 

Stomatal conductance 

(mmol m-2 S-I) 0.26 ± 0.02a 0.22 ± O.Ola 0.21 + O.Ola 0.22 ± 0.02a 

Transpiration 

(mmol m-2 sol) 4.32 ± 0.002a 3.66 + 0.002b 3.33 ± 0.002b 3.73 ± 0.003a 
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Table 4.8. Stomatal conductance and transpiration of 14-d-old sorghum plants supplied with lumichrome, abscicic acid or rhizobial 

cells and measured 44 h after treatments. Values (Mean + SE, n = 4, with each replicate having 4 plants) followed by dissimilar letters 

in a row are significantly different at P::: 0.05. 

Treatment 

Physiological activity Control Lumichrome Rhizobial inoculation Abscicic acid 

nM) (10 mL of 0.2 OD6oo) (10 nM) 

Stomatal conductance 

(mmol m·2 s·l) 0.16 ± 0.02a 0.15 ± 0.02a 0.18 ± 0.02a 0.12 ± O.Ola 

Transpiration 

( 1.2 •1) mmo m s 2.35 ± 0.26a 14 ± 0.20a 2.15 ± 0.21a 1.79 ± O.19a 
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4.3.4 Photosynthetic rates, leaf stomatal conductance and transpiration in field-

grown plants 

Sorghum, maize, cowpea and soybean plants grown in the field and supplied with 0, 5 or 

50 nM lumichrome were assessed for photosynthetic rates, stomatal conductance and 

transpiration (Tables 4.9 and 4.10). Although field-grown maize plants showed an 

insignificant increase in stomatal conductance with increasing lumichrome application, it 

translated into a significantly increased leaf transpiration (Table 4.9). As shown in Table 

4.10, only cowpea plants showed decreased photosynthetic rates when grown in the field 

and supplied with 5 or 50 nM lumichrome. 

Soybean leaves dipped into 0, 5 or 50 nM lumichrome for 0.5, 1 and 2 h did not show any 

significant changes in photosynthetic rates, stomatal conductance and leaf transpiration 

(Table 4.11). 
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Table 4.9. Photosynthetic rate, stomatal conductance and transpiration rate of 63-d-old maize and sorghum plants grown with 0, 5 or 

50 nM lumichrome under field conditions. Values (Mean ± SE, n = 4) with dissimilar letters in a column are significant at P::: 0.05. 

Maize Sorghum 

Lumichrome Photosynthesis Stomatal Transpiration Photosynthesis Stomatal Transpiration 

concentration rate conductance rate rate conductance rate 

mM /lmol m-2 S-l mmolm-2 mmol m-2 S-l /lmo} m-2 S-l mmol m-2 S-l mmol m-2 S-1 

0 16.88 + 0.84a 0.15 + O.Ola 4.66 + 0.22a 22.50 + 1.71a 0.25 + 0.03a 6.22 + 0.49a 

5 18.29 + 1.04a 0.17 + O.Ola 5.53 + 0.29b 21.27 + 1.30a 0.24 + 0.02a 5.76 + 0.42a 

50 16.81 + 0.97a 0.18 + O.Ola 5.65 + 0.27b 20.29 + 1.46a 0.22 + 0.02a 5.43 + 0.41a 
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Table 4.10. Photosynthetic rate, stomatal conductance and transpiration rate of 63-d-old cowpea and soybean plants grown with 0, 5 

or 50 nM lumichrome under field conditions. Values (Mean ± SE, n = 4) with dissimilar letters in a column are significant at 

P ::: 0.05. 

Cowpea Soybean 

Lumichrome Photosynthesis Stomatal Transpiration Photosynthesis Stomatal Transpiration 

concentration rate conductance rate rate conductance rate 

mM f.lmolm -2 -I mmol m-2 S-I s mmol m-2 S-I f.lmolm-2 S-I 1 -2 -I mmo m s mmolm-2 S-I 

0 21.44 + 0.78a 1.32 + 0.11a 14.24 + 0.90a 14.56 + 0.78a 1.57 + 0.87a 10.27 + 0.71a 

5 17.61 + 1.28b 1.04 + 0.09b 13.98 + 0.59a 13.66 + 1.04a 0.65 + O.lOa 9.84 + 0.62a 

50 17.14 + O.92b 1.15 + 0.06a 13.60 + 0.88a 14.95 + 0.70a 0.74 + 0.07a 10.76 + 0.66a 
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Table 4.11. Photosynthesis rate, stomatal conductance and transpiration rate of 63-d-old soybean plants growing the field and 

having their leaves dipped in 0 nM, 5 nM or 50 nM lumichrome for 0.5 h, 1.0 h or 2.0 h. Values (Mean ± SE, n = 4) with dissimilar 

letters in a column are significant at P ~ 0.05. 

0.5h 1 h 2h 

Lumichrome Photosyntheis Stomatal Transpiration Photosyntheis Stomatal Transpiration 

Concentration rate conductance rate rate conductance rate rate conductance rate 

nM ~mol m·2 
5" mmoim-2 s-1 mmolm-2 s-' ~mol m-2 s-' mmolm-' 5-' mmolm-2 s- ' j.llTIoim-2 s-' mmoim-'s·1 mmoim-2 S·I 

0 16.53 + O.78a 1.20 + O.lla 19.29 0.64a 17.78 O.Sla 0.87 +0.07 18.14+0.51a 16.95 + 0.73a 0.78 + 0.09a 17.33 + 0.74a 

5 17.03 + 0.58a 1.08 O.lOa 19.31 + 0.63a 17.96 + 0.76a 0.85 O.OSa 18.75 + 0.43a 17.17 + 1.05a 0.74 0.08a 17.80 + 0.92a 

50 17.66 + 0.56a 1.33 + O.l2a 19.81 +0.54a 18.26 + 0.81a 0.84 +O.OSa 17.06 1.45a 18.20 0.59a 0.S6 + 0.07a 18.51 + OA8a 
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4.4 Discussion 

4.4.1 Xylem transport and in situ accumulation in leaves: A functional model for 

lumichrome as a signal molecule 

The findings of this study show that soybean and cowpea plants can produce and 

transport lumichrome in their xylem stream. For example, uninoculated soybean plants 

receiving no exogenous lumichrome transported about 26.8 ~mollumichrome/mL xylem 

sap, while with cowpea xylem loading of lumichrome was 2.6 J.lmol/mL. Because 

rhizobial bacteria also produce lumichrome (Phillips et ai., 1999), providing soybean and 

cowpea with their homologous rhizobial cells or purified lumichrome increased the 

concentration of this molecule in xylem. An earlier study (Phillips et ai., 1999) has 

shown that lumichrome applied to the rhizosphere of alfalfa increased root respiration 

and whole-plant net carbon assimilation, and led to enhanced plant growth and biomass 

accumulation. 

Although Phillips et al. (1999) attributed the increase in alfalfa growth to net C 

assimilation, it is possible that lumichrome also directly affects cell division, cell 

expansion and cell extensibility. As shown elsewhere (Chapter 3), supplying as low as 5 

nM lumichrome to plants elicited an expansion in unifoliate and trifoliate leaves, caused 

early initiation of trifoliate leaf development, and increased stem elongation, leading to 

enhanced plant growth and dry matter accumulation. Based on these findings, 

lumichrome could be viewed as a novel signal molecule, and if so, then it has to be 

transported from roots to shoots where it effects the observed developmental changes. 

Some plant signals such as ABA are similarly transported from root to shoot in the xylem 

stream (Chen 2002; Lin et ai., 2003; Maurel et ai., 2004). Apart from establishing the 

presence of lumichrome in xylem, the HPLC analysis has also demonstrated its 

accumulation in leaves (Figs. 4.2 and 4.3). Interestingly, the lower concentration of 

lumichrome in cowpea xylem was reflected in its reduced accumulation in leaves relative 

to soybean, which showed higher xylem concentrations and a correspondingly increased 

lumichrome accumulation in leaves (Fig. 4.3). This species difference was similarly 

reflected in the magnitude of developmental changes observed for the two legumes, with 
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soybean exhibiting more dramatic changes with lumichrome supply compared to cowpea. 

Like salicylic acid, which acts as a signal in systemic disease resistance (Ryals et al., 

1994), lumichrome enters the xylem stream and gets transported to the shoot where it 

accumulates in leaves. It is hypothesize here that the presence and accumulation of 

lumichrome in leaf tissue then triggers events which promote cell division and leaf 

expansion. It is possible that this might be another model by which lumichrome causes 

plant growth promotion, in addition to the observed net C assimilation from lumichrome­

induced root respiration (Phillips et at., 1999). However direct evidence is needed to 

show that, like salicylic acid, lumichrome can cause gene expression and increase leaf 

expansion and stem elongation, which together result in increased dry matter 

accumulation. 

4.4.2 Effects of lumichrome on root respiration 

Because an earlier study (Phillips et al. 1999) showed that applying lumichrome to alfalfa 

increased root respiration and net C assimilation, we tested a range of monocots and 

dicots to determine whether the observation by Phillips et al. (1999) is common to all 

plant species. As shown in Table 4.1, lumichrome significantly increased root respiration 

in maize, a finding consistent with the study by Phillips et al. (1999). However, root 

respiration was markedly decreased by lumichrome application to lupin, and unaffected 

in cowpea, soybean, Bambara groundnut, pea and sorghum (Table 4.1). These findings 

suggest that there are species differences in plant response to lumichrome application. 

Supplying infective rhizobial cells to roots of the seven test species also stimulated C02 

release that closely mirrored the lumichrome effect, in that, root respiration was 

significantly increased in maize, but decreased in lupin (Table 4.1). As with the 

application of exogenous lumichrome, the supply of infective rhizobial cells did not also 

alter root respiration in cowpea, soybean, Bambara groundnut, pea and sorghum. 

Although it is still unclear how the CO2 production is elicited, both symbiotic and 

pathogenic microbes are reported to induce C02 release following host-plant infection 

(Sarig et al., 1992; Nonnan et al., 1994; Volpin and Phillips 1998; Vedder-Weiss et at., 

1999). Interestingly, the CO2 so produced from root stimulation by lumichrome or 
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rhizobial cells can promote growth of rhizobia and AM fungi in soil (Lowe and Evans 

1962; Becard and Piche 1989; Becard et at., 1992) with potential for improved Nand P 

nutrition in symbiotic legumes. 

4.4.3 Lumichrome effects on transpiration, stomatal and photosynthetic activity in 

plants 

Growing field plants up to 63 d with 5 or 50 nM lumichrome decreased photosynthetic 

rates in cowpea relative to control (Table 4.10), possibly as a result of the decreased 

stomatal conductance which affected CO2 intake and reduction by Rubisco. Although 

photosynthesis in sorghum was also decreased by lumichrome, this was not significant. 

This photosynthetic effect of lumichrome parallels the data by Smith et at. (2001) which 

showed an increase in photosynthetic rates with the application of lipo-chito­

oligosaccharide Nod factors to leaves of both dicot and monocot species. Whether this 

difference lies in the fact that lumichrome was applied to roots in this study and Nod 

factors to leaves in that study, remains to be resolved, just as the mechanism effecting 

photosynthetic change also requires further studies. 

Applying either lumichrome (10 nM), infective rhizobial cells (10 mL 0.2 OD600) or 

ABA (10 nM) to plants for 44-h in growth chambers altered leaf stomatal conductance 

and transpiration in cowpea, lupin, soybean, Bambara groundnut and maize, but not in 

pea or sorghum. In all these instances, where stomatal conductance was increased by 

lumichrome, it also led to an increase in leaf transpiration relative to control plants 

(Tables 4.2, 4.3, 4.4, 4.5 and 4.6). Because lumichrome is produced and released by 

rhizobia (Phillips et at., 1999), root inoculation with infective rhizobial cells was 

compared with the direct effects of exogenous lumichrome on leaf transpiration and 

stomatal conductance. As shown in Tables 4.2 to 4.6, the effect of bacterial inoculation 

closely mirrored that of 10 nM lumichrome application, indicating that the rhizobial 

effects on these physiological activities were more likely due to lumichrome released into 

the rhizosphere. It is therefore also probable to now interpret the findings by Figueiredo 

et at. (1999) that rhizobial inoculation alleviates the effects of water stress in symbiotic 

legumes to mean that lumichrome released by these strains decreased stomatal 
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conductance, and thus reduced water loss by the host plant. As observed by Figueiredo et 

al. (1999), rhizobial inoculation in this study also decreased stomatal conductance in 

soybean, Bambara groundnut and to some extent maize, leading to decreased 

transpiration rates (Tables 4.4, 4.5 and 4.6). In contrast, inoculated cowpea plants 

showed increased stomatal conductance with a concomitant increase in transpiration rates 

(Table 4.2), while with lupin, pea and sorghum there was no response to bacterial 

inoculation. 

Treating plant leaves with ABA in this study produced results that were species­

dependent (Tables 4.2 to 4.6). Stomatal conductance was significantly decreased in 

soybean and Bambara groundnut by ABA with close similarity to that found for 

Phaseolus vulguaris supplied with 20 ~M ABA (Nemecek-Marshall et ai., 1995). 

Several studies have in fact shown that ABA causes stomatal closure (Blake and Ferrell, 

1977; Comstock et ai., 2002; Wigger et ai., 2002; Wilknson and Davis, 2002), with a 

concomitant decrease in stomatal conductance. However, leaf stomatal conductance was 

significantly increased in cowpea but unaffected in lupin, pea, maize and sorghum with 

ABA application. This indicates that plant species differ in their response to stomatal 

contol by ABA. 

Taken together, the findings of this study show that lumichrome released into the 

rhizosphere can modulate stomatal function and thus control water relations in host and 

non-host plants as well as affect photosynthetic process through an unknown mechanism. 
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CHAPTER FIVE 

GROWTH, NITROGEN NUTRITION AND YIELD RESPONSE OF 

FOOD GRAIN LEGUMES AND CEREALS TO FIELD 

APPLICATION OF NANOMOLAR CONCENTRATIONS OF 

LUMICHROME, A SYMBIOTIC SIGNAL MOLECULE FROM 

RHIZOBIAL BACTERIA 
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5.1 Introduction 

Rhizobia naturally produce chemical molecules that affect plant growth and 

development. These compounds include auxins, gibberrelins, cytokinins, abscisic acid, 

lipo-chito-oligosaccharides (LCOs), vitamins, lumichrome and riboflavin (Phillips and 

Torrey, 1972; Dart, 1974; Lynch and Clark, 1984; Loper and Schroth, 1986; Law and 

Strijdom, 1989; Phillips et al., 1999; Dakora, 2003). All of these molecules influence 

plant growth and fundamental processes in plant growth. It is likely therefore that their 

release into soil could promote plant growth and increase yields in cropping systems. 

This is in addition to the fact that certain microbial metabolites enhance nutrient 

availability to plants (Dakora and Phillips, 2002). Rhizobia also release lipo-chito­

oligosaccharide molecules (LCOs) that stimulate seed germination and seedling growth 

in a wide range of angiosperm species by a still unknown mechanism. Even where 

growth promotion was effected by growth-promoting bacteria, the mechanisms in many 

instances remain unclear (Vessey, 2003). This is also true of rhizobia where reports of 

growth promotion on non-leguminous crops like rice and maize have been made (Yanni 

et al., 1997; Gutierrez-Zamora and Martinez-Romero, 2001; Chaintreuil et al., 2000), but 

growth mechanism remains uncertain. Recent findings show that lumichrome and LCOs 

released by rhizobia stimulate growth of crops (Phillips et al., 1999; Zhang et al., 2002; 

Dakora, 2003). The following study was carried out to investigate the response of 

sorghum, maize, cowpea and soybean to 0, 5 and 50 nM lumichrome application under 

field conditions. 

5.2 Materials and methods 

5.2.1 Study area 

The experimental site was the Agricultural Research Council (ARC) in Nietvrobji field 

station (33 0 54'S, 18° 14'E in Stellenbosch in the Western Cape, South Africa. 
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5.2.2 Experimental design 

A two-factorial design with 4 replicates was used. The plot size was 2.4 x 2 m2 for 

soybean and cowpea and 2.7 x 2 m2 for maize and sorghum. Both cowpea and soybean 

were sown 20 cm within rows and 60 cm between rows, while the spacing for the maize 

and sorghum was 40 em within rows and 90 em between rows. 

5.2.3 Plant culture 

For this experiment, cowpea, soybean, maize and sorghum were used. The cowpea and 

soybean were inoculated at planting using the commercial inoculants, Bradyrhizobium 

japonicum strain WB74 for soybean and Bradyrhizobium sp (Vigna) strain CB756 for 

cowpea. No other inputs were added to the field except for the three lumichrome 

treatments. The experimental treatments included 0, 5, and 50 nM lumichrome. Each 

lumichrome concentration was applied at the rate of 100 mL per hill per week for the first 

8 weeks after planting. The plants were irrigated for 30 minutes every 3 d by overhead 

sprinkler. 

5.2.4 Plant sampling 

At 53 days-after-planting (DAP), during flowering for cowpea and soybean, and 

vegetative growth for maize and sorghum. Four plants per plot were sampled randomly 

for all the crop species under investigation. All of the plant was dug out and separated 

into shoots and roots. Soil was carefully washed off the root samples and the nodules 

plucked off the cowpea and soybean roots. Nodules per plant were counted and together 

with other plant organs were dried for 48 h in the oven at 65°C until constant weight 

The roots, shoots and nodules were ground into a fine powder for nutrient analysis 

5.2.5 15N isotope analysis and determination ofNdfa 

Concentration ofN in the plant organs (shoots, roots and nodules) was determined as % 

N using a Carla Erba NA 1500 elemental analyzer (Fisons instruments SpA, Strada 

Rivoltana, Italy) coupled to a Finnigan MAT 252 mass spectrophotometer (Bremen, 

Germany) via a conflo II open-split device. Amount of N per organ was estimated from 
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the product of % N and dry mass. The natural abundance technique was used to estimate 

N fixed from the following equation: 

% N derived from fixation (Ndfa) 0 15N (reference plant) 0 15N (legume) 
___________________________ XlOO 

Sl5N (reference plant) B 

Where B is the 015N value of the legume species relying entirely on biological N2 fixation 

for its N nutrition. B values used were as follows: soybean, shoot .152; root 0.66. 

Cowpea, shoot - 1.759; root -0.94. Sorghum was used as the reference plant. 

5.2.6 Nutrient analysis in plant and soil material 

Plant tissue was analysed for elemental composition. Preparation of samples for the 

determination of macro nutrients (P, K, Ca, Mg and Na) and micronutrients (Fe, Cu, Zn, 

Mn, and B) in plant tissues was done by dry-ashing, followed by acid digestion, and 

measurement using spectrophotometer. A weighed amount (1 g dry matter) of plant 

material was ashed overnight inside a crucible at 550°C in a muffle furnace. The ash 

residue was digested in 5 mL of 6 M HCI at 50°C for 30 minutes, and filtered. The 

concentrations of nutrient elements were then determined after appropriate dilution, by 

direct aspiration on a calibrated simultaneous ICP spectrophotometer (IRIS/ AP HR DUO 

Thermal Electron corporation Franklin, Massachusettes, USA). 

5.2.7 Plant harvest 

At physiological maturity, all the plants were harvested and separated into pods in the 

case of soybean and cowpea, or into cobs and heads for maize and sorghum. These were 

then air-dried and shelled for determination of grain yield and mineral nutrients. 

5.2.8 Statistical analysis 

Statistical analysis was done using a two-way ANOV A and ST A TISTICA PACKAGE. 
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5.3 Results 

5.3.1 Soil chemical characteristics 

The chemical characterization of soil used in this study produced the following data: pH 

(CaCh) 6.2; C, 0.99%; P, (Citrate acid) 44.6 mg/kg; S, 3.4 mg/kg; Ca, (cmol) 3.6 (+)/kg; 

Mg (cmol) 0.88 (+)/kg; K, 79.6 mg/kg; Na, 70.8 mg/kg; Fe, 124.5 mg/kg; Mn, 15.4 

mg/kg; Zn, 3.1 mg/kg; B, 0.51 mg/kg; Cu, 7.0 mg/kg. 

5.3.2 Plant growth 

There was no significant response to lumichrome application by any of the four crop 

species whether on the basis of shoot, root or whole-plant dry matter (Table 5.1). Both 

grain yield and 100-seeds weight per species were unaltered compared to the 0 nM 

lumichrome control (Table 5.1). 

5.3.3 N nutrition and symbiotic performance of legume species 

Neither %N nor a15N of shoots, roots and seed were altered by the application of 

lumichrome to the four plant species. Similarly, the total N fixed and Ndfa in organs and 

whole-plants remained unchanged with lumichrome application (Tables 5.2 and 5.3). 

Futhermore, nodule weight, nodule number, a15N, %N and nodule N were all unaffected 

by lumichrome application to cowpea or soybean plants (Table 5.4). 
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Table 5. L Effects of lumichrome application on dry matter yield of cowpea, soybean, 

maize and sorghum plants at 53 DAP. Values followed by dissimilar letters in a column 

are significantly different at *p ::s 0.05, **p ::s 0.01, ***p ::s 0.001 presented in bold type 

and separated by different letters. 

Shoot Root Total Grain Weight of 
Treatment (g/plant) (glplant) (glplant) yield 100 seed 

Main effects: 
Cowpea 8.27c 1.08a 9.74c 869.88d 12.50a 
Soybean 8.91c 1.83a 11.29c 2284.67a 19.88b 
Maize 21.98a 6.21b 28.19a lO49.90c 29.87c 
Sorghum 13.9b 5.75b 19.66b 1217.04bc 2.Ud 

OnM 13.72 4.06 18.01 1348.50 16.19 
5nM 13.18 3.84 17.27 1358.44 16.04 

50nM 12.90 3.26 16.38 1359.18 16.04 
Interacti ons: 
Cowpea OnM 6.20 0.91 7.46 840.83 12.71 

5nM 9.71 1.26 11.37 910.58 12.86 
50nM 8.92 1.06 10.39 858.25 11.94 

Soybean OnM 9.16 2.11 11.84 2253.50 20.04 
5nM 9.39 1.85 11.81 2295.25 19.85 
50nM 8.20 1.53 10.21 2305.25 19.76 

Maize OnM 20.83 6.27 27.10 970.95 29.87 
5nM 23.26 6.91 30.17 1021.80 29.35 
50nM 21.83 5.46 27.29 1156.95 30.41 

Sorghum OnM 18.69a 6.94 25.63 1328.73 2.16 
5nM 10.37a 5.36 15.73 1206.15 2.11 
50nM 12.64a 4.97 17.61 1116.25 2.04 

F ratio: 
Crops (d.f=3) 14.79*** 21.76*** 16.23*** 53.71*** 1573.81*** 
Lum(d.f=2) 0.08 0.72 0.20 0.0063 0.12 
Interaction 0.94 0.36 0.82 0.331 0.66 
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Table 5.2. Effects of lumichrome on OI5N, % N and total N in shoot roots seeds and whole plant of cowpea, soybean, maize and 

sorghum at 53 DAP. Values followed by dissimilar letters in a column are significantly different at P :5. 0.05, **p :5. 0.01, ***p :5. 

0.001 presented in bold type and separated by different letters. 

ol5N (0/00) %N Total N (mg/plant) 
Crop/Lumichrome Shoot Root Seed Shoot Root Seed Shoot Root Seed Plant 
Treatment 

Main effects: 
Cowpea 2.39a 4.04a -1.08a 3.17a 1.27 3.98a 26.24 1.34a 0.50a 29.89a 
Soybean 1.77a 3.76a 0.65b 3.58b 1.18 6.95b 31.59 2.14a 1.38b 36.39a 
Maize 6.05b 6.82b 0.04c 1.48c 1.05 1.17c 32.37 6.45b 0.35c 38.82a 
Sorghum 6.19b 6.54b 3.14d 2.29d 1.22 1.41d 30.41 6.74b 0.03d 37.15a 

OnMLum 4.16 5.34 0.54 2.57 1.18 3.35 30.31 4.41 0.56 36.02 
5nMLum 3.91 5.29 0.83 2.58 1.13 3.42 29.22 4.15 0.58 34.68 
50nMLum 4.23 5.24 0.69 2.74 1.24 3.38 30.93 3.93 0.55 35.99 

Interactions: 
Cowpea OnMLum 2.50 4.30 -1.04 3.21 1.33 3.93 19.88 1.22 0.50 23.28 

5 nMLum 2.15 3.92 -0.99 3.14 1.26 3.97 30.01 1.53 0.51 33.94 
50nM 2.53 3.88 -1.22 3.15 1.22 4.07 28.83 1.25 0.49 32.44 

Soybean OnMLum 2.11 3.85 0.62 3.55 1.21 6.98 32.54 2.58 1.40 38.09 
5nMLum 1.95 3.76 0.64 3.31 1.03 7.11 30.33 1.88 1.41 35.04 
50nMLum 1.24 3.67 0.68 3.89 1.30 6.78 31.01 1.98 1.34 36.05 

Maize OnM Lum 5.60 6.42 -0.64 1.40 0.99 1.09 29.84 6.10 0.33 35.94 
5 nM Lum 5.50 7.12 0.61 1.39 1.00 1.30 31.98 6.98 0.38 38.96 
50nMLum 7.07 6.92 0.17 1.67 1.15 1.13 35.31 6.27 0.34 41.58 

Sorghum OnMLum 6.45 6.79 3.21 2.12 1.16 1.38 38.99 7.76 0.03 46.75 
5nMLum 6.03 6.35 3.06 2.49 1.21 1.31 24.55 6.22 0.03 30.77 
50 nMLum 6.09 6.49 3.14 2.25 1.30 1.55 27.67 6.23 0.03 33.01 

F ratio: 
Crops (d.f= 3) 106.97*** 124.73*** 137.05*** 84.87*** 1.92 1726.00*** 0.88 24.67*** 2340.79*** 1.37 
Lum(d.f=2) 0.77 0.16 1.23 1.18 0.942 0.42 0.12 0.24 2.645 0.07 
Interact'n (d.f= 6) 2.10 1.25 1.60 1.22 0.512 1.44 1.24 0.32 1.02 1.12 
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Table 5.3. Effects of lumichrome on symbiotic perfonnance of cowpea and soybean, harvested at 53 DAP. Values followed by 

letters in a column are significantly different at P .:::: 0.05, **P .:::: 0.01, ***p .:::: 0.001 presented in bold type and separated by 

different letters. 

Ndfa (%) N-fixcd (mg/plant) 
Crop/Lumichrome Shoot Root Shoot Root Total 
Treatment N fixed 

(kglha) 
Main effects: 

Cowpea O.49a O.35a 13.20a O.4Sa 13.69a 22.S1a 
Soybean O.61b O.49b 19.39b 1.05b 20.45b 34.0Sb 

OnMLum 0.52 0.40 14.39 0.83 15.22 25.36 
5nMLum 0.54 0.43 16.41 0.72 17.14 28.56 
50nMLum 0.58 0.44 18.10 0.75 18.85 31.41 

Interactions: 
Cowpea OnM Lum 0.48 0.33 9.80 0.41 10.21 17.00 

5 nMLum 0.52 0.36 15.77 0.57 16.34 27.23 
50 nM Lum 0.47 0.37 14.04 0.48 14.52 24.20 

Soybean OnM Lum 0.57 0.48 19.00 1.25 20.23 33.72 
5nM Lum 0.57 0.49 17.06 0.88 17.94 29.90 
50nMLum 0.69 0.51 22.15 1.02 23.17 38.62 

F ratio: 
Crops (d.f= 3) 8.27* 3S.73*** 7.16* 2S.69*** 8.13*** 8.13* 
Lum (d.f= 2) 0.67 1.01 0.86 0.36 0.78 0.78 
Intcrct'n (d.f= 6) 1.55 0.10 1.14 2.08 1.21 1.21 
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Table 5.4. Effects oflumichrome on symbiotic performance of cowpea and soybean plants harvested at 53 DAP. Values followed by 

dissimilar letters in a column are significantly different at P < 0.05, **p :::: 0.01, ***P :::: 0.001 presented in bold type and separated by 

different letters. 

Crop/Lumichrome 
Treatment 

Main effects: 

Interactions: 
Cowpea 

Soybean 

F ratio: 
Crops (d.f= 3) 
Lum (d.f= 2) 
Interct'n (d.f = 6) 

Cowpea 
Soybean 

OnMLum 
5nMLum 
50 nMLum 

OnMLum 
5nMLum 
50nMLum 

OnMLum 
5 nMLum 
50nMLum 

Nodule 
weight 
(per J2lant) 

0.39a 
0.54b 

0.46 
0.49 
0.44 

0.35 
0.40 
0.40 

0.57 
0.57 
0.48 

5.07": 
0.12 
0.35 

Nodule 
number 
(per plant) 

19.09a 
1l0.39b 

74.80 
64.02 
55.39 

21.05 
21.69 
14.53 

128.56 
106.35 
96.26 

30.84*** 
0.47 
0.25 

5N 
nodule 

9.38 
8.63 

9.18 
9.63 
8.20 

8.99 
9.60 
9.55 

9.37 
9.66 
6.85 

1.17 
1.47 
1.97 

%N 
nodule 

6.00 
5.16 

5.74 
5.48 
5.52 

6.21 
6.00 
5.79 

5.26 
4.96 
5.26 

1.33 
0.05 
0.05 

N 
nodule 

2.32 
2.65 

2.58 
2.61 
2.26 

2.19 
2.40 
2.36 

2.98 
2.82 
2.16 

0.71 
0.32 
0.52 

%C 
nodule 

37.48a 
40.85b 

39.34 
39.54 
38.64 

37.53 
38.20 
36.74 

41.15 
40.87 
40.54 

41.12*** 
1.08 
0.45 

nodule 

6.32a 
8.10b 

7.00 
7.37 
7.26 

6.10 
6.42 
6.44 

7.90 
8.31 
8.07 

153.57*** 
2.35 
0.29 
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5.3.4 Carbon 

The % C in the shoots maize treated with 50 nM lumichrome decreased significantly (P .::::. 

0.001) as shown in Table 5.5. Those of the other three crops did not alter significantly 

relative to the controL Similarly, % C decreased significantly (P .::::. 0.001) in the roots of 

maize plants treated with either 5 or 50 nM lumichrome (Table 5.5). The CIN ratio of 

maize in the shoot also decreased significantly (P .::::. 0.01) in response to 50 nM 

lumichrome treatment, while in the seed, it decreased significantly (P .::::. 0.001) in 

response to 5 nM lumichrome. By contrast, in sorghum the elN ratio of the seed 

increased significantly (P .::::. 0.001) in plants treated with 5 nM lumichrome (Table 5.5). 

5.3.5 Macro-and micro-nutrients 

The concentration of P in the shoots of sorghum increased significantly (P .::::. 0.05) in 

plants treated with 5 nM lumichrome but remained unchanged in the other crops plants 

tested (Table 5.6) while in the root, this nutrient decreased significantly (P < 0.01) in 

response to 50 nM lumichrome in the sorghum but not in the other crops (Table 5.8). In 

the seed, none of the crops showed a significant response (Table 5.10). 

The concentration K on the other hand was only affected in the shoots of cereal crops in 

response to application to lumichrome. In maize, there was a significantly increase 

(P < 0.01) in the plants treated with 50 nM lumichrome, while in sorghum, there was a 

significant increase (P < 0.01) in plants treated with both 5 or 50 nM (Table 5.6). In the 

root and seed, K concentration was unchanged relative to the controL 

The concentration ofCa decreased significantly (P < 0.001) in cowpea shoots in response 

to 5 nM (Table 5.6). In all the other crops, it was unchanged. Similarly, the 

concentration ofMg in the shoots of cowpea decreased significantly (P .::::. 0.001) in plants 

treated with 50 nM lumichrome but increased significantly (P'::::' 0.001) in sorghum plants 

treated with 5 nM lumichrome (Table 5.6). In the roots and seed, the concentration ofMg 

remained unchaged in response to lumichrome treatment in all the crops (Tables 5.8 and 

5.10). 
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Shoot Fe increased significantly (P:S 0.001) in sorghum plants treated with either 5 or 50 

nM lumichrome (Table 5.6), but none of the other crops showed a significant change. 

The concentration of Zn on the other hand decreased significantly (P :s 0.01) in cowpea 

plants that received 50 nM lumichrome but not those treated with 5 nM lumichrome 

(Table 5.7). 

S was unchanged in the shoots and roots of all the test crops, however, in the seeds, 

cowpea plants treated with 50 nM lumichrome showed a significant decrease (P < 0.001) 

in this element though not in those treated with 5 nM lumichrome. A similar observation 

was made for soybean where plants treated with 50 but not with 5 nM lumichrome 

showed a significant decreased (P :s 0.001) in the concentration of S (Table 5.10). 

The concentration ofCu changed significantly (P:S 0.001) in cowpea and sorghum shoot. 

In cowpea, there was decrease in plants treated with 50 nM lumichrome, while in 

sorghum, there was an increase in plants treated with both 5 or 50 nM lumichrome (Table 

5.7). 
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Table 5.5. of lumichrome on % C, total C and C/N ratio in shoot roots seeds and whole plant of cowpea, soybean, maize and sorghum 

at 53 DAP. Values followed by dissimilar letters in a column are significantly different at P::: 0.05, **p::: 0.01, ***p < 0.001 presented in bold 

type and separated by different letters. 

Crop/Lumichrome Plant 
Treatment 

Main effects: 
38.13b 39.37a 42.63b 316.45b 42.54c 5.34a 12.28b 33.67a 10.71a 12.15a 
41.98a 42.75b 51.53a 374.12b 78.19bc 10.24b 11.87b 37.08a 7.42b 12.45b 

Maize 38.25b 24.43c 41.96b 840.77a 151.08a 12.54c 26.32a 23.66b 36.07e 25.81b 
Sorghum 24.43c 17.44d 43.19b 336.88b 96.90b 0.91d 13.42b 22.27b 30.83d 1l.88b 

OnMLum 36.03a 33.178 43.78a 475.85 113.49 7.17 16.89a 31.44 21.33 15.04 
5nMLum 36.33a 29.54b 45.62b 485.63 86.53 7.35 16.538 29.49 21.37 17.60 
50nMLum 34.73b 30.29b 45.09b 439.54 76.52 7.25 14.50b 26.58 21.07 14.08 

Interactions: 
Cowpea OnMLum 37.93cb 39.128 41.95 234.93 35.49 5.33 12.02cd 31.98 10.72d 1l.70e 

5 nMLum 38.98b 39.058 43.75 379.32 49.69 5.64 12.55cd 34.88 11.04d 12.52e 
50nMLum 37.4ge 39.96a 42.19 334.49 42.46 5.04 12.29cd 34.15 10.38d 12.23c 

OnMLum 42.28a 42.83a 51.14 387.09 90.36 10.24 12.09cd 35.69 7.33e 12.73c 
5 nM Lum 42.158 42.778 51.74 394.75 78.98 10.28 12.85cd 42.14 7.2ge 13.33e 
50nMLum 41.508 42.6S8 51.71 340.53 65.22 10.21 10.68d 33.39 7.64e 11.2Se 

Maize o nM Lum 39.98b 33.llb 40.88 835.86 211.55 12.21 29.0S8 33.48 37.428 29.71a 
5nMLum 39.43b 19.56e 42.67 913.65 130.85 12.54 28.S08 19.65 33.18b 26.868 
50nMLum 35.35b 20.62c 42.32 772.80 110.86 12.87 21.40b 17.86 37.608 20.86ab 

Sorghum OnMLum 23.92e 17.60e 41.13 445.50 116.57 0.89 14.40e 24.60 29.84c 6.01ed 
5nMLum 24.77e 16.79c 44.30 254.81 86.59 0.94 12.21ed 21.28 33.98b 17.66bc 
50nMLum 24.5ge 17.93e 44.15 310.32 87.54 0.90 13.64ed 20.94 28.67e 1l.95e 

F ratio: 
Crops 3) 776.46*** 284.17*** 84.72*** 18.03*** 11.32*** 1218.18*** 138.15*** 13.58*** 887.27*** 30.48*** 
Lum 2) 12.57*** 9.S71*** S.02*** 0.23 2.69 0.495 6.36** 2.02 0.16 2.88 
Interact'n 6) 6.48*** 9.30*** 0.74 0.59 Ll5 0.84 4.51** 2.15 6.79*** 3.08*** 
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The concentration of Na did not change in any of the test plants in response to 

lumichrome application (Tables S.6 and S.8). B concentration however, decreased 

significantly ( P ::: 0.001) in the shoots of cowpea plants treated with SO nM lumichrome 

(Table 5.7). Similarly, shoot Al decreased significantly (P ::: 0.05) in plants treated with 

SO but now with 5 nM lumichrome (Table 5.7). In contrast, Al concentration increased 

significantly (P ::: 0.05) in plants treated with either 5 or SO nM lumichrome, but 

remained unchanged in the roots (Tables 5.7 and 5.9). 

In the nodules, all the nutrients remained unchanged in concentration except for K and 

Cu (Table 5.11). The concentration ofK increased significantly (P::: 0.01) in cowpea in 

plants treated with either 5 or 50 nM lumichrome. With Cu, the concentration increased 

significantly (P < 0.05) in cowpea in response to both 5 and 50 nM lumichrome 

treatment Soybean nodules did not show any significant change III nutrient 

concentrations in plants which had lumichrome applied to them (Table 5.11). 
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Table 5.6 Effects of lumichrome on macro nutrient concentrations of shoots of cowpea, 

soybean, maize and sorghum at 53 DAP. Values followed by dissimilar letters in a 

column are significantly different at P::: 0.05, **p ::: 0.01, ***p::: 0.001 presented in bold 

type and separated by different letters. 

Crop/Lumichrome P K Ca Mg Na S 
Treatment (mg/g) (mg/g) (mg/g) (mg/g) (mg/kg) (mglkg) 

Cowpea 4.63ab 20.63a 17.73a 3.44a 357.92a 2.34a 
Soybean 3.99b 20.17a 12.49b 3.86a 291.67a 1.35b 
Maize 3.42b 20.59a 2.40c 1.78b 376.92ab 1.32b 
Sorghum 5.40 26.06b 4.58d 2.53c 211.58e O.99b 

OnMLum 3.85 20.09 9.68a 2.88 294.06 1.79 
5 nMLum 4.77 23A7 10.20a 3.13 340.25 1.31 
50 nMLum 4A6 22.03 8.01b 2.69 294.25 lAO 

Interactions: 
Cowpea OnMLum 5.45abc 23.78abc 20.58a 4.23a 388.75 2.30 

5 nM Lum 5.10abc 22.30abc 20.53a 3.83ab 407.75 2.13 
50nM Lum 3.33ed 15.S0c 12.08b 2.28ede 277.25 2.60 

Soybean OnMLum 3.78bcd 20.73bc 12.70b 3.98a 287.75 1.38 
5nM Lum 4.03bcd 22.43abc 12.0b 3.90a 315.00 1.38 
50nM Lum 4.18bed 17.35bc 12.1Sb 3.70ab 272.25 1.30 

Maize OnMLum 2.55d 16.1Sc 2.03d 1.45e 326.25 2.53 
5 nMLum 3.lScd 20.13be 2.43d 1.85de 407.50 0.68 
50nM Lum 4.53bed 25.4Sab 2.75cd 2.05cde 397.00 0.75 

Sorghum OnMLum 3.63bed 19.68bc 3.43ed 1.S8de 173.50 0.98 
5 nMLum 6.78a 29.03a 5.25e 2.95bc 230.75 L05 
50nM Lum 5.S0ab 29.4Sa 5.05c 2.75cd 23050 0.95 

F ratio: 
Crops (d.f= 3) 4.39** 3.83*** 221.12*** 29.64*** 7.53*** 3.94* 
Lum (d.f= 2) 1.76 1.86 7.65** 2.20 1.27 1.03 

_lrlteract'n {d.f= 6) 2.75* 3.54** 9.72*** 4.97*** 0.84 1.14 
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Table 5.7 Effects of lumichrome on micro nutrient concentrations of shoots of cowpea, 

soybean, maize and sorghum at 53 DAP. Values followed by dissimilar letters in a 

column are significantly different at P :::: 0.05, **p:::: 0.01, ***p:::: 0.001 presented in bold 

type and separated by different letters. 

Treatment (mg/g) (mg/g) (mg/g) (mg/kg) (mg/kg) (mg/kg) 

Cowpea 8.43a 27.88a 43.02a 1098.57c 505.16a 50.40a 
Soybean 10.17b 26.17a 52.62b 833.4ge 227.12b 53.72a 
Maize 4.63e 15.66b 5'21e 148.63e l40.05e 26.91b 
Sorghum l1.87d 22.46ab 4.68e 270.34b 307.44b 36.85b 

OnM Lum 8.14 22.95 27.76 212.91 263.71 41.69 
5 nMLum 9.33 23.96 27.63 274.35 348.38 44.02 
50nMLum 8.85 22.21 23.76 246.10 272.74 40.19 

Interactions: 
Cowpea OnMLum 10.48b 34.64 50.08a 358.25ab 523.90a 63.41a 

5 nMLum 9.40b 28.90 4S.73a 415.58a 628.08a 56.48ab 
50nMLum 5.40ed 20.09 30.26b 250.40bed 363.50be 31.33ed 

Soybean OnMLum 10.21b 28.32 53.57a 209.43ede 232.78bed 55.02ab 
5nMLum 10.21b 24.81 50.86a 188.60edc 228.48bed 54.09ab 
50nM Lum 10.09b 25.37 53.42a 253.48bed 220.IOed 52.04ab 

Maize OnMLum 3.67d 12.00 4.06e 116.S3e 122.SId 19.41d 
5 nMLum 4.23d 16.07 5.44c 156.15de 157.90d 22.25d 
50nMLum 5.98ed 18.93 6.13c 172.91de 139.45d 39.07bcd 

Sorghum OnMLum 8.20b 16.85 3.12c 166.33de 175.3Sd 2S.95cd 
5nMLum 13.51a 26.05 5.50c 337.0Sab 379.05b 43.26abe 
50nM Lum 13.91a 24.47 5.24c 307.63abe 367.90bc 38.34bcd 

F ratio: 
Crops (d.f= 3) 32.66*** 4.45** 267.11*** 13.45*** 30.74*** 11.17*** 
Lum(d.f=2) 1.64 0.16 2.93 2.56 3.64* 0.38 
lnteract'n {d.f= 6) 6.55*** 1.53 5.05*** 3.02* 3.17* 3.72** 
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Table 5.8 Effects of lumichrome on macro nutrient concentrations of roots of cowpea, 

soybean, maize and sorghum at 53 DAP. Values followed by dissimilar letters in a 

column are significantly different at P :: 0.05, **p < 0.01, ***P::s 0.001 presented in bold 

type and separated by different letters. 

Treatment (mg/g) (mg/g) (mg/g) (mg/g) (mg/kg) (mg/g) 

Main effects: 
Cowpea 2.93a 20.02a 3.66a 2.91a 1755.17a 4.48a 
Soybean 3.04a 16.07a 3.51a 1.78b 780.50b 0.95b 
Maize 1.64b 13.23b 1.96b 1.52b IOS1.S8e O.S6be 
Sorghum 1.79b 1.34b 2.53e 1.76b S73.08d O.77b 

OnMLum 2.40 15.71 2.93 1.93 957.81 1.58 
5nMLum 2.50 15.32 2.95 1.99 1070.13 1.64 
50 nMLum 2.15 15.98 2.86 2.06 1092.31 1.84 

Interactions: 
Cowpea OnMLum 2.88b 18.95 3.70 2.83 1585.25 4.23 

5nMLum 2.90b 19.38 3.78 2.98 1701.25 4.33 
50nMLum 3.00ab 21.73 3.50 2.93 1979.00 4.88 

Soybean OnMLum 3.40ab 16.18 3.63 1.70 707.25 0.88 
5nMLum 3.70a 16.48 3.65 1.70 809.25 0.98 
50nMLum 2.03c 15.55 3.25 1.95 825.00 1.00 

Maize OnMLum 1.50e 12.83 2.00 1.55 972.00 0.48 
5nMLum U8c 13.58 1.90 1.53 1232.25 0.53 
50nM Lum I.7Sc 13.28 1.98 1.48 950.50 0.68 

Sorghum OnMLum 1.83e 14.88 2,40 1.63 566.75 0.75 
5nMLum 1.73e 11.85 2.48 1.78 537.75 0.75 
50nMLum 1.83c 13.35 2.70 1.88 614.75 0.80 

F ratio: 
Crops (d.f= 3) 28.37*** 36.98*** 30.70*** 48.43*** 55.74*** 361.28*** 
Lum (d.f= 2) 2.27 0.53 0.15 0.72 1,45 2,47 

112 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Table 5.9. Effects of lumichrome on macro nutrient concentrations of roots of cowpea, 

soybean, maize and sorghum at 53 DAP. Values followed by dissimilar letters in a 

column are significantly different at P .:s0.05, **p .:s 0.01, ***P.:s 0.001 presented in bold 

type and separated by different letters. 

Crop/Lumichrome Cu Mn B Fe AI Zn 
Treatment (mg/g) (mg/g) (mg/g) (mg/kg) (mg/kg) (mglkg) 

Cowpea 13.50a 11.39a 31.97a 1098.57c 1778.43a 46.37b 
Soybean 15.03a 10.99a 14.82b 833.49c 1400.08a 16.44c 
Maize 22.08b 18.45b to.OSb 3758.00a 4611.42b 41.60b 
Sorghum 20.73b 22.19c 7.64c 2432.46b 4618.96b 81.76a 

OnMLum 18.26 16.23 16.32 2131.35 3068.74 44.10 
5nMLum 17.93 15.86 15.77 1952.61 3207.07 44.19 
50 nM Lum 17.32 15.17 16.27 2007.93 3030.86 51.51 

Interactions: 
Cowpea OnMLum 14.94 12.61 32.14 1208.03 1747.70 48.92 

5nMLum 12.01 11.21 31.30 1080.75 1842.10 42.82 
50nMLum 13.55 10.36 32.49 1006.93 1745.50 47.39 

Soybean OnMLum 16.13 11.34 15.00 888.25 1569.65 16.49 
5nMLum 15.06 11.45 14.77 868.68 1371.80 16.97 
50nMLum 13.90 10.18 14.71 743.55 1258.80 15.87 

Maize OnMLum 22.17 18.14 10.69 4035.50 4530.50 41.50 
5nMLum 21.87 17.90 8.70 3139.88 4405.38 35.37 
50nMLum 22.21 19.31 10.75 4098.63 4898.38 47.93 

Sorghum OnMLum 19.78 22.84 7.46 2393.63 4427.13 69.50 
5 n.1vf Lum 22.78 22.90 8.33 2721.13 5209.00 80.93 
50nMLum 19.62 20.84 7.14 2182.63 4220.75 94.87 

F ratio: 
Crops (d.f= 3) 11.91*** 46.59*** 221.26 19.39*** 67.55*** 19.05*** 
Lum(d.f=2) 0.20 0.60 0.22 0.12 0.25 0.65 
Interact'n {d.f= 6) 0.43 0.44 0.36 0.41 0.81 0.40 
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Table 5.10 Effects of lumichrome on mineral nutrient concentrations in seeds of cowpea, soybean, maize and sorghum harvested at 

physiological maturity. Values followed by dissimilar letters in a column are significantly different at P < 0.05, **p :::: 0.01, ***p :::: 

0.001 presented in bold type and separated by different letters. 

Crop/Lumichrome 
Treatment (mg/g) (mg/g) (mg/g) (mg/g) (mg/kg) (mg/kg) (mglkg) (mg/kg) (mglkg) (mglkg) 

Cowpea 5.6ta 12.33b 1.16a 1.8ta 184.75a 1.4ta 67.99a 38.60a 8.28a 10.0ta 
Soybean 7.03b 17.43a 1.57b 2.11b 211.42b 2.01b 86.18b 40.66b 14.17b 16.85b 
Maize 3.04c 2.91c 0.10c 0.92c 121.92c 0.62c 23.94c 20.S3c 0.88c 4.19c 
Sorghum 4.73d 3.02 0.283 1.25d 2S2.00d 0.48d 3136d 16.33d 3.15d 10.22a 

OnMLum 5.04 8.90 0.78 1.53 191.38 USa 53.03 28.84 6.68 10.55 
5nMLum 5.09 8.93 0.76 1.51 192.13 1.l6a 51.14 29.14 6.65 10.16 
50 nM Lum 5.17 8.93 0.79 1.53 194.06 1.07b 52.93 29.10 6.52 10.25 

Interactions: 
Cowpea OnMLum 5.58 12.25 1.15 1.80 183.75 1.40c 71.53 38.58 8.13 10.34 

5nMLum 5.70 12.43 1.18 1.80 186.75 1.45c 66.70 39.74 8.53 10.05 
50nMLum 5.55 12.30 1.15 1.83 183.75 1.33d 65.75 37.49 8.18 9.63 

Soybean OnMLum 7.10 17.43 1.60 2.18 209.25 2.08a 84.83 39.96 14.42 17.00 
5nMLum 6.98 17.43 1.50 2.08 207.25 2.13a 86.09 41.70 14.20 16.59 
50nMLum 7.00 17.45 1.60 2.08 217.75 1.83b 87.61 40.30 13.88 16.97 

Maize OnM Lum 2.83 2.83 0.10 0.88 120.75 0.63e 24.61 19.89 0.90 4.36 
5nMLum 3.00 2.88 0.10 0.93 123.25 0.60ef 21.83 19.41 0.81 4.10 
50nM Lum 3.30 3.03 0.10 0.95 121.75 0.63e 25.37 22.30 0.93 4.11 

Sorghum OnM Lum 4.68 3.10 0.28 1.25 251.75 0.4Sg 31.14 16.96 3.29 10.50 
5nMLlim 4.70 3.00 0.28 1.23 251.25 0.48g 29.96 15.69 3.05 9.89 
50nM Llim 4.83 2.95 0.30 1.28 253.00 O.SOgf 32.99 16.33 3.10 10.28 

F ratio: 
Crops (d.f= 3) 494.45*** 964S.22*** 1729.20*** 890.93*** SI6.14*** 1216*** 353.01*** 519.27*** 945.10*** 611.61*** 
Llim (d.f= 2) 0.94 0.08 0.80 0.70 0.44 8.18** 0.60 0.11 0.26 1.31 
Interact'n (d.f~~ 6) 0.17 0.49 1.20 1.70 0.55 5.66*** 0.57 1.81 0.34 0.33 
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Table 5.11. Effects oflumichrome on concentrations of P, K, Mg, Na, Fe, Cu, Zn, Mn, and B in nodules of cowpea and soybean, at 

53 DAP. Values followed by dissimilar letters in a column are significantly different at P :::: 0.05, **p:::: 0.01, ***p:::: 0.001 presented 

bold type and separated by different letters. 

Crop/Lumichrome P K Ca Mg Na Fe Cu Z11 Mn B Al 
Treatment (mg/g) (mg/g) (mg/g) (mg/g) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 

Cowpea 4.63a 24.40a 3.17 4.72a 343.92a 2433.42 10.04 91.30 9.88 17.35 2009 
Soybean 4.88b 16.20b 3.06 3.97b 446.33b 1512.20 9.96 77.53 9.51 15.81 1650 

OnMLum 4.74 20.06 3.11 4.23 401.88 1224.29 10.01 85.58 8.40 16.43 1513.05 
5nMLum 4.69 20.70 3.09 4.49 405.38 2498.53 9.79 84.82 9.97 16.87 2000.43 
50nMLum 4.85 20.14 2.99 4.31 378.13 2195.63 10.21 82.84 10.71 16.42 1976.92 

Interactions: 
Cowpea OnM Lum 4.70 23.2Sb 3.03 4.68 367.00 1202.77 9.60b 99.21 7.86 17.16 1468.84 

5nMLum 4.58 2S.20a 3.18 4.85 329.00 3592.45 9.48b 115.63 9.81 19.21 2301.75 
50nMLum 4.63 24.75a 3.00 4.63 335.75 2505.05 11.04a 59.06 11.96 15.67 2258.00 

Soybean OnM Lum 4.78 16.88c 3.30 3.78 436.75 1245.80 1O.42ab 7L95 8.94 15.71 1557.25 
5 nM Lum 4.80 16.20c 3.00 4.13 481.75 1404.60 10.09ab 54.01 10.13 14.53 1699.10 
50 11M Lum 5.08 15.53c 2.98 4.00 420.50 1886.20 9.38b 106.62 9.45 17.18 1695.84 

F ratio: 
Crops (d.f= 3) 7.11* 488.24*** 0.007 37.97*** 10.05*** 2.51 0.05 0.52 0.21 1.91 2.84 
Lum(d.f=2) 1.05 1.17 0.604 1.61 0.28 1.75 0.53 0.01 2.91 0.Q7 2.22 
Interact'n (d.f= 6) 1.35 6.05** 1.065 0.44 0.62 1.29 5.6* 2.87 1.87 2.58 1.11 
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5.4 Discussion 

5.4.1 Effects of lumichrome on plant growth and nitrogen nutrition of field plants 

The results of this study have shown that exogenous supply of lumichrome to field-grown 

plants has no effect on growth of various plant species, whether measured on per organ or 

whole-plant basis (Table 5.1). Consequently, shoot, root and grain yield were unaffected 

by lumichrome application (Table 5.1). Although tillering in sorghum was increased by 

18% in lumichrome-treated plants, this effect was not significant (data not shown). The 

overall lack of response by cowpea, soybean, maize and sorghum to lumichrome is 

perhaps understandable since photosynthetic rates were unaltered in these species, except 

for cowpea (see Chapter 4). The results of this field study with lumichrome contrasts 

data from glasshouse experiments which showed increased growth response of cowpea, 

soybean, sorghum, millet and maize to the application of 5 nM lumichrome (see Chapter 

3). Because riboflavin production has been reported to be a common feature of soil 

microbes (Carpenter 1943; Gonzalez-Lopez et al., 1983; Rodelas et al., 1993; Phillips et 

al., 1999; Sierra et al., 1999), and its degradation into lumichrome easily occurs 

photochemically and enzymatically by the action of light or enzymes from soil 

microorganisms and plants themselves (Yanagita, 1956; Yagi, 1962), the accumulation of 

lumichrome in soil from these processes could reach levels that render exogenous supply 

of this molecule ineffective in stimulating plant growth as observed in this study. 

As with plant growth, lumichrome similarly showed no effect on the symbiotic 

performance and N nutrition of all four test species (Table 5.2 and 5.3). Despite this lack 

of growth response by the four species to lumichrome, the concentration of C in maize 

shoots was significantly decreased by plant supply with 50 nM lumichrome, just as root 

C was similarly reduced by 5 and 50 nM lumichrome (Table 5.5). Consequently, the CIN 

ratio in maize was decreased in shoots and seeds of plants treated with 50 nM and 5 nM 

lumichrome respectively. Although photosynthesis appeared to have decreased with field 

application of 5 or 50 nM lumichrome, the effect was significant for only cowpea 

(Chapter 4). So the decrease in tissue C could be due to losses from root exudation of C-
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based metabolites or root respiration (Martin and Kemp, 1986; Meharg and Klllham, 

1988; 1989; 1990; Merckx et at., 1986; Keith et at., 1986; Klllham and Yeomans, 2001). 

Although data from other studies (Phillips et al. 1999; Chapter 4) have shown that root 

respiration increased with lumichrome application and led to increased C assimilation, it 

is possible that the escape of uncaptured C02 can result in C loss to the plant. 

5.4.2 Effects of lumichrome on mineral nutrient concentration of plant organs 

Analysis of nutrient concentrations in organs of the four test species showed no effect of 

lumichrome application except for Ca, which decreased in shoots (Table 5.6). There 

were however species differences in tissue levels of both macro and micro nutrients. In 

general, Mg, Ca, Zn and Mn were significantly greater in shoots of the two legumes 

relative to the cereals. Similarly, Ca, P, K and P and, to some extent Mg and S also 

showed increased concentration in roots of the legumes compared to their cereal 

counterparts. Analysis of cowpea and soybean grain harvested at physiological maturity 

revealed significantly greater concentrations of both macronutrients (P, K, Ca and Mg) 

and micronutrients (Fe, Zn, S, Cu and Mn) compared to maize and sorghum grain. In 

dietary terms, consumption of grain legumes would therefore seem much healthier than 

grain cereals such as maize and sorghum grain. 

In this study, there was a significant species x lumichrome interaction. For example, the 

concentrations of P, K, C, Mg, Fe, Zn and Cu in cowpea shoots were all depressed by 

treatment with 50 nM lumichrome relative to 0 or 5 nM level. With maize shoot, 

however, the levels of K, Mg, Fe, Zn and Cu increased with the application of 50 nM 

lumichrome relative to control. The shoot concentration of P, K, C, Mg, Fe, Zn and Cu 

were significantly elevated in sorghum plants supplied with 5 and 50 nM lumichrome 

compared to the control, while with soybean, there was no effect. Root analysis also 

showed decreased P concentration in soybean plants exposed to 50 nM lumichrome 

relative to control or the 5 nM level. Nutrient concentrations in roots of the other species 

were however unaltered. Interestingly, the concentration of S in the grain of the two 

legumes were markedly depressed by the application of 50 nM lumichrome relative to the 

zero or 5 nM level, but unaffected in the cereals. 
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Because lumichrome is a rhizobial product, inoculating cereals with infective cells of this 

bacterium is therefore likely to increase mineral nutrient acquisition and in situ tissue 

accumulation as observed in this study for sorghum and maize. The findings of this field 

study with lumichrome corroborated the results of glasshouse experiments which showed 

enhanced P and K nutrition following the inoculation of sorghum plants with 

symbiotically-effective rhizobial cells (see Chapter 2). An increased concentration ofN, 

P, K, Mg, Ca, Zn, Na and Mo was also obtained for rice plants inoculated with infective 

rhizobial cells in the Nile delta (Yanni et ai., 2001), and this could now be interpreted to 

mean that lumichrome released by those bacterial strains was probably the cause of the 

enhanced nutrient acquisition. It must however be pointed out that besides lumichrome, 

plant and bacterial exudates also contain other molecules such as organic acids, amino 

acids, siderophores, phytosiderophores and phenolics that enhance mineral nutrition in 

plants (Jurkevitch et ai., 1986; Treeby et ai., 1989; Masaoka et ai., 1993; Dakora and 

Phillips, 2003). 

An earlier study with groundnut also showed significantly increased concentration of 

mineral nutrients in organs of inoculated plants relative to uninoculated (Howell, 1987). 

The increased the concentration of K, Cu and to some extent, Fe and Mn observed for 

cowpea nodules (Table 5.10) in this study closely mirrors the effect of, rhizobial 

inoculation which also increased nodule concentration ofK, Cu, Fe and Mn, as well as P, 

Ca, Mg, B, Al and Na (Howell, 1987). The similarity in nutritional response in these 

experiments could suggest that the effect of live bacterial cells on nutrient concentration 

was due to lumichrome released into the rhizosphere. Taken together, this field study has 

shown that lumichrome released from soil bacteria promotes the acquisition of certain 

nutrients in both legumes and cereals. 
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CHAPTER 6 

QUANTITATION OF LUMICHROME AND RIBOFLAVIN 

RELEASED NATURALLY BY RHIZOBIAL STRAINS BELONGING 

TO DIFFERENT GENERA 
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6.1 Introduction 

Apart from their role in N2 reduction by nitrogenase, rhizobial bacteria also produce and 

secrete various molecules that affect seedling development and plant growth. Nod factor 

metabolites (lipo-chito-oligosaccharides) have been shown to be excreted into the growth 

medium of rhizobial bacteria (Spaink et al., 1992). However the production and 

excretion of these compounds tend to decrease with the influence of environmental 

factors such as low pH, low P and low temperature (McKay and Djordjevic, 1993). 

Other bacteria species such as Pseudomonas fluorescens release B vitamins (Marek­

Kozaczuk and Skorupska, 2001) that enhance clover growth and l\h fixation by 

auxotrophic strains of Rhizobium leguminosarum bv. trifolii (Derylo and Skorupska, 

1993; Marek-Kozaczak et al., 1996). Nanomolar concentrations of homo serine lactone 

released by rhizosphere bacteria can increase stomatal conductance and leaf transpiration 

(Joseph and Phillips, 2003). 

Furthermore, a study by Phillips et al. (1999) has shown that Sinorhizobium meliloti can 

naturally release lumichrome and riboflavin at measurable rates and the lumichrome so 

released was shown to promote alfalfa plant growth. It has also been shown that some 

auxotrophic mutants of Rhizobium trifolii (which nodulate clover) require riboflavin for 

symbiotic effectiveness (Schwinghamer, 1970). Recently Yang et al. (2002) studied 

riboflavin production and overexpression in diverse strains of rhizobia. Because 

riboflavin breakdown yields lumichrome, it is likely that the presence of the latter in soil 

can increase from rhizobial excretion and riboflavin degradation. So far, however, no 

detailed study has examined the levels of lumichrome and riboflavin released naturally by 

different rhizobial strains. 

This study assess the rates and concentrations of lumichrome and riboflavin released into 

culture filtrate by rhizobia belonging to different genera. 
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6.2 Materials and Methods 

6.2.1 Rhizobial strains 

For this study, rhizobial strains were selected from the genera Rhizobium, 

Bradyrhizobium, Mesorhizobium and Sinorhizobium. They included, Rhizobium GHR2 

(host plant Acacia cyanophylla), Rhizobium NGR234 (host plant Lablab purpureus), R. 

leguminosarum bv. viceae strain 30 (host plant Vidafaba), R. leguminosarum bv. viceae 

strain Cn6 (host plant lentil), Mesorhizobium (wild type) xhj 7, Bradyrhizobium (wild 

type) 14b, B. japonicum Tal 110, Bradyrhizobium strain CB756, B. japonicum WB74, 

Sinorhizobium meliloti strain 1 (host plant Medicago sativa), S. meliloti strain RAKI, S. 

fredii strain 6217, S. arboris lma 14919 and S. kostiense 19227. 

6.2.2 Culture media 

The medium used for broth culture was optimized for the maximum production of 

lumichrome (Phillips et aI, 1999) and it contained (glliter): K2HP04 (1.0), KH2P04 (1.0), 

KN03 (6.0), proline (5.0), MgS04 (0.26), FeCh.6H20 (0.02), CaCh.2H20 (0.07), 

dextrose (10.0), and the minor components (mg/liter) thiamine (2.0), biotin (2.0), 

Na2Mo04.2H20 (0.24), H3B04 (3.0), MnS04.H20 (1.83), ZnS04.7H20 (0.29), 

CuS04.5H20 (0.13) and CoCh.6H20 (0.24). The medium was autoclaved at 121°C for 15 

min and cooled to room temperature. About 1 mL of bacterial culture on agar slant was 

used to inoculate the broth medium and the culture incubated at 32°C with shaking for 7 d 

in the dark until stationary phase was reached. 

6.2.3 Extraction of riboflavin and lumichrome from culture filtrate 

The cultures were centrifuged at 6 K for 10 min to pellet the bacterial cells. 5 ml of the 

supernatant was then passed through a C 18 cartridge, rinsed three times with deionized 

water to remove all salts, and the lumichrome and riboflavin eluted with methanol, dried 

down, and then resolubilized in 30 uL methanol for thin layer chromatography (TLC) as 

described by Phillips et al. (1999). All experimental procedures were conducted under 

low light conditions to avoid degradation of riboflavin. 
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6.2.4 Thin layer chromatographic separation of lumichrome and riboflavin 

The separation of lumichrome and riboflavin in culture filtrates was carried out as 

described by Phillips et al. (1999). The resolubilized lumichrome and riboflavin were 

spotted on slica-gel-coated glass plates (Alltech 0.2 x 100 x 100 mm HPTLC silica gel 60 

plates). The compounds in the lipophilic fraction were separated using 

chloroform/methanol/water (17.5:12.5:1.5) mixture. The TLC plates were viewed on a 

UV -light box (Ultra-Violet Products Ltd, Science Part, Milton Road, Cambridge, UK) 

and photographed with Polaroid film (Thermal paper, High density type, Kyoto, Japan). 

Standards of known concentrations of riboflavin and lumichrome were also spotted, run 

on the TLC plates and photographed as described above. Once more, everything was 

done under low light conditions. 
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~ 
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Riboflavin{r) 

2 

2 

3 4 

3 4 

2 3 

5 .6 7 8 A 

5 6 7 8 B 

4 5 6 7 8 c 

Fig 6.1 A, Band C represent standard runs in triplicate. After scraping the riboflavin and 

lumichrome off the plates, eluting, and measuring the absorbances, these known amounts 

were plotted against the absorbances to yield a standard curve of the two compounds. 

Standards for lumichrome (upper spots) and riboflavin (lower spots) in triplicate: lanes 1, 

48 ng 1 and 24 ng r; 2, 24 ng I and 12 ng r; 3, 12 ng I and 6 ng r; 5, 6 ng I and 3 ng r; 6, 3 

ng 1 and 1.5 r; 7, 1.5 ng I and 0.75 ng; 8,0.75 ng 1 and 0.375 ng r. 
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6.2.5 Quantification of riboflavin and lumichrome concentration and rates of 

release 

The spots indicating the positions of the riboflavin and lumichrome were located under a 

UV lamp for both the standards and the compounds extracted from the bacterial culture 

filtrates and marked on the TLC plates. The spots were then scraped off the plates, eluted 

and their absorbances measured at 444 nm for riboflavin and 249 nm for lumichrome 

using a spectrophotometer (DU-64 Beckman Instruments Inc., Fullerton, Canada). For 

each strain, three independently grown bacterial broth cultures were used, with each 

assay being a replicate. For visual comparison, the three replicates for each strain were 

run side by side on the TLC plates. 

6.2.6 Statistical analysis 

Statistical analysis was done to compare the concentrations and rates of lumichrome and 

riboflavin released by rhizobia using one-way ANOV A and STA TISTICA package. 

6.3 Results 

Standard runs with purified lumichrome and riboflavin are shown in Fig.6.1, while Figs 

6.2 to 6.8 represent prints of TLC plates with the extracted lumichrome and riboflavin 

from various rhizobia! strains. All the strains studied, which included Rhizobium, 

Bradyrhizobium, Sinorhizobium and Mesorhizobium species, produced and released both 

lumichrome and riboflavin. 

More specifically, B. japonicum TAL 11 0, S. fredii strain 6217 and S. meliloti strain 

RAKI produced significantly (P :s 0.05) higher amounts of riboflavin compared to the 

other strains (Table 6.1). All the other strains produced amounts that were not 

significantly different (P :s 0.05). The rates of production of lumichrome and riboflavin 

closely mirrored the amounts produced. 

R. leguminosrum bv. viceae strain 30, B. japonicum CB756 and Rhizobium NGR234 each 

produced lumichrome that was significantly (P < 0.05) lower than that released by the 
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other strains (Table 6.2). Again, the rate of lumichrome production followed the same 

pattern as the amounts released into culture filtrate. 

2 3 4 5 6 7 8 9 

Fig 6.2. HPTLC plate showing lumichrome and riboflavin standards as well as 

separation of methanoic extracts from 10 ml of cell free culture filtrates of different 

rhizobial isolates. Lanes 1, 24 ng lumichrome; 2, 12 ng riboflavin; 3, 24 ng lumichrome 

(top spot) and 12 ng riboflavin (bottom spot), 4, 5 and 6, S. meliloti strain I; 7,8 and 9, B. 

japonicum TAL 110 
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2 3 4 5 6 7 8 9 

Fig 6.3. HPTLC plate showing lumichrome and riboflavin standards as well as 

separation of methanoic extracts from 10 ml of cell free culture filtrates of different 

rhizobial isolates. Lanes 1,24 ng lumichrome; 2, 12 ng riboflavin; 3, 24 ng lumichrome 

(top spot) and 12 ng riboflavin (bottom spot), 4, 5 and 6, S. meliloti strain RAKI; Lanes 

7,8 and 9, B. japonicum strain CB756 

126 

Univ
ers

ity
 of

 C
ap

e T
ow

n



2 3 4 5 6 7 8 9 

Fig 6.4. HPTLC plate showing lumichrome and riboflavin standards as well as 

separation of methanoic extracts from 10 ml of cell free culture filtrates of different 

rhizobial isolates. Lanes 1, 24 ng lumichrome; 2, 12 ng riboflavin; 3, 24 ng lumichrome 

(top spot) and 12 ng riboflavin (bottom spot), 4, 5 and 6, Rhizobium GHR2; 7,8 and 9, S. 

fredii strain Ima 6217. 
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2 3 4 5 6 7 8 9 

Fig 6.5. HPTLC plate showing lumichrome and riboflavin standards as well as 

separation of methanoic extracts from 10 ml of cell free culture filtrates of different 

rhizobial isolates. Lanes I, 24 ng lumichrome; 2, 12 ng riboflavin; 3, 24 ng lumichrome 

(top spot) and 12 ng riboflavin (bottom spot), 4, 5 and 6, R. leguminosarum bv. viceae 

(lentil); 7,8 and 9, R. leguminosarum bv. viceae (Vidafaba). 

128 

Univ
ers

ity
 of

 C
ap

e T
ow

n



2 3 4 5 6 7 8 9 

Fig 6.6. HPTLC plate showing lumichrome and riboflavin standards as well as 

separation of methanoic extracts from 10 ml of cell free culture filtrates of different 

rhizobial isolates. Lanes I, 24 ng lumichrome; 2, 12 ng riboflavin; 3, 24 ng lumichrome 

(top spot) and 12 ng riboflavin (bottom spot), 4, 5 and 6, S. arboris strain Ima 14919; 7,8 

and 9, Rhizobium NGR234 
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2 3 4 5 6 7 8 9 

Fig 6.7. HPTLC plate showing lumichrome and riboflavin standards as well as 

separation of methanoic extracts from 10 ml of cell free culture filtrates of different 

rhizobial isolates. Lanes 1, 24 ng lumichrome; 2, 12 ng riboflavin; 3, 24 ng lumichrome 

(top spot) and 12 ng riboflavin (bottom spot), 4, 5 and 6, S. kostiense strain Ima 19227; 

7,8 and 9, B.japonicum WB74. 
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2 3 4 5 6 7 8 9 

Fig 6.8. HPTLC plate showing lumichrome and riboflavin standards as well as 

separation of methanoic extracts from 10 ml of cell free culture filtrates of different 

rhizobial isolates. Lanes I, 24 ng lumichrome; 2, 12 ng riboflavin; 3, 24 ng lumichrome 

(top spot) and 12 ng riboflavin (bottom spot), 4, 5 and 6, Mesorhizobium (wild type 

isolate) strain xhj 7; 7,8 and 9, Bradyrhizobium (wild type isolate) strain 14b 
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The calculated estimated values for riboflavin are shown in Table 6.1. 

Table 6.1. Absorbances (at 444 nm), amounts and rates of release of riboflavin extracted 

from culture filtrates of different rhizobial strains. Values (Mean + S.E.) followed by 

dissimilar letters in a column are significantly different at P < 0.05. 

Riboflavin 

Rhizobial strain Absorbance Concentration Rate of release 

Rhizobium 
leguminosarum bv 
viceae strain 30 0.669 ± O.157a 3.360 ± 0.789a 0.0020 ± 0.0005a 
R. leguminosarum 
bv viceae strain Cn6 1.107 ± 0.066a 5.551 ± 0.336a 0.0033 ± 0.0002a 
Bradyrhizobium 
japonicum Tal 110 1.697 ± 0.134b 8.515 ± 0.675b 0.0051 ± 0.0004b 
Sinorhizobium 
meliloti strain 1 0.907 ± 0.196a 4.550 ± 0.982a 0.0027 ± 0.0006a 
Bradyrhizobium 
strain CB756 1.400 ± 0.243a 7.025 ± 1.217a 0.0042 ± 0.0007a 
Sinorhizobium 
meliloti strain RAKI 1.641 ± O.l31b 8.235 ± 0.656b 0.0049 + 0.0004b 
Sinorhizobium fredii 
strain 6217 1.927 ± 0.074b 9.670 ± 0.371b 0.0058 ± 0.0002b 

Rhizobium. GHR2 1.368 ± 0.185a 6.862 ± 0.928a 0.0041 ± 0.0006a 

Rhizobium NGR234 1.310 ± O.077a 4.564 ± 0.388a 0.0039 ± 0.0002a 
Sinorhizobium 
arboris lma 14919 0.910 ± 0.095a 6.573 ± 0.475a 0.0027 + 0.0003a 
Bradyrhizobium 
japonicum WB74 1.549 ± 0.059a 7.771 ± 0.298a 0.0046 ± 0.0002a 
Sinorhizobium 
kostiense 19227 1.425 ± 0.293a 7.148 ± 1.472a 0.0043 ± 0.0009a 
Bradyrhizobium 
(wild type) 14b 1.193 ± O.190a 5.986 ± 0.955a 0.0034 + 0.0007a 
Mesorhizobium 
(wild type) xhj 7 1.400 + 0.062a 7.073 + 0.312a 0.0042 + 0.0002a 
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Table 6.2. Absorbances (at 249 run), amounts and rates of production of lumichrome 

extracted from culture filtrates of different rhizobial strains. Values (Mean ± S.E.) 

followed by dissimilar letters in a column are significantly different at P < 0.05. 

Lumichrome 

Rhizobial strain Absorbance Concentration Rate of release 
(ng mL· I

) (ng rnL· I h· l ) 

Rhizobium 
legumin os arum bv 
viceae strain 30 1.441 ± O.l42b 13.356 2.331b 0.0139 + 0.0014b 
R. leguminosarum 
bv viceae strain Cn6 1.747 ± 0.372a 28.328 ± 6.037a 0.0169 ± 0.0036a 
Bradyrhizobium 
japonicum Tal 110 2.246 ± O.l08a 36.412 ± 1.754a 0.0217 ± 0.00 l1a 
Sinorhizobium 
meliloti strain 1 2.038 ± 0.499a 33.040 + 8.096a 0.0197 ± 0.0048a 
Bradyrhizobium 
japonicum CB756 0.901 ± 0.332b 14.607 ± 5.386b 0.0087 ± 0.0032b 
Sinorhizobium 
meliloti strain RAKI 1.270 ± 0.415a 20.584 ± 6.724a 0.0122 ± 0.0040a 
Sinorhizobium fredii 
strain 6217 1.504 ± 0.240a 24.383 3.898a 0.0145 ± 0.0023a 

Rhizobium GHR2 1.527 ± 0.556a 24.756 ± 9.007a 0.0147 ± 0.0054a 

Rhizobium NGR234 0.842 ± 0.126a 25.448 ± 2.037a 0.0081 ± 0.0012a 
Sinorhizobium 
arboris Ima 14919 1.570 ± 0.135b 13.448 ± 2.182b 0.0151 ± O.OO13b 
Bradyrhizobium 
japonicum WB74 2.322 ± 0.244a 37.650 ± 3.957a 0.0224 ± 0.0024a 
Sinorhizobium 
kostiense 19227 1.673 + O.l62a 27.117 ± 2.618a 0.0161 ± 0.0016a 
Bradyrhizobium 
(wild type) 14b 1.937 ± 0.099a 31.408 ± 1.602a 0.0187 ± O.OOlOa 
Mesorhizobium 
(wild type) xhj 7 2.020 + 0.117a 32.754 + 1.894a 0.0195 + 0.0011a 
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6.4 Discussion 

The chemical data presented here show that the production of riboflavin and lumichrome 

is a widespread phenomenon across the Rhizobiaceae. All the four groups sampled 

namely Rhizobium, Bradyrhizobium, Mesorhizobium and Sinorhizobium all produced 

some amounts that ranged from 3.36 ng mL-1 to 6.67 ng mL-1 for riboflavin (Table 6.1) 

and from 13.56 ng mL-1 to 37.65 ng mL-1 for lumichrome (Tables 6.2). The results 

suggest that lumichrome production is a widespread phenomenon among the rhizobia 

since three representative strains were tested from each of the four groups and all of them 

secreted lumichrome into the culture filtrate 

Phillips et al. (1999) were the first group to identify lumichrome as a metabolite 

produced by S. meliloti in culture. There are no reports of the production of this rhizobial 

signal molecule in other rhizobial groups. What is more common in literature are reports 

on riboflavin. For example a study (Schwinghamer, 1970) reported that for effective 

symbiosis of clover by an auxotrophic mutant strain of R. trifolii, riboflavin was required. 

More recently, Yang et ai. (2002) identified the genes contributing to riboflavin 

production in S. meliloti and then constructed strains that overproduced this vitamin in 

order to characterize how additional riboflavin affects interactions between alfalfa and S. 

meliloti. They found riboflavin-synthesis genes in three separate linkage groups and 

observed that cells carrying extra copies of one of the genes, ribBA, colonized roots to 

densities that were 55% higher than that of a control strain. They concluded that this 

molecule benefits bacteria directly through an effect on the plant. Since riboflavin seems 

to play such a key role in the physiology of symbiosis of rhizobia, it is likely to be widely 

produced by rhizobia. Riboflavin is easily converted to lumichrome photochemically 

under neutral and acidic conditions (Yagi, 1956). Bacterial enzymes for example from 

Pseudomonas also bring about this conversion (Yanagita, 1956). Therefore, lumichrome 

is likely to be a common molecule in the rhizosphere. 

Although the role of riboflavin in other legume-rhizobium symbioses remains to be 

demonstrated experimentally, it is possible that considering the importance of this 
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compound in the above mentioned symbiosis studied by Yang et al. (2002), that other 

legume-rhizobium symbioses utilize this molecule and so its production by rhizobia is 

likely to be widespread as demonstrated by this current study. Since lumichrome is a 

breakdown of riboflavin (Phillips et ai., 1999), it is likely to also be a commonly 

produced compound by these same bacteria. Lumichrome has been demonstrated to 

increase root respiration in alfalfa, and since exogenous CO2 is required for the growth of 

rhizobia (Lowe and Evans, 1962), it is highly likely that lumichrome is widely produced 

by rhizobia since it is beneficial to these relationships. 

Diazotrophic bacteria are known to produce various growth factors including vitamins e.g 

Azotobacter (Gonzalez-Lopez et al., 1983; Dahm et aI., 1993) and Azospillum (Rodelas et 

aI., 1993). More specifically, rhizobia have been reported to produce these compounds 

for example R. trifolii has been reported to synthesize all the organic substances essential 

for growth from a synthetic carbohydrate-mineral salts medium of known composition 

(West and Wilson, 1938). Other rhizobial strains have also been reported to do this 

(Sierra et al., 1999). These growth factors including riboflavin can be detected in the soil 

(Carpenter, 1943) and this means that plants could benefit from this exogenous source of 

growth factors. Streit et ai. (1996) reported that bacterial vitamin production can be one 

of several factors affecting microbial competition for root colonization and stated that 

biotin and other water-soluble vitamins are key growth factors for alfalfa root 

colonization by R. meliloti 1021. Additionally, R. ieguminosarum bv. trifolii, an 

agriculturally important bacterium that forms N fixing root nodules on clover (Trifolium 

repens), occurs at a low level in soil and competes with other bacteria to colonize host 

plant root (Marek-Kozaczuk and Skorupska, 2001). This micro symbiont is a thiamine 

and pantothenic acid auxotroph and water-soluble vitamins released from plant roots or 

produced by soil microorganisms have been proposed to promote rhizobial growth 

(Derylo and Skorupska 1993; Rovira and Harris, 1961). The production of such vitamins 

has been demonstrated to be the basis of plant growth promotion by other non-rhizobia! 

bacteria in mixed cultures with rhizobia, in that the production of these vitamins enhances 

the colonization of rhizobia. Marek-Kozaczuk and Skorupska (2001) examined the range 

and amount of water-soluble B vitamins produced by Pseudomonas fluorescens strain 
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267 supplemented with different C sources at different pH values. By random transposon 

mutagenesis, they isolated thiamine and niacin auxotrophic mutants of this strain and 

used them to elucidate the importance of vitamin production on clover root colonization 

and in plant growth promotion. Red root clover colonization decreased by about 1 order 

of magnitude in the case of niacin auxotrophs. The vitamin auxotrophs of P. fluorescens 

in a mixed inoculation of clover with R. leguminosarum bv. trifolii strain 24.1 showed no 

plant-growth promotion activity. All this points to the fact that these vitamins, including 

riboflavin and lumichrome, produced by microbes have a profound effect on symbioses. 

This study showed that lumichrome is taken up by cowpea and soybean plants and can be 

detected at higher concentrations in the xylem sap and leaf tissues of plants provided with 

these compounds (Chapter 4). It is therefore possible that lumichrome produced rhizobia 

as demonstrated in this chapter, could influence plant growth and microbial interactions 

in the field. 
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CHAPTER SEVEN 

ISOLATION OF GLUCONOACETOBACTER DIAZOTROPHICUS 

FROM CAMELIA SINENSIS L., MUSA SPP. L. AND COFFEA 

ARABICA L. FROM KENYA 
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7.1 Introduction 

The N2-fixing bacterium Gluconoacetobacter diazotrophicus (formerly Acetobacter 

diazotrophicus) which had previously been thought to occur only as an endophyte of 

sugarcane (Gillis et ai., 1989; Stephan, 1991), has since been shown to occur naturally in 

other crop plants including coffee, (jimenez-Salgado et al., 1997) millet, (Loganathan et 

al., 1999) and pineapple (Tapia-Hernandez, 2000). 

G. diazotrophicus is the only diazotrophic species of Acetobacter so far identified (Lee et 

aI., 2000). It is of special interest and has potential agronomic use because besides 

fixing N2 in the presence of KN03, it is also active at low pH values « 3.0; Reis et ai., 

1994) an important fact in Africa because many soils in Africa are poor in bases, highly 

weathered and leached, with consequent problems of acidity (Giller, 2001). Additionally, 

G. diazotrophicus can excrete almost half of the fixed N in a form available to plants 

(Cojho et ai., 1993). This has now been confirmed by recent studies by Sevilla et al. 

(1998; 2001). 

The Mexican finding of G. diazotrophicus in the rhizosphere and tissues of Coffee 

arabica, growing in soils of low pH in Mexico stimulated interest in the possibility that 

this diazotroph might be found in association with coffee and other crops growing in soils 

of low pH in Kenya. Coffee, tea and banana were chosen because coffee and tea are the 

most important crops in the Kenyan economy while banana is a staple in some parts of 

the country (Acland, 1980). The objectives of this study was to determine if G. 

diazotrophicus occurs in the above Kenyan crops and at what numbers in tissues and 

rhizosphere soil. 
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7.2 Materials and methods 

7.2.1 Collection of roots and soil for isolation of G. diazotrophicus 

Roots and rhizosphere soil were collected from coffee, tea and banana plants growing 

under field conditions from various locations in central Kenya within a 60 kIn radius. 

Only those growing in soil having a pH between 3.5 and 5.2 were sampled. 

N-free semi-solid LGI medium supplemented with 10% brown sugar at pH 5.5 and 

cyclohexamide (150 mg L-1
) was used for enrichment culturing ofN2-fixing acetobacters. 

For subsequent culturing, LGI plates, supplemented with yeast extract (20 mg L-1
) and 

cyclohexamide were used. The isolates were grown in LGI liquid medium for the 

isolation of DNA. Incubation was at 30°C. 

7.2.2 Isolation of G. diazotrophicus 

The root samples were rinsed three times in sterile distilled water and the soil and water 

collected into sterile bottles. Soil samples were shaken for 1 h at room temperature to 

dissociate the bacteria. The washed root samples were weighed and surface sterilized 

using 70% ethanol for 90 seconds and 1.5% sodium hypochlorite plus a few drops of 

Tween 20 for 15 minutes with shaking. They were washed three times in sterile distilled 

water and dried. Dried, non-damaged root samples were placed on LGI solid medium 

and incubated at 30°C to ensure sterility. Individual roots were macerated in sterile pestle 

and mortar in 0.1 M MgS04 and transferred to sterile bottles. 

Aliquots (1 00 ilL) of supernatant of the rhizosphere soil and the macerated root samples 

were placed in vials containing 5 ml ofN-free semi-solid LGI medium and incubated for 

seven days. Those showing a yellow surface pellicle were streaked onto LGI agar plates. 

Colonies showing the morphology described for G. diazotrophicus were streaked onto 

fresh LGI plates to ascertain cultural purity. PALS (ATCC 49039) was used as a control. 
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7.2.3 Determination of the RFLP pattern of the nijHDK genes 

The restriction fragment length polymorphism (RFLP) pattern of the G. diazotrophicus 

nijHDK genes was determined. Each isolate was grown for 36 h in 500 ml LGI medium 

to an OD600 of 0.3 and harvested by centrifugation. Total DNA was isolated as described 

by Ausubel et al. (1987). DNA was digested with EcoRI and restriction fragments were 

electrophoresed in 1.0% agarose gels in Tris-acetate buffer (40 mM Tris-acetate, 2 mM 

EDTA pH 8) at 40 V for 13 h. Total DNA digests were transferred from gels to nylon 

filters by the Southern procedure (Caballero Mellado and Martinez-Romero, 1994). The 

RFLP patterns of the nijHDK genes were determined by hybridization with a DIG­

labelled 4.3-kb HindlII fragment containing nijHDK genes from G. diazotrophicus UAP 

5560 carried on a plasmid pNHAd4. 

7.2.4 Polymerase chain reaction of 16S - 23S rRNA intergenic region 

PCR amplification of the intergenic region of the I6S-23S rRNA of the isolates obtained 

was carried out to try and detect differences between the various isolates. The forward 

primer used in this study was an I8-mer 5' -GTAACAAGGTAICCG-3' while the reverse 

primer was a 15-mer 5'-GCCIAGGCATCCACC-3'. The PCR products were run on a 

gel and photographed. 
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7.3 Results 

Table 7.1. Origins of isolates of G. diazotrophicus obtained from coffee, tea and banana 

plants 

Crop Region Soil pH Number/g Cultivarl Age of plant 

fresh rooe clone 

Coffee Kiganjo 4.02 SL28 25 years 

Chomo 3.81 Ruiru 11 5 years 

Tea Kambaa 3.55 3.2 X 104 303/259 10 years 

Chomo 4.33 54/40 1 year 

Banana Maragwa 5.02 Kampala 10 months 

aColony forming units; mean of three replicates obtained after 5 days of incubation. 
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Isolates of endophytic G. diazotrophicus were obtained from coffee, tea and banana 

samples as shown (Table 7.1), and from the rhizosphere soil of some of the roots from 

which the endophytes were recovered (data not shown). Not all the plants yielded 

isolates. Within the roots, the bacterium was found in numbers ranging from 104 to 106 

per gram fresh weight (Table 7.1). The isolation frequency of G. diazotrophicus was 

about 25% of the samples examined (data not shown). All the isolates had the same 

RFLP profile (Fig 7.1). 

2 3 4 5 6 7 8 9 10 11 

Fig. 7 .1. Autoradiogram of a Southern blot of total EcoR I-digested ON A hybridized with 

a DIG-labeled nijHDK probe of G. diazotrophicus UAP-5560. Lanes: 1, a 4.3-kb 

fragment of the nijHOK gene; 2, PAL5; 4, coffee isolate (root tissue); 5, banana isolate 

(rhizosphere); 7, tea isolate (root tissue); 8, tea isolate (rhizosphere); 9, coffee isolate 

(root tissue); 11, banana isolate (root tissue). 

A single peR band was obtained with all the samples tested (Fig. 7.2). 
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0.5 -. 

M 234 5 6 7 8 

Fig. 7.2. PCR products following amplification of the 16S-23S rRNA intergenic region 

of genomic DNA from isolates of G. diazotrophicus. Lanes: M, Molecular weight 

markers; 1, PAL5; 2, banana isolate (rhizosphere), 3, banana isolate (root tissue); 4, 

coffee isolate (rhizosphere); 5, coffee isolate (root tissue); 6, tea isolate (rhizosphere); 7, 

tea isolate (root tissue), 8, E. coli. 

7.4 Discussion 

This diazotroph has been reported to occur within sugarcane tissues by several authors 

(Cavalcantes and Dobereiner, 1988; Gillis et al., 1989; Caballero-Mellado and Martinez­

Romero, 1994; James et al. , 2001). The numbers reported range from 103 to 107 colony 

forming units per g fresh weight (Reis et al., 1994; Muthukumarasamy et aI., 1999), 

while it was found at between 104 to 106 colony forming units per g gresh weight in this 
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study (Table 7.1). In a previous study where G. diazotrophicus was isolated from coffee 

tissues, no numbers were determined (Jimenez-Salgado et al., 1997). The isolation 

frequency of 25% in this study was also within the range of the data reported in the 

previous study in which the isolation rates ranged from 15% to 40% from the rhizosphere 

and inside the roots of coffee plants growing in acidic soil (Jimenez-Salgado et al., 1997). 

In this study, all the isolates were found to have the same RFLP (Fig. 7.1) whereas in the 

study on isolates from coffee plants in Mexico, four different banding patterns were 

observed (Jimenez-Salgado et al., 1997). However, the isolates in that study were 

obtained from plants growing in diverse geographical regions up to 750 km apart whereas 

in this study, samples were obtained from a 60 km radius. It is therefore possible that the 

limited area and ecological diversity from which the samples in this study were obtained 

reduced the possibility of obtaining isolates with greater diversity. However, others have 

reported limited genetic diversity when studying the nit structural gene organization on 

the chromosome of endophytic G. diazotrophicus isolates from sugarcane. A shared nif 

structural gene organization on the chromosome was reported (Caballero-Mellado and 

Martinez-Romero, 1994). 

Some of the isolates obtained using LGI media had characteristics indistinguishable from 

that of G. diazotrophicus P AL5 (Le. formation of a yellow surface pellicle on semi-solid 

media and similar colony morphology on solid media) but their nijHDK genes were not 

detected by hybridization to those of G. diazotrophicus UAP-5560. It is possible that 

these are other diazotrophs whose structural nitrogenase genes have a different 

organization from those of G. diazotrophicus. In the study by Jimenez-Salgado et al. 

(1997), such isolates were reported, which did not hybridize to the nijHDK genes under 

stringent conditions. However, these authors reported that the colony morphologies of 

those other isolates were very different from that of G. diazotrophicus, although they also 

formed yellow pellic1es on semi-solid medium. 

PCR of the 16S-23S rRNA intergenic region of strains obtained in this study was carried 

out in an attempt to detect any differences between the strains which may not have been 
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apparent in the analysis of the RFLP of the nifHDK genes. In prokaryotes, the spacer 

regions between 16S and 23S rRNA genes exhibit a high degree of sequence and length 

variation between different genera and species. Even within a single genome, there are 

frequently multiple rRNA genetic loci with spacer regions showing a significant degree 

of variation. PCR amplification of these intergenic regions has been used to detect 

differences not only between different species of bacteria, but also between different 

strains (Jensen et at., 1993). In this study, a single PCR product was obtained with all the 

samples tested (Fig. 7.2), once more indicating no genetic diversity. 
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CHAPTER EIGHT 

GENERAL DISCUSSION 
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This study has clearly demonstrated that rhizobia can and do infect non-legumes, 

especially landraces of African sorghum and millet (Chapter 2). This adds to the body of 

knowledge already available which show that rhizobia are able to enter the roots of cereal 

crops and colonize internal tissues. Such cereal crops could therefore serve as a reservoir 

for rhizobia and help in their survival from one cropping season to the other, especially 

when dealing with intercropping and rotational systems. The fact that rhizobia located 

inside sorghum roots could induce nodule formation in soybean plants supports the 

notion of cereals as alternative hosts for rhizobial survival. The fact that all the strains 

tested could produce detectable amounts of IAA shows that cereal crops can benefit from 

this plant growth hormone. Further interest was the observation that nutrent concentration 

in organs of sorghum plants were altered by rhizobial inoculation. This could have 

implications for mineral acquisition in the field, especially under low nutrient conditions 

which are common in Africa. What remains unknown though is the mechanism by which 

nutrient uptake was enhanced. 

Because lumichrome is known to stimulate alfalfa plant growth (Phillips et al., 1999) this 

rhizobial metabolite was studied and shown to be widely secreted by rhizobia (Chapter 6) 

from four genera, namely Rhizobium, Bradyrhizobium, Mesorhizobium and 

Sinorhizobium. Functionally, this molecule was shown to have a marked effect on the 

growth and development of various crop species under glasshouse conditions (Chapter 3). 

This implies that rhizobia do not just only fix N in homologous legume hosts, but that 

they also produce signals that influence plant growth. This means that in rotations and 

mixed cropping systems, both legumes and non-legumes could potentially enhance their 

growth via the activity of this metabolite released by soil rhizobial. It is also possible that 

some of the rhizobial growth effects previously attributed to plant hormones such as IAA 

and cytokinnins from rhizobia, could actually be due to lumichrome. Although the 

mechanisms by which lumichrome induces growth promotion remain unknown, the data 

show that root respiration was altered in some crops species. For instance, it increased 

root respiration in maize and CO2 so produced can promote growth of rhizobia and AM 

fungi in the soil with potential for improved Nand P in symbiotic legumes. 
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Lumichrome effects on field-grown cowpea plants (Chapter 4) was manifested in 

decreased stomatal conductance and transpiration rate, and this could have a positive 

effect in the water relations of plants growing in dry arid areas of Africa where water use 

efficiency is important for increased crop yields. Whether these observed effects of 

lumichrome are developmentally driven, remains to be known. 

The mineral concentration of tissues of field-grown plants was also influenced by 

lumichrome via an unknown mechanism. There was an improved uptake of some 

mineral nutrients by some plants with lumichrome supply. It is therefore possible that the 

observed differences in mineral concentration when sorghum was inoculated with 

rhizobia may be due to the effect of lumichrome produced by rhizobial strains. 

Lastly, a preliminary study of the presence of Gluconoacetobacter diazotrophicus in 

coffee, tea and banana from Kenya (Chapter 7) showed its presence in these important 

Kenya crops. Further studies to characterize these isolates are needed as well as studies 

on the interaction of this diazotroph with these crops to determine if the bacterium 

influences their growth in any way, and if so by what mechanisms. 

Taken together, the data from this study show that diazotrophs have multiple effects on 

plant development than previously thought. 
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