
 

 

 
Abstract— The ability to realize maximum returns from 
manufacturing equipment is affected by various interrelated 
business and technical factors that affect equipment performance. 
Among the key factors are operating and maintenance practices that 
significantly affect equipment performance. Understanding how 
these factors interact and impact manufacturing performance is 
essential in ensuring that the equipment is operated in a manner that 
provides desired performance and enables informed management 
decisions on performance prediction and improvement. However, 
performance analysis in practice is driven by past events (lagging 
indicators) and little has been done to model the various cause and 
effect relationships that determine performance (the leading 
indicators). There lacks therefore an approach of conducting 
predictive performance analysis for manufacturing systems. In this 
research, a performance modelling approach is developed that 
integrates process knowledge and corresponding dynamics that 
determine equipment performance. The approach consists of; first 
identification and quantification of the key interactions and factors 
(technical and operation factors) affecting manufacturing equipment 
performance. Secondly, a simulation model is developed (in 
ARENA software) to model the relationships and interactions among 
the various factors and their impact on performance. The approach is 
tested with an industrial case study in a processing plant and results 
are presented in the paper. The model is used in predictive 
performance analysis and screening of improvement scenarios for 
decision support. 
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I. INTRODUCTION 

 
Due to intense global competition and increasing demands 
from stakeholders, manufacturers are striving to improve and 
optimize their productivity in order to stay competitive. The 
increasing need to improve manufacturing performance 
demands adequate knowledge of performance measurement. 
It is evident that manufacturing equipment performance is 
dependent on several heterogeneous factors (both business 
and technical) interacting in context. Understanding how 
these factors interact and impact manufacturing performance 
is essential in ensuring that the equipment is operated in a 
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manner that provides desired performance and enables 
informed management decisions on performance prediction 
and improvement. Among the key factors are production 
(operation) and maintenance practices that significantly affect 
equipment performance.  
Though manufacturing equipment is designed to ensure 
successful operation through the anticipated service life, 
deterioration begins to take place as soon as it is 
commissioned. In addition to normal wear and deterioration, 
other failures may also occur, especially when the equipment 
is pushed beyond their design limits or due to operational 
errors. As a result, equipment down time, quality problems, 
slower production rate, safety hazards or environmental 
pollution becomes the obvious outcome. These outcomes have 
the potential to impact negatively the operating cost, 
profitability, demand satisfaction, and productivity among 
other important performance requirements. It has been 
asserted by some authors [1-3] that equipment maintenance 
and system reliability are important factors that affect the 
organization’s ability to provide quality and timely services to 
customers and be ahead of competition. Maintenance is 
therefore vital for sustainable performance of a manufacturing 
equipment [2, 4, 5]. 
 
While the relationship between production and maintenance 
is highly recognized, it is not well understood. The bulk of 
literature is mainly concerned with lagging performance. 
However, leading performance would yield a much greater 
added value but do require a much better understanding of the 
behaviour between production and maintenance as well as 
their mutual relationship. Moreover, recent research [6] has 
shown that little is known about the way in which production 
and maintenance interactions influence equipment 
performance and vice versa. Thus, the aim of this research is 
to gain insights of how equipment’s performance results from 
the interactions between production and maintenance by use 
of simulation modelling. The objective of performance 
modelling is to develop knowledge of manufacturing 
performance dynamics and an understanding of how 
manufacturing performance is realized. It is worth noting that 
the objective of this study is not performance optimization. 
Rather, the purpose of performance modelling is to develop 
insights and understanding of the system behaviour and the 
corresponding impact on performance. This, eventually, 
provides a basis for performance measurement and analysis 
and provides insights on performance improvement. In the 
next sections, the manufacturing performance modelling 
approach will be introduced. Further, the industrial case study 
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will be presented. Finally, the results of the case study are 
tested with the developed model are discussed. 
 
2.  Maintenance interaction with Production 

The scope of maintenance in a manufacturing environment is 
illustrated by its various definitions. The British Standards 
Institute defines maintenance as [7-9]: 

“A combination of all technical and associated 
administrative activities required to keep equipment, 
installations and other physical assets in the desired 
operating condition or restore them to this condition.” 

The Maintenance Engineering Society of Australia [10] gives 
a definition that indicates that maintenance is about achieving 
the required asset capabilities within an economic or business 
context. They define maintenance as: 

“The engineering decisions and associated actions, 
necessary and sufficient for attainment of specified 
equipment ‘capability’.” 

The “capability” in this definition is the ability to perform a 
specified function within a range of performance levels that 
may relate to capacity, rate, quality and responsiveness[11]. 
Effective and efficient maintenance is believed to effect asset 
performance enhancement by providing equipment reliability 
and improvement of service to customers whilst 
simultaneously reducing costs of production. Thus, many 
authors hold the view that maintenance is a vital part of 
manufacturing operation. 
 
Though some authors state that there is now a much clearer 
and more evident acknowledgement of maintenance’s 
potential of increasing the overall profit than ever before [12, 
13], still a complex relationship between maintenance and 
production does exist [14-16]. In most organizations, there is 
a tendency to organize departments into functional specialism 
groups where, for example, the engineering deals with 
equipment design, production deals with equipment operation 
and maintenance deals with equipment care. Thus, the 
maintenance and the production function are pretty much 
separated in terms of the organizational unit they are 
embedded in and in terms of planning, control and 
performance in general. This strict separation is helpful in 
clarifying who is responsible for what and for a clear focus on 
the different technological specializations that are required in 
both types of functions. However, this separation may be less 
than optimal in situations in which the overall performance of 
organizations is the primary objective. Extensive research has 
been carried out over the years on production planning, 
maintenance modelling, and management of unreliable 
systems [17-21]. However, the tendency of separating 
maintenance and production is further propagated in theory 
where, the production planning models assume maximum 
equipment performance within a planning horizon while 
maintenance models disregard the impact on production 
capacity and performance [22]. Thus, additional effort is 

required in order to see an integrated or the ‘whole picture’ of 
equipment performance. 
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Fig. 1: The basic relationship/interaction between maintenance and 

production. 

 
In many situations, the production and maintenance functions 
cannot operate completely independently. Figure 1 shows the 
basic interdependence between the maintenance and the 
production function. Essentially, by utilizing Technical 
systems, i.e. physical assets, some kind of degradation occurs, 
which without maintenance intervention would lead to loss of 
function. Thus, the production function generates a demand 
for maintenance. The maintenance function, on the other 
hand, tries to remedy loss of function by a technical 
intervention. Both functions are in essence linked together by 
their requirement to access the assets for their respective 
purposes. Mostly, these requirements for access of an asset 
does require some coordination, since the production function 
and the maintenance function have different and sometimes 
conflicting requirements regarding the state of the asset for 
their purpose. E.g. a car cannot be used for driving when a 
tire replacement is carried out. On the other hand measuring 
oil pressure for condition based maintenance requires a 
running engine and may not conflict with the intention to 
drive the car. This type of interdependence necessitates a 
mutual coordination for access of assets and mutual 
performance analysis.  
 
3.0  Performance modelling approach 

To develop the performance model, the key interactions and 
factors (both business and technical factors) affecting 
manufacturing equipment’s performance are first identified. 
The technical factors considered in the model are related to 
equipment’s reliability, deterioration, failure and 
maintenance effects. The business factors are related with 
equipment utilization to meet it production targets based on 
production schedule and market demand. Once these factors 
are identified, their cause and effect relationship is analyzed 
on how they interact in the manufacturing process. The 
simulation model is used to mimic the operation of a 



 

 

manufacturing system. The equipment operation brings with 
it condition deterioration and eventual failure, which have a 
direct or indirect impact on quality rate, reduced speed, minor 
stops and availability. This occurrence leads to maintenance 
demand to restore the equipment to its desired condition. The 
maintenance function also demands some equipment 
downtime for preventive maintenance actions. These factors 
and interactions are represented in the simulation model to 
quantify their impact on equipment performance. 
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Fig. 2: Performance modelling approach for manufacturing 

equipment 

The performance modelling approach adopted in this study 

can be summarised into three steps (see Fig. 2): 

1. Identification and quantification of the technical and 
operational factors that influence asset performance.  
 These include aspects of asset operation, change-

over, reliability, deterioration, failure, maintenance 
practices and maintenance renewal efficiency. 

2. Development of a simulation model representing the 
interactions and relationships between the various 
factors. 
 The model is developed in ARENA and represents 

causal relationships and interactions between the 
factors. The model allows the effects of the factors 
to be analyzed and the main causes of under-
performance to be identified. 

3. Performance analysis to quantify performance impact on 
the various factors and identify performance 
improvement opportunities. With the performance 
model developed, it is possible to: 
 Assess the impact of various parameters (for 

example, the mean time between failure (MTBF), 
mean time to repair (MTTR), deterioration time 
etc) on the performance of the system. 

 Assess the impact of maintenance interventions, in 
terms of maintenance policies, PM intervals and 
maintenance efficiency, on asset performance. This 
analysis is meant to develop insights on the choice 

of maintenance actions that improve asset 
performance. 

 Assess the impact and benefit (in terms of overall 
equipment effectiveness (OEE) and production 
improvement) of different performance 
improvement initiatives.  

The target application of this approach is to enable predictive 
performance analysis, provide decision support on screening 
the different options of performance improvement and 
support prioritization of improvement alternatives. 

3.1  Deterioration and failure modelling 

Failure might be defined as mechanical breakdown, 
deterioration beyond a threshold level, appearance of certain 
defects in a system performance, decrease in system 
performance below a critical level or loss of function of 
system performance [23]. The main interest in failure 
modelling is to analyze certain quantities of equipment 
performance related to failure rate, reliability, and 
availability. The notion of aging, which describes how an 
equipment deteriorates with time, plays a central role in 
reliability theory [24]. Aging is measured in terms of failure 
rate function, which is a good measure for representing the 
operating characteristics of equipment or unit that tends to 
increase failure frequency as it ages. Failure rate is also 
known by different names such as hazard rate, risk rate, force 
of mortality [25]. The failure rate [r(t)] is a conditional 
probability that an item with age t, will fail at a time interval 
[t,t+dt]. Thus: 

  
0

( )  lim  /
dt

r t Prob t T t dt T t dt


       (1) 

For increasing failure rate, the commonly used type of 
distribution is Weibull distribution, which is defined by three 
parameters namely: shape factor (β), scale parameter (η) and 
location parameter (γ). When β < 0, a decreasing failure rate 
(DFR) is obtained. When β ≈ 1 and β > 1, a constant failure 
rate (CFR) and increasing failure rate (IFR) are obtained 
respectively. If γ = 0, the failure distribution starts at zero and 
for γ > 0, a guaranteed failure-free period is introduced. The 
failure rate, r(t) of weibull intensity function is given by: 

  1( )  ( )tr t  
 


 ,           (2) 

Assuming that; 
1  ( )


 and γ = 0, the weibull failure 

rate function is given as: 

  1( )  r t t   ,              (3) 

This is popularly known as the Power Law Process (PLP) for 
Non Homogeneous Poisson Process (NHPP) for β>2 [26]. 
When β = 2, the failure rate increases linearly with time. 
 



 

 

Deterioration modelling concept is based on the PF-curve 
(potential (P) of failure-to failure (F)), which is derived from 
reliability centred maintenance (RCM) [27, 28]. The PF-
curve represents a follow-up on equipment condition over 
time. It is based on the fact that most of the failure modes 
gives some sort of indication or warning that they are in the 
process of occurring or about to occur [27]. The PF-curve 
shows the time instance when the failure commences 
(potential (P) failure) to the point when the failure (F) 
actually occurs, and thus the name PF-curve. In this research, 
the PF concept is modified and then used to model the 
equipment condition, deterioration time and its effect, and 
failure. To determine the condition of the equipment and its 
impact on the system performance, the PF curve is defined as 
illustrated in Fig. 3.  
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Fig. 3: The modified PF-Curve showing the state/condition of the 

equipment 

The condition of equipment is assumed to be in any of the 
following three states:  

 good condition,  
 deteriorating condition or  
 down - due to corrective maintenance (CM) 

or due to preventive maintenance (PM).  

The good condition period is the time it takes before a failure 
mode begins since the previous maintenance intervention. 
This is defined by a PF signal=0 in the simulation model. 
During this time, the machine runs at its designed speed and 
at a 100% quality rate. The arrival of failure mode causes the 
machine condition to start deteriorating and to run at a 
reduced speed and a lower quality rate, which are defined in 
the simulation experimental design. If PM action is not taken 
during deterioration condition state, the machine breaks down 
and CM action is taken to bring it back to good condition. If 
PM action is taken at deteriorating condition state, the 
equipment does not fail and returns to good condition state. 
The use of the modified PF curve concept also gives a window 
of opportunity in the investigation of predictive maintenance. 
Through equipment condition monitoring, it is possible to 
identify the development of failure modes, and thus support 
research on the use of condition-based maintenance. The use 
of condition-based maintenance is investigated together with 
the other maintenance policies.  

3.2  Maintenance Modelling 

It is assumed in this research that maintenance has a renewal 
effect on equipment failure rate and condition, which is 
defined as the improvement factor or the maintenance 
efficiency (ρ).  We assume that the repair rejuvenates the 
equipment such that after the ith maintenance action, the 
equipment behaves as a new equipment, which would have 
worked a duration Ai, where Ai < t. Thus; 

 [Ai] – is a set of non-negative random 
variables, named effective age  

 [A0] = 0 

The arithmetic reduction of age (ARA) model corresponds to 
a maintenance action that reduces the virtual age of the 
equipment of an amount proportional to its age just before 
repair [26]. This proportion is given by parameter ρ, which 
represents the maintenance efficiency. Thus the virtual age of 
equipment after repair is: 

(1 )
i i i iT T T T

A A A A          (4) 

The ARA model is defined by virtual age and the failure 
intensity is given as;  
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To model the effect of maintenance on manufacturing assets, 
the following three factors are integrated that are key to 
maintenance decision making: 

 How should maintenance be done? - This determines 
the degree of improvement or maintenance 
efficiency. In this case, three possible scenarios are 
assumed where maintenance leaves the equipment: 

 As bad as old (ABAO) i.e. ρ=0,  
 As good as new (AGAN), i.e. ρ=1; and  
 Imperfect maintenance, i.e. 0 < ρ < 1 (see 

Fig. 4 

t

t

Maint. actions

 
Fig. 4: The failure rate with imperfect maintenance 

 What maintenance needs to be done? - This determines 
the choice of the maintenance policies that trigger 
the maintenance actions. The maintenance policies 
considered here are: 
 Failure based maintenance (FBM)- This it is a 

purely reactive policy where corrective 
maintenance (CM) is done only when the 
equipment fails.  



 

 

 Time based or use based maintenance 
(TBM/UBM) – This is a preventive policy where 
maintenance is carried out at specified time 
intervals. For UBM, intervals are measured in 
working hours while in TBM intervals are in 
calendar days. 

 Condition based maintenance (CBM) - This is a 
predictive policy where PM is carried out 
whenever a given system parameter or condition 
approached or reaches a predetermined value or 
situation. 

 When should maintenance be done? - This determines 
the maintenance interval. The following maintenance 
timings are considered in the simulation model: 

 CM Time - Failure occurs at random times and 
thus cannot be predicted. Thus, corrective 
maintenance is done at random times. 

 PM time - This can be scheduled / planned 
maintenance activities and thus they are 
deterministic. 

 PM time can also be determined by the condition 
of the equipment according to the results of 
inspections and degradation or operation 
control. Thus random PM can be carried out 
based on condition monitoring. 

 PM timing can also be influenced by other factors 
like production schedules where PM is carried 
out during change-over. 

 CM time and PM time may be dependent if PM 
activity is done during CM action or due to the 
modification of the PM periodicity if too many 
failures are observed on the equipment. 

 Condition monitoring time is normally planned 
and therefore it is deterministic. 

 
4.0  Industrial case study 

The industrial case study approach was used to test the 
applicability of the developed approach and evaluate its actual 
relevance with respect to the realism. Further, the case study 
was used to help identify the limitations and difficulties in 
applying the performance modelling approach and provide 
direction for further research. The company was chosen due 
to availability of well documented asset performance data 
base due to their high interest in performance analysis and 
improvement programs. Due to the company’s request for 
confidentiality, the name of the company is not disclosed in 
this text. To conduct the case study, several meetings were 
held with the maintenance and production managers to 
discuss the production process, performance requirements, 
maintenance requirements, data analysis and results. In 
addition, plant visits were conducted to familiarize with the 
process and equipment involved. The data analysis and 
performance insights were carried out in collaboration with 
the plant’s management.  
 

4.1  Process layout 

The plant is made up of 6 production lines that are similar in 
process flow layout but different in production capacities and 
the product family they produce. The production is a 
continuous flow process that runs 24 hours per day and 7 days 
per week, unless the line is down due to operational or 
technical reasons. A simplification of the process layout based 
on the key equipment is shown in Fig. 5. The process is based 
on free radical reaction, where the compressed gas (1200–
2000bars) is polymerized. The feed stock (gaseous form) is 
supplied at 40bars to the primary compressor, where it is 
compressed to 250bars. In the secondary compressor, the gas 
is compressed up to 1200-2000bars, which is the required 
pressure for polymerization in the reactor. The initiators 
trigger the polymerization reaction in the reactors, where the 
reactants are converted into solid product. Around 70% of the 
unconverted gas is separated from the product at the high 
pressure separator and the other 30% is removed at the low 
pressure separator. The unconverted gas is re-directed back to 
the process through the secondary and purge compressor and 
some coolers respectively. The polymer then undergoes the 
extrusion process after which the extruded material is cut into 
small pellets. The pellets are then transported through an air 
flow to the containers for shipment to the various customers. 
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Fig. 5: The simplification of process layout 

The quality and the property of the products are highly 
dependent on the molecular structure formed during 
polymerization. The molecular structure is also controlled by 
some modifiers, chemicals and additives that are added to 
enhance product performance and strengthen some properties 
for some product grades. The main setback for these 
modifiers and chemicals is that they are injected before the 
secondary compressor to avoid injection against very high 
pressure. (Injection of these chemicals to the reactor, where 
they are actually required, would demand a very high 
pressure pump). These chemical sometimes initiate 
polymerization in the compressor cylinders leading to high 
compressor failure. The risk of polymerization in the 
secondary compressor coupled with the critical working 
conditions, high pressure (1200-2000bar and high 
temperature (2500C), makes the secondary compressors the 



 

 

most critical equipment in the process. However, it is worth 
noting that all the equipment in the process is critical since a 
functional failure of any equipment will result in a process 
shutdown. The other factors affecting the manufacturing 
system performance and the corresponding interactions were 
studied and quantified. Then, performance modelling of the 
case was carried out. 

4.2  Data analysis 

The case study involved analysis of diverse data of plant 
performance. The data analysis involved the identification 
and analysis of factors that cause the process not to operate at 
full capacity. The historical data was used in performance 
analysis. The data collected and analyzed from both 
production and maintenance departments included: 

 Causes and quantification of production losses 
(outages) 

 Production output  
 OEE (overall equipment effectiveness) values 
 Maintenance data - PM & CM interventions  
 Failure data per equipment and per component 
 Root cause analysis data (for failures) 

Identification of the of lost manufacturing capacity was 
carried out within the OEE metric and involved losses due to 
process causes, mechanical reliability and quality failures 
which result into system slowdown and/or shutdowns. The 
initial data analysis was carried out in all the six production 
lines but more focus was given to line 3, due to special 
products grades it produces that have a higher impact on 
technical and production losses compared to other lines. 
Since line 3 is similar in design and capacity as both line 1 
and 2, performance comparison was done between the three 
lines. For each production line and product grade, the plant 
has set a production benchmark (based on the maximum 
production ever attained by the plant for seven days 
consecutively). Using the benchmark production output per 
hour (tons/hr), it is possible to calculate the production loss 
for any type of outage.  

Based on the loss analysis, mechanical availability, capacity 
availability and quality rate were calculated for each year. For 
example using the data for year 2005 (see Fig. 6 ), 6.4% of 
the total available time was lost due to mechanical downtime 
and 7.6% of time lost due to process related losses. From the 
total production output, 5.7% did not meet the quality 
requirements. Thus, the good quality production was 80.3% 
of the available capacity, which represents overall equipment 
effectiveness (OEE). The plant has set a target OEE of 90% - 
95% and thus line 3 has an improvement potential of 10% to 
15%.  

Good quality 
production
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Capacity Losses
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Mech.Reliability 
Losses
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Fig. 6: OEE analysis showing the % of Production losses and 

capacity realized 

To investigate the performance dynamics that lead to OEE, 
further analysis on the root cause of production losses was 
carried out. First, Pareto analysis was carried out on the 
different causes of downtime and their frequency of 
occurrence as shown in Fig. 7. For the total recorded 
downtime of 624 hours in 2005, 53% of the downtime was 
caused by mechanical oriented problems. Capacity losses 
were attributed to downtime during change-over and due to 
process oriented losses. From the analysis, 25% of downtime 
was attributed to change-over while process problems account 
for 22% of downtime. It is worth noting that change-over 
time may not be termed as a loss since it is a planned 
downtime as per the different products demand. Further, it 
offers the maintenance management a window of opportunity 
for preventive maintenance. Thus mechanical problems were 
found to be the highest contributor of manufacturing 
downtime. From the analysis of 51 recorded outages in 2005, 
process problems had the highest frequency with 47%, while 
mechanical problems caused 43% of the outages. 
Changeovers have the least frequency of 10% (around 5 per 
year) but high downtime per change-over. The quality rate is 
mostly influenced by the process operating condition. Quality 
defects are also produced during slowdown and start-ups, 
which occur when the process has to be stopped due to 
maintenance actions or change-over. For a shutdown to occur, 
the process needs 4 hours of depressurizing and during this 
period, quality defects are produced. 
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Change-Overs

Process Losses

Mechanical 
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Disruption Frequency & Downtime Analysis (2005)
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Fig. 7: Pareto analysis of the causes and frequency of downtime 

For mechanical failures, further analysis was carried out to 
determine the equipment responsible of the failures in the 
system. Using the 3 years failure data, failure rate and the 
subsequent downtime were analyzed per equipment as shown 
in Fig. 8. From the 3 years failure data, Pareto analysis was 



 

 

carried out for 61 failures and around 800 hrs of downtime. 
Analysis was done for the average failure rate per year and 
per equipment and the time to repair per equipment. For the 
time to repair (TTR) analysis, triangular distribution was 
assumed due to high standard deviation with the mean values. 
Thus for each TTR, the low, average and high TTR values 
were identified.  
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Fig. 8: Average failure rate and time to repair per equipment 

As shown in Fig. 8, the secondary compressor has the highest 
failure rate of 14 failures per year and takes an average of 18 
hours to repair. The primary compressor has a lower failure 
rate of 2.6 failures per year. The pelletizer has an average 
failure rate of 3.33 failures per year but takes the least TTR 
with an average of 6 hours. The reactors on the other hand 
have low failure rate of 2.6 failures/year but high average 
down time of 24 hours per repair. These initial findings 
illustrated that secondary compressor is the least reliable 
equipment in the system. This high failure rate was initially 
attributed to the severe working condition with pressure of 
2000 bar and temperature of 250oC.  

To gain some insights in the secondary compressor failure 
mode, life data analysis was carried out using Weibull 
distribution [29]. The point of interest was to establish 
whether it has increasing failure rate or random rate and its 
possible characteristic life. As shown in Fig. 9, the beta value 
was found to be 1.57. This is an indication of near random 
failures and may qualify for an exponentially distributed 
failure rate. Though the beta value is slightly higher than one, 
it does not tell much about the increasing failure rate with 
respect to the operating time. It also indicates that the failures 
are not instigated by the life of the components but originates 
from other sources such as the operating context. Thus, the 
mean compressor life of 44 days may not indicate the 
equipment characteristic life, but just the Weibull mean for 
time to failure. 
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Fig. 9: Life data analysis of secondary compressor 

Further, the failure rate of line 3 compressor was compared 
with the failure rate of the other compressors in the other 
lines. Much reliability interest was generated from the 
comparison between line 1, 2 and 3. These three lines are 
similar in design, manufacturer, capacity and age. Using a 
three year process disturbance data set, failures were sorted 
per compressor type and per line. As shown in Fig. 10, line 3 
has the highest compressor failure compared with the other 
lines. The difference in reliability and performance can purely 
be attributed to the operating context. Further discussion with 
the process and maintenance engineers revealed that lines 1, 
2 and 3 run different product grades, of which special grades 
are run in line 2 and 3. From a reliability and operability 
point of view, lines 2 and 3 are run outside their design 
operating envelopes due to the chemical composition of the 
products run. Line 3 operates outside the design operating 
envelope on a continuous basis, while line 2 operates outside 
the design operating envelope part of the time. Fit for service 
changes have been made over the last couple of years to 
improve their reliability. This includes changes of some 
components and piping from normal steel to stainless steel. In 
spite of these changes, the reliability differences between 
these lines (2 & 3) and line 1 are quite evident. For all lines 
however, the secondary compressor has the highest failures. 
This is attributed to higher vulnerability to gas leak due to 
high pressure (2000bars) and temp 250oC, which has an 
inherent reliability impact. The primary compressors are 
highly reliable in all the lines.  
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Fig. 10: Comparison of compressor failures for process lines in 

different operating context. 

Finally, the compressor components failure of line 1 (that 
runs normal products grade) were compared with line 3 (that 
runs special grades) as shown in Fig. 11. It was found that the 
cylinders in line 3 have four times failure rate over line 1. 
Consequently, the valves in line 3 have three times failure 
rate over line 1. Line 3 also has other components failures 
that are not experienced by line 1. This finding supports the 
Engineers’ opinion that the operating context is responsible 
of approximate 80% of the failures. Thus, many failures that 
may appear as mechanically oriented may have their origin 
from the operating practices. Since these failures are process 
oriented, they can hardly be linked to the maintenance 
strategy like preventive maintenance. For most parts, the 
equipment strategy is based on random failures, so the most 
effective equipment strategy is condition monitoring to 
prevent major equipment damage.  

The system performance analysis revealed important 
interactions between asset operation, asset maintenance and 
asset performance. However, no information was found on 
equipment’s deterioration, the duration it takes from the time 
a failure is identified to failure or effects of equipment 
deterioration of performance. The information on 
deterioration durations is an important input in condition 
based maintenance. Further, no information documented on 
the effects of maintenance on system reliability, failure rate or 
equipment performance after maintenance. This type of 
information can potentially support performance 
improvement analysis. 
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Fig. 11: Comparison of components failures of line 1 versus line 3 

5.0  System Performance Modelling  

From the analysis of factors affecting system performance, it 
was found that a complex interaction exists between process 
factors and technical factors, which influence system 
performance. Modelling the interactions and relationships 
between these factors is an important step in analysing the 
process dynamics that determines the production system 
performance (OEE and production output). The purpose of 
the model is to support predictive performance analysis, 
analysis of improvement alternatives, set improvement targets 
and benchmarks. 

5.1  Modelling approach 

The model was developed in ARENA program [30] and 
simulated a simplified process layout on the basis of the key 
equipments as shown in Fig. 5. The system is a continuous 
process that runs for 24 hours/day unless there is a stoppage 
due to operational or technical reasons. Around 20% of the 
gas is converted at the reactor and the un-reacted gas is fed 
back to primary and secondary compressor through the low 
pressure and high pressure separators respectively. To 
simulate the production system, the benchmark production 
capacity was used. However, the production capacity is not 
revealed in the text due to confidentiality. To simulate the 
process disturbances, different sets of sub-models were 
developed for each equipment failure mode and repair rate, 
the process losses and change-over. The input of these 
outages was generated from the extensive data analysis. As 
shown in Table 1, the failure rate and the mean time to 
failure were established for each equipment. The time to 
failure was assumed to be exponentially distributed with the 
given mean due to the observed randomness of failure arrival. 
For the time to repair (TTR), a triangular distribution was 
assumed due to high variability in the observed TTR over the 
mean TTR. This is in exception to coolers and extruder, 
where a uniform distribution was used due low failure rate 
and thus little data on repair time. Also, planned maintenance 
was found at an average rate of 3 times per year. The time to 
planned maintenance was assumed to be exponentially 
distributed with a mean of 120 days. The downtime was 
assumed to be triangular distributed due to high range. 

Table 1: The failure rate, downtime and process disturbance 
parameters used in simulation model. 



 

 

Equipment or 
Process

Av. Failure 
or Rate/yr

Uptime /TTF 
(days)

Downtime /TTR 
(hrs)

1 HP Compressor 15 Expo [30] Tri [14,18,24]

2 MP Compressor 2.66 Expo [90] Tria [12,16,20]

3 Coolers 0.33 Expo [1200] Unif [10-12]

4 Reactors 2.5 Expo[120] Tria [18,24,30]

5 Pelletizer 3.33 Expo[70] Tria [6,8,12]

6 Extruder 0.33 Expo[1200] Unif [16-20]

7 Change-over 5 Const[75] Tia [20,24,30]

8 Reaction losses 21 Expo [15] Tria [8,10,12]

9 Planned Maint. 3 Expo[120] Tria [12,16,24]

 

To summarize, the simulation model developed to analyze the 
performance of this chemical system consist of the following 
sub-models: 
 The production system sub-model mimicking the 

production process. The process is always working 
unless there is a failure, planned maintenance, process 
disturbance or change-over. 

 The failure arrival sub-model for each equipment in the 
system. Each failure seizes the respective equipment and 
causes an outage to the whole production system until it 
is repaired. 

 The planned maintenance sub-models that seizes the whole 
system during maintenance time. 

 The process loss sub-model, which also seizes the 
production system until it is corrected. 

 The change-over sub-model, which stops the system until a 
change-over is complete. 

 The performance measurement sub-model that computes 
all the parameters and indicators necessary for 
evaluation system performance. These parameter are 
used in the computation of OEE and production output. 

5.2  System Performance Analysis using Simulation 
Model 

With the developed simulation model, a set of experiments 
were carried out to study the effect of disturbances on system 
performance, the effect of reliability improvements of some 
equipment, the effect of maintainability improvement and 
coordination of maintenance and operations logistics. Due to 
low failure rate of some equipment, each simulation was run 
for a period of 5 years (24 hrs/day and 365 days/yr). For each 
scenario, 50 replications were made and performance 
measurement obtained in terms of mechanical availability, 
capacity availability, quality rate, OEE and production output. 
Fifty replications were found to give a big sample size that 
minimizes the half width at 95% confidence interval and 
hence the variability of the obtained results is minimised.  
The following experiments for performance analysis were 
conducted. 

5.2.1  Impact of disturbances on system performance 

In the ideal situation, the model is configured to run on 100% 
availability, quality rate and OEE, and at the rate production 
capacity. This was the initial test to verify whether the model 
was imitating the Line 3 production system. Using the 
parameters derived from the data analysis, experiments were 
carried out to investigate the impact of both mechanical and 
process related failures. As shown in Fig. 12, the process 
disturbances were plotted in a box plot to visualize the 
magnitude and variability caused by each type. The 
mechanical reliability losses have a higher capacity impact 
with lower variability while process losses have low capacity 
impact but causes higher variability in performance. This is 
attributed to the high frequency of occurrence of the reaction 
losses. In this system therefore, both mechanical and process 
causes have a highly significant impact on OEE and 
production output. 
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Fig. 12: Impact of disturbances on system performance 

5.2.2  Impact of compressors reliability improvement. 

From the failure data analysis, secondary compressors were 
found to be the least reliable equipment responsible of highest 
failures and downtime in the system. For maintenance and 
asset management, secondary compressor would be the 
obvious target for failure root cause analysis and reliability 
improvement. Among the possible alternatives for compressor 
reliability improvement is: control polymerization in cylinder 
injecting acids and catalysts directly in the reactor and more 
process temperature control; design improvement to fit the 
current operating practices (product range); replacement with 
a more reliable compressor model based on reliability 
knowledge of the best performing models.  

To plan for reliability improvement, it is important for 
management to know how much a certain percentage of an 
equipment reliability improvement would improve the whole 
system availability, OEE and production output. This is 
important information for decision support when performance 
targets are to be set or analysis of different improvement 
alternatives. With the use of the developed simulation model, 
experiments were carried out on the impact of both primary 
and secondary compressors reliability improvement on the 
whole system. As shown in Fig. 13, the secondary compressor 



 

 

reliability improvement has a higher opportunity for the 
whole system OEE improvement up to 200% mean time to 
failure (MTTF) improvement. A 200% MTTF improvement 
on secondary compressor has an opportunity of around 4% 
increment on OEE. These insights derived from the model 
gives potential incentive for performance improvement. 
When its MTTF is improved beyond 200%, the secondary 
compressor becomes more reliable than other equipment in 
the system. Therefore, the additional improvement does not 
have a visible impact on the system performance. Likewise, 
reliability improvement on primary compressor (see Fig. 13), 
has a very minimal impact on system performance. This 
confirms the intuition that improvement efforts should be 
focused more on the least reliable equipment. 
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Fig. 13: Simulation analysis of the impact of compressors reliability 

improvement. 

5.2.3  Impact of maintainability improvement 

Another option considered in OEE improvement is the 
reduction of down time during maintenance (MTTR), thus 
maintainability improvement. Among the alternatives 
considered for reduction of MTTR for secondary compressors 
are: reduction of diagnostic time through equipment 
condition monitoring and ready spare parts, tools and labour 
having complete repair modules for replacing the failed 
modules and repair them while the operation continues; 
implementation of redundant equipment. For compressors, it 
is almost impossible to have redundant standby equipment 
due to the cost involved. Repair modules and condition 
monitoring have been implemented in some lines with 
successful results. The use of repair modules has been 
implemented for some equipment like the pelletizer repairs 
causing significant reduction in downtime. Availability of 
ready tools and spares is another feasible alternative with a 
potential of downtime reduction for all equipment failures.  

Among the experiments conducted with simulation model is 
to quantify effects of MTTR reduction of the secondary 
compressors and whole system on OEE. As shown in Fig. 14, 
reduction of secondary compressor MTTR from Exp 18 hrs to 
Exp 6 hrs (67% MTTR reduction) has a potential gain of 2% 
OEE. Comparing this to reliability improvement (Fig. 13), 
this is equivalent to 50% improvement on MTTF. This 

predictive performance information can potentially support 
management in cost and benefit analysis of the different 
alternatives. Improvement of whole system MTTR, though 
not considered based on cost, has higher potential of OEE 
improvement. The ready tools and labour alternative have a 
potential of 30% TTR reduction and around 2% OEE 
improvement. During system maintenance (especially 
compressors and reactors), around 4hours are needed to de-
compressurize the system for safety reasons. Therefore it is 
not possible to reduce TTR beyond 6 hours. 
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Fig. 14: Simulation analysis of the impact of maintainability 

improvement 

5.2.3  Analysis of Potential Performance Improvement 

alternatives 

From the analysis of the possible improvement scenarios, 
three feasible improvement alternatives were considered for 
further analysis. They demonstrate the use of the developed 
predictive performance analysis in decision support. These 
scenarios are: 

 Acid pump installation – This improvement 
alternative was meant to prevent polymerization in 
the cylinders and valves. Polymerization in the 
compressor is attributed to injection of some acids 
and catalyst before the secondary compressor instead 
of injection in the reactor where they are actually 
required. With the installation of this pump, the line 
3 compressor is expected to be as reliable as line 1 
compressor. Thus, a possible 300% reliability 
improvement. The approximate maintenance cost for 
a cylinder replacement is $20,000 while the pump 
procurement and installation cost is $3 million 
(Plant Engineer’s estimate). With the developed 
model, simulation was carried out on potential 
performance impact on the whole system (see Table 
2). 

 Redesigning Oil piping –Another reason that creates 
favourable condition for polymerization in the 
secondary compressor is inadequate temperature 
control. From the discussion with plant engineers, 
the reason why polymerization is higher in line 3 



 

 

compared to line 2 (which sometimes runs the same 
special grades) is higher lubricating oil level in the 
cylinders. This is due to piping layout of the 
lubricant that allows oil to settle in the cylinder. This 
higher oil level is believed to retain much heat that 
facilitates polymerization. The re-piping of the 
lubricant line costs approximately $300,000 and has 
potential to improve compressor reliability as line 2 
(approximately 50% reliability improvement). 
Likewise, simulation analysis showed the possible 
impact on performance improvement (see Table 2). 

 Tool box option – This option is aimed at reducing 
the time to repair (TTR) by ensuring that all the 
required tools and materials are in the plant to ready 
to use in case of a failure. Currently, some special 
tools are only available in workshop and time is lost 
travelling to the workshop during repair. The 
approximate cost of tool box option is $10,000 with a 
potential saving of 3hrs of repair time. The possible 
OEE and production improvement is shown in Table 
2. 

Table 2: Details of the improvements alternatives. 

Improve.
Alternative

Invest. 
cost ($)

Failure
Reduction  
/yr

Maint. 
Cost / 
Failure 
($)

Maint. 
Cost
Savings 
($) /yr

OEE 
Increase
Per Yr 
(%)

Output 
Increase 
(units)

1 Acid Pump
Installation

3 M 10 20,000 200,000 4.2 1000

2 Redesign  
Oil Piping

0.3M 6 20,000 120,000 2.1 500

3 Tool Box
Option

10,000 TTR saving 
/ failure -
3hrs

- - 2 480

 

Net present value (NPV) analysis [31, 32] was used to 
evaluate the economic potential and merit of the three 
improvement alternatives. The yearly cash flow (CF) was 
calculated as the sum of the yearly maintenance cost savings 
(from avoided failures) and incremental contribution from 
additional production output. The incremental contribution is 
calculated as the product of variable margin and production 
output increase. The contribution margin per ton was varied 
from $100 to $1000 to accommodate different products 
grades and due to confidentiality of cost information. For 
analysis purposes, it is assumed that price and the variable 
margin do not change in the projected duration. This may not 
be true in reality. The interest rate (i) was approximated as 
8% (based on the banks rates of around 4% and additional 
risk factor of 4 %). The NPV was calculated (see equation 
below) for a time period (t) of 10 years and 20 years and 
results analyzed as shown in Fig. 15. 
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Fig. 15: Investment analysis of the different improvement 

alternatives 

From investment analysis, we find that pump option has the 
least attractive NPV for lower contribution margin. This can 
be attributed to the high investment cost involved in pump 
installation. For higher contribution margin and longer time 
interval (t), the pump option has the most attractive NPV. 
However, the analysis does not include the reliability of the 
pump. If the pump would turn out to have a low reliability 
(owing to the high operating pressure-over 2500 bar), the 
additional OEE and production improvement cannot be 
realized and thus the NPV of this investment would be much 
lower than the given figures. Otherwise, a backup redundant 
pump needs to be installed. The ‘redesigning of oil piping’ 
alternative has the best NPV values for lower contribution 
margin and within shorter time interval. This is due to its 
potential in maintenance savings due to reliability 
improvement and thus additional production capacity. 
However, though the reduction of oil level in the compressor 
cylinders may help control temperature and prevent 
polymerization, other problems like wear and tear may be 
more prominent in the cylinders. Thus effective control of 
lubrication is important. The tool box alternative has the least 
attractive NPV for higher time interval and contribution 
margin. However, it is cheaper and easier to implement 
unlike the other alternatives where shutdown is required. It is 
also possible to implement this alternative in combination 
with other reliability improvement programs and realize 
significant overall system improvement. The tool box option 
also demonstrates the potential of the ‘small’ improvement 
initiatives and efforts, which eventually drives overall system 
continuous improvement. Finally, since the success of the 
proposed changes is based on the future outcome that is 
usually probabilistic, it is important to consider the 
probability of success of the three improvement alternatives. 
The probabilities may be subjective (based on previous 



 

 

experience or intuition) or objective (based on data from a 
similar improvement initiative). 

6.0  Conclusion 

The industrial case study illustrated the need for identifying 
the most important factors in a production system and 
determining the limited set of variables to model a specific 
situation. Further, the case study demonstrated clearly how 
manufacturing performance is influenced by the interactions 
between operating practices (production) and maintenance 
practices. For example, it was found that different products 
have different impact on manufacturing assets in terms of 
reliability (and failure rate) and assets effectiveness. 
Understanding such important interactions and integrating 
them in performance modelling was shown to be important in 
performance knowledge development. It was found that both 
production and maintenance department keep separate 
databases that pertain to their specific interest of asset 
performance. Rarely had the different databases been 
simultaneously analyzed previously to get an integrated view 
of system performance. This study was the first attempt to 
combine the separate datasets, analyze the various factors 
affecting system performance, represent their interactions in a 
simulation model and show their integrated effect on system 
performance. With the developed simulation model, it was 
possible to demonstrate the effect of a change of one or more 
variables (for example the reliability of particular equipment 
in the system) to the whole system’s performance. According 
to the company management, the model enables them to link 
equipment strategy to overall system’s performance 
(reliability, availability, OEE and production output) and 
provide undisputed incentives for efforts or investments in 
performance improvement.  

However, there are some challenges expected while 
implementing the performance modelling approach. Its 
success is dependent on availability of plant performance data 
that is accurate and well updated. This data base should 
encapsulate clear description of all events, when they occur, 
root cause, their duration, action taken among other factors. 
However, data collection and recording is a major challenge 
in many companies. In many cases, there is little or no data 
on manufacturing system performance. For development of 
the model, the main challenge is to analyze and simulate the 
relationship between the various factors affecting 
performance. While some factors, like failure, are easy to 
present in the model, other factors are more difficult to 
establish the relationships. For example the process 
conversion rate is affected by the atmospheric temperature 
and other conditions in the reaction, which are difficult to 
simulate. Also, data analysis indicates a relationship between 
operating practices and equipment failure process and 
reliability, which is challenging to simulate. The system 
quality rate is also affected by various technical and process 
factors that may be complex to model. In these cases, some 
assumptions are made on the system behaviour in the model 
to facilitate predictive performance analysis. 

Finally, some key information on equipment condition and 
maintenance effect is rarely recorded, which would be of 
much value in asset performance modelling and decision 
support. This information is related to deterioration time 
interval from the commencement of failure mode to the actual 
failure and its effect on system performance. This information 
can potentially be used to model the effect of failure mode on 
system performance (e.g. quality rate and production rate). 
Also, the success of condition-based maintenance is 
dependent on the duration when the failure mode can be 
observed and monitored. This information can support the 
modelling of optimal condition monitoring interval. While 
maintenance is believed to renew the system condition, 
prevent failure occurrence, enhance performance and prolong 
system’s life, no information is available on the effect of 
maintenance on the system. The knowledge of maintenance 
effect on the system in the model can further support 
performance optimization by determining the optimal 
maintenance efforts and interval.  
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