
Numerical and Parametric Investigation on the
Dynamic Response of a Planar Multi-body System
with Differently Located Revolute Clearance Joints

Onesmus Muvengei, John Kihiu and Bernard Ikua

Abstract—As a step towards the investigation of dynamic in-
teraction of revolute clearance joints in a multi-body mechanical
system, this paper numerically investigates the parametric effects of
differently located revolute clearance joints without friction on the
overall dynamic characteristics of a multi-body system. A typical
planar slider-crank mechanism is used as a demonstration case in
which the parametric effects of a revolute clearance joint between
the crank and connecting rod, and between the connecting rod and
slider are separately investigated with comprehensive observations
numerically presented. The selected parameters are the clearance size
and the input crank speed. It is observed that, different joints in a
multi-body system have different sensitivities to the clearance size,
and changing the driving speed of a mechanism makes the behavior of
the mechanism to change from either periodic to chaotic, or chaotic
to periodic depending on which joint has clearance. Therefore the
dynamic behavior of one clearance revolute joint cannot be used as
a general case for a mechanical system. Also the location of the
clearance revolute joint, the clearance size and the operating speed
of a mechanical system, play a crucial role in predicting accurately
the dynamic responses of the system.

Keywords—Chaotic behavior, Contact-impact forces, Dynamic re-
sponse, Multi-body mechanical system, Periodic behavior, Poincaré
maps, Quasi-periodic behavior, Revolute clearance joint

I. INTRODUCTION

THE dynamic modeling of multi-body systems is a key
aid in the analysis, design, optimization, control, and

simulation of mechanisms and manipulators. However, clear-
ance, friction, impact and other phenomena associated with
real joints have been routinely ignored in order to simplify
the dynamic model. The increasing requirement for high-speed
and precise machines, mechanisms and manipulators demands
that the kinematic joints be treated in a realistic way. This is
because in a real mechanical joint, a clearance which permits
the relative motion between the connected bodies as well as
the components assemblage, is always present. The clearance
no matter how small it is, can lead to vibration and fatigue
phenomena, premature failure and lack of precision or even
random overall behavior.

There is a significant amount of literature available which
discuses theoretical and experimental analysis of imperfect
kinematic joints in a variety of planar and spatial mechan-
ical systems with rigid or flexible links [1]–[37]. Many of
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these works focus on the planar systems in which only one
kinematic joint is modeled as an imperfect joint [1], [2], [4]–
[13], [15]–[18], [20]–[23], [26], [27], [30]–[35]. Although, the
results from such experimental and analytical models have
been shown to provide important insights on the behavior
of mechanical systems with imperfect joints, the models do
not allow for study of the interactions of multiple kinematic
imperfect joints. Furthermore a real mechanical system does
not have only one real joint, but practically all joints are
real. This led several researchers such as Flores (2004) [38]
and Cheriyan (2006) [39] to strongly recommend for their
work to be extended to include multi-body mechanical systems
with multiple imperfect joints, and with a variety of joints
such as prismatic and universal joints. Few recent papers by
Erkaya and Uzmay (2009-2010) [19], [25], and by Flores
(2010) [36] have considered the nonlinear dynamic analysis
of multi-body systems with two imperfect joints. However in
these research papers, only mechanisms with rigid links have
been considered and the interaction effects of the imperfect
joints on the overall response of a multi-body system were
not investigated. Also, Erkaya and Uzmay (2009-2010) [19],
[25] modeled the clearance in the journal bearing as a massless
imaginary link whose length is equal to the clearance size. This
assumption is not valid especially at large clearances because
the journal and bearing will not be in contact at all times.

The primary objective of this research work therefore is
to numerically quantify the influence of the main parameters
on the dynamic characteristics of a rigid-planar multi-body
mechanical system with differently located revolute clearance
joints without friction. The selected parameters are the clear-
ance size and the input crank speed. This work will provide
inherent information which can be of great use in the analysis
of multi-body systems with clearance joints especially as it re-
gards to the effective design and control tasks of these systems.
This study will also form a base towards the investigation of
dynamic interaction of multiple revolute clearance joints in a
multi-body mechanical system.

II. EQUATIONS OF MOTION OF MULTI-BODY SYSTEMS

In order to analyze the dynamic response of a multi-body
system whether with ideal or real joints, it is first necessary
to formulate the equations of motion that govern its behavior.
The process of formulating the equations which govern the
behavior of the system is called modeling the system, while
the process of numerically solving the generated equations of



motion in order to analyze the system’s response is termed as
simulation.

In computational kinematic and dynamic analysis of multi-
body mechanical systems, a set of algebraic kinematic con-
straint equations which describe the joint connectivity between
the bodies of the multi-body system are used. These kinematic
constraint equations can be presented in terms of appropriate
system of coordinates which allow one to clearly define at all
times the position, velocity and acceleration of all bodies of
the mechanical system.

The kinematic constraints considered in this work are
assumed to be holonomic (geometric constraints), that is,
constraints which are expressed as functions of the coordinates
and, possibly, time. If the time does not appear explicitly in
a constraint equation, then the system is said to be sclero-
nomic. A simple example of scleronomic constraint equations
is the revolute joint between any two bodies in a four-bar
mechanism. Otherwise, when the constraint is holonomic and
time appears explicitly, the system is said to be rheologic. A
simple example of rheologic constraint equation is the driving
constraint in kinematically driven mechanism.

The methodology adopted in this work to derive the dy-
namic equations of multi-body systems follows closely that
of Nikravesh (1988) [40], in which the generalized Cartesian
coordinates and the Newton-Euler’s approach are utilized. In
addition, the Baumgarte stabilization technique [41] is used
to control the position and velocity violations during direct
integration of the equations of motion. The methodology
presented is implemented in a MATLAB code, which is
capable of automatically generating and solving the equations
of motion for the multi-body systems.

Computational kinematic analysis of a multi-body system
is performed by solving the set of equations 2, 4 and 6 for q,
q̇ and q̈ respectively. This formulation can be implemented on
a computer code, and made available for kinematic analysis
of a large class of multi-body mechanical systems.

Position Analysis: The constraint equations vector can be
written as,

C(q, t)=
[
C1(q, t) C2(q, t)........Cn(q, t)

]T
= 0 (1)

This equation contains n nonlinear scalar equations which
can be solved for the n unknown generalized coordinates given
in a vector form as,

q =
[
q1 q2 q3 ...........qn

]T
Newton-Raphson iteration procedure was used in this work to
solve this set of nonlinear algebraic equations. This algorithm
involves linearizing the set of nonlinear equations of kinematic
constraints to get the first order approximation of equation
C(q, t) = 0 as,

Cqi
∆qi = −C(qi, t) (2)

where,

(a) Cqi is the Jacobian matrix at iteration point i, given as,

Cqi =



∂C1
∂q1

∂C1
∂q2

∂C1
∂q3

...... ∂C1
∂qn

∂C2
∂q1

∂C2
∂q2
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...... ∂C2
∂qn

∂C3
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. . . .
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...... ∂Cn

∂qn


(3)

For kinematically driven system, the Jacobian matrix is
a square non-singular matrix.

(b) ∆qi is the vector of Newton differences at iteration point
i

(c) C(qi, t) is the vector of constraint equations at iteration
point i.

Velocity Analysis: This involves solving linear equation 4
for q̇

Cq q̇ = −Ct (4)

where Cq is the constraint Jacobian matrix given by equation
3 and Ct is the vector of partial derivatives of the constraint
equations with respect to time, which is given as,

Ct =
[
∂C1
dt

∂C2
dt

∂C3
dt ........

∂Cn

dt

]T
(5)

Acceleration Analysis: This involves solving linear equation
6 for q̈

Cq q̈ = −(Cq q̇)q q̇ − 2Cqtq̇ − Ctt (6)

where
(a) Cqt is the time derivative of the Jacobian matrix given

as,

Cqt=
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(7)

(b) Ctt is the vector of second partial derivatives of the
constraint equations with respect to time, which is given
as,

Ctt =
[
∂2C1
dt2

∂2C2
dt2

∂2C3
dt2 ........

∂2Cn

dt2

]T
(8)

The computational scheme for the kinematic analysis of
mechanical systems which consist of interconnected rigid
bodies is as shown in Figure 1.
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Fig. 1. Flowchart of computational procedure for kinematic analysis of a
multi-body system

Computationally, the dynamic analysis of a multi-body
mechanical system involves solving equation 9 numerically
for q̈ and λ [42]. Then, in each integration time step, the
accelerations vector, q̈, together with velocities vector, q̇ are
integrated in order to obtain the system velocities and positions
for the next time step. This procedure is repeated until the final
analysis time is reached.(

M CTq
Cq 0

)(
q̈
λ

)
=
(

Qe
−(Cq q̇)q q̇ − 2Cqtq̇ − Ctt

)
(9)

M is the mass matrix of the system, q̈ is the vector of the
system acceleration, Qe is a vector containing the external
forces which are known and λ is a vector containing Lagrange
multipliers. The code developed in this work was able to derive
automatically the overall matrices M , Qe, Qd (the right hand
side of the acceleration equation 6), solve equation 9 for q̈ and
λ, and finally integrate the vector for velocity and acceleration
to get the system positions and velocities for the next time step.

The system of the motion equations shown in equation 9
does not use explicitly the position and velocity equations
associated with the kinematic constraints, that is, equations 1
and 4. This implies that during simulation, chances are that the
original constraint equations will be violated. Due to simplicity
and easiness of computational implementation, the Baumgarte
Stabilization Method (BSM) was employed in this work to
control the position and velocity constraint violations brought
about by direct integration of equation 9.

The principle behind BSM is to damp out the acceleration
constraint violations by feeding back the violations of the

position and velocity constraints. Thus, by using the Baum-
garte’s approach, the equations of motion for a dynamic system
subjected to holonomic constraints are represented as,(

M CTq
Cq 0

)(
q̈
λ

)
=
(

Qe
Qd − 2αĊ − β2C

)
(10)

where α and β are termed as feedback parameters which
should be arbitrarily chosen.

In this work, Direct Integration Method (DIM) which in-
volves conversion of the n second-order differential equations
of motion into 2n first-order differential equations was em-
ployed. In DIM, once the second-order differential equations
are converted to first-order differential equations, an integra-
tion numerical scheme is employed to solve the initial-value
problem.

To convert the n second-order differential equations of
motion into 2n first-order differential equations arrays y and
ẏ were defined as,

y =
(
q
q̇

)
ẏ =

(
q̇
q̈

)
The reason for introducing the new vectors y and ẏ is that
most numerical integration algorithms deal with first-order
differential equations. The numerical integration is such that
velocities and accelerations at time t, after integration process,
yield positions and velocities at next time step, t = t+ ∆t.

The computational scheme for the dynamic analysis of
mechanical systems which consist of interconnected rigid
bodies is as shown in Figure 2.
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Fig. 2. Flowchart of computational procedure for dynamic analysis of a
multi-body system



III. MODELING OF REVOLUTE JOINTS WITH CLEARANCE

A revolute joint can be described as an assembly of a journal
and a bearing in which the journal is free to rotate inside
the bearing. In the classical analysis of a revolute joint, the
journal and bearing centers are considered always to coincide
throughout the motion, that is, the joint is considered ideal
or perfect. But in reality, there must be a clearance between
the bearing and the journal to permit for the relative motion
and the assemblage. The inclusion of the clearance allows for
the separation of these centers since the bearing can translate
inside the bearing, and hence two degrees of freedom are
added to the system by a clearance revolute joint.

A clearance revolute joint does not impose any kinematic
constraint on the system since the journal is free to translate
inside the bearing. This implies that two kinematic constraints
are removed from the system by the revolute clearance joint
and two degrees of freedom are added to the system instead.
However, the journal is limited to stay inside the bearing walls.
In dry contact situations (without lubrication), the journal can
move freely within the bearing until contact between the two
bodies takes place. When the journal impacts the bearing
wall, a normal contact force together with a friction force are
evaluated to obtain the dynamics of the real revolute joint.
Hence the dynamics of a revolute clearance joint is controlled
by the impact-contact forces rather than by the kinematic
constraints of the ideal joints.

Since a revolute clearance joint removes two kinematic
constraints from the system, the resulting Jacobian Matrix is
not square because the total number of coordinate systems will
be greater than the total number of the kinematic constraints.
For instance, a slider-crank mechanism has four bodies in-
cluding the ground, each defined with three absolute cartesian
coordinates. Hence the total number of coordinates of the
mechanism are 4× 3 = 12. When one joint is considered as a
clearance joint, then the kinematic constraints are as follows:
Constraints due to the fixed link are 1 × 3 = 3; constraints
due to the two ideal revolute joints are 2× 2 = 4; constraints
due to the one ideal prismatic joint are 1 × 2 = 2; and one
(1) driving constraint. Therefore a slider-crank mechanism
with one clearance revolute joint has 3 + 4 + 2 + 1 = 10
kinematic constraints, implying that the Jacobian Matrix will
be a 10×12 matrix. This implies that kinematic analysis cannot
be performed on a multi-body system with revolute clearance
joint(s), and dynamic analysis will be necessary to solve for
the accelerations which can be integrated to get the velocity
and position of all bodies and points on the system.

It has been observed that the motion of the journal inside
the bearing is in three modes, that is, continuous contact mode,
the free-flight mode and the impact mode. In the continuous
contact mode, the journal follows the bearing walls and this
mode is ended when the journal and bearing separate from
each other. In free flight mode, the journal moves freely inside
the bearing hence no reaction force is developed at the joint.
In the impact mode which occurs at the termination of the
free-flight mode, impact forces are applied and removed in
the system, and this mode is characterized by discontinuities
in the kinematic and dynamic characteristics of the system.

In this work, elements making the clearance revolute joint
are modeled as colliding bodies, and the impact between the
bodies is treated as a continuous event, that is, the local
deformations and the contact forces are continuous functions
of time [43]. The impact analysis of the system will be
performed by including the contact impact forces during the
impact period into the equations of motion as externally
applied forces and moments.

A. Kinematic Model of a Revolute Joint with Clearance

In order to simulate a real revolute joint, its necessary to
develop a mathematical model for the joint in the multi-body
system. Figure 3 shows two bodies i and j connected with
a revolute joint with clearance. Part of body i is the bearing
while part of body j is the journal. XiYi and XjYj are the
body coordinate systems, while XY is the stationary global
coordinate system. Pi is the center of the bearing and Pj is
the center of the journal at the given instant.

Fig. 3. Generic revolute joint with clearance

The eccentricity vector ~e which connects the centers of the
bearing and the journal is given as,

~e = rPj − rPi
=
(
Rj +AjuPj

)
−
(
Ri +AiuPi

)
(11)

where Ai and Aj are the transformation matrices of coordi-
nates XiYi and XjYj respectively to coordinate XY , and uPi
and uPj are the coordinates of centers of bodies i and j with
respect to their coordinate systems.

The magnitude of the eccentricity vector is,

e =
√
~eT~e (12)

The penetration depth due to the impact between the journal
and the bearing can be shown to be,

δ = e− c (13)

where c is the radial clearance at the joint which is the
difference between the radius of the bearing (RB) and the
radius of the journal (RJ).

The contact points on bodies i and j during penetration are
Ci and Cj respectively as shown in Figure 4.



Fig. 4. Penetration depth due to impact between the bearing and the journal

The position of the contact points are given as,

rCi = Ri +AiuPi +RB~n (14)
rCj = Rj +AjuPj +RJ~n (15)

where ~n is the unit vector in the direction of penetration
caused by the impact between the journal and the bearing,
given as,

~n =
~e

e
(16)

The velocity of the contact points in the global coordinate
system is found ny differentiating equations 14 and 15 with
respect to time to get,

ṙCi = Ṙi + ȦiuPi +RB~̇n (17)
ṙCj = Ṙj + ȦjuPj +RJ ~̇n (18)

The components of the relative velocity of the contact points
in the normal and tangential plane of collision are represented
as ~vN and ~vT , and are given as,

~vN =
(
ṙCj − ṙCi

)
~n (19)

~vT =
(
ṙCj − ṙCi

)
~t (20)

where ~t is obtained by rotating ~n anticlockwise by 900.

B. Dynamic Model of a Revolute Joint with Clearance

When the journal makes contact with the bearing, then
impacts occur and contact-impact forces are created at the
joint. Closer inspection of equation 13 shows that;
• When the journal is not in contact with the bearing, e < c

and the penetration has a negative value. In this case, the
journal is in free-flight motion inside the bearing, and no
impact-contact forces are created.

• When contact between the journal and the bearing is
established, the penetration has a value equal or greater
than zero. In this case, impact-contact forces at the joint
are established.

Therefore the computational algorithm developed for dynamic
analysis of a system with revolute clearance joint should
ensure that impact-contact forces are applied when the depth
of penetration is greater or equal to zero.

Since there are velocity components in the normal and
tangential directions of the collision between the journal and
the bearings as given in equations 19 and 20, then forces are
generated in these two directions. The force normal to the
direction of collision (FN ) can be evaluated using the contact
force laws, such as Hertz, Lankarani-Nikravesh, Dubowsky-
Freudenstein or ESDU-78035 contact models, while the force
tangential to the direction of collision (FT ) which is the
frictional force is evaluated using the appropriate frictional
laws.

In this paper, its assumed that no frictional forces are
generated during the collision of the bearing and the journal,
however friction will be included in further work. Since the
direction of the normal unit vector ~n is used as the working
direction for the contact forces, then the contact forces at
bodies i is;

FNi = FN~n (21)

From the Newton’s third law of motion, the contact reaction
force at body j will be,

FNj = −FNi (22)

These forces which act at the contact points are transferred
to the center of masses of bodies i and j as shown in Figure
5. This transfer of forces from contact forces to the center of
masses contributes to the moments given as,

Mi =
(
xCi − xi

)
FNiY −

(
yCi − yi

)
FNiX (23)

Mj =
(
xCi − xi

)
FNjY −

(
yCi − yi

)
FNjX (24)

Fig. 5. Transfer of impact forces to the center of masses of the bodies

Once these forces and moments are known and added to
the generalized vector of external forces Qe in equation 10,
then the description of the revolute joint with clearance is
complete. No kinematic constraint was used when modeling
the real joint, instead force constraints have been used.

C. Contact Force Laws

Once the journal makes contact with the bearing, forces
normal to the direction of contact are created. In this work



the nonlinear continuous contact force models between two
colliding bodies will be used since they represent the physical
nature of the contacting surfaces. These contact force modes
include; Hertz, Lankarani-Nikravesh, Dubowsky-Freudenstein
and ESDU-78035 contact force models.

The Hertz law of contact relates the contact force as a
nonlinear power function of the penetration depth as,

FN = Kδn (25)

where FN is the normal contact force, δ is the penetration
depth of the contacting bodies given in equation 13, exponent
n = 1.5 for metallic surfaces and the generalized stiffness K
which depends on the material properties and the shape of the
contacting surfaces is given as;

K =
4

3(σ1 + σ2)

[ R1R2

R1 +R2

] 1
2

(26)

where;
R1 and R2 are the radii of the spheres (the radius is
negative for concave surfaces and positive for convex
surfaces)
σ1 and σ2 are the material parameters given by;

σi =
1− ν2

i

Ei
for i = 1, 2

where Ei and νi are the Young’s Modulus and Poisson’s
ratio associated with each sphere.

Unfortunately, the Hertz Law as given in equation 25
does not account for energy dissipation during the impact
process and hence cannot be used in both phases of contact
(compression and restitution). Lankarani and Nikravesh [44]
extended the Hertz contact force model to include a hysteresis
damping function to represent the energy dissipated during the
impact. The authors separated the normal contact force given
in equation 25 into elastic and dissipative components as;

FN = Kδn +Dδ̇ (27)

where δ̇ is the relative impact velocity given in equation 19,
and D is the hysteresis coefficient given as;

D =
[3K(1− c2e)

4δ̇(−)

]
δn (28)

where δ̇(−) is the initial impact velocity. Therefore the final
normal contact force can be expressed as;

FN = Kδn
[
1 +

3(1− c2e)δ̇
4δ̇(−)

]
(29)

Equation 29 is only valid for impact velocities lower than the
propagation velocity of elastic waves across the bodies, i.e.,
δ̇ ≤ 10−5

√
E
ρ where E is the Young’s modulus and ρ is the

material mass density [45].
The contact models given by equations 25 and 29 are

applicable for colliding bodies with spherical contact areas.
Various elastic models have been put forward for the cylin-
drical contact surfaces, with the commonly used ones being
the Dubowsky and Fruedenstein model and the ESDU-78035
model, both of which are given as equations 30 and 31
respectively;

δ = FN

(σ1 + σ2

L

)[
ln
( L3(R1 −R2)
FNR1R2(σ1 − σ2)

)
+ 1
]

(30)

and

δ = FN

(σ1 + σ2

L

)[
ln
(4L(R1 −R2)
FN (σ1 + σ2)

)
+ 1
]

(31)

where L is the length of the cylinder. Equations 30 and 31 are
nonlinear function for FN and require an iterative scheme,
such as Newton-Raphson method to solve for the normal
contact force FN for a known penetration depth δ. Also, these
models do not account for energy dissipation during the impact
process.

IV. RESULTS AND DISCUSSIONS

This section contains extensive results obtained from com-
putational simulations of a slider-crank mechanism with a
revolute clearance joint. Two major cases are considered, that
is;

(a) Case 1: When revolute clearance joint only exist be-
tween the crank and the connecting rod.

(b) Case 2: When revolute clearance joint only exist be-
tween the connecting rod and the slider.

This study takes into account three main functional parameters
of the slider-crank mechanism, that is, the location of the
considered clearance joint, clearance size and the input crank
speed.

A. Description of the Slider-Crank Mechanism

A typical slider-crank mechanism as shown in Figure 6 is
used as a demonstrative example to study the parametric effect
of revolute joint clearance on the dynamic response of a multi-
body mechanical system.

Fig. 6.

The slider-crank mechanism considered has the following
parameters: Length of crank LOA = 0.05m, length of the
coupler link LAB = 0.12m, mass of the crank m2 = 0.3kg,
mass of the coupler m3 = 0.21kg, mass of the slider
m4 = 0.14kg, moment of inertia of crank about its center of
gravity, I2 = 0.00001kg.m2 and moment of inertia of coupler
about its center of gravity, I2 = 0.00025kg.m2. In addition all
the links are assumed to be uniform such that their centers of
gravity are at their geometric centers. The following are other
parameters used for the different contact models: Nominal
bearing diameter d=10mm, Length of the cylindrical contact
between the journal and the bearing L=20mm, Coefficient of



restitution Ce=0.9, Young’s modulus E=207MPa, Poisson’s
ratio ν=0.3 and integration time step ∆t=0.000001s

In the simulations, the initial configuration of the mech-
anism is defined when the crank and the connecting rod
are collinear, and the journal and the bearing centers of the
considered clearance revolute joint to coincide. The initial po-
sitions and velocities necessary to start the dynamic simulation
are obtained from kinematic simulation of the slider-crank
mechanism in which all the joints are considered perfect.

The dynamic response of the slider-crank mechanism is
presented by plotting the variations with time of the slider
velocity, slider acceleration, reaction force at the clearance
joint and torque required to maintain constant speed of the
crank. The results are presented for four cycles of the mech-
anism after the first cycle when steady state is reached. The
first cycle has instability due to the fact that the mechanism is
moved from rest and because of the inertia, great impact occurs
between the journal and the bearing of the revolute joint at the
start of the simulation. The behavior of the revolute clearance
joints is also illustrated by using the slider velocity and the
slider acceleration to plot the Poincaré maps at different test
scenarios.

B. Results for Different Contact Force Models
In this subsection, the dynamic responses of the slider-crank

mechanism when joint A is separately modeled with 0.3mm
clearance, and also when joint B is separately modeled with
0.3mm clearance using the four commonly known nonlinear
contact laws.
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Fig. 7. Slider linear velocity and acceleration responses when revolute joint
A is modeled with a 0.3mm clearance using (a) Hertz contact force law (b)
Dubowsky-Freudensteins contact force law (c) ESDU-78035 contact force law
and (d) Lankarani-Nikravesh contact force law
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Fig. 8. Driving torque responses when revolute joint A is modeled
with a 0.3mm clearance using (a) Hertz contact force law (b) Dubowsky-
Freudensteins contact force law (c) ESDU-78035 contact force law and (d)
Lankarani-Nikravesh contact force law
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Fig. 9. Slider linear velocity and acceleration responses when revolute joint
B is modeled with a 0.3mm clearance using (a) Hertz contact force law (b)
Dubowsky-Freudensteins contact force law (c) ESDU-78035 contact force law
and (d) Lankarani-Nikravesh contact force law
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Fig. 10. Driving torque responses when revolute joint B is modeled
with a 0.3mm clearance using (a) Hertz contact force law (b) Dubowsky-
Freudensteins contact force law (c) ESDU-78035 contact force law and (d)
Lankarani-Nikravesh contact force law

The influence of the joint clearance is clearly observed at
the stair-case shaped velocity curves. The horizontal lines in
the velocity curves indicate that the journal is in free-flight
motion inside the bearing, and the slider moves with a constant
velocity. Sudden changes in velocity of the slider is due to
impacts between the journal and the bearing. These impacts
are also visible in the acceleration curves by high peak values.
Also smooth changes in velocity are observed implying that
the journal and the bearing are in continuous contact motion,
that is, the journal follows the bearing wall. This situation is
confirmed by the smooth changes in the acceleration curve.

The elastic contact models, that is, Hertz, Dubowsky-
Freudensteins and ESDU-78035 contact models, which do
not account for energy dissipation lead to high peaks for the
slider acceleration and the torque required to drive the crank
with a constant angular velocity. The continuous contact force
model proposed by Lankarani and Nikravesh presents much
lower slider acceleration and crank torque peaks, due to the
dissipative energy features of the model. Such energy dissipa-
tion is also reflected at the slider velocity and acceleration
curves by the long periods of time for which the journal
and bearing are in continuous contact mode. There is no
much difference between the three nonlinear elastic contact
laws. This implies that the two cylindrical contact models
(that is, Dubowsky-Freudensteins and ESDU-78035 contact
models) do not present any advantage compared to the elastic
spherical contact model (that is, the Hertz contact model).
However, the cylindrical models are nonlinear and implicit
functions, and therefore they require an iterative procedure
such as Newton-Raphson algorithm to solve them which is

computationally time consuming. The Hertz relation along
with the modification to include the energy dissipation in the
form of internal damping (that is, the Lankarani-Nikravesh
model) has been adopted by many researchers and has proven
to produce results which correlate well with the experimental
ones. Therefore, in the preceding results, the model proposed
by Lankarani and Nikravesh will be employed when modeling
the contact-impact forces in a revolute clearance joint.

It is also observed that the slider acceleration peaks when
Joint B is modeled as a real joint are higher than the accel-
eration peaks produced when Joint A is modeled as a real
joint. In addition, the crank torques obtained when Joint A is
modeled as a real joint have higher peaks as compared to the
peaks of crank torques obtained when Joint B is modeled as a
real joint. An explanation to these observations will be sought
and made once such behaviors are validated experimentally.

C. Influence of the Clearance Size

In this subsection, the influence of the clearance size at Joint
A and also at Joint B on the dynamic behavior of the slider-
crank mechanism is investigated and comparisons presented.
The range of the clearances used at each joint is 0.01mm,
0.1mm, 0.3mm and 0.5mm, and the crank rotates uniformly
at 5000rev/min. Figures 11(a) to 14(d) show the results when
only Joint A is modeled as a clearance revolute joint, while
Figures 15(a) to 18(d) present the results when only Joint B
is modeled as a clearance revolute joint. The results presented
are the time plots of the slider acceleration, the reaction force
produced in the clearance joint, the reaction moment that acts
on the crank and the Poincaré map.

0.02 0.03 0.04 0.05 0.06
-1.5

-1

-0.5

0

0.5

1

1.5x 105

Sl
id

er
 a

cc
ln

 (m
/s

2 )

Time (s)

Real Joint (A),c=0.01
Ideal Joints

(a)

0.02 0.03 0.04 0.05 0.06
-1.5

-1

-0.5

0

0.5

1

1.5x 105

Sl
id

er
 a

cc
ln

 (m
/s

2 )

Time (s)

Real Joint (A),c=0.1
Ideal Joints

(b)

0.02 0.03 0.04 0.05 0.06
-1.5

-1

-0.5

0

0.5

1

1.5x 105

Sl
id

er
 a

cc
ln

 (m
/s

2 )

Time (s)

Real Joint (A),c=0.3
Ideal Joints

(c)

0.02 0.03 0.04 0.05 0.06
-1.5

-1

-0.5

0

0.5

1

1.5x 105

Sl
id

er
 a

cc
ln

 (m
/s

2 )

Time (s)

Real Joint (A),c=0.5
Ideal Joints

(d)

Fig. 11. Slider acceleration responses for different clearance sizes at joint
A (a) 0.01mm (b) 0.1mm (c) 0.3mm (d) 0.5mm
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Fig. 12. Joint reaction force responses for different clearance sizes at joint
A (a) 0.01mm (b) 0.1mm (c) 0.3mm (d) 0.5mm
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Fig. 13. Crank torque responses for different clearance sizes at joint A (a)
0.01mm (b) 0.1mm (c) 0.3mm (d) 0.5mm

Figures 11(a) to 13(d) show that increasing the clearance
size of a revolute joint A, the mechanism experiences increased
peaks of the slider acceleration, joint reaction force and the
crank moment. This implies that at higher joint clearances,
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Fig. 14. Poincaré maps for different clearance sizes at joint A (a) 0.01mm
(b) 0.1mm (c) 0.3mm (d) 0.5mm

higher impacts followed by rebounds take place, instead of
continuous or permanent contact between the journal and
the bearing walls. When the clearance is small, the system
response tends to be closer to the ideal response as evident
in Figures 11(a), 12(a) and 13(a). This implies that at smaller
clearance, the journal and the bearing of the joint experience
a smaller number of impacts and the journal follows the
bearing wall. This is also evident in the the Poincaré maps
presented in Figures 14(a) to 14(d), from which it is clearly
observed that increasing the radial clearance of the joint from
0.01mm to 0.5mm, the behavior of the system changes from
periodic to quasi-periodic. This quasi-periodic behavior is
evident in the map because at large clearance sizes (0.3mm
and 0.5mm), cycles of the mechanism fill up the map in a fully
predictable manner. When the clearance is small (0.01mm and
0.1mm), the behavior of the system tends to be periodic since
the cycles of the mechanism follow the same path in the
map. However, increasing the clearance size beyond 0.5mm
the behavior of the system changed from quasi-periodic to
chaotic. Also at large clearance sizes such as 0.3mm and
0.5mm, the three types of journal motion inside the bearing
are observed, namely, the free-flight motion, the impact mode
and the permanent or continuous contact mode.
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Fig. 15. Slider acceleration responses for different clearance sizes at joint
B (a) 0.01mm (b) 0.1mm (c) 0.3mm (d) 0.5mm
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Fig. 16. Joint reaction force responses for different clearance sizes at joint
B (a) 0.01mm (b) 0.1mm (c) 0.3mm (d) 0.5mm

From Figures 15(a) to 17(d), its also seen that increasing
the clearance size of the revolute joint B, the mechanism
experiences increased peaks of the slider acceleration, joint
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Fig. 17. Crank torque responses for different clearance sizes at joint B (a)
0.01mm (b) 0.1mm (c) 0.3mm (d) 0.5mm
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Fig. 18. Poincaré maps for different clearance sizes at joint B (a) 0.01mm
(b) 0.1mm (c) 0.3mm (d) 0.5mm

reaction force and the crank moment. However, as seen in
Figures 18(a) to 18(d), increasing the radial clearance of the
joint from 0.01mm to 0.5mm, the behavior of the system



changes from periodic to quasi-periodic, and then to chaotic.
The chaotic behavior is evident in Fig. 18(d) since at a joint
clearance of 0.5mm, different cycles of the mechanism lead
to different curves in the map in an unpredictable manner.
This behavior is different from the one witnessed when only
Joint A was modeled as a revolute clearance joint, in which
at a clearance of 0.5mm the behavior of the system was still
quasi-periodic. This shows that the dynamics of the revolute
clearance Joint B in the slider-crank mechanism is more
sensitive to the clearance size as compared to that of revolute
clearance Joint A. This confirms the already made observation
that, dynamic response peaks of the mechanism when Joint B
is modeled as a real joint are higher than the peaks produced
when Joint A is modeled as a real joint with the same radial
clearances. Although, the clearances of different joints in a
system show almost the same effects on the dynamic response
of the system, it has been shown that the joints will have
different sensitivities to the clearance size. Therefore in order
to design effective controllers for eliminating fully the chaotic
behaviors brought about by the non-linearities of joints with
clearances, the dynamic effect of each joint on the system
should be understood, that is, the effects of clearance sizes in
one joint cannot be used as a general case in a mechanical
system.

D. Influence of the Input Crank Velocity

The range of the input crank speeds used at each joint
is 800rpm, 1200rpm, 2500rpm and 5000rpm, and the radial
clearance at each joint is 0.3mm. Figures 19(a) to 22(d) show
the results when only Joint A is modeled as a clearance
revolute joint, while Figures 23(a) to 26(d) present the results
when only Joint B is modeled as a clearance revolute joint.
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Fig. 19. Slider acceleration responses for 0.3mm clearance size at joint A
for different crank speeds (a) 800rpm (b) 1200rpm (c) 2500rpm (d) 5000rpm
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Fig. 20. Joint reaction force responses for 0.3mm clearance size at joint A
for different crank speeds (a) 800rpm (b) 1200rpm (c) 2500rpm (d) 5000rpm

Figures 19(a) to 21(d) show that increasing the rotational
speed of the crank, the mechanism experiences increased peaks
of the slider acceleration, joint reaction force and the crank
moment due to collisions between the journal and the bearing
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Fig. 21. Crank torque responses for 0.3mm clearance size at joint A for
different crank speeds (a) 800rpm (b) 1200rpm (c) 2500rpm (d) 5000rpm
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Fig. 22. Poincaré maps for 0.3mm clearance size at joint A for different
crank speeds (a) 800rpm (b) 1200rpm (c) 2500rpm (d) 5000rpm

of the clearance Joint A. However the Poincaré maps presented
in Figures 22(a) to 22(d) show that when the crank speed is
increased from 800rpm to 5000rpm while holding the radial
clearance of Joint A constant, the behavior of the system
changes from chaotic to quasi-periodic, and then to periodic
at a speed of 5000rpm.
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Fig. 23. Slider acceleration responses for 0.3mm clearance size at joint B
for different crank speeds (a) 800rpm (b) 1200rpm (c) 2500rpm (d) 5000rpm
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Fig. 24. Joint reaction force responses for 0.3mm clearance size at joint B
for different crank speeds (a) 800rpm (b) 1200rpm (c) 2500rpm (d) 5000rpm

Figures 23(a) to 25(d) show that increasing the rotational
speed of the crank, the mechanism experiences increased peaks
of the slider acceleration, joint reaction force and the crank
moment due to collisions between the journal and the bearing
of the clearance Joint B. However the Poincaré maps presented



0.1 0.15 0.2 0.25 0.3 0.35
-100

-50

0

50

100
C

ra
nk

 T
or

qu
e 

(T
2, N

/m
)

Time (s)

Real Joint (A),N=800

(a)

0.05 0.1 0.15 0.2 0.25
-100

-50

0

50

100

C
ra

nk
 T

or
qu

e 
(T

2, N
/m

)

Time (s)

Real Joint (B),N=1200

(b)

0.04 0.06 0.08 0.1 0.12
-400

-300

-200

-100

0

100

200

C
ra

nk
 T

or
qu

e 
(T

2, N
/m

)

Time (s)

Real Joint (B),N=2500

(c)

0.02 0.03 0.04 0.05 0.06
-400

-300

-200

-100

0

100

200

C
ra

nk
 T

or
qu

e 
(T

2, N
/m

)

Time (s)

Real Joint (B), N=5000
 

(d)

Fig. 25. Crank torque responses for 0.3mm clearance size at joint B for
different crank speeds (a) 800rpm (b) 1200rpm (c) 2500rpm (d) 5000rpm
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Fig. 26. Poincaré maps for 0.3mm clearance size at joint B for different
crank speeds (a) 800rpm (b) 1200rpm (c) 2500rpm (d) 5000rpm

in Figures 26(a) to 26(d) show that when the crank speed is
increased from 800rpm to 5000rpm while holding the radial
clearance of Joint B constant, the behavior of the system
changes from periodic to quasi-periodic and then to chaotic

at a speed of 5000rpm. This behavior is different from the
one witnessed when only Joint A was modeled as a revolute
clearance joint, in which the behavior changes from chaotic to
periodic when the speed of the crank is increased as shown in
Figures 22(a) to 22(d). Although, the crank speed variations in
the mechanism show almost the same effects on the dynamic
response of the system with differently positioned clearance
joints, a closer analysis shows that increasing the driving
speed of a mechanism, the behavior of the mechanism may
change from either periodic to chaotic, or chaotic to periodic
depending on which joint has clearance. Therefore in order
to design effective controllers for eliminating fully the chaotic
behaviors brought about by the non-linearities of joints with
clearances, the dynamic effect of each joint on the system
should be understood, that is, the effects of driving speeds
in one clearance joint cannot be used as a general case in a
mechanical system.

V. CONCLUSION

From the numerical simulations presented in this work, it
can be concluded that the dynamic response of a multi-body
mechanical system with revolute clearance joint depends on
the location of the joint, the clearance size and the operating
speed of the system. It is clear that the dynamics of the revolute
clearance joint in a mechanical system is quite sensitive to
the clearance size such that by slightly changing the value
of the clearance size, the response of the system can shift
from chaotic to periodic behavior and vice-versa. However,
the degree of sensitivity to the clearance size varies from one
joint to another. For instance in a slider-crank mechanism, the
joint between the slider and connecting rod is more sensitive
to the clearance size than the joint between the crank and
the connecting rod. This explains why many researchers have
emphasized on modeling the joint between the slider and
connecting rod as a clearance joint.

Other than the clearance size, the operating speed of the
multi-body mechanical system has been observed to affect
significantly the dynamic response of a system with revolute
clearance joint. The higher the operating speed, the higher
the impact forces at the clearance joint. However, increasing
the driving speed of a multi-body mechanical, the behavior of
the mechanism may change from either periodic to chaotic,
or chaotic to periodic depending on which joint has clear-
ance. Therefore in order to design effective controllers for
eliminating fully the chaotic behaviors brought about by the
non-linearities of joints with clearances, the dynamic effect
of each joint on the system should be understood. This is
because the effects of the clearance sizes and driving speeds
in one clearance joint cannot be used as a general case in a
mechanical system.
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