SOME RESULTS ON ANTI-INVARIANT MAXIMAL SPACELIKE SUBMANIFOLDS OF AN INDEFINITE COMPLEX SPACE FORM

A. N. Wali

Department of Mathematics, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
E-mail: tabnzo@yahoo.co.in

ABSTRACT

This paper looks into the geometry of an n -dimensional anti-invariant maximal spacelike submanifold M immersed in an indefinite complex space form $\bar{M}(c), c \neq 0$. Let M be an n -dimensional compact anti-invariant maximal spacelike submanifold of $\bar{M}_{p}^{n+p}(c), c \neq 0$. Then we show that either M is totally geodesic or $S=\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c \quad S>\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$

Key words: Anti-invariant submanifold, complex space form

1.0 INTRODUCTION

Among all submanifolds of a Kaehler manifold, there are two classes the class of antiinvariant submanifolds and that of holomorphic submanifolds. A submanifold of a Kaehler manifold is called an anti-invariant (resp. holomorphic) if each tangent space of the submanifold is mapped into the normal space (resp. itself) by the almost complex structure of the Kaehler manifold (Chen et al., 1974). A Kaehler manifold of constant holomorphic sectional curvature is called a complex space form. Let $\bar{M}(c), c \neq 0$ be an indefinite complex space form of holomorphic sectional curvature c , complex dimension $(\mathrm{n}+\mathrm{p}), \quad p \neq 0$ and index 2 p . Let M be an n -dimensional anti-invariant maximal spacelike submanifold isometrically immersed in. We call M a spacelike submanifold if the induced metric on M from that of the ambient space is positive definite. Let J be the almost complex structure of . An n-dimensional Riemannian manifold M isometrically immersed in is called an anti-invariant submanifold of if each tangent space of M is mapped into the normal space by the almost complex structure J. Let h be the second fundamental form of M in and denote by S the square of the length of the second fundamental form h.
Our main result is:
Theorem.
Let Mbe an n-dimensional compact anti-invariant maximal spacelike submanifold of $\bar{M}_{p}^{n+p}(c), c \neq 0$. Then either M is totally geodesic or $S=\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$ or at some point of M, $S=\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$

2.0 LOCAL FORMULAE

We choose a local field of orthonormal frames;

$$
\left\{e_{1}, \ldots, e_{n} ; e_{n+1}, \ldots, e_{n+p} ; e_{1^{*}}=J e_{1}, \ldots, e_{n^{*}}=J e_{n} ; e_{(n+1)^{*}}=J e_{n+1}, \ldots, e_{(n+p)^{*}}=J e_{n+p}\right\}
$$

in $\bar{M}_{p}^{n+p}(c)$ such that restricted to M , the vectors $\left\{e_{1}, \ldots, e_{n}\right\}$ are tangent to M and the rest are normal to M . With respect to this frame field of, $\bar{M}_{p}^{n+p}(c)$ let $\mathrm{W}^{1}, \ldots, \mathrm{~W}^{n} ; \mathrm{W}^{n+1}, \ldots, \mathrm{~W}^{n+p} ; \mathrm{W}^{\mathrm{l}^{*}}, \ldots, \mathrm{~W}^{n^{*}} ; \mathrm{W}^{(n+1)^{*}}, \ldots, \mathrm{~W}^{(n+p)^{*}}$ be the field of dual frames.
Unless otherwise stated, we shall make use of the following convention on the ranges of indices: $1 \leq A, B, C, D \leq n+p ; 1 \leq i, j, k, l, m \leq n ; \quad n+1 \leq a, b, c \leq n+p ;$ and when a letter appears in any term as a subscript and a superscript, it is understood that this letter is summed over its range. Besides

$$
\mathrm{e}_{i}=g\left(e_{i}, e_{i}\right)=g\left(J e_{i}, J e_{i}\right)=1, \text { when } 1 \leq i \leq n
$$

$$
\mathrm{e}_{a}=g\left(e_{a}, e_{a}\right)=g\left(J e_{a}, J e_{a}\right)=-1 \text { when } n+1 \leq a \leq n+p .
$$

Then the structure equations of $\bar{M}_{p}^{n+p}(c), c \neq 0$ are;
$d \mathrm{w}^{A}+\sum \mathrm{e}_{B} \mathrm{w}_{B}^{A} \wedge \mathrm{w}^{B}=0, \mathrm{w}_{B}^{A}+\mathrm{w}_{A}^{B}=0, \mathrm{w}_{j}^{i}=\mathrm{w}_{j^{*}}^{i^{*}}, \quad \mathrm{w}_{j}^{i^{*}}=\mathrm{w}_{i}^{j^{*}}$,
$d \mathrm{w}_{B}^{A}+\sum_{C} \mathrm{e}_{C} \mathrm{w}_{C}^{A} \wedge \mathrm{w}_{B}^{C}=\frac{1}{2} \sum_{C D} \mathrm{e}_{C} \mathbf{e}_{D} \bar{R}_{B C D}^{A} \mathbf{w}^{C} \wedge \mathrm{w}^{D}$,
$\bar{R}_{B C D}^{A}=\frac{c}{4} \mathrm{e}_{C} \mathrm{e}_{D}\left(\mathrm{~d}_{A C} \mathrm{~d}_{B D}-\mathrm{d}_{A D} \mathrm{~d}_{B C}+J_{A C} J_{B D}-J_{A D} J_{B C}+2 J_{A B} J_{C D}\right)$
where $\bar{R}_{B C D}^{A}$ denote the components of the curvature tensor \bar{R} on. Restricting these forms to M we have;

$$
\begin{align*}
& \mathrm{w}^{a}=0, \mathrm{w}_{i}^{a}=\sum_{i} h_{i j}^{a} \mathrm{w}^{i}, h_{i j}^{a}=h_{j i}^{a}, \quad d \mathrm{w}^{i}=-\sum \mathrm{w}_{j}^{i} \wedge \mathrm{w}^{j}, \\
& \mathrm{w}_{j}^{i}+\mathrm{w}_{i}^{j}=0, \quad d \mathrm{w}_{j}^{i}=-\sum \mathrm{w}_{k}^{i} \wedge \mathrm{w}_{j}^{k}+\frac{1}{2} \sum_{k l} R_{j k l}^{i} \mathrm{w}^{k} \wedge \mathrm{w}^{l}, \\
& R_{j k l}^{i}=\bar{R}_{j k l}^{i}-\sum_{a}\left(h_{i k}^{a} h_{j l}^{a}-h_{i l}^{a} h_{j k}^{a}\right) \quad d \mathrm{w}^{a}=-\sum_{b} \mathrm{w}_{b}^{a} \wedge \mathrm{w}_{b}, \\
& d \mathrm{w}_{b}^{a}=-\sum_{c} \mathrm{w}_{c}^{a} \wedge \mathrm{w}_{b}^{c}+\frac{1}{2} R_{b i j}^{a} \mathrm{w}^{i} \wedge \mathrm{w}^{j}, \\
& R_{b i j}^{a}=\sum_{k}\left(h_{i k}^{a} h_{k j}^{b}-h_{k j}^{a} h_{k i}^{b}\right) \tag{2.1}
\end{align*}
$$

From the condition on the dimensions of M and $\bar{M}_{p}^{n+p}(c){ }_{\text {it follows that }} e_{1^{*}}, \ldots, e_{n^{*}}$ is a frame for $T^{\perp}(M)$. Noticing this, we see that

$$
R_{j k l}^{i}=\frac{c}{4}\left(\mathrm{~d}_{i k} \mathrm{~d}_{j l}-\mathrm{d}_{i l} \mathrm{~d}_{j k}\right)-\sum_{a}\left(h_{i k}^{a} h_{j l}^{a}-h_{i l}^{a} h_{j k}^{a}\right) .
$$

$$
\begin{equation*}
\text { We call } H=\frac{1}{n} \sqrt{\sum_{a}\left(\sum_{i} h_{i i}^{a}\right)^{2}} \text { the mean curvature of M and } S=\sum_{i j a}\left(h_{i j}^{a}\right)^{2} \tag{2.2}
\end{equation*}
$$ square of the length of the second fundamental form. If H is identically zero, then M is said to be maximal. M is totally geodesic if $\mathrm{h}=0$.

From (2.2), we have the Ricci tensor ${ }^{R_{j}^{i}}$ given by

$$
\begin{equation*}
R_{j}^{i}=\sum_{k} R_{k j k}^{i}=\frac{(n-1)}{4} c \mathrm{~d}_{i j}+\sum_{a k} h_{i k}^{a} h_{k j}^{a} \tag{2.3}
\end{equation*}
$$

Thus the Ricci curvature R is;

$$
\begin{equation*}
R=R_{i}^{i}=\frac{c}{4}(n-1)+S \tag{2.4}
\end{equation*}
$$

From (2.3) the scalar curvature ${ }^{r}$ is given by

$$
\begin{equation*}
\mathrm{r}=\sum_{j} R_{j}^{j}=\frac{n(n-1)}{4} c+S \tag{2.5}
\end{equation*}
$$

Let $h_{i j k}^{a}$ denote the covariant derivative of $h_{i j}^{a}$. Then we define $h_{i j k}^{a}$ by
$\sum_{k} h_{i j k}^{a} \mathbf{w}^{k}=d h_{i j}^{a}+\sum_{k} h_{k j}^{a} \mathbf{w}_{i}^{k}+\sum_{k} h_{i k}^{a} \mathbf{w}_{j}^{k}+\sum_{b} h_{i j}^{b} \mathbf{w}_{b}^{a}$
and $h_{i j k}^{a}=h_{i k j}^{a}$. Taking the exterior derivative of (2.6) we define the second covariant derivative of $h_{i j}^{a}$ by
$\sum_{l} h_{i j k l}^{a} \mathbf{w}^{l}=d h_{i j k}^{a}+\sum_{l} h_{l j k}^{a} \mathbf{w}_{i}^{l}+\sum_{l} h_{i l k}^{a} \mathbf{w}_{j}^{l}+\sum_{l} h_{i j l}^{a} \mathbf{w}_{k}^{l}+\sum_{b} h_{i j k}^{b} \mathbf{w}_{b}^{a}$
(2.7) Using (2.7), we obtain the Ricci formula;
$h_{i j k l}^{a}-h_{i j l k}^{a}=\sum_{m} h_{m j}^{a} R_{i k l}^{m}+\sum_{m} h_{i m}^{a} R_{j k l}^{m}+\sum_{b} h_{i j}^{b} R_{b k l}^{a}$

The Laplacian of the second fundamental form is defined as

$$
\begin{equation*}
\Delta h_{j}^{\mathrm{a}}=\sum_{1} h_{1, \mathrm{H}}^{\mathrm{a}} \tag{2.8}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\Delta h_{i j}^{a}=n H_{i j} & +\frac{c}{4}(n+1) \sum h_{i j}^{a}-\sum_{b m k} h_{m i}^{a} h_{m k}^{b} h_{k j}^{b}+\sum_{b m k} h_{m i}^{a} h_{m j}^{b} h_{k k}^{b}-\sum_{b m k} h_{k m}^{a} h_{m j}^{b} h_{i k}^{b} \\
& +\sum_{b m k} h_{k m}^{a} h_{m k}^{b} h_{i j}^{b}+\sum_{b m k} h_{k i}^{b} h_{j m}^{a} h_{m k}^{b}-\sum_{b m k} h_{k i}^{b} h_{m k}^{a} h_{m j}^{b} \tag{2.9}
\end{align*}
$$

where $H_{i j}$ is the second covariant derivative of H .
For M maximal in $\bar{M}_{p}^{n+p}(c)$, (2.9) becomes,

$$
\begin{gather*}
\Delta h_{i j}^{a}=\frac{c}{4}(n+1) \sum h_{i j}^{a}-\sum_{b m k} h_{m i}^{a} h_{m k}^{b} h_{k j}^{b}-\sum_{b m k} h_{k m}^{a} h_{m j}^{b} h_{i k}^{b}+\sum_{b m k} h_{k m}^{a} h_{m k}^{b} h_{i j}^{b} \\
+\sum_{b m k} h_{k i}^{b} h_{j m}^{a} h_{m k}^{b}-\sum_{b m k} h_{k i}^{b} h_{m k}^{a} h_{m j}^{b} \tag{2.10}
\end{gather*}
$$

From $\frac{1}{2} \Delta \sum_{a i j}\left(h_{i j}^{a}\right)^{2}=\sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\sum_{a i j} h_{i j}^{a} \Delta h_{i j}^{a} \quad$ we obtain,

$$
\begin{align*}
& \frac{1}{2} \Delta \sum_{a i j}\left(h_{i j}^{a}\right)^{2}=\sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\frac{c}{4}(n+1) \sum_{a i j}\left(h_{i j}^{a}\right)^{2}-\sum_{a b j j k l} h_{i j}^{a} h_{k l}^{a} h_{l k}^{b} h_{i j}^{b} \\
& \quad+\sum_{a b i j k l}\left(h_{l i}^{a} h_{l j}^{b}-h_{l i}^{b} h_{l j}^{a}\right)\left(h_{k i}^{a} h_{k j}^{b}-h_{k i}^{b} h_{k j}^{a}\right) \tag{2.11}
\end{align*}
$$

For each a let H_{a} denote the symmetric matrix $\left(h_{i j}^{a}\right)$. Then (2.11) can be written as $\frac{1}{2} \Delta \sum_{a i j}\left(h_{i j}^{a}\right)^{2}=\sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\frac{c}{4}(n+1) \sum_{a i j}\left(h_{i j}^{a}\right)^{2}-\sum_{a b}\left(t r H_{a} H_{b}\right)^{2}$ $+\sum_{a b} \operatorname{tr}\left(H_{a} H_{b}-H_{b} H_{a}\right)^{2}$
where $\operatorname{tr} H_{a} H_{b}$ denotes the trace of the matrix $H_{a} H_{b}$.
In the sequel, we need the following lemma proved in (Chern et al., 1970) by S. S. Chern, M. do Carmo and S. Kobayashi.

Lemma 2.1:

Let A and B be symmetric nxn-matrices. Then, $-\boldsymbol{F}(\boldsymbol{B}-\boldsymbol{B})^{2} \leq 2 \operatorname{Tr} A^{2} \operatorname{Tr} B^{2}$ and equality holds for non-zero matrices A and B if and only if A and B can be transformed by an orthogonal matrix simultaneously into scalar multiples of \bar{A} and \bar{B} respectively, where

$$
\bar{A}=\left(\begin{array}{cc|c}
0 & 1 & 0 \\
1 & 0 & \\
\hline 0 & \overline{0}
\end{array}\right) \quad \bar{B}=\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & -1 & \\
\hline 0 & \overline{0}) .
\end{array}\right.
$$

Moreover, if A_{1}, A_{2}, A_{3} are three symmetric nxn-matrices such that $-\mathbb{T}\left(A_{a} A_{b}-A_{b} A_{a}\right)^{2}=2 \operatorname{Tr} A_{a}^{2} \operatorname{Tr} A_{b}^{2}, \quad 1 \leq a, b \leq 3, a \neq b$, then at least one of the matrices A_{a} must be zero.
Let $S_{a b}=\sum_{a b i j} h_{i j}^{a} h_{i j}^{b}$. Then $(\mathrm{n}+2 \mathrm{p}) \times(\mathrm{n}+2 \mathrm{p})$-matrix $\left(S_{a b}\right)$ is symmetric and can be assumed to be diagonal for a suitable choice of $e_{n+1}, \ldots, e_{n+p} \cdot$ Setting $S_{a}=S_{a a}=t r H_{a}^{2}$ and $S=\sum_{a} S_{a}$, equation (2.12) reduces to

$$
\frac{1}{2} \Delta S=\sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\frac{c}{4}(n+1) S-\sum_{a b}\left(t r H_{a} H_{b}\right)^{2}+\sum_{a b} \operatorname{tr}\left(H_{a} H_{b}-H_{b} H_{a}\right)^{2}
$$

(2.13) On the other hand, using Lemma 2.1 we have,

$$
\begin{align*}
& \frac{c}{4}(n+1) S-\sum_{a b}\left(t r H_{a} H_{b}\right)^{2}+\sum_{a b} \operatorname{tr}\left(H_{a} H_{b}-H_{b} H_{a}\right)^{2} \geq \frac{c}{4}(n+1) S-\sum_{a} S_{a}^{2}-2 \sum_{a b} S_{a} S_{b} \\
& =\left(\frac{(1-2 n-4 p)}{n+2 p} S+\frac{c}{4}(n+1)\right) S+\frac{1}{(n+2 p)} \sum_{a>b}\left(S_{a}-S_{b}\right)^{2} \tag{2.14}
\end{align*}
$$

which, together with (2.13), implies that

$$
\begin{equation*}
\frac{1}{2} \Delta S \geq \sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\left(\frac{(1-2 n-4 p)}{n+2 p} S+\frac{c}{4}(n+1)\right) S \tag{2.15}
\end{equation*}
$$

3.0 PROOF OF THEOREM

Let M be an n -dimensional anti-invariant maximal spacelike submanifold sometrically immersed in $\bar{M}_{p}^{n+p}(c), c \neq 0$. Now assuming that M is compact and orientable, we have the integral formula $0 \leq \int_{M} \sum_{a i j k}\left(h_{i j k}^{a}\right)^{2} * 1=-\int_{M} \sum_{a i j} h_{i j}^{a} \Delta h_{i j}^{a} * 1$, where ${ }^{*} 1$ is the volume element
of M. From (2.15) we see that ${ }^{{ }^{i j k}}{ }\left(h_{i j k}^{a}\right)^{2}-\frac{1}{2} \Delta S \leq\left(\frac{(2 n+4 p-1)}{n+2 p} S-\frac{c}{4}(n+1)\right) S$. By a well known theorem of E. Hopf [3], $\Delta S=0$ and thus we have $0 \leq \int_{M}\left(\frac{(2 n+4 p-1)}{n+2 p} S-\frac{c}{4}(n+1)\right) S * 1$
Assume $S \leq \frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$
second fundamental form of M is parallel and hence S is constant. Therefore, $\mathrm{S}=$
0 and M is totally geodesic or $S=\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$.
. Except for these two cases,

$$
S>\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c
$$

As an immediate consequence of this result we get;

Corollary 3.1

Let M be an n -dimensional compact anti-invariant maximal spacelike submanifold
${ }_{\text {of }} \bar{M}_{p}^{n+p}(c), c \neq 0$. If the second fundamental form of M is parallel then M is totally geodesic.

4.0 CONCLUSION

In this paper, we studied the geometry of an n-dimensional anti-invariant maximal spacelike submanifold M immersed in an indefinite complex space form by computing the square of the length of the second fundamental form. In conclusion, we find
that either M is totally geodesic or

$$
S=\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c
$$

or at some point of M, $S>\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$

Moreover, if the second fundamental form of the submanifold is parallel then the submanifold is totally geodesic.

REFERENCES

Chen B. Y. and Ogiue K. (1974). On totally real submanifolds, Trans. Amer. Math. Soc., 193, pp 257-266.

Chern S. S., do Carmo M. and Kobayashi S. (1970). Minimal submanifolds of a sphere with Second fundamental form of constant length, Functional Analysis and related fields, Springer, Berlin, 57-75.

Hopf E. (1950). A theorem on the accessibility of boundary parts of an open point set, Proc. Amer. Math. Soc., 1, pp 76-79.

Ishihara T. (1988). Maximal spacelike submanifolds of a Pseudoriemannian space of constant curvature, Michigan Math. J., 35, pp 345-352.

Kon M. (1976). Totally Real Submanifolds in a Kaehler manifold, J. Differential Geometry, II, pp 251-257.

Ludden G. D., Okumura M. and Yano K. (1975). Totally real submanifolds of complex manifolds, Proc. Amer. Math. Soc., 53, pp 186-190.

Omori H. (1967). Isometric Immersions of Riemannian manifolds, J. Math. Soc. Japan, 19, pp 205-214.

Shen Y. B. (1992). Curvature pinching for 3-dimensional minimal submanifolds in a sphere, Proc. Amer. Math. Soc., 115, pp 791-795.

Sun H. (2000). On totally umbilical submanifolds of S^{n+p}, Israel Journal of Mathematics, 117, pp 93-104.

Wali A. N. (2005). On bounds of holomorphic sectional curvature. East African Journal of Physical Sciences, 6(1), pp 49-53.

Yano K. and Kon M. (1976). Totally real submanifolds of complex space forms II, Kodai Math. Sem. Rep., 27, 385-399.

