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ABSTRACT

In this study, the effects of temperature dependent viscosity on magnetohydrodynamic

natural convection flow past an isothermal sphere are determined. The uniformly heated

sphere is immersed in a viscous and incompressible fluid where viscosity of the fluid is taken

as a non-linear function of temperature. The Partial Differential Equations governing the

flow are nonlinear in nature, thus,they are transformed into non dimensional form and

solved using the Direct Numerical Scheme and implemented in matrix Laboratory. The

numerical results obtained are presented graphically and in a table and are discussed. In

this study, it has been observed that increasing the Magnetic parameter leads to a de-

crease in velocity, temperature, skin friction and the rate of heat transfer. It has also been

noted that increase in the Grashof number leads to an increase in velocity and tempera-

ture whereas increase in the values of viscous variation parameter leads to an increase in

temperature but there is a decrease in velocity. These results are useful in engineering,

technology and biomedical fields.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Fluid is a substance that can flow. It can also be defined as matter which deforms contin-

uously when subjected to a given amount of external shearing stress . Fluids are classified

as;a). Liquid, Gas and Vapour and b).Ideal Fluids and Real Fluids. A liquid is fluid that

possesses a definite volume which varies slightly with temperature and pressure. A gas

possesses no definite volume and is compressible. Vapour is a gas whose temperature is

such that it is very near the liquid state. In liquids, molecules are close together compared

to the molecules in gases which are not close to one another and are in a haphazard move-

ment in all directions which make them to collide with each other. Ideal fluid is one which

is incompressible, has no viscosity and has no surface tension whereas a real fluid is one

which has viscosity, surface tension and are compressible.

Fluid flow can be classified as being steady ,unsteady,Uniform, Non Uniform, Rotational,

Irrotational, Laminar, Turbulent, Compressible or incompressible flows. A steady flow is

one in which the fluid variables like velocity, pressure and temperature change with time

whereas unsteady flow is one in which the velocity, pressure or temperature changes with

respect to time. Fluid flow is said to be uniform if fluid variables at any given time does

not change with respect to space and non-uniform when the velocity at any given time

varies with respect to space.

A fluid flow is rotational if the fluid particles while moving in the direction of flow ro-

tate about their mass centres and is irrotational if the fluid particles while moving in the
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direction of flow do not rotate. A laminar fluid flow is one in which paths taken by the

individual particles do not cross one another and move along well defined paths. This flow

can also be referred to as viscous flow or streamline flow. A turbulent flow is the one in

which fluid particles do not move along well defined paths but they move in a haphazard

way.

Laminar and turbulent flows are characterized on the basis of Reynolds number where

for Reynolds number (Re) < 2000, the flow in pipes is said to be laminar; for Reynolds

number(Re) > 4000, the flow in pipes is turbulent and for (Re) between 2000 and 4000,

the flow in pipes may be laminar or turbulent.

Compressible flow is one in which the density(ρ) of the fluid changes from point to point

or density is not a constant whereas an incompressible flow is the one in which density is

assumed to be a constant.

1.1.1 Isothermal Sphere

A sphere is a geometrical object in three dimensional space which can be referred as a

surface of a complete round ball which is analogous to a circular object in two dimensions.

An Isothermal process is one that takes place at constant temperature. Therefore, in this

study, a sphere which is completely immersed in a ferrofluid and maintained at constant

temperature is referred to as an Isothermal sphere.

1.1.2 Temperature Dependence of Fluid Viscosity

This is a phenomenon in which viscosity of fluid decreases as its temperature increases and

increases as the temperature of the fluid decreases. In other words, it can be explained

that the fluidity tends to increase as temperature increases.
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1.1.3 Natural Convection Fluid Flow

In natural convection, the fluid motion is due to natural means such as buoyancy. The

heat transfer coefficient encountered in natural convection is low since the fluid velocity

associated with natural convection is relatively low. In this mechanism, consider a hot

object exposed to cold air where temperature of the air outside the object will drop and

the temperature of the air adjacent to the object will rise as a result of heat transfer in the

cold air. Therefore,the object will be surrounded with a thin layer of warmer air and heat

will be transferred from this layer to the outer layers of air. Since the temperature of the

air adjacent to the hot object is higher,then the density is lower which makes the heated

air to rise. This movement illustrates natural convection current.

1.1.4 Magnetohydrodynamics

This word is derived from the words, Magneto (meaning magnetic field), Hydro (meaning

water) and Dynamics (meaning movement). Magnetohydrodynamics (MHD) is the study

of the dynamics of electrically conducting fluids which include Plasmas, Liquid metals

and salt water or electrolytes. The fundamental concept behind MHD is that magnetic

fields induces electric current in a moving conductive fluid which in turn polarizes the fluid

and reciprocally changes the magnetic field. Electromagnetism is the study of interaction

between magnetic fields and electric current whereas Hydrodynamics is the study of the

flow of fluids.

1.1.5 Dimensional Analysis

Dimensional Analysis is a mathematical technique which makes use of the study of dimen-

sions in solving several engineering problems.It is a method of dimensions and a technique

used in research work for design and for conducting model tests. It’s based on the principle

of dimensional homogeneity which states that every term in an equation when reduced to
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fundamental dimensions must contain identical powers of each dimension. Each physi-

cal phenomenon can be expressed by an equation giving a relationship between different

dimensional and non-dimensional quantities. Dimensional analysis helps in determining

a systematic arrangement of variables in the physical relationship combining dimensional

variables to form non-dimensional parameters.Therefore, dimensional analysis is used in;

1. Testing the dimensional homogeneity of any equation of fluid motion.

2. Deriving rational formulae for a flow phenomenon.

3. Deriving equations expressed in terms of non-dimensional parameters to show the

relative significance of each parameter.

4. Planning model tests and present experimental results in a systematic manner, thus

making it possible to analyze the complex fluid flow phenomenon.

1.2 Literature Review

Temperature is one of the factors that may cause variation in the viscosity of a given fluid.

Soares et al. (2010) studied the effects of temperature dependent viscosity on forced con-

vection heat transfer from a cylinder in cross flow of power-law fluids and deduced that

the variation of viscosity with temperature have an effect on both the local and the surface

averaged values of the Nusselt number. They concluded that the velocity and temperature

of the fluid changes with the variation of the fluid flow parameters. This means that for

higher values of Prandtl number (Pr), both velocity and temperature decreases such that

there exists a local maximum value of velocities. Alam et al. (2006) studied the effects of

viscous dissipation on MHD natural convection fluid flow over a sphere in the presence of

heat generation and concluded that velocity increases as the values of viscous parameter

increases and velocity distribution increase as the values of heat generation parameter in-

creases.
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Shrama and Singh (2010) studied the effect of temperature dependent electrical conduc-

tivity on steady natural convection flow of viscous incompressible low Prandtl number

(Pr << 1) electrical conducting fluid along an isothermal vertical plate in the presence of

transverse magnetic field and exponentially decaying heat generation. They deduced that

fluid velocity increases in the presence of heat generation due to increase in the electrical

conductivity parameter while it decreases due to increase in the magnetic field intensity.

They also concluded that fluid temperature increases in the presence of volumetric rate

of heat generation or due to increase in magnetic field intensity while it decreases due to

increase in electrical conductivity parameter. They also explained that the skin friction

coefficient increases with the increase in electrical conductivity parameter or in the pres-

ence of volumetric rate of heat generation while it decreases due to increase in the Prandtl

number.

Khan et al. (2012) studied the unsteady MHD free convection boundary layer flow of nano-

fluid along a stretching sheet with thermal radiation and viscous dissipation effects and

deduced that larger values of the Grashof number showed a significant effect momentum

boundary layer. In their study, they concluded that the effect of Brownian motion and

thermophoresis stabilizes the boundary layer growth and that boundary layers are highly

affected by the Prandtl number. Khan et al. (2012) concluded that thermal boundary

layer thickness increases as a result of increasing radiation and the concentration in the

boundary layer decreases in the presence of heavier species (large Lewis number).

Chaudhary and Jain (2007) studied combined heat and mass transfer effects on MHD free

convection flow past an oscillating plate embedded in porous medium and explained that

the concentration decreases with an increase in Schmidt number and in case of cooling of

the plate (Gr > 0), the velocity decreases with an increase in the phase angle, magnetic

parameter, Schmidt number and Prandtl number while it increases with an increase in the

value of Grashof number and modified Grashof number, permeability parameter and time.

In case of heating of the plate (Gr < 0), the velocity increases with an increase in magnetic
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parameter, Schmidt number and Prandtl number while it decreases with an increase in

the value of Grashof number and modified Grashof number , permeability parameter and

time. The Skin friction increases with an increase in Schmidt number, Prandtl number

and Magnetic parameter while it decreases with an increase in the value of Grashof num-

ber, modified Grashof number, permeability parameter and time. They also concluded

that Nusselt number increase with an increase in the Prandtl number while temperature

decreases with an increase in the value of Prandtl number.

Mebine and Adigio (2011) studied the effects of Thermal Radiation on Transient MHD

Free convection flow over a vertical surface embedded in a porous medium with the pe-

riodic boundary temperature and concluded that the temperature of the fluid decreases

with increasing radiation and this signified that reduction in the maximum velocity for the

temperature decreases the thermal boundary layer thickness thus leading to higher heat

transfer to the plate and increasing magnetic parameter reduces the magnitude of velocity.

Velocity increases with increasing porosity parameters, and this implied that the presence

of a porous medium increases the resistance to flow and greater velocity is experienced in

the flow field when the porosity parameter vanishes. The maximum velocity decreases with

an increase in phase angle whereas temperature decreases with an increase in the phase

angle. They concluded that increase in radiation parameter decreases the skin friction and

the heat flux.

Molla et al. (2005) investigated Magnetohydrodynamic natural convection flow from an

isothermal sphere with temperature dependent heat generation. Molla et al. (2005) con-

cluded that when the values of heat generation parameter Q increases, there is an increase

in the local skin friction coefficient Cfx but there is a decrease in the local rate of heat

transfer. Both the velocity and temperature profiles increase significantly when the value

of heat generation parameter increases. The local rate of heat transfer and the local skin

friction coefficient decreases when the value of magnetic parameter increases. Finally, they

concluded that increased values of magnetic parameter leads to decrease in the velocity
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distribution whereas there is an increase in the temperature distribution.

Alam et al. (2006) studied viscous dissipation effects on MHD natural convection flow

along a sphere and deduced that an increase in the values of magnetic parameter causes

both the local skin friction and the local heat transfer to decrease the velocity causing an

increase in temperature. These researchers concluded that increase in viscous dissipation

parameter leads to an increase in velocity and temperature and increasing the values of

Prandtl number leads to a decrease in velocity, temperature, local skin friction coefficient

and the local rate of heat transfer.

Natural convection flow along an isothermal vertical plate with temperature dependent

viscosity and heat generation has been studied by Molla et al. (2014) and they deduced

that the effect of viscosity variation parameter and Rayleigh number decreases the skin

friction coefficient whereas increasing the local average rate of heat transfer. They also

explained that the momentum and thermal boundary layer becomes thinner when the val-

ues of viscosity -variation parameter increases and that viscosity and velocity distribution

increases with the effect of Rayleigh number. This has also led to significant decrease in

temperature distributions whereas the thickness of momentum boundary layer is enhanced.

Miraj et al. (2011) studied the effects of viscous dissipation and radiation on MHD free

convection flow along a sphere with joule heating and heat generation. They deduced

that velocity profiles increases with the increasing values of radiation parameter, heat gen-

eration parameter, magnetic parameter, joule heating parameter and viscous dissipation

parameter whereas the profiles decreases with increasing values of Prandtl number. Skin

friction coefficient increases with the increasing values of heat generation parameter and

decreases for the increasing values of magnetic parameter. In conclusion,Miraj et al. (2011)

deduced the rate of heat transfer increases for increasing values of radiation parameter and

decreases for increasing values of heat generation parameter, joule heating parameter and

viscous dissipation parameter.

Molla et al. (2012) have studied the MHD natural convection flow from an isothermal
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cylinder under the consideration of temperature dependent viscosity and explained that

increasing the values of magnetic parameter M and viscosity variation parameter leads to

decrease in the local skin friction coefficient, Grashof number and the local Nusselt num-

ber. It was concluded that velocity distribution decreases and temperature distribution

increases with the increasing values of the magnetic parameter M and viscosity variation

parameter.

Haque et al. (2014) studied the effects of viscous dissipation on MHD natural convection

flow over a sphere with temperature dependent thermal conductivity in presence of heat

generation and they concluded that the velocity and temperature of the fluid within the

boundary layer increases with increasing thermal conductivity variation parameter, heat

generation parameter and viscous dissipation parameter. They also noted that the skin fric-

tion along the surface of the sphere increases with increasing thermal conductivity variation

parameter, heat generation parameter and viscous dissipation parameter but decreases for

the increasing values of M . They explained that the rate of heat transfer from the surface

decreases with the increasing value of magnetic parameter, thermal conductivity variation

parameter, heat generation parameter and viscous dissipation parameter.

From the research work cited above, it can be concluded that extensive research work has

been carried out on MHD natural convection fluid flow past a surface. However, no em-

phasis has been given to the problem of MHD natural convection flow past an isothermal

sphere considering viscosity as a non-linear function of temperature. Therefore, this work

presents findings obtained from carrying a study on the effects of temperature dependent

viscosity on the MHD natural convection flow past an isothermal sphere taking viscosity

as a non-linear function of temperature and analysis of the results using Direct Numerical

Scheme.
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1.3 Problem statement

This study considers a two-dimensional MHD Laminar free convectional fluid flow past a

uniformly heated sphere Centre at o and radius a which is immersed in a viscous and incom-

pressible fluid as shown in figure 1.1 below. Viscosity of the fluid is taken as a non-linear

function of temperature and thus, viscosity varies inversely proportional to temperature.

In figure 1.1, B is the magnetic field which impends the motion of the fluid flow.The di-

rection of the fluid flow is along the normal X-axis but x̂ in the figure shows that the fluid

flow is past the isothermal sphere.

Figure 1.1: Physical Model of Problem
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1.4 Justification of the study

MHD natural convection fluid flow is a phenomenon mainly applied in various engineering

plants. Other applications of ferrofluids are technological, materials research and biomedi-

cal applications. Technological applications of ferrofluids include; Dynamic sealing, Damp-

ing, Heat Dissipation and doping of technological materials. In material research, ferrofluids

are used in the study of magnetic colloids which are used in doping liquid crystals and in

doping of lyotropic liquid crystals with magnetic properties.

In biomedical applications, the main categories include; magnetic drug targeting, hyper-

thermia and contrast enhancement for Magnetic Resonance Imaging(MRI). Therefore,

there is need to carry out a study on the effect of temperature dependent viscosity on

MHD natural convection flow past an isothermal sphere.

1.5 Hypothesis

Temperature dependent viscosity has no effect on MHD natural convection fluid flow past

an isothermal sphere.
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1.6 Objectives

1.6.1 General Objective

To analyse the effects of temperature dependent viscosity on MHD natural convection fluid

flow past an isothermal sphere.

1.6.2 Specific Objectives

1. To determine the flow variables.

2. To determine the effects of magnetic field, Grashof number and viscosity on the flow

variables.

3. To determine the effects of magnetic field on the rate of skin friction on the surface

of the sphere.

4. To determine the effect of magnetic field on the rate of heat transfer on the surface

of the sphere.

In the next chapter, governing equations are considered.
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Chapter 2

THE GOVERNING EQUATIONS

2.1 Introduction

The equations governing the flow of an incompressible electrically conducting fluid in pres-

ence of transverse magnetic field lines past an isothermal sphere are presented in this

chapter. First, the assumptions used in this study are highlighted. The equations of

conservation of mass, equation of motion and equation of energy are considered in general

forms, non-dimensional parameters are defined and non-dimensionalization of the resulting

equations is also discussed.

2.2 Assumptions

The following assumptions are made in this study;

1. The viscosity of the fluid is a non-linear function of temperature.

2. The fluid flow is two-dimensional and steady.

3. All velocities are small compared with that of light v2/c2 << 1.

4. The fluid flow is considered to be laminar.

5. The fluid is incompressible.

6. The force due to electric field is negligible compared to the force Ĵ × B̂ due to

magnetic field.
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7. The electric field, external electric field and induced magnetic field due to polarization

charges are negligible.

The universal laws that govern fluid flows such as equation of conservation of mass, equation

of motion and equation of energy form the basis for the fundamentals of fluid dynamics.

2.3 The Governing Equations

2.3.1 Equation of conservation of mass

The law of conservation of mass states that mass can neither be created or destroyed and

it forms the basis for the equation of continuity. This equation is derived by taking a mass

balance of fluid entering and leaving a volume in the flow field. The general equation of

conservation of mass is given by;

∂ρ

∂t
+ 5̂ · (ρq̂) = 0 (2.1)

where q̂ is the velocity in x, y and z directions(q̂ = uî+ vĵ+wk̂) and 5̂ = î ∂∂x + ĵ ∂∂y + k̂ ∂
∂z

2.3.2 Equation of motion

This equation describe the behaviour of physical system in terms of its motion as a function

of time. The main descriptions of motion are dynamics and kinematics. In dynamics,

momenta, forces and energy are put into consideration whereas kinematics deals with

variables derived from the positions of objects and time.The expression of the equation is

given as;
∂q̂

∂t
+ (q̂ · 5̂) · q̂) = −1

ρ
5̂P + ϑ52 q̂ + F̂ (2.2)

where
∂q̂

∂t
is the temporal acceleration, (q̂ ·5̂) · q̂) is the convective term, 5̂P is the pressure

gradient, ϑ52 q̂ is the force due to viscosity and F̂ represents the body forces vector in x

and Y directions.
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2.3.3 The Energy Equation

This equation is derived by applying the first law of thermodynamics to an arbitrary control

volume in the flow field. The general equation in two dimensions is given as:

ρCp

(
û
∂T

∂x̂
+ v̂

∂T

∂ŷ

)
= K

(
∂2T

∂x̂2
+
∂2T

∂ŷ2

)
+ µφ (2.3)

where the viscous dissipation term φ is defined as:

φ = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

+

(
∂u

∂x
+
∂v

∂y

)2

(2.4)

2.4 Non-Dimensional Numbers

Dimensionless numbers which are also called the non-dimensional parameters are obtained

by dividing the inertia force which is always present when any mass is in motion by viscous

force or gravity force or pressure force or surface tension or elastic force. These parameters

allow the application of the results obtained in a model to any other dynamically similar

case. In this study, there are two numbers that are used.
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These numbers are;

• Grashof Number, Gr

• Prandtl Number, Pr

2.4.1 Grashof Number

This number occurs in natural convection problem and is usually defined as:

Gr =
gβ (Tw − T∞) a3

ϑ2
(2.5)

Where g is acceleration due to gravity, β is the coefficient of Thermal Expansion, a is

the radius of the sphere, ϑ is the Reference Kinematic Viscosity, Tw is the temperature of

the sphere and T∞ is the temperature of the ambient fluid.This number gives the relative

importance of buoyancy force to viscous force.

2.4.2 Prandtl Number

This number gives the ratio of viscous force to the thermal force and is defined as:

Pr =
µCp
K

=
ϑ(
K
ρCp

) (2.6)

Where

(
K

ρCp

)
is the thermal diffusivity and viscosity. Fluids that are more viscous have a

higher value of ϑ and thus it follows that they have large Prandtl number. Prandtl number

(Pr) is large when K is small and small when viscosity is small. This number gives the

relative importance of viscous dissipation to thermal dissipation.

In order to develop the empirical laws in engineering, the process of non-dimensionalization

is widely used. This helps in writing the important parameters in a problem as a functional

relationship between them. In the next section,mathematical formulation is carried in order

to obtain the specific equations used in this study.
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2.5 Mathematical Formulation

2.5.1 Dimensional Equation of Conservation of Mass

In this study, fluid flow is considered to be steady and two dimensional laminar flow. The

fluid in consideration is incompressible,thus, density (ρ) is assumed to be a constant and

thus the term
∂ρ

∂t
= 0.

Thus, equation (2.1) reduces to 5̂ · (ρq̂) = 0. Substituting the values of 5̂ and q̂, this

equation becomes;

ρ

(
î
∂

∂x̂
+ ĵ

∂

∂ŷ
+ k̂

∂

∂ẑ

)
·
(
îû+ ĵv̂ + k̂ŵ

)
= 0 (2.7)

or

ρ

(
∂û

∂x̂
+
∂v̂

∂ŷ
+
∂ŵ

∂ẑ

)
= 0 (2.8)

But r̂(x) is the radial distance from the symmetric axis to the surface of the sphere and

thus, r̂(x) is included in equation (2.8) which becomes;

ρ

(
∂rû

∂x̂
+
∂rv̂

∂ŷ
+
∂rŵ

∂ẑ

)
= 0 (2.9)

Since the flow is two dimensional, the term
∂rŵ

∂ẑ
= 0 Thus, equation (2.9)becomes;

ρ

(
∂rû

∂x̂
+
∂rv̂

∂ŷ

)
= 0 (2.10)

Since ρ then equation (2.10) becomes;

∂rû

∂x̂
+
∂rv̂

∂ŷ
= 0 (2.11)

Equation (2.11) is the final dimensional equation of conservation of mass governing the

flow.
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2.5.2 Dimensional Equation of Motion

From the general equation (2.2), the term
∂q̂

∂t
= 0 since the fluid flow is steady.

The term

(q̂ · 5̂) · q̂ = û
∂û

∂x̂
+ v̂

∂û

∂ŷ
(2.12)

since the flow is two dimensional.

For Laminar fluid flow;5̂P = −∂P
∂x

and
∂τ

∂ŷ
=
∂P

∂x
.This is because the pressure gradient in

the direction of flow is equal to the shear gradient in the direction normal to the direction

of flow. But τ =
1

µ

∂û

∂ŷ
. Therefore, the pressure gradient term becomes;

5̂P =
∂τ

∂ŷ
=

∂

∂ŷ

(
1

µ

∂û

∂ŷ

)
(2.13)

The term;

ϑ5̂2
q̂ =

µ

ρ

(
∂2û

∂x̂2
+
∂2v̂

∂ŷ2

)
= 0 (2.14)

This is because from the boundary layer approximations, the equations

(
∂2û

∂x̂2
+
∂2v̂

∂ŷ2

)
is

negligible in this study. The sphere is immersed in the fluid and it is subjected to an upward

force which tends to lift it up. This force is known as Buoyancy which is the tendency of

an immersed body to be lifted up in the fluid.Therefore,from bousinessq approximation,

this force in this study is given as;

gβ(T − T∞)Sin

(
x̂

a

)
(2.15)

The fluid in consideration is a ferrofluid and thus the Magnetic Force F̂ is given as;

F̂ = Ĵ × B̂ (2.16)

The generalized Ohms law neglecting the hall effects can be expressed as:

Ĵ = δ0

[
E + (q̂ × B̂)

]
. (2.17)
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. E in equation (2.17) is the thermal electric effect and it is equivalent to 0 since there is

no applied electrc field internally.Therefore,equation (2.17) can be written as:

Ĵ = δ0

[
q̂ × B̂

]
. (2.18)

The velocity and Magnetic fields are given as: q̂ = (u, v, 0) and B̂ = (0, 0, B0), Therefore;

q̂ × B̂ =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

u v 0

0 0 B0

∣∣∣∣∣∣∣∣∣ = B0vî−B0uĵ (2.19)

Therefore, Ĵ = δ0B0vî− δ0B0uĵ

Ĵ × B̂ =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

δ0vB0 −δ0uB0 0

0 0 B0

∣∣∣∣∣∣∣∣∣ = −δ0uB2
0 î− δ0vB2

0 ĵ (2.20)

Therefore,taking the force in the x-direction, F̂ = −δ0uB2
0 î

Substituting equations (2.12),(2.13),(2.14),(2.15),(2.20) in the general equation of motion(2.2),

the dimensional equation of motion governing the flow in this study becomes;

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
=

1

ρ

∂

∂ŷ

(
1

µ

∂û

∂ŷ

)
+ gβ(T − T∞)Sin

(
x̂

a

)
− δ0B

2
0 û

ρ
(2.21)

2.5.3 Dimensional Energy Equation

From the general equation (2.3), µφ is the Viscous Energy dissipation term and it is very

small since the sphere in consideration is isothermal. Hence, it is neglected in this study.

The term (5̂2
T ) =

∂2T

∂x̂2
+
∂2T

∂ŷ2
is considered along the y-axis due to boundary layer

approximations where its considered that
∂2T

∂x̂2
<<

∂2T

∂ŷ2

Therefore, the energy equation governing the fluid flow in this study is given as;

û
∂T

∂x̂
+ v̂

∂T

∂ŷ
=

K

ρCp

∂2T

∂ŷ2
(2.22)
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Equations (2.11),(2.21)and (2.22) are the equations governing the flow with boundary con-

ditions defined as;

û = v̂ = 0, T = 1 at ŷ = 0

û→ 0, T → 0 as ŷ →∞
(2.23)

In the next section, non-dimensionalization of the governing equation (2.11), (2.21) and

(2.22) is carried out.

2.6 Non-Dimensionalization

Non-dimensionalization is a process that aims at ensuring that the results obtained from

a study are applicable to other geometrically similar configurations under similar set of

equations.The characteristic dimensionless quantities are selected which are used in the

non-dimensionalization of the governing equations. The independent variables are non-

dimensionalized according to the following dimensionless quantities;

x =
x̂

a
=
L

L
(Dimensionless)

y =
ŷ

a
=
L

L
(Dimensionless)

u =
ρa

µ
Gr
−

1

2 û =
ML−3LLT−1

ML−1T−1
(Dimensionless)

v =
ρa

µ
Gr
−

1

2 v̂ =
ML−3LLT−1

ML−1T−1
(Dimensionless)

θ =
T − T∞
Tw − T∞

=
T

T
(Dimensionless)

The dimensionless quantities above together with the boundary condition defined in the
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above section are used in non-dimensionalization of the governing equations (2.11), (2.21)

and (2.22) Non-dimensionalizing equations (2.11), (2.21) and (2.22)is done by replacing

x̂, ŷ, û, T and v̂ with x̂ = xa, ŷ = ya, û =
µ

ρa
Gr

1

2u, v̂ =
µ

ρa
Gr

1

2 v, T = θ(Tw − T∞) + T∞.
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Therefore, from equation (2.11) ;

∂ (rû)

∂x̂
=

∂

r µ
ρa
Gr

1

2u


∂(xa)

=
µGr

1

2

ρa2
∂ (ru)

∂x
(2.24)

∂ (rv̂)

∂ŷ
=

∂

r µ
ρa
Gr

1

2 v


∂(ya)

=
µGr

1

2

ρa2
∂ (rv)

∂y
(2.25)

Substituting equations (2.24) and (2.25) in (2.11), the equation becomes;

µGr
1
2

ρa2
∂ (ru)

∂x
+
µGr

1
2

ρa2
∂ (rv)

∂y
= 0 (2.26)

Multiplying equation (2.26) both sides by
ρa2

µGr
1
2

, the equation becomes;

∂ (ru)

∂x
+
∂ (rv)

∂y
= 0 (2.27)

Equation (2.27) is the non-dimensionalized equation of conservation of mass.

Replacing the values of x̂, ŷ, û, T and v̂ with x̂ = xa, ŷ = ya, û =
µ

ρa
Gr

1

2u,

v̂ =
µ

ρa
Gr

1

2 vandT = θ(Tw − T∞) + T∞ in equation (2.21),the terms are given as;

û
∂û

∂x̂
=
µGr

1

2

ρa2

∂

 µ

ρa
Gr

1

2u


∂(xa)

=
µ2Gr

ρ2a3
u
∂u

∂x
(2.28)

v̂
∂v̂

∂ŷ
=
µGr

1

2

ρa2

∂

 µ

ρa
Gr

1

2 v


∂(ya)

=
µ2Gr

ρ2a3
v
∂v

∂y
(2.29)

1

ρ

∂

∂ŷ

(
1

µ

∂û

∂ŷ

)
=

1

ρ

∂

∂ŷ

(
1

µ∞
(1 + γθ)

∂û

∂ŷ

)
=

γ

ρµ∞

∂θ

∂ŷ

∂û

∂ŷ
+

1

ρµ∞
(1 + γθ)

∂2û

∂ŷ2
(2.30)
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Equation (2.30) can be written as;

γ

ρµ∞

∂θ

∂(ya)

∂

 µ

ρa
Gr

1

2u


∂(ya)

+
1

ρµ∞
(1 + γθ)

∂2

 µ

ρa
Gr

1

2u


∂(ya)2

(2.31)

γµGr

1

2

ρ2a3µ∞

∂θ

∂y

∂u

∂y
+

µGr

1

2

ρ2a3µ∞
(1 + γθ)

∂2u

∂y2
(2.32)

gβ(T − T∞)Sin

(
x̂

a

)
= gβ(T − T∞)Sin

(xa
a

)
= gβ(T − T∞)Sin (x) (2.33)

δ0B
2
0 û

ρ
=
δ0B

2
0

ρ

µGr
1

2

ρa

u =
δ0B

2
0µGr

1

2

ρ2a
u (2.34)

Substituting equations (2.28),(2.29),(2.32),(2.33),(2.33) and (2.34)in (2.21)and multiplying

the equation both sides by
ρ2a3

µ2Gr
, the equation becomes;

u
∂u

∂x
+v

∂v

∂y
=

γ

µµ∞Gr

1

2

∂θ

∂y

∂u

∂y
+

(1 + γθ)

µµ∞Gr

1

2

∂2u

∂y2
+
ρ2a3gβ(T − T∞)

µ2Gr
Sinx− δ0a

2B2
0

µGr

1

2

u (2.35)

In this study, µ is the viscosity of the fluid and is equal to the viscosity of the free stream.

Gr =
ρ2gβ(T − T∞)a3

µ2∞
and therefore 1/Gr =

µ2∞
ρ2gβ(T − T∞)a3

θ =
T − T∞
Tw − T∞

and M =
δ0B

2
0a

2

µGr

1

2
Substituting the values of µ, Gr and M in equation (2.35), this equation reduces to;

u
∂u

∂x
+ v

∂u

∂y
=

γ

µ2Gr

1

2

∂θ

∂y

∂u

∂y
+

(1 + γθ)

µ2Gr

1

2

∂2u

∂y2
+ θSinx−Mu (2.36)

In equation(2.36), let η =
γ

µ2Gr

1

2

to represent the Viscosity Variation Parameter in this
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study.

Therefore, equation (2.36) can be written as;

u
∂u

∂x
+ v

∂u

∂y
= η

∂θ

∂y

∂u

∂y
+
η

γ
(1 + γθ)

∂2u

∂y2
+ θSinx−Mu (2.37)

Equation (2.37) is the non-dimensionalized equation of motion governing the flow.

Non-dimensionalizing the values of x̂, ŷ, û, T and v̂ with x̂ = xa, ŷ = ya, û =
µ

ρa
Gr

1
2u,

v̂ =
µ

ρa
Gr

1
2 v, T = θ(Tw − T∞) + T∞ in equation (2.22),the terms are given as;

û
∂T

∂x̂
=

µ

ρa
Gr

1
2u

∂θ

∂(xa)
=

µ

ρa2
Gr

1
2u
∂θ

∂x
(2.38)

v̂
∂T

∂ŷ
=

µ

ρa
Gr

1
2 v

∂θ

∂(ya)
=

µ

ρa2
Gr

1
2 v
∂θ

∂y
(2.39)

K

ρCp

∂2T

∂ŷ2
=

K

ρCp

∂2θ

∂ ˆ(ya)
2 =

K

ρCpa2
∂2θ

∂y2
(2.40)

Substituting equations (2.38),(2.39) and(2.40) in equation (2.22) gives;

µ

ρa2
Gr

1
2u
∂θ

∂x
+

µ

ρa2
Gr

1
2 v
∂θ

∂y
=

K

ρCpa2
∂2θ

∂y2
(2.41)

Multiply both sides of equation (2.41) by
ρa2

µGr
1
2

, gives;

u
∂θ

∂x
+ v

∂θ

∂y
=

K

µCpGr
1
2

∂2θ

∂y2
(2.42)

But Prandtl number is given as; Pr =
µCp
K

,thus equation (2.42) can be written as;

u
∂θ

∂x
+ v

∂θ

∂y
=

1

PrGr

1

2

∂2θ

∂y2
(2.43)

Equation (2.43) can also be written as;

Gr
1
2u
∂θ

∂x
+Gr

1
2 v
∂θ

∂y
=

1

Pr

∂2θ

∂y2
(2.44)
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Equation (2.44)is the non-dimensionalized equation of energy governing the fluid flow.

The boundary conditions from the previous section becomes;

u = v = 0, θ = 1 at y = 0

u→ 0, θ → 0 as y →∞
(2.45)

In the next chapter,the governing equations (2.27),(2.37) and (2.44) together with the

boundary conditions (2.45) are written in finite difference form.
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Chapter 3

METHOD OF SOLUTION AND ANALYSIS

3.1 Introduction

In this chapter, the method of solution is discussed and the governing equations (2.27),(2.37)

and (2.44) are transformed using the Direct Numerical Scheme(DNS) which is consistent

with the method of solution and final set of equations are presented in finite difference

form.The DNS method is applied since the governing equatons obtained are non-linear in

nature.

3.2 Direct Numerical Scheme

To apply the Direct Numerical Scheme (DNS) method, a new set of transformations are

introduced. These are;

X = x, Y = y, U =
u

x
, V =

v

y
. Therefore, u = Ux = UX and v = V y = V Y

But r(x) is the radial distance from the centre of the sphere in consideration and is given

as r(x) = Sinx. Using the transformations above, the radial distance from the sphere can

be written as r(x) = SinX. The non-dimensionalized equation (2.27) of continuity can be

transformed as follows using the transformations above;

∂(ru)

∂x
=
∂(UXSinX)

∂X
= XSinX

∂U

∂X
+ USinX + UXCosX (3.1)

∂(rv)

∂y
=
∂(V Y SinX)

∂Y
= Y SinX

∂V

∂Y
+ V SinX (3.2)
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Substituting equations (3.1)and (3.2) in equation (2.27), gives;

XSinX
∂U

∂X
+ USinX + UXCosX + V SinX + Y SinX

∂V

∂Y
= 0 (3.3)

Dividing equation (3.3) by SinX , the equation can be written as;

X
∂U

∂X
+

[
1 +X

CosX

SinX

]
U + V + Y

∂V

∂Y
= 0 (3.4)

Substituting the transformations above in the non-dimensionalized equation of motion, we

obtain the following to transformations;

u
∂u

∂x
= UX

∂(UX)

∂X
= UX2 ∂U

∂X
+ U2X (3.5)

v
∂u

∂y
= V Y

∂(UX)

∂Y
= V XY

∂U

∂Y
(3.6)

η
∂θ

∂y

∂u

∂y
= η

∂θ

∂Y

∂(UX)

∂Y
= ηX

∂θ

∂Y

∂U

∂Y
(3.7)

η

γ
(1 + γθ)

∂2u

∂y2
=
η

γ
(1 + γθ)

∂2(UX)

∂Y 2
=
η

γ
(1 + γθ)X

∂2U

∂y2
(3.8)

θSinx = θSinX (3.9)

Mu = MUX (3.10)

Substituting equations(3.5),(3.6),(3.7)(3.8),(3.9) and (3.10) in equation (2.37) and dividing

both sides of the equation by X, gives;

UX
∂U

∂X
+ U2 + V Y

∂U

∂Y
=
η

γ
(1 + γθ)

∂2U

∂y2
+ η

∂θ

∂Y

∂U

∂Y
+ θ

SinX

X
+MU (3.11)

Substituting the transformations X = x, Y = y, U =
u

x
, V =

v

y
in equation (2.44), the

following equations are obtained;

Gr

1

2u
∂θ

∂x
= Gr

1

2UX
∂θ

∂X
(3.12)
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Gr
1
2 v
∂θ

∂y
= Gr

1
2V Y

∂θ

∂Y
(3.13)

1

Pr

∂2θ

∂y2
=

1

Pr

∂2θ

∂Y 2
(3.14)

Substituting equations (3.11),(3.12) and (3.13) in the non dimensionalized equation of

energy,the equation becomes;

Gr
1
2UX

∂θ

∂X
+Gr

1
2V Y

∂θ

∂Y
=

1

Pr

∂2θ

∂Y 2
(3.15)

In order to determine the physical quantities, namely the shearing stress and the rate of

heat transfer the following dimensionless relations are used in this study:

CfGr
1
4

2(1 + γ)
= X

(
∂U

∂Y

)
Y=0

(3.16)

NuGr
−1
4 = −

(
∂θ

∂Y

)
Y=0

(3.17)

Using the transformations X = x, Y = y, U = u
x , V = v

y , the boundary conditions

represented in equation 2.45 in section 2.6 can be written as;

U = V = 0, θ = 1 at X = 0 any Y

U = V = 0, θ = 1 at Y = 0, X > 0

U → 0, θ → 0 as Y →∞, X > 0

(3.18)

Equations (3.4), (3.11), (3.15), (3.16) and (3.17)are non-linear in nature and this is

the main reason why these equations together with the boundary conditions are solved

numerically.Therefore, these equations together with the boundary conditions above are

written into finite differences as shown in the next section so as to solve them.

3.3 Finite Difference Technique

The finite difference approximations for derivatives is one of the methods that can be used

to solve differential equations. This entails approximating the differential operator when
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the derivative in the equations are replaced by difference quotients.The solution obtained

by the use of the finite difference method approaches the true solution of the partial dif-

ferential equation as the increments on the mesh are minimized and approaches zero and

hence the method converges.

In this method, the (t, y) plane is divided into a network of rectangles of sides 4t = h and

4y = k by drawing the set of lines t = ih and y = jk where i, j = 0, 1, 2, ..... Each nodal

point is identified by double index (i, j) that define its location with respect to t and y as

shown in the figure below:

Figure 3.1: Finite Difference Mesh

The finite difference mesh is applied in dividing the physical flow domain into finite number

28



of discrete approximation for space and time domains to be used in the finite difference

method.From the plane figure represented in the figure above, each corner of the cell forms

the mesh or the grid point. Point (i, j) in the diagram is the reference point where i and

j represent t and y respectively. The points adjacent to y and t are defined using the

notation (i± 1) for (t±4t) and (j ± 1) for (x±4x) whereas the points thati and j units

from the reference point have the coordinates (i4 t, j 4 x)

In the finite difference approximation method, the derivatives are replaced with the finite

differences. These finite differences are obtained from the Taylor’s series.

U = u(t, x) and t = t(t, x) are called mesh points or grid points. The first and second

order derivatives with respect to t are obtained in finite difference form using differencing.

A finite difference mesh is used to express the unknown functional values at the (i, j)th

interior mesh using the unknown boundary points.

The finite differences arising from the equations governing this flow are obtained by re-

placing the derivatives in the governing equations by the corresponding difference approx-

imation putting into consideration the initial values and the boundary values set as shown

below;

∂U

∂X
=
U ji+1 − U

j
i−1

24X
(3.19)

∂U

∂Y
=
U j+1
i − U j−1i

24 Y
(3.20)

∂V

∂Y
=
V j+1
i − V j−1

i

24 Y
(3.21)

∂2U

∂Y 2
=
U j+1
i − 2U ji + U j−1i

(4Y )2
(3.22)

∂θ

∂X
=
θji+1 − θ

j
i−1

24X
(3.23)

∂θ

∂Y
=
θj+1
i − θj−1i

24 Y
(3.24)

∂2θ

∂Y 2
=
θj+1
i − 2θji + θj−1i

(4Y )2
(3.25)
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Equations (3.20) to (3.25) are the derivatives of the equations governing the fluid flow

written in finite difference form which are substituted in the respective equations as shown

in the next section.

3.4 Governing Equations in Finite Difference Form

Equations (3.19),(3.20),(3.21),(3.22),(3.23),(3.24)and (3.25) will be substituted for the deriva-

tives in equations (3.3),(3.11),(3.15),(3.16)and (3.17).

The derivatives are written in Central Finite Difference Form as shown above in equations

(3.20) to (3.25).

Equation (3.4) transforms into;

Xi

[
U ji+1 − U

j
i−1

2(4X)

]
+ U ji

[
1 +Xi

CosXi

SinXi

]
+

[
V j+1
i − V j−1

i

2

]
+

[
V j+1
i − V j−1

i

2(4Y )

]
= 0 (3.26)

Making U ji the subject of the formula in equation (3.26), we obtain;

U ji = −

[
Xi

[
U ji+1 − U

j
i−1

2(4X)

]
+

[
V j+1
i − V j−1

i

2

]
+

[
V j+1
i − V j−1

i

2(4Y )

]]
÷
[
1 +Xi

CosXi

SinXi

]
(3.27)

Equation (3.11) can be written as;

xi

[
U j+1
i − U j−1i

2

][
U ji+1 − U

j
i−1

2(4X)

]
+ Yj

[
V j+1
i − V j−1

i

2

][
U j+1
i − U j−1i

2(4Y )

]
+

[
U ji+1 − U

j
i−1

2

]2
=

η

γ
(1 + γθji )

[
U j+1
i − 2U ji + U j−1i

(4Y )2

]
+ η

[
U j+1
i − U j−1i

24 Y

][
θj+1
i − θj−1i

24 Y

]
+ θji

SinXi

Xi
−MU ji

(3.28)

Consider the term below from equation (3.28);

η

γ
(1 + γθji )

[
U j+1
i − 2U ji + U j−1i

(4Y )2

]
(3.29)
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Considering term by term and opening the brackets in the term (3.29), it can also be

written as;

− 2

(4Y )2
(1 + γθji )

η

γ
U ji +

η

γ
(1 + γθji )

[
U j+1
i + U j−1i

(4Y )2

]
(3.30)

Substituting the term (3.30) into (3.28) gives;

Xi

[
U j+1
i − U j−1i

2

][
U ji+1 − U

j
i−1

2(4X)

]
+ Yj

[
V j+1
i − V j−1

i

2

][
U j+1
i − U j−1i

2(4Y )

]
+

[
U ji+1 − U

j
i−1

2

]2
=

− 2

(4Y )2
(1 + γθji )

η

γ
U ji +

η

γ
(1 + γθji )

[
U j+1
i + U j−1i

(4Y )2

]
+ η

[
U j+1
i − U j−1i

24 Y

][
θj+1
i − θj−1i

24 Y

]

+θji
SinXi

Xi
−MU ji

(3.31)

From equation (3.31), making U ji the subject of the formulae, we obtain;

U ji =
η

γ
(1 + γθji )

[
U j+1
i + U j−1i

(4Y )2

]
+ η

[
U j+1
i − U j−1i

24 Y

][
θj+1
i − θj−1i

24 Y

]
+ θji

SinXi

Xi
−

Xi

[
U j+1
i − U j−1i

2

][
U ji+1 − U

j
i−1

2(4X)

]
− Yj

[
V j+1
i − V j−1

i

2

][
U j+1
i − U j−1i

2(4Y )

]
+

[
U ji+1 − U

j
i−1

2

]2
÷
[

2

(4Y )2
(1 + γθji )

η

γ
+M

]
(3.32)

Equation (3.32)is the final equation of motion written in finite difference form.

Writing equation (3.15) in Finite differences, we obtain;

Gr
1
2Xi

[
U j+1
i − U j−1i

2

][
θji+1 − θ

j
i−1

2(4X)

]
+Gr

1
2Yj

[
V j+1
i − V j−1

i

2

][
θj+1
i − θj−1i

2(4Y )

]
=

1

Pr

[
θj+1
i − 2θji + θj−1i

(4Y )2

] (3.33)

From equation (3.33), consider the term;

1

Pr

[
θj+1
i − 2θji + θj−1i

(4Y )2

]
(3.34)
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Opening the brackets in the term (3.34) and considering term by term,the equation can

also be written as;

− 2

(4Y )2)

1

Pr
θji +

1

Pr

[
θj+1
i + θj−1i

(4Y )2

]
(3.35)

Substituting equation (3.35) in equation (3.33), we obtain;

Gr
1
2Xi

[
U j+1
i − U j−1i

2

][
θji+1 − θ

j
i−1

2(4X)

]
+Gr

1
2Yj

[
V j+1
i − V j−1

i

2

][
θj+1
i − θj−1i

2(4Y )

]
=

− 2

(4Y )2)

1

Pr
θji +

1

Pr

[
θj+1
i + θj−1i

(4Y )2

] (3.36)

From equation (3.36), making θji the subject of the formulae, gives;

θji =
1

Pr

[
θj+1
i + θj−1i

(4Y )2

]
−Gr

1
2Xi

[
U j+1
i − U j−1i

2

][
θji+1 − θ

j
i−1

2(4X)

]
−

Gr
1
2Yj

[
V j+1
i − V j−1

i

2

][
θj+1
i − θj−1i

2(4Y )

]
÷ 1

Pr

[
2

(4Y )2

] (3.37)

The physical quantities to be obtained are the shearing stress(rate of skin friction) and the

rate of heat transfer. The finite difference equations used to obtain these results are;

CfGr
1
4

2(1 + γ)
= Xi

(
U j+1
i − U j−1i

2(4Y )

)
Y=0

(3.38)

NuGr
−1
4 = −

(
θj+1
i − θj−1i

2(4Y )

)
Y=0

(3.39)

Therefore, equations(3.27),(3.32),(3.37),(3.38) and (3.39) are the Final Set of Equations

and are solved using a computer code in MATLAB software.

The results obtained from the simulation of equations (3.27),(3.32),(3.37),(3.38) and (3.39)

in the Computer code and discussions are presented in the next chapter.
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Chapter 4

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, the results of the simulations are presented, followed by discussions at each

step.

4.2 Results and Discussions

In this study, the numerical solutions start from the lower stagnation point x = 0 round

the sphere to the upper stagnation point where x = π.

Figure 4.1: Velocity distribution for different values of Magnetic Parameter M
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Figure (4.1) shows the results for the velocity for different values of Magnetic Parameter

M(= 0.0, 1.0, 5.0, 10.0) plotted against Y at x = π
3 having Prandtl number Pr = 0.73,

Grashof number Gr = 4 and Viscosity Variation Parameter η = 0.015 It is observed that

velocity profiles decreases with increase in the Magnetic Parameter. The reason behind this

is that the interaction of the magnetic field and the moving electric charge carried by the

fluid induces a force which opposes the motion of the fluid.Near the surface of the sphere

, the velocity increases and then decreases slowly and finally approaches zero according to

the outer boundary condition. This implies that there exists local maximum of the velocity

within the boundary layer due to the effect of the viscosity of the fluid.It is also observed

that the velocity sharply increases and the decreases exponentially. This is because of the

no-slip condition which implies that the velocity of the fluid at a solid boundary must be

the same as that of boundary itself. Thus a layer of fluid which cannot slip away from the

boundary surface undergoes retardation; thus this retarded layer further causes retarda-

tion for the adjacent layers of the fluid thereby developing a small region in the immediate

vicinity of the boundary surface in which the velocity of the flowing fluid increase rapidly

from zero at the boundary surface and approaches the velocity of the mainstream. After

reaching the critical point, the velocity of the fluid starts to decrease as shown in the figure

above.

Figure 4.2: Temperature distribution for different values of Magnetic Parameter M
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Figure (4.2) shows the results for the Temperature for different values of Magnetic Param-

eter M(= 0.0, 1.0, 5.0, 10.0) plotted against Y at x = π
3 having Prandtl number Pr = 0.73,

Grashof number Gr = 4 and Viscosity Variation Parameter η = 0.015

It is observed that temperature profiles decreases with increase in the Magnetic Parameter.

This is because the interaction of the magnetic field and the moving electric charge carried

by the fluid induces a force which opposes the motion of the fluid.

Figure 4.3: Velocity distribution for different values of Grashof number Gr
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Figure (4.3) depicts velocity distribution against variable Y for different values of Grashof

number Gr = (1.0, 2.0, 4.0, 6.0) at x = π
3 while Pr = 0.73,η = 0.015 and M = 1

It can be observed that the velocity of the fluid increases with increase in the Grashof

number and decreases with decrease in Grashof number. Grashof number gives the rela-

tive importance of Bouyancy force to viscous force. Increase in Grashof number leads to

decrease in viscous force in the fluid which leads to increase in the velocity of the fluid.

Thus,the increase in the velocity profiles with increase in Grashof Number Gr.

Figure 4.4: Temperature distribution for different values of Grashof number Gr
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Figure (4.4) depicts temperature distribution against variable Y for different values of

Grashof number Gr = (1.0, 2.0, 4.0, 6.0) at x = π
3 while Pr = 0.73,η = 0.015 and M = 1

Grashof number gives the relative importance of Bouyancy force to viscous force and there-

fore, increase in Grashof number leads to increase in Bouyancy force which leads to increase

in the temperature profiles of the fluid flow. Thus,the reason behind increase in Tempera-

ture profiles with increase in Grashof Number Gr.

Figure 4.5: Velocity distribution for different values of Viscous Variation Parameter η

Figure (4.5) represents velocity distributions for different values of Viscosity Variation Pa-

rameter η = (0.015, 0.02, 0.025, 0.03) with Pr = 0.73,M = 1 and Gr = 4. It can be

observed that velocity profiles decreases with increase in the viscous Variation Parameter

(η). This is because increase in η leads to decrease in the viscous force of the fluid. This

leads to decrease in the velocity of the fluid.
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Figure 4.6: Temperature distribution for different values of Viscous Variation Parameter η

Figure (4.6) represents Temperature distributions for different values of Viscosity Variation

Parameter η = (0.015, 0.02, 0.025, 0.03) with Pr = 0.73,M = 1 and Gr = 4. It can

be observed that temperature profiles decreases with increase in the viscous Variation

Parameter (η).This is because increase in η leads to decrease in the Bouyancy force and

thus decrease in the temperature profiles of the fluid.

Figure 4.7: Skin Friction Coefficient for different values of Magnetic Parameter M
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Figure (4.7) shows the effect of different values of Magnetic Parameter M = (0.0, 1.0,

5.0, 10.0) on local skin friction coefficient with Viscosity Variation Parameter η = 0.015,

Pr = 0.73 and Gr = 4. It can be observed that increase in the Magnetic Parameter M

leads to decrease in the local skin friction coefficient (CfGr
1
4 ) . This is because increase

in the values Magnetic parameter leads to increase in the Lorentz force which opposes

the fluid flow. This means that there is a decrease in velocity gradient of the fluid flow.

Therefore, leading to a decrease in local skin friction.

Figure 4.8: Heat transfer for different values of Magnetic Parameter M

Figure (4.8) shows the effect of different values of Magnetic Parameter M = (0.0, 1.0,

5.0, 10.0) on the Local Nusselt number (NuGr
−1
4 ) with Viscosity Variation Parameter

η = 0.015, Pr = 0.73 andGr = 4. It is observed that increase in the Magnetic ParameterM

leads to decrease in the values of local Nusselt number. This is because increase in the values

Magnetic parameter leads to increase in the Lorentz force which opposes the fluid flow.

This means that there is a decrease in temperature gradient of the fluid flow.Therefore,

leading to a decrease in local Nusselt number.

It can be observed that there is a decrease in Nusselt number along the X-axis and a
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slight increase after X=2.5 which leads to an observation of an inverse behaviour of the

profiles in figure (4.8). This is because viscosity of the fluid is taken to vary inversely

proportional to temperature. The table below shows the results of skin friction and Rate of

heat transfer varying M . In the next chapter, validation of the results obtained,conclusions

and recommendations are discussed.
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Table 4.1: The results of skin friction and Rate of heat Transfer (Nusselt number)

varying Magnetic parameter while Pr = 0.073, η = 0.015, Gr = 4

M=0 M=1

X0 (CfGr
1
4 ) (NuGr

−1
4 ) X0 (CfGr

1
4 ) (NuGr

−1
4 )

0.02 0.4015 1.9581 0.02 0.3914 1.9498

0.4 8.0984 1.8704 0.4 7.905 1.8642

0.79 15.4196 1.7279 0.79 15.0242 1.725

1.17 21.3508 1.5315 1.17 20.7584 1.5336

1.55 24.7245 1.2949 1.55 23.9855 1.3039

1.94 24.2875 1.0665 1.94 23.5241 1.083

2.32 19.393 0.9343 2.32 18.7799 0.9546

2.71 10.9739 0.9644 2.71 10.643 0.9816

3.09 1.263 1.1182 3.09 1.2298 1.1281

M=5 M=10

X0 (CfGr
1
4 ) (NuGr

−1
4 ) X0 (CfGr

1
4 ) (NuGr

−1
4 )

0.02 0.3558 1.9202 0.02 0.3198 1.889

0.4 7.222 1.8417 0.4 6.5319 1.8181

0.79 13.6387 1.7143 0.79 12.2564 1.7029

1.17 18.7002 1.5409 1.17 16.6756 1.5481

1.55 21.4388 1.3359 1.55 18.9665 1.3679

1.94 20.9063 1.1409 1.94 18.3863 1.1987

2.32 16.6764 1.0262 2.32 14.6496 1.0972

2.71 9.499 1.0428 2.71 8.3833 1.1045

3.09 1.1125 1.1642 3.09 0.9942 1.2023
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Chapter 5

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter presents the validation of the results of this research study, conclusions and

recommendations on the areas that require further research.The published paper of this

study is also included in this chapter.

5.2 Validation of the Results

According to the results discussed in the previous chapter, we note that the Magnetic Field

and Viscous Variation Parameter has a retarding influence whereas Grashof number has

an accelerating influence on the fluid velocity and Temperature.

In absence of viscosity being a non-linear function of temperature, the results are in agree-

ment with the results of the study by Molla et al. (2012) which noted that Viscous Varia-

tion parameter and Magnetic Field has a retarding influence on the fluid velocity whereas

Grashof number have an accelerating influence on both the velocity and temperature of

the fluid.
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5.3 Conclusions

The results of this study leads to the conclusion that the Magnetic Field and Viscous

Variation Parameter has a retarding influence whereas Grashof number has an accelerating

influence on the fluid velocity and Temperature. Therefore, increase in Magnetic Parameter

M leads to decrease in velocity and temperature profiles of the fluid flow.

It can also be concluded that velocity and temperature of the fluid increases with increase

in the Grashof number and decreases with increase in the Viscous Variation Parameter.Skin

friction and the rate of heat transfer in the fluid decreases with increase in the Magnetic

Field and thus viscosity Variation exerts a retarding influence in the fluid velocity and

temperature.

5.4 Recommendations

In this study, the effects of temperature dependent viscosity on Magnetohydrodynamic

natural convection flow past an Isothermal sphere has been investigated. Its recommended

that further research should be carried out:

1. When the fluid flow is unsteady.

2. When the fluid flow is turbulent.

3. When the sphere which is immersed in the fluid is non-uniformly heated.

4. When the fluid is taken to be compressible.

43



REFERENCES

Alam, M. M., Alim, M., and Chowdhury, M. M. (2006). Viscous dissipation effects on mhd natural

convection flow along a sphere. Journal of Mechanical Engineering, 36:44–48.

Chaudhary, R. and Jain, A. (2007). Combined heat and mass transfer effects on mhd free convection

flow past an oscillating plate embedded in porous medium. Rom. J. Phys, 52(5-7):505–524.

Haque, M. R., Alam, M. M., Ali, M., and Sheikh, M. N. (2014). Effects of viscous dissipation on

mhd natural convection flow over a sphere with temperature dependent thermal conductivity in

presence of heat generation. European Scientific Journal, 10(15).

Khan, M. S., Karim, I., Ali, L. E., and Islam, A. (2012). Unsteady mhd free convection boundary-

layer flow of a nanofluid along a stretching sheet with thermal radiation and viscous dissipation

effects. International Nano Letters, 2(1):1–9.

Mebine, P. and Adigio, E. M. (2011). Effects of thermal radiation on transient mhd free convection

flow over a vertical surface embedded in a porous medium with periodic boundary temperature.

Math. Aeterna, 1(4):245–261.

Miraj, M., Alim, M., and Andallah, L. (2011). Effects of viscous dissipation and radiation on

magnetohydrodynamic free convection flow along a sphere with joule heating and heat generation.

Thammasat Int. J. Sc. Tech, 16(4).

Molla, M., Saha, S. C., and Khan, M. (2012). Mhd natural convection flow from an isothermal

horizontal circular cylinder under consideration of temperature dependent viscosity. Engineering

Computations, 29(8):875–887.

Molla, M. M., Biswas, A., Al-Mamun, A., and Hossain, M. A. (2014). Natural convection flow

along an isothermal vertical flat plate with temperature dependent viscosity and heat generation.

Journal of Computational Engineering, 2014.

Molla, M. M., Rahman, A., and Rahman, L. T. (2005). Natural convection flow from an isothermal

sphere with temperature dependent thermal conductivity. Journal of Naval Architecture and

Marine Engineering, 2(2):53–64.

44



Shrama, P. and Singh, G. (2010). Steady mhd natural convection flow with variable electrical

conductivity and heat generation along an isothermal vertical plate. Tamkang J. of Science and

Engineering, 13(3):235–242.

Soares, A., Ferreira, J., Caramelo, L., Anacleto, J., and Chhabra, R. (2010). Effect of temperature-

dependent viscosity on forced convection heat transfer from a cylinder in crossflow of power-law

fluids. International Journal of Heat and Mass Transfer, 53(21):4728–4740.

45



1: COMPUTER CODE IN MATLAB
The governing equations (3.27),(3.32),(3.37),(3.38) and (3.39) in matrix notation in finite difference

form are simulated in the following computer programme code developed usng MATLAB software

subject to the boundary conditions as discussed here in.

The results are obtained by varying various flow parameters notably, Magnetic number,Grashof

number and Viscosity variation parameter.

function LucyCode()

clear all;clc;

x0=0;xend=pi; dx=pi/180;

x=x0:dx:xend;

nx=floor((xend-x0)/dx);

y0=0;yend=2; dy=0.04;

y=y0:dy:yend;

ny=(yend-y0)/dy;

M=10;Pr=0.73;eta=.015;Gr=4;color=’-b’;

uk=zeros(nx,ny);vk=zeros(nx,ny);thetak=zeros(nx,ny);

uk(1:2,:)=0;vk(1:2,:)=0;thetak(1:2,:)=0;%BC at X=0

uk(nx-1:nx,:)=0;thetak(nx-1:nx,:)=1;%BC at X=pi

uk(:,1:2)=0;vk(:,1:2)=0;thetak(:,1:2)=1;%BC at Y=0

uk(:,ny-1:ny)=0;thetak(:,ny-1:ny)=0;%BC at Y tend to Inf

xk=zeros(nx,ny);

matrix=ones(nx,ny);

for i=2:nx-1

for j=2:ny-1

x(i,j)=x(i).*matrix(i,j);

vk(i,j)=vk(i,j-1)-0.5*dy*(uk(i,j-1)+uk(i,j)).*(1+xk(i,i).*

(cos(xk(i,j))/sin(xk(i,j))))-xk(i,j)*(dy/dx)*(uk(i,j)-uk(i-1,i));

uk(i,j)=(dy*dy/(2+M*(dy*dy)))*((1/(dy*dy))*(uk(i,j+1)+uk(i,j-1))+(eta/(dy*dy)).

*(thetak(i,j)).*(uk(i,j)+uk(i,j-1))-(1/(dy*dy))*(thetak(i,j)).*(uk(i+1,j)+uk(i,j))+

(0.25/(dy*dy))*(thetak(i,j+1)-thetak(i,j)).*(uk(i,j+1)-uk(i,j))+(sin(xk(i,j))./(xk(i,j))).*

thetak(i,j)-(0.25/dy)*(vk(i,j+1)+vk(i,j-1)).*(uk(i,j+1)-uk(i,j)) -(0.25/dx)*xk(i,j)*
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(uk(i+1,j)+uk(i-1,j)).*(uk(i+1,j)-uk(i-1,j))-(0.25*(uk(i+1,j)+uk(i,j-1))).^2);

thetak(i,j)=(0.5*Pr*dy*dy)*((1/(Pr*dy*dy))*(thetak(i,j+1)+thetak(i,j-1))-

Gr*(vk(i,j)+vk(i,j)).*((thetak(i,j+1)-thetak(i,j))/(2*dy))-(xk(i,j)).

*Gr*((uk(i,j-1)+uk(i,j))).*((thetak(i+1,j)-thetak(i-1,j))/(2*dx)));

SFk(i,j)=2*(1+eta)*xk(i,j).*((uk(i,j)-uk(i,j+1))/(2*dy));

HTk(i,j)=-((thetak(i,j+1)-thetak(i,j))/(2*dy));

end

end

figure(1)

subplot(2,1,1)

mesh(y(2:ny-1),x(2:nx-1),thetak(2:nx-1,2:ny-1))

subplot(2,1,2)

mesh(y(2:ny-1),x(2:nx-1),uk(2:nx-1,2:ny-1))

figure(2)

plot(y(1:ny-1),thetak(ceil(0.85*nx),1:ny-1),color,2)

xlabel(’Y-AXIS’)

ylabel(’TEMPERATURE’)

figure(3)

plot(y(1:ny-1),uk(ceil(0.85*nx),1:ny-1),color)

xlabel(’Y-AXIS’)

ylabel(’VELOCITY’)

end
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