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Abstract—This paper focuses on the development of bond graph
dynamic model of the mechanical dynamics of an excavating mech-
anism previously designed to be used with small tractors, which are
fabricated in the Engineering Workshops of Jomo Kenyatta University
of Agriculture and Technology. To develop a mechanical dynamics
model of the manipulator, forward recursive equations similar to
those applied in iterative Newton-Euler method were used to obtain
kinematic relationships between the time rates of joint variables
and the generalized cartesian velocities for the centroids of the
links. Representing the obtained kinematic relationships in bond-
graphic form, while considering the link weights and momenta as
the elements led to a detailed bond graph model of the manipulator.
The bond graph method was found to reduce significantly the number
of recursive computations performed on a 3 DOF manipulator for a
mechanical dynamic model to result, hence indicating that bond graph
method is more computationally efficient than the Newton-Euler
method in developing dynamic models of 3 DOF planar manipulators.
The model was verified by comparing the joint torque expressions
of a two link planar manipulator to those obtained using Newton-
Euler and Lagrangian methods as analyzed in robotic textbooks. The
expressions were found to agree indicating that the model captures
the aspects of rigid body dynamics of the manipulator. Based on
the model developed, actuator sizing and valve sizing methodologies
were developed and used to obtain the optimal sizes of the pistons
and spool valve ports respectively. It was found that using the pump
with the sized flow rate capacity, the engine of the tractor is able to
power the excavating mechanism in digging a sandy-loom soil.

Keywords—Actuators, bond graphs, inverse dynamics, recursive
equations, quintic polynomial trajectory.

I. INTRODUCTION

IN order to design, improve performance, simulate the be-
havior and finally control a system or plant, it is necessary

to obtain it’s dynamics. To develop the dynamics of a manip-
ulator, a kinematic model of the manipulator is required first.
The kinematic modeling is done first by attaching coordinate
frames to every link. The usual convention applied to attach
frames in the links of a manipulator is the Denavit-Hartenberg
procedure [1]. The dynamics of a manipulator can be modeled
using various methods namely; Newton-Euler formulation,
Lagrangian formulation, Kane’s method, and others [2], [3].

The three methods; Newton-Euler, Lagrangian and Kane’s
methods tend to hide the physical interactions between the
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elements involved [4]. The relatively new bond graph mod-
eling technique, has been proposed to successfully model
the dynamics of manipulators and mechanisms. Since bond
graph method is based on the interaction of power between
elements, it can be used to model multi-energy domains also,
for example the actuator system of the manipulator which
may be electrical, pneumatic, hydraulic or mechanical. Once
the bond graph model is ready, the system equations can be
derived from it algorithmically in a systematic manner. This
process is usually automated using appropriate softwares such
as ENPORT, CAMP-G, TUTSIM 20-SIM, SYMBOLS 2000,
etc which support bond graphs. For mechanical manipulators
and mechanisms, the bond graph model can be developed
based on kinematic relationships between the time rates of
joint variables and the generalized cartesian velocities (transla-
tional and angular velocities). It is not necessary to have higher
order time rates of variables involved, that is translational and
angular accelerations.

The concept of bond graphs was originated by Paynter [5].
The idea was further developed by Karnopp and Rosenberg
in their textbooks [6]–[8], such that it could be used in
practice. By means of the formulation by Breedveld [9] of
a framework based on thermodynamics, bond graph model
description evolved to a systems theory. More information
about bond graphs can be found in [6]–[12].

The Bond graph method can be used to obtain more intricate
information such as the power required to drive each joint
actuator, or the power interaction at the interface with the
environment. Such information can also be used to study the
stability of the manipulator system during contact interaction
with the environment. Modifications and additions to the
system can be easily incorporated by connecting suitable bond-
graphic sub-systems to its existing bond graph.

In this paper, the mechanical dynamics of the excavating
manipulator designed in [13] to be used with the small tractors
(fabricated in the Engineering Workshops of Jomo Kenyatta
University of Agriculture and Technology) in digging medium-
height trenches for small scale farmers, is modeled using the
bond graph method. The excavating manipulator is shown
in Fig. 1. Inverse dynamics is performed on the developed
dynamic model for purposes of analyzing the hydraulic system
design.

In this work, forward recursive equations for motion of
manipulators similar to those used in Newton-Euler method
are used to derive the kinematic relationships between the time
rates of joint variables, and the generalized cartesian velocities
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Fig. 1. Schematic drawing of a part of assembled excavator

(translational and angular velocities) of mass centers of the
links. These kinematic relations are further used for graphical
representation of the system dynamics using Bond graphs.

II. MODELING THE MANIPULATOR DYNAMICS

Assuming that; the inertial effects of cylinders and their
pistons are negligibly small compared to those of manipulator
links, the hydraulic cylinders transmit axial forces only, the
revolute joints have no friction, and all the links and supports
are rigid, a bond graph model representing the mechanical
dynamics of the excavating manipulator was developed.

A. Kinematic Analysis and Forward Recursion
Kinematic analysis was performed on the excavating ma-

nipulator to relate the translational velocities of the center of
masses of the links (vGi) to the time rates of the joint variables
(θ̇i), for i = 2, 3, 4. The choice of center of mass velocities
for rigid bodies leads to a highly systematic approach for
constructing bond graphs and is recommended [7].

The homogeneous transformation matrices (1) to (4) were
obtained by first attaching world coordinate frames to the three
links as shown Fig. 2 by using Denavit-Hartenberg procedure
as described in [14].
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Fig. 2. Coordinate System assignment for excavator.

A
(1)
0 =

⎛
⎜⎜⎝

cos θ1 − sin θ1 0 a1 cos θ1

sin θ1 cos θ1 0 a1 sin θ1

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (1)

A
(2)
1 =

⎛
⎜⎜⎝

cos θ2 − sin θ2 0 a2 cos θ2

sin θ2 cos θ2 0 a2 sin θ2

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (2)

A
(3)
2 =

⎛
⎜⎜⎝

cos θ3 − sin θ3 0 a3 cos θ3

sin θ3 cos θ3 0 a3 sin θ3

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (3)

A
(4)
3 =

⎛
⎜⎜⎝

cos θ4 − sin θ4 0 a4 cos θ4

sin θ4 cos θ4 0 a4 sin θ4

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (4)

Kinematic relationships between the translational velocities of
the center of masses of the links (vGi) to the time rates of
the joint variables (θ̇i) (where i = 2, 3, 4) can be obtained
by using forward recursive equations which were proposed by
Luh et al. [15]. The translational velocity vi

Gi of the center of
mass of the ith link as specified in the ith coordinate frame
is given recursively by;

v
(i)
Gi = v

(i)
0i + ω

(i)
i × (P (i)

Gi − P
(i)
0i ) (5)

Where
• P

(i)
Gi is the vector from the origin of the base coordinate

system to the center of mass of the ith frame as expressed
in the ith coordinate system.

• P
(i)
0i is the vector from the origin of the base coordinate

system to the origin of the ith coordinate system as
expressed in the ith coordinate system.

• ω
(i)
i is the rotational velocity of link i as specified in the

ith coordinate frame, and is given recursively as;

ω
(i)
i = R

(i−1)
i ω

(i−1)
i−1 + Z̀0q̇i (6)

where
– R

(i−1)
i is the rotational matrix relating two adjacent

frames and is obtained from the respective homoge-
neous transformation matrix.

– Z̀0 =

⎛
⎝ 0

0
1

⎞
⎠

– q̇i = θ̇i for revolute joints.
• v

(i)
0i is the translational velocity of the origin of the ith

link coordinate frame as expressed in the ith coordinate
frame and is given recursively as,

v
(i)
0i = R

(i−1)
i v

(i−1)
0i−1 + ω

(i)
i × (P (i)

0i − P
(i)
0i−1) (7)

where
– P

(i)
0i−1 is the vector from the origin of the base

coordinate system to the origin of the (i − 1)th

coordinate system as expressed in the ith coordinate
system.

– P
(i)
0i is the vector from the origin of the base co-

ordinate system to the origin of the ith coordinate
system as expressed in the ith coordinate system.

International Journal of Mechanical, Industrial and Aerospace Engineering 3:4 2009

249



B. Modeling the Bucket Digging Force

A model that accounts for the material being retained in
the bucket, which was developed by Cannon [16] using force
equilibrium and fundamental earthmoving equation in soil
mechanics was applied in this study to determine the force
F exerted by the excavator bucket to the soil. From Fig. 3,
the force F is given in (8).
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Fig. 3. Wedge model that accounts for the material being retained in the
bucket.

F = d2wγgNw + cwdNc + VsγgNq (8)

Vs is the swept volume, Q is the surcharge, W1 is the weight
of the material above the bucket, W2 is the weight of the rest
of material in the wedge, Lt is the length of the tool, Lf is the
length of the failure surface, R is the force of the soil resisting
the moving of the wedge, F is the force exerted by the tool on
the wedge, ca is the adhesion between the soil and the blade,
c is the cohesiveness of the soil media, β is the failure surface
angle (slip angle), α is the surface terrain slope (cutting angle),
φ is the soil-soil friction angle, ρ is the rake angle of the tool
relative to the soil surface, σ is the soil-tool friction angle, d is
the depth of the bucket tool perpendicular to the soil surface,
w is the width of the bucket, γ is the bulk density of the soil
media and g is the gravitational acceleration.

Nw, Nc Nq are N-factors which depend on: the soil’s
frictional strength, the bucket tool geometry and soil-to-tool
strength properties, and are given by the following equations.

Nw =

(
cot β − tanα

)(
cos α + sin α cot(β + φ)

)

2
(

cos(ρ + σ) + sin(ρ + σ) cot(β + φ)
) (9)

Nc =
1 + cot β cot(β + φ)

cos(ρ + σ) + sin(ρ + σ) cot(β + φ)
(10)

Nq =
cos α + sin α cot(β + φ)

cos(ρ + σ) + sin(ρ + σ) cot(β + φ)
(11)

Equations (8) to (11) show that the magnitude of the digging
force depends on many factors such as the cutting angle,
specific resistance to cutting, volume of the bucket, amount
of the the material ripped into the bucket and the volume
of the material surcharged. These factors are always varying
during the bucket digging operation and indicate complicated
interactions of the bucket and the soil, hence making modeling
of the bucket digging force throughout the digging process a
complex and bulk process.

In this study, a simplified model is presented by considering
the situation of critical force, and then assuming the force to

remain constant throughout the digging process. The critical
value of the cutting angle is given by [17],

αc =
1
2

(
π − σ − sin−1(sinσ sin ρ)

)
(12)

The soil-tool force F is assumed to be applied at the cutting
edge of the bucket. From the Newton’s third law of motion,
the soil applies an opposite and equal reaction force at the
bucket, which can be resolved to a normal and tangential force
components as shown in Fig. 4
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Fig. 4. Bucket digging force at the tip.

The horizontal and vertical components of the bucket reac-
tion force are given as;

Fx=−(FT cos θb − FN sin θb) cos(θ2 + θ3 + θ4)
+(FT sin θb + FN cos θb) sin(θ2 + θ3 + θ4) (13)

Fy=−(FT cos θb − FN sin θb) sin(θ2 + θ3 + θ4)
−(FT sin θb + FN cos θb) cos(θ2 + θ3 + θ4) (14)

These forces are included at the translational velocity of the
origin of the 4th link coordinate frame but referenced to the
base coordinate frame.

C. Overall Bond Graph Model of the Manipulator

The kinematic relationship obtained from (5) for each link
was represented in bond-graphic form while considering the
weights and momenta of the links as the bond graph elements.
All the bond graph sub-models were then assembled to an
overall non causal bond graph of the manipulator as shown in
Fig. 5.

Where
• r1 = LG2O2 sin(θ2 − σ1) − LO1O2 sin θ2

• r2 = −LG2O2 cos(θ2 − σ1) + LO1O2 cos θ2

• r3 = −LO1O2 sin θ2 + LG3O3 sin(θ2 + θ3 − σ2) −
LO2O3 sin(θ2 + θ3)

• r4 = −LG3O3 sin(θ2 + θ3 − σ2) + LO2O3 sin(θ2 + θ3)
• r5 = LO1O2 cos θ2 − LG3O3 cos(θ2 + θ3 − σ2) +

LO2O3 cos(θ2 + θ3)
• r6 = −LG3O3 cos(θ2 + θ3 − σ2) + LO2O3 cos(θ2 + θ3)
• r7 = −LO1O2 sin θ2 − LO2O3 sin(θ2 + θ3) −

LO3O4 sin(θ2 + θ3 + θ4) + LG4O4 sin(θ2 + θ3 + θ4 − σ3)
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Fig. 5. A non causal bond graph model representing the mechanical dynamics
of the manipulator.

• r8 = −LO2O3 sin(θ2 + θ3) − LO3O4 sin(θ2 + θ3 + θ4) +
LG4O4 sin(θ2 + θ3 + θ4 − σ3)

• r9 = −LO3O4 sin(θ2 + θ3 + θ4) + LG4O4 sin(θ2 + θ3 +
θ4 − σ3)

• r10 = LO1O2 cos θ2 + LO2O3 cos(θ2 + θ3) +
LO3O4 cos(θ2 + θ3 + θ4)−LG4O4 cos(θ2 + θ3 + θ4 −σ3)

• r11 = LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4) −
LG4O4 cos(θ2 + θ3 + θ4 − σ3)

• r12 = LO3O4 cos(θ2 + θ3 + θ4) − LG4O4 cos(θ2 + θ3 +
θ4 − σ3)

• r13 = −LO1O2 sin θ2 − LO2O3 sin(θ2 + θ3) −
LO3O4 sin(θ2 + θ3 + θ4)

• r14 = −LO2O3 sin(θ2 + θ3) − LO3O4 sin(θ2 + θ3 + θ4)
• r15 = −LO3O4 sin(θ2 + θ3 + θ4)
• r16 = LO1O2 cos θ2 + LO2O3 cos(θ2 + θ3) +

LO3O4 cos(θ2 + θ3 + θ4)
• r17 = LO2O3 cos(θ2 + θ3) + LO3O4 cos(θ2 + θ3 + θ4)
• r18 = LO3O4 cos(θ2 + θ3 + θ4)

D. Checking the Model

One way to check the bond graph model developed in Fig.
5 is to compare results with those available in the literature.
A two link manipulator shown in Fig. 6, moving in a free
space, and whose links are uniform and of equal lengths was
considered. Such a problem is studied using Newton-Euler,
Lagrangian, and d’Alembert’s methods in the standard robotic
textbooks [2], [3].

Fig. 6. A two link planar manipulator.

All the rotation axes at the joints are along the z-axis normal
to the paper surface. Let;

LO1O2 = LO2O3 = l

LG2O2 = LG3O3 =
l

2
σ1 = σ2 = 0

The bond graph model of the two link planar manipulator
can be represented as shown in Fig. 7;
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Fig. 7. A non causal bond graph model representing the mechanical dynamics
of a 2-link manipulator.

Where,
• r1 = − l

2 sin θ2

• r2 = l
2 cos θ2

• r3 = −l sin θ2 − l
2 sin(θ2 + θ3)

• r4 = − l
2 sin(θ2 + θ3)

• r5 = l cos θ2 + l
2 cos(θ2 + θ3)

• r6 = l
2 cos(θ2 + θ3)

• r7 = −l sin θ2 − l sin(θ2 + θ3)
• r8 = −l sin(θ2 + θ3)
• r9 = l cos θ2 + l cos(θ2 + θ3)
• r10 = l cos(θ2 + θ3)
The joint torques applied to each of the joint by the

respective actuator can be obtained systematically from the
bond graph using the constitutive relations, and noting that
Fx = Fy = 0 since the manipulator is moving in free space.
The external torque applied to move link 3 can be obtained
from the bond graph as;

τ3 =
1
3
m3l

2θ̈2 +
1
3
m3l

2θ̈3 +
1
2
m3l

2θ̈2 cos θ3 +
1
2
m3l

2θ̇2
2

sin θ3 +
1
2
m3gl cos(θ2 + θ3) (15)

The external torque applied to move link 2 can be obtained
from the bond graph as;

τ2=
1
3
m2l

2θ̈2 +
4
3
m3l

2θ̈2 +
1
3
m3l

2θ̈3 + m3l
2θ̈2 cos θ3

+
1
2
m3l

2θ̈3 cos θ3 − m3l
2θ̇2θ̇3 sin θ3 − 1

2
m3l

2θ̇2
2 sin θ3

+
1
2
m2gl cos θ2 + m3gl cos θ2 +

1
2
m3g cos(θ2 + θ3)(16)

The equations of external torque given in (15) and (16) corre-
spond to those obtained using Newton-Euler and Lagrangian
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methods for the same planar manipulator, as illustrated in
[2], [3]. This indicates that, the model developed captures the
essential aspects of rigid body dynamics of the manipulator.

III. HYDRAULIC SYSTEM ANALYSIS AND DESIGN USING
INVERSE DYNAMICS

In inverse dynamics, the generalized joint torques are com-
puted given the desired joint trajectories. The joint trajectories
are obtained through the trajectory planning schemes which
generally interpolate or approximate the desired manipulator
path by a class of polynomial functions and generates a
sequence of time-based set-points for the manipulator from
the initial position and orientation to its destination [2].

Quintic trajectory is used to size the spool valves and the
pistons of the hydraulic cylinders, and also to check the total
power required when the bucket of the manipulator is digging a
sandy-loom soil. As described in [16], all the cylinders will be
considered to be extending simultaneously during the digging
operation.

Model parameters are needed to run simulations. Parameters
like lengths, masses and angles were found from design
drawings and trigonometric calculations. But parameters like
the location of a center of mass, link moments of inertia,
products of inertia of a link could not be estimated from
blueprints. Auto CAD with Advanced Modeling Extension
Package was used to estimate the mass properties of all the
links and the locations of center of masses.

A. Trajectory Planning

In a typical trajectory, all joints move simultaneously. For
the typical trajectory selected here, the boom, arm, and bucket
links move from their minimum to maximum positions and
all joints start and finish moving at the same time, although
different time limits can be programmed.

Three common trajectories namely, trapezoidal trajectory,
cubic polynomial trajectory, and quintic polynomial trajectory
have been previously applied in trajectory planning for hy-
draulic manipulators. Sarkar [18] used the three trajectories
to size the valves and power requirement for an articulated
forestry machine. Among the three methods, the quintic poly-
nomial trajectory has advantage in that;

• the velocity trajectory is smooth unlike in trapezoidal tra-
jectory whose velocity profile has discontinuities where
the link motion starts to settle at a constant velocity, and
where the link starts to decelerate.

• the acceleration profile has values equal to zero at starting
and finishing times of the trajectory, unlike in the other
trajectories where the acceleration values at the start and
final times have non zero values.

Therefore the trajectory to be adopted in this work is the
quintic polynomial trajectory which is given by;

x(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5 (17)

The desired boundary conditions are; xt=0 = xmin,
xt=tf

= xmax, ẋt=0 = 0, ẋt=tf
= 0, ẍt=0 = 0 and

ẍt=tf
= 0. By taking the first and second derivatives of

(17) and satisfying these boundary conditions, the coefficients

of the polynomial can be obtained and substituted in the
polynomial equation (17) to get the required displacement,
velocity and acceleration trajectories as;

x(t)=xmin +
10(xmax − xmin)

t3f
t3 +

15(xmin − xmax)
t4f

t4

+
6(xmax − xmin)

t5f
t5 (18)

ẋ(t)=
30(xmax − xmin)

t3f
t2 +

60(xmin − xmax)
t4f

t3

+
30(xmax − xmin)

t5f
t4 (19)

ẍ(t)=
60(xmax − xmin)

t3f
t +

180(xmin − xmax)
t4f

t2

+
120(xmax − xmin)

t5f
t3 (20)

B. Simulink Model for the Inverse Dynamics of the 3 dof
System

In Fig. 8, the complete Simulink model of the inverse
dynamics of 3dof excavating manipulator is shown. This
model is the test-bed for all inverse dynamics simulations done
on the system. The whole system is run in the same time
frame, and as a result the outputs must match the generated
trajectories.

joint_traje

joint trajectory generator

theta traj

piston traj

Jf

joint to piston level

joint traj joint torque

inverse dynamics
flow_rates

To Workspace7

torques

To Workspace5
power

To Workspace4

thetas

To Workspace3

cylinder_forces

To Workspace2

pressure_drops

To Workspace1

cyl force

piston traj

pressure drops

flow rates

Hydraulics

emu

emu

emu

em

|u|

|u|
|u|

Fig. 8. The overall Simulink block for the inverse dynamics

The joint trajectory generator block produces the desired
boom, arm and bucket quintic polynomial trajectories, that
is, the angular displacements, angular velocities and angular
accelerations of the links according to (18)-(20). The three sig-
nals from the joint trajectory generator block each containing
the corresponding signals for the boom, arm and bucket link
are fed into the inverse dynamics block to compute the joint
torques for the bucket, arm and boom links respectively. The
joint torque profiles when the bucket is digging a sandy-loom
soil is shown in Fig. 9.

C. Power Profiles
The dynamic model obtained also permits either sizing of

the system power supply or checking whether the desired
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Fig. 9. The torque profiles at manipulator joints, when the bucket is digging
a sandy-loom soil; (a) Boom joint torque (b) Arm joint torque (c) Bucket
joint torque

manipulator trajectory can be followed without exceeding the
power capacity of the supply. The power required for the
boom, arm and bucket motion is respectively given as;

Pbo = τboθ̇2 (21)
Pa = τaθ̇3 (22)

Pbu = τbuθ̇4 (23)

Where τ is the torque required to move a link at an angular
velocity of θ̇. The total power required for a given trajectory
can be obtained by;

Ptotal = |Pbo| + |Pa| + |Pbu| (24)

assuming there are no power losses. The power requirement
profiles for the manipulator are given in Fig. 10 when the
bucket is digging a sandy-loom soil.
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Fig. 10. (a) Boom joint power (b) Arm joint power (c) Bucket joint power
(d) Total joints power ;when the bucket is digging a sandy-loom soil and at
the initial cycle times

The peak value for the total power consumption when
the bucket is digging a sandy-loom soil is shown to be
approximately 5kW (6.7hp). This value is greater than the
power rating of the engine (6.5hp) which is to drive the
hydraulic pump, implying that, the digging operation cannot
be achieved under the given link trajectories without exceeding
the power capacity of the prime mover.

The power consumption as seen in (21)-(24) depends on
the joint torque requirements and the angular velocities of
the links. Two options are available to reduce the total power
requirement of the manipulator. These are;

• Reduce the joint torque requirements for the manipulator,
by reducing the mass properties of the links and/or
reducing the force exerted to the ground by the bucket.

• Increase the cycle times of the link trajectories. This
means that the pump flow rate capacity will be reduced.

In this work, the second option of increasing the cycle times
of the link trajectories was used. Generally, the cycle time
has a direct impact on the flow rate requirements relative
to the link/actuator motion requirements, and on the power
requirement of the manipulator. As seen in (19) increasing the
cycle time tf will decrease the link velocities, and this will
subsequently reduce the power requirement and also the flow
rates requirement.

The optimum cycle time necessary to ensure that the power
requirement for the manipulator motion when the bucket is
digging a sandy-loom soil is reduced was found to be 10s.
Fig. 11 shows the new power requirement profiles for the
manipulator.
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Fig. 11. (a) Boom joint power (b) Arm joint power (c) Bucket joint power
(d) Total joints power ;when the manipulator is digging a sandy-loom soil
and at the optimal cycle times

D. Sizing the Hydraulic Actuators and Valves based on Inverse
Dynamics

An important application of the inverse dynamic modeling
of hydro-mechanical systems is the sizing of hydraulic compo-
nents. In this section, the optimal sizes of the actuator pistons
as well as the optimal sizes of the spool valve orifice ports of
the boom, arm, and bucket cylinders are determined. For this
purpose, the pressure drop profiles across the cylinders and
valves need to be plotted from the inverse dynamics.

1) Pressure Drop Profiles: The hydraulic forces required to
produce the torques necessary for manipulator motion results
in corresponding pressure drops across the hydraulic cylinders.
The expressions for the pressure drop in the boom cylinder,
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Δpbo, arm cylinder, Δpa, and bucket cylinder, Δpbu are
approximated using equations below;

Δpbo =
Fcybo

Apbo

(25)

Δpa =
Fcya

Apa

(26)

Δpbu =
Fcybu

Apbu

(27)

The cylinder forces are related to the joint torques by the
manipulator jacobians which for the manipulator in consider-
ation are derived in [19]. The pressure drop profiles across
the cylinders when the bucket is digging a sandy-loom soil
are shown in Fig. 12.
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Fig. 12. The Pressure drop profiles across the cylinders, when the bucket is
digging a sandy-loom soil and at original piston diameters; (a) Boom cylinder
(b) Arm cylinder (c) Bucket cylinder

Neglecting line pressure drops, the pressure drops at the
corresponding valves are approximated as;

Δpbov = ps − |Δpbo| (28)
Δpav = ps − |Δpa| (29)

Δpbuv = ps − |Δpbu| (30)

Where ps is the operating pressure. The pressure drop profiles
at the valves for the case when the bucket is digging a sandy-
loom soil is shown in Fig. 13.
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Fig. 13. The Pressure drop profiles across the cylinder valves, when the
bucket is digging a sandy-loom soil and at original piston diameters; (a)
Boom cylinder valve (b) Arm cylinder valve (c) Bucket cylinder valve

2) Actuator Sizing: As shown in (25)- (27) the cross sec-
tional area of the piston of a cylinder determines the pressure
drop across the cylinder during the working stroke, which is
considered to be the extension stroke. And from (28)-(30)
the maximum possible pressure drop (Δpmax) across a given
cylinder should be equal to the supply pressure (ps), that is,

Δpmax = ps (31)

• If Δpmax < ps, then this implies that the supply pressure
is not used maximally and hence there is no need of such
a high pump pressure since the cylinder is oversized.

• If Δpmax > ps, then the pressure drop across the valve
becomes negative and this will result to a negative flow
rate through the valve. This is not possible practically and
implies that the cylinder is undersized.

As seen in Fig. 12, the maximum pressure drops across
the cylinders (points with asterisks) are less than the supply
pressure of ps = 14.5MPa. This is also shown in Fig. 13
where at the point of maximum pressure drop for all the
cylinders (points with asterisks), the pressure drops across the
corresponding valves do not equal to zero. Therefore it can
be concluded that the boom, arm and bucket cylinders are
oversized.

The optimal cylinder piston sizes were determined by tuning
the piston sizes until that instant when the maximum pressure
drops equaled the supply pressure for all the cylinders. These
values were found to be precisely 52.2mm, 45.1mm and
40.9mm for the boom, arm and bucket cylinders respectively,
as shown in Fig. 14. The optimal piston diameters values of
the cylinders were rounded to the next imperial values which
are available in the market as 57.15mm (21

4 in), 50.8mm (2in)
and 44.45mm (1 3

4 in) for the boom, arm and bucket cylinders
respectively.
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3) Valve Sizing: A valve is properly sized when it can sup-
ply the demanded flow at the required pressure drop across it.
Therefore to size a valve, flow and pressure requirements must
be obtained as a function of time for a given task. Obviously,
the task becomes more demanding when the manipulator’s
bucket is digging a trench.

The flow through the valves for the three actuators is
obtained from the following equations,

Qbo = Apbo
ẋpbo

(32)
Qa = Apa

ẋpa
(33)

Qbu = Apbu
ẋpbu

(34)

where Q is the flow to the cylinder, Ap is the average area
of the cylinder piston, and ẋp is the velocity of the cylinder
piston.

The pressure drops across the valves is obtained from (28)-
(30). These equations can be used to plot valve flow versus
valve pressure drop for the desired end-point trajectories.
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The resulting Q − Δp curve should lie below the valve
pressure-flow characteristics at full valve opening, Qv −Δpv ,
typically a curve described by a relationship of the form;

Qv = CdAO

√
2
ρ
Δpv (35)

Where Qv is the flow rate through a valve, Δpv is the pressure
drop across the valve, Cd is the discharge coefficient, ρ is the
fluid density and AO is the area of the orifice opening.

If Q−Δp curve does not lie below the valve pressure-flow
characteristic curve at full valve opening, then the pressure
drop across the valve is less since the pressure drop across
the actuator is large. Therefore, the valve flow rate is not
able to provide the motion to the manipulator at the specified
speed at a particular operating pressure. In this case a valve of
larger capacity must be specified, or the value of the operating
pressure increased. Fig. 15, shows the typical plots of such
curves when the bucket is digging a sandy-loom soil.
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Fig. 15. Pressure drops versus flow curves, when the bucket is digging
a sandy-loom soil and at the initial sizes of the valve’s orifices; (a) Boom
cylinder valve (b) Arm cylinder valve (c) Bucket cylinder valve

As seen in Fig. 15, the Q − Δp curves for all the cylinder
valves are far below the valve characteristic curves, hence it
can be concluded that the manipulator will be able to operate
with the selected valves, although the valve orifice ports are
seen to be oversized. An optimal orifice port size should ensure
that the peak value of the Q−Δp curve is well near the valve
characteristic curve.

The optimal orifice port sizes were determined by tuning
the radii of the ports until that instant when the peak values
of the Q − Δp curves for all the valves are well below the
characteristic curves. These values were found to be precisely
equal to 1.5mm for all the cylinder valves. The optimal port
diameter values of 3mm were rounded to the next imperial
values which are available in the market as 3.175mm ( 1

8 in).
The resulting pressure drop versus flow curves are shown in
Fig. 16.

0 5 10 15

x 106

0

2

4

6

8
x 10-4 (a)

Fl
ow

 ra
te

(m
3 /s

)

Pressure drop 
(Pa)

0 5 10 15

x 106

0

2

4

6

8
x 10-4 (b)

Fl
ow

 ra
te

 (m
3 /s

)

Pressure drop 
(Pa)

0 5 10 15

x 106

0

2

4

6

8
x 10-4 (c)

Fl
ow

 ra
te

 (m
3 /s

)

Pressure drop 
(Pa)

Qv- pv
Q- p

Qv- pv
Q- p

Qv- pv
Q- p

Fig. 16. Pressure drops versus flow curves, when the bucket is digging a
sandy-loom soil and at the optimal sizes of the valve’s orifices; (a) Boom
cylinder valve (b)Arm cylinder valve (c) Bucket cylinder valve

IV. CONCLUSION

Bond graph modeling tool has been applied to model the
mechanical dynamics of an excavating manipulator which was
modeled as a 3 degree of freedom planar manipulator. This
was done by applying forward recursive equations similar to
those applied in iterative Newton-Euler method only to deter-
mine the centroid velocities of the links, unlike in Newton-
Euler method which requires extra recursive computations to
determine the centroid accelerations of the links. A dynamic
model resulted after representing the horizontal and vertical
velocities of the links in bond-graphic form, while considering
the momenta and weights of the links as the bond graph
elements. On the other hand, Newton-Euler method requires
backward recursion to be performed in order to obtain a
dynamic model. This showed that the bond graph method
reduces significantly the number of recursive computations
required to be performed to a manipulator for a dynamic model
to result, and therefore it can be concluded that bond graph
method is more computationally efficient than the Newton-
Euler method in developing dynamic models of manipulators.
Based on the developed model, valve-sizing and actuator-
sizing methodologies were briefly outlined and used to obtain
the optimal sizes of the ports of the spool valves as well as
the optimal sizes of the pistons of the hydraulic cylinders.
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