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ABSTRACT
This research developed epidemiological models for the susceptible infected
recovered for tuberculosis epidemic in Kenya using stochastic and deterministic
models as well as spatial temporal models. Tuberculosis disease is transmitted within
and between communities when infected and susceptible individuals interact. Interest
in the epidemiology of TB was triggered by the re-emergence of tuberculosis in the
early 1990's with the advent of HIV and falling economic status of many people
which subjected them to poverty. In this study, we focused on the period 2000-2013
and all the notified data in Kenya was included. Data on estimates of TB incidence,
prevalence and mortality was extracted from the WHO global tuberculosis database.
The study was guided by the following objectives: to develop epidemic models for
TB progression; to estimate the expected number of individuals with the disease at
any given time t; to formulate small area estimation models for TB progression; and
to develop spatial-temporal models for the TB progression. The results showed that
there was an average decline of 5% over the last 8 years with the highest decline
being reported in the year 2012/13. TB continues to disproportionately affect the
male gender with 58% being male and 42% being female. Kenya has made
significant efforts to address the burden of HIV among TB patients with
cotrimoxazole preventive therapy (CPT) uptake reaching 98% with and ART at 74%
by the end of 2013. The gains in the decline of TB could be attributed in part to in
the outcomes of integrating TB and HIV services and these gains should be
sustained. What is equally notable is the clear epidemiologic shift in age indicating
reduced transmission in the younger age groups. The spatial reference regions

considered were the 47 Kenyan counties. The covariates considered were gender,

X Vil



HIV positive proportion, directly observed Treatment (DOTs), average weight,
average Body Mass Index (BMI) and average age. From the results of all notified TB
cases, only average BMI was excluded from the spatial temporal model since it was
not statistically significant (p-value > 0.05). The estimated risk of case notification
rates per 100,000 were found to be highest in the following counties Marsabit, Isiolo,
Nairobi, Lamu, Mombasa, Machakos, Kajiado, Makueni, Kisumu, Siaya and
Homabay. The study recommends that efforts must be made in addressing the risk

factors for TB which is geographically differentiated.
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Chapter 1

INTRODUCTION

1.1 Background Information

In this work we begin by exploring the reasons why mathematical modelling in the
study of disease epidemics and epidemiological process has a huge significance and
later review the important field of stochastic modeling. A discussion on its implica-
tions when applied in the modelling of infectious diseases will also be looked at. The
continued challenge of infectious diseases in human beings and animals has brought
to the fore the need for rigorous study of mathematical epidemiology which entails
developing models for predicting the nature of dynamics of the spread of an infection
or a disease. It is widely held in discourse and literature that mathematical models
development, their analysis and implementation play a natural and important role in
obtaining such understanding. It has been noted that model formulation processes
when carried out systematically; clarifies assumptions, variables, and parameters.
Further, models provide conceptual results such as thresholds, basic reproduction

numbers, contact numbers, and replacement numbers, Hethcote (2000).

The understanding of the transmission characteristics of infectious diseases is para-
mount particularly in communities, regions, and countries can lead to better design of
interventions geared towards decreasing the transmission rates of diseases pathogens.
Mathematical models play an important role in comparing, planning, implementing,
evaluating, and optimizing various disease detection, prevention, treatment, and con-

trol programs, Hethcote (2000).

Mathematical models of the spread of a disease in given populations play a central
role in the following key components; understanding the transmission, predicting the

future direction the epidemic is going to take when there is an outbreak, its extinc-



tion time and evaluating the efficiency and effectiveness of disease control measures.
The wvalidity, richness and reliability of the resulting intervention depends on the
reliability and accuracy of the model, Jacob (2010).

An epidemic model can be considered as a simplified means of describing the trans-
mission patterns of communicable disease either through individuals from contact to
contact or agents. The term “stochastic” has been used in this thesis to mean being
or having a random variable characteristic. A stochastic model thus is a tool for
estimating probability distributions of potential outcomes by allowing for random
variation in one or more inputs over time. Stochastic models depend on the chance
variations in risk of exposure, disease and other illness dynamics. They are mostly
used when it is considered that random changes are important, Trottier and Philippe
(2001).

The main reason why stochastic models were considered in this study is because
of the inherent challenges that are evident and clear in deterministic models which
assume that populations are randomly mixing, that is,. every individual contact
interacts with every other individual with the same rate, or in a multi-type process,
contacts between individuals of certain types all happen at the same rate but these
assumptions would not be true of tuberculosis because duration of exposure is an
important factor. In the case of tuberculosis an individual my be exposed to the
bacteria and could enter into a latent stage or proceed on to get the disease. Some of
the major drawbacks of deterministic models have been highlighted by Murray et al.
(1986) and Murray (1989) in which it was proposed that a deterministic model be
used to predict the dynamics of the prevalence of rabies among foxes in England. In
this study, the dynamics predicted by the model produced results that the number

of infected foxes will rapidly increase until the number of available susceptible foxes



is too low and then the disease seems to disappear, but after a period of about 2
years there is a sudden reappearing of rabies in foxes predicted. Murray et al. (1986)
used a continuous approximation of the number of infected foxes and during the
years that the infection seemed to have disappeared (in the predictions based on the
model), there still was a minimum of around one infected atto-fox (10—18 of a fox)
per square kilometre and this fox-part eventually caused the new wave of infection
as clearly pointed out by Molison (1991) who tried to explain the phenomenon that
Murray et al. (1986) had encountered previously. This shows some of the inherent
dangers of continuous approximations of the number of individuals being used in the
modelling framework.

From the foregoing challenges of deterministic models, its clear that they are not the
most relevant for modelling the start and the end of an epidemic. This is particularly
when the number of infectious individuals is small and for modelling the spread of
infections on complex interactions of populations when the number of available sus-
ceptible individuals that an infective individual can infect, is small. In this thesis,
the main focus is on stochastic branching process models and develop stochastic
models for tuberculosis diseases which can be generalized to other infectious diseases
that are important from epidemiological, mathematical and modelling point of view.
Specifically, three problems are considered. Firstly, the problem of evaluating the
conditional probability that an epidemic has died out given that no symptomatic
cases have been observed, although infected cases with latent form of TB may still
be present. Secondly, the effect of predisposing factors for the development of the
infectious disease (HIV status, Nutritional status, socio economic and delay in dia-
gnosis) in the presence of spatio-temporal distribution and geographical differences.

Finally, a model is developed for tuberculosis in order to assess the trends and de-



duce the future trends of the disease given the current trends and interventions.

In our model, we introduced branching process in a changing (but not random) situ-
ation. The study proceeds to estimate the probability of disease dying out and the
expected number of infected individuals at a given time ¢ and as a consequence the
expected number of TB cases can be estimated. In addition, this branching process
is used to calculate the generating function of the number of infected individuals at
any given moment in time. The model and methods are designed using tuberculosis

data reported in Kenya for the last 14 years.

1.1.1 Basics of Tuberculosis

Tuberculosis (TB) is one of the infectious diseases of public health concern glob-
ally. It is caused by bacillus bacteria and the most common causative organism is
the Mycobacterium tuberculosis. Other causative agents that are occasionally im-
plicated are Mycobacterium bovis which is transmitted through contaminated milk
and Mycobacterium africanum, Cadmus et al. (2010). The transmission of the bac-
teria is through infectious aerosolized droplet nuclei generated by coughing, laughing,
talking, sneezing and singing. The ability to generate infectious aerosolized droplet
nuclei is dependent on the infectivity of the patient where a sputum smear positive
patient is considered most infectious, Dooley et al. (1990). Infection with the Myco-
bacterium does not always lead to development of disease as the immune system is
able to contain the infection and the bacilli remain dormant. The risk of infection is
dependent on the extent to which exposure happens; longer durations of exposure to
infected persons who are not on treatment increase the chance of infection, Dooley
et al. (1990). Those with the highest risk to develop TB include children under five,

the elderly and those who are immunosuppressed.



Globally, the World Health Organization (WHO) estimates that 2 billion people, or
1/3 of the world’s population, are infected with ( Mycobacterium tuberculosis) the
bacillus that causes tuberculosis (TB). In 2012, there were 8.7 million incident TB
cases with 1.4 million people dying of TB, making it the leading infectious cause of
death worldwide, WHO (2012).

For individuals who have untreated latent TB infection and immunity is not com-
promised, the estimated risk of developing tuberculosis disease is 5% to 10% over
a lifetime, with about 50 — 80% of that risk occurring during the first 2 years fol-
lowing infection. Individuals with immunocompromised conditions, in particular by
HIV co-infection, the risk of developing the disease increases to 5% to 10% per year
MACET (2009). Healthy immune systems can contain TB bacilli in the vast ma-
jority of cases. Individuals at higher risk of developing TB are those with lowered
immunity — notably people who are HIV positive, those living in poverty as well as
those with other chronic conditions. While HIV attacks the body’s immune system
directly, characteristics of poverty such as poor nutrition, inadequate housing, lim-
ited access to clean water and bad sanitation reduces resistance to TB.

Those who develop TB will develop one of two types: First, the Pulmonary TB
(PTB), which accounts for about 80% of TB cases WHO (2012). This is highly
infectious and attacks the lungs. There are two sub-categorizations of PTB: one
that shows up in a sputum sample (PTB SS+) and that which requires further tests,
such as a chest x-ray, to diagnose (PTB SS-). The second type, Extra-pulmonary
TB (EPTB) affects organs other than the lungs, such as the spine, lymph nodes or
abdomen. EPTB is not infectious, unless it is accompanied by PTB. Figure 1.1.1

shows the flow of the treatment process of TB.
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To combat all forms of TB, a global strategy for diagnosis and treatment for TB
was adopted by the WHO, for implementation by national TB programmes, WHO
(2006). The strategy has six elements with major strategy being Directly-Observed
Treatment Short course popularly known as DOTS, which is simple since it is based
on identifying TB cases in the community and treating these cases by directly ob-
serving that patients take the correct drug treatment for six (6) to eight (8) months
(depending on the type of treatment). The objectives of this strategy are to ensure
that the patient is cured thus minimizing the chances that he/she will relapse, and
prevent the development of drug-resistant TB. Under DOTS, TB patients require a
guardian to ensure and document that they have taken their treatment — often this
is a family member, community health worker or a neighbour. Their role is particu-
larly crucial during the first two months of treatment, known as the intensive phase,
when the strongest drugs are used. After two months, patients undergo a sputum
examination to determine the concentrations of TB bacills in their lungs. Depending
on the results, the drug therapy is changed and TB patients enter the continuation
phase of treatment for four (4) or six (6) more months. In the intensive phase, most
patients or their guardians are required to pick up their drugs from the designated
health facility once per week. During the continuation phase, this changes to twice

per month.



The length of treatment, frequency of drug collection, and human resources required
by DOTS are all onerous aspects of TB treatment, involving direct financial and
indirect opportunity costs. As it is widely held in the discourse that poor socioeco-
nomic standing and TB are closely linked, the susceptibility of those who are already
poor to a disease that leads to further impoverishment due to illness and treatment
demands constitutes a double burden of the most economically vulnerable. Fur-
thermore, where TB is widespread, an undiagnosed TB case can lead to between
ten (10) and fifteen (15) new infections per year, WHO (2007). One of the most
widely-associated symptoms of TB is haemoptysis (coughing up blood), but in fact,
this is a late-developing symptom - WHO guidelines recommend that patients seek
medical attention after two weeks of a chronic cough, WHO (2003). As such, the
pre-diagnosis phase is a crucial time period for the individual as well as for TB con-

trol.

Kenya is among the twenty two (22) TB high burden countries in the world which
contribute 80% of the global TB burden WHO (2012). The absolute number of TB
cases notified has increased more than ten-fold since 1990 while the TB incidence has
increased from below 50 per 100,000 in 1990 to 329 per 100,000 population in 2008,
DLTLD (2013). The HIV epidemic is the single most contributing factor for this
massive increase in the burden of TB in Kenya. From the Kenya AIDS Indicator
Survey 2013 the prevalence of HIV in Kenya currently stands at 5.6%, NASCOP
(2013), while the TB HIV co-infection rate was at 39% in 2012, DLTLD (2013). In
2013, diagnosis and treatment of TB was carried out by general health care workers
in 1,900 TB diagnostic centres and over 4,300 TB treatment centres in Kenya. This

translated to one diagnostic centre per 37,634 populations and one treatment centre



per 18,411 populations.

Diagnosis of TB is through sputum smear microscopy for new smear positive cases.
Smear negative cases are diagnosed via a diagnostic algorithm as per the national
TB guidelines. The diagnosis of extra pulmonary TB is based on clinical suspicion
and the collection of appropriate specimens for TB bacteriology where this is feas-
ible. Kenya developed a medium term TB control strategic plan covering the period
2011-2015 which was modelled along the WHO Stop TB Strategy. The global targets
of TB control are to achieve at least 70% TB case detection rate and 85% treatment

success rate, WHO (2006).

(CDR) reached the global target of 80% in 2007, the treatment success rate was 85%
in 2007. By the end of 2008, 83% of TB patients were tested for HIV against a
national target of 80%, DLTLD (2009).

Despite this progress, major problems still remain: low access to anti-retroviral treat-
ment for HIV infected TB patients, significant delays in TB diagnosis which facilit-
ates TB transmission and is associated with a higher frequency of the poor sequel
of TB and the emerging problem of drug resistant tuberculosis. There are concerns
that inadequate infection control measures in health care settings may be facilitating
the transmission of TB to health care workers, patients and their visitors which has
significant consequences for vulnerable groups such as HIV infected persons.

The emergence of multidrug-resistant, Mycobacterium tuberculosis (MDR-TB) world-
wide poses a serious problem to the treatment of tuberculosis. These MDR strains are
at least resistant to two primary chemotherapeutic agents rifampicin and isoniazid,
WHO (2003) which require treatment with more costly and more toxic second-line

drugs.



1.1.2 Tuberculosis Epidemiology

To understand TB epidemiology, changes in the trends of the burden of TB disease
over a period of time are considered. The main indicators for the burden of TB
disease include; incidence, prevalence and mortality. These estimates have been
derived from WHO databases on TB. Data on TB prevalence and mortality are
hardly available due to low coverage of the civil registration systems in the country.
Kenya has not conducted a national TB prevalence survey in the recent past (the
last TB prevalence survey was conducted in 1956), but it is currently carrying out a
prevalence survey (2015/2016). There is currently no national level vital registration
system with standard ICD-10 coding in place in Kenya. Less than half of deaths are
recorded, and approximately 10% of deaths receive any ICD code. Results from a
prevalence survey and vital registration systems can be used to assess the current
levels of TB disease and mortality and could also provide important evidence about
the effectiveness of current TB programmatic efforts and actions needed to improve

TB care and control.

1.1.2.1 Burden of TB Disease

The burden of a disease is looked at from three contexts; incidence, prevalence and
mortality. Figure 1.1.2 suggests a consistent decline in new TB cases over time, with
the decline in TB cases starting in 2005 following the decline in TB/HIV cases which
started in 2004. After peaking in 2006, there has been a slowing phase in the rate of
decline in estimates of TB prevalence, Figure 1.1.3. TB mortality estimates suggest
an increase in TB deaths in 2011-2012, Figurel.1.4. However, the wide confidence
intervals indicate considerable uncertainty in the estimates, suggesting the need for

other more direct methods to measure prevalence and mortality.
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Figure 1.1.2: Trend of tuberculosis incidence in Kenya, 2000-2012
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Figure 1.1.3: Trend of tuberculosis prevalence in Kenya, 2000-2012

10



&

[#5]
[%)]

L
=]

o=}
L

Per 100,000
[
=]
\

15
10
5
D T T T T T T T T T T T 1
(] — ™ m g L w I~ m (=] (=] — ™
(=] (=] (=] [=] (= (= [=] (=) (=] — — —
(=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=]
™ ™ ™ ™ (] ™ ™ ™ (] ™ ™ '} ™
Year

Source: WHO global TB database
Figure 1.1.4: Trend of tuberculosis patients’ mortality in Kenya, 2000-2012

With regards to deaths ocurring to HIV positive TB patients, there has been a
consistent decline in the estimated TB-related deaths among people living with HIV,

Figure 1.1.5. This could be attributed to intervetions in both HIV and TB programs

beging to bear fruits and could need to be further sustained.
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Figure 1.1.5: Trend of deaths due to TB among HIV patients in Kenya, 2000-2012
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1.1.2.2 TB Case Notifications

In Kenya the number of notified TB cases (all forms) increased from approximately
95,000 cases in 2003 to a peak of over 116,000 cases in 2007, Figure 1.1.6. After
2007, the number of notified TB cases has steadily declined until 2013, when the
number of notified TB cases was approximately 89,000 — the lowest it has been in
over a decade. Approximately 10,000 fewer cases were reported in 2013 compared to
2012. This observed trend is consistent with the trend of incidence and prevalence

as estimated by WHO.

The case notification rate for all TB cases (new and retreatment) shows three distinct
phases, Figure 1.1.7. From 2000 to 2004, the TB case notification rate increased; from
2004 to 2006, rates remained constant; and from 2006 to 2013, rates steadily declined,
with rates in 2013 lower than those recorded in 2000. Based on national data, the
case notification rates fell rapidly between 2011 and 2013, decreasing approximately
8% and 12% each year respectively as shown in Table 1.1. For all years, notification
rates based on Kenyan data are slightly higher than WHO estimates (Figure 1.1.7)

this may be explained by use of different population estimates.

Case notification rates were calculated using population estimates from Kenya’s 2009
population and housing census for the years 2009-2013 and updated population es-
timates from the 1999 population and housing census for 2003-2008. Changes in
population estimates between 2008 and 2009 did not appear to have a large effect

on national level case notification rates.
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Figure 1.1.6: TB notifications in Kenya, 2003-2013
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Figure 1.1.7: TB case notification rates in Kenya, 2000-2012
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Table 1.1: Percentage change in all forms of notified TB case rate in Kenya, 2003-
2012

Year National TB Case Notification Rate (per 100,000) % Change from Previous Year

2000 210.8 .
2001 233.2 10.60%

2002 254.8 9.30%
2003 287.3 12.70%
2004 309.6 7.80%
2005 308.5 -0.40%
2006 318.7 3.30%
2007 313.9 -1.50%
2008 288.0 -8.20%
2009 281.2 -2.40%
2010 263.6 -6.20%
2011 251.0 -4.80%
2012 230.9 -8.00%
2013 203.1 -12.10%

Source: Ministry of Health TB database

As shown in Figure 1.1.8, the percentage of new childhood and adult TB cases has
remained consistent between 2008  2012. The ratios were fairly consistent with
the rates that have been proposed by WHO in their standards and benchmarks tool
which suggests that the data collected at the national level have a high level of
external consistency if the percentage of children diagnosed with TB ranges between

5-15% in low - and middle-income countries.
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Figure 1.1.8: Comparison of TB cases in adults and children in Kenya, 2008-2012
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1.1.2.3 TB Cases by Disease Type

The relative numbers of new bacteriologically confirmed (smear positive) cases and
extrapulmonary TB cases have remained fairly consistent over time, Figure 1.1.10.
The percentage of new cases that are bacteriologically confirmed ranged from 37.3 to
43.0% between 2003 to 2012, fluctuating slightly from year-to-year. The percentage
of new cases that are extrapulmonary, however, increased gradually since 2003 but
maintained a narrower range: 15.1% to 18.2%, Figure 1.1.9. This slight increase
could result in a reduction in TB transmission because there were fewer pulmonary

TB cases in the community.
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Figure 1.1.9: Comparison of new pulmonary and extrapulmonary TB in Kenya,
2003-2012

100%
3

w B0%

a

=

£ 60%

; 43.0%

Em ] 42.3%  40.6% 40.2% 42.0% 41.2%
E 373%  395% 37.6% 39.5%
T T
B 151% 154% 154% 16.6% 170% 169% 17.6% 182% 182%  17.8%
=

£ 0% T T T T T T T T T

£ 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
a Year

==ie=% Bacteriologically Confirmed. st Extrapulmonary

Source: Ministry of Health TB database
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1.1.2.4 TB Cases by Age

The largest number of TB cases occurred among young adults as shown in Figure
1.1.11, with the most cases reported for adults aged 25-34 years, followed by adults
aged 35-44 and those aged 15-24 years. The fewest cases were reported in children

aged 0-4 years.
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Figure 1.1.11: All forms of TB cases by age group in Kenya, 2008 - 2012

1.2 Statement of the Problem

In the 1950’s and 60’s as the health systems began to be stregthened and with ef-
fectiveness of improved sanitation systems, introduction of potent antibiotics, and
initiation of mass vaccination programs created confidence that the war against in-
fectious diseases would soon be won and most of the infectious diseases would be
eliminated. As the burden of infectious diseases began to decline in the West more
attention has turned to addressing cardiovascular disease and cancer. But infectious
diseases have continued to be the major causes of suffering and mortality in devel-
oping countries. Moreover, infectious disease agents adapt and evolve, so that new

infectious diseases have emerged and some existing disease have reemerged. This
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coupled with lack of mathematical models interventions to guide targeted disease
control measures in developing countries, the problem has been compounded. In
Kenya, TB continues to remains a major public health concern with over 100,000
new caseas each year and the disease being the leading cause of mortality particularly

among the HIV+ patients (DLTLD (2013)).

Kenya is a high TB burden country ranked 13th amongst the 22 countries contribut-
ing 80% of the Global TB case load, WHO (2012). Currently there is no model that
can be used to predict the direction the epidemic will take given the current inter-
ventions continue being implemented. In addition, there is no prediction currently
on the direction the epidemic will take given presence of other disease predisposing
factors or determinants for tuberculosis disease. The aim of this study was to develop
an epidemilogical model for tuberculosis disease and apply them in Kenya based on

the surveillance data reported in the last 24 years.

1.3 Justification

The mathematical models developed will provide an in-depth examination of the
inherent dynamics of TB epidemiology and its spread over time given the existing
predisposing factors for the development of tuberculosis disease. Through the de-
velopment of a stochastic branching process model, prediction of the TB epidemic
will become apparent. The epidemiological modeling and understanding of the TB
epidemic particularly in high HIV settings will act as a tool for advising TB control
policies in Kenya and other developing countries. Although this model has been
used in other infectious diseases, the proposed models have not been used for TB
progression. It is anticipated that the model can be used to study the effects of

the variation of interventions and assist in designing proper interventions since there
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has been several interventions implemented by the government which have not been
evaluated appropriately to the TB disease dynamics. The study also provides a
considerable contribution to the tuberculosis epidemic modelling and prediction in

Kenya.

1.4 Objectives

1.4.1 The General Objective

The general objective was to model tuberculosis epidemic progression.

1.4.2 The Specific Objectives
1. To develop epidemic models for TB progression;

2. To estimate the expected number of individuals with the disease at any given

time t;
3. To formulate small area estimation models for TB progression;

4. To develop spatial-temporal models for the TB progression.

1.5 The Scope

This study covered the reported cases of TB in Kenya in the period from 1987 to
2014. All TB cases, that is, smear positive, smear negative and extra pulmonary
TB. The case notification data were obtained from the national TB database while
data on disease burden (incidence, prevalence and mortality) were obtained from
WHO global database. The methodologies used include: the deterministic models,

stochastic models, branching processes, small area estimation for mapping.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In modeling the nature of infectious diseases at the population level two types of
models are useful: these are stochastic and deterministic models. Stochastic mod-
els rely on chance variation in risks of exposure, disease, and other factors. They
provide much more insight into an individual-level modeling, taking into consider-
ation small population size where every individual plays an important role in the
model i.e. the individuals in a way contribute to the progression of the infections in
a random manner. They are more useful in scenarios where infection is as a result of
contacts with another individual. Hence, they are used when known heterogeneities
are important as in small or isolated populations. Stochastic models have several
advantages. More specifically, they allow close watching of each individual in the
population on a chance basis. They, however, can be laborious to set up as they
need many simulations to yield useful predictions. These models can become math-
ematically very complex and do not contribute to an explanation of the dynamics.
Deterministic models, also known as compartmental models, attempt to describe
and explain what happens on the average at the population scale. They fit well
to large populations. These models categorize individuals into different subgroups
(compartments). There is a large body of literature which has been developed in
the field of epidemic modelling in an attempt to address the behaviour of different

disease spread.
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2.2 Predictive Model

A fine predictive model should be built as far as possible in a rigorous mechanistic
way starting from the mechanism of exposure/infection of each individual and tak-
ing into account their variability (Jacob (2010)). Bernoulli (1766), was one of the
most foremost mathematicians to attempt to develop a model on the effects of the
disease in the population. The work developed a deterministic model to show that
inoculation with a mild form of the small pox virus would reduce the death rate of
the population of France, Bernoulli’s work was reviewed extensively by Klaus and
Heesterbeek (2002) in their study, where they revisited Bernoulli’s work who has
been credited as having developed the first compartmental epidemic model. The
main objective of this work was to calculate the gain in life expectancy at birth if
small pox was to be eliminated as a cause of death. The main drive of this work was
on prolongation of life expectancy at any age since the focus then was on annuities
and any change of life expectancy would have had immediate financial impact in
the insurance business. Bernoulli’s work has been further credited for developing a
method for dealing with competing risks (D’Alembert (1761)). In Bernoulli’s model
the population is divided into two compartments: Susceptible that is, those who
have not been infected and immunes, being those who have been immunized for the
rest of their lives after one infection. In this model certain parameters are considered
namely; death rate due to all causes except due to infection and was denoted by p(a)
and the force of infection, A(a) , which is the rate according to which susceptible are
infected. In the model, there is a proportion s(a) who survive to become immune
with the rest c(a) = 1 — s(a) dying due to the infection. If u(a) denotes the probah-
ility for a new born individual to be alive and susceptible at age a, this probability

satifies the differential equation.
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with initial condictions u(0) =1 .

The probability w(a) to be imunne and alive is given by

dw

= 1 —c(a)] Ma)p(a) — p(a)w

with initial condictions w(0) =0 .

The solutions to these equations were obtained as:

u(a) = exp{—[A(a) + M(a)}

w(a) = e”™@ / (1 — c(r)\(T)e 2 Dar

0

where

and

M(a) = /GM(T)dT

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

If [(a) denotes the probability to survive age to a then, [(a) = u(a) + w(a). This is

because the two states susceptible and immune are complementatry to each other.

The survival function then in the population without small pox would then be
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lp(a) = e~ M@ (2.2.7)

while the survival function in the presence of small pox was given as

a

l(a) = lo(a)[e @ + / [1 — c(m)\(1)erPdr]. (2.2.8)

0

With the presentation of Bernoulli’s work, Klaus and Heesterbeek (2002) gave an
account of a rejoinder to Bernoulli’s work by D’Alembert (1761) who gave a critique
of Bernoulli’s compartmental model by developing a generalized model which is not
restricted to an immunizing disease. This model starts by letting p4(a) denote the
force of mortality due to some disease d. The force of mortality due to other causes
was denoted by pu(a). Letting ¢4(a) denote the rate at which deaths due to particular

cause for individuals who die at age a, then

ba(a) = pala)l(a). (2.2.9)

Thus, if survival function is known, force of mortality for a particular disease can be
calculated by dividing ¢4(a) by [(a). The survival function without particular cause

of death is thus as shown in Equation 2.2.10.

a

lo(a) = e M@ = [(a) exp /,ud(T)d(T) (2.2.10)

0
D’Alembert (1761)method is viewed as being more desirable if the task at hand is to
calculate the survival function after eliminating a particular cause of death. While
Bernoulli’s method provides more insight for the interpretation of infectious disease

data, an early reference to the non-linearity of epidemic models is made in a study
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by Hamer (1906). Hamer (1906) presupposed that the probability of an infection in
the next period of time (in a discrete time model) was proportional to the number of
infectious individuals multiplied by the number of susceptible individuals which is an
assumption of the mass action law. One of the first epidemic models to incorporate
the randomness observed in real life epidemics was given by McKendrick (1926). This
model is a stochastic continuous time version of the Deterministic General Epidemic
Model. With a deterministic models the values of the parameters and variables in the
model are known with certainity, as there are no random fluctuations in value. The
system can be completely defined at any time using the initial conditions specified.
Another early discrete-time model is the chain Binomial model of Reed and Frost,
Bailey (1975), in which the number of infectious cases to appear in the next time
unit follows a Binomial distribution with the probability of infection dependent on
the number of infectious cases in the current time unit. Bartlett. (1949) studied
McKendrick’s model, that stochastic models in continuous time were examined more
extensively. Since then, research has been directed towards the study of a wide

variety of models, and their statistical analysis.

Several epidemic models have been used to model recent disease outbreaks Siettos
et al. (2015). The study developed an agent based model using small-world net-
work constructed using Watts and Strogatz (S&W) algorithm with a variable edge
density. The edge density being defined as the number of links divided by the total
possible links attributed to the agent. Further work on epidemic modelling was illus-
trated by Keeling and Danon (2009) who showed that Mathematical models allow
us to extrapolate from current information about the state and progress of an out-
break, to predict the future and, most importantly, to quantify the uncertainty in

the predictions. It also illustrated the mathematical epidemic principles by utilizing
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the data form the Influenza A virus containing Haemagglutinin and Neauramini-
dase glycoproteins (HIN1) epidemic. Given the wealth of information mathematical
models provided in the last two years alone due to disease outbreaks in particular
Ebola virus disease (EVD) there is a wealth of literature utilizing epidemic models
methodology as described in the work by (Fasina et al. (2014), Muyembe-Tamfum
et al. (2012), Shuaib et al. (2014), Tomori (2015)) among others. In the preceeding

work, a review of some of the models used is given.

2.2.1 The Susceptible Infective Epidemic Model

There has been a long history of mathematical epidemiology modeling dating back
to the 18th century, Bernoulli (1766). It was until the early 20th century that there
was popular dynamic systems approaches being implemented, Anderson and May
(1991a), Hethcote (2000). Over the last decades, epidemiologists have used epidemic
models to obtain a purview of disease epidemic processes and dynamics. One such
epidemic model is Susceptible-Infective model I, this model was first formulated by
Bernoulli (1766). In this model only two compartments exist i.e. the susceptible and
infective compartment. A number of authors have reviewed and utilized the I models.
Watson and Galton (1968) considers an SI model with constant population size and
two kinds of susceptibles having very different infection rates. Then he gives the
exact solution in an implicit form and also derives an approximation to the solution
which permits simple estimates of the infection rates. There have also been efforts
to develop numerical methods to approximate the solution of McKendrick (1926)
models. Lewis and Glass (1991) uses discrete models to qualitatively capture all the
dynamics of these models. He develops two discrete models based on the Lewis-Glass

hypercube projection method Lewis and Glass (1991) and the Laubenbacher-Stigler
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polynomial interpolation method Laubenbacher and Stigler (2004) to find discrete
approximations of the dynamics of the associated McKendrick (1926) model which
are qualitatively similar to the dynamics of the continuous model. This model is the
basic epidemic model and assumes that all the susceptible will enventually become

infected and at that point the epidemic comes to an end.

2.2.2 The Susceptible Infective Recovery Epidemic Model

The standard SIR (Susceptible Infective Recovered) epidemic model is a well studied
model for the spread of an infectious disease through a fixed population. This section
sets out how the model is constructed, and then generalise it to have multiple types of
communities with different rates of predisposing factors using the structured model

developed by Anderson and Tom (2000).

Glass et al. (2007) applied Markov Chain Monte Carlo methods to a discrete time
branching process model with two types of infectious individual: diagnosed and hid-
den. The study obtained estimates of the distribution of the number of infectious
individuals in the (£ +1)th generation of the infection, given that the number of dia-
gnosed individuals has been observed for the first ¢ generations. Since it is necessary
to know to which generation an infectious form belongs, the method by Glass et al.
(2007) can only be used for data on the very early generations of infection. However,
if the reproduction number is close to one, the highly stochastic first phase of an
epidemic may last for many more generations than this. Eichner and Dietz (1996)
simulated a continuous time Markov process model for the spread of polio with vac-
cination, in order to find the probability that the disease has died out given a case
free period of length t. They calculated this probability by simulating the epidemic

and recording the proportion of case free periods with length greater than ¢ in which
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the disease had died out at the end. All of the simulations begin from a state of
endemic polio in a completely unvaccinated population of 200,000 individuals. They
found that a case free period of 3 years gives a 95% probability of eradication. O’Neill
and Roberts (1999) described Markov Chain Monte Carlo methods for estimating
the parameters for the Markov SIR epidemic model in which the removal times are
observed until time ¢. Branching processes play a fundamental role in epidemic the-
ory, underpinning our understanding of the threshold behaviour of epidemics and the
calculation of the critical vaccination threshold as well as providing a simple model
for the early stages of epidemic spread. Thus, much recent work on complex epidemic
models making use of branching process approximations have been documented by
Marschner (1992), Ball and Donnelly (1995), Clancy and O’Neill (1998), Caraco

’

et al. (1998), Muller and Kirkilionis (2000), Ball and Lyne (2001). More directly,
branching processes have been proposed as statistical models on which to base infer-
ences about the reproduction number R, represented by the offspring mean (Becker
(1974), Farrington and Grant (1999), Yanev and Tsokos (1999)). Nevertheless, in
contrast to the wide spread use of other types of models, particularly the determ-

inistic models of Anderson and May (1991b), statistical models based on branching

processes are seldom used in practice for infectious disease control.

2.2.3 Susceptible Exposed Infective Recovery Epidemic Model

A common class of epidemiological models developed for the spread of infectious
diseases is the Kermack-McKendrick model and its variations McKendrick (1926).
These models are represented as systems of ordinary differential equations. Many
variations of the original Kermack-McKendrick model have been described in many

epidemiological works and it typically using names based on acronyms of the involved
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compartments. Some of these models incorporate a fourth class (Exposed) within
the population, accounting for diseases with a latent period. Also some of these mod-
els account for non-permanent immunity, thus allowing individuals to again move to
the susceptible compartment. Hethcote (2000) investigated a variety of mathemat-
ical models whose classes and interactions are a subset of the SEIRS model. In the
SEIR model, the population is usually categorized into four different compartments
(or epidemiological classes) at each point of time. These compartments are suscept-
ible, exposed, infective, and recovered. The susceptible compartment contains those
individuals who do not have any type of immunity to the disease and can become
infected. When there is an adequate contact of a susceptible with an infective so that
transmission occurs, the susceptible enters the exposed compartment of those in the
latent period, who are infected but not yet infectious. After the latent period ends,
the individual enters the infective compartment of those who are infectious in the
sense that they are capable of transmitting the infection. When the infectious period
ends, the individual enters the recovered compartment consisting of those with per-
manent infection-acquired immunity. This model has been used extensively by a

number of authors (Hethcote (1976), Li et al. (1999), Anderson and Tom (2000)).

2.3 Branching Processes

The major characteristic of biological populations is that individuals undergo birth
and death and that individuals carry information passed on from their parents at
birth. Furthermore, there is a randomness in this process in that the number of births
that an individual gives rise to is in general not deterministic but random. Branching
processes model this process under simplifying assumptions but nevertheless provide

the starting point for the modelling and analysis of such populations.
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Branching process is a Markov process that models a population in which each
individual in generation n produces some random number of individuals in generation
n—+1, according to a fixed probability distribution that does not vary from individual
to individual. Branching processes are used to model reproduction; for example, the
individuals might correspond to bacteria, each of which generates 0, 1, or 2 offspring
with some probability in a single time unit. Branching processes can also be used
to model other systems with similar dynamics for example the spread of disease in
a community. Genarally, Galton-Watson processes Watson and Galton (1875) are
used to describe a family tree from the perspective of generations. But in statistical
epidemiology one may be more interested in the real time development of the number
of infective individuals. Usually it is not possible to observe the size of an “infection
generation”, but it may be possible to observe the number of infective individuals at

a certain time.

Branching processes in discrete time were first used by Galton and Watson in order
to model the survival of surnames Mode (1971), but they have come to have many

other applications, particularly in biology Jagers (1975).

At time zero, ¢ initial ancestors begin their lifetimes. During each of its lifetime,
each individual in the process will independently gives birth to offspring at the
points of a Poisson process with rate 3, and these offspring start their own lifetimes
immediately. Each lifetime has length distributed according to the random variable
Y;, all instances of which are independent. Let I(¢) denote the number of individuals

alive in the branching process at time ¢, so that overall, births occur at a rate 1(t).
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2.4 Small Area Estimation

Small area has been used to refer to a population for which reliable statistics of
interest cannot be produced due to certain limitations in the available data. The
small areas used could be provincial, county, sub-county, demographic groups (e.g.
age X sex), a demographic group within a geographic region. The demand for data
or estimates for such small areas has greatly increased during the past few years.
This is primarily due to increase in usefulness of these data in government policy

and program development, allocation of various funds and planning, Rao (2003).

Small area estimation (SAE) has in the recent past gained prominence and is a topic
of great importance due to the growing demand for reliable small area statistics even
when only very small samples are available for these areas. Over the years, a number
of statisticians have introduced vigorous programs to meet this demand. Extensive
research on the theoretical and practical aspects of SAE is carried out and many
international conferences and workshops are held in order to share the results of
this research effort. Interest in small area estimation methods has further enhanced
in recent years due to the tendency of many countries to base future censuses on
administrative record systems. Recognizing the inaccuracies of the administrative
data and the fact that even the richest records cannot cover all the detailed inform-
ation required for small census tracts, the idea is to test, correct and supplement
the administrative information by sample data. In the more recent past, it has been
used in Nepal to estimate poverty Nepal Central Bureau of Statistics (2013). SAE
can be used in the study of disease epidemiology by establishing relative risks given

the different variable effects.

The models used for describing the distribution of an observation in space and time
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are usually formulated within a hierarchical Bayesian framework with two main ap-
proaches namely empirical and full Bayes. Empirical Bayes approach provides para-
meter estimates by maximizing their posterior distribution using penalized quasi-
likelihood (PQL) techniques while the full Bayes provides the posterior distribution
of the target parameters by assigning hyperpriors which take care of model uncertain-
ties Gomez and Lopez (2006). In this study we consider the Bayesian Hierarchical
Generalized Linear Mixed Models (BHGLMMs) which are used in small area estim-
ation because of their ability to incorporate multiple levels of model dependencies
(Cnaan et al. (1997) and Fong et al. (2009)). The BHGLMMs falls in subclass
of structured additive regression (STAR) models known as latent Gaussian models
and their response variable is usually non Gaussian and belongs to an exponential
family (Umlauf et al. (2012); Klinker (2010)). The posterior marginals of the lat-
ent Gaussian models are not available in closed form for non-Gaussian observation
models (Rue et al. (2009)). In such models the common approach to inference is
the Markov Chain Monte Carlo (MCMC) which exhibits poor performance in terms
of convergence and computation time. Integrated nested Laplace approximation
(INLA) developed by Rue et al. (2009) and based on nested Laplace approximations
is a new approach for Bayesian inference on latent Gaussian models and it has an
excellent performance in terms of good accuracy and reduced computational time
(Grilli et al. (2014), Taylor and Diggle (2013), Cameletti et al. (2013) and Rue et al.

(2009)) .
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Chapter 3

METHODOLOGY

3.1 Introduction

Modelling is basically about describing the relationship between a response variable
and one or more other variables (explanatory variables) in a simplified way. First,
explore the data to detect patterns and relationships after which you visualize the
relationship by fitting a curve to the data. This is the empirical approach in which
you choose a model based on the data. Alternatively, if there exist a well-established
theory, you choose the model based on the context and see if it fits the data well. The
deterministic growth models in biology can be used to model consumer behaviour in

economics and the majority of models in physics and chemistry.

Epidemic modelling has three main aims. The first is to understand the transmission
mechanism of the disease. The essential part is a mathematical structure (equations
that gives threshold values and other constants which can be used to describe the
behavior of the disease). The second aim is to predict the future direction of the
epidemic. The third is to understand how control measures can be put in place to
curtail the spread of the epidemic (treatment education, immunization, isolation etc)
and lastly to develop a reliable model and generate sound and sensitive predictions.
So it is important to validate models by checking whether they fit the observed data.
In deterministic models, population size of the compartments are assumed to be
functions of discrete times t = 0, 1, 2, ... or differentiable functions of continuous time
t > 0. This enables derivation of a set of difference-differential equations governing
the process. The evolution of this process is deterministic in the sense that no
randomness is allowed. In order to make a model for a disease in a population, the

population is divided in to few classes and we study the change of their numbers
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in time. The choice of which compartments to use in the model depends on the

characteristics of a particular disease and the purpose of the model.

The threshold for many epidemiological models is the basic reproduction number
Ry . Tt reflects the average number of infected people when one infected individual
is introduced into a population where everyone is susceptible. It is a threshold
quantity which determines whether the epidemic will occur or not. So if the number
of infected individuals is higher than this value, then the epidemic spreads across the

population.

3.2 Mathematical Formulation of the Epidemiological Models

In this section, we present standard epidemiological models which are used to study
the spread of disease in host populations under different standard conditions. We
utilize some standard notations as used by, Hethcote (2000). If S(¢) denotes the
number of susceptibles at time ¢, I(¢) denotes the number of infectives at time
t, N denotes the population size, then we can write: s(t) = % and i(t) = %
where s(t) and i(t) are the fractions of respective populations. If S is the average
number of contacts (sufficient for transmission) of a person per unit time, then

Bi = % is average number of contacts with infectives per unit time of one susceptible.

Therefore,
p1
N=—5 3.2.1
oy =2 (3.2.)
is the number of new cases per unit time (because S = Ns). In this case the

horizontal incidence is called standard incidence. The Simple Mass Action Principle

nlS =n(Ni)(Ns) (3.2.2)
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with 77 as a mass action coeffient, is a standard for horizontal incidence. Comparing

the L.H.S of Equation 3.2.1 to the R.H.S of Equation 3.2.2 we get nN = . So

. . . . . . 'UNSI
contact rate 3 increases linearly with population size. Therefore we can write:

is the standard incidence if v = 0 and it is a mass action incidence if v = 1.

In the development of the models we considered two probability models: the first is
the probability that the epidemic has died out at time t given that no cases have been
observed in the interval (s,t). This is calculated for two models: a small population
epidemic model and its large population branching process approximation. The
second is the probability that the epidemic is over at the end of the first time period

of length ¢ in which no cases are observed.

3.2.1 Susceptible Infective Model

Figure 3.2.1: Susceptible Infective Model

The ST model is the simplest one among the epidemic models. This model was ori-
ginally formulated by McKendrick (1926). That is why it is also called the Simple
Model. In this model, the population is divided into just two compartments namely;
the susceptible compartment S(¢) and the infectious compartment I(¢). We do as-
sume the disease to be highly infectious but not serious, which means that the
infectives remain in contact with susceptibles for all time ¢ > 0. It is assumed that
the infectives continue to spread the disease till the end of the epidemic, the popu-
lation size to be constant (S(t) + I(¢) = N) and homogeneous mixing of population.

Infection rate is proportional to the number of infectives, i.e.
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B=rAl

where r =fraction of those recovered with acquired immunity, and \ =force of infec-

tion.

The pair of ordinary differential equations for this model are

dS(t) _
= —r\I(t)S(t) (3.2.3)
dIt) _
o = rAI(t)S(t) (3.2.4)
where
N=25(t)+1(t)
S(t) =N —I(t)
and therefore we get
d—;—(tt) =rA(t)[N —1(t)], (3.2.5)

which is known as the logistic growth equation.

The translation between the susceptibles and infectives S — T denoted by the

quantity rA\IS which is a separable linear ordinary differential equation given by:

1 dr
T(t)(N—=1(@t))dt

A (3.2.6)

Integrating both sides of Equation 3.2.6 with respect to ¢ we obtain:
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1 d[d
O/I(t)(N-J(t))E !

1(t)

1(0)
I(t)
1 1 1
Y d
N / [u TNC u} N
1(0)
I
In(u) —In (N — u)|u(:t)l(0)

Inl(t)—In(N—-1(t)]—[Inl(0)—In(N—1(0))]

"No1w) 1)
e LV~ 1(0)
0 (N —1(1)

rAdt

S O—

rANt
rANt
rANt
NI(t)—1(t)I(0)
NI(0)—1(t)I(0)
NI(t)—1(t)I(0)

NI(t)—I(t)1(0)

Ne™NT(0)

Ner)\Nt[ (0)
[1(0) = N = I(0)er*™]
1(0)N
L(0) + (N = 1(0)) e=mANt’

As we can see [ approaches N asymptotically with ¢ — oco. Therefore, every sus-

ceptible joins the infectious compartment in this model, everybody becomes infected

which is, in fact, the “end” of the epidemic in mathematical sense. This model has

the challenge that it infers that in every epidemic all the individuals who are sus-

ceptible will eventually become infectious which is not true in virtually almost all

epidemics since data obtained from most surveys do not always fit this model.
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3.2.2 Susceptible Infective Recovery Models

(5 = (R0

Figure 3.2.2: Susceptible Infective Recovered Model

There are two SIR models which were formulated by, McKendrick (1926). The two
models are described as the foundations for the mordern mathematical epidemiology
and are currently still widely used in practice. The models describe either an epi-
demic(that is a rapid outbreak of an infectious disease) or an endemic (a disease
present in the population for a long period of time where the class of susceptibles is
being nourished by new income from births or recovered individuals who lost their

temporal immunity).

In these models the assumption is that the population size is large and constant
(except for death from the disease) and homogeneously mixing for continuous time
t > 0. Any person who has completely recovered from the disease acquired perman-
ent immunity and the disease has a very short incubation period (so an individual
who contracts the disease becomes infective immediately afterwards). This enables
the division of the population into three compartments: S(t) - susceptibles, I(t) -
infectives, R(t) - recovered. Infection rate is proportional to the number of infectives,

This can be illustrated in the equation below:
B=rAl

where r =fraction of those recovered with acquired immunity, and A =force of infec-

tion.
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The system of equations governing this model (SIR) according to McKendrick (1926)

are given by:

ds(t)
S s (1) (3.2.7)
B0 s -0 329
%f) =7I(t) (3.2.9)
S (0) =5 >0
1(0)=1>0 (3.2.10)
R(0) = Ro =0

It can be deduced that the derivative function £ [S(¢) + I(t) + R(t)] = 0 , it can

therefore be seen that the size of the population remains constant as shown in the

equation 3.2.11

S(t)+ I(t) + R(t) = N (3.2.11)

From the linear system of equations(3.2.7 - 3.2.10), we can obtain:
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dl y—=rAS vy

S = T8 T mg !
S
i = [ ias
t t
_ o
/1d[ - /[ms 1}ds
0 0
fy t
I, = [ﬁlnS—sto
I(t)—1(0) = %lnS(t)—%lnSo—S(t)jLSo
I(t)+5(t)—%ln5(t) = So+]0—%ln50:constant

Thus the final equation can be obtained as shown in the equation 3.2.13:

I(t):SO—FIO—S(t)—Fpln%

= . The parameter p is called the relative removal rate.

X
B

3.2.3 Model Modification by an Intervention

(3.2.12)

(3.2.13)

The description of models that have been introduced in sections 3.2.1 and 3.2.2

have not taken into account factors that would affect or impede the progress of

the disease, like public education, nutritional, comorbidity with other diseases such

as HIV, diabetes, vaccination etc. We now consider a closed, homogeneous and

homogeneously mixing population of individuals partitioned at any time ¢ > 0 into

three categories: susceptible, infective and removed as first described in Anderson

and Tom (2000). Susceptible individuals become infectives when they come into

38



contact with an infective individual. In the study they assumed that the newly
infected individual undergoes a latent period (during which they are infected but
not infectious) but instead, they become infective when they develop the disease
and instantly begin their infectious period. When their infectious period is over,
an individual infective moves into the removed category - they either die, put on
treatment or become immune to the infection - and can play no further part in the
epidemic. In this section consider mathematical modelling by three families of non-
negative, integer valued random variables indexed by a continuous time parameter.
The number of the susceptible is modelled by the process S(t):t >0, with S(0)
denoted by n. It is assumed that no individuals can enter the susceptible category
during an epidemic, the number of susceptibles is non-increasing. This is so because
those who are susceptible once they get infected are removed from the susceptible
category. The number of infectives is represented by the process I(t):¢ >0, and
I(0) = 4. Finally, the number of removed individuals is modelled by the process
R(t) : t > 0 and without loss of generality, R(0) = 0. Since no individuals may leave
the removed category once they have entered it, R(t) is non-decreasing. Since the
population is fixed, for all ¢ > 0, S(t) + I(t) + R(t) = n + ¢. Any pair of individuals
make contact at the points of a Poisson process with rate g, and all of the (n+1i/2)
Poisson processes are assumed to be independent. This implies that at time ft,
infections occur at a rate of gS(t)I(t). The non-negative constant beta encapsulates
both the infectiousness of the disease and the susceptibility of the population, as a
‘contact’ is defined to be a meeting between two individuals sufficient to transfer the
disease from an infective to a susceptible. Alternatively, contacts could be defined
to occur at a rate gl(n +)S(t)1(t). In this formulation when an infective makes a

contact, they choose an individual at random from the whole population to contact,
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whereas in our formulation contacts occur at nLH times the rate, but contacts are
chosen from only the initial susceptibles. This formulation is used as it highlights
the connection with the branching process approximation: when S(¢) ~ S(0) = n
then infections occur at rate [I(t), as in the branching process. At the instant
of infection, the new infective is allocated an infectious period according to a non-
negative random variable T'I. All instances of the random variable T are assumed to
be independent of each other, and of the Poisson processes governing the infections.
When the infectious period distribution 7'/ has an exponential distribution, the SIR
epidemic model has been referred to as the General Stochastic Epidemic model, and

in this case the process {S(¢); I(t) : t > 0} has the Markov property.

If we assume that the suscesptibles have sound knowledge on how to protect them-
selves at a particular rate v which could be through any intervention e.g. vaccination,

proportional to their number, then we have a modified system of equations as:

5 = —rAST—vS

dt

dl

— = — 1. 2.14
o rAST —~1 (3 )

We then can obtain the system of equations as:
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dI— rASI —~I I —7rASI

I(y—1AS)

dS ~ —rASI —vS  rASI +vS

S (rA +v)
I

O/I[r)\+ﬂdl - /[%—m]ds

0

PA +olnl]l = [yInS — r)\S]gg()))
1
Al (S) 4+ vin E_S) = ~In Si —1AS + constant (3.2.15)
0 0

where the constant is equal to rASy + rAlp.

If we take into account the recovered group in the epidemiological model, it can be

shown that S(t) tends to zero as ¢ tends to infinity for every solution of (S(¢), 1(t))

of the equations, that is,

—rASI —vS S (=rA —v)
~I N ~vI
—(rAl + U)dR

~I
¢

/—(r)J—i—v)dR
~I

0

—(rAl +v)
~I

rAl —v
-7

Sy~ T (R()=FRo)

t

R

t=0

(R () — Ro)

: (3.2.16)

so we have Equation 3.2.16 as what approaches zero when we get to infinity with

time.
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The interventions being put in place to decelerate the progression of the disease for
example a massive ART program to ensure that all those who are HIV positive and in
need of ARVs access them could dramatically alter the number of those who become
infective with tuberculosis. If we assume that the rate of ARV uptake is v and it is

proportional to the product of their numbers and the square of the infectives I(t)

as

= TASI - vS 1> (3.2.17)
I
% — [(rAS — ) (3.2.18)

Dividing Equation 3.2.17 by 3.2.18 we obtain the system of equations as:

al — I(rAS—=9v) _ rAS—v = y-rAS
dS — —rAST—vSI2 —rAS—oSI — S(rA+vl)
(0l + 1N dl = %gds
UIQ I(S)
[— + r)\l} = [yInS —rAS; (3.2.19)
2 1(S0) ’
0
vI?(9) vl?
T+T)\I(S) — T —7”)\]0 = ’Y]HS—T)\S—’)/IDS()‘FT)\SQ
vI?*(9)

12
S IA(S) = ylS—rAS+ UTOHMO — 1In Sy + rAS,

vV
=const

If we apply the same procedure we obtain the equations indicated below. It shows

that at the end of the epidemic outbreak there will be some individuals who will still
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be susceptible in the population:

dS  —rASI —vSI*>  —rAS —vSI  S(—r\—uvl)

dR VI . v
1 A — ol
Lig = ZAzvlp
S gl
s@) _ [, =2=etg)t
In S50 = [e LO

Therefore,

=22t [R (1) — Ro]
—_— —rA—vl [N*’US ]
S (t) = Spe <N=vSp > Spe” o> 0.

We now proceed to identify an important tool for comparing the epidemic strikes
and its defined as an intensity 1. We thus define the fraction of the total number of

the susceptibles that eventually contract the disease. Hence,

. I+ (S0 = Su)
_ -

5—So—Io

where S is the root of the equation S = Spe™ » . We have already showed that
_R@®) . . .

S(R) = Spe” » and we know that R(oco) is equal to the total population without

the left susceptibles and infectives (this term is zero), so we have R, = So+1Ip—S—0

where Sy + I, = N. Recall that S, = Sye(5—So—lo)/p,
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3.2.4 The General Endemic Model

Epidemic ceases to exist due to depletion of susceptibles below the threshold value
p= Rﬁo. Therefore, in case of an endemic presence, the susceptibles have to be kept
over this value. There are two ways of achieving this: the first one is the case of
non-immunizing diseases, the other is taking into consideration the vital dynamics

of the system (births and deaths).

The former is so called SIS model with the system of equations:

ds
— = —1rAST +~1 (3.2.20)
dt
dl
— =1rAST —~I 3.2.21
=7 ¥ ( )
with initial conditions:
S(0) = S
1(0) = I

The R-compartment is missing because an infective individual goes back to the class
of susceptibles after recovery. It is so due to the fact, that this individual can not
acquire immunity for the disease. This is one possibility to get an endemic model

but it is not the SIR model.

The general endemic Model is the STR model with vital dynamics given by the system

of equations:
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as

i uN — uS — IS (3.2.22)

dI

i BIS —~I — pul (3.2.23)
dR
— =~ — uR 3.2.24
7= —u ( )

Again, it is assumed that for the population size N holds the relation: N = S(t)+1(t)+R(t).
This model is almost the same as general epidemic model, except that it has an in-
flow of newborns into the susceptible compartment and we also assume deaths (vital
dynamics). The parameter p denotes the per capita death rate (in case of uN birth
rate) and therefore the life expectancy is g~'. But as it can be seen from the first two
Equations 3.2.20 and 3.2.21, that this is a closed system (R is not on the right-hand

side of those equations) and therefore we can disregard R from our analysis.

Let us now study the “infection rate” state (IV,0). We can observe, in Equation 3.2.20
and Equation 3.2.21, that the right-hand side of these differential equations for [ has
a factor I, and a factor S — p — . By the process of linearization this amounts to

replacing S by N in the second factor, and leads to the following equations:

dl

- = (BN —p—ay) .

Hence in the above equation there can only be stability if SN — u — ay < 0 and
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instability occurs if SN — pu— avy > 0.

The basic reproduction number Ry is obtained as indicated below

AN

Ry = ——.
vt

This implies that we have stability for Ry < 0 (that is, whenever v + u > SN) and
instability for Rq > 0. (that is, whenever v+ u < SN )
For I # 0, % = 0 requires fS —p—y=0= 8 = “TJEV We can rewrite this in the
following form: % = % = Rio. The same observation also shows that S = “TJEV = R%
is an isocline, so long orbits the variable [ takes its maxima and minima on this
line. In particular, the steady-state has to lie on this line. The steady state is a case
which has to produce, on average, one secondary case and the expected number of
secondary cases is Ry multiplied by the reduction fraction S/n. So in an endemic
steady state (S,1) = (S,) with I > 0 necessarily

E

N Ry
Note, that if we can estimate S/N (from blood samples taken at random), we can
estimate Ry = N/S.

If we put % = 0 in Equation 3.2.22, we find

]:&E;ﬂizg(ﬁﬁ_1>:%u%_w‘

In this subsection the same argument applies to the minima of I at which S is

increasing. In other words, S = 1% is an isocline.

So in endemic steady state
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I==(Ry—1) (3.2.26)

o
B

For Equation 3.2.26 and the fact that Ry = i_Nu we can have

_ (ﬁN—7+u>
v+ p
b (BN —=—7+up _kty
B 7+M( B >’ but 5="5
:.JL%N_g)
v+ p

Dividing through by N we obtain Equation 3.2.27;
I (y+w™ S
—=—(1-=). 3.2.27
I = N ( )

Equation 3.2.27 expresses the relative steady-state incidence in terms of the life
expectancy p~ !, the expected length of the infectious period (y + p)~' and the
steady-state fraction of susceptibles S/N.

From the sum, S + I + R = N the system admits the following steady states:
1. When S =N, then I =0, R=0
2. Whengz%,then f:ﬂ(l—Ro),R:ﬂo—i)

and while the disease free equilibrium always exists, the endemic one stands only for
Ry>1
From conditions (1) and (2) the steady-state is obtained, however this steady-state

does not guarantee that the balance between constant inflow of new susceptibles and
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the removals from deaths and/or infection is exact at every instant. There has to be
a balance but it may be over a longer period of time interval. So fluctuations around
the steady-state are not necessarily damped. In order to find out what happens in

this model, we linearise around the steady-state.

The linearised system has solutions which depend (by factor e) for some values of .
When this value is real, it denotes the growth /decay rate. When it is a complex num-
ber, then Re {\} denotes the growth/decay rate and I'm {\} denotes the frequency
of the oscillations which accompany the growth/decay. The principle of the linear
stability guarantees that, provided that R, {\} are non-zero , the information about
solutions of the non-linear system (as long as these stay in a close neighbourhood of

the steady-state).

The linearised system is fully characterised by Jacobi matrix J and the A4 are the
eigenvalues of this matrix. They are found by solving the characteristic equation
det(A\ — J) = 0, which is a polynomial of degree n, where n is the dimension of the

system. For us n = 2, so the characteristic equation is of the form

M —TA+D=0. (3.2.28)

where 7' is the trace of the Jacobian matrix J = (j; j)1<j<2 (i.e. the sum of the

diagonal elements) and D, is determinant of J. Then we get:
T++T1T?%—-4D

A= 3.2.29
2 (32.29)

So we have that 7" < 0 and D > 0 is the condition for linearised stability (or so called
decaying exponential) and T? < 4D is the condition for the oscillations appearing

around the steady state.
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If we look at our system of equations outlined in Equations 3.2.22 and 3.2.23, by

calculating the Jacobian matrix and evaluate its element for S = S and I = I:

% (uN — BST — puS) = —BI —pu=—BI — (3.2.30)
% (uN — BST — pS) = —BS — —BS (3.2.31)

a _
S5 ((8S —u—)1) = BI = BI (3.2.32)
(B — =) = 65 —p =7 =0 (3:233)

so the corresponding Jacobian matrix is obtained as:

—BI—p —pS
GBI 0
The trace of the matrix is
T=-pI-pu<0 (3.2.34)
and that its determinant is
D =p%SI>0 (3.2.35)

and therefore the roots of the characteristics equation have negative real parts. Ac-
cording to the principle of linearised stability the endemic steady state is locally

asymptotically stable.
In fact, the endemic steady state is globally asymptotically stable. Using Lyapunov

function we show that the endemic steady state is globally asymptotic and stable.
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From the steady states that are admitted by the Lyapunov function (Severo (1969)),

we consider:

V(S,I)=S—-SmS+I—1IlnI (3.2.36)

The derivatives of Equation 3.2.36 are given by:

v _ ovVds ovdl
dt 08 dt oI dt .
S I
= (1—§)(MN—65‘I—MS)+(1—5)1(55—7—u)
_ (s_g) (HN _uN
- -9 ("5 -'5)

uN —y  pRg N2
= -5 =-2(5-—
s =t (s 1)

where S = O‘TJE“ and uN — ST — uS = 0. Hence, we can see that % < 0 except
on the line S = Rﬁ, where it equals zero. At the line we have % = 0 and ‘fl—f =
0

puN — (M+5])%~ So 2 > 0 for I < I and 2 < 0 for I > I. Orbits cannot

stay on the “line”, unless we consider the steady-state. According to the LaSalle’s
Invariance principle allows us to conclude, that all orbits which stay bounded do
converge to the steady state. On the other hand, the boundedness of the orbits is a
direct consequence of our assumptions (a constant population birth rate, while the
per capita death rate is constant). Mathematically, this is reflected in the invariance
of the region {(S,1):5 >0, >0,5S+1 < N} (note that 4(S+1) = uN — (u(S+
1) = AT < uN + (S + 1)),

Note 1. w—limit of a point Z : w(z) = {§ € R" : §(tx) — 7 for some sequence

tp, — —OO}
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Note 2. a—limit of a point = : a(z) = {g € R" : y(tx) — y for some sequence
t, — —o0}

Note 3. (Lyapunov Second Theorem on stability)

If f=(f1,f2fn): R" — R™is a continuous differentiable function, f(0) = 0
and there exists continuous differentiable function V(z) : R — R, such that it is

true:Then the following are also adjudged also to hold true
(i) V(z)>0and V(z) =0<= 2 =0
(ii) 3 continuous function W(z) : R — R such that W(z) > 0 VzeR and W (x) =

0 x=0

(iii) V(z) = E?Zlaggff) fi(z) < —cW (x) Yx€R where ¢ > 0 is a constant
and the system is said to be asymptotically stable in the sense of Lyapunov and the

function V(x) is called the Lyapunov function for this system.
Note 4. (LaSalle’s Invariance Principle)

Suppose there is a neighbourhood D of 0 and a continuous differentiable (time-
independent) positive definite function V' : D — R, whose orbital derivative V' with
the respect to the autonomous system = = f(x) is negative semi-definite. Let I be

the union of all complete orbits contained in

{reD:V(z)=0}

=there is a neighbourhood U of 0, such that VY, € U w(xg) C [

In a real life, setting the life expectancy p~'is usually much bigger than the duration
of the infectious period v~!. Next we shall proceed to illustrate that the model
predicts damped oscillations around the steady state. Further we will determine the

relations between time and frequency.
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Using Equation 3.2.34 and Equation 3.2.35 in the characteristic Equation 3.2.28 we

can rewrite it as:

N+ (BT + )X+ ST =0

With relations Ry = % and Equation 3.2.25, and dividing the equation by u? we

obtain:

2 2
(2) + o= 1024 (= D23 = (3) + Bo + 55(R ~ 1) =0

When = > %,We have % > 1, and consequently we can approximate the last term by

1
w

2(Ro — 1). The equation
2 v _
Yy +ng+;(Ro—1) =0

has roots:

—Ro+ \/Rg —42(Ry — 1)
2

y:

If we use the assumption % > 1 again, we notice that the expression under the square
root is negative (Ry > 1 in endemic steady state) and that the roots are, in the first

approximation,

=R

So we have:

2

i i 1 2
1. relaxation time RO equals to o

2. frequency equals to /vu(Ry — 1) with respect to the small parameter %
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For X > 1 the relaxation time is of the order 1 but the period ——22— is of the
H H py(Ro—1)

order of \/iﬁ, so the ratio between the two does to infinity for p | 0.Therefore, we

should see many oscillations before the steady state is reached.

3.2.5 SEIR model

The SEIR model contains one more compartment, as it is apparent from its name.
The new compartment is called exposed compartment E. These are the people who
are infected but the symptoms of the disease are not yet visible. They cannot
communicate the disease either. These people are in a phase called the latent period.
For some diseases, it takes certain time for an infective agent to multiply inside the
host up to the critical level so that the disease actually manifests itself in the body of
the host. This is called an incubation period or in the case of tuberculosis referred to
as a latent period. We have the same assumptions as in the previous models, that is
homogeneous mixing (mass action principle), constant population size and the rates

of change from one compartment to the other follow the system below:

% = uN — BSI — uS (3.2.37)
C;—f — BSI — uE — 0F (3.2.38)
% =—ul —0FE —~I (3.2.39)

‘il_lf — WR Al (3.2.40)
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In this model we shall assume that the probability to survive the latency period

and to enter the infectious period equals to %. Therefore the basic reproductive
: : : _ 0 BN
number in this case will be Ry = TraoTa

Next we proceed to review the steady states. Putting 2 = 0 we get £ = 2],
while 22 = 0 leads to ST = (1 + 6) E. Combining these relations, we obtain, after

dividing out of a factor I (we are determining the endemic steady state so we are
not interested in I = 0), that 85 = §(u + 6)(y + p) or, equivalent, S = F%‘ From
%szegetthatiz%}‘g:%(Ro—l).

Analogously to the derivation in Equations 3.2.30 to 3.2.33 we derive the Jacobian
matrix and the characteristic equation. The linearised system is now described by

the 3 x 3 matrix

— (BT + p) 0 —38
BI —(u+0) BS (3.2.41)
0 0 —(p+7)

and the eigenvalues are the roots of the characteristic equation
AP (R + 2049 + 0)N° + pRo(y + o+ 0)A + pu(Ro — 1)(y + p)(0 + p) = 0.

When ~ and @ are relatively close to 1 and pRy then we can approximate the roots

of the characteristic equation by the equation

X (7 + 0N + pRo(v + 0)Au(Ry — 1)76 = 0 (3.2.42)

This can be further re-written in the form as shown below

0
N+ (v +9) ()\2 + uRoA + p(Ro — 1)71 9) : (3.2.43)
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It can thus be concluded that this cubic equation has one root A\ = —(y+6) (corres-
ponding to perturbations that decay rapidly) and two other roots given approxim-
ately by the roots of the quadratic equation in the braces. Hence, the period of the
oscillations is given by 7 Zﬂv—;g, in other words %n has to be replaced by 7ﬂ{_+99 = %—l—%,
which is still in the expected duration of the “infection” , in the sense of the period

between being infective and becoming immune.

3.2.6 Epidemic Size at any Given Time

When studying the spreading of the epidemics and its mathematical models, one asks
questions concerning how long will it take for the epidemic to diminish. It seems
that there is an observation which suggests, that we can find N for which infection
tends to maintain in the population, whereas for smaller N it would die out and
reintroducing of the infectious agent would be necessary in order to the spread of the
infection. The idea of the critical community size appeared. This section is included
in this thesis to give more insight on the spreading of an infectious agent in time and

it shows relation between the endemic-epidemic occurrence.

Within the stochastic models the agent will go extinct with certainty. So we cannot
define the critical community size just on the basis of the extinction criterion alone,
the expected time until extinction has to be taken into consideration as well. This

will be an increasing function of the population size N.

If for illustration purposes we chose an arbitrary constants 7' > 0 and p € (0, 1) and
declare that the population size is above criticality if the probability of extinction
before time T is less than p (p is dependent on the initial condition). The number
of constants can be reduced to one by taking into consideration the limits. That is,

concentrating on the limit N — oo we can only see that expected time to extinction
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tends to infinity, taking astronomical values of the order of eV for N large. Therefore,

we have to consider more assumptions.

What we do, is that we consider approaching the infinity in a two-parameter plane,
spanned by the N axis and the 7/u axis (ratio of the two time scales). So we have
concluded, that along the N axis the expected time till extinction goes infinity. Along
the 7/u, for 7/u — oo, we find opposite behaviour which is instantaneous extinction

after the first outbreak.

We are interested in so called “phase transition”, i.e. the way of approaching infin-
ity in this plane such that the expected time till extinction neither blows up nor
diminishes to zero; instead, it stays bounded away from zero. We try to determine
the paths in the plane which provide the transition: %\/_IN should be bounded. We
cannot really take the limit because we do not exactly know how extinction time
“bounded. So we have to make an arbitrary choice for a constant. Therefore we

“define” /’—j%ﬁ = (' as the critical relationship, determine 7/, , choose C' = 1 and

compute Clpy.

We consider the system Equations 3.2.20 and 3.2.21 while putting § = % to show
the dependence on the population size. As we have already seen, the steady state

value for [ is given by

- u(N—-SN  uN S ] 1
1=""0%s _u+7(1 —) N(l —), (3.2.44)

: Qg _ pty _ N
since S = N = R

For births processes, it is well known that demographic stochasticity leads to fluc-
tuations of the order of v/ N, with N the population size Nisbet and Gurney (1982),

Goel and Richter-Dyn (1974) and Taylor and Karlin (1984). Assume Ry = O(0)
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what means that changes in N do not substantially influence Rj. Also assume that

pty VN

(the average level of infected individuals in the population lies within the range of

L = O(—~).These assumptions were made such that they imply I = O (\/N)

natural fluctuations). The agent will extinct, sooner or later. When p >+ we have

B B this i i b (L ich imoli
that ==t this is as a result of the assumption that i O(\/N) which implies

VN Aty

also %zO(\/ﬁ)

So there is not a critically directly in the community size, but rather a critical

that £ = O(-%) and therefore =0 (\/N) Since Ry = Z¥ = O(1), this requires

relationship between population size and the ratio of the two time scales involved

(that of demography and that of transmission). When both \/Lﬁ% and \%% are

really small, we expect a single outbreak of an epidemic and when they are large we
expect an endemic situation; everything in between is considered to be critical. The

approximate formula for expected extinction time under critical conditions according

to NASELL (1999) is
) (Ro— )N 1
Letinction = - <32
2(z) "
m

Note that the right hand side is O (i)when % is O (\/N) , what is completely in

(3.2.45)

line with the text above.

3.3 Mathematical Model of the Branching Process

The model proposed by Watson and Galton (1875) was of the following form:

1. A population starts with one individual at time n =0 :Zg =1

2. After one unit of time (at time n = 1) the sole individual produces Z identical

clones of itself and dies. Z; is an Ny valued random variable.
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3. (a) If Z; happens to be equal to 0 the population is dead and nothing happens

at any future time n > 2

(b) If Z; > 2, a unit of time later, each of Z; individuals gives birth to a
random number of children and dies. The first one has Z;; children,
the second one Z; 5 children, etc. The last, Z" one, gives birth to Z1,z,
children. It is assumed that the distribution of the number of children
is the same for each individual in every generation and independent of
either the number of individuals in the generation and of the number of
children the others have. This distribution, shared by all Z,,; and Z,, is
called the off spring distribution. The total number of individuals in the

Z
second generation is now Z, = > Zy
k=1

4. The third, fourth, etc. generations are produced in the same way. If it ever
happens that Zy = 0 for some n, then Z,, = 0 for all m > n -the population

Zn
is extinct otherwise Z, 11 = Y Z,
k=1

Stochastic proceses with the properties described in (1), (2),(3) and (4) above are

referred to as branching process.

3.3.1 Branching Process Approximation

This section describes an approximation to the SIR epidemic model valid for large
population sizes and/or during the early stages of the epidemic. First the approxim-
ating branching process is defined and then a coupling argument is set out to make
clear the relationship between the two processes. The term ‘branching process’ is
used in several different ways in the literature, however in this thesis it is used ex-

clusively to describe the continuous time branching process defined in section 3.3.
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Let I(t) denote the number of individuals alive in the branching process at time ¢,
so that overall, births occur at a rate SI(¢). This branching process is an approx-
imation to the epidemic process in the early stages or when n is large as in these

circumstances

S(t) ~ S(0) = n and so infections will occur in the epidemic process at a rate
approximately equal to SI(t) while the infectious periods in the epidemic process
have the same distribution as the lifetime distribution in the branching process. The
relationship between the processes can be made much more precise by constructing
them on the same probability space, so that there is a coupling between them. This
will allow obtaining precise instant at which the two processes first diverge, and
to observe that after this instant the number of individuals alive in the branching

process is an upper bound for the number of infectives in the epidemic process.

3.3.2 Coupling the Branching Process and the Epidemic

A coupling between the epidemic process and the branching process is construc-
ted from the algorithm by Anderson and Tom (2000). First, we will construct the
branching process and then enlarge its probability space (J; F'; P) to include an in-
finite sequence {U;},j > 1 of independent uniform random variables on (0, 1). Next,
we construct the epidemic process from the branching process as follows. Labelling
the n susceptibles in the epidemic process from 1,...,n and associate each initial
infective with an initial ancestor in the branching process. We let a contact occur
in the epidemic process when a birth occurs in the branching process. The j — th
individual to be contacted is defined to be the initially susceptible individual with
label {,,U;}, and if this individual is still susceptible then they become an infective.

However, if they have already been contacted then the contact has been unsuccessful

99



and the epidemic process does not change. The individual born in the branching
process at this instant and all of their offspring are subsequently ignored in the con-
struction of the epidemic process and are called ‘ghosts’. When a death occurs or
an individual has been put on treatment and now no longer infective i.e. got cured
in the branching process, the corresponding infective in the epidemic is removed.
By constructing the epidemic process from the branching process in this particular
manner it will be clear that the number of infectives in the epidemic and the num-
ber of individuals in the branching process must coincide until the time of the first
‘ghost’, after which there must be more individuals (by the number of ghosts) in the
branching process. Also note that in any time interval (0,¢) for ¢ € R, there can
be only finitely many births and so the probability that the two processes coincide

throughout (0,t) tends to 1 as n tends to infinity.

3.4 Mathematical Illustration of Small Area Estimation

Literature on Small Area Estimation has received significant attention in the last
decade. Rao (2003) published a comprehensive book on SAE that covers all the main
developments in this topic up to that time. The book was written about ten years
after the review paper of Ghosh and Rao (1994), published in Statistical Science,
which stimulated much of the early research in SAE. Since 2003, a few other review
papers have been published; for example, Rao (2005), Jiang and Lahiri (2006), Datta
(2009) and Lehtonen and Veijanen (2009). In this thesis we illustrate SAE based on
the framework that has been developed by Pfeffermann (2013). The study illustrated
that if we consider a population U of size N distinct elements identified through the

labels j = 1,..., N. If then a sample s is selected from U with probability p(s),

and the probability of including the j — th element in the sample is ;. The design
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weight for each selected unit j € s is defined as w; = 1/7Tj. If then the population U

is divided into M exclusive and exhaustive areas U; U ... U U s with N; units in area

M

i, Y. N; = N. Suppose that samples are available for m < M of the areas, and let
i=1

s = s1U...Us,, define the overall sample, where s; of size n; is the sample observed for

sampled area i, > n; = n. Note that n; is random unless a planned sample of fixed
i=1
size is taken in that area. Let y define the characteristic of interest, and denoted

by yi; the response value for unit j belonging to area 7,7 = 1,...,M , 5 = 1,..., N;
with sample means g; = > yij/ni , it is assumed without loss of generality that the
j=1
sample consists of the first n; units. Let x;; = (2145, ;) denote the covariate values
n;

associated with unit (7, j) and by Z; = >~ 22 the column vector of sample means.The

j=1
_ N;
corresponding vector of true area means is X; = fvi The area target quantity
j=1""
_ N;
is denoted by 6;; where, §; =Y; = > Z]’VLZ the response area mean. Estimating a
j=1

proportion is a special case where y;; is binary.

3.5 Generalized Linear Mixed Models

The main assumption of GLMMs is that the distribution of the response variable Y;

belongs to an exponential family of the form Y;/6; , ¢1 p(-)
where p (-) is a member of the exponential family defined as,

yiti — b (0;)

p (55/6; 1) = exp (

for ¢ = 1,...,n observations and 6; is the scalar canonical parameter. The mean

w = E (yi/ﬂ,fi (+) ,q§1) can be linked to the structured additive predictor which
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accounts for various covariates 7; by a monotonic link function g (-) such that
g(m)=mn=PBo+ Y fi(w)+ > Berri+e (3.5.2)
i=1 k=1

where f; () are unknown functions of the covariates used to model temporal and
spatial dependencies and also used to relax the linear relationships of the covari-
ates. The fs represents the linear effects of the covariates 2’s and ¢{s are unstruc-
tured terms. Latent Gaussian model a flexible and large class of statistical models
obtained by assigning a Gaussian prior to [y, fi(-), Sk and &. This can be rep-
resented as © = (s, f/s,) where © is unobserved multivariate Gaussian random
variable, whose density 7 (©/¢) is controlled by a vector of hyperparameters ¢ (Rue
and Martino (2007a)). The latent Gaussian field © is assumed to have a Gaussian
distribution with zero mean and variance covariance matrix @ (¢s); with vector of
hyper-parameters defined as ® = (¢, ¢2) which are not necessarily Gaussian (Mar-
tins et al. (2013), Rue et al. (2009) and Fong et al. (2009)). Latent Gaussian model is
composed of three elements namely; the likelihood of the data 7 (y/0), the Gaussian
density of the random vector ©, 7 (©/®) and the prior distribution of the parameter

vector 7 (®). The posterior is therefore defined as

T (0,P/y) ocw(@)w(@/@)nﬂ(yi/xi,qD) (3.5.3)

The main inferential interest involves computing the posterior marginals for x; and
posterior marginals for ® or some ®; . The approaches for Bayesian inference on
latent Gaussian models are MCMC sampling and INLA. The high dimensionality of
the latent field © and the strong correlation within © and between © and ® especially

when the number of observations are many leads to problems in convergence and
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computation time. INLA developed by Rue et al. (2009) bypasses MCMC entirely by
basing inferences on closed form approximations making it computationally efficient

compared to MCMC. In the next section we describe INLA methodology.

3.6 INLA Methodology

This is an approximate inference based method for approximating the posterior mar-
ginals of the latent Gaussian field 7 (x;/y),7 = 1....n in three steps. The posterior

marginals of the latent effects ©® and hyper-parameters ® are written as

r(z:/y) = / 7 (2:/®, y) (B ) dD (3.6.1)

7(@/y) = [ (@ /)0, (3.6.2)

The posterior marginals 7 (x;/y) and 7 (®;/y) can be approximated using the Laplace
approximation. The first approximation7 (®/y) to using Gaussian distributions is

constructed as follows

m(0,®,y)

T(®/Y) x =875 ) o=6" (@)

(3.6.3)

where 7 (©/®, y)is a Gaussian approximation to the full conditional of © and ©* ()
is the mode of the full conditional for ©, for a given value of ® (Rue et al. (2009)). It
involves locating the mode of 7 (®/y) which is used to integrate out the uncertainty
with respect to ® when approximating the posterior marginal of x;. The posterior

marginals of the latent field are supposed to start from 7 (z;/®,y) and approximate
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the density of x;/®,y with the Gaussian marginal derived from 75 (0/®,y), i.e.

The marginals of the interest can be computed using numerical integration over a
multidimensional grid of values of ®

7 (2:/®,y) = N (25 1 (D), 07; (D)) (3.6.5)
where the sum is over the values of ® with area weights A, (Rue and Martino
(2007b)). The first step in INLA computation involves approximating the posterior
marginal of by using Laplace approximation in Equation 3.6.3 The second step in-
volves computing the Laplace approximation of7 (x;/®,y) for selected values of ®

which improves the Gaussian approximation in Equation 3.6.4.

m(0,®,y)
e (O—i/i, @, y) 0_i=0" (2:,)

Tra (z;/®,y) x (3.6.6)
where 7o (©_;/x;, ®,y) is a Gaussian approximation to ©_;/x;, ®, yaround its mode
©_; (x;, ®). An improved version of 74 (z;/®,y) known as Simplified Laplace ap-
proximation was developed by Rue et al. (2009). It involves a series of expansion
of 7pa (x;/®,y)around x; = u; (P) which corrects for skewness and location and it
is also less computationally expensive (Rue et al. (2009)). The third step involves
combining steps 1 and 2 using numerical integration in Equation 3.6.5 (For more

details, Rue et al. (2009)).
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3.7 Spatial Effects

Suppose that the index s € (1,...,.5) represents the geographically connected re-
gions. The spatially correlated effects in INLA are introduced by assuming that
neighbouring regions are more alike than two arbitrary regions. Two regions and are
neighbours if they share a common boundary. The spatial smoothness prior for the

function evaluation f (s) is given by

f ()
f(s)

1 2
for s # s and 72 ~ N <ﬁs Z (s, ]7;[—2> (3.7.1)

s~vs’

where N, the number of neighbours of region is,indicates that two regions and are
neighbours and is the variance parameter (Martino and Rue (2009); Brezger et al.

(2005)).

3.8 TB Distribution in Kenya

In this study a generalized linear mixed model assuming a Poisson distribution
with spatial and temporal random effects was used to characterize the relationships
between TB cases and covariates. Poisson regression was used primarily because
it has a strenth in modelling count data it assumes that the rate parameter pu is
constant over all intervals. In this model the response variable is generated by a
Poisson process: The Poisson regression model is E(y;) = p; = exp (X;5 + of fset;)
where y; is the observed TB cases, X; are the covariates for the observation and offset

term represented the population (StataCorp, 2013). The generalized linear mixed
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model used to describe the TB cases y; is of the form:

g (:U’Z> = 50 + Z Binj + ftrend (tzme) + fstr (SZ) + funstr (SZ) (381)

J

where ¢ (.) is a monotonic link function, §; represents the parameter vector of the
covariates Xj;, firena 18 trend component, fg, and f,,q, are structured and un-
structured spatial effects of the county. The f, and f,,«, were assigned a Markov
random field prior and Gaussian i.i.d respectively. The spatial effects were estimated
at county level in which a household was located and Kenya counties boundaries were
used to compute the neighbourhood information. The prior for f;..,q was first order
random walk. The covariates were assigned default INLA Gaussian priors while the

default inverse gamma hyperpriors were assigned for the random effects.
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Chapter 4

RESULTS AND DISCUSSION

4.1 Simulation Study

This section presents results based on simulated data on epidemic models discussed
in chapter three for the deterministic and stochastic epidemic model with a view of
developing algorithms which were later subject to the real tuberculosis epidemiolo-
gical data in Kenya. The Poisson distribution was assumed for the birth and death

rates spanning 63 years corresponding to the life expectancy in Kenya at present.

4.1.1 Deterministic Model Simulation Results

We carried out simulation using an initial population of 1000 individuals while as-
suming that transmissible acts can either take 1, 3, 5, 10 or 15 individuals being
infected by one single individual at the start of the epidemic. The choice of trans-
missible acts was based on the existing literature WHO (2007) that one case of TB,
if left untreated, can infect between ten and fifteen people per year. We further

assumed that the recovery rates for those who get infected can be 0.80, 0.85 or 0.90.
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Figure 4.1.1: DCM model representation for the simulated susceptible number of
cases

Figure 4.1.1, shows that when the transmissible act is large there is a significant drop
in the number of cases up to the 5th year and begins to rise and remains close to
200 susceptible cases over all the duration. When the transmissible acts are few i.e.
1 and 3 cases the number of susceptible cases remains high throughout the period,
while when transmissible acts are 5 the susceptible cases show and exponential decay

over the period but remains high.
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Figure 4.1.2: DCM model representation for the simulated susceptible to infected
number of cases

Figure 4.1.2 shows that the number of cases that transition from the susceptible to
group to the infection group is highest when the transmissible acts is large i.e. 10
and 15 and reduces dramatically by the 11th year while peaking by year 3 and 5
respectively. The transmissible act of 5 tends to peak by the 10th year and reduce to
zero by the 27th year. While when transmissible acts are 1 or 3 the numbers which

move from the susceptible pool to the infectious pool.
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Figure 4.1.3 shows the number of infected cases at any particular year. It shows

that when the transmissible acts is high the numbers rapidly peaks and also rapidly

declines thereafter, when the transmissible acts are 15 and 10 respectively but when

transmissible acts is 5 the number of infected numbers tends to assume a normal

distribution peaking by year 11 and declines to zero by year 31. When transmissible

acts are either 1 or 3 the numbers are barely noticeable and moves to zero by year 3.
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Figure 4.1.3: DCM model representation for the simulated infected number of cases
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Figure 4.1.4 shows the number of infected cases which move to the recovery compart-
ment at any particular year. It shows that when the transmissible acts is high the
numbers rapidly peaks and also rapidly declines thereafter, when the transmissible
acts are 15 and 10 respectively but when transmissible acts is 5 the number of infec-
ted numbers tends to assume a normal distribution peaking by year 11 and declines
to zero by year 31. When transmissible acts are either 1 or 3 the numbers are barely

noticeable and moves to zero by year 3.
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Figure 4.1.4: DCM model representation for the simulated infected to recovered
number of cases
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4.1.2 Stochastic Simulation Results

The Stochastic Individual Contact Models (SICM) belongs to a novel class of mi-
crosimulation models were developed to mirror the deterministic models but add
random variation in all components of the transmission dynamics system, from in-
fection to recovery to vital dynamics (births and deaths). We implemented ICM
model using EpiModel in R. The results we present below relate to simulated data
with 1000 individuals while the parameters of interest were transmissible acts per
person (1,3,5,10,15) this refers to the number of individuals one individuals could
potentially infect if left untreated. A total of 5,000 simulations were carried out to

obtain the parameter estimates.

Figure 4.1.5 shows that regardless of the transmissible acts there is a uniform decline
in the number of susceptible number of cases from the hypothetical 1,000 number of
susceptible cases. Only when the transmissible acts is 15 is when we realize a more

pronounced decline.
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Figure 4.1.5: ICM model representation for the simulated susceptible number of
cases
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Figure 4.1.6 shows that the transition numbers from susceptible to infected shows a
rise for all transmissible and peaks after 2 years. The rate of decline is not highly
pronounced when the transmissible acts is 15 and declines to zero after 27 years.

While the other transmissible acts comes to a close after 13 years.
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Figure 4.1.6: ICM model representation for the simulated susceptible to infected
number of cases
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Figure 4.1.7: ICM model representation for the simulated infected number of cases
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The infected number of cases for all the transmissible acts from Figure 4.1.7 shows a
uniform rate of decline for all the transmissible acts with exception of 15 transmissible
acts. This shows that the number of infected numbers shows an exponential decay

with the number coming to zero by the end of 28 years.
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Figure 4.1.8: ICM model representation for the simulated recovered number of cases

The Figure 4.1.8 shows that the number of cases that recover increases sharply up
to year 2 after which it begins to decline the number of cases which recover decline
in a stable manner. The number of cases which recover remains lower for the 1, 2

and 3 transmissible acts.

4.1.3 Branching Process Simulation

The plot shown in figure 4.1.9 gives a sample output where X~ binom(3,0.26) where
3 is the initial number infected and 0.26 is the probability of the infection. There
were 10000 simulations over 63 generations. The number of infections seems to be

increasing up to generation 10 and then starts to decline and die out by generation
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Figure 4.1.9: Branching process simulation

4.2 Empirical Results

4.2.1 Deterministic Model Results

In this section we present results when the deterministic model was subjected to
the tuberculosis data reported to the National tuberculosis program for the period

2012-2014.

The results presented in this sub-section relate to the application of the DCM model
on the case notification data in Kenya. The assumption we took was that 1/3 of the
population are infected with the tuberculosis albeit it could be in latent form and
some may never develop TB in their lifetime. Thus in Kenya with an approximate
population of 44 million people it is estimated that close to 15 million individuals

would be susceptible of developing TB in a lifetime.
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Figure 4.2.1: DCM model representation for the susceptible number of cases in Kenya

Figure 4.2.1 shows that when the transmissible act is large there is a significant drop
in the number of cases up to the 5th year and begins to rise and remains close to
1.5 million susceptible cases over all the duration. When the transmissible acts are
few, that is, 1 and 3 cases the number of susceptible cases declines uniformly and
remains high throughout the period at approximately 7-8 million susceptible cases,
while when transmissible acts are 5 the susceptible cases show and exponential decay
over the period but remains high. The observed data shows consistent behavior as

the simulated data.
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Figure 4.2.2: DCM model representation with observed data for the susceptible to
infected number of cases in Kenya

Figure 4.2.2 shows that the number of cases that transition from the susceptible
to group to the infected pool, the numbers which transition is highest when the
transmissible acts is large i.e. 10 and 15 and reduces dramatically by the 11th year
while peaking by year 3 and 5 respectively. The transmissible act of 5 tends to peak
by the 11th year and reduce to zero by the 28th year. While when transmissible acts
are 1 or 3 the numbers which move from the susceptible pool to the infectious pool

remain fairly stable at less than 1 million cases all through the period.
Figure 4.2.3 shows the number of infected cases at any particular year. It shows

that when the transmissible acts is high the numbers rapidly peaks and also rapidly
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declines thereafter this could be attributed to the high recovery rates, when the
transmissible acts are 15 and 10 respectively but when transmissible acts is 5 the
number of infected numbers tends to assume a normal distribution peaking by year
12 and declines to zero by year 31. When transmissible acts are either 1 or 3 the

numbers are barely noticeable and moves to zero by year 3.
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Figure 4.2.3: DCM model representation for the infected number of cases in Kenya
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Figure 4.2.4 shows the number of infected cases which move to the recovery compart-
ment at any particular year. It shows that when the transmissible acts is high the
numbers rapidly peaks and also rapidly declines thereafter, when the transmissible
acts are 15 and 10 respectively but when transmissible acts is 5 the number of infec-
ted numbers tends to assume a normal distribution peaking by year 11 and declines
to zero by year 32. When transmissible acts are either 1 or 3 the numbers are barely

noticeable and moves to zero by year 3.
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Figure 4.2.4: DCM model representation with observed data for the infected to
recovered number of cases in Kenya
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Figure 4.2.5 shows the number of infected cases which eventually recover the numbers
rapidly increase when the transmissible acts is large i.e. 10 and 15, this number
peaks by year 10 and 7 respectively. But when transmissible acts are 5 the number
of infected numbers tends rise exponentially and peaks by the 17th year and begins
to decline throughout the remaining period. When transmissible acts are either 1
or 3 the numbers are barely noticeable and remains constant throughout the period

after the 15th year.
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Figure 4.2.5: DCM model representation with observed data for the recovered num-
ber of cases in Kenya
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4.2.2 Stochastic Model Results

The results we present here relates to the models that is obtained when it is subjected
to the actual notifications reported in Kenya. The assumption we took was that
1/3rd of the population are infected with the tuberculosis albeit it could be in latent
form and some may never develop TB in their lifetime. Thus in Kenya with an
approximate population of 44 million people it is estimated that close to 15 million

individuals would be susceptible of developing TB in a lifetime.
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Figure 4.2.6: ICM Model representation with Observed data for the Susceptible
Number of Cases

The susceptible number of cases from the estimated Kenyan population was taken
to be approximately 15 million people. With an assumed recovery rate of 80, 85 and
90% with transmissible acts per person being (1, 3,5,10 and 15), when the observed
data was used it showed that there is close concordance with the simulated model.

Figure 4.2.6 shows a smooth decline for the susceptible numbers with exception when
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the transmissible act is 15, the rate of decline is higher than any other transmissible

acts.

2

Recovery Rate

12

LT 035 el

Susceptible to Infected Numbers

| I N I O N I O O I I |
1 3 5§ 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Years

Figure 4.2.7: ICM model representation with observed data for the susceptible to
infected number of cases in Kenya
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Figure 4.2.8: ICM model representation with observed data for the infected number
of cases in Kenya
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Fieure 4.2.8 renresents the infected nimhber of cases for all the transmissihle acts
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Figure 4.2.9: ICM model representation with observed data for the infected to re-
covered number of cases in Kenya

Figure 4.2.9 shows that the number which transition from the infected to recovered
class dramatically increases and declines after 4 years with the rate for all the trans-
missible acts except when the recovery rate is 0.80 when the rate of decline is expo-

nential in nature.
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Figure 4.2.10: ICM model representation with observed data for the recovered num-
ber of cases in Kenya

Figure 4.2.10 shows that the number of cases that recover increases sharply up to
year 7 after which it begins to decline the number of cases which recover decline in
a stable manner. The number of cases which recover remains lower for the 1, 2 and
3 transmissible acts. While for the 15 transmissible acts when the recovery rate is

0.80 it remains higher throughout the years.

4.2.3 Small Area Estimation

To have a clear understanding of regional localized variations in the burden of Tuber-

culosis, variations from 3 different perspectives were looked at namely; distribution
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of TB cases, smear positive cases and the treatment outcomes in the presence of risk
factors. To obtain the covariates that were included in the spatial temporal model
used to obtain relative risks, a generalized linear model was used in each of the three

models.

(i) Model Results for All TB cases

Table 4.1 shows that only average BMI was excluded from the spatial temporal model
since it was not statistically significant (p — value > 0.05). The variables gender,
HIV+, DOTs by, Weight, BMI and age were included in the spatial temporal model.
Table 4.2 shows the predicted mean risk, 2.5% quadrant, 97.5% quadrant and its
associated standard deviation. Table 4.3 shows the model with, temporal effect and
both structured and unstructured spatial effects. Table 4.4 shows exponentiated

model results of fixed effects.

Table 4.1: GLM model summary for all forms of TB cases

Estimate Std Error Z-value p-value
Intercept -13.5957 3.986021 -3.411 0.001
Gender (props)  4.320850 0.232397 18.593 0.001
HIV+(props) 1.244945 0.101580 12.256 0.001
Dots_byprops 8.399804 4.003454 2.098 0.036
Avg  Weight -0.023816 0.005760 -4.135 0.001
Avg BMI 0.004818 0.003980 1.211 0.226
Avg Age -0.104979  0.005246 -20.013 0.001

Table 4.2: Spatio-temporal fixed effects model summary for all forms of TB cases

Mean sd 0.025quant 0.975quant

Intercept -6.4284  0.8476 -6.4201 -4.7870
Gender (props) 0.5154  0.5544 0.5154 1.6032
HIV-+(props) 0.3462  0.3531 0.3516 1.0254
Avg Weight  0.0044 0.0130  0.0043 0.0301
Avg Age -0.0414  0.0150 -0.0415 -0.0418
DOTS_BY 0.0001  0.0000 0.0002 0.0001
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Table 4.3: Spatial effect model summary for all forms of TB cases

Model Hyperparameters Mean Sd 0.025quant 0.975quant
Spatial effect 4.077 1.002 3.971 6.338
Time 5616.823  8358.246 27073.973 555.377
Unstructured spatial effect ~ 18406.828 18286.296 66605.713 3358.016

Table 4.4: Exponentiated model summary for all forms of TB cases

Mean sd 0.025quant 0.975quant

Intercept 0.00162 2.3340  0.0002 0.0083
Gender (props) 1.67434 1.7408  0.5638 4.9690
HIV+(props)  1.41367 1.4235  0.6953 2.7882
Avg_ Weight 1.00440 1.0131  0.9792 1.0305
Avg_ age 0.95944 1.0151  0.9319 0.9884
DOTS_byprops 1.00011 1.0002  1.0001 1.0002

(ii) Model Results for Smear Positive Tuberculosis Cases

Smear positive cases are the infectious forms of TB and it is important to understand
the variations in the relative risks among the different counties. From table 4.5 it
shows that gender, HIV+ and average age covariates were statistically significant to
be included spatial models (p — value < 0.05). While average BMI, average weight
and DOTS were not statistically significant (p — value > 0.05). Table 4.6 shows
the predicted mean 2.5% quadrant and 97.5% quadrant, and its associated standard
deviation. Table4.7 shows the model with both structured and unstructured random
effects, while table 4.8 shows the model results when the fixed effects models results

in table 4.6 were exponentiated.
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Table 4.5: GLM model summary for Smear Positive TB cases

Estimate Std Error z-value P-value

Intercept -0.388251 4.232537 -0.092 0.927
Gender (props) 4.237643 0.216150 19.605 0.001
HIV+(props) 1.320209 0.104949 12.580 0.001
DOTs by props -6.360081  4.233056 -1.502 0.133
Avg  Weight -0.006348  0.005485 -1.157 0.247
Avg BMI 0.004890 0.004434 1.103 0.270
Avg Age -0.091879  0.005843  -15.725 0.001

Table 4.6: Spatial-temporal fixed effects model summary for smear positive TB cases

Mean sd 0.025quant 0.975quant

Intercept -0.9763  0.5845 -7.1292 -4.8351
Gender (props) 0.0205 0.4808 -0.9237 0.9623
HIV+(props) 0.6257 0.3961 -0.1712 1.3866
Avg_ Age -0.0382 0.0155  -0.0383 -0.0074

Table 4.7: Spatial effect model summary for smear positive TB cases

Model Hyper parameters Mean s.d 0.025quant 0.975quant

Structured spatial effect 3.064 0.7245 1.87 4.7
Time 9403.734 41500 182.19 60883.48
Unstructured spatial effect 18854.859 18500 1258.555 67555.95

Table 4.8: Exponentiated model summary for smear positive TB cases

Mean s.d 0.025quant 0.975quant
Intercept 0.00250 1.794080 0.0025431 0.007946
Gender (props) 1.020683 1.617332 1.0209915 2.6176453
HIV-+(props) 1.869636 1.486003 1.8817462 4.0014110
Avg age 0.962516 1.015668 0.9623974 0.9926654

(iii) Model Results for Favourable Treatment Outcomes

In Tuberculosis control favorable outcomes play an important part in providing an

understanding on the performance of the TB control programs. It is important to
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understand the distribution of favorable outcomes throughout the county. From table
4.9 it shows that all the covariates were statistically non-significant (p—value > 0.05).
Thus all the covariates were omitted from the spatial temporal model. Table 4.10
presents the results of the 2.5% quadrant and 97.5% quadrant, its associated mean
and standard deviation. Table 4.11 shows the model with both structured and
unstructured random effects. Table 4.12 shows the model results when the fixed

effects models results in table 4.10 were exponentiated.

Table 4.9: GLM model summary for favourable TB cases outcomes

Estimate Std Error Z-value p-value
Intercept 0.0340207  0.4182700 0.081 0.935
Gender (props) -0.0791200  0.2903074 -0.273 0.785
HIV+(props) -0.1482350  0.1230142 -1.205 0.228
Avg Weight -0.0002505  0.0067971 -0.037 0.971
Avg BMI 0.0005053  0.0042712 0.118 0.906
Avg Age -0.0031634  0.0069327 -0.456 0.648
Nutrition props  0.0285180  0.0591302 0.482 0.630

Table 4.10: Spatial-temporal fixed effects model summary for favourable outcomes
of TB cases

Mean sd 0.025quant 0.975quant
Intercept -0.1502 0.0112 -0.1722 -0.1282

Table 4.11: Spatial effect model summary for favourable outcomes of TB cases

Model Hyper parameters Mean s.d 0.025quant 0.975quant
Structured spatial effect 19777.28 18826.60 69638.15 2.913
Time 20138.93 20142.33 2649.11 75694.55
Unstructured spatial effect 23138.93 19033.72 1665.00 70555.62

Table 4.12: Exponentiated model summary for favourable outcomes of TB cases

Mean sd 0.025quant 0.975quant
Intercept -0.1502 0.0112 -0.1722 0.861
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(iv) Spatial Temporal Distribution Maps

To display the distribution of notified cases, case notification rates, relative risks and
TB/HIV distribution spatial temporal maps were produced. The calculations of the
relative risks were premised on the significant covariates found to be significant and
used in spatial temporal models used to generate the relative risks, posterior probab-
ility means and the associated standard deviations which facilitated the generation
of the spatial temporal maps which was overlaid on the Kenya county administrative

map.

Figure 4.2.11: Distribution of counties in Kenya

Figure 4.2.11 shows the distribution of administrative counties in Kenya.
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Figure 4.2.12: Kenya Population Distribution

Figure 4.2.12 above shows the population distribution in Kenya

population and population density.
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Figure 4.2.13: Distribution of all TB cases and smear positive TB cases in Kenya,
2012-2014

Figure 4.2.13 above shows the spatial temporal distribution over the three years
(2012-2014) for all forms of TB and smear positive TB show similar pattern for the
notified TB cases with close to 10 counties showing a huge and remaining constant

TB burden over the three years. This counties could benefit from more focused TB

control strategies.

91



2013 CNR TB all Cases 2014 CNR TB all Cases

2012 CNR TB all Cases Norhas Mombasa

Mombasa

] =50 | <=50 [ <=50
[ ] >s0te <100 3 [ ]>s0t0 <100 [ ]>s0t0<100
I >100 to <150 Q"'\ I -100 to <150 I =100 t0 <150
150 to <200 i 150 to <200 g >150 to <200
_= >zon o 0 100 200 400 = 200 o 0 100 200 400 =A° 0 100 200
>; — >: — > —

2012 CNR TB+ 2013 CNR TB+ 2014 CNR TB+ 4
Mombasa

Mombasa

<=50 o [ <=50
[ 50 to <100 [ ] =5010 <100 [ ]>50t0<100
B ~100 1o <150 I >100 to <150 I > 100 to <150
150 to <200 150 to <200 150 to <200
- ’zon o 0 100 200 400 ﬂ ° - >2an - 0 100 200 400
| B — > > —

Figure 4.2.14: Case notification rate for all TB cases and smear positive TB cases in
Kenya, 2012-2014

When case notification rates for both all forms and smear positive were considered
the picture changes significantly for additional number of counties, clearly showing
where more effort should be put by the national TB control program. It shows that
the highest case notification rates were in the following counties; Nairobi, Mombasa,

Lamu, Machakos, Kisumu, Isiolo, West Pokot increasing in the last two years.
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Figure 4.2.15: Relative risk for all TB cases and smear positive TB cases in Kenya,

2012-2014

From Figure 4.2.15, above shows that the estimated risk of case notification rates

per 100,000 was highest in the following counties Marsabit, Isiolo, Nairobi, Lamu,

Mombasa, Machakos, Kajiado, Makueni, Kisumu, Siaya and Homabay and it shows

that over the three years it seems the dynamics of TB disease has not been addressed

in these counties.
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Figure 4.2.16: Relative risk for case notification rates for TB cases and smear positive

TB cases in Kenya, 2012-2014

Figure 4.2.16, shows that the estimated risk all forms of TB and smear positive TB

were consistent with the results of relative risk for the case notification rates shown

in figure 4.2.14 with still the highest relative risk being reported in the following

counties Marsabit, Isiolo, Nairobi, Lamu, Mombasa, Machakos, Kajiado, Makueni,

Kisumu, Siaya and Homabay and it shows that over the three years it seems the

dynamics of TB disease has not been addressed in these counties.
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Figure 4.2.17: Distribution of the number of all TB-HIV+ cases and HIV + smear
positive TB in Kenya, 2012-2014

In Figure 4.2.17, above it shows that HIV continues to be a major factor in spatial
temporal distribution of tuberculosis given its major contribution to the burden of
TB on HIV patients. The distribution shows that most of the counties with high
burden of TB have also high burden of HIV. It is however notable that although
not all high burden counties are high HIV it is important to then understand the

dynamics of what is driving the TB epidemic in those counties
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Figure 4.2.18: Distribution of TB recovery rates in Kenya, 2012-2013

In this Figure 4.2.18, it shows that all the counties continue to post very good treat-

ment outcomes herein referred to as recovery rates. In the two years where the treat-

ment outcomes were available it showed that none of the counties reported recovery

rate less than 85%. This result is very encouraging given the fact that for successful

TB control you require to cure or successful treat almost all you TB patients if you

are to significantly cut down the rates of transmission in the communities.
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4.2.4 Branching Process Results

In this section we present results from the framework on looking at the reproduction
numbers Ry. This quatity is used to measure if the infection will die out eventually or
not. When Ry < 1, it shows that the infection will die out in the long run. But if Ry >
1, the infection will be able to continue to spread in a population. And generally,
the larger the Ry, the harder it is to control the epidemic. The approaches used
to estimate initial reproduction numbers included Exponential growth, Maximum
likelihood estimation and Sequential bayesian method. Act.rate in this context is

used to represent the number of cases a that are infected from a single case in a year.

(i) Reproduction Numbers for Smear Positive Tuberculosis Monthly no-

tified Cases : 2012-2014

Table 4.13 shows that when monthly data was considered both methods (exponene-
tial and maximum likelihood) gave Ry values close to unity. It is notable however
that the maximum likelihood method had wider confidence interval when the trans-
missible acts per person were more than 3 new infections per each contact case.
The best fitting values of Ry were realised when the transmissible acts were 1 and
3 respectively as shown in table 4.14. figure 4.2.19 shows that the value of Ry was
variable throughout the months with some months showing values of Ry below unity.
It was notable that wide confidence levels were realised towards the end of the time

period.
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Table 4.13: Reproduction numbers for the monthly notified smear positive cases:
2012-2014

Method RO 2.5% CI 97.5%CI
Act.rate—=1  Exponential Growth  0.9998 0.9998 0.9999
Maximum Likelihood 1.0095 1.0014 1.0178
Act.rate=3  Exponential Growth  0.9997 0.9996 0.9997
Maximum Likelihood 1.0508 1.0422 1.0594
Act.rate—=5  Exponential Growth  0.9995 0.9994 0.9999
Maximum Likelihood 1.1203 1.1112 1.1295
Act.rate—10 Exponential Growth  0.9990 0.9989 0.9992
Maximum Likelihood 1.3281 1.3174 1.3390
Act.rate—15 Exponential Growth  0.9986 0.9983 0.9989
Maximum Likelihood 1.6113 1.5982 1.6245

Table 4.14: Best fit for reproduction numbers for the monthly notified smear positive
cases: 2012-2014

Act.rate Time Begin End R Growth Rate R squared 2.5%CI 97.5%CI
1 7 18 25 0.905 -0.048 0.339 0.894 0.915
3 7 18 25 0.845 -0.048 0.3393 0.829 0.861
5 7 18 25 0.768 -0.0478 -0.048 0.746 0.792
10 7 18 25 0.606 -0.048 0.339 0.572 0.641
15 7 18 25 0.477 -0.048 0.339 0.439 0.519
Reproduction number ( Time-Dependent )
1
\
1_
i
R
B X

Time:

Figure 4.2.19: Trend of Reproduction Numbers for Monthly notified TB cases: 2012-
2014
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(ii) Reproduction Numbers for Total Tuberculosis yearly notified Cases :

1987-2014

Table 4.15 shows that when year data was considered for the period (1987-2014)
both methods (exponenetial and maximum likelihood) gave Ry values slightly higher
than unity. It is notable however that the maximum likelihood method had wider
confidence interval when the transmissible acts per person were more than 3 new
infections per each contact case. The best fitting values of Ry were realised for all
the transmissible acts as shown in table 4.16. Figure 4.2.20 shows that the value of
Ry has been declining over the years with the value of Ry falling slightly below unity
since the year 2005. It was notable that over the last few years it has shown signs of
rising again.

Table 4.15: Reproduction numbers for the yearly notified tuberculosis cases: 1987-
2014

Method RO 2.5% CI 97.5%CI
Act.rate=1  Exponential Growth  1.0003 1.0003 1.0003
Maximum Likelihood 1.0753 1.0717 1.0789
Act.rate=3  Exponential Growth  1.0006 1.0006 1.0006
Maximum Likelihood 1.1665 1.1626 1.1704
Act.rate=5  Exponential Growth  1.0009 1.0009 1.0009
Maximum Likelihood 1.3284 1.3241 1.3329
Act.rate—10 Exponential Growth  1.0017 1.0017 1.0018
Maximum Likelihood 2.0852 2.0783 2.0921
Act.rate—15 Exponential Growth  1.0026 1.0025 1.0026
Maximum Likelihood 4.2773 4.2631 4.2915
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Table 4.16: Best fit for reproduction numbers for the yearly notified tuberculosis
cases: 1987-2014

Act.rate Time Begin End R Growth Rate R squared 2.5%CI 97.5%CI
1 6 18 1.197 0.088 0.996 1.192 1.202
3 6 18 1.356 0.088 0.996 1.346 1.365
5 6 12 18 1.617 0.088 0.996 1.599 1.636
10 6 12 18 2.514 0.088 0.996 2.461 2.570
15 6 12 18 3.909 0.088 0.996 3.786 4.037

Reproduction number { Time-Dependent )

Time

Figure 4.2.20: Trend of Reproduction Numbers for yearly notified TB cases: 1987-
2014

4.3 Discussion of the Results

The burden of TB disease in Kenya has shown consistent decline in the last 8 years.
This result is consistent with the findings by Sitienei et al. (2013). The key disease
burden measures incidence, prevalence and mortality has shown marked decline over
the last couple of years, however prevalence and mortality have high levels of uncer-
tainty WHO (2012). Although mortality estimates have high levels of uncertainty,
there has been marked decline in the in the estimates of TB deaths among the HIV
patients. This in part could be attributed to high HIV testing and initiation of ART

treatment among HIV positive patients WHO (2012). Tt is expected that with a
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robust surveillance system, notifications should provide good approximations to TB
incidence. Kenya over the last 14 years has notified cumulatively 1,378,592 TB cases.
Year by year trend has shown that Kenyan TB epidemic peaked in the year 2007
and has been on a decline since then with an average decline of 5% over the last
8 years. The highest decline in the TB case notification was reported between the
years 2012-2013 at 12%. There has been consistent trend in the case notification rates
from both the Kenyan TB data and WHO estimates DLTLD (2013). In this thesis,
it has been further demonstrated that the proportion of childhood TB has remained
fairly consistent over the years. With more attention currently being directed at
childhood TB through better diagnostic tools and improvement of surveillance sys-
tems it could reduce the gap in understanding childhood TB epidemiology. (Glaziou
et al. (2015), WHO (2013)). In Kenya, a large proportion of TB has been those
who have been confirmed to have TB using smear microscopy examination with this
proportion ranging (37-43) %, the extra-pulmonary ranges from (15-18)% and the
smear negative TB cases ranging between (33-42)%. Kenya began the disaggregated
reporting for age and sex in the year 2008, while adopting the case based surveillance
system in the year 2012. DLTLD (2013). The disaggregation has clearly shown that
tuberculosis continues to take greater toll on those in the age groups 24-44 years,
this being the most economically productive group. The average age of a TB patient
has increased from 33.7 to 37.7 years in the years 2012 and 2013 respectively. Fewer
children aged 0-4 years have consistently been reported to have tuberculosis. From
the age sex case notification rates it shows that tuberculosis continues to be a male
disease with rates in males being approximately 1.5 times higher in particular the
most productive age groups 25-54 years. This trend is similar for both all forms of

TB and smear positive. It was however noted that the age sex distribution for smear
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positive TB was bimodal for females while unimodal for males. This result is consist-
ent with results in Sitienei et al. (2013). However for all forms of TB the peakedness
of the distribution is unimodal at the same age groups 25-34 years. At present there
is no plausible explanation for the difference in the age sex distribution peakedness
for smear positive TB Sitienei et al. (2013). It can however be hypothesized that it
could be because of early sexual activity in female which predisposes them to HIV
and consequently tuberculosis. There is thus need for further studies to explain the
difference. Other possible hypothesis that have been advanced include biological
differences in the risk of infection and subsequent TB disease Thorson et al. (2007),
differences due to gender roles in different communities which predisposes men to
TB disease (Borgdorff et al. (2000), Connolly and Nunn (1996)) and the hypothesis
that it could be that women access services to a greater extent than men in some set-
tings or that disease progression could be slower on average in women Glaziou et al.
(2015). Sitienei et al. (2013) showed that HIV is the single most important factor
that caused resurgence of HIV in Kenya and there is a twin relationship between HIV
and tuberculosis. This historical twin relationship has been shown by K’Oyugi and
Muita (2002). To understand TB epidemiology in Kenya, understanding the close
relationship between TB and HIV is critical. The data from the surveillance system
show that upon the adoption in Kenya of the WHO interim policy on TB/HIV col-
laborative activities in 2004, WHO (2004) with Kenya adopting the policy in 2005.
The HIV testing rose from 83 to 94% with HIV sero prevalence declining from 45%
to 38% by the end of 2012. Tt had further been shown that those countries with high
HIV prevalence have also high burden of tuberculosis Narain and Lo (2004). Given
the role HIV plays in the development of TB disease provision of ART and INH

prophylaxis has increasingly played the role in the prevention of TB in individuals
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with HIV and latent TB infection. (Glaziou et al. (2015),Straetemans et al. (2010),
Glaziou et al. (2011)). Kenya has made significant strides in addressing the dual
burden with 74% of the HIV positive TB patients accessing ART within TB clinics

by the end of 2012 DLTLD (2013).

The association between poverty and tuberculosis has been well established and
widespread in literature of TB risk factors. It has been shown that TB prevalence is
significantly higher among people living below the poverty line compared with those
above the poverty line and the situation is even more dire among the marginalised
people, where TB could be 1.5 times more prevalent Muniyandi and Ramachandran
(2008). Further, it has been shown TB can contribute to moving individuals into
poverty by reducing patients’ physical strength and ability to carry on normal routine
work (Paton and Ng (2006); Sagbakken et al. (2008); WHO (2005); Hansel et al.
(2004)).

Modelling of tuberculosis has had a long history and among the first model to be
developed first in the 1960s (Waaler et al. (1962); Brogger (1967)). Key TB model
formulations appeared quickly thereafter. Waaler et al. (1962) developed a linear
model for TB based on three compartments: susceptible, infected non-cases and
infectious cases. ReVelle et al. (1967) clearly formulated the connection between
TB prevalence and infection rate in his model using a set of differential equations.
The studies on modelling tuberculosis have tried to provide insights into disease
transmission dynamics. Among the earlier work that mark the beginning of modern
approach to modelling and thoughtful consideration of probabilities in modelling
have be highlighted by (Waaler et al. (1962); Waaler and Piot (1969); Azuma (1975);
Styblo (1990)). In our study we constructed both deterministic and stochastic models

which can enable us obtain insights and obtain the integral quantities description of
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TB transmission dynamics. The results we obtained indicate that both deterministic
and stochastic fit well to the Kenyan TB epidemic model however with varying time
periods. The models show that for deterministic model the number of infected
individuals increases dramatically within three years and begins to fall quickly when
the transmissible acts are 10 and 15 and falls to close to zero by 15 years but when
the transmissible act is 5 the number infected peaks by the 11th year and declines
to zero by year 31, Figure 4.2.3. while for stochastic models the number infected
falls exponentially but when the transmissible acts is 15 the decline is slow and will
get to zero by the 53rd year while for 10 transmissible acts to declines to zero by
the 18th year. While the other transmissible acts (1,3,5) decline to zero by the 9th
year. Figure 4.2.8. The results obtained are consistent with other findings in other
studies which have attempted to investigate the broad-level transmission dynamics of
tuberculosis, Porco and Blower (1998) by conducting a time-dependent uncertainty
and sensitivity analysis based on previous work. Model formulation framework,
individuals can fully recover from TB, and the model does not include treatment
parameters. Their results indicated that most parameters do not significantly affect
the severity of the TB epidemic; those that do so include: disease reactivation rate,
fraction of infected individuals who develop TB soon after infection (instead of a
prolonged latent period), number of individuals that an infectious individual infects
per year, disease death rate, and population recruitment rate i.e. the transition
from the susceptible pool to those who are infected. Model results were in rough
agreement with historical case rate data and developing country data. Because
transmission is a function of both contact rate and infectivity, Aparicio et al. (2000)
formulated a deterministic cluster model to specifically explore the impact of intense

and long exposure to individuals with active TB on population level transmission
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dynamics. In contrast to Porco and Blower (1998) which had consistent assumptions
that there is an average number of people who get infected each year from the
untreated case, this model does not assume an average number of individuals infected
per year from one infectious case. Specifically, this model differentiates between
epidemiologically active clusters (defined as active when one member has active TB
infection) and casual infections. Model results indicate that casual infections may
be as or more important than cluster-generated secondary infections at a population
level. In our study we considered the assumption that the population is randomly
mixing i.e. homogeneous and there is a constant recovery rate of those who are
infected at 80, 85 or 90% because of chemotherapy and those who remain continue
within the community to infect others. From our results we hypothesize that the
transmissible acts can range between 1 to 5 for any infectious case if left untreated.
The results we obtained have congruence with the spatial stochastic model, developed
by Schinazi (2002) which explored the role of social clusters in disease transmission.
Similar to Aparicio et al. (2000), their results indicate that three parameters that
influence the transmission of TB: the size of each individual’s social cluster, and
the infection rates within and outside of the cluster. When the infection rate is
low outside the cluster, an epidemic is only possible when the average cluster size
and within-cluster infection rate are large enough. They then compared this to the
mean field model with corresponding parameters (homogenous mixing, except by
cluster), and discover that the qualitative model behavior is unchanged, indicating
that the model results are robust to mixing heterogeneity. The results we present here
however did not explicitly focus on the effects of heterogeneity in demographically
distinct populations. More work must be done to better understand the dynamics

of disease spread in heterogeneous populations including the exogenous factors that
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affect disease transmission, and implicit population heterogeneity. This could hopeful

augment more clearer understanding of TB epidemiology.

The results show the inequality of TB disease distribution both all TB forms and
smear positive in Kenya as shown in figures 4.2.15, 4.2.14 and 4.2.17. The results
clearly show the counties at risk of severe TB disease in the future. In this study it has
showed that some of the key covariates that were found to be significant were HIV+,
gender and age. These covariates are some of the known risk factors for developing
TB disease. Although this study did not examine the role of socio economic status
it showed that TB tends to be more pronounced in those areas where population is
highest and also where there is high incidence of HIV. In other studies, they have
shown that there is a strong correlation between the measures of income, education
and social vulnerability. (Roza et al. (2012),. Corbett et al. (2003);Houben et al.
(2009)). While several studies have attempted to utilise spatial analytical tools
using the GIS framework to describe the pattern of various infectious diseases in
the African region (Rogers and Williams (1993); Beyers et al. (1996); Munch et al.
(2003); Gaudart et al. (2005);Gaudart et al. (2006)), only a handful of studies have

attempted to obtain spatial temporal review of tuberculosis.

It has been noted that with improved surveillance and improvement in the access to
and utilization of TB control services could lead to decrease in the transmission ongo-
ing in the communities since with access and utilization of services, individuals who
are sick are able to access care quickly hence cutting down the rates of transmission.
One possible hypothesis is that those areas showing high burden to TB could be
having challenges of access and utilization of TB services. (Tanrikulu et al. (2007);
Vargas et al. (2004) ). In our study we have demonstrated that national programs

can utilize spatial temporal tools to identify hot spots for TB hence better focusing
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of the interventions. With this illustration of cluster analysis and mapping of the
disease distribution it adds value beyond that which can be obtained by presenting
the disease notification rates or notification numbers reported in a table, as a cluster
analysis helps identify areas with unusually high disease rates, which have less likely
occurred by chance Cromley and McLafferty (2012). It has been documented that
that improving TB control efforts could help reduce the transmission and change
the geographic distribution of TB, Jacobson et al. (2005). Further, despite different
intervention programs aimed at reducing disease transmission and improving case
detection over many years, the unusually high rates of the disease could persisted
in the same places, with the most likely spatial clusters showing a stable pattern
if the actual dynamics of disease transmission are not addressed. Dangisso et al.
(2015). Further, it is clear that the reproduction numbers as shown figures 4.2.19
and 4.2.20 are just around unity meaning than it seems only infectious forms just
replace itself and more intesified TB case finding needs to be implemented to cut
down the transmissions which continue to take place in the community. Despite
the interesting results, our study was faced with a number of challenges which in-
cluded understanding the relationship between the economic status and tuberculosis
distribution. Further there was need for understanding the health seeking behavior
of patients, access to and utilization of health services in particularly TB control
services. These are the areas that require further research to further understand the

dynamics with govern the occurrence of tuberculosis transmission.
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Chapter 5

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary

The burden of TB disease in Kenya has shown consistent decline in the last 8 years.
The key disease burden measures incidence, prevalence and mortality has shown
marked decline over the last couple of years, however prevalence and mortality have
high levels of uncertainty. Although mortality estimates have high levels of uncer-
tainty, there has been marked decline in the in the estimates of TB deaths among the
HIV patients. This in part could be attributed to high HIV testing and initiation of
ART treatment among HIV positive patients. It is expected that with a robust sur-
veillance system, notifications should provide good approximations to TB incidence.
Kenya over the last 14 years has notified cumulatively 1,378,592 TB cases. Year by
year trend has shown that Kenyan TB epidemic peaked in the year 2007 and has
been on a decline since then with an average decline of 5% over the last 8 years. The
highest decline in the TB case notification was reported between the years 2012-2013
at 12%. The disaggregation has clearly shown that tuberculosis continues to take
greater toll on those in the age groups 24-44 years, this being the most economically
productive group. The average age of a TB patient has increased from 33.7 to 37.7
years in the years 2012 and 2013 respectively. Fewer children aged 0-4 years have
consistently been reported to have tuberculosis. From the age sex case notification
rates it shows that tuberculosis continues to be a male disease with rates in males
being approximately 1.5 times higher in particular the most productive age groups

25-54 years.

It has been shown that TB prevalence is significantly higher among people living

below the poverty line compared with those above the poverty line and the situation
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is even more dire among the marginalised people, where TB could be 1.5 times more
prevalent. The results from this study indicate that both deterministic and stochastic
fit well to the Kenyan TB epidemic model however with varying time periods. The
models show that for deterministic model the number of infected individuals increases
dramatically within three years and begins to fall quickly when the transmissible acts
are 10 and 15 and falls to close to zero by 15 years but when the transmissible act

is 5 the number infected peaks by the 11th year and declines to zero by year 31.

While for stochastic models the number infected falls exponentially but when the
transmissible acts is 15 the decline is slow and will get to zero by the 53rd year
while for 10 transmissible acts to declines to zero by the 18th year. While the other
transmissible acts (1,3,5) decline to zero by the 9th year. Model results indicate that
casual infections may be as or more important than cluster-generated secondary
infections at a population level. In our study we considered the assumption that the
population is randomly mixing i.e. homogeneous and there is a constant recovery
rate of those who are infected at 80, 85 or 90% because of chemotherapy and those
who remain continue within the community to infect others. From our results we
hypothesize that the transmissible acts can range between 1 to 5 for any infectious

case if left untreated.

The results show the inequality of TB disease distribution both all TB forms and
smear positive in Kenya. The results clearly show the counties at risk of severe TB
disease in the future. In this study it has showed that some of the key covariates
that were found to be significant were HIV+, gender and age. These covariates are

some of the known risk factors for developing TB disease.

In our study we have demonstrated that national programs can utilize spatial tem-

poral tools to identify hot spots for TB hence better focusing of the interventions.
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5.2 Conclusion

Kenya’s TB epidemiology has evolved over time and it has been characterised by a
period where there was increase in the TB cases reaching a peak in the year 2007
after which there was a decline which began to accelerate in the year 2011. The
gains which have been witnessed should be sustained. What is equally notable is the
clear epidemiologic shift in age indicating reduced transmission in the younger age
groups. To sustain the gains made in containing TB in Kenya, efforts must also be
made in addressing the risk factors majorly HIV and what has been demonstrated
that the burden of HIV on TB patients has been addressed in the country but
focus should be on universal access to ART for those who are eligible and access
to the INH prophylaxis. Further, to sustain the gains social determinants in health
must be addressed given that TB affects the most vulnerable in the population and
should include strengthening partnership across all the sectors that are involved.
Further systematic analysis should be carried out to understand the socio economic
dynamics of TB patients in order to address the well-being of the TB patients. Kenya
is on course to achievement of millennium development goals (MDGs) of halting
and beginning to reverse the incidence and prevalence to tuberculosis. To better
understand mortality, greater focus should be given to improvement of mortality
statistics though strengthening of collaboration with the civil registration system in
the country and supporting the improvement in the capacity to certify and code
cause of death in health facilities.

From this study we can conclude that if the national control program continues with
the current interventions it could take them about upto the next 31 years to being
the infection numbers to zero if the deterministic model is considered while in the

stochastic model with accelerated interventions and high recovery rate and assuming
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that there is no change in the risk factors it could take them upto 11 years to bring the
infections to zero. Despite the significant increase in the information from molecular
TB studies, some major questions remain unresolved because the natural history
of the disease makes its comprehensive study difficult coupled with surveys based
on tuberculin skin test are hard to interpret because of the cross-reactivity of BCG
vaccine; case notification data underestimates TB burden in the country. Thus there
is need to have well detailed models which include both environmental and biological

factors into the understanding of the TB transmission dynamics.

It is very clear from our study that the growing field of small area estimation epi-
demiology brings in person, place, and time aspects in the risk factor analysis. The
results show that small area estimation enables the drawing of risk maps, which can
be used by policy makers to target and develop interventions which address the real
challenges which occur in the public health arena. The results indicate that for Kenya
there exists several geographically differentiated TB epidemics rather than a single
one, implying the existence of TB hot spots which should also have differentiated
interventions. The study joins a small but growing number of studies with sim-
ilar spatial specificity utilizing small area estimation including mapping the spatial

variation of proximate and underlying factors that influence tuberculosis dynamics.

5.3 Recommendations

To sustain the gains made in containing TB in Kenya, efforts must also be made in
addressing the risk factors majorly HIV and what has been demonstrated that the
burden of HIV on TB patients has been addressed in the country but focus should
be on universal access to ART for those who are eligible and access to the INH

prophylaxis. Further, to sustain the gains social determinants in health must be
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addressed given that TB affects the most vulnerable in the population and should
include strengthening partnership across all the sectors that are involved. Further
systematic analysis should be carried out to understand the socio economic dynamics

of TB patients in order to address the well-being of the TB patients.

To better understand mortality, greater focus should be given to improvement of
mortality statistics though strengthening of collaboration with the civil registration
system in the country and supporting the improvement in the capacity to certify and
code cause of death in health facilities and consider initiation of verbal autopsies to
obtain an understanding of cause of death amongst those deaths which occur at
home. The national TB control program should consider utilizing spatial models at
all levels (National, County and Sub-county levels) in monitoring the unfolding TB
epidemic as it provides more insights as to wheather the interventions are working
or not. More interventions particularly those that cut down transmission of TB
should be agressively implmentented in those counties with the highest burden of
smear positive TB. This will be achieved by ensuring that there are tailor made

interventions for for different counties.

The National TB control program should monitor the value of Ry at all levels as this
particular measure informs as to whether the war against TB control is being won or
not. Despite the significant increase in the information from molecular TB studies,
some major questions remain unresolved because the natural history of the disease
makes its comprehensive study difficult coupled with surveys based on tuberculin
skin test are hard to interpret because of the cross-reactivity of BCG vaccine; case
notification data underestimates TB burden in the country. Thus there is need to
have well detailed models which include both environmental and biological factors

into the understanding of the TB transmission dynamics.
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5.4 Areas for Further Research

The results from this study did not explicitly focus on the effects of heterogeneity in
demographically distinct populations. More work must be done to better understand
the dynamics of disease spread in heterogeneous populations including the exogenous
factors that affect disease transmission, and implicit population heterogeneity. This

could hopeful augment more clearer understanding of TB epidemiology.

There is need to carry out further studies to examine the relationship and the role

between of socio economic status in determining the burden of Tuberculosis

Further there was need for understanding the health seeking behavior of patients,
access to and utilization of health services in particularly TB control services and
to deduce why Tuberculosis continues to disproportinately affect more male than
female. These are the areas that require further research to further understand the

dynamics with govern the occurrence of tuberculosis transmission.
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APPENDICES

We now present selected R programs used for simulations and real data analyses in

this thesis.

A.1 Simulation of Deterministic Compartmental Model Codes

s s s s s s s s
# Deterministic Compartmental Models (DCM) SIR R code
S
rm(list=1s()) #remove all the variables from the workspace

#Packages Required

require (EpiModel)
s s s s s T s s s
# Specifying epidemic parameters for Deterministic Compartmental Models.
B R S S S S S e
# Average number of transmissible acts per person per unit time
act_ratel<-1

act_rate2<-3

act_rate3<-5

act_rate4<-10

act_rateb<-15
s s s s s s s
#di.rate

#Death or exit rate for infected

di.rate=0.03
s s s s s
#ds.rate

#Death or exit rate for suspectible

#Population infected with TB=10

#Population susceptible to TB infection= (1/3%3000)
ds_rate<-(10)/(1/3*1000)
s s s s s s s s
#dr.rate

#Death or exit rate for recovered

#Population infected with TB=10

#Population susceptible to TB infection= (1/3%3000)=1000
dr_rate<-(10)/(1/3*3000)
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SRR R S R

#bi_rate

#Birth and entry rate

#New infections per year=2.6

#Population suspectible to TB infection=(1/3%*3000)

bi_rate<-(2.6)/(1/3x3000)

FHER R R R R

# Setting the epidemic parameters for deterministic compartmental models

param<-param.dcm(inf.prob=0.26,act.rate=10,rec.rate=0.8,
b.rate=bi_rate,ds.rate=ds_rate,di.rate=0.03,
dr.rate=dr_rate)

#Setting the intial conditions for deterministic compartmental models

init<-init.dcm(s.num=1000,1i.num=3,r.num=0)

#Setting the controls for deterministic compartmental models simulated

with dcm

control<-control.dcm(type="SIR",nsteps=63)

#Solving the determinstic compartmental epidemic models

sim<-dcm(param,init,control)

#Saving the simulated stochastic individual contact models results as

an R object

save(sim,file="dcm_85_05.RData")

#Reload R saved bject

load("dcm_85_10.RData")

#Returning sim as a data frame

data<-as.data.frame(sim)

#Prints the data as a csv file

write.csv(data,file="sim model output.csv",row.names=F)
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A.2 Stochastic Individual Contact Models SIR R Code

s s s s s s
# Stochastic Individual Contact Models (ICM) SIR R Code
s s s s T s s s
rm(list=1s()) #remove all the variables from the workspace

#Packages Required

require (EpiModel)
s s s s s T s s s
# Specifying epidemic parameters for stochastic individual contact models.
S B S S e
# Average number of transmissible acts per person per unit time
act_ratel<-1

act_rate2<-3

act_rate3<-5

act_rate4<-10

act_rateb<-15
s s s s s s s
#di.rate

#Death or exit rate for infected

di.rate=0.03
s s s s
#ds.rate

#Death or exit rate for suspectible

#Population infected with TB=10

#Population susceptible to TB infection= (1/3%3000)
ds_rate<-(10)/(1/3%1000)
s s s s s s s
#dr.rate

#Death or exit rate for recovered

#Population infected with TB=10

#Population susceptible to TB infection= (1/3%3000)=1000
dr_rate<-(10)/(1/3*3000)
S
#bi_rate

#Birth and entry rate

#New infections per year=2.6

#Population suspectible to TB infection=(1/3*3000)
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bi_rate<-(2.6)/(1/3*3000)

g s S

# Setting the epidemic paramters for stochastic individual contact models

param<-param.icm(inf.prob=0.26,act.rate=10,rec.rate=0.8,
b.rate=bi_rate,ds.rate=ds_rate,di.rate=0.03,
dr.rate=dr_rate)

#Setting the intial conditions for stochastic

individual contact models simulated with icm

init<-init.icm(s.num=1000,1i.num=3,r.num=0)

#Setting the controls for stochastic

individual contact models simulated with ICM

control<-control.icm(type="SIR",nsteps=63,nsims=5000)

#Simulating stochastic individual contact models

sim<-icm(param,init,control)

#Saving the simulated stochastic

individual contact models results as an R object

save(sim,file="ICM_85_05.RData")

#Reload R saved bject

load("ICM_85_10.RData")

#Returning sim as a data frame

data<-as.data.frame(sim)

#Prints the data as a csv file

write.csv(data,file="sim model output.csv",row.names=F)
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A.3 Observed Deterministic Compartmental Models SIR R Code

g s s
# Observed Deterministic Compartmental Models (DCM) SIR R code
s
rm(list=1s()) #remove all the variables from the workspace
#Packages Required
require (EpiModel)
s
# Specifying epidemic parameters for Deterministic Compartmental Models.
HHHHH S R S R S i S
# Average number of transmissible acts per person per unit time
act_ratel<-1
act_rate2<-3
act_rate3<-5
act_rate4<-10
act_rateb<-15
S
#di.rate #Death or exit rate for infected
di.rate=0.03
HHEHH S R S R S S
#ds.rate #Death or exit rate for suspectible #Population infected with
TB=142026
#Population susceptible to TB infection= (1/3%44350000)
ds_rate<-(142026)/(1/3%44350000)
S s s s
#dr.rate #Death or exit rate for recovered
#Population infected with TB=142046
#Population susceptible to TB infection= (1/3%44350000)
dr_rate<-(142026)/(1/3%44350000)
e s s
#bi_rate #Birth and entry rate #New infections per year=38000
#Population suspectible to TB infection=(1/3%4435000)
bi_rate<-(38000)/(1/3%*44350000)
s s
# Setting the epidemic parameters for deterministic compartmental models
param<-param.dcm(inf.prob=0.26,act.rate=10,rec.rate=0.8, b.rate=l
#Setting the intial conditions for deterministic compartmental models
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init<-init.dcm(s.num=1000,1i.num=3,r.num=0)

#Setting the controls for deterministic compartmental
models simulated with dcm
control<-control.dcm(type="SIR",nsteps=63)

#Solving the determinstic compartmental epidemic models
dcm<-dcm(param, init,control)

#Saving the simulated stochastic individual contact
models results as an R object

save (dcm,file="dcm_85_05.RData")

#Reload R saved bject

load("dcm_85_10.RData")

#Returning sim as a data frame

data<-as.data.frame(dcm)

#Prints the data as a csv file
write.csv(data,file="dcm model output.csv",row.names=F)
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A.4 Observed Stochastic Individual Contact Models SIR R Code

T S
# Observed Stochastic Individual Contact Models (ICM) SIR R code
T
rm(list=1s()) #remove all the variables from the workspace

#Packages Required

require (EpiModel)
s
# Specifying epidemic parameters for stochastic individual contact models.
s
# Average number of transmissible acts per person per unit time
act_ratel<-1

act_rate2<-3

act_rate3<-5

act_rate4<-10

act_rateb<-15
s
#di.rate #Death or exit rate for infected

di.rate=0.03

HHSHH S R S R S S
#ds.rate #Death or exit rate for suspectible

#Population infected with TB=142026

#Population susceptible to TB infection= (1/3%44350000)

#ds_rate<-(142026) /(1/3%44350000)

HHEHH R R R S S
#dr.rate #Death or exit rate for recovered

#Population infected with TB=142026

#Population susceptible to TB infection= (1/3%44350000)
dr_rate<-(142026)/(1/3%44350000)
e s s
#bi_rate

#Birth and entry rate

#New infections per year=38000

#Population suspectible to TB infection=(1/3%44350000)
bi_rate<-(38000)/(1/3%44350000)
s S
# Setting the epidemic paramters for stochastic individual contact models
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param<-param.icm(inf.prob=0.26,act.rate=10,rec.rate=0.8,
#b.rate=bi_rate,ds.rate=ds_rate,di.rate=0.03, dr.rate=dr_rate)
#Setting the intial conditions for stochastic

individual contact models simulated with icm
init<-init.icm(s.num=14766667,1i.num=38000,r.num=0)
#Setting the controls for stochastic

individual contact models simulated with ICM
control<-control.icm(type="SIR" ,nsteps=63,nsims=20)
#Simulating stochastic individual contact models
sim<-icm(param,init,control)

#Saving the simulated stochastic

individual contact models results as an R object
save(sim,file="ICM_85_05.RData")

#Reload R saved bject

load("ICM_85_10.RData")

#Returning sim as a data frame

data<-as.data.frame(sim)

#Prints the data as a csv file

write.csv(data,file="sim model output.csv",row.names=F)
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A.5 SAE INLA R Code for TB Treatment Outcomes in Kenya

# SAE INLA R CODE For TB Treatment outcomes in Kenya

rm(list=1s())

# Packages required

library("ctv")

library("sp")

library (maptools)

library(rgdal)

library(spdep)

require (INLA)

setwd("F:/DCM_140415/DCM and ICM plots_040515 and SAE/SAE RESULTS_040515")
ken_data<-read.csv("F:/DCM_140415/DCM and ICM plots_040515

and SAE/SAE RESULTS_040515/Kenya Treatment Outcome_1005.csv")
head(ken_data) names(ken_data)

#GLM CODE ~ Helps in choosing the

covariates to include in the spatial model

#0nly include significant covariates
glm_model<-glm(X.Favourable_outcome~malesprop+HIVpos+malesprop+
Avg_Weight+Avg_BMI+Avg_Age+nutprops,
family=poisson(link="1og"),offset=log(pop) ,data=ken_data) summary(glm_model)
# we need to add a new column as an index cannot be

# used twice, i.e the index "SLID" cannot be used

# for two f-function, the structured and unstructured

# random effect. ken_data<-cbind(ken_data, CID.unstruc= ken_data$CID)
ken_data<-cbind(ken_data, poptb= (ken_data$Population)/3) head(ken_data)
ken<- readShapePoly("kenCounty.shp") plot(ken)

adj_ken<-poly2nb(ken)

#Creates adjacency for ken adj_ken

#### plot the neighbourood structure plot(ken, border=gray(.5))
plot(adj_ken, coordinates(ken), add=TRUE)
nb2INLA("ken.graph",adj_ken) #INLA graph file #spdep command
#spatially unstructured

and spatially unstructured and correlated time as random effects
formula<-X.Favourable_outcome~f (CID,model="besag",
graph="ken.graph",adjust.for.con.comp = FALSE)+
f(CID.unstruc,model="iid")+f (Time,model="rwl")

model<-inla(formula,family="poisson",E=pop,
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data=ken_data,control.compute=1list (dic=TRUE, cpo=TRUE)
,verbose=TRUE)

save(model, file="model_Favourablel005.RData")
load("model_Favourable1005.RData")

summary (model)

exp (model$summary.fixed)

#calculating and mapping the risk
fitted<-model$summary.linear.predictor$mean
RR<-exp(fitted)
std_dev<-model$summary.fitted.values$sd
ken_data$RR<-RR

ken_data$std_dev<-std_dev

write.table(ken_data,

file="Kenya Treatment Outcome_1305.csv.csv",row.names=F,sep=",")
plot(model)
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A.6 SAE INLA R Code for All Smear Positive TB Cases in Kenya

# SAE INLA R Code for All Smear Positive TB Cases in Kenya
rm(list=1s())

# Packages required

library("ctv")

library("sp")

library (maptools)

library(rgdal)

library(spdep)

require (INLA)

setwd ("F:/DCM_140415/DCM and ICM plots_040515 and SAE/SAE RESULTS_040515")
ken_data<- read.csv("F:/DCM_140415/DCM and ICM plots_040515

and SAE/SAE RESULTS_040515/

Kenya TB Positive cases only_1005.csv") head(ken_data) names(ken_data)
#GLM CODE ~ Helps in choosing the covariates to include in the spatial model
#0nly include significant covariates

glm_model<-glm(CNRPTB. “Malesprops+HIVprops+dot_byProps+
Avg_Weight+Avg_BMI+Avg_Age,

family=poisson(link="1log"),

offset=log(pop) ,data=ken_data) summary(glm_model)

# we need to add a new column as an index cannot be

# used twice, i.e the index "SLID" cannot be used

# for two f-function, the structured and unstructured

# random effect. ken_data<-cbind(ken_data, CID.unstruc= ken_data$CID)
ken_data<-cbind(ken_data, poptb= (ken_data$Population)/3) head(ken_data)
ken<- readShapePoly("kenCounty.shp") plot(ken)

adj_ken<-poly2nb(ken) #Creates adjacency for ken adj_ken

#### plot the neighbourood structure plot(ken, border=gray(.5))
plot(adj_ken, coordinates(ken), add=TRUE)

nb2INLA("ken.graph",adj_ken) #INLA graph file #spdep command
#spatially unstructured and spatially unstructured

and correlated time as random effects

formula<-CNRPTB. Malesprops+HIVprops+Avg_Age+
f(CID,model="besag",graph="ken.graph",

adjust.for.con.comp = FALSE)+

f(CID.unstruc,model="iid")+f (Time,model="rwl")

model<-inla(formula,family="poisson",E=pop,
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data=ken_data,control.compute=1list (dic=TRUE, cpo=TRUE)
,verbose=TRUE)

save(model, file="model_poisson Positive TB Cases1005.RData")
load("model_poisson Positive TB Cases1005.RData")

summary (model)

exp (model$summary.fixed)

#calculating and mapping the risk
fitted<-model$summary.linear.predictor$mean

RR<-exp(fitted)

std_dev<-model$summary.fitted.values$sd

ken_data$RR<-RR

ken_data$std_dev<-std_dev

write.table(ken_data,file="Kenya TB Positive cases only_1305.csv.csv",
row.names=F,sep=",")

plot(model)
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A.7 SAE INLA R Code for All TB Cases in Kenya

# SAE INLA R CODE For All TB cases in Kenya

rm(list=1s())

# Packages required

library("ctv")

library("sp")

library (maptools)

library(rgdal)

library(spdep)

require (INLA)

setwd("F:/DCM_140415/DCM and ICM plots_040515 and SAE/SAE RESULTS_040515")
ken_data<- read.csv("F:/DCM_140415/DCM and ICM plots_040515

and SAE/SAE RESULTS_040515/Kenya TB_AllcasesWithout_DOTBY_1005.csv")
head(ken_data) names(ken_data)

#GLM CODE ~ Helps in choosing the covariates

to include in the spatial model

#0nly include significant covariates
glm_model<-glm(TBPOSK"malesProp+HIVprops+
Dots_byprops+Avg_weight+Avg_BMI+Avg_Age,

family=poisson(link="1log") ,offset=log(pop) ,data=ken_data)

summary (glm_model)

# we need to add a new column as an index cannot be

# used twice, i.e the index "SLID" cannot be used

# for two f-function, the structured and unstructured

# random effect. ken_data<-cbind(ken_data, CID.unstruc= ken_data$CID)
ken_data<-cbind(ken_data, poptb= (ken_data$Population)/3) head(ken_data)
ken<- readShapePoly("kenCounty.shp") plot(ken)

adj_ken<-poly2nb(ken)

#Creates adjacency for kenya adj_ken

#### plot the neighbourood structure plot(ken, border=gray(.5))
plot(adj_ken, coordinates(ken), add=TRUE)
nb2INLA("ken.graph",adj_ken) #INLA graph file

#spdep command

#spatially unstructured and spatially unstructured

and correlated time as random effects
formula<-TBAllCases™malesProp+HIVprops+Avg_weight+

Avg_Age+DOTS_BY+f (CID,model="besag"
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,graph="ken.graph",adjust.for.con.comp = FALSE)+
f(CID.unstruc,model="iid")+f (Time,model="rwl")
model<-inla(formula,family="poisson",E=pop,
data=ken_data,control.compute=1list (dic=TRUE, cpo=TRUE,
verbose=TRUE)

save(model, file="model_poisson All TB Cases.RData'")
load("model_poisson All TB Cases.RData")

summary (model)

names (ken_data)

exp (model$summary.fixed)

#calculating and mapping the risk
fitted<-model$summary.linear.predictor$mean
RR<-exp(fitted)
std_dev<-model$summary.fitted.values$sd
ken_data$RR<-RR

ken_data$std_dev<-std_dev
write.table(ken_data,file="Kenya TB_Allcases_1305.csv.csv"
,row.names=F,sep=",")

plot (model)
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A.8 Branching Process Code

# Program spuRs/resources/scripts/bp.r
# branching process simulation
bp <- function(gen, rv.sim, ...) {
# population of a branching process from generation 0 to gen
# rv.sim(n, ...) simulates n rv’s from the offspring distribution
# Z[i] is population at generation i-1; Z[1] =1
Z <- rep(0, gen+l)
z[1] <- 1
for (i in 1:gen) {
if (z[il > 0) {

Z[i+1] <- sum(rv.sim(Z[i], ...))
}
}
return(Z)
}
bp.plot <- function(gen, rv.sim, ..., reps = 1, logplot = TRUE) {
# simulates and plots the population of a branching process
# from generation 0 to gen; rv.sim(n, ...) simulates n rv’s
# from the offspring distribution
# the plot is repeated reps times
# if logplot = TRUE then the population is plotted on a log scale
# Z[i,j] is population at generation j-1 in the i-th repeat
Z <- matrix(0, nrow = reps, ncol = gen+l)
for (i in 1:reps) {
Z[i,] <- bp(gen, rv.sim, ...)
}
if (logplot) {
Z <- log(Z)
}

plot(c(0, gen), c(0, max(Z)), type = "n", xlab = '"generation",
ylab = if (logplot) "log population" else "population")
for (i in 1:reps) {
lines(0:gen, Z[i,])
}

return(invisible(Z))
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bp.plot (63, rbinom, size=3, prob=.26, reps=1000, logplot = FALSE)
s s s s s s
##Second plot
R
bp.sim <- function(gen, rv.sim, ...) {

# population of a branching process at generation gen

# rv.sim(n, ...) simulates n rv’s from the offspring distribution

Z<-1

for (i in 1:gen) {

if (Z > 0) {
Z <- sum(rv.sim(Z, ...))

}
return(Z)
}
# set parameter values
gen <- 63
size <- 3
prob <- seq(0.3, 0.6, by = 0.01)
n.reps <- 1000# sample size for estimating E Z
# estimate E Z for each value of prob
mu <- rep(0, length(prob))
Z.mean <- rep(0, length(prob))
for (i in 1:length(prob)) {
Z.sum <- 0
for (k in 1:n.reps) {
Z.sum <- Z.sum + bp.sim(gen, rbinom, size, prob[i])
}
mul[i] <- size*prob[i]
Z.mean[i] <- Z.sum/n.reps
}
# plot estimates
# note that values of log(0) (= -infinity) are not plotted
plot(mu, log(Z.mean), type = "o", xlab = "E family size"
, ylab = paste("log pop at gen", gen))
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A.9 Monthly Reproduction Numbers (R0) Code

rm(list=1s())

library(RO) library(epitools)

setwd ("F:/Branching Process/

Branching Process Simulation_010615/R0")
data<-read.csv("F:/Branching Process/

Branching Process Simulation_010615/R0O/HK_MonthlyPTB_110715_1214.csv")
data$TIME<-as.Date(data$Time,format="%d %B %Y")

head(data) ;tail(data) ;str(data)

data2<-data$PTB

# check incid in input

check.incid(data2,date.first.obs = "2012-01-01",time.step = 31)
# create generation time : gamma distribution,

with mean 2.6 time units and standard deviation 1 time unit
GT.TB<-generation.time("gamma", c(15,1))
res.R<-estimate.R(data2,GT=GT.TB,begin="2012-01-01",end="2014-12-21",
date.first.obs = "2012-01-01",time.step=31,

methods=c ("EG","ML","SB","TD"))

# applies methods EG, ML, SB, TD to the dataset plot(res.R)

# diplays results

res.R

# displays fit to the epidemic curve plotfit(res.R)
#sensitivity analysis according to choice

of time window for exponential growth
sensitivity.analysis(data2, GT.TB, begin=1:18,

end=19:36, est.method="EG", sa.type="time")

#sensitivity analysis according to generation time

# The use of the exact same call as

for the intermal sensitivity analysis function

# sa.type = "GT"

# Here we will test GT with means of 1 to 15,

each time with SD constant (1)

# GT and SD can be either fixed value or vectors of values
sensitivity.analysis(data2, GT.type='"gamma",
GT.mean=seq(1,36,1), GT.sd.range=1, begin=1, end=36,
est.method="EG", sa.type="GT")

# Actual value in simulations may differ, as they are adapted according
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to the distribution type

tmp<-sensitivity.analysis(sa.type="GT", incid=data2,
GT.type="gamma", GT.mean=seq(1,36,1),

GT.sd.range=1, begin=1, end=36, est.method="EG")

## Results are stored in a matrix,

each line dedicated to a (mean,sd)

couple plot(x=tmp[,"GT.Mean"], xlab="mean GT (Years)",

y=tmp[,"R"], ylim=c(0,1.5), ylab="RO (95% CI)",

type="p", pch=19, col="black", main="Sensitivity of RO to mean GT")
arrows (x0=as.numeric (tmp[,"GT.Mean"]),

yO=as.numeric (tmp[,"CI.lower"]),

yl=as.numeric(tmp[,"CI.upper"]),

angle=90, code=3, col="black", length=0.05)
mGT<-generation.time("gamma", c(1,1))
sen<-sensitivity.analysis(sa.type="time", data2,

GT=mGT, begin=1:18, end=19:36,est.method="EG")

# ...

# Warning message: # If ’begin’ and ’end’ overlap, ¢

ases where begin >= end are skipped.

# These cases often return Rsquared = 1 and are thus ignored.

## A list with different estimates of reproduction ratio,
exponential growth rate and 95YCI

## With different pairs of begin and end dates in

form of data frame is returned.

## If method is "EG", results will

include growth rate and deviance R-squared measure

plot(sen, what=c("criterion","heatmap"))

## Returns complete data.frame of best RO value for each time period
## (allows for quick visualization)

## The "best.fit" is the time period over which the estimate is the more robust
# $best.fit

# Time.period Begin.dates End.dates R Growth.rate Rsquared CI.lower. CI.upper.
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A.10 Yearly Reproduction Numbers (R0) Code

rm(list=1s())

library(RO) library(epitools)

setwd ("F:/Branching Process/Branching Process Simulation_010615/R0")
data<-read.csv("F:/Branching Process/

Branching Process Simulation_010615/R0/TB Cases 1987_2014.csv")
#data$TIME<-as.Date(data$Time,format="%d %B %Y")

head(data) ;tail(data) ;str(data)
data2<-data$Smear.Positive.Pulmonary.TB

# check incid in input

check.incid(data2,date.first.obs = "1987-12-31",time.step = 365)

# create generation time : gamma distribution,

with mean 2.6 time units and

standard deviation 1 time unit GT.TB<-generation.time('"gamma", c(1,1))
#Applying the methods
res.R<-estimate.R(data2,GT=GT.TB,begin="1987-12-31",end="2014-12-24",
date.first.obs = "1987-12-31",time.step=365,methods=c ("EG","ML","SB","TD"))
# applies methods EG, ML, SB, TD to the dataset

plot(res.R)

# diplays results

res.R

# displays fit to the epidemic curve plotfit(res.R)

#sensitivity analysis according to choice of time

window for exponential growth

sensitivity.analysis(data2, GT.TB, begin=1:14,end=15:28,
est.method="EG", sa.type="time")

#sensitivity analysis according to generation time

# The use of the exact same call as

for the internmal sensitivity analysis function

# sa.type = "GT"

# Here we will test GT with means of 1 to 15,

each time with SD constant (1)

# GT and SD can be either fixed value or vectors of values
sensitivity.analysis(data2,

GT.type="gamma",GT.mean=seq(1,28,1), GT.sd.range=1, begin=1,
end=28,est .method="EG", sa.type="GT")

# Actual value in simulations may differ,
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as they are adapted according to the distribution type
tmp<-sensitivity.analysis

(sa.type="GT", incid=data2, GT.type='"gamma", GT.mean=seq(1,28,1),
GT.sd.range=1, begin=1, end=28, est.method="EG")

## Results are stored in a matrix, each line dedicated to a (mean,sd)
couple plot(x=tmp[,"GT.Mean"], xlab="mean GT (Years)",

y=tmp[,"R"], ylim=c(1.2, 5), ylab="RO (95% CI)",

type="p", pch=19, col="black", main="Sensitivity of RO to mean GT")
arrows (x0=as.numeric(tmp[,"GT.Mean"]), yO=as.numeric (tmp[,"CI.lower"]),
yl=as.numeric(tmp[,"CI.upper"]), angle=90, code=3, col="black", length=0.05)
mGT<-generation.time("gamma", c(1,1))
sen=sensitivity.analysis(sa.type="time", data2, GT=mGT,

begin=1:14, end=15:28,est.method="EG")

# ...

# Warning message:

# If ’begin’ and ’end’ overlap, cases where begin >= end are skipped.
# These cases often return Rsquared = 1 and are thus ignored.

## A list with different estimates of reproduction ratio,

exponential growth rate and 95YCI

## With different pairs of begin and end dates in

form of data frame is returned.

## If method is "EG", results will include

growth rate and deviance R-squared measure

plot(sen, what=c("criterion","heatmap"))

## Returns complete data.frame of

best RO value for each time period

## (allows for quick visualization)

## The "best.fit" is the time period over

which the estimate is the more robust

# $best.fit # Time.period Begin.dates

End.dates R Growth.rate Rsquared CI.lower. CI.upper.
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