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ABSTRACT

As energy demands around the world increase, the need for renewable energy

sources that will not harm the environment increases. Renewable energy, such

as wind and solar energy, is desirable for power generation due to its unlimited

existence and environmental friendly nature. However wind and solar sources

are not reliable in terms of sustainability and power quality due to their inter-

mittent nature. A management system is thus required for supplying the load

power demand. This thesis presents a control strategy for power management

in a standalone solar photovoltaic and wind hybrid power system based on arti-

ficial intelligence techniques. To ensure efficient optimization of sources, Adap-

tive Neural Fuzzy Inference System (ANFIS) strategy is employed to achieve the

Maximum Power Point (MPP) for photovoltaic (PV) panels and the Fuzzy Logic

Control (FLC) strategy is used to achieve the MPP of wind turbine. Moreover,

the FLC power management strategy is developed to manage the power flow to

the system. The FLC chooses the optimal operating mode of power sources en-

suring continuous supply of the load and maintaining the battery state of charge

(SOC) at acceptable levels. The proposed system and its control strategy was as-

sessed using a hybrid system comprising of PV panels, wind turbine and battery

storage. Perturb and observe (P&O) MPP algorithm is used for a comparison

with the proposed ANFIS MPPT system. From the simulation results based on

the mathematical model of the system, the comparison of proposed MPPT with

the classical P&O reveals the robustness of the proposed PV control system for

solar irradiance and temperature changes. Moreover results also show that the

proposed FLC Power management strategy for the hybrid system gives a greater

reliability in terms of power generation and distribution compared to a stand

alone system with single source. It provides effective utilization of power sources

and minimizes usage of the battery, hence improving its life. The whole system

is analyzed through simulation in MATLAB / Simulink environment.

xv



CHAPTER ONE

INTRODUCTION

1.1 Background

Social, economic and industrial growth of any country requires energy. Fossil fuels

are the major energy sources, which have been over- utilized leading to disastrous

effects such as air pollution and destruction of the environment. Burning of fossil

fuels releases harmful gases, that have severe consequences on the habitats and

also affect human health [1]. They are non-renewable sources of energy as they

are derived from pre-historic fossils and are no longer available once used. Their

source is limited and they are being depleted at a faster rate. Renewable energy

generation is a good option for protecting the environment as well as a solution

towards the limited availability of fossil fuel.

The increasing energy demand, high energy prices, as well as concerns over en-

vironmental effect, health and climate change, have attracted many researchers

and communities to move into alternative energy studies. Many studies have

been done to make use of renewable energy sources (e.g. solar,biogas and wind)

that are stand alone [2], [3]. Among these, solar and wind energy are two of the

most promising renewable power generation technologies. Solar power or wind

power is normally used by remote off-grid areas where mains electricity supply

is unavailable. The disadvantage of standalone power systems using renewable

energy sources is that their availability is affected by daily and seasonal patterns

which results in difficulties in regulating the output power to the load [4]. For

example, fluctuating daily wind speeds and solar irradiation cut-off at night and

cloudy days, leads to solar and wind systems with low reliability in supplying

the load throughout a day. Since neither solar power nor wind power is available
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constantly throughout the day, month or year, exclusive solar or wind power sys-

tems cannot be used on standalone basis for electrical installations which require

constant guaranteed power. A good alternative to this is the use of hybrid energy

systems [1].

A major limitation for these hybrid systems is the control requirement for opti-

mal efficiency [5]. Conventional control algorithms require a mathematical model

for the dynamic system to be controlled. The mathematical model is then used

to construct a controller. In many practical situations, however, it is not always

feasible to obtain an accurate mathematical model of the controlled system. Ar-

tificial intelligence (AI) control offers a way of dealing with problems that are

difficult to model by implementing linguistic, non-formal control laws derived

from expert knowledge [6]. Fuzzy logic control systems have benefits of replicat-

ing all desired features of human input, while maintaining all the advantages of

closed-loop automatic control. One of the major problems in the use of the fuzzy

logic control is the difficulty of choice and design of membership functions to

suit a given problem [6]. A systematic procedure for choosing the type of mem-

bership function and the ranges of variables in the universe of discourse is still

not available. Tuning of the fuzzy controller by trial and error is often necessary

to get a satisfactory performance. However, neural networks have the capabil-

ity of identifying the characteristic features of a system that can be extracted

from the input-output data. This learning capability of the neural network can

be combined with the control capabilities of a fuzzy logic system resulting in a

neuro-fuzzy inference system [6].

Control of hybrid power systems tends to be a complex task, given that such

systems cannot be accurately modeled as they are composed of a large number

of variables. Various methods for power optimization and management have

been reported in literature. The existing methods have drawbacks in terms of
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efficiency, accuracy and flexibility. Thus there is a need for developing a controller

which will overcome these drawbacks. This research explored ways of improving

efficiency and proper management of power flow in a PV-Wind hybrid system

using artificial intelligence techniques.

1.2 Problem statement

The integration of different types of energy sources (e.g. PV, wind, biogas and

diesel) and storage media in a hybrid system has resulted in complex supply

structures. One of the challenges facing such complex systems is the control

requirement for optimal efficiency. The batteries in these stand-alone systems

are the most sensitive equipment and often operate under severe conditions (such

as excessive charge/discharge and long periods under deep and partial discharge

conditions). Therefore, the battery life in PV stand-alone systems is within 2-4

years, which is very short compared to the manufacturer’s defined life-time of the

PV generator which has a life-time of approximately 20 years [7]. Therefore there

is a need to develop a controller which should be able to take decision intelligently

on different parameters like availability of power, variation in load and different

battery condition

1.3 Objectives

The main objective of this research is to design,simulate and evaluate an intel-

ligent controller for optimizing the power generated by sources, with capability

to properly manage power flow between photovoltaic-wind hybrid power system

and energy storage element(s).

To achieve the above objective, the following were the specific objectives.
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1. To develop a neural-fuzzy model for PV-Wind hybrid power system based

on manufacturer’s specifications and validate it experimentally.

2. To develop a control algorithm for optimal power flow management of the

PV-Wind hybrid power system.

3. To carry out simulation and evaluate the performance of the PV-Wind

hybrid power system.

1.4 Justification of the study

It has been demonstrated that PV-Wind hybrid energy systems can significantly

reduce the total life cycle cost of stand-alone power supply, while at the same

time providing a more reliable supply of electricity [8]. However, due to the high

nonlinearities characterizing the PV-Wind hybrid system, it would be impractical

to develop a rigorous mathematical model and, at the same time, obtain a simple

and effective controller for the system. Nowadays, considerable attention has

been focused on use of artificial neural networks (ANN) and fuzzy logic control

(FLC) on system modeling and control applications. Neural networks, with their

remarkable ability to derive meaning from complicated or imprecise data, can be

used to extract patterns and detect trends which are too complex to be noticed

by either humans or other computer techniques. This research applies neural-

fuzzy control techniques for solving the PV-Wind hybrid power system efficiency

optimization problem. The controller will protect the battery against overcharge

and over discharge hence prolonging the battery life. Moreover, the controller will

achieve the coordination between the components of a PV-Wind hybrid system

as well as control the energy flows.
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1.5 Scope

The thesis focuses on power optimization strategy for PV system used as the

main energy generator in the hybrid system. It also deals with power optimiza-

tion strategy used in wind turbine power system. Last but not least focus on

power management for the hybrid system comprising of PV system, Wind sys-

tem and Energy Storage which used to store energy and to reduce the output

power fluctuation.

1.6 Outline of the Thesis

This thesis contains six chapters. The first chapter provides an introduction to

the research by highlighting the existing problems, the objective and the scope of

the research work. Chapter 2 is a review of literature on elements of the hybrid

PV-Wind system. It provides useful information about photovoltaic (PV) power

system, wind turbine power system and hybrid photovoltaic/wind power system

relevant to this study. Chapter three gives the methodology for modeling PV-

Wind power system. The chapter discusses the MATLAB/Simulink block model-

ing for the photovoltaic, wind and hybrid power systems. The Simulink block for

the entire system was developed and simulated separately before obtaining the

combined system. Chapter 4 gives the methodology showing the process used to

design the controller for energy optimization and distribution. Chapter 5 presents

the results and their discussion. The conclusion and recommendations for further

work are made in Chapter 6.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Overview

Energy plays an important role in our daily life activities as there is a large in-

crease in population, urbanization and industrialization. The major fossil fuels

like coal, petroleum and natural gas are getting depleted and it is expected that

they will be exhausted in a few hundred years. To meet future energy require-

ments, alternative or renewable sources of energy, e.g solar and wind, are needed.

Solar and wind energy systems are taking the biggest share to mitigate this sit-

uation [5] . To increase power supply reliability, solar and wind energy are used

as dual energy sources. However, a drawback common to solar and wind options,

is their unpredictable nature and dependence on weather and climatic changes,

and the variations of solar and wind energy may not match with the time distri-

bution of load demand [7]. This shortcoming not only affects the system’s energy

performance, but also results in batteries being discarded too early. Therefore

there is a need to improve the energy supply reliability by optimizing the energy

produced by solar and wind hybrid systems. Moreover, managing flow of energy

throughout the hybrid system is essential to enable continuous energy flow.

This chapter presents information about the background studies on PV power

system, wind power system and hybrid power system. It gives an overall idea

on developing, modeling, optimization and control technologies for hybrid PV-

Wind system. Moreover, challenges that have been faced in wind/solar energy

conversion and some of the solutions that have been proposed are also presented.

A summary of the research gaps identified is given at the end of the chapter with

a proposed approach to fill the gap.
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2.2 Photovoltaic Energy Conversion

A photovoltaic system converts sunlight into electricity. The basic element of a

photovoltaic system is the photovoltaic cell [9]. Cells may be grouped to form

panels or modules. Panels can be grouped to form large photovoltaic arrays. The

term array is usually employed to describe a photovoltaic panel (with several cells

connected in series and/or parallel) or a group of panels as shown in Figure 2.1.

Panels connected in parallel increase the current and connected in series provide

a greater output voltage [9].

Figure 2.1: Photovoltaic cell, module and array

Solar cells are made from semiconductor materials that are able to generate elec-

tric current when being exposed to sunlight radiation. When a photon (particle

of light) strikes a photovoltaic cell, some of the energy it brings is captured by

the semiconductor material. That energy knocks electrons, allowing them to flow

freely. Electric fields created between the positive layer (P-type) and the nega-

tive layer (N-type) of the cells then force the loose electrons to go in a certain

direction through a connecting wire as direct current (DC) electricity. The entire

conversion process is illustrated in Figure 2.2 [10].
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Figure 2.2: Schematic Block Diagram of PV Cell

The performance of a PV array system depends on the operating conditions as

well as the solar cell and array design quality. The output voltage, current and

power of a PV array vary as functions of solar irradiation level, temperature

and load current [11]. Therefore the effects of these three quantities must be

considered in the design of PV arrays so that any change in temperature and

solar irradiation levels should not adversely affect the PV array output to the

load/utility, which is either a power company utility, grid or any stand alone

electrical type load.

Modeling of Photovoltaic Module

Reliable knowledge and understanding of the PV module performance under dif-

ferent operating conditions is of great importance for correct product selection

and accurate prediction of its energy performance. The performance of a crys-

talline silicon PV module is a function of the physical variables of the PV module

material, temperature of PV module and the solar radiance on the PV module

surface [11].

For engineering application, many researchers have investigated the simplified

8



simulation models, such as the power efficiency models [12], which can predict

the time series or average performance of a PV array under variable climatic

conditions.

Kerr and Cuevas [12] presented a new technique, which can determine the cur-

rent–voltage (I–V) characteristics of PV modules based on simultaneously mea-

suring the open-circuit voltage as a function of a slowly varying light inten-

sity. They have also given a detailed theoretical analysis and interpretation of

such quasi-steady-state open circuit voltage (Voc) measurements. Borowy and

Salameh [13] gave a simplified model with which the maximum power output

could be calculated for a PV module once solar radiation on the PV module and

ambient temperature were found.

Zhou et al. [14] presented a novel simulation model for PV array performance

predictions for engineering applications based on the I-V curves of a PV module.

Five parameters are introduced to account for the complex dependence of PV

module performance upon solar radiation intensities and PV module tempera-

tures. The authors concluded that this simulation model is simple and especially

useful for engineers to calculate the actual performance of the PV modules under

operating conditions, with limited data provided by the PV module manufactur-

ers. Yang et al. [23] developed one model for calculating the maximum power

output of PV modules according to the theory of equivalent circuit of solar cells

by using eight parameters which can be identified by regression with the Amoeba

Subroutine or Downhill Simplex Method from experimental data. Accuracy of

this model was validated by experimental data with good fitness.

The mathematical model for estimating the power output of PV module based

on the equivalent circuit of solar cells is described next.The equivalent circuit of

a PV cell is shown in Figure 2.3. It includes a current source, a diode, a series

resistance and a shunt resistance [2], [9].
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Figure 2.3: Equivalent circuit of a PV cell

The current source Iph represents the cell photocurrent. Rsh and Rs are the

intrinsic shunt and series resistances of the cell, respectively. Usually the value

of Rsh is very large and that of Rs is very small, hence they may be neglected

to simplify the analysis. PV cells are grouped in larger units called PV modules

which are further interconnected in a parallel-series configuration to form PV

arrays. The photovoltaic module can be modeled mathematically as given in the

following equations:

Module photo-current is given by:

Iph = [ISCr +Ki(T − 298)].G/1000 (2.1)

where Iph is the light generated current in a PV module (A), ISCr is the PV

module short-circuit current at 25oC and 1000W/m2, Ki is the short-circuit cur-

rent temperature co-efficient at ISCr = 0.0017A/oC, T is the module operating

temperature in Kelvin, G is the PV module illumination (W/m2) = 1000W/m2.

Module reverse saturation current, Irs, is given by:

Irs =
ISCr

[exp(qV oc/NskAT ) − 1]
(2.2)

where q is electron charge = 1.6×10−19C, V oc is the open circuit voltage, Ns is the

number of cells connected in series, k is Boltzman constant = 1.3805×10−23J/K,
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A = B is an ideality factor = 1.6,

The module saturation current I0 varies with the cell temperature, which is given

by:

Io = Irs[
T

Tr
]3exp

[
q.Ego
Bk

[ 1

Tr
− 1

T

]]
(2.3)

where Tr is the reference temperature = 298 K, Io is the PV module saturation

current (A), Ego is the band gap for silicon = 1.1 eV.

The current output of PV module is

Ipv = Np.Iph −Np.Io[exp
[q.(Vpv + IpvRs)

NsAkT

]
− 1] (2.4)

Where Np is the number of cells connected in parallel, Vpv is output voltage of

a PV module (V), Ipv is output current of a PV module (A), Rs is the series

resistance of a PV module. Equations (2.1) - (2.4) are used to develop the PV

model.

Maximum Power Point Tracking of Photovoltaic Module

A typical solar panel can convert only 30 to 40 percent of the incident solar irra-

diation into electrical energy. Maximum power point tracking technique is used

to improve the efficiency of the solar panel. Therefore, the MPP of a photovoltaic

array is an essential part of a PV system. As such, many maximum power point

tracking (MPPT) techniques have been developed and implemented [15]. Among

these techniques, hill-climbing MPPT such as perturb and observe (P&O) [15]

was used by many researchers. (P&O) is a simple algorithm that does not require

previous knowledge of the PV generator characteristics and is easy to implement

with analogue and digital circuits. In this technique, first the PV voltage and

current are measured and then the corresponding power P1 is calculated. Con-

sidering a small perturbation of voltage (∆V ) or perturbation of duty cycle (∆P )

of the dc-dc converter in one direction, the corresponding power P2 is calculated.
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P2 is then compared with P1. If P2 is more than P1 , then the perturbation is in

the correct direction; otherwise it should be reversed. In this way, the peak power

point is tracked and hence the corresponding voltage can be calculated [16] [17].

The major drawbacks of P&O/ (hill-climbing) are occasional deviation from the

maximum operating point in case of rapidly changing atmospheric conditions,

such as broken clouds. Also, correct perturbation size is important in providing

good performance in both dynamic and steady-state response [18]. In addition,

P&O technique may cause many oscillations around the MPP, and this slows

down the response of the system.

Introduction of intelligent MPPTs in PV systems has been very promising. These

algorithm achieve very good performances, fast responses with no overshoot, and

less fluctuations in the steady state for rapid temperature and irradiance vari-

ations [15]. FL-based MPPTs do not require the knowledge of the exact PV

model [19], [20]. Artificial Neural Network (ANN)-based MPPT technique op-

erates like a black box model, requiring no detailed information about the PV

system [20]. For Maximum Power Point Tracking, ANN input can be PV ar-

ray parameters like PV voltages and currents, environmental data like irradiance

and temperature, or any combination of these, whereas the output signal is the

identified maximum power or the duty cycle signal used to drive the electronic

converter to operate at the MPP. The ANN input and output data are obtained

from experimental measurement or model-based simulation results. After learn-

ing the relation between temperature and irradiance,an ANN can track the MPP

online [20].

In this research, an intelligent control technique based on ANN is used together

with an MPPT controller in order to increase the tracking response and conse-

quently increase the tracking efficiency of the solar panel. The neural network

control (NNC) has two inputs; the solar irradiance and temperature. NNC is
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used to estimate the PV panel operating voltage (Vref) which corresponds to the

maximum power (Pmax) at any given solar irradiation and cell temperature.

2.3 Wind Energy Conversion

Wind turbine is an important element in a wind power system to generate elec-

tricity. It consists of a rotor mounted to a nacelle and a tower with two or

more blades mechanically connected to an electric generator. The gearbox in

the mechanical assembly transforms slower rotational speeds of the wind tur-

bine to higher rotational speeds on the electric generator. The rotation of the

electric generator’s shaft generates electricity whose output is maintained by a

control system. Currently, two types of configurations for wind turbine exist,

which are the vertical-axis wind turbine (VAWT) configuration and the widely

used horizontal-axis wind turbine (HAWT) configuration. HAWT has the ability

to collect maximum amount of wind energy for a given time of day and season

and their blades can be adjusted to avoid high wind storm [21]. Wind turbines

operate in two modes namely constant or variable speed. For a constant speed

turbine, the rotor turns at constant angular speed regardless of wind variations.

One advantage of this mode of operation is that it eliminates the use of expensive

power electronic converters, [3]. Its disadvantage however, is that it constrains

rotor speed so that the turbine cannot operate at its peak efficiency in all wind

speeds. For this reason, a constant wind speed turbine produces less energy at

low wind speeds than does a variable wind speed turbine which is designed to

operate at a rotor speed proportional to the wind speed below its rated wind

speed [21]. The output power or torque of a wind turbine is determined by sev-

eral factors. These include turbine speed, rotor blade tilt,rotor blade pitch angle

size and shape of turbine, area of turbine, rotor geometry whether it is a HAWT

or a VAWT, and wind speed [22]. A relationship between the output power and

the various variables constitute the mathematical model of the wind turbine. In
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this research a model describing Horizontal Axis Wind Turbine (HAWT) was

used to develop a controller that optimize power generated by wind turbine.

Modeling of Wind Turbine

Different wind generators have different power output performance curves. There-

fore, the model used to describe the performance of wind generators is expected

to be different. Choosing a suitable model is very important for wind turbine

power simulations, it is a pre-requisite for the successful planning and implemen-

tation of wind power generation projects. The hour-by-hour simulation programs

have been the main tools to determine the long-term performance of wind energy

systems. Based on the hourly wind speed data, the long-term performance of

the wind system can be obtained. The power output characteristic of the wind

turbine is shown in Figure 2.4.

Figure 2.4: Wind turbine power output with steady wind speed

At very low wind speeds, there is insufficient torque exerted by the wind on

the turbine blades to make them rotate. However, as the speed increases, the

wind turbine will begin to rotate and generate electrical power. The speed at

which the turbine first starts to rotate and generate power is called the Cut-in

14



speed and is typically between 3 and 4 metres per second. As the wind speed rises

above the cut-in speed, the level of electrical output power rises rapidly as shown.

However, typically somewhere between 12 and 17 metres per second, the power

output reaches the limit that the electrical generator is capable of. This limit

to the generator output is called the Rated output power and the wind speed

at which it is reached is called the rated output wind speed. At higher wind

speeds, the design of the turbine is arranged to limit the power to this maximum

level and there is no further rise in the output power. How this is done varies

from design to design but typically with large turbines, it is done by adjusting

the blade angles so as to to keep the power at the constant level. As the speed

increases above the rated output wind speed, the forces on the turbine structure

continue to rise and, at some point, there is a risk of damage to the rotor. As

a result, a braking system is employed to bring the rotor to a standstill. This is

called the Cut-out speed and is usually around 25 meters per second [21].

Based on the above assumptions, the most simplified model to simulate the power

output of a wind turbine is described by [23]. In other case studies [24] [25], a

similar model is applied regarding the Weibull shape parameter. Additionally,

there are other types of models to describe the power output of wind turbines,

where the quadratic expressions are applied for the simulation [26]. However,

it is generally acknowledged that the hour-by-hour simulation programs require

hour-by-hour wind speed data, which may not be available for many locations.

Therefore, some simplified design algorithms [27] have been developed as alterna-

tives to simulation programs to determine the long-term performance of renew-

able energy systems. However, it is generally acknowledged that if the simulation

model is more general, it is usually less accurate.

In some other researches, calculation of wind turbine power is based on electri-

cal load, average wind speed and power curve of the wind turbine [28]. Since
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the calculation based on actual wind speed and direction is time-consuming and

sometimes impossible, average wind speed can be used. Sometimes, the wind tur-

bine power curves cannot exactly represent wind turbine power output because

the curves can only give the power output of the wind turbine as a function of the

average wind speed, ignoring instantaneous wind speed variations, and thereby

will, to some extent, undermine the performance of the wind turbine [29]. There-

fore, considering the effect of instantaneous variations of wind speed for a hybrid

system can improve the accuracy whereas considering actual wind speed for a hy-

brid system is almost impossible. Zamani and Riahy [30] presented a new method

for calculating the power of a wind turbine by considering wind speed variations.

The rate of wind speed variations is assessed by the energy pattern factor (EPF)

of actual wind, and the performance of rotor speed and pitch angle controllers

is evaluated by a new factor, named wind turbine controllability (Ca). By using

the EPF and Ca, the power curve is modified by considering the extra power that

is captured by the controllers. The mathematical formulation of turbine model

considering the variation of wind speed is described next.

For an object having mass m and velocity vw under a constant acceleration, the

kinetic energy Ww is given by

Ww =
1

2
mv2w (2.5)

The mechanical power Pm in the wind is given by the rate of change of kinetic

energy, i.e

Pw =
dWw

dt
=

1

2

dm

dt
v2w (2.6)

But mass flow rate dm
dt

is given by

dm

dt
= ρAvw (2.7)

where A is the swept area of the turbine and ρ is the density of air. With this

expression, Equation 2.7 becomes

Pm =
1

2
ρAv3w (2.8)
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The actual mechanical power Pm extracted by the rotor blades, in watts, is the

difference between the upstream and the downstream wind powers [3], i.e.

Pm =
1

2
ρAvw(v2u − v2d) (2.9)

where vu is the upstream wind velocity at the entrance of the rotor blades in m/s

and vd is the downstream wind velocity at the exit of the rotor blades in m/s.

From the mass flow rate, Equation 2.7 can be written as

ρAvw =
ρA(vu + vd)

2
(2.10)

vw being the average of the velocities at the entry and exit of rotor blades of

turbine. With this expression, Equation 2.10 can be simplified and becomes

Pm =
1

2
Cp(λ, β)ρAv3w (2.11)

Cp is performance coefficient of the turbine (also known as power coefficient).

The power coefficient represents a fraction of the power in the wind captured by

the turbine and has a theoretical maximum of 0.593. cp is often called the Betz

limit after the Germany physicist Albert Betz who worked it out in 1919 [22].

The power coefficient can be expressed by a typical empirical formula as

Cp =
1

2
(λ− 0.022β2 − 5.6)e−0.17λ (2.12)

where β is blade pitch angle (deg) and λ is the tip speed ratio of the turbine,

defined as

λ =
rmωb
vw

(2.13)

where wb is the turbine angular speed (rad s−1) and rm is turbine radii(m). The

mechanical power generated by the turbine rotor to the initial power of the wind

turbine power coefficient Cp say that a non-linear relationship between the tip

speed and blade pitch angle. Figure 2.5. shows that at different blade angle,

the power coefficients vary with tip speed ratio. From Figure 2.5, it can be seen

that the variation of power coefficient versus the blade pitch angle β. Where the
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Figure 2.5: Power coefficient characteristics of a wind turbine.

β gradually increases, the curve of Cp will decrease significantly. Generally, to

achieve the maximum wind power, β value should be very small. If β is at a given

value, then Cp has a maximum value Cpmax.

Maximum Power Point Tracking of Wind Turbine

According to Equation 2.11, the most important parameters to achieve the max-

imum power point of wind turbine is Cp curve, so that maximum power output

of wind turbines occurs when Cp is maximum. From the graph, at a constant β,

the optimum Cp occurs at different values of λ. So if the wind speed is considered

constant, Cp value will depend on the wind turbine rotor speed. Thus, by con-

trolling the rotor speed, turbine power output is controlled. In addition, for each

specific wind speed, there is only one rotor speed which leads to maximum power.

Figures 2.6 and 2.7 show the curves of the wind turbine power- rotor speed and

turbine torque – rotor speed for the different wind speeds. From the figures, it

is clear that for the different power curves, the maximum powers are achieved

at the different rotor speeds. Therefore, the rotor speed should be operated at

the optimum speed. This technique is called as MPPT (Maximum Power Point

Tracking).
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Figure 2.6: The power curves for different wind speeds and zero pitch

angle

Figure 2.7: The Torque curves for different wind speeds and zero pitch

angle

2.4 Energy Storage System

The harnessing of renewable energies presents, however, a further set of technical

and economic problems. Unlike fossil and nuclear fuels, which are concentrated

sources of energy that can be easily stored and transported, renewable forms of

energy are highly dilute and diffuse [31]. Moreover, their supply can be extremely

intermittent and unreliable. So, batteries are required to even out irregularities

in the solar and wind power distributions. The development of battery behavior
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models has been the focus of researchers for many years [31]. Based on the model

given by Cugnet and Liaw [32] and incorporation of the diffusion precipitation

mechanism studied by Oliveira and Lopes [33] in the reaction kinetics of the

negative electrode, Kim and Hong [34] analyzed the discharge performance of a

flooded lead acid battery cell using mathematical modeling. Bernardi and Car-

penter [35] developed a mathematical model of lead acid batteries by adding the

oxygen recombination reaction. Nguyen et al. [36] presented a model analogous

to the flooded type and examined the dynamic behavior of the cell during dis-

charge with respect to cold cranking amperage and reserve capacity. In general,

these models are complex in terms of the expressions and number of parameters

employed. Yang et al. [8] states that a lead acid battery is characterized by two

indexes, i.e. the state of charge (SOC) and the floating charge voltage (or the

terminal voltage). Extensive SOC determination methods have been introduced

by Sabine Piller et al. [37]. It concluded that the most used modeling technique at

this time for all systems is ampere-hour counting method because it is the most

direct and transparent method and quite easily implemented with satisfyingly

accurate results for short- time applications, especially if used in the range of low

to medium SOC. The lead-acid battery is used in this thesis for energy storage.

The section below describes the mathematical formulation of lead acid battery

model based on its state of charge.

Modeling of Battery Storage

At any hour, the state of battery is related to the previous state of charge and

to the energy production and consumption situation of the system during the

time from t− 1 to t. During the charging process, when the total output of PV

and wind generators is greater than the load demand, the available battery bank
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capacity at hour t can be described by [38];

Cbat(t) = Cbat(t− 1) ∗ (1− σ) +
(
Epv(t) + EWG(t)− EL(t)

ηinv

)
ηbat (2.14)

where Cbat(t) and Cbat(t−1) are the available battery bank capacity (Wh) at hour

t and t− 1, respectively, ηbat is the battery efficiency (during discharging process,

the battery efficiency = 1), σ is self-discharge rate of the battery bank; Epv(t)

and EWG(t) are the energy generated by PV and wind generators, respectively;

EL(t) is the load demand at hour t and ηinv is the inverter efficiency (%).

On the other hand, when the load demand is greater than the available energy

generated, the battery bank is in discharging state. Therefore, the available

battery bank capacity at hour t can be expressed as:

Cbat(t) = Cbat(t− 1) ∗ (1− σ)−
(EL(t)

ηinv
− (Epv(t) + EWG(t))

)
(2.15)

At any hour, the storage capacity is subject to the following constraints:

Cbatmin ≤ Cbat(t) ≤ Cbatmax (2.16)

2.5 The Power Conditioning Unit

To connect a photovoltaic or wind turbine to an external system, it is necessary

to boost its voltage or to increase its number [8]. Therefore, a boost converter

is used. A boost converter is a class of switching-mode power supply containing

at least two semiconductor switches and at least one energy storage element. In

addition, a capacitor is often added to the converter output to reduce the ripple

of its output voltage as shown in Figure 2.8
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Figure 2.8: Schematic of DC-DC Boost converter

Equation 2.17 describes the relation between the input and the output voltage of

a boost converter as a function of the duty cycle D.

V out

V in
=

1

1−D
(2.17)

2.6 Hybrid Systems

One of the main problems with solar and wind energy is their intermittent na-

ture and the resulting discontinuity in delivery of power. Such problems can be

mitigated by the use of hybrid technologies that involve utilization of more than

one energy resource and converting all of them into a single energy form [39]. A

few examples would be wind/PV electric systems, wind/diesel generator system,

Wind/PV/Hydro system and PV/Wind/Biogas system [39]. Figure 2.9 shows

a typical hybrid system consisting of PV and Wind. A typical hybrid energy

system would consist of:

1. A primary source of energy, typically a renewable energy resource.

2. A secondary source of energy for supplying power in case of shortages, i.e.

a diesel generator, Fuel cell or battery.

3. A storage system for a stable power output, i.e. battery system.

4. A charge controller to regulate the current through the battery.
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Figure 2.9: Hybrid system consisting of PV and Wind sources

2.7 Modeling of hybrid solar-wind system components

A hybrid solar–wind system consists of PV array, wind turbine, battery bank,

inverter, controller, and cables. The PV array and wind turbine work together

to satisfy the load demand. When the energy sources (solar and wind energy)

are abundant, the generated power, after satisfying the load demand, will be

supplied to feed the battery until it is fully charged. On the other hand, when

energy sources are low, the battery will release energy to assist the PV array and

wind turbine to cover the load requirements until the storage is depleted.

The hybrid solar–wind system design is mainly dependent on the performance of

individual components. In order to predict the system’s performance, individual

components should be modeled first and then their combination can be evalu-

ated to meet the demand reliability. If the power output prediction from these

individual components is accurate enough, the resultant combination will deliver

power at the least cost [42].

2.8 System Control for Energy Flow in PV-Wind Hybrid

System

One main problem for the hybrid solar–wind system is related to the control of

the energy distribution. The dynamic interaction between the renewable energy

sources and the load demand can lead to critical problems of stability and power

quality that are not very common in conventional power systems. Managing flow

of energy throughout the proposed hybrid system to assure continuous power

supply for the load demand is essential. Conventional approaches for controlling

power supply to the load requirement according to the demand was used in var-
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ious hybrid systems [42]. In the conventional approach, power electronics based

DC–DC converters are used for maximum energy extraction from solar and wind

energy resources, and to control the complete hybrid system.

Some researchers have used different conventional controlling technique for dif-

ferent combination of hybrid energy systems [40]. Natsheh et al [41] developed a

novel model of smart grid-connected PV/WT hybrid system. It comprises pho-

tovoltaic array, wind turbine, asynchronous (induction) generator, controller and

converters. The model was implemented using MATLAB/SIMULINK software

package. Perturb and observe (P and O) algorithm was used for maximizing

the generated power based on maximum power point tracker (MPPT) imple-

mentation. The dynamic behavior of the proposed model was examined under

different operating conditions. Solar irradiance, temperature and wind speed data

is gathered from a grid connected, 28.8kW solar power system located in central

Manchester. Real-time measured parameters were used as inputs for the devel-

oped system. The problem of stability was reported to affect the performance

and power quality of the system.

Another research by Yerra et al [42] proposes a hybrid energy conversion sys-

tem combining photovoltaic and wind turbine as a small-scale alternative source

of electrical energy where conventional generation is not practical. The hybrid

system consists of photovoltaic panels, wind turbines and storage batteries. The

wind and PV are used as main energy sources, while the battery was used as

back-up energy source. Two individual DC-DC boost converters were used to

control the power flow to the load. A simple and cost effective control with DC-

DC converter was used for maximum power point tracking (MPPT) and hence

maximum power was extracted from the turbine and the photo voltaic array. The

modeling of hybrid system was developed in MATLAB- SIMULINK. Simulation

results showed that the dynamic interaction between the load demand and the
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renewable energy source caused critical problems of stability and power quality

to the system.

Onur et al [43] designed proportional-integral (PI) controller and a fuzzy logic

controller (FLC) that could fix the voltage amplitude to a constant value of 380

V and 50 Hz for loads supplied from a wind/battery hybrid energy system. The

quality of the power produced by the wind turbine is affected by the continuous

and unpredictable variations of the wind speed. Therefore, the voltage-stabilizing

controllers was integrated into the system in order to keep the voltage magnitude

and frequency constant at the load terminals, which requires constant voltage and

frequency. A fuzzy logic-based controller was used for the voltage control of the

designed hybrid system and compared with a classical PI controller for perfor-

mance validation. The entire designed system was modeled and simulated using

MATLAB/Simulink GUI (graphical user interface) with all of its subcomponents.

Beside the conventional approaches, some advanced control techniques exist,

which can remove the power fluctuations caused by the variability of the re-

newable energy sources that may affect the quality of the power delivered to the

load. In the literature, there are a few studies related to energy management of

hybrid power system using advanced controlling techniques. Among them Syed

Shah [44] developed an intelligent algorithms for a hybrid fuel Cell/photovoltaic

standalone system. The developed system worked well and performed the ex-

pected function, the behavior of the FC and Battery to predict the upcoming

events and perform the desired operations. These intelligent operations can save

the fuel cost in the fuel cell and battery for the night consumption. The efficiency

of the hybrid system increased by using a fuzzy based intelligent controller, and

also helped to increase the operability of the hybrid system switching between

Photovoltaic Cell (PC) and Fuel Cell (FC). Although the fuel cell increased the

efficiency of the hybrid system, but one of the biggest disadvantages of fuel cells is
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the cost to implement a system. Fueling fuel cells is still a major problem since the

production, transportation, distribution and storage of hydrogen is difficult [44].

Francisco et al [45] developed a neural-fuzzy controller for a wind-diesel system

composed of a stall regulated wind turbine with an induction generator connected

to an a.c busbar in parallel with a diesel generator set having a synchronous

generator. In their research, the gasifier was capable of converting tons of wood

chips per day into a gaseous fuel that was fed into a diesel engine. The controller

inputs were the engine speed error and its derivative for the governor part of

the controller, and the voltage error and its derivative for the automatic voltage

regulator. It was shown that by turning the fuzzy logic controllers, optimum

time domain performance of autonomous a wind-diesel system could be achieved

in a wide range of operating conditions compared to fixed parameters fuzzy logic

controllers and PID controllers.

Dhanalakshmi and Palaniswami [46] carried out a research on the design and

analysis of a Neuro-Fuzzy controller based on Adaptive Neuro-Fuzzy Inference

System (ANFIS) architecture for Load frequency control of an isolated wind-

micro hydro-diesel hybrid power system, to regulate the frequency and power

deviations. They observed that, due to the sudden load changes and intermittent

wind power, large frequency fluctuation problem could occur. Their developed

control strategy combined the advantage of neural networks and fuzzy inference

system and had simple structure that is easy to implement. So, in order to keep

system performance near its optimum, it is desirable to track the operating con-

ditions and use updated parameters to control the system. Simulations of the

proposed ANFIS based Neuro-Fuzzy controller in an isolated wind-micro hydro-

diesel hybrid power system with different load disturbances were performed. Also,

a conventional proportional Integral (PI) controller and a fuzzy logic (FL) con-

troller were designed separately to control the same hybrid power system for
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the performance comparison. The performance of the proposed controller was

verified from simulations and comparisons. Simulation results showed that the

performance of the proposed ANFIS based Neuro-Fuzzy Controller could damp

out the frequency deviation and attain the steady state value with less settling

time.

Hee-Sang Ko and Kwang Y. Lee [47] proposed an intelligent adaptive system

to control the output of a wind power generation plant to maintain the quality

of electricity in the distribution system. The target wind generator was a cost-

effective induction generator, while the plant was equipped with a small capacity

energy storage based on conventional batteries, heater load for co-generation and

braking, and a voltage smoothing device such as a static variable compensator

(SVC). Fuzzy logic controller provided a flexible controller covering a wide range

of energy/voltage compensation. A neural network inverse model was used to

provide compensating control amount for a system. The system could optimized

to cope with the fluctuating market-based electricity price conditions to lower

the cost of electricity consumption or to maximize the power sales opportunities

from the wind generation plant.

2.9 Summary of Research Gaps

Conventional approach for controlling power supply to the load requirement ac-

cording to the demand was used in various hybrid systems [44]. However, the

approaches still face the problem of stability and power quality that are not very

common in conventional power systems using non renewable energy.For stand-

alone PV-Wind hybrid power system, lead-acid batteries play a vital role as an

energy storage unit. Even though batteries are the weaker section in the over-

all system, they are in need of certain initial investment of equipment. As the

management of charging/discharging in storage battery directly affects the qual-
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ity of power supply in the hybrid system since electric energy from wind turbine

generator and solar cells has obvious fluctuation. It makes the system great de-

mand to electric power management. Therefore, it is significant to study power

management of the hybrid system in detail. Conventional control theories do not

have good performance for the hybrid power system,Literature shows that using

artificial intelligence techniques can remove the power fluctuations caused by the

variability of the renewable energy sources that may affect the quality of the

power delivered to the load. The focus of this research is to design an intelligent

controller which is capable of optimizing the power generated by renewable en-

ergy sources. The research also introduces a new control strategy for power flow

in stand-alone pv-wind hybrid power systems based on fuzzy logic. The proposed

controller manages the power flow between three energy sources comprising of

PV panels, wind turbine and battery storage. The overall aim is to optimize the

active power flow between system power sources for different modes of operation,

and to maintain the battery state-of-charge (SOC) at a reasonable level.
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CHAPTER THREE

DEVELOPMENT OF PV-WIND HYBRID POWER

SYSTEM MODEL

In power applications and system design, modeling and simulation are essential

to optimize control and enhance system operations. In this chapter, the models

for the main components of the proposed hybrid power system are developed and

validated. It includes photovoltaic power system, wind turbine power system,

battery storage, dc-dc converter and dc-ac converter. In addition, the MATLAB

Simulink circuit block models for each system are shown in respective section.

3.1 System Description

Modeling of the PV-Wind hybrid system is carried out using MATLAB Simulink.

The Solar-Wind Hybrid Power System (SWHPS) consists of several units, PV

power and wind power units as primary sources of energy, battery bank unit

as auxiliary source of energy, dc-dc and dc-ac converters, load unit and control

unit. The function of controller unit is to ensure the management of the power,

which is delivered by the hybrid system to satisfy the load demand and to charge

the battery. The function of dc-dc converter is to convert the unregulated DC

voltage to produce regulated voltage. The inverter unit is used to convert the DC

generated power from renewable energy sources to feed the load with the required

AC power. The excessive charge from the battery will be dumped to the dump

load unit. The dump load in this case is the battery storage which can then be

used to supply power to the load in case of insufficient power generated by primary

sources. Blocks such as wind model, photovoltaic model, dc-dc converter model,

dc-ac converter model and the energy storage model are built separately before

combining into a complete hybrid system. The block diagram describing the
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system conceptual framework is shown in Figure 4.1. The mathematical models

describing the dynamic behavior of each of these components are discussed in

next section.

Figure 3.1: Block diagram of system conceptual framework

3.2 Modeling of Wind Turbine

The wind turbine power system consists of a wind turbine model and a Per-

manent Magnet Synchronous Machine (PMSM) block that is available in the

Simulink library. The model of wind turbine is developed based on its steady-

state characteristics, as stated in Equations (2.6) to (2.13). Included inside the

model was a subsystem that was used to determine the power coefficient Cp(λ, β)

value when tip speed ratio (λ) and blade pitch angle β change. This uncontrolled

model is used to represent the wind turbine without application of the maximum

power point tracker. Figure 3.2 shows the wind turbine block model generated

by Simulink. This model is used as a foundation for later models incorporating

the FLC, and its purpose is to optimize the power generated by the wind turbine.
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3.3 Modeling of Photovoltaic Module

The PV system model was developed based on Equations (2.1), (2.2),(2.3) and

(2.4). Parameters such as the open-circuit voltage (V oc), the short-circuit current

(Isc), the maximum power point voltage (V mpp), the maximum power current

(Impp) and the temperature coefficient (Kv) were obtained from the data sheet

of the selected PV module.

In this Research, Apollo 100-18-P photovoltaic module was chosen as reference

to develop the PV block model. The electrical specifications for Apollo 100-18-P

are shown in Table 3.1.

Table 3.1: Electrical Specifications of Apollo 100-18-P PV Module

Parameter Variable Value

Rated Maximum Power Pmax 100W

Voltage at Pmax V mp 18.66V

Current at Pmax Imp 5.36A

Open Circuit Voltage V oc 22.72V

Short Circuit Current Isc 5.34A

Nominal operating cell temperature NOCT 47± 2◦C

Operating Temperature OT −40◦C to 65◦C

The proposed PV model was generated and simulated using Matlab-Simulink.

Figure 3.3 shows the resulting Matlab-simulink model.

Both P-V and I-V output characteristics of the generalized PV model are shown

as simulated using Figures 3.4 and 3.5. The nonlinear nature of PV module

is apparent as shown in the figures, i.e., the output power and current of PV

module depend on the solar irradiance and cell temperature, and the cell terminal
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operating voltage as well. It can be seen from Figure 3.4 that, with increased

solar irradiance, there is an increase in both the maximum power output and the

short circuit current. On the other hand, Figure 3.5 shows that with an increase

in the cell temperature, the maximum power output decreases whilst the short

circuit current increases.

Figure 3.4: I-V and P-V output characteristics with different Irradi-

ance

Figure 3.5: I-V and P-V output characteristics with different Temper-

ature
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Modeling of Battery Storage

A validated electrical circuit model for lead-acid batteries, shown in Figure 3.6 is

available in Matlab-Simulink library, as reported in [48] .

Figure 3.6: Battery Model

The battery model was designed to accept inputs for current and ambient tem-

perature, as shown in Figure 3.6. The outputs were voltage, SOC, and electrolyte

temperature. A diagram of the overall battery model structure is shown in Figure

3.7, which contains three major parts: a thermal model, a charge and capacity

model, and an equivalent circuit model. The thermal model tracks electrolyte

temperature and depends on thermal properties and losses in the battery. The

charge and capacity model tracks the battery’s state of charge (SOC), depth of

charge remaining with respect to discharge current (DOC), and the battery’s ca-

pacity. The charge and capacity model depends on temperature and discharge

current. The battery circuit equations model simulates a battery equivalent cir-

cuit. The equivalent circuit depends on battery current and several nonlinear

circuit elements [48]
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Figure 3.7: Battery model generated by Simulink

Modeling of DC-DC Converter

To connect a photovoltaic or wind turbine to an external power system (e.g. DC

load), it is necessary to boost their voltage. Therefore, a DC averaged switched

model converter is needed to regulate the output voltage before being supplied to

other electronic devices. There are many DC-DC converters including the step-

down (buck) converter, the step-up (boost) converter, the buck-boost converter

and many others The model describing DC-DC converter is available in Simulink

library. In order to simulate the converters, the equations that describe the con-

verter operation on each of the three possible operating stages are implemented

in Matlab, and solved using Matlab facilities. The program structure consists in

two files. The first file initializes the default values of converter parameters, that

is, the input voltage E, the inductance value L, the capacitor value C, the load

value R, the switching period T, the duty-cycle D and the number of periods to

be displayed. All the parameters can be changed during the converter simula-

tion. The second file solves the differential equations that describe the converter

operation and calculate the critical values of inductor for continuous conduction

mode operation and value of output voltage. Also, define the plots for output

voltage and input current. This model can be readily used for any closed loop

design, that is, PI or fuzzy. Figure 3.8 shows a Simulink model for a closed loop
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dc-dc converter.

Figure 3.8: Simulink model for a dc-dc converter

Modeling of DC-AC Converter

DC-AC inverters are electronic devices used to produce mains voltage AC power

from low voltage DC energy (from a battery or solar panel). This makes them

very suitable when you need to use AC power tools or appliances. The model

describing the operation of inverter is implemented in the Simulink block as shown

in Figure 3.9. It was developed using a universal bridge IGBT.

Overall PV-Wind hybrid power system model

After completing the standalone system modeling for PV model, wind model,

battery model and dc-dc converter model, all individual models were connected as

hybrid system. AC voltage generated by wind model was rectified and converted

into DC voltage. It is then added with DC voltage from PV model and then

connected to battery and the load. The schematic of the overall PV-Wind hybrid
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Figure 3.9: Simulink model for a dc-ac converter

power system model is shown in Figure 3.10.

System Model validation

All individual models were validated separately before combining to form the

hybrid system. The battery mode and dc-dc and dc-ac converters are adapted

from the Simulink built-in SimPowerSystem. This study also adopt the wind

turbine model developed and validated by Lina [49]. Figure 3.11 shows the wind

turbine power characteristics of the validated model. The PV model was validated

through a series of experiments. Figure 3.12. shows the experimental setup.

The experimental setup consists of Apollo 100-18-P solar panel, adjustable load

resistance, and some measurement instrumentation. The PV module was placed

at an inclination angle of 45◦ . A series of measurements were then conducted

using the set up on a sunny day (1000W/m2). Measurements were taken under

different load settings, as shown in Table 3.2 (sample selected data). Observa-
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Figure 3.10: Schematic of overall PV-Wind hybrid power system model

Figure 3.11: Wind turbine power characteristics

tions of temperature, solar irradiance, working voltage and output current of PV

module were taken and recorded each time the load was changed. It was found

that both simulated and measured results for the output power of PV module

are in good agreement, the difference was observed to be less than 2%. It was

concluded that the model provides sufficient accuracy for simulations.

The model is used as a foundation for later models incorporating the ANFIS, and

its purpose is to optimize the power generated by the photovoltaic system.
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Figure 3.12: Experimental setup for the PV model validation

Table 3.2: Experiment results for the Apollo 100-18-P solar panel

Load (Ω) Voltave (V) Current (A) Power (W)

1 8.30 8.16 67.73

2 16.11 8.17 131.62

3 24.35 8.11 197.48

4 29.89 7.41 221.48

5 32.44 6.47 209.89

6 33.52 5.69 190.73

7 34.58 4.70 162.53

8 34.94 3.91 135.21

9 35.1 3.26 114.43

10 35.4 2.81 99.47
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CHAPTER FOUR

DEVELOPMENT OF OPTIMAL POWER

MANAGEMENT ALGORITHM

4.1 Introduction

This Chapter presents an optimized management strategy for power flow in stand-

alone PV-Wind hybrid power systems. The method offers on-line energy man-

agement by a hierarchical controller between three energy sources comprising of

photovoltaic panels, wind turbine and battery storage. The proposed method in-

cludes a MPPT controller in the first layer, to achieve the maximum power point

(MPP) of PV panels; two different techniques will be presented (P&O and neural

network). P & O is used for comparison purposes. In the second stage, Fuzzy

logic controller will be developed to distribute the power among the hybrid system

and to manage the charge and discharge current flow for performance optimiza-

tion. Finally, in the third layer an FLC Controller is developed to achieve the

MPP of the Wind turbine. Figure 4.1 shows the proposed control structure for

the hybrid system. The structure of FLC and ANN are attached in Appendices

A and B.

4.2 Perturb and Observe PV Maximum Power Point Track-

ing Algorithm

The problem considered by MPPT techniques is to automatically find the opti-

mum voltage (VMPP ) or current (IMPP ) at which a PV module should operate,

under a given solar irradiance and temperature. Perturb and observe method is

the most commonly used technique because of its simplicity and ease of imple-

mentation [15]. It requires two inputs; measurement of the current (Ipv) and
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Figure 4.1: Block diagram of the proposed system

Figure 4.2: P&O block diagram

measurement of the voltage (V pv) as shown in Figure 4.2.

The P&O algorithm operates by periodically perturbing (incrementing or decre-

menting) the PV array terminal voltage or current, and comparing the PV output
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power with the previous one. If it is positive, the control system moves the PV

array operating point in the same direction; otherwise, it is moved in the opposite

direction. In the next perturbation cycle, the algorithm continues in the same

way. Figure 4.3 shows the flow chart of P&O algorithm. The main problem of

this method can be seen when solar radiation rapidly changes. As illustrated in

Figure 4.4, starting from an operating point A, if atmospheric conditions stay

approximately constant, the voltage perturbation (∆V ) will bring the operating

point to B and the perturbation will be reversed due to a decrease in power. On

the other hand, if the irradiance increases and shifts the power curve from P1

to P2 within one sampling period, the operating point will move from A to C

(this represents an increase in the power and the perturbation is kept the same).

Consequently, the operating point diverges from the MPP and will keep diverging

if the irradiance steadily increases [18].

Figure 4.4: Divergence of P&O from MPP

43



Figure 4.3: P&O algorithm flow chart
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4.3 ANFIS Based PV Maximum Power Point Tracking

The ANN was trained to recognize the relationships between the input and output

parameters. The developed PV model is used to collect the training data com-

prising of solar irradiance, temperature and output voltage which is then used to

train the network to obtain the inputs of the FLC. The operating temperature

is varied from 15◦ C to 65◦ C in steps of 5◦C and the solar irradiance level is

varied from 100 W/m2 to 1000 W/m2 in steps of 50 W/m2, to get the training

data sets for ANFIS. For each pair of operating temperature and irradiance level

the reference voltage corresponding to the maximum available power is recorded.

Figure 4.5 shows the proposed ANFIS based PV MPPT controller.

The ANFIS controller design involves the following steps;

1. Identification of the inputs, outputs and their ranges.

2. Design of the fuzzy membership functions for each input and output by the

use of ANFIS.

Figure 4.5: The proposed ANFIS based PV MPPT controller
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3. Construction of the knowledge base that contains the fuzzy rules which are

used for fuzzy reasoning. The knowledge base is constructed by ANFIS.

4. Mapping of the fuzzy logic controller’s output to the corresponding crisp

values by use of center of gravity defuzzification procedure.

Identification of the Inputs, Outputs and their Ranges.

The neural network controller (NNC) is used to estimate the PV array operating

voltage (Vref), which corresponds to Pmax at any given solar radiation and cell

temperature. Therefore the inputs to the controller are the solar radiation and

the cell temperature. The output of the controller is the optimum operating

voltage.

Design of Membership Functions and the Rule Base

The design of membership functions is achieved by use of ANFIS as follows:

1. A set of training data which corresponds to the maximum power (Pmax) at

any given solar radiation and cell temperature is presented to the ANFIS.

This set of data is generated from the developed PV model discussed in

section 3.2.2. Typical example of training data set are shown in Table 3.3

2. The ANFIS is generated by use of grid partitioning, which is a method for

grouping data into clusters based on their similarity. The ANFIS is then

trained by use of hybrid learning rule. The hybrid learning rule combines

the gradient method and the least squares estimation (LSE).

3. Different sets of data are presented to the ANFIS, and based on the input-

output relationship of the ANFIS, the membership functions for the FLC

are constructed.
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4. The rule base for the FLC is generated based on the execution of the ANFIS.

This is because, ANFIS automatically generates its own rule base depend-

ing on its set of training data. In this case 203 sets of training data were

gathered through simulation (Appendix C). Table 4.1 shows typical exam-

ples of training data sets when irradiance varies and temperature is kept

constant.

Table 4.1: Typical examples of the training data set.

Irradiance Temperature Voltage (V)

100 15 21.22

150 15 21.69

200 15 22.00

250 15 22.21

300 15 22.37

350 15 22.49

400 15 22.58

450 15 22.65

500 15 22.71

550 15 22.74

600 15 22.77

650 15 22.79

700 15 22.80

750 15 22.80

800 15 22.80

850 15 22.79

900 15 22.78

950 15 22.76

950 15 22.74
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Figure 4.6: A screen shot of the ANFIS editor for the PV Model

The ANFIS that is used in the tuning of fuzzy membership functions is explained

using Figures 4.6 through 4.10. The proposed ANFIS uses Sugeno inference

mechanism. The main reason for the use of Sugeno inference mechanism is the

ability of the inference mechanism to model non-linear problems. In this type

of inference mechanism, the output is a function of the inputs and is a fuzzy

singleton. Figure 4.6 is a screen shot of the ANFIS editor. It shows a plot of

the training error after the training process. As is shown in Figure, the ANFIS

is generated with grid partitioning fuzzy inference mechanism, where each input

is assigned three membership functions, and then trained with 20,000 epochs

(number of iterations for training) using hybrid learning rule. Figure 4.7 shows the

block representation of the ANFIS which uses Sugeno inference system. Figure

4.8 shows the structure of the ANFIS and the parameters used in its execution

process. In Figure 4.8, ‘input’ represents the inputs which are solar irradiance

and cell temperature and ‘inputmf’ represents the input membership functions;

‘rule’ represents the rules,‘outputmf’ represents the output membership functions
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Figure 4.7: A Block representation of the ANFIS

Figure 4.8: Structure of the ANFIS

and ‘output’ represents the output. Figure 4.9 represents membership functions

for the two inputs, namely, irradiance and Temperature. Figure 4.10 shows a

screen shot of diagrammatic representation of some of the rules for the ANFIS.
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Figure 4.9: Membership functions of the inputs

Figure 4.10: Screen shot of diagrammatic representation of some of

the rules for the ANFIS
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Implementation of ANFIS Based PV MPPT

Figure 4.11 shows the block diagram for the proposed controller which was im-

plemented in MATLAB/Simulink. The simulation results and discussion are

presented in chapter 5.

4.4 FLC Based Wind Maximum Power Point Tracking

Figure 4.12 presents the block diagram of the wind energy conversion system

adopted in this research; wind energy by wind turbines is converted into mechan-

ical power on the shaft. Mechanical power is converted into electrical power by

a permanent magnet synchronous generator (PMSG). The generator AC output

voltage is converted to dc form using a full-wave bridge rectifier. The boost DC-

DC converter to control the output voltage of the rectifier (V dc) is used. Rectifier

output voltage and current are measured and sent to the controller. In this re-

search, the fuzzy algorithm is used to achieve the maximum power point. In this

methodology, the load voltage and current measurements and output power are

calculated and sent to the controller. Figure 4.13 show the block diagram of the

controller used in this case. During the control process, fuzzy membership func-

tions with a range of 0 and 1 are used to convert the controller’s input variables

to membership values. For the FLC used, membership functions are chosen to

be of triangular form for reasons of simplicity since they are less demanding in

computational resources. Two inputs for the FLC are the output power variation,

∆Pn and the converter’s output duty cycle difference, ∆Dn− 1.
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Figure 4.13: Block diagram of the FLC based wind MPPT

∆Pn = Pn− P(n− 1) (4.1)

∆Di
n = D◦

n−1 −D◦
n−2 (4.2)

For the fuzzy inference engine, ”IF-THEN” rules with ”AND” logical operators

are designed. Table 4.2 displays the rules governing the controller’s operation.

Fuzzy variables negative large (nl),negative medium (nm), negative small (ns),

zero (z),positive small (ps),Positive medium (pm) and positive large (pl) are used

for inputs wheres fuzzy variable very large (vl), medium large (ml), above average

Figure 4.12: Block diagram of the wind energy conversion system
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(aav), average (av), below average (bav),medium small (ms) and very small are

used for outputs. The system measures the output power difference ∆Pn and

adjusts D in order to track the MPP. Figure 4.14 shows the membership functions

for the inputs of ∆P , ∆Di and output Do, normalized in the range of [-1,1]. If

∆P = nm AND ∆Di = nm, then a large duty cycle is commanded, i.e. Do =

ml, to keep the system on the same course. Defuzzification is the process through

which the single output fuzzy set, derived from the aggregation of the outputs

of each rule, is converted to a single value. Here, the centroid defuzzification

method, which returns as output the center of the area under the curve of the

output fuzzy set, is used.

Figure 4.14: Membership functions for fuzzy variables

4.5 FLC based Power management

The Fuzzy Logic Controller is used to control the power generated by wind source,

PV source,battery and dump load. Depending on the load demand and available

power, the controller selects individual source or combination of sources that will

meet the load demand. It will also control the battery state of charge (SOC) by
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Table 4.2: Fuzzy rules for wind MPPT

∆Di
n ∆Pn

nl nm ns z ps pm pl

nl vl vl ml bav ms vs vs

nm vl ml aav bav bav ms vs

ns ml aav aav av bav bav vs

z vs ms bav av aav ml vl

ps ms bav bav av aav aav ml

pm vs ms bav aav aav ml vl

pl vs vs ms ml ml vl vl

activating the charger control switch when there is excess power from primary

sources and activates the discharging switch in case primary sources do not meet

the load demand.

The block diagram of fuzzy logic controller based power management is shown in

Figure 4.15. In this research, Mamdani type of fuzzy inference is proposed with

Figure 4.15: Block diagram of fuzzy logic controller for power manage-

ment
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Figure 4.16: Membership functions of input variable

.

Min-Max method of fuzzification and centroid method of defuzzification. The

FLC it has 5 inputs named as Pl, Ppv,Pw,Pb and Pdb. It has 6 outputs which

are signals for actuating switches such as SSW1, SSW2, SSW3, SSW4, SSW5

and SSW6. All inputs have 4 triangular membership functions namely, Very low,

Low, Medium and High (VL, L, M and H) as shown in Figure 4.16. Maximum

possible combination of sources under various loads is formed as rules. 21 rules

are proposed in this study as shown in Table 4.3. The FLC relates the outputs

to the inputs using a list of if-then statements called rules. The if-part of the

rules describes the fuzzy sets (regions) of the input variables. In this research,

the fuzzy variables Pw, Pl, Pw and Pb are described by fuzzy singleton, i.e. the

measured values of these variables are used in the interface process without being

fuzzified. Specifically, the fuzzy rules are in the form:

Rule i: IF Pl is Ai and Ppv is Bi and Pw is Ci and Pb is Di, THEN SW1 is Ei

and SW2 is Fi and SW3 is Gi and SW4 is Hi and SW5 Ii and SW6 is Ji, where

Ai, Bi, Ci and Di are fuzzy subsets in their universes of discourse, and Ei, Fi,

Gi, Hi, Ii and Ji are fuzzy singletons. Each universe of discourse is divided into

three fuzzy subsets: L (Low), M (Medium), and H (High) and all outputs have
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two membership function which are control signals to switch ON and OFF. For

the inputs low is defined from 0-200W, medium range from 200-600W and high

considered to range from 600-1000w. All selector switches will be off when any

of the sources is low. The battery state of charge are limited to between 20% to

80% which means the battery charging switch will be ON only when the state is

below 80% and the discharging switch will be ON only when the SOC is above

20%. The FLC is used to decide the optimum operation of the hybrid system,

there are six possible operating modes.

1. In single source mode; When any of the renewable sources is sufficient to

run the load.

2. In hybrid mode 1;When both renewable sources are sufficient to run the

load.

3. In battery mode; When battery alone is sufficient to run the load.

4. In hybrid mode 2; When any one of the renewable source and battery are

sufficient to run the load.

5. In Dump load mode; When all the renewable sources and battery are not

sufficient, dump load battery will run the load.

6. In off state mode; When battery, Dump load battery and both renewable

sources are not sufficient to run the load.

Simulation results and discussions for all modes of operations are presented in

Chapter 5.
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Table 4.3: Fuzzy rules for power management

Pl Ppv Pw Pb Pdb SSWI SSW2 SSW3 SSW4 SSW5 SSW6

L L VL VL - OFF ON OFF OFF OFF OFF

L VL L VL - ON OFF OFF OFF OFF OFF

M L L VL - ON ON OFF OFF OFF OFF

M L VL M - OFF ON OFF ON OFF OFF

M VL L M - ON OFF ON OFF OFF OFF

M M VL VL - OFF ON OFF OFF OFF OFF

M VL M VL - ON OFF OFF OFF OFF OFF

M VL VL M - OFF OFF ON OFF OFF OFF

H M H H - ON ON ON OFF OFF OFF

H H M H - ON ON OFF OFF OFF OFF

M L VL L H OFF OFF OFF OFF OFF ON

M VL L L H ON ON OFF OFF OFF ON

M VL VL L H OFF OFF OFF OFF OFF ON

H L VL VL VL OFF OFF OFF ON ON OFF

H VL L VL VL ON ON OFF ON ON OFF

H VL VL L VL OFF OFF OFF ON ON OFF

H VL VL VL VL OFF OFF OFF ON ON OFF

L H H H L ON ON OFF OFF ON OFF

H L VL L H OFF OFF OFF OFF ON OFF

H VL L L H ON ON OFF OFF ON OFF

H VL VL L H ON OFF OFF OFF ON OFF
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CHAPTER FIVE

RESULTS AND DISCUSSION

This chapter presents a simulation and experimental results of the proposed hy-

brid system and its control strategy. It includes results for model validation,

simulation results for P& O MPPT, Simulation results for ANFIS based MPPT

of PV system, simulation results for FLC based wind MPPT and results for FLC

based power management.

5.1 Experimental Validation of PV Model

The developed PV model was validated through experimentation by using a sim-

ple variable resistive load and Apollo 100-18-P PV module as described in chapter

3. In order to validate the MATLAB/Simulink model, an experiment was per-

formed under different conditions as shown in Table 5.1. This table depicts that

Table 5.1: Comparison of proposed model values with practical values

at remarkable points

Remarkable points
Tilt angle 45 Tc 25 and G 1000

module value Practical value

Imax 2.55 2.08

V max 9.52 11.87

Pmax 24.28 24.68

the I-V and P-V simulation and experimental results show a good agreement

in terms of current at maximum power point, voltage at maximum power point

and maximum power. Moreover error in maximum power is found to be 1.6%

which is within the acceptable range of ±3% as specified in the manufacturer

datasheet. The simulated and experimental I-V and P-V characteristics of the
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solar PV module are shown in Figures 5.1 and 5.2

Figure 5.1: Simulated and experimental I-V characteristics of the solar

PV module

Figure 5.2: Simulated and experimental P-V characteristics of the solar

PV module
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5.2 Evaluation of proposed PV MPPT

The proposed Simulink model of ANFIS based MPPT control scheme is tested

under varying solar irradiance and temperature. Results are compared with the

output of PV module when it is connected to the load without MPPT control

scheme and with the classical P&O Algorithm. Figure 5.3 shows the dynamic

response of the PV output power at constant isolation level of 1000W/m2 and at

constant temperature of 25oC. As shown from Figure 5.3 The ANN controller

shows smoother power signal line, less oscillating and more stable operating point

than P&O. It can be seen from the figure that, the ANFIS controller reach the

maximum power within 0.3 seconds wheres P&O takes 1.4 seconds to reach the

maximum power.From the simulation results, it can be deduced that the ANN

controller has better performance than P&O, and it has 4 times accuracy than

P&O for operating at MPP.

Figures 5.4 and 5.5 show the dynamic performance of the PV output power at

Figure 5.3: PV output power with P & O and ANFIS.
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Figure 5.4: PV output power at constant temperature and sudden

decrease irradiance level 1000, 750, 500

constant temperature of 25°C and at sudden decrease and increase in irradiance

levels, respectively.

Figures 5.4 and 5.5, indicate that while the P&O method fails to track the MPP

for fast variations in the irradiance and temperature, the ANN method follow the

MPP in short time.

Figure 5.6 shows the response of the PV output power at steady state conditions

while the irradiance is low (600W/m2). Zooming on the curve shows the oscil-

lation of power in case of using the conventional P & O method. These Figures

(5.3, 5.4,5.5 and 5.6) indicate that using the FLC method can give the system a

very fast response for MPPT (with nearly no oscillations on the MPP at steady

state).
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Figure 5.5: PV output power at constant temperature and sudden

increase in irradiance level 1000, 750, 500.

Figure 5.6: PV output power at constant temperature and sudden

increase in irradiance level 1000, 750, 500
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5.3 Evaluation of proposed FLC based Wind MPPT

The FLC based wind MPPT is simulated using MATLAB/ Simulink. In the

simulation, the wind speed changes in three steps. Wind speed at time t1 = 0.5s

and t2= 0.8s is changed from 14 m/s to 12 m/s and then reduced to 10 m/s . With

the change of wind speed, the performance of wind turbine with fuzzy controller

can track the maximum power delivery operating point. Figure 5.7 shows the

variation of the wind speed and generator speed. It is seen that according to

the wind speed variation, the generator speed varies and that its output power is

produced corresponding to the wind speed variation. As was said in literature,

Turbine power coefficient is the most important parameter for optimum system

performance to obtain the maximum power from the wind. Figure 5.8 shows

simulation results of the aerodynamic coefficient Cp.

Figure 5.8 shows that, when the wind speed changes, the wind turbine power co-

efficient has small fluctuations, but the value of the wind turbine power coefficient

quickly changes to the best value. It takes less than 0.2s from one stable state

to another stable state. The optimal power coefficient value is 0.48, Figure 5.8

demonstrates that, the controller is fast and accurate in performance. Figures 5.9

and 5.10 show the mechanical power and turbine torque curves. It is seen that

according to the wind speed variation the mechanical power and turbine torque

is produced corresponding to the wind speed variation.

64



Figure 5.7: Simulation results of rotor speed for a step variation of

wind speed.
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Figure 5.9: The mechanical power curve

Figure 5.10: Turbine torque curve

Figure 5.8: Simulation results of aerodynamic constant Cp for three

step variation of wind speed
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5.4 Results of Simulation for FLC-Based Power Manage-

ment

Simulation model of PV-Wind hybrid system with battery storage and Fuzzy

Logic controller is developed using MATLAB/Simulink software. Rating of hy-

brid system components is given in Table 5.2. This section presents simulation

results of three selected cases for three modes of operation (single source mode,

hybrid mode and battery mode) as explained in Chapter 3.

Table 5.2: Rating of hybrid system components

Component Rating (W)

Wind Power 1500

Pv Power 1500

Battery 3000

Load 2000

Case 1: Single source mode

Figure 5.11 shows the status of a single source supplied load. This is the state

where any of the renewable sources is sufficient to run the load. In Figure 5.11,

PV alone is sufficient to run the load, PV selector switch (SSW2) is activated

and the remaining selector switches are turned off. In the event that the solar

power supplied is more than the load demand, the excess power is used to charge

the battery through SSW4. The excess power thus activates the charge control

SSW4. Fuzzy rule which satisfies this condition is:

”If (Pl is M) and (Ppv is H) and (Pw is VL) and (Pb is VL/L/M) then (SSW1

is ON) and (SSW2 is OFF) and (SSW3 is OFF) and (SSW4 is ON) and (SSW5

is off) and (SSW6 is off)”
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Figure 5.11: Simulation result of the FLC power management when

PV power alone supplies load

In Figure 5.11 the power produced by the PV is very high, approximately to its

maximum power of 1500w, the power produced by wind is very low, less than

200w while the load demand is high. In this case the PV alone is sufficient to run

the load, the excess power from the wind is used to charge the battery through

FLC signals to SSW4.

Case 2: In hybrid mode

Here is considered the state where all of the renewable sources are sufficient to

run the load. The PV selector switch SSW1, the wind selector switch SSW2, and

charge control switches (SSW4 and SSW6) are activated and the other selector

switches are turned off. Figure 5.12 shows the response of FLC to this mode of

operation.

In Figure 5.12, the power produced by PV and wind is high, the load demand is
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Figure 5.12: Simulation result of the FLC power management when

PV and Wind supplies load

also high. In this case the FLC activates the PV selector switch SSW2, the wind

selector switch SSW1 and battery charging switches SSW4 and SSW6. Fuzzy

rule which satisfies this condition is:

”If (Pl is H) and (Ppv is H) and (Pw is H) and (Pb is VL/L/M) and Pdb is

(VL,L,M) then (SSW1 is on) and (SSW2 is on) and (SSW3 is off) and (SSW4 is

on) and (SSW5 is off) and (SSW6 is on)”

Case 3: In battery mode 1

Here it consider the state where all of the renewable sources are insufficient to

run the load and battery alone is sufficient to run the load. The battery selector

switch (SSW4) is activated and remaining selector switches are turned off.
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Figure 5.13: Simulation result of the FLC power management when

battery alone supplies load

In Figure 5.13, the power produced by PV and wind are very low, the load

demand is medium and the battery state of charge is high enough to run the

load. In this case the FLC activates the battery discharging switch SSW3 and all

the remaining selector switches are turned off. Fuzzy rule satisfying this condition

is:

”If (Pl is M) and (Ppv is VL) and (Pw is VL) and (Pb is H) and Pdb is (VL,L,M)

then (SSW1 is oFF) and (SSW2 is oFF) and (SSW3 is on) and (SSW4 is off) and

(SSW5 is off) and (SSW6 is off)”
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this study, the block model for the wind power system, PV power system,

DC-DC converter, DC-AC converter and the Lead-acid battery were developed

and presented in Chapter 3. The photovoltaic model was developed based on its

characteristic Equations (2.1), (2.2), (2.3) and (2.4). The proposed model takes

cell temperature and solar irradiance as its input parameters and outputs the

power under different conditions. The P-V characteristic curves of the PV model

under different irradiance (at 25oC) are given in Figure 3.4 (a). It is concluded

that at higher solar irradiance the model gives larger short-circuit current and

the open-circuit voltage as the results it gives higher output PV power. It is also

concluded that the lower the temperature gives larger open circuit voltage hence

gives maximum power.

The wind turbine was modeled using the mathematical equations shown in Chap-

ter 3. In this model, the inputs are the wind speed, pitch angle, and generator

speed, the output is the torque applied to the generator shaft. Then the wind

turbine model was added with a PMSM which is available in MatLab Simulink

library to form the complete wind mode. The FLC for attracting the maximum

power was included in the model.This control strategy iscomparatively easy, and

has high practical value. From simulation results it is concluded that in any at-

mospheric conditions such as wind speed changes, the wind turbine system can

run stable, and can track the maximum power.

The neural network controller was employed to achieve the MPP for PV pan-

els. Perturb and Observe algorithm was presented for comparison purposes.
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The system is simulated in MatLab/Simulink. In the proposed technique the

fixed perturbation step size deficiency is overcome through using NNC. Results

of comparison of these two controllers in the PV system show adequate and robust

performance for the proposed NNC in terms of rise time, settling time and steady

state error. Thus, it can be concluded that the NNC enables the PV system to

reach the MPP faster and with fewer fluctuations at steady state conditions. This

means that the NNC is able to improve the amount of energy extracted from PV

module.

The fuzzy logic controller was used to manage the power flow between the hybrid

power system and energy storage elements in order to satisfy the load require-

ments. The controller operates in 6 possible modes: single source mode, hybrid

mode, battery mode, dump load mode and off state mode. It can be concluded

that the proposed controller provides uninterrupted power, gives effective utiliza-

tion of sources and minimizing usage of battery hence improves its life time.

6.2 Recommendations

Although the proposed system was proven, by simulation, there are still many

areas which could benefit from additional research and development activity be-

fore this technology can be feasible for industrial application. Most of these

areas are targeted at improving efficiency and increasing overall energy yields.

Among them, besides constructing a hardware prototype, photovoltaic/wind tur-

bine monitoring systems. Photovoltaic or wind turbine system owners must be

assured that their system operates well and that their investment will pay off.

Regardless of which system they operate, plant parks, individual systems or pri-

vate systems, failures and defects must be detected and repaired immediately.

This could be achieved by and only by optimizing these system performance and

eliminate any degradation at early stage.

72



References

[1] Ekren, O., and Ekren, B.(2010). Size optimization of a PV/wind hybrid en-

ergy conversion system with battery storage using simulated annealing, Applied

Energy, 87 (2), 592–598.

[2] Kerr, M., and Cuevas, A. (2004). Generalized analysis of the illumination inten-

sity vs. open-circuit voltage of solar cells, Solar Energy, 76 (1-3), 263-267.

[3] Manyonge, R., Ochieng, F., and Shichikha, J. (2012). Mathematical Modeling

of Wind Turbine in a Wind Energy Conversion System Power Coefficient Anal-

ysis,Applied Mathematical Sciences, 6 (2), 4527 - 4536.

[4] Ramu, K., and Rambabu, K. (2014). Renewable Energy Based Small Hybrid

Power System For Desalination Applications In Remote Locations,International

Journal of Electrical, Electronics and Data Communication, 2 (1), 2320-2084.

[5] Ahmed, N., Miyatake, M., and Al-Othman, A.(2008). Power fluctuations sup-

pression of stand-alone hybrid generation combining solar photovoltaic/wind tur-

bine and fuel cell systems, Energy Conversion and Management, 49 (10), 2711-

2719.

[6] P. Witold, (1993). Fuzzy control and Fuzzy systems, studies press ltd, Tauton

UK.

[7] Tangka,J. (2012). Development of an Intelligent Electronic Module for Energy

Management in Wind/Diesel or Photovoltaic/Diesel Hybrid Systems”, British

Journal of Applied Science and Technology, 2 (3), 275-295.

73



[8] Yang, H., and Zhou, W. (2007). A novel optimization sizing model for hybrid

solar-wind power generation system, Solar Energy, 81 (1), 76-84.

[9] Villalva, M., Gazoli J., and Filho, E. (2009). Comprehensive Approach to Mod-

eling and Simulation of Photovoltaic Arrays, IEEE Transactions on Power Elec-

tronics, 24 (5), 1198-1208.

[10] Ridzuan, M. (2009). Modeling and Simulation of Power Conditioning for Grid-

Connected PV/Wind Hybrid Generation System, Faculty of Electrical Engineer-

ing, Universiti Teknologi Malaysia, Johor Bahru.

[11] Eteiba, M., El Shenawy,T. Shazly H., and Hafez, Z. (2013). A Photovoltaic

(Cell, Module, Array) Simulation and Monitoring Model using MATLAB®/GUI

Interface, International Journal of Computer Applications, 69 (6), 14-28.

[12] Kerr, M., and Cuevas, A. (2003). Generalized analysis of the illumination inten-

sity vs. Open circuit voltage of PV modules. Solar Energy 76 (1) 263-267.

[13] Borowy, B., and Salameh, M. (1996). Methodology for optimally sizing the

combination of a battery bank and PV array in a wind/PV hybrid system, IEEE

Trans Energy Convers,11 (2), 367-369.

[14] Zhou, W., Yang H., and Fang, Z. (2007). A novel model for photovoltaic array

performance prediction, Applied Energy, 84 (12), 1187-1198.

[15] Subudhi, B., and Pradhan, R. A (2013). Comparative Study on Maximum Power

Point Tracking Techniques for Photovoltaic Power Systems, IEEE Transactions

on Sustainable Energy, 4 (1), 89-98.

[16] De Cesare,G., Caputo, D., and Nascetti, A. (2006). Maximum power point

tracker for portable photovoltaic systems with resistive-like load, Solar En-

ergy,80 (8), 982-988.

[17] Lim, Y., and Hamill D. (2000) Simple maximum power point tracker for photo-

voltaic arrays, Electron. Lett, 36 (11), 997-1001.

74



[18] Yang, Y., and Zhao, F. (2011). Adaptive Perturb and Observe MPPT Technique

for Grid- Connected Photovoltaic Inverters, Procedia Engineering,23 (2), 468-473.

[19] Kottas, T., Boutalis, Y., and Karlis, A. (2006). New Maximum Power Point

Tracker for PV Arrays Using Fuzzy Controller in Close Cooperation With Fuzzy

Cognitive Networks, IEEE Trans. On Energy Conversion, 21 (3), 793-803.

[20] Chiu, C. (2010). T-S Fuzzy Maximum Power Point Tracking Control of Solar

Power Generation Systems, IEEE Transactions on Energy Conversion, 25, (4),

1123-1132.

[21] Michalke, G., and Hansen, A. (2010). Modelling and control of variable speed

wind turbines for power system studies, Wind Energy, 13 (4), 307-322.

[22] Manwell, J., McGowan., J. and Rogers, A. (2009).Wind Energy Explained: The-

ory, Design and Application. John Wiley and Sons.

[23] Yang, H., Lu, L., and Zhou, W. (2007). A novel optimization sizing model for

hybrid solar-wind power generation system, Solar Energy,81 (1) 76-84.

[24] Lujano, J., Rojas,R., Dufo, L., and Bernal, J. (2013). Probabilistic modelling

and analysis of stand-alone hybrid power systems, Energy,63 (2), 19-27.

[25] Ekren, B., and Ekren, O. (2009). Simulation based size optimization of a

PV/wind hybrid energy conversion system with battery storage under various

load and auxiliary energy conditions, Applied Energy, 86 (9), 1387-1394.

[26] Zhang, L., Xiong, W., and Xian, X. (2012). Remote Monitoring System Design

for Renewable Energy Connected to Power Grid System, AMR, 58 (2), 982-985.

[27] Celik, A. (2002). A simplified model based on clearness index for estimating

yearly performance of hybrid PV energy systems, Progress in Photovoltaics: Re-

search and Applications, 10 (8) 545-554.

[28] Nehrir, M., Lameres, B., Venkataramanan, G., Gerez, V., and Alvarado,

L. (2000). An approach to evaluate the general performance of stand-alone

75



wind/photovoltaic generating systems, IEEE Transactions on Energy Conver-

sion, 15 (4), 433-439.

[29] Muljadi, E., and Butterfield, C. (2001). Pitch-controlled variable-speed wind

turbine generation, IEEE Transactions on Industry Applications, 37 (1), 240-246.

[30] Zamani, M., and Riahy, G. (2008). Introducing a new method for optimal sizing

of a hybrid (wind/PV/battery) system considering instantaneous wind speed

variations,Energy for Sustainable Development, 12 (2), 27-33.

[31] Zhou, W., Yang, H., and Fang, Z. (2008). Battery behavior prediction and

battery working states analysis of a hybrid solar–wind power generation system,

Renewable Energy,33 (6), 1413-1423.

[32] Cugnet, M., and Liaw, B. (2011). Effect of discharge rate on charging a lead-acid

battery simulated by mathematical model, Journal of Power Sources, 196 (7),

3414-3419.

[33] De Oliveira, C., and Lopes, M. (2004). Early stages of the lead-acid battery

discharge, Journal of Power Sources, 138 (1-2), 294-300.

[34] Cugnet, M., and Liaw, B. (2011). Effect of discharge rate on charging a lead-acid

battery simulated by mathematical model, Journal of Power Sources, 196 (7),

3414-3419.

[35] Bernardi, D. (1995). A Mathematical Model of the Oxygen-Recombination Lead-

Acid Cell, J. Electrochem. Soc., 142 (8), 2631.

[36] Nguyen, T. (1990). The Effects of Separator Design on the Discharge Performance

of a Starved Lead-Acid Cell, J. Electrochem. Soc., 137 (10), 2998.

[37] Piller,S., Perrin M., and Jossen, A. (2001). Methods for state-of-charge determi-

nation and their applications, Journal of Power Sources, 96 (1), 113-120.

[38] Borowy, B., and Salameh, Z. (1996). Methodology for optimally sizing the com-

bination of a battery bank and PV array in a wind/PV hybrid system, IEEE

Trans. On energy Conversion, 11 (2),367-375.

76



[39] Deshmukh, M., and Deshmukh, S. (2008). Modeling of hybrid renewable energy

systems, Renewable and Sustainable Energy Reviews, 12 (1) 235-249.

[40] Reddy, K. and Agarwal, V. (2007). Utility-Interactive Hybrid Distributed Gener-

ation Scheme With Compensation Feature, IEEE Trans. On Energy Conversion,

22 (3), 666-673.

[41] Natsheh, E., Albarbar A., and Yazdani, J. (2011). Modeling and Control for

Smart Grid Integration of Solar/Wind Energy Conversion System ,Innovative

Smart Grid Technologies (ISGT Europe).

[42] Rao, Y., Laxmi, A., and Kazeminehad, M. (2012). Modeling and control of hybrid

photovoltaic wind energy conversion system,International Journal of Advances

in Engineering & Technology.

[43] Meng, O., and Altas, I. (2012). Fuzzy logic control for a wind/battery renewable

energy production system, Turk J Elec Eng & Comp Sci, 20 (2).

[44] Shah, S. Intelligent Algorithms for a Hybrid Fuel Cell/Photovoltaic Standalone

System, (2010). Msc, Dalarna University.

[45] Jurado, F., and Saenz, J. (2003). An adaptive control scheme for biomass-based

diesel–wind system, Renewable Energy, 28 (1), 45-57.

[46] Dorz, R., and Pius, S. (2012). ANFIS based Neuro-Fuzzy Controller in LFC of

Wind-Micro Hydro-Diesel Hybrid Power System, International Journal of Com-

puter Applications, 42 (6), 28-35.

[47] Ko, H., Lee, K., Kang M., and Kim, H. (2008). Power quality control of an

autonomous wind–diesel power system based on hybrid intelligent controller,

Neural Networks, 21 (10) 1439-1446.

[48] Robyn, A. (2007). A Simple, Effective Lead-Acid Battery Modeling Process for

Electrical System Component Selection, The MathWorks, Inc.

77



[49] Atieno, L. (2013). Optimization of fuel consumption in hybrid Wind-Diesel sys-

tem using fuzzy logic controller, Unpublished Msc thesis,Juja Jomo Kenyatta

University of Agriculture and Technology.

78



Appendix 1 Structure of a Fuzzy Logic Controller Fuzzy control is based on

fuzzy logic, a concept developed by Lotfi Zadeh in 1965 to evaluate, analyse and

control systems with vague, imprecise and/or incomplete variables. According

to Zadeh, as the complexity of a system increases, one’s ability to make precise

and yet significant statements about its behaviour diminishes until a threshold

is reached beyond which precision and significance become almost mutuFally ex-

clusive characteristics [31].This is known as the principle of incompatibility.

Since many natural systems incorporate imprecise and incomplete data, fuzzy

logic is a powerful tool for controlling such systems. One of the strengths of

fuzzy logic based techniques is the use of natural language in the definition of the

input variables, the construction of the logic rules and the generation of outputs.

Thus, as a soft computing technique, fuzzy control is tolerant to suboptimality

and impreciseness, and gives quick, simple and sufficiently good solutions [32].

The main advantage of fuzzy logic controllers (FLCs) is their ability to incorpo-

rate experience and heuristics into the system instead of relying on mathematical

models. Heuristics are approximations used in problem solving which trade opti-

mality, completeness, accuracy and/or precision for speed, and can be compared

to a ”best guess”. Due to the incorporation of experience and heuristics, FLCs

are thus more effective in applications where existing models are ill defined or are

not reliable enough [33].

An overall representation of a fuzzy logic controller is shown in Figure 6.1, and

indicates the stages in fuzzy logic control.
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Figure 6.1: Fuzzy control block diagram

A fuzzy logic controller consists of type main elements:

1. Fuzzification module/ fuzzifier.

2. Knowledge base.

3. Rule base.

4. Inference engine.

5. Defuzzification module.

Automatic changes in design parameters of any of the type elements creates an

adaptive FLC. This means that the controller is able to automatically change

in reaction to system conditions, such that for the same initial controller em-

ployed under different system conditions, after a while, the design parameters

of the controller are found to have changed, or adapted, to the system. Con-

trollers with fixed parameters are referred to as non-adaptive. Other non-fuzzy

elements include sensors, analogue-digital converters (ADCs), digital-analogue

converters(DACs) and normalization circuits.
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6.3 Fuzzifier

The fuzzifier converts real world crisp values into fuzzy variables to enable ma-

nipulation by the FLC. This is referred to as fuzzification, and involves input

from the knowledge base.

6.4 Knowledge Base

The knowledge base is a database of the plant, and defines relationships neces-

sary for the fuzzifcation process, such as definition of the membership functions,

fuzzy set representation of input and output variables and relationships between

physical and fuzzy representations of variables.

A membership function (MF) is a curve that defines how each point in the input

space is mapped to a membership value (or degree of membership) between 0 and

1. The input space is sometimes referred to as the universe of discourse.

Membership functions take various shapes, with the most commonly used being

triangular and trapezoidal shapes to reduce complexity in calculations. Other

avail- able shapes include gaussian, sigmoid, pi-shaped, s-shaped, as well as user-

defined functions. A selection of membership function shapes is shown in Figure

6.2.

Figure 6.2: Membership function curves
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The assignment of values within the membership functions can be done using one

of six common methods:

1. Intuition: Is derived from the human capacity to develop membership

functions through their own innate knowledge and understanding. It in-

volves con- textual and semantic knowledge about an issue, and may also

involve linguistic truth values about this knowledge.

2. Inferencing: In this method, available knowledge is used to perform de-

ductive reasoning. One uses a body of available facts or knowledge to deduce

or infer a set of membership functions.

3. Rank Ordering: Preferences by a single individual, a committee or poll or

other opinion methods are assessed and membership values assigned based

on pairwise comparisons. This method requires use of data collection meth-

ods such as questionnaires, and appropriate data analysis techniques to

come up with useful ranking data that can be used to generate membership

functions for FLC.

4. Neural Networks: A neural network builds an intelligent program model

that simulates the working network of neurons in the human brain. This

allows for learning (and in some cases, forgetting), thus the membership

functions are generated through a process that involves gradual improve-

ment until an optimal solution is obtained.

5. Genetic Algorithms: This method allows for searching for an optimal

solution from a nearly infinite set of possible solutions using a process that

mimics the genetic model of ”survival of the fittest”, involving reproduction,

crossover and mutation of solutions until an acceptable solution is arrived

at, with all unfit solutions abandoned during the process.
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6. Inductive Reasoning: This method involves deriving a general consen-

sus from the particular, and is useful where large volumes of static data

are avail- able. Membership functions are generated from input-output re-

lationships inferred from the database.

Once the membership values have been assigned, the membership functions are

generated by repeated partitioning of the data range.

6.5 Rule Base

The rule base is used to determine the outputs that correspond to a given input

or set of inputs. Fuzzy rules are expressed as IF...THEN rules, with different

inputs being related to each other using logical operators AND and OR as well

as NOT. The rule base may be obtained from expert knowledge or from heuristics.

The fuzzy rule has two important parts, the antecedent, which describes the

input condition(s) for which the rule is to be used and the consequent, which is

the resultant output. Some controllers include a weight for each output, which

is a factor that indicates the relative contribution of the particular rule to the

overall output.

6.6 Inference Engine

When a particular rule is activated as a result of its antecedent being greater

than 0, the rule is said to be fired. Since in general, crisp values tend to fire more

than one rule, unless they occur at the boundary points of fuzzy subsets, the re-

sultant output consists of several different output variables with different degrees

of membership. These outputs need to be processed to give a single expression

of the output in terms of the fuzzy membership functions that will proceed to
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defuzzification, to produce a single crisp output. This is known as aggregation.

The inference engine provides the implication or aggregation technique that will

be used to interpret the fuzzy rules. The most common methods used in aggre-

gation are Mamdani method and Sugeno method.

The Mamdani inference method aggregates the output membership functions in

terms of area covered, and the overall output is a 2-dimensional shape that ex-

presses the total contribution of each fired output. The Sugeno inference method

expresses each output as a singleton, and the resultant aggregate is also expressed

as a singleton, with its position determined by the defuzzification method used.

An overview of the processing involved using a Mamdani type controller is given

in the inference diagram shown in Figure 6.3.

Figure 6.3: Inference diagram

6.7 Defuzzifier

The defuzzifier converts the fuzzy output obtained from the inference engine into

a crisp value that can be used by the plant as a control signal. The most common

defuzzification method is the centre of gravity method, also known as the centroid

method. Other less commonly used methods include centre of maximum, largest
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of maximum and smallest of maximum.

In the centroid method, the centre of gravity of the 2-dimensional shape or the

singleton obtained from aggregation is obtained, and related to a crisp output on

the output membership function. This value is the output of the FLC.

In general, the crisp output from the defuzzifier, using the centre of gravity

method, is expressed as:

f(y) =

∑n
m=1E

m.Dm∑n
m=1D

m
(6.1)

where: f(y) is the crisp output value

Em is the crisp weighting value for the linguistic variable whose output is being

determined. Dm is the membership value of y with relation to the linguistic

variable.
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Appendix 2 Architecture of an Artificial Neural Network

Artificial neural network has a form of multiprocessor computing system. It

consists of a number of very simple and highly interconnected processors, called

neurons, which are analogous to the biological neurons in the brain. The basic

model of a single neuron is shown in Figure 6.4.

Figure 6.4: Architecture of a single artificial neuron

Figure 6.4 shows a single artificial neuron with an input vector p , a connection

weight vector w, a bias b , an activation function f and an output a . The output

(a) of this neuron is defined as follows:

a = f(p.w − b) = f
N∑

n=1

Pn.wn − b,= ∀p =


p1
...

...

pN


,∀w =


w1

...

...

pN


(6.2)

The effect of the bias b on the activation function f is a shift to the left or the

right, depending on whether it is positive or negative. The activation function f

can be taken from a set of activation functions (as piecewise-linear function, hard
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limit function, sigmoid function). Some of the most popular activation functions

are shown in Figure 6.5

Figure 6.5: Popular activation functions used in ANN

Using this basic model of a neuron as shown in Figure 6.5, different ANN archi-

tectures have evolved, among them feed-forward neural network. Feed-forward

ANNs allow signals to travel in one way only; from inputs to outputs. They

are extensively used in nonlinear system modeling. The earliest kind of neural

network is a single layer perceptron network which consists of a single layer of

output nodes; the inputs are fed directly to the outputs via a series of weights.

In this way it can be considered the simplest kind of feed-forward network.

The next popular feed-forward model, as shown in Figure 6.6, is the multi-layer

perceptron. It is a feed forward neural network model that maps sets of input

data onto a set of outputs. It has more than two layers. The layers are fully

connected. So that, every neuron in each layer is connected to every other neuron

in the adjacent forward layer.
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Figure 6.6: Architecture of a multilayer perceptron

A neuron determines its output in a way similar to Rosenblatt’s perceptron

First, it computes the net weighted input:

X =
n∑
i=1

Xiwi − θ (6.3)

Where n is the number of inputs and θ is the threshold applied to the neuron.

Next, this input value is passed through the activation function. Multi-layer

networks use a variety of learning techniques, the most popular being back-

propagation. In back-propagation, the learning law has two phases. First, a

training input pattern is presented to the network input layer. The network then

propagates the input pattern from layer to layer until the output pattern is gen-

erated by the output layer. If this pattern is different from the desired output,

an error is calculated and then propagated backwards through the network from

the output layer to the input layer. The weights are modified as the error is

propagated.
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6.8 Adaptive Neural Fuzzy Inference System

An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy in-

ference system (ANFIS) is a kind of artificial neural network that is based on

Takagi–Sugeno fuzzy inference system. The technique was developed in the early

1990s. Since it integrates both neural networks and fuzzy logic principles, it has

potential to capture the benefits of both in a single framework. Its inference sys-

tem corresponds to a set of fuzzy IF–THEN rules that have learning capability to

approximate nonlinear functions. Hence, ANFIS is considered to be a universal

estimator.
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Appendix 3 Training data for the ANFIS

Table 6.1: Training data for the ANFIS.

Irradiance Temperature Voltage Irradiance Temperature Voltage

100 15 21.22 600 40 18.94

150 15 21.69 650 40 18.95

200 15 22 700 40 18.96

250 15 22.21 750 40 18.96

300 15 22.37 800 40 18.96

350 15 22.49 850 40 18.95

400 15 22.58 900 40 18.93

450 15 22.65 950 40 18.91

500 15 22.71 1000 40 18.88

550 15 22.74 100 45 16.48

600 15 22.77 150 45 17

650 15 22.79 200 45 17.33

700 15 22.8 250 45 17.57

750 15 22.8 300 45 17.74

800 15 22.8 350 45 17.87

850 15 22.79 400 45 17.97

900 15 22.78 450 45 18.05

950 15 22.76 500 45 18.1

1000 15 22.74 550 45 18.14

100 20 20.43 600 45 18.17

150 20 20.91 650 45 18.19

200 20 21.22 700 45 18.19

250 20 21.44 750 45 18.19

300 20 21.6 800 45 18.19

350 20 21.72 850 45 18.18
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400 20 21.82 900 45 18.16

450 20 21.89 950 45 18.14

500 20 21.94 1000 45 18.11

550 20 21.98 100 50 15.68

600 20 22.01 150 50 16.21

650 20 22.02 200 50 16.55

700 20 22.03 250 50 16.79

750 20 22.04 300 50 16.97

800 20 22.03 350 50 17.1

850 20 22.02 400 50 17.2

900 20 22.01 450 50 17.28

950 20 21.99 500 50 17.33

1000 20 21.92 550 50 17.37

100 25 19.64 600 50 17.4

150 25 20.13 650 50 17.42

200 25 20.45 700 50 17.42

250 25 20.67 750 50 17.42

300 25 20.83 800 50 17.42

350 25 20.96 850 50 17.41

400 25 21.05 900 50 17.39

450 25 21.12 950 50 17.37

500 25 21.17 1000 50 17.34

550 25 21.21 100 55 14.89

600 25 21.24 150 55 15.43

650 25 21.26 200 55 15.77

700 25 21.27 250 55 16.02

750 25 21.27 300 55 16.2

800 25 21.26 350 55 16.33
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850 25 21.25 400 55 16.43

900 25 21.24 450 55 16.51

950 25 21.22 500 55 16.56

1000 25 21.2 550 55 16.6

100 30 18.85 600 55 16.63

150 30 19.35 650 55 16.65

200 30 19.67 700 55 16.66

250 30 19.9 750 55 16.66

300 30 20.06 800 55 16.65

350 30 20.19 850 55 16.64

400 30 20.28 900 55 16.62

450 30 20.35 950 55 16.59

500 30 20.41 1000 55 16.57

550 30 20.44 100 60 14.09

600 30 20.47 150 60 14.64

650 30 20.49 200 60 14.99

700 30 20.5 250 60 15.24

750 30 20.5 300 60 15.42

800 30 20.49 350 60 15.56

850 30 20.48 400 60 15.66

900 30 20.47 450 60 15.73

950 30 20.45 500 60 15.79

1000 30 20.43 550 60 15.83

100 35 18.06 600 60 15.86

150 35 18.57 650 60 15.88

200 35 18.89 700 60 15.89

250 35 19.12 750 60 15.89

300 35 19.29 800 60 15.88
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350 35 19.42 850 60 15.87

400 35 19.51 900 60 15.85

450 35 19.58 950 60 15.82

500 35 19.64 1000 60 15.8

550 35 19.68 100 65 13.3

600 35 19.7 150 65 13.85

650 35 19.72 200 65 14.21

700 35 19.73 250 65 14.46

750 35 19.73 300 65 14.64

800 35 19.73 350 65 14.78

850 35 19.71 400 65 14.89

900 35 19.7 450 65 14.96

950 35 19.68 500 65 15.02

1000 35 19.65 550 65 15.06

100 40 17.27 600 65 15.09

150 40 17.78 650 65 15.11

200 40 18.11 700 65 15.12

250 40 18.35 750 65 15.12

300 40 18.52 800 65 15.11

350 40 18.65 850 65 15.1

400 40 18.74 900 65 15.08

450 40 18.82 950 65 15.05

500 40 18.87 1000 65 15.02

550 40 18.91
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