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ABSTRACT 

Most organizations rely on data that is generated after performing their daily 

transactions and operations. This data is retrieved from different source systems in a 

distributed network hence it comes in varying data types and formats. The source 

data is prepared and cleaned by subjecting it to algorithms and functions before 

transferring it to the target systems which takes more time. Moreover, there is 

pressure from data users within the data warehouse for data to be availed quickly for 

them to make appropriate decisions and forecasts. There has been a lot of delay in 

data delivery to the business users due to immense data explosion emanating from 

millions of transactions running concurrently. The current legacy systems cannot 

handle large data levels due to processing capabilities and customizations. The 

performance degradation has raised concerns since organizations invest a lot of 

resources to establish functioning data warehouses. Data staging, a technological 

innovation within data warehouses is targeted since most data manipulations are 

carried out here. It determines which data is to be integrated, harmonized by the 

staging functions, cleansed, verified, and archived for future use. The population 

selected to carry out the study was chosen amongst large organizational databases 

available online for research purposes. The stratified random sampling method was 

used to determine the sample frame for study. Several tools including Ms Excel, SQL 

Server Analysis and Integration Services were vital during data analysis and 

experimentation. The deterministic prioritization algorithm was developed and tested 

with a focus on data staging performance and efficiency. The proposed solution 

highlights the necessities of pre-determining the expected data loads and ways of 

prioritizing them and optimizing the execution plans. The experiment test runs for 

the different scenarios demonstrated in the study shows that data staging processing 

time improved by 2.66% and consequently the loading process time improved by 

93.44%. Therefore, a recommendation to data warehouse practitioners and business 

intelligence designers was put forward to implement the Deterministic Prioritization 

algorithm providing enhancement for future design of Extraction, Transformation 

and Loading processes in data warehouse development. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The growing number of business transactions in any enterprise is directly 

proportional to growth of data size. This data comes from variant source systems and 

applications and needs to be organized in a workable state so that it remains relevant 

and meaningful to the users. Technological development has led to the rise of Data 

Warehouse (DW). Inmon (2002) defined a data warehouse as “collection of 

integrated, subject-oriented databases designated to support the decision making 

process”. Both Kimball and Inmon (2002) agreed that a DW had to be integrated, 

subject-oriented, nonvolatile and time variant. This concept of time-variant was so 

crucial and ultimate concern and set the basis for this research. The foundations of a 

DW as explained by Zineb, Esteban, Jose-Norberto, and Juan (2011) encompassed 

integration of multiple different data sources. This allowed the provision of complete 

and correct view of the enterprise operational data which was synthesized into a set 

of strategic indicators and measures that the users of the data could associate with. 

DW has business intelligence implemented in three major processes used to prepare 

data to match user’s needs. They are commonly referred to as ETL processes which 

are Extraction, Transformation and Loading. Extraction process retrieves data as is 

from source systems before subjecting it to any manipulations. Transformation 

process also referred to as transportation phase is the operational base and the most 

intriguing of all. Business rules and functions are some of the operations applied to 

the extracted data. Loading process involves moving the desired data as determined 

by the users to the DW. It’s important to note that, the flow of data from the sources 

to the destination is not as simple and smooth as it sounds. There results in impeding 

system performance observed across all the ETL processes raising more bottlenecks 

to data movement in data warehousing environment. 
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El-Wessimy, Mokhtar, and Hegazy (2013) showed the relevance of DW in decision 

making in today’s environment. “The best decisions are made when all the relevant 

data is taken into consideration. Today, the biggest challenge in any organization is 

to achieve better performance with least cost, and to make better decisions than 

competitors. That is why data warehouses are widely used within the largest and 

most complex businesses in the world.” 

Problems in ETL that call for use of Data staging 

According to Javlin (2015), Data Staging means that the data is simply dumped to 

the location (called the Staging Area) so that it can then be read by the next 

processing phase. This is important if the transformation step fails, it should not be 

necessary to restart the Extract step. We can ensure this by implementing proper 

staging. IBM (2016) explains that data stage is keeping data before the job begins 

execution and the data is moved back to archives when a job has finished execution. 

The Data Staging Area is temporary location where data from source systems is 

copied. Rogers (2010) discussed that a staging area is mainly required in a Data 

warehousing architecture for timing reasons.  All required data must be available 

before data can be integrated into the Data Warehouse. According to Russom (2012) 

explained that data staging areas evolved from temporary storage platforms to pre- 

and post-processing platforms, they typically moved out of the data warehouse 

proper (where they were simply a few tables where data landed) and onto standalone 

database instances. Data staging emerged as a new technological development with 

an attempt to handle issues regarding low performance on data loads to the 

warehouses. Kimball and Ross (2002) stated that data staging was available in the 

extraction and transformation phases of ETL framework. In some legacy systems, 

data stage existed as a location that interconnected Online Transaction Processing 

Systems (OLTPs) to the Online Analytical Processing Systems (OLAPs). Although 

data staging was not a completely new technology since it had been researched 

before, the focus had been shifted to designs and development of data staging 

frameworks. Little attention had been given to its operability and its significant role 
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in speeding the ETL process. It was a vital location on the basis that it linked the 

source systems (environment) to the target systems. The concern that arose was 

whether to deal with data staging as a process in ETL or the developed frameworks 

which were customarily available at the moment. Due to the vast amount of time and 

energy used in development of a framework the research did not dwell much on this 

but focused on enhancing the available frameworks with the realization of 

performance improvement. 

In most of the developed systems for example Ascential DataStage and InfoSource 

from SAP AG (2002), usability was key and ideal for its simplicity of use. The data 

staging area was a technical layer where only the experts had capability to 

understand the processes. With this regard, the novice users at the presentation layer 

were abstracted from the many operations taking place inside. Eventually, the readily 

transformed data was moved to the DW for use and further categorized in the data 

marts repositories. This was referred to as the loading process. It depended on the 

laid down network infrastructure according to the designed distributed database 

system. The presentation systems and applications that linked to the business users 

could readily and easily access the data from DW and data marts for report 

generation, analysis and audit confirmations. 

Aksoy, Franklin, and Zdonik (2001) explained that in large and busy organizations 

deployed in the production environments, the number of transactions was quite high 

as a result of many applications generating different kinds of data. There arose a 

performance problem where data flow speed reduced immensely. Another hurdle 

came in since there were no proper selection algorithms to pre-determine what 

category of data was clean for transfer to the data warehouse. El-Wessimy, Mokhtar, 

and Hegazy (2013) noted that all the data from the source systems was forwarded to 

the data warehouses without checking the relevance to the user decisions. To 

overcome the cited problems, a solution that would prioritize cleaned and verified 

data ready for loading would be a great move towards enriching data warehousing 

technologies. 
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Data staging remains without doubt a debated topic because of the conventional 

approach to data integration where extraction of all data from the source systems is 

done and later on the entire set is integrated again. This demonstrates a waste of CPU 

time since it involves handling all the data every time transformation is carried out. 

This approach is inefficient because the data delivered is not processed in real time 

due to the delay in the integration process. Kimball, Reeves, Ross, and Thornthwaite. 

(2008) found out that on the other hand, existing solutions put across are based on 

filtering records according to a timestamp column or flag that shows the changed 

data. These solutions are not productive and they require modifications in the 

applications from which they have been deployed. 

1.2 Statement of the problem 

Manipulating and loading large volumes of data concurrently is a time and resource 

consuming task. Data being manipulated by a certain process might be needed by 

another process to continue its task forming a cycle referred to as resource deadlock. 

The implication would be intense and could bring the system to a halt. Data growth 

in a company is a progressive trend which requires advance mechanisms to handle 

the vast amounts of data either on First In First Out strategy or concurrent 

processing. Lack of well designed process interrupts, scheduling plans and 

algorithms causes the systems to fall into unnecessary deadlocks. This makes data 

integration from the various source systems difficult thus increasing overhead that 

may result from the large number of individual queries being executed in data 

retrieval. These individual query procedures cannot predict the business users’ 

dynamic needs, to match their demands then a lot of comparisons have to be done for 

the data that is already retrieved. This normally takes a lot of CPU running time 

hence impacting negatively on the performance of ETL processes. The core systems 

should adapt to change and restoring the operation space without its dependants 

noticing these changes. Fixing the noted problems in current systems requires 

dwelling deeper into the ETL framework development because they exist due to poor 
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designs at the initial stages. This has to be applied at the application level where the 

ERL processes are carry out their different operations. 

1.3 Objectives  

The study was guided by the following objectives that were categorized as broad and 

specific objectives. Although quality had been had been given precedence in 

previous research works, the study aimed to balance between performance and 

quality in the resulting data presented to the data warehouses. 

1.3.1 Broad Objective 

To improve the speed of accessing, retrieving and processing data integrated from 

various source systems, transferred and synchronized with specific target systems.  

The improvement was to bring change on the performance of ETL processes in data 

warehouses when handling voluminous and bulky data. 

1.3.2 Specific Objectives 

1. To generate and implement prioritization algorithms for selecting appropriate 

data for collection from source systems. 

2. To create scheduling plans for operations within the Transformation phase 

and optimize data load instead of using batch transfers or increasing 

processing space. 

3. To streamline and integrate data processing strategies to achieve concurrent 

operation through parallelism of jobs with an aim of providing real time data 

processing. 

4. To provide a scalable solution that would be easily integrated in new and 

existing data staging frameworks without the need to change development 

design and architecture. 

5. To find out the performance change by testing the developed algorithm that 

proposes a solution to the performance issues within data warehousing 

environment. 
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1.4  Research Questions 

1. How would prioritization algorithms change the data selection and collection 

from the sources? 

2. What impact would scheduling plans have on the order of executing jobs in a 

staging area? 

3. What is the business value after ensuring parallelism in concurrent data 

processing? 

4. How would the solution integrate with existing and new systems highlighting 

incompatibility issues that may arise? 

5. What support does the proposed solution provide in the growth of data 

staging technologies in future? 

1.5 Justification 

One of the greatest requirements for most any new systems is the ability to be very 

responsive, accurate and up to date for the business users to enjoy high performance. 

This should be maintained despite the significant delays introduced due to the nature 

of operations at the backend. The growth of information technology field saw new 

technologies such as cloud computing, virtual networks and new-age distributed 

systems emerge. 

There was great push from the data warehousing community to implicate these speed 

improvements so that the real-timeliness of a system could be replicated across the 

board. In the previous systems, data was copied directly from the source 

transactional systems to the target systems to reduce the workload. This resulted in a 

lot of ambiguous and repetitive data which was rendered unusable. Data staging 

could leverage benefits from meta-data, additional data about data which was carried 

with the moved data. 
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1.6 Scope of study 

The study revolved around the DW environment targeting the business processes 

involved in the flow of organizational data from source to destination. The 

complexity of the procedures depended on the phase under investigation in the ETL 

process. The research majorly targeted data from large business enterprises whose 

database organization supported real time data processing with constant data changes 

and modifications. Inclusively, data from companies that had already established 

DW environments were considered. The skill base in the research work targeted 

users with technical knowledge on flow business processes and logic. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter the focus is on familiarizing with the field of study by investigating on 

research work that had been carried around this area by different researchers. It is 

vital to give credit to the authors for their work and their contribution to efficient and 

effective systems. Kimball and Ross (2002) said that data warehouse managers 

should ensure the right data is published depending on the type of business involved. 

A view of data warehouse environment in terms of location yielded four major 

regions namely; operational source systems, data staging area, data presentation area, 

and data access tools. There was an assumption that data fetching from the source 

systems was carried differently from the way data warehouses were queried for 

results. The source systems maintained little historical data to the greater advantage 

that relieved it the responsibility for keeping track of old data. The user queries fired 

against the source systems were minimal and procedural i.e. one query at a time 

hence the data flow was severely restricted to the demands of user requests for data. 

2.2 Related Work 

Kimball and Ross (2002) suggested that the key architectural requirement for the 

data staging area was that, it was off-limits to business users and did not provide 

query and presentation services. Data staging was an essential part of ETL phases 

and was considered to be the most crucial stage of data warehousing where 

maximum responsibility of data quality efforts resided. Ralph and Margy (2002) 

demonstrated the data staging area within a DW using an illustration in figure 2.1. 
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Figure  2.1 Basic elements of the data warehouse Ralph and Margy (2002). 

Kimball and Margy (2002) noted that when staging dimension tables, they often 

handed a complete copy of the latest, greatest source data. “It would be wonderful if 

only the changes since the last extract, or deltas, were delivered to the staging area, 

but more typically, the staging application has to find the changed dimensions”. 

Inmon (2005) defined “a data warehouse is a collection of Integrated, Subject-

Oriented, Non Volatile and Time Variant databases where each unit of data is 

specific to some period of time”. Muller, Studer, Fondement, and Bézivin (2005) 

tackled the issue of ETL development and said that ETL process development 

constituted the most costly part of a data warehouse project, in both time and 

resources. The complexity of integration solutions continued to grow, with higher-

quality data demands more-robust metadata and audit ability requirements. 

There had been substantial amount of effort by other researchers to discuss deeper 

about ETL process modeling approaches, ETL software architectures and ETL 

frameworks as demonstrated by Thomsen and Pedersen (2009). 
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Bézivin (2005) stated that the data staging area of the data warehouse was both a 

storage area and a set of processes commonly referred to as extract-transformation-

load (ETL). The data staging area was everything between the operational source 

systems and the data presentation area. The proposition here was to have 

prioritization mechanisms used to filter or sort data reducing the amount of flow to 

the data staging area. For this requirement, an algorithm was to be created to 

determine and decide beforehand what data was vital and must be moved to the DW 

therefore not all data was copied. There were limitations to full copying which 

looked like performing full backups e.g. bandwidth, transfer rates e.t.c. It had been 

investigated and the authors came up with either Opportunistic scheduling, pre-

fetching or data caching approaches. 

Vassiliadis (2009) further explained the Extraction, Transformation, and Loading 

Processes and their key role in data warehousing architecture. He stated that data was 

extracted from the source data stores, which could be in a relational and/or a semi-

structured format. In typical cases, the source of data stores could be On-Line 

Transactional Processing (OLTP) or legacy systems, files under any format, web 

pages, and various kinds of documents or even data coming in a streaming fashion. 

After this phase, the extracted data was propagated to a special-purpose area of the 

warehouse, called Data Staging Area (DSA), where their transformation, 

homogenization, and cleansing took place. 

Ranjit and Kawaljeet (2010) mentioned that “as data warehousing is gaining 

eminence in many organizations, problems arise in populating a warehouse with 

quality data”. These organizations had become aware of the benefits of decision 

oriented and business intelligence oriented data bases. They further informed, 

“…data warehouses are one of the foundations of the Decision Support Systems of 

many IS operations. 
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Figure 2.2 Data Warehousing Structure Ranjit and Kawaljeet (2010). 

Akkaoui, Munoz, and Trujillo (2011) categorically stated that “there are many 

commercial Extract-Transform-Load (ETL) tools, of which most of them do not 

offer an integrated platform for modeling processes and extending functionality”. 

This drawback complicated the customization and integration with other 

applications, and consequently, many companies adopted internal development of 

their ETL systems. A possible solution to this drawback was creating a software 

framework for ETL. 

Zineb, Esteban, Jose-Norberto, and Juan (2011) enlightened us that ETL processes 

were the core component of a data warehouse, since they supplied the data 

warehouse with the necessary integrated and reconciled data from heterogeneous and 

distributed data sources. Corlatan, Mariaus, Valentina, Octavian (2014) noted that 

other than improving the system hardware, operating system and SQL server 

settings, the main factors that affected speed of query execution were as listed below. 

i. Missing indexes 

ii. Inexact statistics 

iii. Badly written queries 

iv. Deadlocks 
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v. T-SQL operations which do not rely on a single set of results 

vi.  Excessive fragmentation of indexes 

vii. Frequent recompilation of queries. 

Moreover, they put more stress on the subject of Missing indexes This particular 

factor has been found to affect the most SQL Server’s performance. When missing 

indexing of a table, the system goes step by step through the entire table in order to 

find the searched value and return the results to the users. This leads to overloading 

RAM memory and CPU, thus considerably increasing the time execution of a query. 

More than that, deadlocks can be created. The SQL Server query optimizer is based 

on cost, meaning that it decides the best data access mechanism, by type of query, 

while applying a selectivity identification strategy. 

2.3 ETL phases of a data warehouse 

Data warehousing is made up of the following phases which are discussed separately 

to indicate the significance and relation to one another. This was the contribution and 

discussions as reviewed from different authors within DW environment. 

2.3.1 Extraction Phase 

Kimball, Reeves, Ross, and Thornthwaite (2008) informed that the extraction process 

consisted of two phases, initial extraction, and changed data extraction. In the initial 

extraction, data from the different operational sources to be loaded into the DW was 

captured for the first time. This process was done only one time after building the 

DW to populate it with a huge amount of data already available in the source 

systems. The next phase involved incremental extraction also referred to as changed 

data capture (CDC). In this process, it was necessary to extract only the newly added 

or modified data to the source systems since the last extraction process. This process 

was periodic according to the recursive cycle of collecting and submitting the data as 

well as business needs of the organization. There were some methods of capturing 

the changed or modified data since the last extraction such as use of audit columns, 

database log, system date, and delta technique, although they were not efficient. 
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Russom (2012) discussed the fact that most data staging areas were optimized for 

detailed source data. The advanced forms of analytics was growing aggressively and 

it required detailed data source because of the discovery nature of data mining, 

statistical analysis, extreme SQL, and natural language processing. Much of the 

content of big data by most definitions involved giant volumes of detailed data 

source. 

SAP AG (2002) invested in ETL as part of DW enhancement. They noted that 

“Extractors are part of the data retrieval mechanisms in the SAP source system…the 

Persistent Staging Area (PSA), define the load process with an Info Package in the 

scheduler.” To enable data and metadata extraction from non-SAP sources on the 

application level, SAP NetWeaver BI provided open interfaces known as staging 

Business Application Programming Interfaces (BAPIs). BAPIs were standardized 

programming interfaces that offered external access to the business processes and 

data in a SAP system.  Staging BAPIs allowed users to use SAP Business Objects 

Data services and certified third-party tools (like Extraction, Transformation, 

Loading) to integrate data from non-SAP sources. BAPIs were provided for 

scheduling the data transfer job. These could be used to define application-specific 

parameters, to use parameters and values for input help options in the InfoPackage 

and to send the data request to the extraction tool. The data transfer can be triggered 

from BI or using the extraction tool. During transfer, the data was transformed into 

the relevant BI format. SAP AG (2002) warned that care was needed to make sure 

that the transfer structure in BI and the data structure for the extraction tool matched. 

If possible, transformations runs for technical clean-ups (data conversions for 

example) at the extraction tool level were carried out. BAPIs also helped the user to 

monitor the data transfer, allowing them to find the requested status and the log 

transfer from the extraction tool. The illustration is as follows. 
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Figure 2.3 SAP NetWeaver server SAP SE (2012) 

Stephen (2013) informed that “The staging tables usually get populated by some 

outside source, by either pulling or pushing the data from the source systems. This 

process is usually an insert only process and therefore does not rely on statistics for 

its successful execution. (pp.1)” 

2.3.2 Transformation Phase 

Once the data was extracted to the staging area, there were numerous potential 

transformations, such as cleansing the data (correcting misspellings, resolving 

domain conflicts, dealing with missing elements, or parsing into standard formats), 

combining data from multiple sources, reduplicating data, and assigning warehouse 

keys. These transformations were all precursors to loading the data into the data 

warehouse presentation area. Unfortunately, there was still considerable industry 

consternation about whether the data that supports or results from this process should 

be instantiated in physical normalized structures prior to loading into the presentation 

area for querying and reporting. 

Erhard and Hong (2000) elaborated on activities within transformation phase towards 

clean data. These included data analysis that focused on meta-data and due to fewer 

integrity rules it couldn’t guarantee sufficient data quality of a source. Two 
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approaches had been put across to assist in data analyses which were data profiling 

and data mining. Data profiling focused on the instance analysis of individual 

attributes. It derived information such as the data type, length, value range, discrete 

values and their frequency, variance, uniqueness, occurrence of null values, typical 

string pattern providing an exact view of various quality aspects of the attribute. Data 

mining helped discover specific data patterns in large data sets, e.g., relationships 

holding between several attributes.  

Erhard and Hong (2000) explained that putting concern on the performance, then it 

was important to dwell in defining data transformations which consisted of multiple 

steps where each step performed schema and instance-related transformations i.e. 

introducing parallelism. It allowed data transformation and cleaning system to 

generate transformation code and thus reduce the amount of self-programming. A 

more general and flexible approach was the use of the standard query language 

(SQL) to perform the data transformations and utilize the possibility of application-

specific language extensions, in particular, user defined functions (UDFs) supported 

in SQL:99. UDFs could be implemented in SQL or a general purpose programming 

language with embedded SQL statements. They allowed implementing a wide range 

of data transformations and supported easy reuse for different transformation and 

query processing tasks. Furthermore, their execution by the DBMS could reduce data 

access cost and thus improve performance. The normal cleaning steps and 

procedures in the order of execution are listed below using UDF implementation 

with cleaning logic 

 Remove misspellings in data within fields 

 Conflict resolutions 

o Extract data from free-form attributes(repeated data in different fields) 

o Instance matching and duplicate elimination 

o Sort and reorder values 

 Validation and correction for each instance (cyclic process) to remove errors. 

 Spell checking – dictionary lookup 
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 Standardization 

o Help in instance matching and integration 

o Convert to consistent format(uniformity) 

 Deal with multi-source issues 

o Restructure schemas 

o Split, merge, fold and unfold of attributes and tables 

o Remove data overlaps and duplicate representation 

The hindrance to this approach was that determining matching instances with such an 

approach was typically a very expensive operation for large data sets. Calculating the 

similarity value for any two records implied evaluation of the matching rule on the 

Cartesian product of the inputs. 

2.3.3 Data staging area 

The data staging area was dominated by the simple activities of sorting and 

sequential processing. In many cases, the data staging area was not based on 

relational technology but instead it consisted of a system of flat files. After the users’ 

finished data validation on conformance with the defined one-to-one and many-to 

one business rules, it might be pointless to take the final step of building a full blown 

third-normal-form physical database. This had disadvantage in that the creation of 

both normalized structures for staging and dimensional structures for presentation 

meant that the data was extracted, transformed, and loaded twice i.e. once into the 

normalized database and then again when the dimensional model was loaded. 

Obviously, this two-step process required more time and resources for the 

development effort, more time for the periodic loading or updating of data, and more 

capacity to store the multiple copies of the data. At the end, this typically translated 

into the need for larger development, ongoing support, and hardware platform 

budgets. With regard to Firestone (1998) the nature of the file determined how it was 

manipulated and “almost all processing in the data staging process is sorting, 

followed by a single sequential pass through one or two tables.” He also concluded 
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that “the data staging area will archive and store data for a number of purposes. 

Conformed dimensions are created in the data staging area and replicated out to all 

the requesting data marts. They must be permanently housed in the data staging areas 

as flat files ready for export. The data staging area may be the best place to hold data 

for emergency recovery operations….”   

Kimball, Reeves, Ross, and Thornthwaite (2008) provided scenarios in data stage 

area that depicted the processes carried out. The data flow was set up so that it came 

out of the source system, moved through the transformation engine, and into a 

staging database as shown in the figure 2.4. 

 

Figure 2.4 First Data staging Scenario Kimball, Reeves, Ross, and 

Thornthwaite. (2008). 

In the second scenario, Extraction of the sought after data from mainframe legacy 

system into a flat file system followed. Then moving the file to a staging server, 

transformed its contents, and loaded transformed data into the staging database as 

seen in figure 2.5. 
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Figure 2.5 Second Data Staging Scenario Kimball, Reeves, Ross, and 

Thornthwaite (2008). 

Abbasi et al. (2010) noted that data staging services moved output data from 

computer nodes to staging or I/O nodes prior to storage with an aim to reduce I/O 

overheads on applications’ total processing times., “Explicit management of data 

staging offers reduced perturbation when extracting output data from a petascale 

machine’s compute partition. Experimental evaluations of Data stager on the Cray 

XT machine at Oak Ridge National Laboratory establish both the necessity of 

intelligent data staging and the high performance of our approach, using the GTC 

fusion modeling code and  benchmarks running on 1000 plus processors”. 

2.3.4 Loading Phase 

Loading in the data warehouse environment usually took the form of presenting the 

quality-assured dimensional tables to the bulk loading facilities of each data mart. 

The target data marts must then index the newly arrived data for query performance. 

When each data mart had been freshly loaded, indexed, supplied with appropriate 

aggregates, and further quality assured, the user community was notified that the new 

data had been published. 

Aksoy, Franklin, and Zdonik (2001) introduced a workable approach to data staging 

concerns raised at his time. They based their work on broadcast scheduling and data 

staging area. According to them the key design considered for development of large 
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scale on-demand broadcast server was the scheduling algorithm selection useful for 

selecting of items to be broadcast. Their algorithm aimed to choose the beneficial 

data items only based on unfulfilled previous requests as outlined below 

1. Recognize that work had been done in development of online scheduling 

algorithms for data broadcast. 

2. Key concern to get high bandwidth downloads by the introduction of a low 

overhead algorithm which aimed at fully utilizing the available broadcast 

bandwidth. 

3. Assumption that data items would be available beforehand was not true 

because of  

a. The sheer size of source data to load and highly-skewed nature to 

access the data. 

b. The cost to keep all the data in cache was prohibitive even though it 

was possible to cache the entire set of data in memory. 

c. The high latency led to system performance degradation therefore 

scheduling efficiency was not able to guarantee the full utilization of 

the download channel. 

Firestone (1998) analyzed file manipulation modes and found out the different 

natures and ways of handling files. Firestone (1998) thought that the issue was 

broader and encompassed both the database format and process logic characteristic 

of: the data staging application, the archival repository, metadata and associated 

meta-model driving the data staging process.  

Kimball and Ross (2002) asked whether the data staging area was relational or 

sequential for processing flat files. He concluded that most data staging activities 

used sequential processing. If the incoming data was in flat-file format then it should 

be handled by data staging processes as flat files before loading it into a relational 

database. Kimball and Caserta (2004) did not advocate using structured relational 

data staging area. Kimball and Ross (2002) further warned that “It is acceptable to 

create a normalized database to support the staging processes; however, this is not 
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the end goal. The normalized structures must be off-limits to user queries because 

they defeat understandability and performance”. 

Eckerson, and White (2003) report showed the impact of ETL tools in controlling the 

source systems and the business intelligence applications. ETL tools needed to be 

expanded to match the growth in complexity of the BI environments. They stated 

that focus should be placed on real-time and parallel processing instead of batch-

oriented processing that load data in bulk. 

Aksoy, Franklin, and Zdonik (2001) came up with three complementary approaches 

to overcome the above mentioned issues and discussed them as follows. 

1. Increasing bandwidth utilization/opportunistic scheduling 

a. Avoid server stalling between broadcast not to miss data items. 

b. Prioritizing technique/algorithm to help decide which the most 

beneficial data item to load. If most beneficial data item is not 

available at that time, then the available one should be loaded and 

broadcasted instead to avoid stalling the server to user responses. This 

was referred to as opportunistic scheduling. 

2. Decreasing the need to fetch an item 

a. Making best use of available server memory space. 

b. Key success in data caching was keeping only those data items that 

were most likely to be scheduled. Used scheduling algorithm to scale 

them as either hot (popular) and cold (not so popular) items. This was 

referred as Hint based cache management. 

3. Decreasing the fetch latency 

a. Reduce access latency from obtaining data from slow or remote 

sources before they were needed. This brought data items were likely 

to be scheduled in the near future in the cache. This was referred to as 

pre-fetching. 
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According to Inmon (2002), “Most of the transformed data are often loaded into DW 

which are dimensional databases usually structured according to star schemas and 

accessed by decision support systems...” About 70% of resources to implement a 

DW were consumed during the ETL project Li (2010). There were many commercial 

open-source ETL suites available, namely, Pentaho Data Integration, CloverETL 

Software and Data Integration Talend Open Studio, amongst others. DaSilva, Times, 

and Kwakye (2002) reiterated that, there was lack of standardization of the set of 

ETL mechanisms and of their graphical representations, as well as there was no 

consensus on the scripting languages available on the interfaces of these tools. 

Flinn, Sinnamohideen, Tolia, and Satyanarayanan. (2003) stressed on a more 

architectural and closer view of ETL process. They stated that data staging improved 

the performance of distributed file systems running on small, storage-limited 

pervasive computing devices by opportunistically caching data on nearby surrogate 

machines. Flinn, Sinnamohideen, Tolia, and Satyanarayanan. (2003) statistically 

proved the performance increase of interactive applications running on the Compaq 

iP AQ handheld by up to 64%. The performance could be increased further, by 

redirecting cache misses to staged data on a nearby surrogate while still maintaining 

the consistency guarantees of the underlying file system. In their paper they reported 

on the feasibility of data staging on untrusted surrogates with the prototype 

implementation based on the Coda file system. They also outlined that for bursty, 

short-term workloads, data staging improved file operations by up to 77% by 

removing the cumulative delay. They ran tests and confirmed these results by 

replaying long-term traces of file-system activity and the experiments showed 

average reductions in file operation latency of 59%. Their focus in their paper was on 

the file system aspects of data staging and this raised questions on whether the file 

formats impacted on performance. 

Some developed frameworks existed such as PygramETL Thomsen and Pedersen 

(2009) which was a programmable framework for developing ETL applications. 

PygramETL was aimed at optimizing the processing of large volumes of data, and 
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was used in the implementation of physical parallelism to take advantage of the 

current multi-core processors. Thomsen and Pedersen (2011) continued to inform 

that the demerits of PygramETL lay in the flexibility and generality properties of 

PygramETL. They had not been evaluated so far, and only the performance had been 

evaluated. PygramETL was readily available thus a good testing framework that 

could readily integrate with other object oriented application since it was available as 

Python code instead of a graphical user interface. 

Zheng (2009) recommended filtering relevant and useful data and ensuring the 

staging resources were available always. They should be dynamic and used 

whenever available and desired. The aim of filtering data was to reduce output 

volumes and restricting it in query session. Such filtering leveraged the increasing 

gap between the ability to speed up computations via faster and more numerous 

CPUs verses having to store or move data across increasingly deep memory 

hierarchies. With staging the application performance was decoupled from the run 

time performance of the back end storage system. 

Zheng (2009) said “the massive amounts of data generated by petascale applications 

can cause performance bottlenecks when running these applications and in addition, 

they can put extreme pressure on the highly parallel cluster storage systems attached 

to petascale machines…”. They decided to use the staging approach to address the 

problem by moving output data in a small storage staging area and operate on it for 

performance optimization. They called it data pre-Analytics-Pre-DatA. They also 

sort data using rapid data extraction with an aim of achieving real-time operations. 

Unfortunately, this approach resulted in reduced performance due to reorganization 

of data at the output. 

Another framework based on PygramETL, called ETLMR by Liu et al. (2011), was 

based on MapReduce and enabled the building of DW stored in cloud computing 

environments. While PygramETL and ETLMR were directed to the optimization of 

ETL processes for building DW, FramETL was a more general and flexible 

framework for enabling the creation of data repositories and customized ETL 
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transformations. The operation of an ETL System as described by FramETL had two 

phases; Metadata Definition and Operation. DaSilva, Times, and Kwakye (2012) 

informed that in the metadata definition phase, the specification of the system 

inventory and modeling of ETL processes occurred, while in the operation phase, the 

loading of metadata, the access to data sources, and the execution of ETL processes 

were performed. 

DaSilva, Times, and Kwakye (2012) discussed about some approaches and tools that 

had been introduced to handle the challenges that data staging experienced on 

efficiency. These were Data Transfer Request, which was a tool that monitored 

request and response of data from sources as per changes made. Another approach 

was investing in complex and powerful hardware and software which was very 

costly. Hardware would include the machines with high processing power, high 

RAM memory ranging to several GBs, and many processors scheduled to work 

concurrently under configured settings. The software would be management systems 

as well as specialized databases such as in-memory HANA and oracle that relied on 

high memory caching. This might not be viable for SMEs due to affordability and 

risk ratio. We checked on the demerits of these approaches before coming up with a 

better solution. 

El-Wessimy, Mokhtar, and Hegazy (2013) decided to try out three techniques to help 

in speed improvement. “In this context, they explored three scheduling techniques 

(First-In-First-Out (FIFO), Minimum Cost, and Round Robin (RR) based on time 

and records) for scheduling the ETL process. They experimentally showed the 

behavior of these techniques in terms of execution time with respect to the sales data 

and discussed the impact of their implementation. 

When it came to moving data to DW Stephen (2013) informed that “The  biggest  

question for  the  staging area  is –  how  do  we  keep  the  statistics up-to-date  such  

that  the statistics for a particular daily load are  always available and reasonably 

accurate. This is actually more difficult than it sounds. If  the partitions would only 

be analyzed in the  first quarter  of  the  month each night, going to  every  other  
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night and eventually  each week  because  of  the  10%  stale  setting. This obviously 

leaves us with a problem…. In order to have the statistics available for the latest day 

which is loaded, the statistics would have to be gathered after the staging tables have 

been loaded but before the ETL process starts”. 

2.3.4.1 Metadata  

Firestone (1998) recognized that the data staging process was driven in an essential 

way by metadata, including business rules. Metadata was used along with 

administrative tools to guide data extractions, transformations, archiving, and loading 

to target data mart and data warehouse schemas. SAP AG (2002) mentioned that 

Metadata from non-SAP systems could be defined or updated either manually or 

using BAPI functionality in BI. If you accessed the BAPI interface, the non-SAP 

software’s extraction tool could automatically read the BI metadata from the source 

system or define the metadata in the extraction tool. The tool could then transfer the 

metadata to BI using the BAPI interface. To change metadata in BI manually, it was 

required to enter the needed data in the transfer structure maintenance transaction. In 

addition to transferring and updating metadata from the extraction tool to BI, the 

BAPIs could also be used to transfer BI metadata to the extraction tool. 

During transformation, there were several problems Vassiliadis (2009) which 

included: schema-level issues that affected naming and structural conflicts; Record-

level issues such as duplication and contradicting records; Value level issues that 

affected representation and interpretation of values formats. He also noticed the 

dilemma in the choice between bulk loading data through a DBMS-specific utility or 

inserting data as a sequence of rows. Clear performance reasons strongly suggested 

the former solution, due to the overheads of the parsing of the insert statements, and 

the maintenance of logs. Simple SQL commands were not sufficient since the ‘open-

loop-fetch’ technique, where records were inserted one by one, was extremely slow 

for the vast volume of data to be loaded in the warehouse. 
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2.3.5 Query Processing and optimizations 

The speed of query execution determines the overall performance of the ETL phases 

from the beginning to the end. Connolly and Begg (2005) noted that one of the major 

criticisms of current database management systems (DBMS) often cited was 

inadequate performance of queries. Since then, a significant amount of research has 

been devoted to developing highly efficient algorithms for processing queries. There 

are many ways in which a complex query can be performed, and one of the aims of 

query processing is to determine which one is the most cost effective. 

Query processing involves four phases namely; 

i. Query decomposition: - High-level language (SQL) is converted to low-level 

declarative language (relational algebra) to parse, validate optimize and 

execute the query.  

ii. Query Optimization: - Is either based on heuristic rules/approach or those that 

follow cost estimation approach in determining the most optimal strategy for 

minimal resource usage. 

iii. Query code generation: - the optimized relational algebraic expression is 

converted to a language the computer understands. 

iv. Query Execution: - Using the optimal strategy that is chosen, the query is 

fired to yield the results in the minimal time and cost. 
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Figure 2.6 Phases of Query Processing, Connolly and Begg (2005) 

The efficiency of repetitive cycle of query processing depends on whether the 

optimal strategy is saved in memory or disk for future accesses instead of compiling 

the same strategy over and over again. 

Bamnote and Agrawal (2013) informed that the cost of query evaluation could be 

measured in terms of a number of different resources, including disk accesses, CPU 

time to execute a query, and, in a distributed or parallel database system, the cost of 

communication. The response time for a query-evaluation plan would account for all 

these costs, and could be used as a good measure of the cost of the plan. In relation to 

large database systems, they observed that, disk accesses were usually the most 

important cost, since disk accesses are slow compared to in-memory operations. The 

query optimization engine generated a set of candidate evaluation plans where in 

heuristic theory, some produced a faster, more efficient execution. 

Nanda (2015) noted that the objective of query performance enhancement was to 

minimize the response time for each query and to maximize the throughput of the 

database server. He also observed that Query Processing and Optimization 
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techniques as one of the factors that hinder performance of database management 

systems. He also observed that in a distributed environment like cloud, data is 

distributed to a number of sites, stored in its entirety on all sites or spilt on many 

sites. Here the query is processed and optimized in a different way. 

2.3.5.1 Query Hints 

Connolly and Begg (2005) mentioned that the cost-based optimizer also takes into 

consideration hints that the user may provide. A hint specifies a comment specially 

formatted within an SQL statement to change the behavior of execution of that 

query. There are a number of hints that can be used to force the optimizer to make 

different decisions, such as forcing the use of the rule-based optimizer; 

n a particular access path; and Indexes Information about indexes. 

 

2.3.5.2 Stored execution plans 

Connolly and Begg (2005) further informed that there may be times when an optimal 

plan has been found and it may be unnecessary or unwanted for the optimizer to 

generate a new execution plan whenever the SQL statement is submitted again. In 

this case, it is possible to create a stored outline using the CREATE OUTLINE 

statement, which will store the attributes used by the optimizer to create the 

execution plan. Thereafter, the optimizer uses the stored attributes to create the 

execution plan rather than generate a new plan. 

2.4 Summary of Literature 

Other than appreciating the current developments in this field of research, it was 

important to be aware of the future developments in technology with regard to DW. 

This was to avoid major changes to the improved frameworks being scraped off due 

to existence of a new product. Consistency was to be complete and accurate 

maintaining scalability. Most of the authors had based their research on quality of 

data rather than performance enhancement. The desire to make strong decisions led 
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to loading almost all the data from the sources. The organizations had been able to 

cope with the current performance in tools because they were custom made to fit to 

their operational environment. The problem of handling data with speed as the unit 

of measure escalated at high rate with the growth of organizational data. Investing in 

the study was a great move to advance technology further as well as prepare for 

future compatibility with newer systems that met the users’ needs in time. 

2.5 Gaps in knowledge  

Considering the suggested improvements as discussed from great works of other 

authors, it was important to critique the literature by finding gaps in existing systems. 

The following were identified as the missing links on the body of knowledge as regards the 

investigation on the works of previous authors in the field of data warehousing.   

 Handling manipulation and transfer of bulk data was time consuming activity 

requiring a lot of resources. The dependency level for batch processing had 

diminished literally due to growth of technology. 

 There lacked a stable and standard staging framework to use for any 

warehouse setting. 

 The performance measure of the ETL process had been ignored because 

focus is invested on quality.  

 There was no proper definition of scheduling plans for jobs in ETL processes. 

2.6  Conceptual Framework 

The research gaps identified and discussed in the previous section, helped to draw 

probable solutions which would be implemented to tackle the noted issues and 

finally improve the general performance in data warehouse environment. This study 

proposed to create and implement deterministic prioritization algorithm within the 

data staging area which helped to show the relationship between the ETL processes 

and improved performance of data access and retrievals. This approach was active 

immediately upon deployment working on the data collected from the source system. 
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Less activity was experienced in the extraction phase but the actual data work area 

was within the staging area. All the data would be subjected to the new deterministic 

prioritization algorithm that planned to prioritize and selectively coordinated the 

appropriate data that needed to be moved to data marts. The algorithm 

implementation was targeting use in two areas. The first would be an implementation 

in an open source environment where the algorithm would be built to target all 

general purpose staging frameworks available in the market. This would mean that 

the deterministic prioritization algorithm would be freely available for use by these 

organizations without subscriptions. The second area of implementation would be 

within specific organizations that have customized staging frameworks. The idea to 

test in both areas is a measure on the flexibility of the solution from different 

scenarios of the market since not all users of data staging frameworks would be 

willing to introduce the change directly into their systems. It was observed that 

previous activities performed within staging area were very important and none 

would be eliminated hence the approach aimed to improve on the order of execution 

to avoid redundancy and repetition of tasks. This concept is illustrated in figure 2.6 

that shows the relationship among the ETL processes of a data warehouse. 
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Figure 2.7 Proposed Conceptual frameworks 

KEY: 

DP algorithm – Deterministic prioritization algorithm 

OTHER OP – Other transformation operations such as cleaning and verification 

2.7 Broad to specific literature 

Normally tables in any relational database were relational based on the logical 

bindings that resulted from querying data from them. Tables had relationship with at 

least one or more tables which was random in nature. The data access and retrieval 

from non-linked entities was batch-oriented where successive processing of requests 

in the queues was sequential. They were staged in the hope that in the next phase of 

loading there would be a process that would identify the relationship with other 

tables and during such load a relationship would be established. It depended on the 

operating system to provide free resources to handle the activities from source to 
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destination. Data staging area greatly differed in this aspect because it encapsulated 

the three ETL processes as a functional area of a data warehouse and maintained the 

relationship interfaces that were held prior to the movement of data from the sources 

to destinations. 

2.8 Included Improvements 

The included changes would provide a stable and scalable algorithm that would be 

easily deployed and utilized in existing and newer data staging to support concurrent 

data processing. This would magnify the core benefits of owning and maintaining 

intelligent data warehouses that would be supportive to the top-level of decision 

making process. 

According to Cecilia and Mihai (2011), the use of indexes on database queries 

improved the performance of the whole system. Clustered indexes performed better 

than nonclustered indexes when the expected returned records were many and were 

to be set for the most unique column of a table. This proposition supported the use of 

indexes in the staging area as illustrated in the positive test results shown above. 

Grant (2012).explained about execution plan management which was a task done by 

query optimizer. The database relational engine performed logical reads within the 

cache memory while the storage engine performed physical reads directly from disk. 

Improvements were highly realized mostly for data manipulation language 

statements since the engine needed to parse the query for correctness. The SQL 

server generated statistics against the indexes and sent them to the optimizer to 

determine the execution plan. 

Per-Åke L. et al. (2013) highlighted the improvements in the SQL Server 2012 

released. It had enhancement in batch processing through introduction of column 

store indexes. The main idea was to have the table’s primary key being treated as the 

clustered index for any storage structure (heap or B-Tree). They categorically 
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informed us that some customers had reported major performance improvements 

(10X to 200X) as a result of this change. 

El-Wessimy, Mokhtar, and Hegazy (2013) similarly did an enhancement in the data 

warehouse staging area by using different techniques (FIFO, MC,RR time and record 

rotation) targeting the loading phase. The tests ran captured the time taken to transfer 

data in each stage of the ETL process and suggested the most suitable technique. 

They did a comparison amongst all techniques and noted that FIFO performed better 

for less data set while Record Limit Based Round Robin was best for large data sets. 

Their research related to this new enhancement in data staging on the basis of 

reducing the overall time taken to deliver data from source to destination. 

Stephen (2013) elaborated an approach in Oracle environment that “Most ETL 

applications used a staging area to stage source system data before loading it into the 

warehouse or marts. When implemented within an oracle environment a partitioning 

strategy was usually employed such that data that was not required any longer could 

be removed from the tables with minimum amount of effort.” 

Costel, Marius, Valentina, and Octavian (2014) did a research on query execution 

and optimization in the MSSQL Server and put across the missing of indexes as a 

contributor to low performance of query execution. They informed that when a table 

missed indexes, the search engine had to parse through the entire table step by step to 

find the searched value. The resources spent on this process ended to be enormous 

and considerably increased time to execute the queries. 

The proposed algorithm would provide cost effective mechanisms to decide which 

data need to be collected beforehand and also how to change order of transferring the 

data to the destination systems. 
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CHAPTER THREE 

 METHODOLOGY 

3.1  Introduction 

There was great need to measure the impact of changes introduced in order to 

demonstrate and justify the purpose of this study.  Moreover, the nature of the 

problem that the research explored called for a convenient approach and in particular 

Experimental methodology was selected. The comparison and contrasts expected 

from the study would make use of available staging tools and alternatives e.g. 

Pygram ETL and Microsoft data profiler tool. The resultant summary of findings, 

observations, and recommendation would be adequately documented in the research 

report. 

The problem domain fell in the production/operational domain where vast 

transactions are normally carried out generating the workable data. Each enterprise 

has its own business processes but the concern of the study focused on the ETL 

phase that involved collection of data for the DW and how to make improvements. 

For quality decisions, all the relevant and related data had to be merged and 

eventually availed to decision makers. The activity posed to be difficult given the 

magnitude of data to be searched and the lack of algorithms to prioritize the collected 

data. To maintain scalability with previous ETL phases, the operational space was 

not expanded and this resulted to better, quality and smart ideas for generating 

queries of handling DW data. 

3.2 Dependent and independent variables 

The study investigated the different variables that associated to the research topic and 

how they impacted on system performance within any data staging area. The essence 

of discussing these independent and dependent variables was to assist in the 

development of a research design that would appropriately solve the problems 

reported by data warehouse users. The different variables that were considered for 

this study are illustrated in figure 3.1 and their description follows suit. 
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Figure 3.1 Relationship between dependent and independent variables 

a. Legacy systems and System Speed Performance 

Legacy systems used stacking where a job was pushed into the pool of tasks and 

popped out of the stack when its time of execution reached according to the queue. 

The order of execution was not highly dependent on pre-arranged structure. This 

procedural mode of execution degraded performance. The speed of job execution 

fully depended on the freeness of the particular system processor. The legacy 

systems were also limited by the number of these processors and job sharing resulted 

in overworked system hence affecting the overall system performance. 

b. Cache and System Speed Performance 

The cache offered pre-fetching capability where data storage was done temporarily 

for the most used data. The scheduled procedure looked firstly in the cache memory 

before checking secondary storage locations hence minimizing on the search time. 

The limitation was tied on the cache size. The determinant of the number of jobs to 

keep within the cache was the priority of the job scheduler and number of hits or 

requests. Therefore, a job with fewer requests was dropped from the cache because 
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its importance in the delivery of particular data (priority) was not determinable 

beforehand. 

c. Opportunistic Scheduling and System Speed Performance 

To achieve concurrent operation there needed to be prioritization algorithms to 

decide the execution order of queries fetching data from the source systems to the 

data staging area. With Opportunistic scheduling there was high probability of 

improving speed of data retrieval and access. Similarly to the storage of jobs in 

cache, the probability of selecting the important data was not clearly defined. The 

overall system performance was affected where the resultant deliverable couldn’t 

meet the expectations of top management. 

d. Network infrastructure and System Speed Performance 

Remote connection to source systems affected the speed of retrieval and query 

execution was delayed by the time-lapse for distributed systems. This impact on the 

nature of ordering results from query execution and thus optimization should be 

introduced to work with stored procedures and cache facility. Even after the 

integration of new technologies the underlying factor is the speed of connection. 

Considerable system performance in delivering adequate and real time decisions was 

observed for dedicated networked systems. 

e. Data Attributes and System Speed Performance 

Data characteristics were defined by type and formats since it came from disparate 

systems. Data was not moved to the target systems before some modifications to 

match destination requirements. Poor data manipulation functions resulted in longer 

time processing the data slowing down the systems. The functions for manipulating 

flat files were different from the ones for relational tables and databases. The greatest 

barrier noted was the existence of different system formats as per the language of 

localization. When the data analyzer converted from one format using EDI tools, this 
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was not 100 % complete and manual corrections were needed impacting on overall 

performance. 

f. Hardware capability and System Speed Performance 

Newer systems such as SAP HANA databases had high processing capability which 

was meaningless if there was no proper scheduling of resources. This could result to 

lots of losses of resources not being manned properly. Hardware being static and data 

being dynamic at some point provided discrepancies when scheduling job execution 

since the available hardware might not be sufficient to handle the data affecting 

performance. Although, scheduling played a vital role in the performance 

implications of systems, the balance between the operating software affected 

performance. It represented the effect being sought and it was measurable to make 

comparison. 

3.3 Rationale of the research design 

The research design was selected based on the need to demonstrate improvement and 

the availability of measurement tools to many users of a data warehouse. It was also 

desirable because of its simplicity in use and richness of analysis to the problem. The 

changes to be made in data staging were very crucial and their impact was checked to 

see the implication to be either positive or negative. The research methodology fit 

well to counter the problems outlined by previous authors as noted previously; 

because it conformed to any new user requirements introduced within the ongoing 

project. This flexibility was advantageous in observing any interruptions to the 

normal operation of a DW. Corrections that needed to be effected when the model 

was in development stage were tailored to match the specific problem defined with 

ease due to its less strict nature. The success of meeting the user requirements was to 

ensure functional requirements were delivered while abstracting the users from the 

complexity of algorithms used to achieve this. 
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This resulted in creation of a new algorithm was to be introduced from data 

extraction to help determine what data and how much to capture initially from the 

heterogeneous sources. The criterion was never based on the type of source system 

but on formulating the source to a format where the data was readable to get only the 

most vital data. Meta data was also collected but its use in the analysis of the 

problem was limited to a controlled level. This was so because the nature of study 

was not considering the deeper details of data and characteristics. 

3.4 Feasibility study 

It was important to accustom with the study area and understand better the problem 

domain from the actual site. Data staging is an adaptive topic meaning there is so 

much dynamism taking place depending on the source system or the configurations 

for the target systems. This hence dictated a static workflow that was recursive in 

every complete transaction and phase according to the setup of the scenarios and test 

system.  

3.5 Research Site 

The study targeted organizations and institutions that performed many transactions 

resulting in handling large data ranging from a few records to several million rows in 

their relations. This data would be available in mid-sized organizations and 

businesses. It was to the researcher’s convenience and constrained resources to 

collect the research data through online means. This was highly contributed by the 

lack of local organizations implementing data warehouse technologies due to lack of 

resources. Some organizations had packaged downloadable databases deployed on 

their websites for researchers from online community. The available databases were 

availed in different data formats resulting from the variant source systems and also 

the need to match the user’s specific database server type. The databases were varied 

in sizes depending on the number of relational tables and records they contained. It 

would be envisage running active tests in those manufacturing companies that had 

already implemented SAP business solution products and any other appropriate ERP 
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systems like Oracle because their data is already organized and managed by a 

management system. It is the flow of data obtained from these large enterprises, that 

the explanation for data staging enhancement would be depicted clearly. 

3.6 Population Sampling Procedure 

The sample size was selected from those organizations and enterprises identified to 

provide online materials for research. The aim was to capture databases with large 

volumes of data ranging from several hundreds of rows to thousands of records. This 

was vital for this study because it was a requirement to experimentally show the 

change introduced and technical features improved by the new algorithm 

implementation with regards to data access speeds. There were multiple 

organizations that offered research data for download as availed from their websites. 

The stratified random probability sampling method was used on the identified 

research sites to aid in this selection. The sample was a representation of the whole 

population which couldn’t be investigated due to the time constraints and 

authorization access. The sampling method had been chosen purposely because of its 

high degree of representing the whole population and its abilities to overcome 

biasness in the study. The random selection was performed on several organizations 

whose databases were freely downloadable from their websites. Among the 

organizations investigated were; 

 PPSOne demo databases in relational format from CP CIM-POOL AG 

 SAP SBO-Common databases 

 AdventureWorksDW2008R2 from Microsoft 

 ACM SIGMOD Records in XML format 

 TPC-H Relational Database Benchmark in XML format 

 Annual Capital Expenditures Survey from Data.Gov in csv format 

The following factors were considered while weighing on which database was most 

useful for this research study to base on. 
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 Accessibility to the database – requirements of pass codes and subscriptions. 

 The data types for the databases – flat files, csv, xml, relational tables 

 Database sizes in Giga-bytes 

 Number of records within the tables and their normal form 

 Real data to match production environment 

 Currency of data 

 Availability of tools to analyze and work on the data 

Based on the above characteristics on the data smaller groups were identified that 

formed the strata. Each stratum came from individual company names from which 

the databases would be sought. All these company names were copied in a single 

column of Excel in any order. In a second column, the “Randomize” Excel function 

was to be applied and generate values after the “rand ()” function was fired. 

Additional details about the companies were optionally included although they 

would not be used anywhere in this sampling process but provided more details on 

the data sets. After executing the randomization function and sorting by this second 

column, the values were ranked in an orderly manner either in ascending or 

descending order. The last row number of the selected strata provided the sample 

size for the study to represent the whole population. In this case the stratum selected 

was from Microsoft’s AdventureWorksDW2008R2. The database conformed to 

match with the available SQL server version that would enable easy analysis and 

data manipulations. 

3.7 Sampling 

3.7.1 Sample size calculation 

To calculate the sample size for the study, the Slovin’s formula invented in 1960’s 

was used as shown below. 
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Where  n = Number of samples; 

  N = Total population; 

 e = Error tolerance; and (0.01 <= e >= 0.05), the lower the 

error tolerance value, the higher the accuracy of result. 

For Example Using N = 5; 

e = 0.02; 

Then 

 

 

3.8 Rationale for sample and size selected 

Slovin’s formula was used to figure out what the sample size to use since the whole 

population could not be investigated based on time constraints. Moreover, it was not 

it was not possible to know every characteristic of the population early enough. It 

was also a simple and direct formula with minimal variables hence less complicated. 

The methodology called for recursive tests and measurements on the new algorithm 

and hence required several test runs of the experiment so as to compare the values 

from each test scenario. The average of the results would bring clarity to the actual 

performance of the algorithm based on the test environment and available resources. 

This improved on effectiveness, quality and also was within time boundaries of the 

project deliverables given the vast amount of data dealt with. 

Sampling techniques and procedures 

The stratified random sampling method fit well for this study analysis due to the 

nature of data distribution on the customer systems. This procedure managed to 
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subdivide the customers’ systems selected from the population into workable units or 

single test scenarios. The customer’s databases that had large data were opted for 

since they could easily show by measurements the performance change. The 

sampling method overcame a lot of biasness because the customer selections were 

not based on the type of business but on data size or number of transactions. All the 

data attributes and properties were considered when comparing amongst customer 

data. When several customers matched the filtering criteria, a tie was easily separated 

by randomly selecting the final subject’s proportionally from the different strata. The 

merit for working in groups was that it was quite easy and fast to note the change 

when comparison was carried out between systems vis-à-vis the data size. The study 

highlighted a specific subgroup within the population performing better than the 

others where the changes had not been implemented. This method had higher 

statistical precision and needed a small sample size so as to save on time, effort and 

money. 

3.9  Data collection 

3.9.1 Data collection tools and instruments 

Research data was collected from the available data availed online for research. 

Several databases were downloaded from the group that matched the stratum 

specification after random sampling procedure. Microsoft SQL website provided 

data sets for relational databases for example AdventureWorksDW2008R2, matched 

the SQL server version running in the researcher’s notebook. The availability of 

analysis tools in close proximity was a core deciding factor to attach the database for 

this research. The databases were extracted and attached to the SQL server. To 

actually match the exact version of customer database, some upgrades were carried 

out so that the data could be readily retrieved from the tables without constraints. The 

SQL server had tools for analysis and configuration which was important in the 

experimentation stage where simulation of data warehousing was depicted clearly. 

The SQL Server Integration Services software tools and package were added to the 

installed version of SQL Server and really assisted in the analysis of the problem and 

data collected. 
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3.9.2 Pretesting of the study instruments 

The pretesting was done in a different site rather than the randomly selected one for 

the study. The databases were also attached in a remote system and controlled locally 

in a networked environment. This was to establish its validity and reliability before 

the actual study took place. The system setup for both the old and new were pre-

tested in one machine then deployed to the network. This will cover the majority part 

of interviewees as per the sample inclusion criteria. Pre-analysis was done to check 

on the appropriateness of the data collection tools, and the identified gaps and 

overlaps were rectified before the actual study took place. 

3.9.3 Data collection procedures 

The study was conducted after successful approval by the Board of Postgraduate 

Studies and the appropriate administrative officers from the organizations. Since the 

study was neither inventing the wheel nor creating a pioneer project, secondary data 

comprised of research materials in both soft copy (electronic documents published 

online) and hardcopy (books, journals, and articles). Primary data was captured by 

running tests to determine the mode of operation using the actual systems in selected 

companies. This data was collected by downloading sample databases of the 

organizations for further analysis. More data was also collected through online 

materials and documentation, where experts in ETL tools in an organization guided 

the researchers vigorously through videos. These systems were used widely to 

manage business processes and customer relations while streamlining decision 

making by management in an organization. 

The captured workflows differed among organizations because of the business logic 

outlined in the ETL process of the specific organization hence a clear distinction was 

noted. The research process was a continuous activity that was projected to take eight 

months from the time of research proposal acceptance to delivery date. Data 

collection and gathering was done from the third to the sixth month while analysis 

followed suit. 
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3.9.4 Data Analysis 

The data needed to be analyzed to bring out the problem clearly as was the case at 

the site. The researcher had to capture all affected variables since they would play an 

important role in looking for a valuable solution. It was a mind opening venture 

because the different aspects of business processes were studied as per the set logic. 

3.9.5 Statistical tools used 

There existed tools to analyze the collected data to make work easier for the study. 

The most applicable tools used were Microsoft Excel, Visio 2007, Gantt chart 

creator, SQL Server, SSIS, and linear scheduling method tool. They fit to the study 

because of the need to compare the results from different sources as well as among 

companies. They were also readily available to many users due to their simplicity in 

use even though some were costly to acquire. 

3.10 Data presentation techniques 

After completion of data analysis, the resultant data were presented to the project 

funders through a committee to show and convince them that the change in 

performance was realizable. The summarized presentation through power point 

slides explained how the research design fit to the problem domain. Upon completion 

of the analysis of study, the deliverable product was subjected to full testing for the 

proposed changes or enhancements and finally deploying it for use by the 

organizations.
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CHAPTER FOUR 

RESEARCH FINDINGS AND DISCUSSION 

4.1 Introduction 

The study proposed an algorithm that would work well on limited or more cache 

memory since freeness of the memory was operating system dependent. The running 

space was not an issue since it only acted as holding place for the recursive processes 

that were being controlled by the operating system. The creation of test simulations 

and test scenarios was designed to match the actual production environment where 

the decision support of a data warehouse provided quality answers to requests 

coming from the business users who were abstracted from the general operations of 

data warehouse environment. The users only requested for information in form of 

SQL queries and expected timely and current results from the intelligent data 

warehouses. 

4.2 Development of Deterministic Prioritization Algorithm 

The new algorithm that was created during this study involved the following major 

steps that were performed in a recursive manner. 

4.2.1 Deterministic Prioritization Algorithm Definition 

Problem: How to determine which data to collect and improve the speed of loading 

the data to the intended destination location? 

Step 1: Extraction of data from source tables through table and columns scan. 

Step2: Building the SQL query clauses with focus on SELECT type. 

Step 3: Optimization of the queries selection through clustered indexing. 

Step 4: Execution of the queries noting the change in execution time or cost. 
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4.2.2 Deterministic Prioritization Algorithm Design 

According to the algorithm procedure, the kind of operations performed at schema 

level was similar for all of the relations such as connection management to the SQL 

server. The SQL queries were generated with a purpose of fetching content from the 

source relational table and then availing the collected data to transformation 

operations before loading to the data warehouse. The query analysis focused on ways 

of reducing the cost of query execution in-terms of actual operation time and 

minimal resource usage. With this in mind a sample query was considered for one of 

the users’ request to load customer data to the data warehouse. This was important in 

analyzing the estimated I/O cost when a query was executed. 

SELECT STCustomerID, CustomerKey, GeographyKey,CustomerAlternateKey, 

FirstName, LastName, NameStyle, BirthDate, MaritalStatus,Gender, 

EmailAddress,YearlyIncome, TotalChildren, NumberChildrenAtHome, 

EnglishEducation, SpanishEducation, FrenchEducation, EnglishOccupation, 

SpanishOccupation,FrenchOccupation, HouseOwnerFlag,NumberCarsOwned, 

AddressLine1, Phone, DateFirstPurchase, CommuteDistance, MiddleName, 

STStartDate 

FROM  newStaging_Customer sc 

WHERE sc.STStartDate > '2014-01-01 00:00:00.000' AND sc.  STCustomerID IS 

NOT NULL 

ORDER BY sc.STCustomerID 

The relevance of the kind of cost selection approach depended on the database 

statistics which were saved in the system catalog at the creation of the data staging 

tables. During query decomposition the query was converted to relational algebraic 

expression as described in the following discussion. In this scenario a single relation, 

R defined by attributes or columns A = {A1, A2………., An}, and which were defined 

over p and q to denote Predicates. The above query provides a conjunctive selection 

with operations for users’ requested data that formed an individual query selection 

applicable to every source relation used in the study experiment. 
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σp^q(R) = σp (σp(R)) 

Expounded in the example as 

σ(STStartDate > '2014-01-01 00:00:00.000') ^ (STCustomerID IS NOT NULL) (newStaging_Customer) 

= σ(STStartDate > '2014-01-01 00:00:00.000') (σ(STCustomerID IS NOT NULL) (newStaging_Customer)) 

Where σ stands for SELECT and ^ stands for AND 

Once the query was expressed in relational algebraic expression, the processor 

needed to find the most optimal strategy to execute the SQL query. The deterministic 

prioritization algorithm introduced the use of clustered indexes to manipulate the 

default the procedure taken by query processor to process query selections. The 

selection queries utilized in the algorithm followed the first rule of heuristic 

processing strategies.  The rule states that any selection operation when done early, it 

results in reduced relation cardinality and also reduces the subsequent processing 

of that relation. Since the selection was performed on a single relation, the predicate 

p involved only the attributes in the selection clause. 

σp(R) where p ∈ {A1, A2………., An} 

Expounded in the example as 

σ(STStartDate > '2014-01-01 00:00:00.000') (newStaging_Customer) where STStartDate ∈ { 

STCustomerID, CustomerKey,………., STStartDate } 

The sequence for adding the clustered index to each table based on the newly created 

(derived and distinct) column was discussed to bring out the cost estimation for the 

converted relational algebraic expressions of the queries used. This aimed to depict 

how this procedure ended up to be the optimal strategy chosen for all proceeding 
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data staging queries. The SQL server uses formulas to estimate the cost of a number 

of strategies and chooses the most efficient of them all based on reduced cost. In 

query processing the query cost is highly concerned with disc block accesses or hits 

rather than memory accesses which are managed by cache memory. 

The success of estimating the size and cost of resulting relational algebra operations 

depended on the amount and currency of the statistical information that the SQL 

Server had generated at the time of experiment. The clustered index was based on 

and not limited to a single external column, An that was added in every table scan 

during the building of the selection query. This had two advantages where the index 

needed not to be recompiled every time it was run and any change in the source 

relation’s attributes at runtime would not interfere with the clustered index generated 

or cardinality of the query. 

For each base relation R | R ∈ Schema 

 nTuples (R) represent number of rows in relation R forming its cardinality 

 bFactor (R) represents the block factor of relation R meaning the number of 

rows that form one block 

 nBlocks (R) represents the total number of blocks generated on relation R 

This results to an equation that calculates the number of disk block accesses, nBlocks 

in relation R which in essence represents the division of the select operation on small 

operation chunks. 

nBlocks (R) = nTuples (R) / bFactor (R) 

The greatest advantage of query formation in terms of these blocks comes out clearly 

when a scheduler plan is employed mainly during runtime to determine the sequence 

of processing. For instance if the opportunistic scheduling algorithm is implemented, 

the number of blocks, nBlocks (R) represent quantum for the round robin algorithm. 

This scheduling algorithm is best suited for large data sets and it is very efficient in 



48 

 

queue and parallel transaction processing. In this case each block is given equal share 

of time or slices as per the number of blocks until the entire query is completely 

executed. 

The procedure to build the select clause of the Selection query continues deeper into 

the attributes of the relation R. The cycle is nested such that for every relation R, the 

all the attributes are collected. This is represented as follows. 

For each attribute A of base relation R| A ∈ R and A = {A1, A2………., An} 

 nDistinctA (R) represents number of distinct values for column A in relation R 

 nNullA (R) represents number of null values for column A in relation R 

 SCA(R) represents the cardinality of selection of column A in relation R for 

those rows that match the selection criterion. 

This analysis on relation attributes helped to determine the confidence levels of the 

columns and their capability of constituting a candidate key. Their strengths would 

guarantee prioritization of these attributes in the creation of the clustered indexes. 

SCA(R) = nTuples(R) / (nDistinctA(R)) * nBlocks     for A in {A1, A2………., An} 

negating obsolete attributes nTuples(R)/ (nNullA (R))*nBlocks     for A in {A1, 

A2………., An} 

This results with only the required and determined attributes that satisfy the requests 

of the user to form a selection clause and hence the process ends up being 

deterministic. The prioritization of individual columns that were of high confidence 

levels was done by addition of clustered indexes based on those columns. This meant 

that in every relation an index was generated as described below. 

For each index I of base attribute A | I ∈ A and A = {A1, A2………., An} 

 nLevelsA(I) represents the number of levels in I meaning number of attributes 

that satisfy to be added as clustered index. The assumption within the study 
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was using n=1, where the clustered index was on a single attribute (the 

derived distinct column). 

This resulted in the following SQL query for the addition of the named clustered 

index to a relation R. 

CREATE CLUSTERED INDEX I ON R (A) 

Expounded in the example as 

CREATE CLUSTERED INDEX IX_ newStaging_Customer 

ON newStaging_Customer (STStartDate) 

In conclusion, the selection operation in the relational algebra demonstrated in the 

algorithm worked on a single relation R. The result set after selection formed a new a 

relation, S containing only those records of R that satisfy the specified predicate as 

per the user request. Hence this narrows down to S = σp(R). The optimal strategy 

considered as per the clustered index added above is equality condition on clustering 

(secondary) index. The estimated I/O cost of this strategy for the entire Selection 

operation is summarized as follows. 

Estimated I/O cost  = nLevelsA (I) + SCA(R) 

If the predicate condition of the query involves an equality condition on column A, 

that is not the primary key , then the index is used to retrieve the required records. 

4.2.3 Deterministic Prioritization Algorithm validation 

The following Calculations are used to validate the algorithm. The values are based 

on database statistics provided by the system catalog for the relation 

newStaging_Customer which was investigated after clustered index was employed. 

The database statistics are illustrated in figure 4.1 after the clustered index was 

created in that relation. 

Index size = 4, Index depth = 3, 

nBlocks = 424,  nTuples = 18484 
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Figure 4.1 Database statistics for the Index on newStaging_Customer 

bFactor (R) = nTuples (R) / nBlocks (R) 

bFactor (R) = 18484 / 424 = 43.594 

 nLevelsA (I) = (Index Depth/ Index size) 

nLevelsA (I) = (3/ 4) = 0.75000 

SCA(R) = nTuples(R) / (nDistinctA(R)) * nBlocks 

SCA(R) =18484/(18484)*424 = 0.00236 

Estimated I/O cost  = nLevelsA (I) + SCA(R) 

Estimated I/O cost  = (0.75 + 0.00236) = 0.75236 

The estimated operation cost as per the SQL server on the same query was 0.74461 

Error Margin = (0.75236 - 0.74461) = 0.00775 

This indicated an error margin of 0.00775 that was almost negligible when compared 

to the actual operation time of the SQL server. The strategy was thus selected as the 

optimal query optimization by the query processor.
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4.2.4 Priori Analysis of the algorithm 

Upon creation of the SQL query commands generated in a cyclic manner depending 

on the number of tables that were extracted from the source systems, the queries 

were passed to the control flows of the SSIS tool. Each control flow represented data 

flow from one source system hence the number of control structures varied with 

number of relations available. The start and end task of each control flow 

representation had some scripts added that measured the performance of the 

algorithm by recording execution time and stored it on specific variables. The 

performance of the algorithm assumed that all other factors remained constant such 

as disk space, number of processors and processor speed. More tests were carried 

comparing on performance of the new algorithm over existing solutions such as:- 

a. Checking different file formats and data types from the source systems e.g. 

flat files, relational tables in files. The relational OLE-DB databases were 

highly used for movement of data from source systems to target systems. 

Extraction in relational databases was quite fast and easy to measure the time 

factor of the algorithm complexity. 

b. Horizontal or Column and Vertical or row based data store to exploit which 

method used less disk space. The space factor of the algorithm complexity 

was not affected since the data processing space was not increased or 

decreased. 

c. Compared existing scheduling algorithms strategies and their reported 

performances:- 

i. Scheduling data transfers and batch processing – job queues existed 

but no predefined order of execution was noted in existing 

frameworks. 

ii. Pre-fetching data/Cache storage – The tests depended on system 

operating system to manage the cache history 
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iii. FIFO – Mode of handling fast growing data with minimal delays. 

Limitations observed were due to the latency introduced by incapable 

legacy systems. 

iv. Minimal cost – The suggested solution for handling small data levels. 

v. Round robin – The strategy suggested for handling large amounts of 

data with processes depending on a quantum or time slice. 

4.2.5 Posterior Analysis of the algorithm 

The deterministic prioritization algorithm was implemented using C# Programming 

language. This is an object oriented programming language that builds applications 

that run on systems that have windows operating systems. There were several scripts 

that were attached to the major phases of the ETL as represented by the SSIS tools 

that contained the experiment. The scripts captured the Start and End time after 

execution of the Extraction, Transformation, Staging, and Loading processes. The 

execution time recorded was recorded in a log file that was accessed after the 

experiment run was complete depending on the number of times the tests were 

performed. 

The difference between the End and Start times provided a delta change that was 

compared to the average performance of the algorithm. This was graphically 

represented to provide a more vivid look at the performance after the new 

improvement introduced by deterministic prioritization algorithm. 

4.3 Statistical Analysis of Raw Data used in the study 

4.3.1  Source of Data used in the study 

The research data was obtained from available online samples provided for research. 

The focus was to obtain large data from heterogeneous data sources. The procedures 

undertaken were to demonstrate the binding of data obtained from different sources, 

performing the ETL operations and fed data to the data warehouses. Projecting 

towards the research problem, the transfer issue needed to be highlighted in the 

created scenario. Firstly, there was need to clearly and correctly show from the set 
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scenario that a problem existed before any improvements were carried out. This 

would show the relevance of putting much effort in generating the new algorithm 

that would solve the problem demonstrated. The data flow process from the sources 

was depicted clearly where data staging came in handy at the central processing 

region. To further understand how the actual data moved from the sources to the data 

warehouses, there was need to investigate the structure of these sources. The source 

data form source applications was directly linked to the data extraction process and 

thus data was availed in varied formats and types. The deliverable for this activity 

was having a simulation model of the existing situation from one or more data 

sources. The selected data source was entity related and the relationships between the 

tables were shown by link joins on key or unique identifiers. Furthermore, to 

understand data organization on these tables, data modelling was found suiting and 

most fitting to explain the underlying table designs. The data dimensional modelling 

procedure was helpful in deriving data models and relational attachments tied to the 

entities dealt with. 

4.3.2 First Scenario 

Since the research methodology stated in research design was by Experimentation, 

there was need to demonstrate the current situation within ETL processes.  The tests 

performed depicted the flow of data from source to destination while the data stage 

was located within the data transformation. To illustrate the tests, the SQL Server 

Integration Services (SSIS) tool was used since it had the business intelligence 

management studio component.  This tool was readily available as an upgrade 

package for the Standard and Enterprise edition of the Microsoft SQL server. 

The aim of the test was to view and report on Products sold to customers from 

different geographical regions over a period of time. The data source used was 

AdventureWorksDW2008R2 database available for download from Microsoft 

Website. The figure 4.1 shows the data modelling diagrams generated after 

dimensional modelling in the analysis phase. 



54 
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Figure 4.2  Dimension data model 

The dimension data model shown above is a star-schema. It has a fact table named 

“Fact Internet Sales” connected to the related six dimensional tables .The fact table 

contained all the dimension tables’ surrogate keys which formed its composite key.   

Each dimension had a distinct primary key that uniquely identified the records per 

entity while others were snow-flaked to deeper levels generating new dimensions but 

maintained the foreign relationships. 

4.3.2.1 Issues found from the dimensions 

The following issues were observed and formed the variables to be measured in data 

modelling and analysis. 
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i. Redundant columns due to regional difference i.e. Education and Occupation 

were given for different regions i.e. English, Spanish and French. This 

reduced confidence levels of the column to be a candidate key. 

ii. Nullity Measure of columns – Some columns did not have data at all yet they 

occupied resources. 

iii. Column Confidence Levels – Measured columns for their capability to be 

Candidate Keys. This was shown by the distinctiveness of the columns. 

4.3.2.2 Individual Table examination in the developed scenario  

The tables from the data model were further examined to understand the indexing of 

columns in the table structure using the identified variables obtained above. Using 

SSIS each table data was extracted and attached to the SQL Server data source and 

then migrated to an Excel workbook target. The figure 4.2 was a snapshot of 

migrating Customer table using the tool. 
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Figure 4.3  Export of individual tables to the Excel Workbook 

4.3.2.3 Table structures Examination results 

The following were the findings of measuring the variables against each table to 

determine the priority of the columns used as main reference points of a full data 

load to the warehouse. Filtering of table columns in data staging process required the 

determination of their levels of nullity. The nullity factor was combined with 

removal of obsolete columns that were never used anymore at the target systems. 

The following query was used to collect null levels of columns for each table 

examined. 

SELECT COUNT(*) - COUNT(EndDate) Nulls, COUNT(EndDate) NonNulls 

FROM DimProduct 

Table 4.1 Customer Dimension 

Column Name T itle Suffix AddressLine2 CustomerKey CustomerAlte rnateKeyAddressLine1

NULL Columns 18383 18481 18172 0 0 5686

Distinct columns 101 3 312 18483 18483 7111

T ota l Rows 18484 18484 18484 18483 18483 12797

Nullity Percentage  % 99.4536 99.98377 98.31205367 0 0 44.43228882

Distinct Percentage  % 0.54642 0.01623 1.687946332 100 100 55.56771118

 CUST OMER T ABLE SUMMARY
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Figure 4.4 Customer Dimension Columns Analysis 

CustomerKey and CustomerAlternateKey qualified to be the candidate Keys for this 

dimension due to their high confidence levels and their distinctiveness as shown in 

figure 4.3. The table 4.1 had two unique keys in order to separate between the 

children relations associated with Customer’s dimension. 

Table 4.2 Geography Dimension 

Column Name GeographyKey City

NULL Columns 0 0

Distinct columns 655 562

T ota l Rows 655 655

Nullity Percentage  % 0 0

Distinct Percentage  % 100 85.80153

 GEOGRAPHY T ABLE SUMMARY
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Figure 4.5 Geography Dimension Columns Analysis 

GeographyKey and City columns were determined to be the candidate Keys for this 

dimension due to their high confidence levels and their distinctiveness as seen in 

figure 4.4. 

Table 4.3 Date Dimension 
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Figure 4.6 Date Dimension Columns Analysis 

DateKey and FullDateAlternateKey qualified to be the candidate Keys for this 

dimension due to their high confidence levels and their distinctiveness in comparison 

to the other columns as observed in figure 4.5. 

Table 4.4 Product Dimension 

Column Name ProductKey ProductAlte rnateKey ProductLineClass

NULL Columns 0 0 226 276

Distinct columns 606 606 4 4

T ota l Rows 606 606 606 606

Nullity Percentage  % 0 0 37.29373 45.54455446

Distinct Percentage  % 100 100 0.660066 0.660066007

 PRODUCT  T ABLE SUMMARY
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Figure 4.7 Product Dimension Columns Analysis 

ProductKey and ProductAlternateKey qualified to be the candidate Keys for this 

dimension due to their high confidence levels and their distinctiveness. For instance 

the degree of distinct column ProductKey was 100% as noted in figure 4.6. 

Table 4.5 ProductCategory Dimension 

Column Name ProductCategoryKey ProductCategoryAlte rnateKey

NULL Columns 0 0

Distinct columns 4 4

T ota l Rows 4 4

Nullity Percentage  % 0 0

Distinct Percentage  % 100 100

 PRODUCT CAT EGORY T ABLE SUMMARY
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Figure 4.8 Product Category Dimension Columns Analysis 

ProductCategoryKey and ProductCategoryAlternateKey qualified to be the candidate 

Keys for this dimension due to their high confidence levels and their distinctiveness 

as seen in figure 4.7. 

Table 4.6 ProductSubcategory Dimension 

Column Name ProductSubcategoryKey ProductSubcategoryAlte rnateKey

NULL Columns 0 0

Distinct columns 37 37

T ota l Rows 37 37

Nullity Percentage  % 0 0

Distinct Percentage  % 100 100

PRODUCT SUBCAT EGORY T ABLE SUMMARY
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Figure 4.9 Product Subcategory Dimension Columns Analysis 

ProductSubcategoryKey and ProductSubcategoryAlternateKey qualified to be the 

candidate Keys for this dimension due to their high confidence levels and their 

distinctiveness as seen in figure 4.8. 

Table 4.7 Internet Sales Fact 
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Figure 4.10 Internet Sales Dimension Columns Analysis 

The composite key for the above fact table was generated as a combination of all the 

foreign keys (Surrogate keys from related tables) together with the 

SalesOrderNumber column.  Each of the dimensions was represented in the fact 

based on the associative key as demonstrated in figure 4.9. 

4.3.2.4 Significance of table structure examination 

The main aim of examining the table structures of data sources was to understand the 

table designs with regard to uniqueness of data stored within the tables. The data 

selection during search within the tables was based on the primary keys set on each 

table. Since the user queries were dynamic, there was need for creation of procedures 

to collect the most vital data. This would be based on several factors that needed 

optimization namely; 

 Relevance of the data to transfer 

 Previous common  selections procedures 

 Actual data demands by presentation users 

 Maintaining integrity of the data association after selection and transfer. 
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The goal was to figure out if there was a predetermined sequence of data selections 

from the sources that could be noted after deeper analysis. It wanted to establish if 

there existed filtering mechanisms for certain data as inclined to the business 

processes of a sales environment and whether this sequence would build some 

intelligence to determine future selections. 

Based on the data content and selection queries obtained from the data warehouse 

users, the table columns confidence levels were noted to be deterministic in 

collection of data i.e. selecting only data that is needed and minimizing duplication 

of data at the data warehouses. 

There was need to maintain the entity relationships at the destination side to match 

those set in the data sources. The integrity of loaded data would be termed correct 

when their original relationship is also depicted and maintained at the target systems 

accordingly. This would help to mirror single systems available at the sources and 

the business users would not identify the difference at operational level. 

4.4  Demonstrate Data Staging within ETL Process 

The experiment was set-up and prepared using the SSIS tools. The graphical design 

involved adding data control flow diagrams that simulated the actual data flow from 

the sources to the destination. Further configurations were done in the backend where 

the new algorithm was implemented within the data control structures on every ETL 

stage with addition of execution scripts. The experiment diagrams are shown in 

figure 4.10, figure 4.11, figure 4.12 and figure 4.13. 
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Figure 4.11 Demonstration of all ETL phases in experiment simulation 

 

Figure 4.12 Demonstration of part of extraction process from experiment 
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Figure 4.13 Demonstration of part of staging process from experiment 

 

Figure 4.14 Demonstration of part of loading process from experiment 

4.4.1 Scenario setup 

The data sources used in the project were added and connection was created using 

the various installed connection managers such as SQL Server Native Client 10.0. 

The connection manager depended on the type of the data source e.g. OLE_DB 

Source used the Native OLE_DB SQL Provider. 

The data was cleaned to remove any “dirty data” such as repetition, duplicates and 

obsolete fields. More transformation tasks could be added in the scenario later such 

as sorting, merging, conversions, deriving new columns, e.t.c. In the simple setup the 

study added one transformation task for deriving new columns as illustrated in figure 

4.14. 
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Figure 4.15 Transform Task 

More data conversions could be done here to prune the output as per organization’s 

customization before it could to be moved to the data warehouse. The project setup 

was a Microsoft Visual Studio package that was executed to measure performance 

and efficiency variables.  Several scripts were included in the project to collect the 

variable changes over the number of times the tests were executed.    The tests 

carried out were based on the data staging tables’ approach where the extracted data 

from the sources was stored in staging tables. The study showed the change 

introduced when the Deterministic Prioritization approach was used in the setup.  

System properties 

The tests were carried based on AdventureWorksDW2008R2 database which was 

freely available for download from Microsoft website link 

http://msftdbprodsamples.codeplex.com/releases/view/59211 

The Computer system used had the following specifications shown in the figure 4.15. 
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Figure 4.16 System specifications 
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4.4.2 Situation before enhancement  

The test scenario environment utilized three databases to simulate the production 

environment to separate operations and tasks. The reason for this was that the data 

had dynamic state and to note its change at different times, one needed to store it in 

separate locations. This was keenly implemented in the ETL process. 

i. Source databases – From the AdventureWorksDW2008R2 database 

ii. Staging database - Had Raw and staged tables  

iii. Data warehousing database - For final loading and presentation purposes. 

Running the scenario 

When the setup project was run, the process execution order started with the 

Extraction stage and the components found within each stage ran concurrently before 

moving to the next stage as shown in figure 4.16 and figure 4.17.   

 

Figure 4.17 Scenario execution 
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Figure 4.18 Expanded view of Scenario execution 

A log file was created after complete ETL iteration when running the project since it 

had information on the variables to measure.   

4.4.3 Situation After enhancement 

Deterministic and Prioritization approach (DP) had been utilized throughout the ETL 

process as discussed below. The same setup used in the demonstration of before 

enhancement had been used to illustrate the improvements made when the new 

proposition was in place. 
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4.4.3.1 Deterministic and Prioritization Implementation 

The new algorithm that was described in chapter three was based on two concepts 

namely; Determinism and Prioritization. These key concepts were covered 

exclusively especially on their role to provide an amicable solution to the underlying 

problems noted within data staging area. 

Firstly, the term deterministic means the nature of retaining of state by a procedure 

when given the same inputs, it yields the same output with the exception of running 

cost. With regard to the analysed data, the key to data to be loaded to the data 

warehouses relied on data selections as per user needs. Occasionally, not all data 

from the sources was loaded to the warehouses depending on the nature of operations 

within the ETL processes that filtered out some data. All these activities either were 

controlled by the needs of business users at the destination systems or the 

customizations of available data staging frameworks under which filtering was done 

with a purpose. These limitations could only be visible after analysing the data 

sources structures as well as destinations systems structures. 

However, since the data flow was unidirectional from the data sources to target 

systems, the nature of transfer considered which data was transferred from one phase 

of ETL to the next. Reducing on the amount of data involved in these transactions 

would mean applying several functions to filter out data exclusively from the load 

capacity. Through data modelling the scanning of the table structures illustrated the 

data attributes with regards to the columns arrangement, importance (confidence 

levels), and their relation to within and without other relations. 

The external binding would later form the relational model of a database system. 

Although the physical aspects of the data as regards the diagrammatic representation 

shown from the experiment setups and configurations remained constant, the 

approach was deterministic in nature; same input gave same output results. The idea 

was to have a way of determining and deciding beforehand which columns of tables 

were to be used in creating the staging tables after extraction process. The knowledge 
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on table columns’ confidence levels and access levels was necessary to build some 

intelligence prior enough to the loading process hence determining what to migrate 

to the data warehouse. Since the filtering of data by columns was done specifically 

by organizations that had customized frameworks, the study extracted all the data 

from the sources as is and transferred it to the data staging area for further 

manipulations as per the new algorithm. 

Secondly, the term prioritization means evaluation of a group of items and ranking 

them in the order in urgency or importance. The most ranked data is said to be of 

high priority and the urge to transfer it to the data warehouse faster than the low 

priority data. To achieve this there needed to have mechanisms of informing the 

systems on how to handle the different levels during transfers. The prioritization 

algorithm affected the logical aspects enforced with respect to the business rules of 

an organization thereby maintaining the dimensional model. The data staging area 

was to be optimized to run its operations in a timely fashion and with ability to run 

multiple tasks at the same time, concurrency could be achieved. Upon knowing what 

kind of data needed to be loaded to the data warehouses through the staging area, 

priority was to be given to such data to speed-up its availability to the requesters on 

the target systems, while the low priority data followed suit. 

The general problem was how to separate the data based on priority at loading time 

considering the high number of query data requests and the growing number of rows 

per table. The algorithm established a way of changing the speed to query executions 

which was implemented by adding indices to specific columns of high priority. The 

query execution would therefore speedup based on the clustered indices added to the 

table under scrutiny. The power behind indexing as a solution to priority issue was 

the ability to manipulate the order in which SQL queries were handled during 

execution. 
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Prioritization by indexing specific columns 

Most often, the staging tables were generated through execution of SQL query 

commands, and this strategy implemented prioritization of the selection columns by 

using named clustered indexes. New distinct derived columns were added to each 

staging table and they were used to create indexes. The advantage of using these 

external columns generated only at runtime was that they did not affect the data from 

the source in any way ensure consistency and also the relationship of data from the 

sources was maintained. 

 

Figure 4.19 Clustered index 

The figure 4.18 demonstrates how prioritization was achieved for one of the tables 

named newStaging_Customer”. A clustered index was created and given a name 

“IX_newStaging_Customer”. The priority was set on the derived unique column 

named “STCustomerID” on that staging table named “newStaging_Customer”. 

Moreover, the created index is not limited to only one column as shown in figure 

4.18. It could include either new columns or existing columns. The newly defined 

index hinted the change in order of execution of the Data Definition Language 

(DDL) queries submitted to the query server. The resulting impact was to override 

the server’s query execution plan. 

A query execution plan has an ordered set of steps used to access data in a SQL 

relational database management system. The plan represents how data flows from 

child operators to parent operators in a form of tree structure. The query execution 

plan depends on the query optimizer. The query optimizer is a feature of database 
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server that attempts to determine the most efficient way of executing a given query. 

The query optimizer checks for the best plan before passing the query to the query 

executor that gives the results after firing.  Before adding the clustered index to the 

table, the order of query execution is controlled by the Primary key which is a unique 

identifier added upon table creation. After adding the clustered index to the table, the 

query optimizer suggests a better and efficient plan for query execution over the 

original plan of using the primary key. Prioritization by distinct columns enhanced 

the efficiency and performance of the query execution plan on the server during 

query search by adding hints. This resulted in optimized selection costs yet 

maintaining the quality of data to the data warehouse.  The optimal measure of 

change by use of hints to prioritize data columns in the selection query was 

demonstrated as in figure 4.19. 

 



75 

 

Figure 4.20 Optimized Query Execution plan 

STCustomerID was the newly derived column while CustomerKey was the Primary 

Key for the table. The index was created on the derived column to show the 

difference with the primary key column. 

 

Figure 4.21 Demonstration with new clustered index 
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Figure 4.22 Demonstration with previous primary key 
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The figures 4.19 through figure 4.21 illustrate the contrast on selection queries on 

tables with clustered indexes and without. The focus is on the Estimated Operation 

Cost. This shows the percentage cost taken by the operator in this case it is the 

SELECT operation. This is also associated with the resource I/O and CPU 

availability. It helps to determine if the query is I/O or CPU-intensive. 

The graphical demonstration of the Actual execution plan indicates that the 

Operation cost when the tables make use of clustered indexes to prioritize data 

selections is lower than without hence the use of this concept in prioritization 

algorithm. 

Test results using the scenario in SSIS tool 

The situation before enhancing was simulated and yielded the following results that 

were recorded when the scenario was run for fifteen times recursively. The reason 

for running the tests for multiple times was to see whether the results of each test 

were consistent in order to draw a conclusion on the performance of the new 

algorithm. Another reason was that the experiment depended on measured variables 

to draw conclusion. The change in values to these variables depended on the 

resources available for the system on which the experiment was done. I real-life 

situations some resources would be free at different times and hence the need to 

observe the change in performance at different times after runs. The comparison of 

the results was separated into two scenarios i.e. the situation before enhancement and 

the new situation after enhancement. 
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Comparing all stages of ETL processes before and after enhancement 

The figure 4.22 is a line graph illustrating the performance levels for all ETL 

processes combined showing situation before and after enhancement. 
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Figure 4.23 Compare all ETL processes 

The figure 4.23 was an illustration of the current situation after enhancement for all 

stages of the ETL process.  

 

Figure 4.24 After enhancement ETL processes 

Comparing Individual stages of previous and current situations in ETL 

processes 

The following was an illustration of the individual comparison per stage of the ETL 

process to have a clear view of the improvement performed.  Explanation for each 

comparison followed for every illustration. The negative sign indicated that it was in 

the reducing direction thus showing the enhancement had taken place by reducing 

time taken in execution of a task. 
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Figure 4.25 Extraction phase 

The time taken for extraction using deterministic prioritization algorithm had 

reduced by 3.04% compared to the previous extraction time as shown in figure 4.24. 
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Figure 4.26 Staging phase 

The time taken in staging area using deterministic prioritization algorithm had 

reduced by 2.66% compared to the previous extraction time as shown in figure 4.25. 
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Figure 4.27 Loading phase 

The time taken in loading using deterministic prioritization algorithm had immensely 

reduced by 93.44% compared to the previous loading time as shown in figure 4.26. 

This was attributed to the fact that the number of operations that took place at this 

stage being minimal and less traffic to the destination targets for the data which were 

the data warehouses. However, with increased traffic of data especially over the 

network, the loading time percentage might reduce further. 
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4.5 DISCUSSION 

The implementation of the new algorithm of deterministic prioritization showed 

massive improvement in terms of performance and data quality selections. According 

to the conceptual framework, the set of procedures outlined the operation of the 

proposed solution which indicated the different roles carried out within ETL 

processes. This was advantageous because the complexity of designing new staging 

frameworks in future was abstracted from the general users of data warehouses. The 

solution called upon the optimization of the order of query execution by changing the 

default order of execution that was based on unique identifiers generated at table 

creation. With massive data requests coming from the business users through query 

commands executions, the query optimizer became inefficient. The requirement of 

having data warehouses that were business intelligent, created the roadmap of 

generating an algorithm that would be cost efficient and add to the existing 

knowledgebase. The aim was to find the best procedures of collecting the data from 

the source systems, and performing operations that would optimally load the selected 

data to the data warehouses. The proposed solution compared relatively to the 

research by Costel, Marius, Valentina, and Octavian (2014) on the query execution 

and optimizations in the MSSQL server. They found out that missing indexes in a 

table resulted in low performing query executions. 

With the introduction of clustered indexes, the study was changing the default order 

of SQL query server’s execution plan. This manipulated on the execution plan 

resulting in better and guaranteed performance as long as data was always readily 

available for loading in good time. Cecilia and Mihai (2011) agreed to this proposed 

solution because they indicated that the use of indexes on database queries improved 

the performance of the whole system. Most of the highlighted processes were sought 

to be repetitive and were being activated when new data was realized and was ready 

to be loaded to the data warehouses. The run of the algorithm impacted positively the 

results obtained after running the tests. It was possible to measure the performance of 

the algorithm from different stages of ETL processes and compare the performance 
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with previous existing systems. In particular, there was research that had been done 

by El-Wessimy, Mokhtar, and Hegazy (2013) with tests on scheduling algorithms. 

They tested several techniques to measure time taken throughout the ETL processes. 

The observation noted from their research work was that there was reduction in time 

taken to transfer data in each stage. This compared greatly with the study results on 

enhancing data handling yielding fast accesses. 

The results were demonstrated per every stage and they indicated reduction in the 

execution times. Within the extraction phase, the results showed an impressive gain 

of 3.04%. There was more room for improvement on the extraction time if the 

collection of data was pre-determined and repetitive in every cycle. This would mean 

reduced procedures of determining which data to collect every time the cycle was 

performed. The limitation of the test carried in this section was collecting all the data 

from the source tables so as to maintain integrity of data. The time taken for data 

manipulation in the staging area reduced by a rate of 2.66%. Considering that the 

staging area being the working space during data transformation, many operations 

were involved. The scheduling plans allowed the delivery of data immediately it was 

staged in the staging tables unlike before where it was put in a queue awaiting batch 

processing. The declining implementation of batch processing within job execution 

made the study to dwell in parallelism mode of execution which was supported by an 

object oriented programming language and ended to be fast. 

Finally, the availing of data to the data warehouses and data marts depended on the 

sequence at which staging was performed. The faster the staging the faster was 

loading process. Moreover, the loading phase had minimal tasks to perform and this 

was clear in the results of the study that showed execution time reduction of up to 

93.44%. Depending on the architecture and setup of the data warehousing 

environment, the values of the results performed would change. With proper 

configurations the impact of implementing the algorithm would match the suggested 

results or exceed further. With tests on higher performing hardware, the results 

would be even more impressive. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

Data staging area is part of the data warehouse techniques of improving data 

handling when migrating it to the data warehouses. The previous researches as 

reviewed in existing literature had partly covered on the enhancing data staging to 

realize fast working data warehouses. Most authors focussed on the general data flow 

targeting quality assurance with few discussing the speed and performance of data 

staging area. Many advances in hardware have created a pool of resources available 

to meet current data needs but with the rate at which the data sizes continue to grow, 

these resources may not be enough to guarantee performance stability in future. In 

most cases due to incompatible legacy systems, it definitely ends up being 

compromised. The proposition to enhance data staging was to provide a lee way for 

future developments in this area that could scale well to new technologies without a 

complete overhaul of the improvements suggested in this study. The aim was to have 

the deterministic prioritization algorithm deployed in a production environment to 

improve on the data handling performance especially on access and retrieval. The 

benefits were observed mostly in large data sets where retrieval had for long been a 

bottleneck characterized by network jamming and slow data flow resulting to almost 

deadlocked systems. 

The problem emanated in the existing systems at the data selection point with regard 

to incremental loading situations. After the initial full data load, the consequent ETL 

processes were done as increments of the full load. To distinguish the changed data 

in time, several methods that were used relied on checking the timestamp at which 

the change occurred and storing this data in the database for consideration in future 

loads. The new systems, took the advantages of the deterministic prioritization 

algorithm to provide advancements by prioritizing only the changed data. It became 

more specialized in operation since the recursive clustered index ran comparison on 
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the previous loads before determining the next data loads. This became a merit in the 

study by saving computation time and resources especially in fast growing data. 

Other than the enhancement that was introduced, it was suggested that continuous 

monitoring of the database servers be performed regularly so as to identify the trend 

of data growth. The technological improvements proved within the ETL phases 

suggested an overall change in the field of data warehouses. The reason for this was 

that it would be important to compare the impact on performance for the proposed 

and tested solution over older and newer distributed database systems. One of the 

roles of this study was to provide a guideline to the data warehouse and business 

intelligence experts during the design of a staging location within the ETL processes. 

This purpose was achieved based on positive experimental results analysed in the 

previous chapter. It highlighted the necessities of pre-determining the expected data 

loads, ways of prioritizing them and optimizing the query execution plans. The key 

skills needed were on creation of the clustered indexes and ability to interpret the 

output generated from the query executions plans. 

El-Wessimy, Mokhtar, and Hegazy (2013) indicated that one of the old algorithms 

being in use in data staging was First In First Out strategy (FIFO). It collected data 

from the sources as soon it was ready and transferred it to the destination. There was 

no business intelligence added thus the initial copy was similar to the one at the 

destination systems. For data to be of great use in the decision making at the data 

marts, some processing was required where filtering unwanted data helped reduce 

bandwidth use in transfers. The enhancement came in handy in implementing the 

business intelligence required for a simple test setup that was ready for the 

production environment. 

This was supported by the fact that a small change in data staging had massive 

change in the loading phase and the ETL process as a whole. The stages correlated 

well in the configurations; therefore, there was no biasness since the different parts 

were not examined separately. 
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5.2 Summary 

This research work was started to face a real-life problem that existed in most of 

organizations whose daily transactions were enormous resulting in large volumes of 

data. Based on the available resources at these organizations, it became a bottleneck 

to handle the fast growing data hence the need to invest more time in this research 

with an aim of solving the mentioned problem. The solution provided was based on a 

completely new idea that led to the development of the deterministic prioritization 

algorithm, which was an addition to the body of knowledge (BOK). The main 

challenge encountered in the research was selecting the best performing algorithms 

that would solve the problems identified at the research site. The study was to viewed 

in two perspectives where it considered what data to collect and how to speed-up the 

process of loading the chosen data. Coming up with a direct solution was difficult 

and could result in a complex algorithm whose performance could not be measured 

or tested easily. This resulted in having a solution in two sections; where one section 

covered on determining the data to collect while the other was concerned on ways of 

achieving higher priority to the chosen data. 

Once the newly developed algorithm was put to test, the previous hurdles were 

reduced immensely because clarity in the order of operation within the ETL phases 

was brought out openly through the algorithm procedures. The simplicity of the 

solution indicated that the solution could be utilized with ease by experts of data 

warehouse environment to aid in improving the performance of data access. 

The ETL implementation procedures when performing data loads varied a lot 

depending on the instance of load. For the very first time this was ran, a full load was 

expected because it involved setting up the systems from scratch and also the target 

system had no structures to hold new data loaded. The tables were created for the 

first time and this took more time to implement when the data records spanned 

several thousands of rows. This was not an exception for any new system since it had 

to undergo through this activity. 
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In the subsequent runs also referred to as incremental loading, only the modified or 

changed data in the sources were transferred to the data warehouse. With reference to 

the performance of the new deterministic prioritization algorithm, the search criteria 

were highly improved such that changed data was easily fetched and loaded to data 

warehouses improving the overall system performance. 

5.3 Conclusions 

The data access and retrieval to the data warehouse was immensely improved as 

shown from the statistics of the tests carried out in this study. Every stage of the ETL 

process showed some considerable change in particular the data retrieval, processing 

and loading stages. The deterministic prioritization algorithm selected the 

appropriate data as per the business logic of organizations which valued data to be of 

high value and priority in their daily transactions and existence. The new data was 

synchronized with the already existing data depending on what was modified since 

the last ETL process run. It was noted that this was a deterministic approach where 

once the configurations were done on the various stages, the execution of extraction, 

transformation and loading ended up to be cyclic in nature. This mode of operation 

continued depending on two factors namely; the operation time of the data 

warehouse without shutdown and the availability of data to load to the data 

warehouses. 

In cases where there was vast data to process and transfer to the data warehouses, 

deterministic prioritization algorithm prioritized on the loading process. This was 

achieved by manipulating on the order of query executions, thereby reordering the 

flow of data to the data warehouses. The created priorities formed change of 

schedule for data load. The implementation of the new solution did not add more 

processing space or utilize batch job processing but rather optimized the SQL query 

executions. 

Since the operations within the extraction and transformation phases of ETL were 

very explicit depending on the logic behind data selections, more than one operation 
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were intertwined together to support multitasking. The data was subjected to various 

functions at the same time resulting in concurrent operations during the test of the 

algorithm. The performance of the algorithm were depicted based n the statistics 

collected for the affected variables of execution time. The data delivery from one 

stage to another ended up to be in real time. 

All in all the results obtained from the experimental test runs were positive and 

clearly showed that with implementation of the deterministic prioritization algorithm, 

there was guaranteed enhancement in the data staging area and ETL processes in 

general. Improving the staging of data in the data warehouse was a progressive 

process that couldn’t be concluded in one day. Several considerations had to be made 

with respect to the other bounding processes in the ETL anatomy so as to maintain 

data consistency and high quality data availed to the users. 

5.4 Recommendations 

With regard to the findings of this research it is highly recommended to have the 

implementation of deterministic prioritization algorithm in existing and new data 

staging frameworks at architectural level. The impact has been seen to enhance the 

data retrieval and access from the sources all the way to the destinations. It will assist 

in building business intelligent warehouses where it is possible to pre-determine 

which data need to be loaded to the data warehouse or data marts based on the 

available columns and allocating priority indexes to those columns. 

The new deterministic prioritization algorithm is flexible to implement in the current 

ETL and data staging frameworks for those organizations that have customized data 

warehouse configurations. This has been contributed to the fact that the solution only 

touches on the backend where the data fetching processes exist. The abstraction of 

the strategy has reduced complexity of the interlocking relationships among tables 

and this has enabled compatibility to any data formats. All the data from 

organizations can now be matched after conversion using the Electronic Data 

Interchange (EDI) tools. The conversion is determined by the source and target 
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systems. They can easily be incorporated in the data warehouse system. The 

knowledge base required for ETL processes is limited by the availability of resources 

and the users’ training. 

The common behavior of data warehouse practitioners is to periodically extract data 

from the transaction applications e.g. OLTP and storing it in dedicated servers that 

have batch programs to transfer to destination servers then to data warehouse. This 

operation is overkill since the extraction of data from the dedicated servers could 

have been the base of selecting the important data to load. This could reduce 

redundancies with a big margin. The enhancement algorithm was implemented using 

the syntax of visual studio C# programming to complement the semantics of data 

staging in transformation level. The experiment setup was on a localhost workstation 

that played as a client and server. Implementing the deterministic prioritization 

algorithms in an expansive networking environment e.g. cloud computing and in 

relation to SAP HANA databases is a possible investigation for future work. 
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