
ENHANCING DATA STAGING AS A

MECHANISM FOR FAST DATA ACCESS

REAGAN MURIITHI GATIMU

MASTER OF SCIENCE

(Computer Systems)

JOMO KENYATTA UNIVERSITY OF

AGRICULTURE TECHNOLOGY

2016

Enhancing data staging as a mechanism for fast data access

Reagan Muriithi Gatimu

A thesis submitted in partial fulfillment for degree of Master

of Science in Computer Systems in Jomo Kenyatta University

of Agriculture Technology

2016

ii

DECLARATION

This thesis is my original work and has not been presented for award of a degree in

any other University.

Signature………………………..................Date………………………………..

Gatimu Reagan Muriithi

This thesis has been submitted for examination with our approval as University

supervisors.

Signature………………………..................Date………………………………..

Dr. Michael Kimwele, PhD

JKUAT, Kenya

Signature………………………..................Date………………………………..

Dr. Wilson Cheruiyot, PhD

JKUAT, Kenya

iii

DEDICATION

Firstly, I take this opportunity to thank the Almighty God, for giving me the strength

and good health to carry out this research study to completion.

Secondly, I offer my regards and blessings to my lovely wife Sophia and son Raul

for being patient at all times when I was very busy with research. Raul, your cries at

night were timely because they woke me up to continue with data analysis.

Finally, my caring parents and siblings, thank you for supporting me in all aspects

towards the completion of this course. Your encouragement and financial support

benefited me a lot and may God bless you abundantly.

iv

ACKNOWLEDGEMENT

I am very grateful to my supervisors, Dr. Michael Kimwele, PhD and Dr. Wilson

Cheruiyot, PhD for their constant guidance and support from the beginning to the

end. Thank you a lot for accepting to be my supervisors and you mentored me well

throughout the study. You were there to respond to all my requests in a timely

fashion and I admired the way you handled my queries.

To Mombasa CBD campus, special thanks for allowing me to pursue the course there

by providing support from the teaching and administrative staff.

To my employer, CP CIM-POOL AG, thank you for granting me the study leaves

that enabled me to give the research full attention. You also allowed me to use the

company’s resources for research. This was a great motivation and it helped me to

tackle the core problem with utmost professionalism.

v

TABLE OF CONTENTS

DECLARATION .. ii

DEDICATION ... iii

ACKNOWLEDGEMENT .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS AND ACRONYMS .. xi

DEFINITION OF TERMS .. xii

ABSTRACT ... xiii

CHAPTER ONE .. 1

INTRODUCTION .. 1

1.1 Background ... 1

1.2 Statement of the problem .. 4

1.3 Objectives .. 5

1.3.1 Broad Objective ... 5

1.3.2 Specific Objectives .. 5

1.4 Research Questions ... 6

1.5 Justification ... 6

1.6 Scope of study ... 7

CHAPTER TWO ... 7

LITERATURE REVIEW .. 8

2.1 Introduction ... 8

2.2 Related Work ... 8

2.3 ETL phases of a data warehouse ... 12

2.3.1 Extraction Phase .. 12

2.3.2 Transformation Phase .. 14

2.3.2.1 Data staging area ... 16

2.3.3 Loading Phase .. 18

2.3.3.1 Metadata .. 24

vi

2.3.4 Query Processing and optimizations.. 25

2.3.4.1 Query Hints ... 27

2.3.4.2 Stored execution plans ... 27

2.4 Summary of Literature .. 27

2.5 Gaps in knowledge .. 28

2.6 Conceptual Framework ... 28

2.7 Broad to specific literature .. 30

2.8 Included Improvements ... 31

CHAPTER THREE ... 33

METHODOLOGY ... 33

3.1 Introduction ... 33

3.2 Dependent and independent variables ... 33

3.3 Rationale of the research design .. 36

3.4 Feasibility study .. 37

3.5 Research Site ... 37

3.6 Population Sampling Procedure .. 38

3.7 Sampling .. 39

3.7.1 Sample size calculation .. 39

3.8 Rationale for sample and size selected .. 40

3.9 Data collection ... 41

3.9.1 Data collection tools and instruments .. 41

3.9.2 Pretesting of the study instruments .. 42

3.9.3 Data collection procedures... 42

3.9.4 Data Analysis ... 43

3.9.5 Statistical tools used... 43

3.10 Data presentation techniques ... 43

CHAPTER FOUR .. 44

RESEARCH FINDINGS AND DISCUSSION .. 44

4.1 Introduction ... 44

4.2 Development of Deterministic Prioritization Algorithm 44

4.2.1 Deterministic Prioritization Algorithm Definition 44

vii

4.2.2 Deterministic Prioritization Algorithm Design.. 45

4.2.3 Deterministic Prioritization Algorithm validation 49

4.2.4 Priori Analysis of the algorithm... 51

4.2.5 Posterior Analysis of the algorithm ... 52

4.3 Statistical Analysis of Raw Data used in the study 52

4.3.1 Source of Data used in the study ... 52

4.3.2 First Scenario ... 53

4.3.2.1 Issues found from the dimensions ... 54

4.3.2.2 Individual Table examination in the developed scenario 55

4.3.2.3 Table structures Examination results .. 56

4.3.2.4 Significance of table structure examination .. 63

4.4 Demonstrate Data Staging within ETL Process .. 64

4.4.1 Scenario setup .. 66

4.4.2 Situation before enhancement .. 69

4.4.3 Situation After enhancement ... 70

4.4.3.1 Deterministic and Prioritization Implementation .. 71

4.5 DISCUSSION ... 83

CHAPTER FIVE .. 85

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 85

5.1 Introduction ... 85

5.2 Summary ... 87

5.3 Conclusions ... 88

5.4 Recommendations ... 89

REFERENCES ... 91

viii

LIST OF TABLES

Table 4.1 Customer Dimension ... 56

Table 4.2 Geography Dimension... 57

Table 4.3 Date Dimension ... 58

Table 4.4 Product Dimension .. 59

Table 4.5 ProductCategory Dimension ... 60

Table 4.6 ProductSubcategory Dimension .. 61

Table 4.7 Internet Sales Fact ... 62

ix

LIST OF FIGURES

Figure 2.1 Basic elements of the data warehouse Ralph and Margy (2002). 9

Figure 2.2 Data Warehousing Structure Ranjit and Kawaljeet (2010). 11

Figure 2.3 SAP NetWeaver server SAP SE (2012) ... 14

Figure 2.4 First Data staging Scenario Kimball,, and Thornthwaite. (2008). ... 17

Figure 2.5 Second Data Staging Scenario Kimball, and Thornthwaite (2008). 18

Figure 2.6 Phases of Query Processing, Connolly and Begg (2005) 26

Figure 2.7 Proposed Conceptual frameworks .. 30

Figure 3.1 Relationship between dependent and independent variables 34

Figure 4.1 Database statistics for the Index on newStaging_Customer.............. 50

Figure 4.2 Dimension data model .. 54

Figure 4.3 Export of individual tables to the Excel Workbook 56

Figure 4.4 Customer Dimension Columns Analysis ... 57

Figure 4.5 Geography Dimension Columns Analysis ... 58

Figure 4.6 Date Dimension Columns Analysis .. 59

Figure 4.7 Product Dimension Columns Analysis .. 60

Figure 4.8 Product Category Dimension Columns Analysis 61

Figure 4.9 Product Subcategory Dimension Columns Analysis 62

Figure 4.10 Internet Sales Dimension Columns Analysis 63

Figure 4.11 Demonstration of all ETL phases in experiment simulation 65

Figure 4.12 Demonstration of part of extraction process from experiment 65

Figure 4.13 Demonstration of part of staging process from experiment 66

Figure 4.14 Demonstration of part of loading process from experiment 66

x

Figure 4.15 Transform Task .. 67

Figure 4.16 System specifications ... 68

Figure 4.17 Scenario execution ... 69

Figure 4.18 Expanded view of Scenario execution ... 70

Figure 4.19 Clustered index... 73

Figure 4.20 Optimized Query Execution plan ... 75

Figure 4.21 Demonstration with new clustered index ... 75

Figure 4.22 Demonstration with previous primary key 76

Figure 4.23 Compare all ETL processes ... 79

Figure 4.24 After enhancement ETL processes... 79

Figure 4.25 Extraction phase ... 80

Figure 4.26 Staging phase ... 81

Figure 4.27 Loading phase .. 82

xi

LIST OF ABBREVIATIONS AND ACRONYMS

DSA Data Staging Area

DTR Data Transfer Request

DW Data Warehouse

ETL Extract Transform Load

ERP Enterprise Resource Planning

FIFO First In First Out

ISO International Organization for Standardization

HANA High-Performance Analytic Appliance

OLAP Online Analytical Processing

OLTP Online Transaction Processing

SAP Systems Applications Products

SQL Structured Query Language

UDF User Defined Functions

EDI Electronic Data Interchange

xii

DEFINITION OF TERMS

Data Staging Special feature of data warehouse for handling data from ETL

Data mart A subset of the data warehouse that is usually oriented to a

specific business line

Extraction Retrieving of data in whichever format from sources

Source system Support system where data is retrieved from

Target system Destination system for the ready data

Transformation Change of data state by subjecting to functions, procedures or

algorithms

Loading Transfer of the ready data to the data warehouse or mart

xiii

ABSTRACT

Most organizations rely on data that is generated after performing their daily

transactions and operations. This data is retrieved from different source systems in a

distributed network hence it comes in varying data types and formats. The source

data is prepared and cleaned by subjecting it to algorithms and functions before

transferring it to the target systems which takes more time. Moreover, there is

pressure from data users within the data warehouse for data to be availed quickly for

them to make appropriate decisions and forecasts. There has been a lot of delay in

data delivery to the business users due to immense data explosion emanating from

millions of transactions running concurrently. The current legacy systems cannot

handle large data levels due to processing capabilities and customizations. The

performance degradation has raised concerns since organizations invest a lot of

resources to establish functioning data warehouses. Data staging, a technological

innovation within data warehouses is targeted since most data manipulations are

carried out here. It determines which data is to be integrated, harmonized by the

staging functions, cleansed, verified, and archived for future use. The population

selected to carry out the study was chosen amongst large organizational databases

available online for research purposes. The stratified random sampling method was

used to determine the sample frame for study. Several tools including Ms Excel, SQL

Server Analysis and Integration Services were vital during data analysis and

experimentation. The deterministic prioritization algorithm was developed and tested

with a focus on data staging performance and efficiency. The proposed solution

highlights the necessities of pre-determining the expected data loads and ways of

prioritizing them and optimizing the execution plans. The experiment test runs for

the different scenarios demonstrated in the study shows that data staging processing

time improved by 2.66% and consequently the loading process time improved by

93.44%. Therefore, a recommendation to data warehouse practitioners and business

intelligence designers was put forward to implement the Deterministic Prioritization

algorithm providing enhancement for future design of Extraction, Transformation

and Loading processes in data warehouse development.

1

CHAPTER ONE

INTRODUCTION

1.1 Background

The growing number of business transactions in any enterprise is directly

proportional to growth of data size. This data comes from variant source systems and

applications and needs to be organized in a workable state so that it remains relevant

and meaningful to the users. Technological development has led to the rise of Data

Warehouse (DW). Inmon (2002) defined a data warehouse as “collection of

integrated, subject-oriented databases designated to support the decision making

process”. Both Kimball and Inmon (2002) agreed that a DW had to be integrated,

subject-oriented, nonvolatile and time variant. This concept of time-variant was so

crucial and ultimate concern and set the basis for this research. The foundations of a

DW as explained by Zineb, Esteban, Jose-Norberto, and Juan (2011) encompassed

integration of multiple different data sources. This allowed the provision of complete

and correct view of the enterprise operational data which was synthesized into a set

of strategic indicators and measures that the users of the data could associate with.

DW has business intelligence implemented in three major processes used to prepare

data to match user’s needs. They are commonly referred to as ETL processes which

are Extraction, Transformation and Loading. Extraction process retrieves data as is

from source systems before subjecting it to any manipulations. Transformation

process also referred to as transportation phase is the operational base and the most

intriguing of all. Business rules and functions are some of the operations applied to

the extracted data. Loading process involves moving the desired data as determined

by the users to the DW. It’s important to note that, the flow of data from the sources

to the destination is not as simple and smooth as it sounds. There results in impeding

system performance observed across all the ETL processes raising more bottlenecks

to data movement in data warehousing environment.

2

El-Wessimy, Mokhtar, and Hegazy (2013) showed the relevance of DW in decision

making in today’s environment. “The best decisions are made when all the relevant

data is taken into consideration. Today, the biggest challenge in any organization is

to achieve better performance with least cost, and to make better decisions than

competitors. That is why data warehouses are widely used within the largest and

most complex businesses in the world.”

Problems in ETL that call for use of Data staging

According to Javlin (2015), Data Staging means that the data is simply dumped to

the location (called the Staging Area) so that it can then be read by the next

processing phase. This is important if the transformation step fails, it should not be

necessary to restart the Extract step. We can ensure this by implementing proper

staging. IBM (2016) explains that data stage is keeping data before the job begins

execution and the data is moved back to archives when a job has finished execution.

The Data Staging Area is temporary location where data from source systems is

copied. Rogers (2010) discussed that a staging area is mainly required in a Data

warehousing architecture for timing reasons. All required data must be available

before data can be integrated into the Data Warehouse. According to Russom (2012)

explained that data staging areas evolved from temporary storage platforms to pre-

and post-processing platforms, they typically moved out of the data warehouse

proper (where they were simply a few tables where data landed) and onto standalone

database instances. Data staging emerged as a new technological development with

an attempt to handle issues regarding low performance on data loads to the

warehouses. Kimball and Ross (2002) stated that data staging was available in the

extraction and transformation phases of ETL framework. In some legacy systems,

data stage existed as a location that interconnected Online Transaction Processing

Systems (OLTPs) to the Online Analytical Processing Systems (OLAPs). Although

data staging was not a completely new technology since it had been researched

before, the focus had been shifted to designs and development of data staging

frameworks. Little attention had been given to its operability and its significant role

3

in speeding the ETL process. It was a vital location on the basis that it linked the

source systems (environment) to the target systems. The concern that arose was

whether to deal with data staging as a process in ETL or the developed frameworks

which were customarily available at the moment. Due to the vast amount of time and

energy used in development of a framework the research did not dwell much on this

but focused on enhancing the available frameworks with the realization of

performance improvement.

In most of the developed systems for example Ascential DataStage and InfoSource

from SAP AG (2002), usability was key and ideal for its simplicity of use. The data

staging area was a technical layer where only the experts had capability to

understand the processes. With this regard, the novice users at the presentation layer

were abstracted from the many operations taking place inside. Eventually, the readily

transformed data was moved to the DW for use and further categorized in the data

marts repositories. This was referred to as the loading process. It depended on the

laid down network infrastructure according to the designed distributed database

system. The presentation systems and applications that linked to the business users

could readily and easily access the data from DW and data marts for report

generation, analysis and audit confirmations.

Aksoy, Franklin, and Zdonik (2001) explained that in large and busy organizations

deployed in the production environments, the number of transactions was quite high

as a result of many applications generating different kinds of data. There arose a

performance problem where data flow speed reduced immensely. Another hurdle

came in since there were no proper selection algorithms to pre-determine what

category of data was clean for transfer to the data warehouse. El-Wessimy, Mokhtar,

and Hegazy (2013) noted that all the data from the source systems was forwarded to

the data warehouses without checking the relevance to the user decisions. To

overcome the cited problems, a solution that would prioritize cleaned and verified

data ready for loading would be a great move towards enriching data warehousing

technologies.

4

Data staging remains without doubt a debated topic because of the conventional

approach to data integration where extraction of all data from the source systems is

done and later on the entire set is integrated again. This demonstrates a waste of CPU

time since it involves handling all the data every time transformation is carried out.

This approach is inefficient because the data delivered is not processed in real time

due to the delay in the integration process. Kimball, Reeves, Ross, and Thornthwaite.

(2008) found out that on the other hand, existing solutions put across are based on

filtering records according to a timestamp column or flag that shows the changed

data. These solutions are not productive and they require modifications in the

applications from which they have been deployed.

1.2 Statement of the problem

Manipulating and loading large volumes of data concurrently is a time and resource

consuming task. Data being manipulated by a certain process might be needed by

another process to continue its task forming a cycle referred to as resource deadlock.

The implication would be intense and could bring the system to a halt. Data growth

in a company is a progressive trend which requires advance mechanisms to handle

the vast amounts of data either on First In First Out strategy or concurrent

processing. Lack of well designed process interrupts, scheduling plans and

algorithms causes the systems to fall into unnecessary deadlocks. This makes data

integration from the various source systems difficult thus increasing overhead that

may result from the large number of individual queries being executed in data

retrieval. These individual query procedures cannot predict the business users’

dynamic needs, to match their demands then a lot of comparisons have to be done for

the data that is already retrieved. This normally takes a lot of CPU running time

hence impacting negatively on the performance of ETL processes. The core systems

should adapt to change and restoring the operation space without its dependants

noticing these changes. Fixing the noted problems in current systems requires

dwelling deeper into the ETL framework development because they exist due to poor

5

designs at the initial stages. This has to be applied at the application level where the

ERL processes are carry out their different operations.

1.3 Objectives

The study was guided by the following objectives that were categorized as broad and

specific objectives. Although quality had been had been given precedence in

previous research works, the study aimed to balance between performance and

quality in the resulting data presented to the data warehouses.

1.3.1 Broad Objective

To improve the speed of accessing, retrieving and processing data integrated from

various source systems, transferred and synchronized with specific target systems.

The improvement was to bring change on the performance of ETL processes in data

warehouses when handling voluminous and bulky data.

1.3.2 Specific Objectives

1. To generate and implement prioritization algorithms for selecting appropriate

data for collection from source systems.

2. To create scheduling plans for operations within the Transformation phase

and optimize data load instead of using batch transfers or increasing

processing space.

3. To streamline and integrate data processing strategies to achieve concurrent

operation through parallelism of jobs with an aim of providing real time data

processing.

4. To provide a scalable solution that would be easily integrated in new and

existing data staging frameworks without the need to change development

design and architecture.

5. To find out the performance change by testing the developed algorithm that

proposes a solution to the performance issues within data warehousing

environment.

6

1.4 Research Questions

1. How would prioritization algorithms change the data selection and collection

from the sources?

2. What impact would scheduling plans have on the order of executing jobs in a

staging area?

3. What is the business value after ensuring parallelism in concurrent data

processing?

4. How would the solution integrate with existing and new systems highlighting

incompatibility issues that may arise?

5. What support does the proposed solution provide in the growth of data

staging technologies in future?

1.5 Justification

One of the greatest requirements for most any new systems is the ability to be very

responsive, accurate and up to date for the business users to enjoy high performance.

This should be maintained despite the significant delays introduced due to the nature

of operations at the backend. The growth of information technology field saw new

technologies such as cloud computing, virtual networks and new-age distributed

systems emerge.

There was great push from the data warehousing community to implicate these speed

improvements so that the real-timeliness of a system could be replicated across the

board. In the previous systems, data was copied directly from the source

transactional systems to the target systems to reduce the workload. This resulted in a

lot of ambiguous and repetitive data which was rendered unusable. Data staging

could leverage benefits from meta-data, additional data about data which was carried

with the moved data.

7

1.6 Scope of study

The study revolved around the DW environment targeting the business processes

involved in the flow of organizational data from source to destination. The

complexity of the procedures depended on the phase under investigation in the ETL

process. The research majorly targeted data from large business enterprises whose

database organization supported real time data processing with constant data changes

and modifications. Inclusively, data from companies that had already established

DW environments were considered. The skill base in the research work targeted

users with technical knowledge on flow business processes and logic.

8

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter the focus is on familiarizing with the field of study by investigating on

research work that had been carried around this area by different researchers. It is

vital to give credit to the authors for their work and their contribution to efficient and

effective systems. Kimball and Ross (2002) said that data warehouse managers

should ensure the right data is published depending on the type of business involved.

A view of data warehouse environment in terms of location yielded four major

regions namely; operational source systems, data staging area, data presentation area,

and data access tools. There was an assumption that data fetching from the source

systems was carried differently from the way data warehouses were queried for

results. The source systems maintained little historical data to the greater advantage

that relieved it the responsibility for keeping track of old data. The user queries fired

against the source systems were minimal and procedural i.e. one query at a time

hence the data flow was severely restricted to the demands of user requests for data.

2.2 Related Work

Kimball and Ross (2002) suggested that the key architectural requirement for the

data staging area was that, it was off-limits to business users and did not provide

query and presentation services. Data staging was an essential part of ETL phases

and was considered to be the most crucial stage of data warehousing where

maximum responsibility of data quality efforts resided. Ralph and Margy (2002)

demonstrated the data staging area within a DW using an illustration in figure 2.1.

9

Figure 2.1 Basic elements of the data warehouse Ralph and Margy (2002).

Kimball and Margy (2002) noted that when staging dimension tables, they often

handed a complete copy of the latest, greatest source data. “It would be wonderful if

only the changes since the last extract, or deltas, were delivered to the staging area,

but more typically, the staging application has to find the changed dimensions”.

Inmon (2005) defined “a data warehouse is a collection of Integrated, Subject-

Oriented, Non Volatile and Time Variant databases where each unit of data is

specific to some period of time”. Muller, Studer, Fondement, and Bézivin (2005)

tackled the issue of ETL development and said that ETL process development

constituted the most costly part of a data warehouse project, in both time and

resources. The complexity of integration solutions continued to grow, with higher-

quality data demands more-robust metadata and audit ability requirements.

There had been substantial amount of effort by other researchers to discuss deeper

about ETL process modeling approaches, ETL software architectures and ETL

frameworks as demonstrated by Thomsen and Pedersen (2009).

10

Bézivin (2005) stated that the data staging area of the data warehouse was both a

storage area and a set of processes commonly referred to as extract-transformation-

load (ETL). The data staging area was everything between the operational source

systems and the data presentation area. The proposition here was to have

prioritization mechanisms used to filter or sort data reducing the amount of flow to

the data staging area. For this requirement, an algorithm was to be created to

determine and decide beforehand what data was vital and must be moved to the DW

therefore not all data was copied. There were limitations to full copying which

looked like performing full backups e.g. bandwidth, transfer rates e.t.c. It had been

investigated and the authors came up with either Opportunistic scheduling, pre-

fetching or data caching approaches.

Vassiliadis (2009) further explained the Extraction, Transformation, and Loading

Processes and their key role in data warehousing architecture. He stated that data was

extracted from the source data stores, which could be in a relational and/or a semi-

structured format. In typical cases, the source of data stores could be On-Line

Transactional Processing (OLTP) or legacy systems, files under any format, web

pages, and various kinds of documents or even data coming in a streaming fashion.

After this phase, the extracted data was propagated to a special-purpose area of the

warehouse, called Data Staging Area (DSA), where their transformation,

homogenization, and cleansing took place.

Ranjit and Kawaljeet (2010) mentioned that “as data warehousing is gaining

eminence in many organizations, problems arise in populating a warehouse with

quality data”. These organizations had become aware of the benefits of decision

oriented and business intelligence oriented data bases. They further informed,

“…data warehouses are one of the foundations of the Decision Support Systems of

many IS operations.

11

Figure 2.2 Data Warehousing Structure Ranjit and Kawaljeet (2010).

Akkaoui, Munoz, and Trujillo (2011) categorically stated that “there are many

commercial Extract-Transform-Load (ETL) tools, of which most of them do not

offer an integrated platform for modeling processes and extending functionality”.

This drawback complicated the customization and integration with other

applications, and consequently, many companies adopted internal development of

their ETL systems. A possible solution to this drawback was creating a software

framework for ETL.

Zineb, Esteban, Jose-Norberto, and Juan (2011) enlightened us that ETL processes

were the core component of a data warehouse, since they supplied the data

warehouse with the necessary integrated and reconciled data from heterogeneous and

distributed data sources. Corlatan, Mariaus, Valentina, Octavian (2014) noted that

other than improving the system hardware, operating system and SQL server

settings, the main factors that affected speed of query execution were as listed below.

i. Missing indexes

ii. Inexact statistics

iii. Badly written queries

iv. Deadlocks

12

v. T-SQL operations which do not rely on a single set of results

vi. Excessive fragmentation of indexes

vii. Frequent recompilation of queries.

Moreover, they put more stress on the subject of Missing indexes This particular

factor has been found to affect the most SQL Server’s performance. When missing

indexing of a table, the system goes step by step through the entire table in order to

find the searched value and return the results to the users. This leads to overloading

RAM memory and CPU, thus considerably increasing the time execution of a query.

More than that, deadlocks can be created. The SQL Server query optimizer is based

on cost, meaning that it decides the best data access mechanism, by type of query,

while applying a selectivity identification strategy.

2.3 ETL phases of a data warehouse

Data warehousing is made up of the following phases which are discussed separately

to indicate the significance and relation to one another. This was the contribution and

discussions as reviewed from different authors within DW environment.

2.3.1 Extraction Phase

Kimball, Reeves, Ross, and Thornthwaite (2008) informed that the extraction process

consisted of two phases, initial extraction, and changed data extraction. In the initial

extraction, data from the different operational sources to be loaded into the DW was

captured for the first time. This process was done only one time after building the

DW to populate it with a huge amount of data already available in the source

systems. The next phase involved incremental extraction also referred to as changed

data capture (CDC). In this process, it was necessary to extract only the newly added

or modified data to the source systems since the last extraction process. This process

was periodic according to the recursive cycle of collecting and submitting the data as

well as business needs of the organization. There were some methods of capturing

the changed or modified data since the last extraction such as use of audit columns,

database log, system date, and delta technique, although they were not efficient.

13

Russom (2012) discussed the fact that most data staging areas were optimized for

detailed source data. The advanced forms of analytics was growing aggressively and

it required detailed data source because of the discovery nature of data mining,

statistical analysis, extreme SQL, and natural language processing. Much of the

content of big data by most definitions involved giant volumes of detailed data

source.

SAP AG (2002) invested in ETL as part of DW enhancement. They noted that

“Extractors are part of the data retrieval mechanisms in the SAP source system…the

Persistent Staging Area (PSA), define the load process with an Info Package in the

scheduler.” To enable data and metadata extraction from non-SAP sources on the

application level, SAP NetWeaver BI provided open interfaces known as staging

Business Application Programming Interfaces (BAPIs). BAPIs were standardized

programming interfaces that offered external access to the business processes and

data in a SAP system. Staging BAPIs allowed users to use SAP Business Objects

Data services and certified third-party tools (like Extraction, Transformation,

Loading) to integrate data from non-SAP sources. BAPIs were provided for

scheduling the data transfer job. These could be used to define application-specific

parameters, to use parameters and values for input help options in the InfoPackage

and to send the data request to the extraction tool. The data transfer can be triggered

from BI or using the extraction tool. During transfer, the data was transformed into

the relevant BI format. SAP AG (2002) warned that care was needed to make sure

that the transfer structure in BI and the data structure for the extraction tool matched.

If possible, transformations runs for technical clean-ups (data conversions for

example) at the extraction tool level were carried out. BAPIs also helped the user to

monitor the data transfer, allowing them to find the requested status and the log

transfer from the extraction tool. The illustration is as follows.

14

Figure 2.3 SAP NetWeaver server SAP SE (2012)

Stephen (2013) informed that “The staging tables usually get populated by some

outside source, by either pulling or pushing the data from the source systems. This

process is usually an insert only process and therefore does not rely on statistics for

its successful execution. (pp.1)”

2.3.2 Transformation Phase

Once the data was extracted to the staging area, there were numerous potential

transformations, such as cleansing the data (correcting misspellings, resolving

domain conflicts, dealing with missing elements, or parsing into standard formats),

combining data from multiple sources, reduplicating data, and assigning warehouse

keys. These transformations were all precursors to loading the data into the data

warehouse presentation area. Unfortunately, there was still considerable industry

consternation about whether the data that supports or results from this process should

be instantiated in physical normalized structures prior to loading into the presentation

area for querying and reporting.

Erhard and Hong (2000) elaborated on activities within transformation phase towards

clean data. These included data analysis that focused on meta-data and due to fewer

integrity rules it couldn’t guarantee sufficient data quality of a source. Two

15

approaches had been put across to assist in data analyses which were data profiling

and data mining. Data profiling focused on the instance analysis of individual

attributes. It derived information such as the data type, length, value range, discrete

values and their frequency, variance, uniqueness, occurrence of null values, typical

string pattern providing an exact view of various quality aspects of the attribute. Data

mining helped discover specific data patterns in large data sets, e.g., relationships

holding between several attributes.

Erhard and Hong (2000) explained that putting concern on the performance, then it

was important to dwell in defining data transformations which consisted of multiple

steps where each step performed schema and instance-related transformations i.e.

introducing parallelism. It allowed data transformation and cleaning system to

generate transformation code and thus reduce the amount of self-programming. A

more general and flexible approach was the use of the standard query language

(SQL) to perform the data transformations and utilize the possibility of application-

specific language extensions, in particular, user defined functions (UDFs) supported

in SQL:99. UDFs could be implemented in SQL or a general purpose programming

language with embedded SQL statements. They allowed implementing a wide range

of data transformations and supported easy reuse for different transformation and

query processing tasks. Furthermore, their execution by the DBMS could reduce data

access cost and thus improve performance. The normal cleaning steps and

procedures in the order of execution are listed below using UDF implementation

with cleaning logic

 Remove misspellings in data within fields

 Conflict resolutions

o Extract data from free-form attributes(repeated data in different fields)

o Instance matching and duplicate elimination

o Sort and reorder values

 Validation and correction for each instance (cyclic process) to remove errors.

 Spell checking – dictionary lookup

16

 Standardization

o Help in instance matching and integration

o Convert to consistent format(uniformity)

 Deal with multi-source issues

o Restructure schemas

o Split, merge, fold and unfold of attributes and tables

o Remove data overlaps and duplicate representation

The hindrance to this approach was that determining matching instances with such an

approach was typically a very expensive operation for large data sets. Calculating the

similarity value for any two records implied evaluation of the matching rule on the

Cartesian product of the inputs.

2.3.3 Data staging area

The data staging area was dominated by the simple activities of sorting and

sequential processing. In many cases, the data staging area was not based on

relational technology but instead it consisted of a system of flat files. After the users’

finished data validation on conformance with the defined one-to-one and many-to

one business rules, it might be pointless to take the final step of building a full blown

third-normal-form physical database. This had disadvantage in that the creation of

both normalized structures for staging and dimensional structures for presentation

meant that the data was extracted, transformed, and loaded twice i.e. once into the

normalized database and then again when the dimensional model was loaded.

Obviously, this two-step process required more time and resources for the

development effort, more time for the periodic loading or updating of data, and more

capacity to store the multiple copies of the data. At the end, this typically translated

into the need for larger development, ongoing support, and hardware platform

budgets. With regard to Firestone (1998) the nature of the file determined how it was

manipulated and “almost all processing in the data staging process is sorting,

followed by a single sequential pass through one or two tables.” He also concluded

17

that “the data staging area will archive and store data for a number of purposes.

Conformed dimensions are created in the data staging area and replicated out to all

the requesting data marts. They must be permanently housed in the data staging areas

as flat files ready for export. The data staging area may be the best place to hold data

for emergency recovery operations….”

Kimball, Reeves, Ross, and Thornthwaite (2008) provided scenarios in data stage

area that depicted the processes carried out. The data flow was set up so that it came

out of the source system, moved through the transformation engine, and into a

staging database as shown in the figure 2.4.

Figure 2.4 First Data staging Scenario Kimball, Reeves, Ross, and

Thornthwaite. (2008).

In the second scenario, Extraction of the sought after data from mainframe legacy

system into a flat file system followed. Then moving the file to a staging server,

transformed its contents, and loaded transformed data into the staging database as

seen in figure 2.5.

18

Figure 2.5 Second Data Staging Scenario Kimball, Reeves, Ross, and

Thornthwaite (2008).

Abbasi et al. (2010) noted that data staging services moved output data from

computer nodes to staging or I/O nodes prior to storage with an aim to reduce I/O

overheads on applications’ total processing times., “Explicit management of data

staging offers reduced perturbation when extracting output data from a petascale

machine’s compute partition. Experimental evaluations of Data stager on the Cray

XT machine at Oak Ridge National Laboratory establish both the necessity of

intelligent data staging and the high performance of our approach, using the GTC

fusion modeling code and benchmarks running on 1000 plus processors”.

2.3.4 Loading Phase

Loading in the data warehouse environment usually took the form of presenting the

quality-assured dimensional tables to the bulk loading facilities of each data mart.

The target data marts must then index the newly arrived data for query performance.

When each data mart had been freshly loaded, indexed, supplied with appropriate

aggregates, and further quality assured, the user community was notified that the new

data had been published.

Aksoy, Franklin, and Zdonik (2001) introduced a workable approach to data staging

concerns raised at his time. They based their work on broadcast scheduling and data

staging area. According to them the key design considered for development of large

19

scale on-demand broadcast server was the scheduling algorithm selection useful for

selecting of items to be broadcast. Their algorithm aimed to choose the beneficial

data items only based on unfulfilled previous requests as outlined below

1. Recognize that work had been done in development of online scheduling

algorithms for data broadcast.

2. Key concern to get high bandwidth downloads by the introduction of a low

overhead algorithm which aimed at fully utilizing the available broadcast

bandwidth.

3. Assumption that data items would be available beforehand was not true

because of

a. The sheer size of source data to load and highly-skewed nature to

access the data.

b. The cost to keep all the data in cache was prohibitive even though it

was possible to cache the entire set of data in memory.

c. The high latency led to system performance degradation therefore

scheduling efficiency was not able to guarantee the full utilization of

the download channel.

Firestone (1998) analyzed file manipulation modes and found out the different

natures and ways of handling files. Firestone (1998) thought that the issue was

broader and encompassed both the database format and process logic characteristic

of: the data staging application, the archival repository, metadata and associated

meta-model driving the data staging process.

Kimball and Ross (2002) asked whether the data staging area was relational or

sequential for processing flat files. He concluded that most data staging activities

used sequential processing. If the incoming data was in flat-file format then it should

be handled by data staging processes as flat files before loading it into a relational

database. Kimball and Caserta (2004) did not advocate using structured relational

data staging area. Kimball and Ross (2002) further warned that “It is acceptable to

create a normalized database to support the staging processes; however, this is not

20

the end goal. The normalized structures must be off-limits to user queries because

they defeat understandability and performance”.

Eckerson, and White (2003) report showed the impact of ETL tools in controlling the

source systems and the business intelligence applications. ETL tools needed to be

expanded to match the growth in complexity of the BI environments. They stated

that focus should be placed on real-time and parallel processing instead of batch-

oriented processing that load data in bulk.

Aksoy, Franklin, and Zdonik (2001) came up with three complementary approaches

to overcome the above mentioned issues and discussed them as follows.

1. Increasing bandwidth utilization/opportunistic scheduling

a. Avoid server stalling between broadcast not to miss data items.

b. Prioritizing technique/algorithm to help decide which the most

beneficial data item to load. If most beneficial data item is not

available at that time, then the available one should be loaded and

broadcasted instead to avoid stalling the server to user responses. This

was referred to as opportunistic scheduling.

2. Decreasing the need to fetch an item

a. Making best use of available server memory space.

b. Key success in data caching was keeping only those data items that

were most likely to be scheduled. Used scheduling algorithm to scale

them as either hot (popular) and cold (not so popular) items. This was

referred as Hint based cache management.

3. Decreasing the fetch latency

a. Reduce access latency from obtaining data from slow or remote

sources before they were needed. This brought data items were likely

to be scheduled in the near future in the cache. This was referred to as

pre-fetching.

21

According to Inmon (2002), “Most of the transformed data are often loaded into DW

which are dimensional databases usually structured according to star schemas and

accessed by decision support systems...” About 70% of resources to implement a

DW were consumed during the ETL project Li (2010). There were many commercial

open-source ETL suites available, namely, Pentaho Data Integration, CloverETL

Software and Data Integration Talend Open Studio, amongst others. DaSilva, Times,

and Kwakye (2002) reiterated that, there was lack of standardization of the set of

ETL mechanisms and of their graphical representations, as well as there was no

consensus on the scripting languages available on the interfaces of these tools.

Flinn, Sinnamohideen, Tolia, and Satyanarayanan. (2003) stressed on a more

architectural and closer view of ETL process. They stated that data staging improved

the performance of distributed file systems running on small, storage-limited

pervasive computing devices by opportunistically caching data on nearby surrogate

machines. Flinn, Sinnamohideen, Tolia, and Satyanarayanan. (2003) statistically

proved the performance increase of interactive applications running on the Compaq

iP AQ handheld by up to 64%. The performance could be increased further, by

redirecting cache misses to staged data on a nearby surrogate while still maintaining

the consistency guarantees of the underlying file system. In their paper they reported

on the feasibility of data staging on untrusted surrogates with the prototype

implementation based on the Coda file system. They also outlined that for bursty,

short-term workloads, data staging improved file operations by up to 77% by

removing the cumulative delay. They ran tests and confirmed these results by

replaying long-term traces of file-system activity and the experiments showed

average reductions in file operation latency of 59%. Their focus in their paper was on

the file system aspects of data staging and this raised questions on whether the file

formats impacted on performance.

Some developed frameworks existed such as PygramETL Thomsen and Pedersen

(2009) which was a programmable framework for developing ETL applications.

PygramETL was aimed at optimizing the processing of large volumes of data, and

22

was used in the implementation of physical parallelism to take advantage of the

current multi-core processors. Thomsen and Pedersen (2011) continued to inform

that the demerits of PygramETL lay in the flexibility and generality properties of

PygramETL. They had not been evaluated so far, and only the performance had been

evaluated. PygramETL was readily available thus a good testing framework that

could readily integrate with other object oriented application since it was available as

Python code instead of a graphical user interface.

Zheng (2009) recommended filtering relevant and useful data and ensuring the

staging resources were available always. They should be dynamic and used

whenever available and desired. The aim of filtering data was to reduce output

volumes and restricting it in query session. Such filtering leveraged the increasing

gap between the ability to speed up computations via faster and more numerous

CPUs verses having to store or move data across increasingly deep memory

hierarchies. With staging the application performance was decoupled from the run

time performance of the back end storage system.

Zheng (2009) said “the massive amounts of data generated by petascale applications

can cause performance bottlenecks when running these applications and in addition,

they can put extreme pressure on the highly parallel cluster storage systems attached

to petascale machines…”. They decided to use the staging approach to address the

problem by moving output data in a small storage staging area and operate on it for

performance optimization. They called it data pre-Analytics-Pre-DatA. They also

sort data using rapid data extraction with an aim of achieving real-time operations.

Unfortunately, this approach resulted in reduced performance due to reorganization

of data at the output.

Another framework based on PygramETL, called ETLMR by Liu et al. (2011), was

based on MapReduce and enabled the building of DW stored in cloud computing

environments. While PygramETL and ETLMR were directed to the optimization of

ETL processes for building DW, FramETL was a more general and flexible

framework for enabling the creation of data repositories and customized ETL

23

transformations. The operation of an ETL System as described by FramETL had two

phases; Metadata Definition and Operation. DaSilva, Times, and Kwakye (2012)

informed that in the metadata definition phase, the specification of the system

inventory and modeling of ETL processes occurred, while in the operation phase, the

loading of metadata, the access to data sources, and the execution of ETL processes

were performed.

DaSilva, Times, and Kwakye (2012) discussed about some approaches and tools that

had been introduced to handle the challenges that data staging experienced on

efficiency. These were Data Transfer Request, which was a tool that monitored

request and response of data from sources as per changes made. Another approach

was investing in complex and powerful hardware and software which was very

costly. Hardware would include the machines with high processing power, high

RAM memory ranging to several GBs, and many processors scheduled to work

concurrently under configured settings. The software would be management systems

as well as specialized databases such as in-memory HANA and oracle that relied on

high memory caching. This might not be viable for SMEs due to affordability and

risk ratio. We checked on the demerits of these approaches before coming up with a

better solution.

El-Wessimy, Mokhtar, and Hegazy (2013) decided to try out three techniques to help

in speed improvement. “In this context, they explored three scheduling techniques

(First-In-First-Out (FIFO), Minimum Cost, and Round Robin (RR) based on time

and records) for scheduling the ETL process. They experimentally showed the

behavior of these techniques in terms of execution time with respect to the sales data

and discussed the impact of their implementation.

When it came to moving data to DW Stephen (2013) informed that “The biggest

question for the staging area is – how do we keep the statistics up-to-date such

that the statistics for a particular daily load are always available and reasonably

accurate. This is actually more difficult than it sounds. If the partitions would only

be analyzed in the first quarter of the month each night, going to every other

24

night and eventually each week because of the 10% stale setting. This obviously

leaves us with a problem…. In order to have the statistics available for the latest day

which is loaded, the statistics would have to be gathered after the staging tables have

been loaded but before the ETL process starts”.

2.3.4.1 Metadata

Firestone (1998) recognized that the data staging process was driven in an essential

way by metadata, including business rules. Metadata was used along with

administrative tools to guide data extractions, transformations, archiving, and loading

to target data mart and data warehouse schemas. SAP AG (2002) mentioned that

Metadata from non-SAP systems could be defined or updated either manually or

using BAPI functionality in BI. If you accessed the BAPI interface, the non-SAP

software’s extraction tool could automatically read the BI metadata from the source

system or define the metadata in the extraction tool. The tool could then transfer the

metadata to BI using the BAPI interface. To change metadata in BI manually, it was

required to enter the needed data in the transfer structure maintenance transaction. In

addition to transferring and updating metadata from the extraction tool to BI, the

BAPIs could also be used to transfer BI metadata to the extraction tool.

During transformation, there were several problems Vassiliadis (2009) which

included: schema-level issues that affected naming and structural conflicts; Record-

level issues such as duplication and contradicting records; Value level issues that

affected representation and interpretation of values formats. He also noticed the

dilemma in the choice between bulk loading data through a DBMS-specific utility or

inserting data as a sequence of rows. Clear performance reasons strongly suggested

the former solution, due to the overheads of the parsing of the insert statements, and

the maintenance of logs. Simple SQL commands were not sufficient since the ‘open-

loop-fetch’ technique, where records were inserted one by one, was extremely slow

for the vast volume of data to be loaded in the warehouse.

25

2.3.5 Query Processing and optimizations

The speed of query execution determines the overall performance of the ETL phases

from the beginning to the end. Connolly and Begg (2005) noted that one of the major

criticisms of current database management systems (DBMS) often cited was

inadequate performance of queries. Since then, a significant amount of research has

been devoted to developing highly efficient algorithms for processing queries. There

are many ways in which a complex query can be performed, and one of the aims of

query processing is to determine which one is the most cost effective.

Query processing involves four phases namely;

i. Query decomposition: - High-level language (SQL) is converted to low-level

declarative language (relational algebra) to parse, validate optimize and

execute the query.

ii. Query Optimization: - Is either based on heuristic rules/approach or those that

follow cost estimation approach in determining the most optimal strategy for

minimal resource usage.

iii. Query code generation: - the optimized relational algebraic expression is

converted to a language the computer understands.

iv. Query Execution: - Using the optimal strategy that is chosen, the query is

fired to yield the results in the minimal time and cost.

26

Figure 2.6 Phases of Query Processing, Connolly and Begg (2005)

The efficiency of repetitive cycle of query processing depends on whether the

optimal strategy is saved in memory or disk for future accesses instead of compiling

the same strategy over and over again.

Bamnote and Agrawal (2013) informed that the cost of query evaluation could be

measured in terms of a number of different resources, including disk accesses, CPU

time to execute a query, and, in a distributed or parallel database system, the cost of

communication. The response time for a query-evaluation plan would account for all

these costs, and could be used as a good measure of the cost of the plan. In relation to

large database systems, they observed that, disk accesses were usually the most

important cost, since disk accesses are slow compared to in-memory operations. The

query optimization engine generated a set of candidate evaluation plans where in

heuristic theory, some produced a faster, more efficient execution.

Nanda (2015) noted that the objective of query performance enhancement was to

minimize the response time for each query and to maximize the throughput of the

database server. He also observed that Query Processing and Optimization

27

techniques as one of the factors that hinder performance of database management

systems. He also observed that in a distributed environment like cloud, data is

distributed to a number of sites, stored in its entirety on all sites or spilt on many

sites. Here the query is processed and optimized in a different way.

2.3.5.1 Query Hints

Connolly and Begg (2005) mentioned that the cost-based optimizer also takes into

consideration hints that the user may provide. A hint specifies a comment specially

formatted within an SQL statement to change the behavior of execution of that

query. There are a number of hints that can be used to force the optimizer to make

different decisions, such as forcing the use of the rule-based optimizer;

n a particular access path; and Indexes Information about indexes.

2.3.5.2 Stored execution plans

Connolly and Begg (2005) further informed that there may be times when an optimal

plan has been found and it may be unnecessary or unwanted for the optimizer to

generate a new execution plan whenever the SQL statement is submitted again. In

this case, it is possible to create a stored outline using the CREATE OUTLINE

statement, which will store the attributes used by the optimizer to create the

execution plan. Thereafter, the optimizer uses the stored attributes to create the

execution plan rather than generate a new plan.

2.4 Summary of Literature

Other than appreciating the current developments in this field of research, it was

important to be aware of the future developments in technology with regard to DW.

This was to avoid major changes to the improved frameworks being scraped off due

to existence of a new product. Consistency was to be complete and accurate

maintaining scalability. Most of the authors had based their research on quality of

data rather than performance enhancement. The desire to make strong decisions led

28

to loading almost all the data from the sources. The organizations had been able to

cope with the current performance in tools because they were custom made to fit to

their operational environment. The problem of handling data with speed as the unit

of measure escalated at high rate with the growth of organizational data. Investing in

the study was a great move to advance technology further as well as prepare for

future compatibility with newer systems that met the users’ needs in time.

2.5 Gaps in knowledge

Considering the suggested improvements as discussed from great works of other

authors, it was important to critique the literature by finding gaps in existing systems.

The following were identified as the missing links on the body of knowledge as regards the

investigation on the works of previous authors in the field of data warehousing.

 Handling manipulation and transfer of bulk data was time consuming activity

requiring a lot of resources. The dependency level for batch processing had

diminished literally due to growth of technology.

 There lacked a stable and standard staging framework to use for any

warehouse setting.

 The performance measure of the ETL process had been ignored because

focus is invested on quality.

 There was no proper definition of scheduling plans for jobs in ETL processes.

2.6 Conceptual Framework

The research gaps identified and discussed in the previous section, helped to draw

probable solutions which would be implemented to tackle the noted issues and

finally improve the general performance in data warehouse environment. This study

proposed to create and implement deterministic prioritization algorithm within the

data staging area which helped to show the relationship between the ETL processes

and improved performance of data access and retrievals. This approach was active

immediately upon deployment working on the data collected from the source system.

29

Less activity was experienced in the extraction phase but the actual data work area

was within the staging area. All the data would be subjected to the new deterministic

prioritization algorithm that planned to prioritize and selectively coordinated the

appropriate data that needed to be moved to data marts. The algorithm

implementation was targeting use in two areas. The first would be an implementation

in an open source environment where the algorithm would be built to target all

general purpose staging frameworks available in the market. This would mean that

the deterministic prioritization algorithm would be freely available for use by these

organizations without subscriptions. The second area of implementation would be

within specific organizations that have customized staging frameworks. The idea to

test in both areas is a measure on the flexibility of the solution from different

scenarios of the market since not all users of data staging frameworks would be

willing to introduce the change directly into their systems. It was observed that

previous activities performed within staging area were very important and none

would be eliminated hence the approach aimed to improve on the order of execution

to avoid redundancy and repetition of tasks. This concept is illustrated in figure 2.6

that shows the relationship among the ETL processes of a data warehouse.

30

Figure 2.7 Proposed Conceptual frameworks

KEY:

DP algorithm – Deterministic prioritization algorithm

OTHER OP – Other transformation operations such as cleaning and verification

2.7 Broad to specific literature

Normally tables in any relational database were relational based on the logical

bindings that resulted from querying data from them. Tables had relationship with at

least one or more tables which was random in nature. The data access and retrieval

from non-linked entities was batch-oriented where successive processing of requests

in the queues was sequential. They were staged in the hope that in the next phase of

loading there would be a process that would identify the relationship with other

tables and during such load a relationship would be established. It depended on the

operating system to provide free resources to handle the activities from source to

31

destination. Data staging area greatly differed in this aspect because it encapsulated

the three ETL processes as a functional area of a data warehouse and maintained the

relationship interfaces that were held prior to the movement of data from the sources

to destinations.

2.8 Included Improvements

The included changes would provide a stable and scalable algorithm that would be

easily deployed and utilized in existing and newer data staging to support concurrent

data processing. This would magnify the core benefits of owning and maintaining

intelligent data warehouses that would be supportive to the top-level of decision

making process.

According to Cecilia and Mihai (2011), the use of indexes on database queries

improved the performance of the whole system. Clustered indexes performed better

than nonclustered indexes when the expected returned records were many and were

to be set for the most unique column of a table. This proposition supported the use of

indexes in the staging area as illustrated in the positive test results shown above.

Grant (2012).explained about execution plan management which was a task done by

query optimizer. The database relational engine performed logical reads within the

cache memory while the storage engine performed physical reads directly from disk.

Improvements were highly realized mostly for data manipulation language

statements since the engine needed to parse the query for correctness. The SQL

server generated statistics against the indexes and sent them to the optimizer to

determine the execution plan.

Per-Åke L. et al. (2013) highlighted the improvements in the SQL Server 2012

released. It had enhancement in batch processing through introduction of column

store indexes. The main idea was to have the table’s primary key being treated as the

clustered index for any storage structure (heap or B-Tree). They categorically

32

informed us that some customers had reported major performance improvements

(10X to 200X) as a result of this change.

El-Wessimy, Mokhtar, and Hegazy (2013) similarly did an enhancement in the data

warehouse staging area by using different techniques (FIFO, MC,RR time and record

rotation) targeting the loading phase. The tests ran captured the time taken to transfer

data in each stage of the ETL process and suggested the most suitable technique.

They did a comparison amongst all techniques and noted that FIFO performed better

for less data set while Record Limit Based Round Robin was best for large data sets.

Their research related to this new enhancement in data staging on the basis of

reducing the overall time taken to deliver data from source to destination.

Stephen (2013) elaborated an approach in Oracle environment that “Most ETL

applications used a staging area to stage source system data before loading it into the

warehouse or marts. When implemented within an oracle environment a partitioning

strategy was usually employed such that data that was not required any longer could

be removed from the tables with minimum amount of effort.”

Costel, Marius, Valentina, and Octavian (2014) did a research on query execution

and optimization in the MSSQL Server and put across the missing of indexes as a

contributor to low performance of query execution. They informed that when a table

missed indexes, the search engine had to parse through the entire table step by step to

find the searched value. The resources spent on this process ended to be enormous

and considerably increased time to execute the queries.

The proposed algorithm would provide cost effective mechanisms to decide which

data need to be collected beforehand and also how to change order of transferring the

data to the destination systems.

33

CHAPTER THREE

 METHODOLOGY

3.1 Introduction

There was great need to measure the impact of changes introduced in order to

demonstrate and justify the purpose of this study. Moreover, the nature of the

problem that the research explored called for a convenient approach and in particular

Experimental methodology was selected. The comparison and contrasts expected

from the study would make use of available staging tools and alternatives e.g.

Pygram ETL and Microsoft data profiler tool. The resultant summary of findings,

observations, and recommendation would be adequately documented in the research

report.

The problem domain fell in the production/operational domain where vast

transactions are normally carried out generating the workable data. Each enterprise

has its own business processes but the concern of the study focused on the ETL

phase that involved collection of data for the DW and how to make improvements.

For quality decisions, all the relevant and related data had to be merged and

eventually availed to decision makers. The activity posed to be difficult given the

magnitude of data to be searched and the lack of algorithms to prioritize the collected

data. To maintain scalability with previous ETL phases, the operational space was

not expanded and this resulted to better, quality and smart ideas for generating

queries of handling DW data.

3.2 Dependent and independent variables

The study investigated the different variables that associated to the research topic and

how they impacted on system performance within any data staging area. The essence

of discussing these independent and dependent variables was to assist in the

development of a research design that would appropriately solve the problems

reported by data warehouse users. The different variables that were considered for

this study are illustrated in figure 3.1 and their description follows suit.

34

Figure 3.1 Relationship between dependent and independent variables

a. Legacy systems and System Speed Performance

Legacy systems used stacking where a job was pushed into the pool of tasks and

popped out of the stack when its time of execution reached according to the queue.

The order of execution was not highly dependent on pre-arranged structure. This

procedural mode of execution degraded performance. The speed of job execution

fully depended on the freeness of the particular system processor. The legacy

systems were also limited by the number of these processors and job sharing resulted

in overworked system hence affecting the overall system performance.

b. Cache and System Speed Performance

The cache offered pre-fetching capability where data storage was done temporarily

for the most used data. The scheduled procedure looked firstly in the cache memory

before checking secondary storage locations hence minimizing on the search time.

The limitation was tied on the cache size. The determinant of the number of jobs to

keep within the cache was the priority of the job scheduler and number of hits or

requests. Therefore, a job with fewer requests was dropped from the cache because

35

its importance in the delivery of particular data (priority) was not determinable

beforehand.

c. Opportunistic Scheduling and System Speed Performance

To achieve concurrent operation there needed to be prioritization algorithms to

decide the execution order of queries fetching data from the source systems to the

data staging area. With Opportunistic scheduling there was high probability of

improving speed of data retrieval and access. Similarly to the storage of jobs in

cache, the probability of selecting the important data was not clearly defined. The

overall system performance was affected where the resultant deliverable couldn’t

meet the expectations of top management.

d. Network infrastructure and System Speed Performance

Remote connection to source systems affected the speed of retrieval and query

execution was delayed by the time-lapse for distributed systems. This impact on the

nature of ordering results from query execution and thus optimization should be

introduced to work with stored procedures and cache facility. Even after the

integration of new technologies the underlying factor is the speed of connection.

Considerable system performance in delivering adequate and real time decisions was

observed for dedicated networked systems.

e. Data Attributes and System Speed Performance

Data characteristics were defined by type and formats since it came from disparate

systems. Data was not moved to the target systems before some modifications to

match destination requirements. Poor data manipulation functions resulted in longer

time processing the data slowing down the systems. The functions for manipulating

flat files were different from the ones for relational tables and databases. The greatest

barrier noted was the existence of different system formats as per the language of

localization. When the data analyzer converted from one format using EDI tools, this

36

was not 100 % complete and manual corrections were needed impacting on overall

performance.

f. Hardware capability and System Speed Performance

Newer systems such as SAP HANA databases had high processing capability which

was meaningless if there was no proper scheduling of resources. This could result to

lots of losses of resources not being manned properly. Hardware being static and data

being dynamic at some point provided discrepancies when scheduling job execution

since the available hardware might not be sufficient to handle the data affecting

performance. Although, scheduling played a vital role in the performance

implications of systems, the balance between the operating software affected

performance. It represented the effect being sought and it was measurable to make

comparison.

3.3 Rationale of the research design

The research design was selected based on the need to demonstrate improvement and

the availability of measurement tools to many users of a data warehouse. It was also

desirable because of its simplicity in use and richness of analysis to the problem. The

changes to be made in data staging were very crucial and their impact was checked to

see the implication to be either positive or negative. The research methodology fit

well to counter the problems outlined by previous authors as noted previously;

because it conformed to any new user requirements introduced within the ongoing

project. This flexibility was advantageous in observing any interruptions to the

normal operation of a DW. Corrections that needed to be effected when the model

was in development stage were tailored to match the specific problem defined with

ease due to its less strict nature. The success of meeting the user requirements was to

ensure functional requirements were delivered while abstracting the users from the

complexity of algorithms used to achieve this.

37

This resulted in creation of a new algorithm was to be introduced from data

extraction to help determine what data and how much to capture initially from the

heterogeneous sources. The criterion was never based on the type of source system

but on formulating the source to a format where the data was readable to get only the

most vital data. Meta data was also collected but its use in the analysis of the

problem was limited to a controlled level. This was so because the nature of study

was not considering the deeper details of data and characteristics.

3.4 Feasibility study

It was important to accustom with the study area and understand better the problem

domain from the actual site. Data staging is an adaptive topic meaning there is so

much dynamism taking place depending on the source system or the configurations

for the target systems. This hence dictated a static workflow that was recursive in

every complete transaction and phase according to the setup of the scenarios and test

system.

3.5 Research Site

The study targeted organizations and institutions that performed many transactions

resulting in handling large data ranging from a few records to several million rows in

their relations. This data would be available in mid-sized organizations and

businesses. It was to the researcher’s convenience and constrained resources to

collect the research data through online means. This was highly contributed by the

lack of local organizations implementing data warehouse technologies due to lack of

resources. Some organizations had packaged downloadable databases deployed on

their websites for researchers from online community. The available databases were

availed in different data formats resulting from the variant source systems and also

the need to match the user’s specific database server type. The databases were varied

in sizes depending on the number of relational tables and records they contained. It

would be envisage running active tests in those manufacturing companies that had

already implemented SAP business solution products and any other appropriate ERP

38

systems like Oracle because their data is already organized and managed by a

management system. It is the flow of data obtained from these large enterprises, that

the explanation for data staging enhancement would be depicted clearly.

3.6 Population Sampling Procedure

The sample size was selected from those organizations and enterprises identified to

provide online materials for research. The aim was to capture databases with large

volumes of data ranging from several hundreds of rows to thousands of records. This

was vital for this study because it was a requirement to experimentally show the

change introduced and technical features improved by the new algorithm

implementation with regards to data access speeds. There were multiple

organizations that offered research data for download as availed from their websites.

The stratified random probability sampling method was used on the identified

research sites to aid in this selection. The sample was a representation of the whole

population which couldn’t be investigated due to the time constraints and

authorization access. The sampling method had been chosen purposely because of its

high degree of representing the whole population and its abilities to overcome

biasness in the study. The random selection was performed on several organizations

whose databases were freely downloadable from their websites. Among the

organizations investigated were;

 PPSOne demo databases in relational format from CP CIM-POOL AG

 SAP SBO-Common databases

 AdventureWorksDW2008R2 from Microsoft

 ACM SIGMOD Records in XML format

 TPC-H Relational Database Benchmark in XML format

 Annual Capital Expenditures Survey from Data.Gov in csv format

The following factors were considered while weighing on which database was most

useful for this research study to base on.

39

 Accessibility to the database – requirements of pass codes and subscriptions.

 The data types for the databases – flat files, csv, xml, relational tables

 Database sizes in Giga-bytes

 Number of records within the tables and their normal form

 Real data to match production environment

 Currency of data

 Availability of tools to analyze and work on the data

Based on the above characteristics on the data smaller groups were identified that

formed the strata. Each stratum came from individual company names from which

the databases would be sought. All these company names were copied in a single

column of Excel in any order. In a second column, the “Randomize” Excel function

was to be applied and generate values after the “rand ()” function was fired.

Additional details about the companies were optionally included although they

would not be used anywhere in this sampling process but provided more details on

the data sets. After executing the randomization function and sorting by this second

column, the values were ranked in an orderly manner either in ascending or

descending order. The last row number of the selected strata provided the sample

size for the study to represent the whole population. In this case the stratum selected

was from Microsoft’s AdventureWorksDW2008R2. The database conformed to

match with the available SQL server version that would enable easy analysis and

data manipulations.

3.7 Sampling

3.7.1 Sample size calculation

To calculate the sample size for the study, the Slovin’s formula invented in 1960’s

was used as shown below.

40

Where n = Number of samples;

 N = Total population;

 e = Error tolerance; and (0.01 <= e >= 0.05), the lower the

error tolerance value, the higher the accuracy of result.

For Example Using N = 5;

e = 0.02;

Then

3.8 Rationale for sample and size selected

Slovin’s formula was used to figure out what the sample size to use since the whole

population could not be investigated based on time constraints. Moreover, it was not

it was not possible to know every characteristic of the population early enough. It

was also a simple and direct formula with minimal variables hence less complicated.

The methodology called for recursive tests and measurements on the new algorithm

and hence required several test runs of the experiment so as to compare the values

from each test scenario. The average of the results would bring clarity to the actual

performance of the algorithm based on the test environment and available resources.

This improved on effectiveness, quality and also was within time boundaries of the

project deliverables given the vast amount of data dealt with.

Sampling techniques and procedures

The stratified random sampling method fit well for this study analysis due to the

nature of data distribution on the customer systems. This procedure managed to

41

subdivide the customers’ systems selected from the population into workable units or

single test scenarios. The customer’s databases that had large data were opted for

since they could easily show by measurements the performance change. The

sampling method overcame a lot of biasness because the customer selections were

not based on the type of business but on data size or number of transactions. All the

data attributes and properties were considered when comparing amongst customer

data. When several customers matched the filtering criteria, a tie was easily separated

by randomly selecting the final subject’s proportionally from the different strata. The

merit for working in groups was that it was quite easy and fast to note the change

when comparison was carried out between systems vis-à-vis the data size. The study

highlighted a specific subgroup within the population performing better than the

others where the changes had not been implemented. This method had higher

statistical precision and needed a small sample size so as to save on time, effort and

money.

3.9 Data collection

3.9.1 Data collection tools and instruments

Research data was collected from the available data availed online for research.

Several databases were downloaded from the group that matched the stratum

specification after random sampling procedure. Microsoft SQL website provided

data sets for relational databases for example AdventureWorksDW2008R2, matched

the SQL server version running in the researcher’s notebook. The availability of

analysis tools in close proximity was a core deciding factor to attach the database for

this research. The databases were extracted and attached to the SQL server. To

actually match the exact version of customer database, some upgrades were carried

out so that the data could be readily retrieved from the tables without constraints. The

SQL server had tools for analysis and configuration which was important in the

experimentation stage where simulation of data warehousing was depicted clearly.

The SQL Server Integration Services software tools and package were added to the

installed version of SQL Server and really assisted in the analysis of the problem and

data collected.

42

3.9.2 Pretesting of the study instruments

The pretesting was done in a different site rather than the randomly selected one for

the study. The databases were also attached in a remote system and controlled locally

in a networked environment. This was to establish its validity and reliability before

the actual study took place. The system setup for both the old and new were pre-

tested in one machine then deployed to the network. This will cover the majority part

of interviewees as per the sample inclusion criteria. Pre-analysis was done to check

on the appropriateness of the data collection tools, and the identified gaps and

overlaps were rectified before the actual study took place.

3.9.3 Data collection procedures

The study was conducted after successful approval by the Board of Postgraduate

Studies and the appropriate administrative officers from the organizations. Since the

study was neither inventing the wheel nor creating a pioneer project, secondary data

comprised of research materials in both soft copy (electronic documents published

online) and hardcopy (books, journals, and articles). Primary data was captured by

running tests to determine the mode of operation using the actual systems in selected

companies. This data was collected by downloading sample databases of the

organizations for further analysis. More data was also collected through online

materials and documentation, where experts in ETL tools in an organization guided

the researchers vigorously through videos. These systems were used widely to

manage business processes and customer relations while streamlining decision

making by management in an organization.

The captured workflows differed among organizations because of the business logic

outlined in the ETL process of the specific organization hence a clear distinction was

noted. The research process was a continuous activity that was projected to take eight

months from the time of research proposal acceptance to delivery date. Data

collection and gathering was done from the third to the sixth month while analysis

followed suit.

43

3.9.4 Data Analysis

The data needed to be analyzed to bring out the problem clearly as was the case at

the site. The researcher had to capture all affected variables since they would play an

important role in looking for a valuable solution. It was a mind opening venture

because the different aspects of business processes were studied as per the set logic.

3.9.5 Statistical tools used

There existed tools to analyze the collected data to make work easier for the study.

The most applicable tools used were Microsoft Excel, Visio 2007, Gantt chart

creator, SQL Server, SSIS, and linear scheduling method tool. They fit to the study

because of the need to compare the results from different sources as well as among

companies. They were also readily available to many users due to their simplicity in

use even though some were costly to acquire.

3.10 Data presentation techniques

After completion of data analysis, the resultant data were presented to the project

funders through a committee to show and convince them that the change in

performance was realizable. The summarized presentation through power point

slides explained how the research design fit to the problem domain. Upon completion

of the analysis of study, the deliverable product was subjected to full testing for the

proposed changes or enhancements and finally deploying it for use by the

organizations.

44

CHAPTER FOUR

RESEARCH FINDINGS AND DISCUSSION

4.1 Introduction

The study proposed an algorithm that would work well on limited or more cache

memory since freeness of the memory was operating system dependent. The running

space was not an issue since it only acted as holding place for the recursive processes

that were being controlled by the operating system. The creation of test simulations

and test scenarios was designed to match the actual production environment where

the decision support of a data warehouse provided quality answers to requests

coming from the business users who were abstracted from the general operations of

data warehouse environment. The users only requested for information in form of

SQL queries and expected timely and current results from the intelligent data

warehouses.

4.2 Development of Deterministic Prioritization Algorithm

The new algorithm that was created during this study involved the following major

steps that were performed in a recursive manner.

4.2.1 Deterministic Prioritization Algorithm Definition

Problem: How to determine which data to collect and improve the speed of loading

the data to the intended destination location?

Step 1: Extraction of data from source tables through table and columns scan.

Step2: Building the SQL query clauses with focus on SELECT type.

Step 3: Optimization of the queries selection through clustered indexing.

Step 4: Execution of the queries noting the change in execution time or cost.

45

4.2.2 Deterministic Prioritization Algorithm Design

According to the algorithm procedure, the kind of operations performed at schema

level was similar for all of the relations such as connection management to the SQL

server. The SQL queries were generated with a purpose of fetching content from the

source relational table and then availing the collected data to transformation

operations before loading to the data warehouse. The query analysis focused on ways

of reducing the cost of query execution in-terms of actual operation time and

minimal resource usage. With this in mind a sample query was considered for one of

the users’ request to load customer data to the data warehouse. This was important in

analyzing the estimated I/O cost when a query was executed.

SELECT STCustomerID, CustomerKey, GeographyKey,CustomerAlternateKey,

FirstName, LastName, NameStyle, BirthDate, MaritalStatus,Gender,

EmailAddress,YearlyIncome, TotalChildren, NumberChildrenAtHome,

EnglishEducation, SpanishEducation, FrenchEducation, EnglishOccupation,

SpanishOccupation,FrenchOccupation, HouseOwnerFlag,NumberCarsOwned,

AddressLine1, Phone, DateFirstPurchase, CommuteDistance, MiddleName,

STStartDate

FROM newStaging_Customer sc

WHERE sc.STStartDate > '2014-01-01 00:00:00.000' AND sc. STCustomerID IS

NOT NULL

ORDER BY sc.STCustomerID

The relevance of the kind of cost selection approach depended on the database

statistics which were saved in the system catalog at the creation of the data staging

tables. During query decomposition the query was converted to relational algebraic

expression as described in the following discussion. In this scenario a single relation,

R defined by attributes or columns A = {A1, A2………., An}, and which were defined

over p and q to denote Predicates. The above query provides a conjunctive selection

with operations for users’ requested data that formed an individual query selection

applicable to every source relation used in the study experiment.

46

σp^q(R) = σp (σp(R))

Expounded in the example as

σ(STStartDate > '2014-01-01 00:00:00.000') ^ (STCustomerID IS NOT NULL) (newStaging_Customer)

= σ(STStartDate > '2014-01-01 00:00:00.000') (σ(STCustomerID IS NOT NULL) (newStaging_Customer))

Where σ stands for SELECT and ^ stands for AND

Once the query was expressed in relational algebraic expression, the processor

needed to find the most optimal strategy to execute the SQL query. The deterministic

prioritization algorithm introduced the use of clustered indexes to manipulate the

default the procedure taken by query processor to process query selections. The

selection queries utilized in the algorithm followed the first rule of heuristic

processing strategies. The rule states that any selection operation when done early, it

results in reduced relation cardinality and also reduces the subsequent processing

of that relation. Since the selection was performed on a single relation, the predicate

p involved only the attributes in the selection clause.

σp(R) where p ∈ {A1, A2………., An}

Expounded in the example as

σ(STStartDate > '2014-01-01 00:00:00.000') (newStaging_Customer) where STStartDate ∈ {

STCustomerID, CustomerKey,………., STStartDate }

The sequence for adding the clustered index to each table based on the newly created

(derived and distinct) column was discussed to bring out the cost estimation for the

converted relational algebraic expressions of the queries used. This aimed to depict

how this procedure ended up to be the optimal strategy chosen for all proceeding

47

data staging queries. The SQL server uses formulas to estimate the cost of a number

of strategies and chooses the most efficient of them all based on reduced cost. In

query processing the query cost is highly concerned with disc block accesses or hits

rather than memory accesses which are managed by cache memory.

The success of estimating the size and cost of resulting relational algebra operations

depended on the amount and currency of the statistical information that the SQL

Server had generated at the time of experiment. The clustered index was based on

and not limited to a single external column, An that was added in every table scan

during the building of the selection query. This had two advantages where the index

needed not to be recompiled every time it was run and any change in the source

relation’s attributes at runtime would not interfere with the clustered index generated

or cardinality of the query.

For each base relation R | R ∈ Schema

 nTuples (R) represent number of rows in relation R forming its cardinality

 bFactor (R) represents the block factor of relation R meaning the number of

rows that form one block

 nBlocks (R) represents the total number of blocks generated on relation R

This results to an equation that calculates the number of disk block accesses, nBlocks

in relation R which in essence represents the division of the select operation on small

operation chunks.

nBlocks (R) = nTuples (R) / bFactor (R)

The greatest advantage of query formation in terms of these blocks comes out clearly

when a scheduler plan is employed mainly during runtime to determine the sequence

of processing. For instance if the opportunistic scheduling algorithm is implemented,

the number of blocks, nBlocks (R) represent quantum for the round robin algorithm.

This scheduling algorithm is best suited for large data sets and it is very efficient in

48

queue and parallel transaction processing. In this case each block is given equal share

of time or slices as per the number of blocks until the entire query is completely

executed.

The procedure to build the select clause of the Selection query continues deeper into

the attributes of the relation R. The cycle is nested such that for every relation R, the

all the attributes are collected. This is represented as follows.

For each attribute A of base relation R| A ∈ R and A = {A1, A2………., An}

 nDistinctA (R) represents number of distinct values for column A in relation R

 nNullA (R) represents number of null values for column A in relation R

 SCA(R) represents the cardinality of selection of column A in relation R for

those rows that match the selection criterion.

This analysis on relation attributes helped to determine the confidence levels of the

columns and their capability of constituting a candidate key. Their strengths would

guarantee prioritization of these attributes in the creation of the clustered indexes.

SCA(R) = nTuples(R) / (nDistinctA(R)) * nBlocks for A in {A1, A2………., An}

negating obsolete attributes nTuples(R)/ (nNullA (R))*nBlocks for A in {A1,

A2………., An}

This results with only the required and determined attributes that satisfy the requests

of the user to form a selection clause and hence the process ends up being

deterministic. The prioritization of individual columns that were of high confidence

levels was done by addition of clustered indexes based on those columns. This meant

that in every relation an index was generated as described below.

For each index I of base attribute A | I ∈ A and A = {A1, A2………., An}

 nLevelsA(I) represents the number of levels in I meaning number of attributes

that satisfy to be added as clustered index. The assumption within the study

49

was using n=1, where the clustered index was on a single attribute (the

derived distinct column).

This resulted in the following SQL query for the addition of the named clustered

index to a relation R.

CREATE CLUSTERED INDEX I ON R (A)

Expounded in the example as

CREATE CLUSTERED INDEX IX_ newStaging_Customer

ON newStaging_Customer (STStartDate)

In conclusion, the selection operation in the relational algebra demonstrated in the

algorithm worked on a single relation R. The result set after selection formed a new a

relation, S containing only those records of R that satisfy the specified predicate as

per the user request. Hence this narrows down to S = σp(R). The optimal strategy

considered as per the clustered index added above is equality condition on clustering

(secondary) index. The estimated I/O cost of this strategy for the entire Selection

operation is summarized as follows.

Estimated I/O cost = nLevelsA (I) + SCA(R)

If the predicate condition of the query involves an equality condition on column A,

that is not the primary key , then the index is used to retrieve the required records.

4.2.3 Deterministic Prioritization Algorithm validation

The following Calculations are used to validate the algorithm. The values are based

on database statistics provided by the system catalog for the relation

newStaging_Customer which was investigated after clustered index was employed.

The database statistics are illustrated in figure 4.1 after the clustered index was

created in that relation.

Index size = 4, Index depth = 3,

nBlocks = 424, nTuples = 18484

50

Figure 4.1 Database statistics for the Index on newStaging_Customer

bFactor (R) = nTuples (R) / nBlocks (R)

bFactor (R) = 18484 / 424 = 43.594

 nLevelsA (I) = (Index Depth/ Index size)

nLevelsA (I) = (3/ 4) = 0.75000

SCA(R) = nTuples(R) / (nDistinctA(R)) * nBlocks

SCA(R) =18484/(18484)*424 = 0.00236

Estimated I/O cost = nLevelsA (I) + SCA(R)

Estimated I/O cost = (0.75 + 0.00236) = 0.75236

The estimated operation cost as per the SQL server on the same query was 0.74461

Error Margin = (0.75236 - 0.74461) = 0.00775

This indicated an error margin of 0.00775 that was almost negligible when compared

to the actual operation time of the SQL server. The strategy was thus selected as the

optimal query optimization by the query processor.

51

4.2.4 Priori Analysis of the algorithm

Upon creation of the SQL query commands generated in a cyclic manner depending

on the number of tables that were extracted from the source systems, the queries

were passed to the control flows of the SSIS tool. Each control flow represented data

flow from one source system hence the number of control structures varied with

number of relations available. The start and end task of each control flow

representation had some scripts added that measured the performance of the

algorithm by recording execution time and stored it on specific variables. The

performance of the algorithm assumed that all other factors remained constant such

as disk space, number of processors and processor speed. More tests were carried

comparing on performance of the new algorithm over existing solutions such as:-

a. Checking different file formats and data types from the source systems e.g.

flat files, relational tables in files. The relational OLE-DB databases were

highly used for movement of data from source systems to target systems.

Extraction in relational databases was quite fast and easy to measure the time

factor of the algorithm complexity.

b. Horizontal or Column and Vertical or row based data store to exploit which

method used less disk space. The space factor of the algorithm complexity

was not affected since the data processing space was not increased or

decreased.

c. Compared existing scheduling algorithms strategies and their reported

performances:-

i. Scheduling data transfers and batch processing – job queues existed

but no predefined order of execution was noted in existing

frameworks.

ii. Pre-fetching data/Cache storage – The tests depended on system

operating system to manage the cache history

52

iii. FIFO – Mode of handling fast growing data with minimal delays.

Limitations observed were due to the latency introduced by incapable

legacy systems.

iv. Minimal cost – The suggested solution for handling small data levels.

v. Round robin – The strategy suggested for handling large amounts of

data with processes depending on a quantum or time slice.

4.2.5 Posterior Analysis of the algorithm

The deterministic prioritization algorithm was implemented using C# Programming

language. This is an object oriented programming language that builds applications

that run on systems that have windows operating systems. There were several scripts

that were attached to the major phases of the ETL as represented by the SSIS tools

that contained the experiment. The scripts captured the Start and End time after

execution of the Extraction, Transformation, Staging, and Loading processes. The

execution time recorded was recorded in a log file that was accessed after the

experiment run was complete depending on the number of times the tests were

performed.

The difference between the End and Start times provided a delta change that was

compared to the average performance of the algorithm. This was graphically

represented to provide a more vivid look at the performance after the new

improvement introduced by deterministic prioritization algorithm.

4.3 Statistical Analysis of Raw Data used in the study

4.3.1 Source of Data used in the study

The research data was obtained from available online samples provided for research.

The focus was to obtain large data from heterogeneous data sources. The procedures

undertaken were to demonstrate the binding of data obtained from different sources,

performing the ETL operations and fed data to the data warehouses. Projecting

towards the research problem, the transfer issue needed to be highlighted in the

created scenario. Firstly, there was need to clearly and correctly show from the set

53

scenario that a problem existed before any improvements were carried out. This

would show the relevance of putting much effort in generating the new algorithm

that would solve the problem demonstrated. The data flow process from the sources

was depicted clearly where data staging came in handy at the central processing

region. To further understand how the actual data moved from the sources to the data

warehouses, there was need to investigate the structure of these sources. The source

data form source applications was directly linked to the data extraction process and

thus data was availed in varied formats and types. The deliverable for this activity

was having a simulation model of the existing situation from one or more data

sources. The selected data source was entity related and the relationships between the

tables were shown by link joins on key or unique identifiers. Furthermore, to

understand data organization on these tables, data modelling was found suiting and

most fitting to explain the underlying table designs. The data dimensional modelling

procedure was helpful in deriving data models and relational attachments tied to the

entities dealt with.

4.3.2 First Scenario

Since the research methodology stated in research design was by Experimentation,

there was need to demonstrate the current situation within ETL processes. The tests

performed depicted the flow of data from source to destination while the data stage

was located within the data transformation. To illustrate the tests, the SQL Server

Integration Services (SSIS) tool was used since it had the business intelligence

management studio component. This tool was readily available as an upgrade

package for the Standard and Enterprise edition of the Microsoft SQL server.

The aim of the test was to view and report on Products sold to customers from

different geographical regions over a period of time. The data source used was

AdventureWorksDW2008R2 database available for download from Microsoft

Website. The figure 4.1 shows the data modelling diagrams generated after

dimensional modelling in the analysis phase.

54

DimCustomer
CustomerKey

GeographyKey

CustomerAlternateKey

Title

FirstName

MiddleName

LastName

NameStyle

BirthDate

MaritalStatus

Suffix

Gender

DimDate
DateKey

FullDateAlternateKey

DayNumberOfWeek

EnglishDayNameOfWeek

SpanishDayNameOfWeek

FrenchDayNameOfWeek

DayNumberOfMonth

DayNumberOfYear

WeekNumberOfYear

DimGeography
GeographyKey

City

StateProvinceCode

StateProvinceName

CountryRegionCode

EnglishCountryRegionName

SpanishCountryRegionName

FrenchCountryRegionName

PostalCode

SalesTerritoryKey

DimProduct
ProductKey

ProductAlternateKey

ProductSubcategoryKey

WeightUnitMeasureCode

SizeUnitMeasureCode

EnglishProductName

SpanishProductName

FrenchProductName

StandardCost

FinishedGoodsFlag

Color

SafetyStockLevel

DimProductCategory
ProductCategoryKey

ProductCategoryAlternateKey

EnglishProductCategoryName

SpanishProductCategoryName

FrenchProductCategoryName

DimProductSubcategory
ProductSubcategoryKey

ProductSubcategoryAlternat...

EnglishProductSubcategoryN...

SpanishProductSubcategory...

FrenchProductSubcategoryN...

ProductCategoryKey

FactInternetSales
ProductKey

OrderDateKey

DueDateKey

ShipDateKey

CustomerKey

PromotionKey

CurrencyKey

SalesTerritoryKey

SalesOrderNumber

SalesOrderLineNumber

RevisionNumber

OrderQuantity

UnitPrice

ExtendedAmount

UnitPriceDiscountPct

DiscountAmount

ProductStandardCost

TotalProductCost

SalesAmount

TaxAmt

Freight

CarrierTrackingNumber

CustomerPONumber

Figure 4.2 Dimension data model

The dimension data model shown above is a star-schema. It has a fact table named

“Fact Internet Sales” connected to the related six dimensional tables .The fact table

contained all the dimension tables’ surrogate keys which formed its composite key.

Each dimension had a distinct primary key that uniquely identified the records per

entity while others were snow-flaked to deeper levels generating new dimensions but

maintained the foreign relationships.

4.3.2.1 Issues found from the dimensions

The following issues were observed and formed the variables to be measured in data

modelling and analysis.

55

i. Redundant columns due to regional difference i.e. Education and Occupation

were given for different regions i.e. English, Spanish and French. This

reduced confidence levels of the column to be a candidate key.

ii. Nullity Measure of columns – Some columns did not have data at all yet they

occupied resources.

iii. Column Confidence Levels – Measured columns for their capability to be

Candidate Keys. This was shown by the distinctiveness of the columns.

4.3.2.2 Individual Table examination in the developed scenario

The tables from the data model were further examined to understand the indexing of

columns in the table structure using the identified variables obtained above. Using

SSIS each table data was extracted and attached to the SQL Server data source and

then migrated to an Excel workbook target. The figure 4.2 was a snapshot of

migrating Customer table using the tool.

56

Figure 4.3 Export of individual tables to the Excel Workbook

4.3.2.3 Table structures Examination results

The following were the findings of measuring the variables against each table to

determine the priority of the columns used as main reference points of a full data

load to the warehouse. Filtering of table columns in data staging process required the

determination of their levels of nullity. The nullity factor was combined with

removal of obsolete columns that were never used anymore at the target systems.

The following query was used to collect null levels of columns for each table

examined.

SELECT COUNT(*) - COUNT(EndDate) Nulls, COUNT(EndDate) NonNulls

FROM DimProduct

Table 4.1 Customer Dimension

Column Name T itle Suffix AddressLine2 CustomerKey CustomerAlte rnateKeyAddressLine1

NULL Columns 18383 18481 18172 0 0 5686

Distinct columns 101 3 312 18483 18483 7111

T ota l Rows 18484 18484 18484 18483 18483 12797

Nullity Percentage % 99.4536 99.98377 98.31205367 0 0 44.43228882

Distinct Percentage % 0.54642 0.01623 1.687946332 100 100 55.56771118

 CUST OMER T ABLE SUMMARY

57

Figure 4.4 Customer Dimension Columns Analysis

CustomerKey and CustomerAlternateKey qualified to be the candidate Keys for this

dimension due to their high confidence levels and their distinctiveness as shown in

figure 4.3. The table 4.1 had two unique keys in order to separate between the

children relations associated with Customer’s dimension.

Table 4.2 Geography Dimension

Column Name GeographyKey City

NULL Columns 0 0

Distinct columns 655 562

T ota l Rows 655 655

Nullity Percentage % 0 0

Distinct Percentage % 100 85.80153

 GEOGRAPHY T ABLE SUMMARY

58

Figure 4.5 Geography Dimension Columns Analysis

GeographyKey and City columns were determined to be the candidate Keys for this

dimension due to their high confidence levels and their distinctiveness as seen in

figure 4.4.

Table 4.3 Date Dimension

59

Figure 4.6 Date Dimension Columns Analysis

DateKey and FullDateAlternateKey qualified to be the candidate Keys for this

dimension due to their high confidence levels and their distinctiveness in comparison

to the other columns as observed in figure 4.5.

Table 4.4 Product Dimension

Column Name ProductKey ProductAlte rnateKey ProductLineClass

NULL Columns 0 0 226 276

Distinct columns 606 606 4 4

T ota l Rows 606 606 606 606

Nullity Percentage % 0 0 37.29373 45.54455446

Distinct Percentage % 100 100 0.660066 0.660066007

 PRODUCT T ABLE SUMMARY

60

Figure 4.7 Product Dimension Columns Analysis

ProductKey and ProductAlternateKey qualified to be the candidate Keys for this

dimension due to their high confidence levels and their distinctiveness. For instance

the degree of distinct column ProductKey was 100% as noted in figure 4.6.

Table 4.5 ProductCategory Dimension

Column Name ProductCategoryKey ProductCategoryAlte rnateKey

NULL Columns 0 0

Distinct columns 4 4

T ota l Rows 4 4

Nullity Percentage % 0 0

Distinct Percentage % 100 100

 PRODUCT CAT EGORY T ABLE SUMMARY

61

Figure 4.8 Product Category Dimension Columns Analysis

ProductCategoryKey and ProductCategoryAlternateKey qualified to be the candidate

Keys for this dimension due to their high confidence levels and their distinctiveness

as seen in figure 4.7.

Table 4.6 ProductSubcategory Dimension

Column Name ProductSubcategoryKey ProductSubcategoryAlte rnateKey

NULL Columns 0 0

Distinct columns 37 37

T ota l Rows 37 37

Nullity Percentage % 0 0

Distinct Percentage % 100 100

PRODUCT SUBCAT EGORY T ABLE SUMMARY

62

Figure 4.9 Product Subcategory Dimension Columns Analysis

ProductSubcategoryKey and ProductSubcategoryAlternateKey qualified to be the

candidate Keys for this dimension due to their high confidence levels and their

distinctiveness as seen in figure 4.8.

Table 4.7 Internet Sales Fact

63

Figure 4.10 Internet Sales Dimension Columns Analysis

The composite key for the above fact table was generated as a combination of all the

foreign keys (Surrogate keys from related tables) together with the

SalesOrderNumber column. Each of the dimensions was represented in the fact

based on the associative key as demonstrated in figure 4.9.

4.3.2.4 Significance of table structure examination

The main aim of examining the table structures of data sources was to understand the

table designs with regard to uniqueness of data stored within the tables. The data

selection during search within the tables was based on the primary keys set on each

table. Since the user queries were dynamic, there was need for creation of procedures

to collect the most vital data. This would be based on several factors that needed

optimization namely;

 Relevance of the data to transfer

 Previous common selections procedures

 Actual data demands by presentation users

 Maintaining integrity of the data association after selection and transfer.

64

The goal was to figure out if there was a predetermined sequence of data selections

from the sources that could be noted after deeper analysis. It wanted to establish if

there existed filtering mechanisms for certain data as inclined to the business

processes of a sales environment and whether this sequence would build some

intelligence to determine future selections.

Based on the data content and selection queries obtained from the data warehouse

users, the table columns confidence levels were noted to be deterministic in

collection of data i.e. selecting only data that is needed and minimizing duplication

of data at the data warehouses.

There was need to maintain the entity relationships at the destination side to match

those set in the data sources. The integrity of loaded data would be termed correct

when their original relationship is also depicted and maintained at the target systems

accordingly. This would help to mirror single systems available at the sources and

the business users would not identify the difference at operational level.

4.4 Demonstrate Data Staging within ETL Process

The experiment was set-up and prepared using the SSIS tools. The graphical design

involved adding data control flow diagrams that simulated the actual data flow from

the sources to the destination. Further configurations were done in the backend where

the new algorithm was implemented within the data control structures on every ETL

stage with addition of execution scripts. The experiment diagrams are shown in

figure 4.10, figure 4.11, figure 4.12 and figure 4.13.

65

Figure 4.11 Demonstration of all ETL phases in experiment simulation

Figure 4.12 Demonstration of part of extraction process from experiment

66

Figure 4.13 Demonstration of part of staging process from experiment

Figure 4.14 Demonstration of part of loading process from experiment

4.4.1 Scenario setup

The data sources used in the project were added and connection was created using

the various installed connection managers such as SQL Server Native Client 10.0.

The connection manager depended on the type of the data source e.g. OLE_DB

Source used the Native OLE_DB SQL Provider.

The data was cleaned to remove any “dirty data” such as repetition, duplicates and

obsolete fields. More transformation tasks could be added in the scenario later such

as sorting, merging, conversions, deriving new columns, e.t.c. In the simple setup the

study added one transformation task for deriving new columns as illustrated in figure

4.14.

67

Figure 4.15 Transform Task

More data conversions could be done here to prune the output as per organization’s

customization before it could to be moved to the data warehouse. The project setup

was a Microsoft Visual Studio package that was executed to measure performance

and efficiency variables. Several scripts were included in the project to collect the

variable changes over the number of times the tests were executed. The tests

carried out were based on the data staging tables’ approach where the extracted data

from the sources was stored in staging tables. The study showed the change

introduced when the Deterministic Prioritization approach was used in the setup.

System properties

The tests were carried based on AdventureWorksDW2008R2 database which was

freely available for download from Microsoft website link

http://msftdbprodsamples.codeplex.com/releases/view/59211

The Computer system used had the following specifications shown in the figure 4.15.

68

Figure 4.16 System specifications

69

4.4.2 Situation before enhancement

The test scenario environment utilized three databases to simulate the production

environment to separate operations and tasks. The reason for this was that the data

had dynamic state and to note its change at different times, one needed to store it in

separate locations. This was keenly implemented in the ETL process.

i. Source databases – From the AdventureWorksDW2008R2 database

ii. Staging database - Had Raw and staged tables

iii. Data warehousing database - For final loading and presentation purposes.

Running the scenario

When the setup project was run, the process execution order started with the

Extraction stage and the components found within each stage ran concurrently before

moving to the next stage as shown in figure 4.16 and figure 4.17.

Figure 4.17 Scenario execution

70

Figure 4.18 Expanded view of Scenario execution

A log file was created after complete ETL iteration when running the project since it

had information on the variables to measure.

4.4.3 Situation After enhancement

Deterministic and Prioritization approach (DP) had been utilized throughout the ETL

process as discussed below. The same setup used in the demonstration of before

enhancement had been used to illustrate the improvements made when the new

proposition was in place.

71

4.4.3.1 Deterministic and Prioritization Implementation

The new algorithm that was described in chapter three was based on two concepts

namely; Determinism and Prioritization. These key concepts were covered

exclusively especially on their role to provide an amicable solution to the underlying

problems noted within data staging area.

Firstly, the term deterministic means the nature of retaining of state by a procedure

when given the same inputs, it yields the same output with the exception of running

cost. With regard to the analysed data, the key to data to be loaded to the data

warehouses relied on data selections as per user needs. Occasionally, not all data

from the sources was loaded to the warehouses depending on the nature of operations

within the ETL processes that filtered out some data. All these activities either were

controlled by the needs of business users at the destination systems or the

customizations of available data staging frameworks under which filtering was done

with a purpose. These limitations could only be visible after analysing the data

sources structures as well as destinations systems structures.

However, since the data flow was unidirectional from the data sources to target

systems, the nature of transfer considered which data was transferred from one phase

of ETL to the next. Reducing on the amount of data involved in these transactions

would mean applying several functions to filter out data exclusively from the load

capacity. Through data modelling the scanning of the table structures illustrated the

data attributes with regards to the columns arrangement, importance (confidence

levels), and their relation to within and without other relations.

The external binding would later form the relational model of a database system.

Although the physical aspects of the data as regards the diagrammatic representation

shown from the experiment setups and configurations remained constant, the

approach was deterministic in nature; same input gave same output results. The idea

was to have a way of determining and deciding beforehand which columns of tables

were to be used in creating the staging tables after extraction process. The knowledge

72

on table columns’ confidence levels and access levels was necessary to build some

intelligence prior enough to the loading process hence determining what to migrate

to the data warehouse. Since the filtering of data by columns was done specifically

by organizations that had customized frameworks, the study extracted all the data

from the sources as is and transferred it to the data staging area for further

manipulations as per the new algorithm.

Secondly, the term prioritization means evaluation of a group of items and ranking

them in the order in urgency or importance. The most ranked data is said to be of

high priority and the urge to transfer it to the data warehouse faster than the low

priority data. To achieve this there needed to have mechanisms of informing the

systems on how to handle the different levels during transfers. The prioritization

algorithm affected the logical aspects enforced with respect to the business rules of

an organization thereby maintaining the dimensional model. The data staging area

was to be optimized to run its operations in a timely fashion and with ability to run

multiple tasks at the same time, concurrency could be achieved. Upon knowing what

kind of data needed to be loaded to the data warehouses through the staging area,

priority was to be given to such data to speed-up its availability to the requesters on

the target systems, while the low priority data followed suit.

The general problem was how to separate the data based on priority at loading time

considering the high number of query data requests and the growing number of rows

per table. The algorithm established a way of changing the speed to query executions

which was implemented by adding indices to specific columns of high priority. The

query execution would therefore speedup based on the clustered indices added to the

table under scrutiny. The power behind indexing as a solution to priority issue was

the ability to manipulate the order in which SQL queries were handled during

execution.

73

Prioritization by indexing specific columns

Most often, the staging tables were generated through execution of SQL query

commands, and this strategy implemented prioritization of the selection columns by

using named clustered indexes. New distinct derived columns were added to each

staging table and they were used to create indexes. The advantage of using these

external columns generated only at runtime was that they did not affect the data from

the source in any way ensure consistency and also the relationship of data from the

sources was maintained.

Figure 4.19 Clustered index

The figure 4.18 demonstrates how prioritization was achieved for one of the tables

named newStaging_Customer”. A clustered index was created and given a name

“IX_newStaging_Customer”. The priority was set on the derived unique column

named “STCustomerID” on that staging table named “newStaging_Customer”.

Moreover, the created index is not limited to only one column as shown in figure

4.18. It could include either new columns or existing columns. The newly defined

index hinted the change in order of execution of the Data Definition Language

(DDL) queries submitted to the query server. The resulting impact was to override

the server’s query execution plan.

A query execution plan has an ordered set of steps used to access data in a SQL

relational database management system. The plan represents how data flows from

child operators to parent operators in a form of tree structure. The query execution

plan depends on the query optimizer. The query optimizer is a feature of database

74

server that attempts to determine the most efficient way of executing a given query.

The query optimizer checks for the best plan before passing the query to the query

executor that gives the results after firing. Before adding the clustered index to the

table, the order of query execution is controlled by the Primary key which is a unique

identifier added upon table creation. After adding the clustered index to the table, the

query optimizer suggests a better and efficient plan for query execution over the

original plan of using the primary key. Prioritization by distinct columns enhanced

the efficiency and performance of the query execution plan on the server during

query search by adding hints. This resulted in optimized selection costs yet

maintaining the quality of data to the data warehouse. The optimal measure of

change by use of hints to prioritize data columns in the selection query was

demonstrated as in figure 4.19.

75

Figure 4.20 Optimized Query Execution plan

STCustomerID was the newly derived column while CustomerKey was the Primary

Key for the table. The index was created on the derived column to show the

difference with the primary key column.

Figure 4.21 Demonstration with new clustered index

76

Figure 4.22 Demonstration with previous primary key

77

The figures 4.19 through figure 4.21 illustrate the contrast on selection queries on

tables with clustered indexes and without. The focus is on the Estimated Operation

Cost. This shows the percentage cost taken by the operator in this case it is the

SELECT operation. This is also associated with the resource I/O and CPU

availability. It helps to determine if the query is I/O or CPU-intensive.

The graphical demonstration of the Actual execution plan indicates that the

Operation cost when the tables make use of clustered indexes to prioritize data

selections is lower than without hence the use of this concept in prioritization

algorithm.

Test results using the scenario in SSIS tool

The situation before enhancing was simulated and yielded the following results that

were recorded when the scenario was run for fifteen times recursively. The reason

for running the tests for multiple times was to see whether the results of each test

were consistent in order to draw a conclusion on the performance of the new

algorithm. Another reason was that the experiment depended on measured variables

to draw conclusion. The change in values to these variables depended on the

resources available for the system on which the experiment was done. I real-life

situations some resources would be free at different times and hence the need to

observe the change in performance at different times after runs. The comparison of

the results was separated into two scenarios i.e. the situation before enhancement and

the new situation after enhancement.

78

Comparing all stages of ETL processes before and after enhancement

The figure 4.22 is a line graph illustrating the performance levels for all ETL

processes combined showing situation before and after enhancement.

79

Figure 4.23 Compare all ETL processes

The figure 4.23 was an illustration of the current situation after enhancement for all

stages of the ETL process.

Figure 4.24 After enhancement ETL processes

Comparing Individual stages of previous and current situations in ETL

processes

The following was an illustration of the individual comparison per stage of the ETL

process to have a clear view of the improvement performed. Explanation for each

comparison followed for every illustration. The negative sign indicated that it was in

the reducing direction thus showing the enhancement had taken place by reducing

time taken in execution of a task.

80

Figure 4.25 Extraction phase

The time taken for extraction using deterministic prioritization algorithm had

reduced by 3.04% compared to the previous extraction time as shown in figure 4.24.

81

Figure 4.26 Staging phase

The time taken in staging area using deterministic prioritization algorithm had

reduced by 2.66% compared to the previous extraction time as shown in figure 4.25.

82

Figure 4.27 Loading phase

The time taken in loading using deterministic prioritization algorithm had immensely

reduced by 93.44% compared to the previous loading time as shown in figure 4.26.

This was attributed to the fact that the number of operations that took place at this

stage being minimal and less traffic to the destination targets for the data which were

the data warehouses. However, with increased traffic of data especially over the

network, the loading time percentage might reduce further.

83

4.5 DISCUSSION

The implementation of the new algorithm of deterministic prioritization showed

massive improvement in terms of performance and data quality selections. According

to the conceptual framework, the set of procedures outlined the operation of the

proposed solution which indicated the different roles carried out within ETL

processes. This was advantageous because the complexity of designing new staging

frameworks in future was abstracted from the general users of data warehouses. The

solution called upon the optimization of the order of query execution by changing the

default order of execution that was based on unique identifiers generated at table

creation. With massive data requests coming from the business users through query

commands executions, the query optimizer became inefficient. The requirement of

having data warehouses that were business intelligent, created the roadmap of

generating an algorithm that would be cost efficient and add to the existing

knowledgebase. The aim was to find the best procedures of collecting the data from

the source systems, and performing operations that would optimally load the selected

data to the data warehouses. The proposed solution compared relatively to the

research by Costel, Marius, Valentina, and Octavian (2014) on the query execution

and optimizations in the MSSQL server. They found out that missing indexes in a

table resulted in low performing query executions.

With the introduction of clustered indexes, the study was changing the default order

of SQL query server’s execution plan. This manipulated on the execution plan

resulting in better and guaranteed performance as long as data was always readily

available for loading in good time. Cecilia and Mihai (2011) agreed to this proposed

solution because they indicated that the use of indexes on database queries improved

the performance of the whole system. Most of the highlighted processes were sought

to be repetitive and were being activated when new data was realized and was ready

to be loaded to the data warehouses. The run of the algorithm impacted positively the

results obtained after running the tests. It was possible to measure the performance of

the algorithm from different stages of ETL processes and compare the performance

84

with previous existing systems. In particular, there was research that had been done

by El-Wessimy, Mokhtar, and Hegazy (2013) with tests on scheduling algorithms.

They tested several techniques to measure time taken throughout the ETL processes.

The observation noted from their research work was that there was reduction in time

taken to transfer data in each stage. This compared greatly with the study results on

enhancing data handling yielding fast accesses.

The results were demonstrated per every stage and they indicated reduction in the

execution times. Within the extraction phase, the results showed an impressive gain

of 3.04%. There was more room for improvement on the extraction time if the

collection of data was pre-determined and repetitive in every cycle. This would mean

reduced procedures of determining which data to collect every time the cycle was

performed. The limitation of the test carried in this section was collecting all the data

from the source tables so as to maintain integrity of data. The time taken for data

manipulation in the staging area reduced by a rate of 2.66%. Considering that the

staging area being the working space during data transformation, many operations

were involved. The scheduling plans allowed the delivery of data immediately it was

staged in the staging tables unlike before where it was put in a queue awaiting batch

processing. The declining implementation of batch processing within job execution

made the study to dwell in parallelism mode of execution which was supported by an

object oriented programming language and ended to be fast.

Finally, the availing of data to the data warehouses and data marts depended on the

sequence at which staging was performed. The faster the staging the faster was

loading process. Moreover, the loading phase had minimal tasks to perform and this

was clear in the results of the study that showed execution time reduction of up to

93.44%. Depending on the architecture and setup of the data warehousing

environment, the values of the results performed would change. With proper

configurations the impact of implementing the algorithm would match the suggested

results or exceed further. With tests on higher performing hardware, the results

would be even more impressive.

85

CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

Data staging area is part of the data warehouse techniques of improving data

handling when migrating it to the data warehouses. The previous researches as

reviewed in existing literature had partly covered on the enhancing data staging to

realize fast working data warehouses. Most authors focussed on the general data flow

targeting quality assurance with few discussing the speed and performance of data

staging area. Many advances in hardware have created a pool of resources available

to meet current data needs but with the rate at which the data sizes continue to grow,

these resources may not be enough to guarantee performance stability in future. In

most cases due to incompatible legacy systems, it definitely ends up being

compromised. The proposition to enhance data staging was to provide a lee way for

future developments in this area that could scale well to new technologies without a

complete overhaul of the improvements suggested in this study. The aim was to have

the deterministic prioritization algorithm deployed in a production environment to

improve on the data handling performance especially on access and retrieval. The

benefits were observed mostly in large data sets where retrieval had for long been a

bottleneck characterized by network jamming and slow data flow resulting to almost

deadlocked systems.

The problem emanated in the existing systems at the data selection point with regard

to incremental loading situations. After the initial full data load, the consequent ETL

processes were done as increments of the full load. To distinguish the changed data

in time, several methods that were used relied on checking the timestamp at which

the change occurred and storing this data in the database for consideration in future

loads. The new systems, took the advantages of the deterministic prioritization

algorithm to provide advancements by prioritizing only the changed data. It became

more specialized in operation since the recursive clustered index ran comparison on

86

the previous loads before determining the next data loads. This became a merit in the

study by saving computation time and resources especially in fast growing data.

Other than the enhancement that was introduced, it was suggested that continuous

monitoring of the database servers be performed regularly so as to identify the trend

of data growth. The technological improvements proved within the ETL phases

suggested an overall change in the field of data warehouses. The reason for this was

that it would be important to compare the impact on performance for the proposed

and tested solution over older and newer distributed database systems. One of the

roles of this study was to provide a guideline to the data warehouse and business

intelligence experts during the design of a staging location within the ETL processes.

This purpose was achieved based on positive experimental results analysed in the

previous chapter. It highlighted the necessities of pre-determining the expected data

loads, ways of prioritizing them and optimizing the query execution plans. The key

skills needed were on creation of the clustered indexes and ability to interpret the

output generated from the query executions plans.

El-Wessimy, Mokhtar, and Hegazy (2013) indicated that one of the old algorithms

being in use in data staging was First In First Out strategy (FIFO). It collected data

from the sources as soon it was ready and transferred it to the destination. There was

no business intelligence added thus the initial copy was similar to the one at the

destination systems. For data to be of great use in the decision making at the data

marts, some processing was required where filtering unwanted data helped reduce

bandwidth use in transfers. The enhancement came in handy in implementing the

business intelligence required for a simple test setup that was ready for the

production environment.

This was supported by the fact that a small change in data staging had massive

change in the loading phase and the ETL process as a whole. The stages correlated

well in the configurations; therefore, there was no biasness since the different parts

were not examined separately.

87

5.2 Summary

This research work was started to face a real-life problem that existed in most of

organizations whose daily transactions were enormous resulting in large volumes of

data. Based on the available resources at these organizations, it became a bottleneck

to handle the fast growing data hence the need to invest more time in this research

with an aim of solving the mentioned problem. The solution provided was based on a

completely new idea that led to the development of the deterministic prioritization

algorithm, which was an addition to the body of knowledge (BOK). The main

challenge encountered in the research was selecting the best performing algorithms

that would solve the problems identified at the research site. The study was to viewed

in two perspectives where it considered what data to collect and how to speed-up the

process of loading the chosen data. Coming up with a direct solution was difficult

and could result in a complex algorithm whose performance could not be measured

or tested easily. This resulted in having a solution in two sections; where one section

covered on determining the data to collect while the other was concerned on ways of

achieving higher priority to the chosen data.

Once the newly developed algorithm was put to test, the previous hurdles were

reduced immensely because clarity in the order of operation within the ETL phases

was brought out openly through the algorithm procedures. The simplicity of the

solution indicated that the solution could be utilized with ease by experts of data

warehouse environment to aid in improving the performance of data access.

The ETL implementation procedures when performing data loads varied a lot

depending on the instance of load. For the very first time this was ran, a full load was

expected because it involved setting up the systems from scratch and also the target

system had no structures to hold new data loaded. The tables were created for the

first time and this took more time to implement when the data records spanned

several thousands of rows. This was not an exception for any new system since it had

to undergo through this activity.

88

In the subsequent runs also referred to as incremental loading, only the modified or

changed data in the sources were transferred to the data warehouse. With reference to

the performance of the new deterministic prioritization algorithm, the search criteria

were highly improved such that changed data was easily fetched and loaded to data

warehouses improving the overall system performance.

5.3 Conclusions

The data access and retrieval to the data warehouse was immensely improved as

shown from the statistics of the tests carried out in this study. Every stage of the ETL

process showed some considerable change in particular the data retrieval, processing

and loading stages. The deterministic prioritization algorithm selected the

appropriate data as per the business logic of organizations which valued data to be of

high value and priority in their daily transactions and existence. The new data was

synchronized with the already existing data depending on what was modified since

the last ETL process run. It was noted that this was a deterministic approach where

once the configurations were done on the various stages, the execution of extraction,

transformation and loading ended up to be cyclic in nature. This mode of operation

continued depending on two factors namely; the operation time of the data

warehouse without shutdown and the availability of data to load to the data

warehouses.

In cases where there was vast data to process and transfer to the data warehouses,

deterministic prioritization algorithm prioritized on the loading process. This was

achieved by manipulating on the order of query executions, thereby reordering the

flow of data to the data warehouses. The created priorities formed change of

schedule for data load. The implementation of the new solution did not add more

processing space or utilize batch job processing but rather optimized the SQL query

executions.

Since the operations within the extraction and transformation phases of ETL were

very explicit depending on the logic behind data selections, more than one operation

89

were intertwined together to support multitasking. The data was subjected to various

functions at the same time resulting in concurrent operations during the test of the

algorithm. The performance of the algorithm were depicted based n the statistics

collected for the affected variables of execution time. The data delivery from one

stage to another ended up to be in real time.

All in all the results obtained from the experimental test runs were positive and

clearly showed that with implementation of the deterministic prioritization algorithm,

there was guaranteed enhancement in the data staging area and ETL processes in

general. Improving the staging of data in the data warehouse was a progressive

process that couldn’t be concluded in one day. Several considerations had to be made

with respect to the other bounding processes in the ETL anatomy so as to maintain

data consistency and high quality data availed to the users.

5.4 Recommendations

With regard to the findings of this research it is highly recommended to have the

implementation of deterministic prioritization algorithm in existing and new data

staging frameworks at architectural level. The impact has been seen to enhance the

data retrieval and access from the sources all the way to the destinations. It will assist

in building business intelligent warehouses where it is possible to pre-determine

which data need to be loaded to the data warehouse or data marts based on the

available columns and allocating priority indexes to those columns.

The new deterministic prioritization algorithm is flexible to implement in the current

ETL and data staging frameworks for those organizations that have customized data

warehouse configurations. This has been contributed to the fact that the solution only

touches on the backend where the data fetching processes exist. The abstraction of

the strategy has reduced complexity of the interlocking relationships among tables

and this has enabled compatibility to any data formats. All the data from

organizations can now be matched after conversion using the Electronic Data

Interchange (EDI) tools. The conversion is determined by the source and target

90

systems. They can easily be incorporated in the data warehouse system. The

knowledge base required for ETL processes is limited by the availability of resources

and the users’ training.

The common behavior of data warehouse practitioners is to periodically extract data

from the transaction applications e.g. OLTP and storing it in dedicated servers that

have batch programs to transfer to destination servers then to data warehouse. This

operation is overkill since the extraction of data from the dedicated servers could

have been the base of selecting the important data to load. This could reduce

redundancies with a big margin. The enhancement algorithm was implemented using

the syntax of visual studio C# programming to complement the semantics of data

staging in transformation level. The experiment setup was on a localhost workstation

that played as a client and server. Implementing the deterministic prioritization

algorithms in an expansive networking environment e.g. cloud computing and in

relation to SAP HANA databases is a possible investigation for future work.

91

REFERENCES

Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., and Zheng, F. (2010). Datastager: scalable data

staging services for petascale applications. Cluster Computing, 13(3), 277-290.

Akkaoui, Z. E., Munoz, E. Z., and Trujillo .J. A. (2011). Model-Driven Framework for ETL Process

Development. In Proceedings of the international workshop on Data Warehousing and OLAP. pp. 45–

52 Glasgow, Scotland, UK.

Aksoy, D., Franklin, M. J., and Zdonik, S. (2001). Data staging for on-demand broadcast. In VLDB (Vol. 1, pp.

571-580).

Bamnote, G.R., and Agrawal, S.S. (2013).Introduction to Query Processing and Optimization. International

Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 7.

ISSN: 2277 128X

Bézivin, J. (2005). Survey report on the unification power of models. Software and System Modeling, 4(2):171–

188

Cecilia, C., and Mihai, G. (2011). Increasing Database Performance using Indexes. Database Systems Journal

vol. II, no. 2/2011. Economic Informatics Department, Academy of Economic Studies Bucharest,

Romania.

Connolly, T and Begg, C. (2005). Database Systems: A practical Approach to Design, Implementation, and

Management (2nd ed). Harlow, England, Addison Wesley: Pearson Education Limited.

Corlatan, Mariaus, L.,Valentina,L.,Octavian,T.(2014). Query Optimization Techniques in Microsoft SQL Server.

Database Systems Journal vol. V, no. 2/2014. PETRICICĂ University of Economic Studies, Bucharest,

Romania

Costel, G.C., Marius, M. L., Valentina, L., and Octavian, T. P. (2014). Query Optimization Techniques in

Microsoft SQL Server. Database Systems Journal vol. V, no. 2/2014. University of Economic Studies,

Bucharest, Romania.

Da Silva, M.S., Times, V.C., and Kwakye, M.M. (2012). Journal of Information and Data Management.3 (3).

Eckerson, W., and White, C. (2003). Evaluating ETL and data integration platforms. Seattle: The DW Institute.

El-Wessimy, M., Mokhtar, H. M., and Hegazy, O. (2013). Enhancement techniques for data warehouse staging

area. International Journal of Data Mining & Knowledge Management Process, 3(6).

Erhard, R., and Hong, H.D. (2000). Data Cleaning: Problems and Current Approaches. Journal IEEE Data Eng.

Bull.23 (4), 3-13.

92

Grant, F. (2012). SQL Server Execution Plans. 2nd Ed. Simple Talk Publishing. ISBN: 978-1-906434-92-2.

Firestone, J. M. (1998). Dimensional modeling and ER modeling in the data warehouse. White Paper No, Eight

June, 22.

Flinn, J., Sinnamohideen, S., Tolia, N., and Satyanarayanan, M. (2003). Data Staging on Untrusted Surrogates.

In FAST (Vol. 3, pp. 15-28).

IBM. (2016). Data staging. Retrieved from

http://www.ibm.com/support/knowledgecenter/SSFJTW_5.1.0/com.ibm.cluster.loadl.v5r1.load100.doc/

am2ug_datastaging.htm

Inmon, W. H. (2002). Building the Data Warehouse. New York: Wiley.

Inmon, W. H. (2005). Building the data warehouse. New York: John Wiley and Sons.

Kimball, R., and Caserta, J. (2004). The data warehouse ETL toolkit. New York: John Wiley and Sons.

Kimball, R. and Margy, R. (2002). The Data WarehouseToolkit: The Complete Guide to Dimensional Modeling.

Second Edition. New York: John Wiley and Sons,

Kimball, R., Reeves, L., Ross, M., and Thornthwaite, W. (2008). The Data Warehouse Lifecycle Toolkit, (2nd ed).

Practical Techniques for Building Data Warehouse and Business Intelligence Systems.

Muller, P. A., Studer, P., Fondement, F., and Bézivin, J. (2005). Platform independent Web application modeling

and development with Netsilon. Software & Systems Modeling, 4(4), 424-442.

Nanda, R. (2015). Review of Query Processing Techniques of Cloud Databases. Suresh Gyan Vihar University

Journal of Engineering & Technology. Vol . 1, Issue 2, pp.12-16

Per-Åke, L., Cipri, C., Campbell, F., Eric, N. H., Mostafa, M., Michal, N., Vassilis, P., Susan, L. P., Srikumar, R.,

Remus, R., and Mayukh, S. (2013). Enhancements to SQL Server Column Stores. ACM 978-1 -4503-

2037-5/13/06. New York, USA.

Rogers, D. (2010). Data Warehousing Architecture - Designing the Data Staging Area. Retrieved from

http://www.databasejournal.com/sqletc/article.php/3888696/Data-Warehousing-Architecture-

Designing-the-Data-Staging-Area.htm

Russom, P. (2012). BI Experts: Big Data and Your Data Warehouse's Data Staging Area. TDWI Best Practices

Report, Fourth Quarter. Retrieved from http://tdwi.org/articles/2012/07/10/big-data-staging-area.aspx

93

SAP AG. (2002). Business Information Warehouse – Data Staging Retrieved from http://scn.sap.com/docs/DOC-

8100.

Stephen, B. (2013). Staging, Statistics and Common Sense: Oracle Statistics Maintenance Strategy in an ETL

environment Retrieved from http://www.seethehippo.com/

Vassiliadis, P. (2009). A survey of Extract–transform–Load technology. International Journal of Data

Warehousing and Mining (IJDWM), 5(3), 1-27.

Zineb, A., Esteban, Z., Jose-Norberto.M., and Juan, T. (2011). A Model-Driven Framework for ETL Process

Development. In DOLAP 11 Proceedings of the ACM 14th international workshop on Data

Warehousing and OLAP Pages 45-52. ACM New York,, USA. ISBN: 978-1-4503-0963-9

