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ABSTRACT

Resistance spot welding (RSW) is one of the most widely used welding processes

for sheet metal joining, especially in the automotive industry. One of the chal-

lenges facing RSW is inconsistencies in quality of the weld. This challenge can be

addressed by implementing an on-line weld quality assessment and control. In this

study an on-line quality assessment and control model based on Learning Vec-

tor Quantization Neural Network (LVQ-NN) system and Adaptive Neuro-Fuzzy

Inference System (ANFIS) is developed.

The ANFIS model is realized for identifying the RSW dynamical system based on

given input output data. It can be used to approximate nonlinear systems with

minimum training data, quicker learning speed and higher precision.

An indirect estimation of the weld quality employing an LVQ-NN type classifier

was designed to provide a real time assessment of the weld quality.

Experiments were conducted to establish the effects of various parameters, such

as the welding time and the welding current on the quality of the weld produced.

A set of important parameters was then selected as the input data to train the

proposed LVQ-NN type classifier and ANFIS controller. Once the monitoring and

control system had been trained, it was then tested to evaluate their validity in

the RSW process.

The results show that the classifier based on LVQ-NN was able to classify the weld

quality into normal, cold and expulsion based on their corresponding dynamic

resistance curves obtained as a function of welding time. The recognition rate was

82 percent for the test data. The proposed control algorithm based on ANFIS

demonstrated robust performance reducing the number of expulsion welds by 30%

xiii



compared to the conventional controller, while increasing the number of normal

welds by 31% in RSW process.
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CHAPTER ONE

INTRODUCTION

1.1 Background

Resistance spot welding (RSW) is one of the methods for joining metals and has

been widely employed, especially in automotive industries. RSW is an electro-

thermal process, in which the electrical energy is converted to heat, which is

generated at the interface of the parts to be joined. Welding is accomplished

by passing an electrical current through the parts for a precisely controlled time

period and under a controlled pressure to form a molten nugget at the interface.

Although it has been used in mass production for several decades, RSW poses

some problems, most notably, large variation in weld quality [3]. These problems

include sources of variability, noise, and errors which are caused by factors such

as the fluctuation of power line voltages, fluctuation of electrode pressure, wear of

electrodes, variation of secondary circuit impedance and difference of condition of

workpieces surfaces.

Any of these makes it difficult to automate the process, leads to reduced weld qual-

ity, demand over-welding and increases production cost. For this reason, ensuring
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weld quality remains a major challenge and goal.

This study presents a structured and systematic approach developed to design an

effective controller that will improve the reliability of the resistance spot weld-

ing process. Due to the extensive use of resistance spot welding, even a small

improvement would bring significant economic benefits.

1.1.1 Electrical system of RSW

The parameters of the electrical system of RSW machine, such as welding current,

voltage and welding time, play an important role in the functionality and perfor-

mance of a welding machine, and subsequently influence the welding process and

weld quality. Controlling an RSW system involves control of the amount of elec-

trical energy which is delivered into the system. There are two types of resistance

spot welding machines used in modern industry, namely single phase Alternating

Current (AC) RSW and three-phase Medium Frequency Direct Current (MFDC)

RSW. The proposed research will involve the use of a single-phase AC RSW which

is predominantly used in modern industry [4].

A typical single-phase AC RSW electrical system consists of a low frequency power

supply connected in series with a pair of anti-phase silicon-controlled rectifier

(SCR) to the primary side of a step-down transformer. In the control operation, the

firing angle α of SCR is the controllable variable; its value decides the value of weld-

ing current. The process setup, that is welding machine and workpieces/electrodes

combination is connected to the secondary side of the transformer which can be

modeled as time-varying resistance and inductance elements connected in series.
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The detailed schematic of the electrical system is shown in Figure 1.1 [5, 6].

Figure 1.1: Schematic diagram of resistance spot welding

1.1.2 Weld nugget formation

In RSW process the welding nugget starts to form when sufficient heat has been

generated at work-piece interface. The size of the weld nugget diameter formed is

dependent on the resistance offered, the welding current and the welding time [3].

The electrodes exert a concentrated force on the outer surfaces of the parts to be

joined. The electrode force produces a local deformation at the common interface

to align the workpiece properly and to establish good electrical contact before

current flow. Figure 1.2 shows simplified representation of the RSW process.

The RSW process consists of four stages as follows:

1. Squeeze cycle time during which the upper electrode is brought into contact

with the sheets and a force is exerted at the region that needs to be welded.

3



Figure 1.2: Phases of resistance spot welding process

2. Weld cycle time during which current is turned on and resistance to current

flow at the sheet interface produces a nugget.

3. Hold cycle time during which the current is turned off and the fully grown

nugget is allowed to cool and solidify slowly under constant pressure.

4. Off cycle time during which the electrode is raised from the welded sheets.

It is very important that the welding parameters such as the welding current, the

welding force and the welding time are chosen correctly. There are two major flaws

that can arise from wrong choice of RSW parameters. These are cold weld and

expulsion.

A cold weld is a weld made with an insufficient amount of energy and is a conse-

quence of the welding current being too low and/or welding time being too short
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and/or welding force being too high.

A well-known defect mode in RSW is expulsion, where molten metal is ejected

from the sheet metal interface during the process. Expulsion occurs when the

diameter of the weld nugget increases to such an extent that electrode pressure

is insufficient to contain the high pressure caused by volumetric expansion of the

liquid metal. There have been studies that focus on the effect of expulsion in

RSW [7]. Since expulsion reduces the amount of molten metal available for form

the final weld, it generally leads to surface indentations and internal voids, the

latter reducing the strength of the joint [7]. Expulsion also contributes to welding

fume in the working environment.

As a consequence there is an optimal window of welding parameter selection (no

cold weld nor expulsion). The position of the optimal window is, however, de-

pendent on a variety of welding parameters that can be determined as well as on

the indeterminable parameters such as impurities, poor fit-up, oxidized surface

and electrode wear. It is therefore extremely difficult to maintain the optimum

parameters for all welds.

1.1.3 Optimum welding parameters

The optimum welding parameters can be obtained from weldability lobe diagram,

and are normally used by the resistance welder to preset the welding schedule for

satisfactory welding results. The lobe diagram is generated by experimental tests

and defines a window of welding parameters, weld current and weld times, which

produces quality welds [8].
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The formation, size and growth rate of weld depend on the welding parameters

used. Figure 1.3 shows the effect of variation of welding current on the size of the

weld nugget.

A good spot weld has sufficient diameter and nugget penetration. The minimum

acceptable diameter of weld nugget is considered to be 4
√
t, where t is workpiece

thickness [9]. Welds with smaller diameters do not have sufficient penetration and

the size of the weld is not enough to bear the calculated loads. The recommended

weld diameter is 5
√
t, and any weld nugget above this value is considered to be an

expulsion weld [9]. This value of weld nugget diameter is usually achieved slightly

under the splash limit (expulsion), where the weld nugget growth is stabilized

and small variation in the welding current or workpiece surface quality do not

significantly change the size of the weld [10].

1.2 Problem statement

Resistance spot welding (RSW) is one of the most widely used welding processes

for sheet metal joining. One of the challenges facing RSW is inconsistencies in

quality of the weld. This challenge can be addressed by implementing an online

weld quality assessment and control. One of the phenomena that causes the de-

terioration in quality is the eruption of molten material, which is referred to as

expulsion. This is undesirable and should be avoided especially when the resulting

weld is to be subjected to dynamical loading, such as in motor vehicles.

One of the strategies employed by the industries to reduce the risk of part failure

and to compensate for this variance is to increase the welding points by 20-30% [3],

6



but such over-welding results in higher costs and lower productivity.

Although some conventional quality assessment methods have been developed dur-

ing the past decade, their accuracy, flexibility and reliability remain insufficient [3].

Hence, the present work aims at combining the important aspects of intelligent con-

trol approach to ensure less variation in weld-bonding quality and improved weld

strength in RSW process.

1.3 Objectives

The overall objective of this study is to develop a robust on-line monitoring and

control system for the optimization of resistance spot welding process.

The following are the specific objectives:

1. To investigate the effect of welding current and welding time of the RSW on

the resulting weld quality

2. To design an on-line weld quality evaluation system based on Learning Vector

Quantization Neural Network (LVQ-NN).

3. To design and implement an Adaptive Neuro-Fuzzy Inference System (AN-

FIS) based controller for the RSW process.

7



1.4 Justification of the study

In the recent years, global competition in automobile industry has led to explo-

ration of better means and more efficient welding machines. In particular, a re-

sistance spot welding machine has become the predominant tool in auto body

assembly process. The strategies employed by the automobile industries to reduce

the risk of part failure and to compensate for this qualitative variance is by in-

creasing the welding points, yet such over-welding results in higher costs, lower

productivity, and expulsion [3]. Consequently, the tests of weld quality tends to

be predominantly off-line or end-of-line processes. However, to apply the destruc-

tive methods to on-line quality estimation there is often too much delay in the

collection of the information for controlling the process.

If the weld quality enhancements offered by the proposed intelligent resistance

welding system can result in reduction in the number of welds, this will lead to

lower costs, higher production rates, and less expulsion.

1.5 Outline of thesis

This thesis contains five chapters. The first chapter provides an introduction to the

research by highlighting the existing problem, the objective and the scope of the

research work. Chapter 2 is a literature review on the various methods employed

in monitoring and control of RSW process. Chapter 3, outlines the experimental

procedure for investigating the relationship between the input welding parame-

ters and the welding quality. Finally chapter 4 presents the experimental results

obtained. The conclusion and recommendations are made in chapter 5.
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Figure 1.3: Weld nugget growth curve and weldability range [1]
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CHAPTER TWO

LITERATURE REVIEW

A considerable attention has been devoted to monitoring the RSW process in order

to gain information about weld quality, and to control the process to ensure quality

welds. This is due to uncertainty associated with individual weld quality affected

by factors such as tip wear, fluctuations in power supply, etc.; a strong emphasis

is placed on improving the quality of the welds [11, 12].

On-line quality assessment has become one of the most critical requirements for

improving the efficiency and the autonomy of automatic resistance spot welding

processes. Some of the research carried out on the RSW, especially on optimiza-

tion, is outlined in this section.

2.1 Techniques used for weld quality monitoring in RSW

process

Methods developed for weld quality evaluation have followed two major trends,

namely destructive testing and non-destructive testing (NDT). A variety of avail-

able destructive testing methods are useful in order to establish weld nugget
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strength and can provide vital information on weld quality. These tests include

tension shear, cross-tension shear, twist and peel tests. However, such conventional

methods can only ensure the quality of specific spot samples and have limitations

in the widely used assembly line system [8]. In addition, the product wastage and

the labour costs incurred while performing this type of testing make this approach

unattractive.

The welding parameters such as electric current, voltage, force, displacement, and

dynamic resistance signals are the most widely used in a monitoring and control

system to evaluate weld quality [13]. Effective control algorithms can be developed

based on information obtained from the monitoring of the above stated welding

parameters.

The most common techniques employed in modern weld control systems can be

classified into four major groups namely ultrasonic, thermal force, displacement

and dynamic resistance technique [14].

2.1.1 Ultrasonic technique.

Ultrasonic technique has been explored by many researchers including Doyum et

al. [15] and Blatnik et al. [16] to estimate the spot weld quality. The consistent

results from literature is that the geometry of the weld nugget can be determined

by measuring the transit time and the attenuation of the ultrasonic wave (or echo)

propagated through the weld nugget in a direction perpendicular to the faces of

the sheet metal stack, which can then be used to estimate the quality of the

weld joint. While the ultrasonic methods have shown good promise in laboratory
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environments, from a practical point of view, acoustic sensors cannot be easily

mounted and maintained on weld guns (calibration will be necessary at regular

intervals).

2.1.2 Thermal force technique.

Thermal force technique has also been widely explored by many researchers [13,

17, 18]. Thermal expansion caused by the growing weld nugget will be felt by

the welding gun as ‘thermal forces’. This will indicate to the controller whether

sufficient weld nugget growth has been achieved. The thermal force feedback

system exploits the fact that thermal forces precisely reflect the state of the metal

during the welding process. From a practical point of view, the fundamental

drawback with this system is that the weld gun has to be structurally rigid (heavy)

so as to be able to accurately transfer (and measure) the very small displacements

to the load cell. Hence, it has only limited success on certain type of resistance

spot welding machines.

2.1.3 Displacement technique.

The displacement technique directly measures nugget formation and expansion

displacement between the electrodes [13, 19]. A number of control systems have

been based on this principle. A Linear Variable Differential Transformer (LVDT)

is typically used to measure electrode displacement. In order to avoid the noise

from the magnetic field, in some cases, the displacement is measured with a digital

optical encoder.
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Xiaoyun et al. [20] developed a method of extracting electrode indentation from

servo encoder of a resistance spot welding system, whereby an electrode was driven

by a servomotor to generate welding pressure. Weld indentation depth was then

measured by using the feedback function of electrode displacement, considering the

feedback characteristics of the servo encoder. A weld lobe based on indentation

was determined which was then used for on-line weld quality inspection according

to the indentation range.

Xianfeng et al. [21] studied the effect of electrode displacement fluctuation char-

acteristics on the quality of weld nugget produced in a RSW process, the elec-

trode displacement was measured in real time using grating displacement sensor,

and the displacement signals were then sampled by the monitoring system de-

veloped using LabVIEW software. One group of samples was welded under the

fixed electrode pressure and welding time but the different welding current, and

the fluctuation characteristics of the electrode displacement curves were mined

and analyzed. Based on the electrode displacement fluctuation characteristics,

the HMM was built with the electrode displacement as the observation and the

tensile-shear strength as the state. The simulation results showed that the maxi-

mum estimation error can be 2%, which is 3% lower than the one when performing

the same HMM simulation using the displacement curve filtered as observation

The fundamental limitation with this technique is the lack of robustness. From a

practical point of view, there is susceptibility of the signal to mechanical vibra-

tions and magnetic field fluctuations hence, affecting the accuracy of the results

obtained.
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2.1.4 Dynamic resistance technique.

Several studies on the secondary dynamic resistance have been performed. Through

these studies, the relationship between the pattern of secondary dynamic resistance

and the nugget growth has been determined for uncoated steel. While the dynamic

resistance is very promising for online spot-weld quality estimation, it has many

limitations. The fundamental issues have to do with the location of the voltage

measuring device and the increased cost of installing the monitoring device.

Based on better emerging monitoring techniques new approaches were adopted.

With the current development of measuring devices and hardware, many methods

for measuring dynamic parameters have been considered [13]. A system of mea-

suring the dynamic resistance using a microprocessor was proposed by Patange

et al. [22]. In their study, the welding current, which was detected by the cur-

rent transformer (CT) on the secondary circuit, was converted to instantaneous

dynamic resistance.

Klopcic et al. [23] studied a theoretical analysis of the dynamics of transformer iron

core saturation for a middle-frequency resistance spot welding system. For better

utilization of the transformer iron core, the author proposed an advanced hysteresis

controller (AHC), which keeps transformer iron core saturation within prescribed

bounds regardless of how unequal the ohmic resistances and diodes‘ characteristics

in the transformer‘s secondary circuits are. The unequal ohmic resistances of the

two transformer’s secondary circuits and the different characteristics of the diodes

of output rectifier lead to the magnetic saturation which, consequently, causes the

unwanted spikes in the transformer’s primary current and over-current protection
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switch-off. The proposed advanced hysteresis controller (AHC) was achieved by a

combined closed-loop control of the welding current and closed-loop control of the

iron core saturation level. A circuit model of the welding transformer with full-wave

current rectification was developed and analyzed with different ohmic resistances

and different characteristics of the output rectifier diodes which causes undesired

asymmetry of the spot welding system. It was shown that a highly asymmetric

welding system can be obtained if this differences sustain each other [23].

Kang et al. [24] developed an online quality control system for RSW, for generating

welds of a satisfactory quality. In their study the quality criterion was based on

the dynamic resistance curve, which has a particular variation tendency during the

welding process, and was employed to analyze the nugget formation and growth

process. The slope of the dynamic resistance curve was used to determine the

appearance of the first melting point. With the online detection of the first melt-

ing point, the nugget diameter could be estimated according to the heat energy

absorbed by the weld after the first melting point.

In their study the proposed online nugget diameter estimator was considered as a

nugget diameter sensor. The welding time was then determined according to the

error between the desired nugget diameter and the calculated nugget diameter from

the online nugget diameter estimator. If the calculated value of nugget diameter

approaches that of the predetermined goal within the given tolerance, welding

action was terminated.

A mathematical model of the relation between the heat energy and nugget diame-

ter, which was used for estimation of weld quality was established. Based from data

of this model an online nonlinear controller was designed and was implemented on
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a constant current control (CCC).

They showed that performance of the proposed controller was better than that

of the PID controller in terms of Overall Average Absolute Value of the Error

(OAAE).The improvement ranged from 10% to 50%. The performance of the

proposed controller was also better than of the PID controller in terms of Integral

of the Square of the Error (ISE) in most cases.

Cho and Rhee [25] monitored the process variables in the primary circuit of the

welding machine to obtain the variation of the dynamic resistance across the elec-

trodes. This allows the dynamic resistance monitoring system to be applied to

the in-process system without any extra monitoring devices in the secondary cir-

cuit. In addition, to test the reliability of such a system, an artificial intelligence

algorithm was developed to estimate the weld quality using the primary dynamic

resistance. The authors used uncoated steel welding to verify their model. They

also used shear strength as weld quality metric.

Wang and Wei [26] showed that dynamic resistance can also be obtained by taking

the sum of temperature-dependent bulk resistance of the work pieces and contact

resistances (at the faying surface and electrode-work piece interface) within an

effective area corresponding to the electrode tip where welding current primarily

flows.

Lee et al. [27] studied a quality assurance technique for resistance spot welding

using a neuro-fuzzy algorithm. Four parameters from an electrode separation

signal, in the case of non-expulsion, and dynamic resistance patterns, in the case

of expulsion, were selected as the fuzzy input parameters. These parameters were
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determined using a neuro-learning algorithm and then used to construct a fuzzy

inference system. They also used the displacement and the voltage signals as

inputs to their model. Displacement signal is not very practical in industry due

to the presence of backlash within the movements of the electrodes.

Hongjie et al. [28] presented a quality estimation technique based on Genetic K-

Means Cluster Analysis. Where the electrode displacement signal of resistance spot

welding process was monitored and mapped into a 15 by 25 element bi-polarized

matrix by means of some method of fuzzy theory. The electrode displacement

pattern matrices from different welding current were treated as gene to construct

chromosome.

The genetic K-means algorithm (GKA), which combines the simplicity of the K-

means algorithm and the robust nature of the genetic algorithm, was utilized to

realize clustering analysis and quality estimation of welded spots. The results of

the clustering analysis indicated that the electrode displacement pattern matrix

can provide adequate quality information of welded spots for machine learning.

At the same time, the results of clustering can realize quality estimation of the

resistance spot welding and also can be used as a prior knowledge to provide the

necessary support for the supervised machine learning to evaluate the weld quality.

Liang Gong et al. [29] proposed a method to determine the optimal control pa-

rameters and help to assess the weld quality. Where a causal model is built with

the offline trained Bayesian Belief Networks (BBN) as a pattern determination

net which deals with the optimal pattern of the electrode displacement, i.e. the

ideal parameter combination between the maximum electrode displacement and

its expansion velocity, to provide more reliable welding process and qualified welds.
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Podrzaj et al. [18] proposed a linear vector quantization neural network (LVQ-NN)

system to detect expulsion. The network was analyzed with different sensor com-

binations and different materials. The results showed that the LVQ-NN was able

to detect the expulsion in different materials. They also identified welding force

signal as the most important indicator for the expulsion occurrence, availability of

force signal is limited to certain types of welding guns, and they are more expensive

than other types of sensors.

They concluded that the LVQ-NN is a promising tool that needs to be further

researched in connection with expulsion detection as a basis for resistance welding

control.

Park and Cho [30] proposed LVQ-NN as well as a Multi-Layer Perceptron (MLP)

neural network to classify the weld quality by using the force signal. The authors

classified the weld quality into five categories. The results showed that the LVQ-

NN and MLP neural networks have a success rate of 90% and 95% for the test

data, respectively. The authors used shear strength as weld quality metric. Again

the availability of force signal is limited to certain types of resistance spot welding

machines.

EL-Banna et al. [3] also proposed an algorithm framework based on a LVQ-NN for

classifying the welds based on the dynamic resistance pattern for cold, normal, and

expulsion welds. The author used some features extracted from welding electrode

displacement and dynamic resistance to train the LVQ-NN for online estimating

the quality of the welds. In this work, the nugget diameter was used as a quality

indicator.
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2.2 Learning vector quantization neural network as a

classification technique

Learning vector Quantization is a neural network invented by Kohonen [31] for

pattern classification. This neural network combines competitive learning with

supervision. LVQ algorithms are related to other competitive learning algorithms

such as self-organizing maps (SOMs) [32] and C-means. Competitive learning

algorithms are based on the winner-take-all learning rule and variants in which

only certain elements or neighborhoods are updated during learning.

A training set consisting of Q training vector - target output pairs are assumed to

be given,

{s(q) : t(q)} q = 1,2,...,Q, (2.1)

Where s(q) are N dimensional training vectors, and t(q) are M dimensional target

output vectors. M is the number of classes, and it must be smaller than Q. The

target vectors are defined by

t
(q)
i =


1, if, s(q) belongs to class i,

0, otherwise.,
(2.2)

A two layer LVQ artificial neural network as shown in figure 2.1, is trained in a

supervised manner to approximate the mapping between the input vectors and

their corresponding target class.
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Figure 2.1: Linear vector quantization (LVQ) network [2]

2.2.1 LVQ-NN training rule

At each iteration one of the training vector is presented to the network as input x,

and the Euclidean distance from the input vector to each of the prototype vector

(forming columns of the weight matrix) is computed.

The hidden neurons compete. Neuron j∗ wins the competition if the Euclidean

distance between x and the j∗ prototype vector is the smallest. The j∗ element

of a(1) is set to 1 while others are set to 0. The activations a(1) is then multiplied

by W(2) on its right to get the net input n(2). This produces the output of the

entire network a(2) = n(2), since the transfer function of the output neurons is an

identity function. a(2) also has only one nonzero element k∗, indicating that the

input vector belongs to class k∗.

20



Kohonen SOM is designed to group a set of Q continuous-valued vectors into

M(< Q) clusters.

s(q) =

[
s
(q)
1 s

(q)
2 . . . s

(q)
N

]
, q = 1, . . . , Q (2.3)

The SOM thus consists of an input layer having N neurons, and an output layer

having M neurons (cluster units) arranged in some predetermined fashion. Each

neuron in the input layer is connected to a neuron in the output layer. Thus

output neuron (cluster units) j is connected to each of the input neuron through

weights wij, i = 1, . . . , N , which is referred to as the j-th weight vector. In vector

or matrix notation, we denote the j-th weight vector by

W.j =

[
w1j w2j . . . wNj

]
(2.4)

It is given by the j-th column of the weight matrix. There is a total of M such

weight vectors, one for each cluster units. Each one of these weight vectors serves

as an exemplar of the input patterns associated with that cluster. Unless some

prior information is known about the clusters, these weight vectors are typically

initialize to random values.

2.2.2 Training LVQ-NN

During the training process, each training vector is cyclically or randomly selected

and presented to the network. The cluster unit j′ whose weight vectorW.j′ matches

the input pattern x the most closely is chosen as the winner. Here two vectors are

considered closest if the square of the Euclidean distance between them, ‖x−W.j′‖2
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is the smallest. The winning unit and its neighboring units (those located in its

first and second neighborhoods) then update their weight vectors according to the

Kohonen rule. This process is continued until the weight vectors change by less

than a preset amount.

Unless the dot-product is used to measure the closeness of two vectors, the input

vector does not get multiplied with the weight vectors, as we have been doing so

far. Instead it is the square of the Euclidean distance between the input vector

and each of the weight vectors that is computed.

dj = ‖x−W.j‖2 = ‖x‖2 + ‖W.j‖2 − 2x ·W.j (2.5)

Therefore for a given input vector x, the weight vector j′ whose dj′ is the smallest

is always the one which has the largest dot-product with x only if the variation in

the magnitudes of the weight vectors can be ignored.

This happens if the weight vectors are constrained to have the same magnitude.

The general training algorithm is:

1. Initialize M weight vectors. Set topological neighborhood parameters and

learning rate, α(< 1).

2. For step k = 1, 2, . . ., do steps a - d by cycling through training set until

weight vectors converge

(a) Set input vector x = s(q), one of the training vectors.

(b) Compute for each cluster unit j = 1, . . . ,M the Euclidean distance
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dj =
N∑
i 6=1

(xi − wij(k))
2. (2.6)

(c) Find the index j′ such that dj′ is a minimum.

(d) For all cluster units j within the specified neighborhoods of j′, update

the weight vectors

wij(k + 1) = wij(k) + α [xi − wij(k)] , i = 1, . . . , N. (2.7)

(e) May reduce the learning rate.

(f) May reduce the radii that define the topological neighborhoods.

The above updating rule moves the weight vectors for the winning neuron and

those in its neighborhood towards the input vector. The amount of change is

proportional to α. In the extreme limit of α = 1, all these weight vectors are set

to the input vector.

During training, the learning rate can be decreased linearly, that is

α(k) =
α(1)

k
(2.8)

where k = 1, 2, . . . is the iteration counter.

Geometric decrease of α can also be determined by:

α(k + 1) = fα(k) (2.9)
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where 0 < f < 1, also works.

In general convergence may required many iterations through the training set.

Hence, Modeling with LVQ-NN has a considerable capability for pattern classifi-

cation based on the input data vectors. Accordingly, this method is preferred for

modeling compared to the other methods such as Multi-Layer Perceptron (MLP)

neural network and Bayesian Belief Networks (BBN) [29].

2.3 Control Methods for RSW

On-line quality assessment and control has become one of the most important

strategies for improving the efficiency and the autonomy of automatic resistance

spot welding processes.

Chen et al. [33] developed an online control of a spot welding machine using a

fuzzy adaptive algorithm. The proposed algorithm was used to evaluate the weld-

bonding quality of spot welding using a fuzzy-estimation. However, the proposed

algorithm is not industrially applicable because it requires too many input variables

and fuzzy-rules, plus it has the potential of failing at local minima because its

design point is bound to the range of tensile strength.

Lee et al. [27] studied a quality assurance technique for resistance spot welding

using a neuro-fuzzy algorithm. The author used an electrode separation signal,

in the case of non-expulsion, and dynamic resistance patterns, in the case of ex-

pulsion, as the fuzzy input parameters. These parameters were determined using

a neuro-learning algorithm and then used to construct a fuzzy inference system.
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The displacement signal is not very practical in industry due to the presence of

backlash within the movements of the electrodes.

More recently, EL-Banna et al. [3] developed an intelligent constant current control

based on fuzzy logic for RSW. The algorithm operates as a fuzzy logic controller

using a set of engineering rules with fuzzy predicates that dynamically adapt the

secondary current to the state of the weld process. The quality of the weld nugget

were estimated indirectly using a LVQ-NN for classifying the welds based on the

dynamic resistance pattern for cold, normal, and expulsion welds. The author used

some features extracted from welding dynamic resistance to train the LVQ-NN for

online estimation of the weld quality. In this work, the nugget diameter was used

as a quality indicator. The intelligent constant current control for resistance spot

welding was implemented and validated on a Medium Frequency Direct Current

(MFDC) constant current weld controller.

Kang et al. [34] proposed an algorithm for measuring the power factor angle in

real time. Which is then used for calculating an appropriate firing angle α for

generating welds of a satisfactory quality. In their study they showed that, during

the welding process, both inductive characteristics of the welding transformer and

variation in the welding load results to a non-sinusoidal welding current which in

turn leads to a time-varying power factor angle in AC RSW. Because the power

factor angle of the RSW cannot be expressed explicitly with measurable param-

eters, it is difficult to be directly obtained in real time using the conventional

means.

The author presented an integrated algorithm for calculating the power factor on a

practical discrete system in real time. Experiments were conducted to validate the
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effectiveness of the proposed method, and the results showed that the proposed

algorithm could be used to obtain more accurate values of the power factor angle

than using other methods over a very large operation range.

In their study the quality criterion was based on the dynamic resistance curve,

which has a particular variation tendency during the welding process, and was

employed to analyze the nugget formation and growth process, which was used

for estimation of weld quality. Based from data of this model an online nonlinear

controller was designed based on the power factor angle and was implemented on

a constant current control (CCC).

This study presents a structured and systematic approach developed to design an

effective controller to be implemented on an AC RSW for improving the reliability

of the resistance spot welding process. Due to the extensive use of resistance spot

welding, even a small improvement would bring significant economic benefits.

2.4 Summary of the gaps

In reviewing past research work, a number of studies have been done on optimal

control of RSW phenomena and the following gaps have been identified.

1. Research on the influence of combined effects of varying both the input weld-

ing parameters such as welding time and welding current, on the weld quality

needs to be explored further. There is still a gap in knowledge as far as op-

timization of the RSW process is concerned.

26



2. Application of LVQ-NN needs also to be explored further as it is a good

opportunity for improving in the on-line quality assessment process in order

to provide real-time weld quality control.

3. There are still no established method of quality control against expulsion

using the proposed Adaptive Neural Fuzzy Inference System (ANFIS), as a

quality assurance technique for resistance spot welding.

4. Research based on fuzzy algorithm that can evaluate the weld quality us-

ing fuzzy-estimation is only effective for the studies in laboratories, but it

is difficult to apply these methods to the RSW process in real time due to

practical limitations. It requires too many input variables and fuzzy-rules.

The present work aims at combining the important aspects of fuzzy logic

control and artificial neural networks to come up with an adaptive neuro-

fuzzy system that will be used to ensure improved weld strength in RSW

process. Such framework makes fuzzy logic control (FLC) more systematic

and less reliance on expert knowledge. As a special neural network, AN-

FIS can approximate all nonlinear systems with less training data, quicker

learning speed and higher precision [35–45].

Previous research studies have used different approaches to control the spot welding

process. However there is none that can be said to be fully sufficient on its own.

This could be due to the complex nature of the process, which makes it difficult

to develop analytic models for the process.

Therefore, the current work seeks to develop a control system that would optimize

the resistance spot welding process by improving the weld quality without the need
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for an accurate process model. The controller will minimize expulsion and cold

welds by selection of the optimum process and input parameters, hence boosting

production while at the same time reducing production cost, and improving the

quality of the products.
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CHAPTER THREE

METHODOLOGY

3.1 Overview

This chapter describes a series of experiments that were carried out to investigate

the effect of welding parameters on the resulting weld quality. Analysis Of Variance

(ANOVA) technique was employed to determine the percentage contribution of

each parameter against a stated level of confidence. A weld monitoring and control

systems were designed for accurate on-line evaluation and control of weld quality

based on the dynamic resistance of the RSW. The dynamic resistance was used as

quality monitoring signature for characterizing the resistance spot weld. Finally

the weld quality monitoring and control systems were tested to evaluate their

efficiency and validity.

The workpiece materials used in all the experiments were mild steel sheets of

0.8mm thickness. This material is widely used in the sheet metal fabrication

industry.

29



3.2 Effect of welding current and time on weld quality

3.2.1 Apparatus and experimental procedure

The welding experiments were carried out on a Lecco Annettoni resistance spot

welding machine from Costruzioni Elettromeccaniche. Co. Ltd., Italy, as shown

in Figure 3.1. The specifications of the machine are given in Table 3.1.

Table 3.1: Specification of Resistance Spot Welding Machine

Single phase input 50/60 Hz, u1 400 V.

Max. welding power, Smax 23 KVA.

Secondary voltage 50/60 Hz, u2 2.4 - 2.7 V.

Secondary short circuited current, I2cc 10.2 KA

Max. welding current, Imax 10.2 KA

Electrode force, Fmax 2200N

Welding cycle, Wcycle 8-12 cycles

In this study, the weld nugget diameter was used as the variable to describe the

weld quality during the welding process. Previous studies show that the strength

of a weld is correlated to the size of the nugget diameter and has been widely used

as a quality measure in the automotive industry [46] [47].

A system for monitoring various parameters which provide real-time information

of nugget formation and growth for RSW was established. These parameters were

welding current, welding time and dynamic resistance. The weld time is the time

during which the welding current is applied to the metal sheets and is measured
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Figure 3.1: Resistance spot welding machine

and adjusted in cycles of the line voltage as are all timing functions. Where a

cycle is 1/50 of a second in a 50 Hz power system. In this study different welding

currents, from 1 kA to 10 kA in 1 kA intervals, were used. For each selected

welding current, different welding duration were used to obtain the welds with

different nugget diameters. The nugget diameter was obtained by destructive peel

test after each experiment.

In these experiments, the effect of varying the welding current and welding time

on weld quality was studied. The dynamic resistance obtained was used to classify

the welding process and improving the weld quality using the proposed method

given in the last section.

Figure 3.2 illustrates a schematic diagram of the experimental apparatus for the

measurement and the implementation of sensors for the welding process. A Ro-
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gowsky coil, with current measurement range of 5 A to 100 kA and a differential

voltage probe, rated to measure differential and common mode voltage were used

for secondary welding current and voltage measurements, respectively. The sig-

nals from the DAQ system were then sampled by the monitoring system developed

using LabVIEW R©-based software.

Figure 3.2: Schematic representation of experimental set-up of resistance spot

welding

Figure 3.3 shows a pictorial diagram of the experimental apparatus for the mea-

surement and the implementation of the sensors for the welding process.

Figure 3.4 shows a screen shot of the monitoring system implemented on a LabVIEW R©-

based software.

3.2.2 Determination of weld quality based on peel test

To determine the effect of welding current and welding time on quality of the weld

produced, peel test, which is a destructive testing was done as shown in Figure

3.5. ISO10447 (2006) clause 5.2 and 5.3 give details on how to carry out a peel

test and how to measure the weld nugget.
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Figure 3.3: Pictorial representation of experimental set-up for resistance spot

welding

Two metal stacks of mild steel material were used for tests with the resistance spot

welding machine.

Destructive peel testing resulted in a weld zone that has been torn out of one

of the metal sheets, the exposed weld area was measured. This measurement

of weld size is typically used as an indication of weld quality, i.e. whether the

weld is fit for its intended purpose. A good spot weld has sufficient diameter and

nugget penetration. The minimum acceptable diameter of a normal weld nugget is

considered to be 4
√
t mm, where t is workpiece thickness [9]. Welds with smaller

diameters do not have sufficient penetration and are considered as cold welds. The

size of the cold weld diameter is not enough to bear the calculated loads. Hence,

the recommended weld diameter is 5
√
t mm. Any weld nugget above this value is
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Figure 3.4: A screen shot of the LabVIEW-based control and monitoring

software.

Figure 3.5: Peel test

considered to be an expulsion weld [9, 10].
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3.3 Evaluation of weld quality based on dynamic resis-

tance

A weld monitoring system as shown in Figure 3.3 was used to record two important

welding parameters during the welding process. The welding current and welding

voltage were measured simultaneously throughout the welding process in order to

determine the Dynamic Resistance (DR), which is given by Equation (3.1),

DR(t) =
v(t)
i(t)

(3.1)

The dynamic resistance obtained for each weld was grouped into one of the follow-

ing three classes based on quality of the weld nugget: cold, normal and expulsion

welds. In order to obtain the weld quality, destructive peel test experiment was

conducted for each weld.

The dynamic resistance was used as quality monitoring signature for characterizing

the weld nugget, and was selected as the input data to train the proposed on-line

monitoring and control system for RSW.

3.3.1 Design of on-line weld quality evaluation system based

on learning vector quantization neural network

An accurate and efficient model to perform non-destructive quality estimation is

an essential part of RSW for quality and process monitoring. This section deals

with the designing, training and testing of the proposed algorithmic framework
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based on Linear Vector Quantization Neural Network (LVQ-NN) for estimation of

weld quality.

Classification is based on a small number of dynamic resistance curves obtained as

function of welding time for cold, normal, and expulsion welds that are collected

during the stabilization process.

3.3.2 Designing of LVQ-NN algorithm

The LVQ-NN was used to estimate weld quality by classifying the dynamic resis-

tance vectors corresponding to cold, normal and expulsion welds. The inputs to

the network were the vectors of dynamic resistance sampled at 1ms during the

welding time. Figure 3.6 shows the block diagram of the proposed approach for

an online weld quality monitoring system.

Figure 3.6: Proposed approach for weld quality monitoring system

The LVQ-NN used had six neurons in the first layer that correspond to six sub-

classes (six weight vectors) and three neurons in the second layer that correspond

to three classes which are normal weld class, cold weld class and expulsion weld

36



class. Two neurons in the first layer were associated with each of the class.

Different sets of data are presented to the LVQ-NN, and based on the input-output

relationship, the weight vectors for the LVQ-NN are adjusted accordingly.

3.3.3 Training the LVQ-NN algorithm

A training set consisting of Q training vector - target output pairs were attained

during the investigation. The input training vector x = (x1, x2, x3, x4, .., xQ) where

x represents the dynamic resistance vector and their corresponding weld quality

classes were used as a training set to the LVQ-NN. All the weight vectors were first

placed on random positions in the input space. The LVQ-NN training process is

summarized as follows:

1. The weight vectors W.j = W1j,W2j,W3j, .. were initialized for each epoch

and the input vector x = s(q), one of the training vectors was selected.

2. For each cluster unit j = 1, . . . ,M the Euclidean distance was computed as

shown in equation (3.2).

dj =
N∑
i 6=1

(xi − wij(k))
2. (3.2)

3. The distances from each centroid were then calculated by determining the

index j′ such that dj′ is a minimum.

4. In the final step the weight vectors were updated by moving the winner’s

neuron centroid closer to the input vector. Hence, for all cluster units j
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within the specified neighbourhoods of j′, the weight vectors are updated as

shown in equation (3.3).

wij(k + 1) = wij(k) + α [xi − wij(k)] , i = 1, . . . , N. (3.3)

The above updating rule moves the weight vectors for the winning neuron and

those in its neighbourhood towards the input vector. The rate at which the weight

vectors update depends on a α parameter (learning rate)

During training, the learning rate was decreased linearly, that is

α(k) =
α(1)

k
(3.4)

where k = 1, 2, . . . was the iteration counter.

3.3.4 Testing the LVQ-NN algorithm

Once trained the LVQ-NN was then tested against a set of testing data which is

generated from the experiment for validating the proposed model.

Hence the quality of the weld is estimated indirectly from the dynamic resistance

curves as pointed out in [18,25].
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3.4 Design and implementation of ANFIS-based con-

troller

This section outlines the procedure for designing, training, testing and implement-

ing the ANFIS-based fuzzy logic controller. The ANFIS-based FLC is applied

because of its ability to improve both the system performance and adaptabil-

ity [37,48–54].

3.5 Fuzzy logic controller design

A set of training data was presented to the ANFIS. Then, the membership func-

tions, their number, and the rule base for the FLC were obtained from the ANFIS,

and were used for tuning the fuzzy logic controller. The fuzzy logic controller

works in a closed loop, adjusting the amount of current to compensate for the

degradation in weld quality. Figure 3.7 shows the block diagram for the proposed

fuzzy logic controller.

The Fuzzy logic controller design involves the following steps;

• Identification of the inputs, outputs and their ranges.

• Design of the fuzzy membership functions for each input and output by the

use of ANFIS.

• Construction of the knowledge base that contains the fuzzy rules which are

used for fuzzy reasoning. The knowledge base is constructed by ANFIS.
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Figure 3.7: Proposed approach for adaptive control

• Mapping of the fuzzy logic controller’s output to the corresponding crisp

values by use of center of gravity defuzzification procedure.

3.5.1 Identification of inputs, outputs and their ranges

The inputs to the proposed controller are the vectors of dynamic resistance ob-

tained from the RSW process. In order to reduce the dimensionality of the input

dynamic resistance vector to the ANFIS, different features are selected in place of

the whole vector, which include:

• Maximum value of the input dynamic resistance vector
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• Minimum value of the input dynamic resistance vector

• Mean value of the input dynamic resistance vector

• Standard deviation value of the input dynamic resistance vector

• Range value of the input dynamic resistance vector

• Root mean square (RMS) value of the input dynamic resistance vector

The output of the FLC is the welding current which ranges from 0 kA to 10 kA.

These values were arrived at from the experimental work.

3.5.2 Development of membership functions and the rule base

The ANFIS was presented with different input sets of training data, which consti-

tutes the optimum welding conditions and the expected output so as to simulate

a welding process. The results were used in the design of the input and output

membership functions as well as in the generation of the rules for the Fuzzy Logic

Controller.

The design of membership functions is achieved by use of ANFIS as follows:

• A set of training data, which constitutes the optimum grinding conditions

and the expected output, is presented to the ANFIS. This set of data is

generated from the experimental work.

• The ANFIS is generated by use of grid partitioning, which is a method for

grouping data into clusters based on their similarity. The ANFIS is then
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trained by use of hybrid learning rule. The hybrid learning rule combines

the gradient method and the least squares estimate (LSE).

• The ANFIS is then tested against a set of testing data which is also generated

from the experimental work.

• Different sets of data are presented to the ANFIS, and based on the input-

output relationship of the ANFIS, the membership functions for the FLC

are constructed.

• The rule base for the FLC is generated based on the execution of the ANFIS.

This is because, ANFIS automatically generates its own rule base depending

on its set of training data [50].

The main reason for the use of Takagi-Sugeno inference mechanism is the ability

of the inference mechanism to model non-linear problems. In this type of inference

mechanism, the output is a function of the inputs and is a fuzzy singleton [50].

Figure 3.8 is a screen shot of the ANFIS editor, showing a plot of the training errors

after the training process. The ANFIS is generated with grid partitioning fuzzy

inference mechanism, where each input is assigned nine membership functions,

and then trained with 20 epochs (number of iterations for training) using hybrid

learning rule.

3.5.3 Implementation of the ANFIS controller

The proposed ANFIS-based controller was implemented on the Lecco Annettoni

resistance spot welding machine. For a RSW process, the welding power can
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Figure 3.8: A screen shot of the ANFIS editor.

be controlled by varying the welding current. This is accomplished using phase

controlled thyristors.

The desired control action for a RSW process is to obtain the welding current for

each control cycle accurately in advance to prevent the formation of cold welds

and expulsion welds.

All the control actions were conducted with a constant, predetermined welding

force of 2.2KN. Figure 3.9 illustrates a schematic diagram of the experimental
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apparatus for implementation of the ANFIS-based controller.

Figure 3.9: Schematic representation of experimental set-up for implementation

of the ANFIS-based controller.

The proposed control action is used to generate an appropriate firing angle α of

thyristors for each control cycle based on quality of weld nugget. Where the firing

angle α is considered as the triggering time that defines a predetermined value

of welding current. Figure 3.10 shows a photograph of the circuit of the RSW

controller. The effectiveness of the proposed controller was then verified through

experiments.
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Figure 3.10: Experimental set-up for resistance spot welding.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Effect of welding current and welding time on the

weld quality

In this work, the quality indicator used is the weld nugget diameter, which is

one of the best-known and most-used quality indicators in industry and generally

obtained by the peeling methods.

Destructive peel testing resulted in a weld zone that has been torn out of one of

the metal sheets, the exposed weld area was measured. This measurement of weld

size is typically used as an indication of weld quality, i.e. whether the weld is fit

for its intended purpose [9, 10].

Table 4.1 shows the tabulated results on the effect of welding current and welding

time on quality of the weld produced in terms of weld nugget diameter.

Typical graphs of the measured weld nugget diameter for different values of welding

current and welding time are shown in Figure 4.1.

From the results shown in Figure 4.1, it is seen that the spot welds formed within
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Table 4.1: Effect of welding parameters on the weld nugget diameter

Weld nugget diameters (mm)

for different welding times

Welding current (kA) 160ms 180ms 200ms 220ms 240ms

0 N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A 1.95

2 N/A N/A N/A N/A 2.21

3 N/A N/A N/A 2.80 3.60

4 N/A N/A N/A 3.00 3.70

5 N/A N/A 2.50 3.60 4.20

6 2.50 2.50 3.00 3.80 4.40

7 2.60 3.00 3.80 4.30 4.50

8 2.90 3.70 4.00 4.50 5.31

9 3.60 3.90 4.40 5.00 5.76

10 4.00 4.50 5.00 5.50 5.78

a range of 160-200ms welding time sustained a gradual increase in weld nugget

diameter as the welding current increases. Note that the spot welds corresponding

to a welding time of 160ms and 180ms did not experience expulsion. The major

problem with the above range of welding time is the formation of cold welds. On

the other hand, for welding time greater than 200ms and welding current higher

than 9kA, it can be seen that the weld nugget diameter increases in size at a faster

rate, but experience expulsion.

Hence, there is a tendency for the weld nugget diameter to increase in size with
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Figure 4.1: Effect of welding current and welding time on the weld nugget

diameter

high current and longer welding time up to a point, beyond which it may either

remain constant or experience expulsion.

ANOVA technique was employed to determine the percentage contribution of each

RSW process parameter on quality characteristics against a stated level of con-

fidence. The result of ANOVA for the welding outputs are presented in Table

4.2

In this analysis, the sum of squares and variance are calculated. F-test value is used

to decide the significant factors affecting the RSW process and percentage contri-

bution is calculated. The percentage contribution indicates the relative power of a

factor to reduce variation. For a factor with a high percent contribution, a small

variation will have a great influence on the performance. Furthermore, the con-
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Table 4.2: Contribution of RSW process parameters on quality characteristics

Symbol Factor
Degrees of

freedom (DOF)

Sum of

squares

Mean of

squares
F P

Contribution

(%)

A Welding current 2 51.2807 25.6403 133.13 0.007 88.65

B Welding time 2 5.7801 2.8900 15.01 0.062 9.99

C Welding force 2 0.3975 0.1988 1.03 0.492 0.687

Error 2 0.3852 0.1926

Total 8 57.8435

tribution of welding current and welding time to the weld nugget diameter shows

that welding current is the major factor (88.65%). while the effect of welding force

on weld quality is negligible. Hence for consistency of weld quality, the welding

current must be controlled.

The focus should therefore be on controlling the welding current rather than the

welding time and welding force for achieving acceptable weld quality.

4.2 Evaluation of dynamic resistance curves for various

resistance spot welding quality

The dynamic resistance obtained as function of welding time gives a relative clear

picture of the weld nugget formation and presents a significant correlation with

several RSW quality indicators, this includes the quality of the weld nugget. Fea-

tures extracted from the dynamic resistance data are used to characterize spot

weld formed during RSW process.
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From the experimental data obtained, it is seen that the spot welds formed under

various welding conditions have a unique dynamic resistance curves. Figures 4.2-

4.4 show dynamic resistance for various welding currents plotted against welding

time, for a fixed welding force of 2200N. In these figures the initial drop in dynamic

resistance within the first cycle of weld time, can be attributed to the electrode

force flattening asperities slightly and bringing the sheets to be welded into contact

[13]. It can also be seen that the dynamic resistance curves tend to increase almost

immediately upon initiation of the current.

Figure 4.2: Dynamic resistance curves for cold welds

Figure 4.2 shows dynamic resistance curves for various welding currents and for

a fixed welding time of 160ms (8 cycles). It is seen that initially the dynamic

resistance decreases to a minimum value within the first cycle of weld time, then

starts to increase steadily till the end of the weld period. This was invariably
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observed in cold welds.

Figure 4.3: Dynamic resistance curves for normal welds

Figure 4.3 shows the dynamic resistance curves for a fixed welding time of 200ms

(10 cycles), it seen that generally the rate of change of dynamic resistance is almost

negligible as the welding current increases.

Figure 4.4 shows as the current increases, there is a sudden drop in the dynamic

resistance level for a welding time of 240ms (12 cycles). The sudden drop in

resistance was invariably observed in welds showing expulsion, and is believed to

have resulted from the effective increase in contact area provided by the portion of

the expelled metal trapped between the sheets. Increasing the weld current above

the expulsion limit caused this sudden drop in contact resistance to occur earlier in

the weld interval, as would be expected. Therefore, the expulsion can be marked

by a sharp drop in the dynamic resistance.
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Figure 4.4: Dynamic resistance curves for expulsion welds

Hence, the dynamic resistance signal responds well to the variations of process

conditions and provides plenty of quality information. The cold weld dynamic

resistance profile tends to be lower than the other profiles, while the dynamic

resistance curve for an expulsion weld, tends to have a sharp drop, especially

towards the end.

4.2.1 On-line assessment of weld quality based on LVQ-NN

model

The mapping of the measured dynamic resistance curves to their corresponding

weld quality class is implemented by the LVQ-NN method, which is an unsuper-

vised learning method for a neural network that is composed of an input layer, an

output layer and a competitive layer.
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The dynamic resistance curves obtained as a function of welding time from the

experiment are classified according to an appropriate class of the three welding

quality classes which are cold welds, normal welds and expulsion welds.

In all tests, the classification of nugget quality is based on their corresponding

dynamic resistance curve obtained as function of welding time. Table 4.3 gives

a summary of the classification of the measured dynamic resistance using the

proposed LVQ-NN model.

Table 4.3: Evaluation of the LVQ algorithm

Weld quality

class

No. of

samples

Correctly

classified

Misclassified Total misclassified

welds in %
Cold Normal Expulsion

Cold 12 10 N/A 2 0 17

Normal 22 18 3 N/A 1 18

Expulsion 16 13 0 3 N/A 19

The judgment results when cold welds were evaluated as normal welds was 2 out of

12 specimens (17% misjudgment ratio) and when normal welds were evaluated as

either cold welds or expulsion welds were 3 and 1 respectively out of 22 specimens

(18% misjudgment ratio). Finally, the judgment results when expulsion welds were

evaluated as normal welds was 3 out of 16 specimens (19% misjudgment ratio).

Hence 82% of the total number of specimens were successfully inferred within a

range of 18% error.
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4.3 Evaluation of weld quality control model based on

ANFIS

The developed ANFIS-based controller is analyzed in this section. The effective-

ness of the controller was tested by comparing the results of the ANFIS-based

control system with those of the conventional control system.

Figure 4.5: Weld quality based on conventional control model

Figure 4.5 shows the variation of weld quality for the conventional control system.

The weld secondary current was set to a constant value at the beginning of the

test, and then an increment of 1 kA per weld was used as a stepper. It can be seen

that there were a couple of cold welds at the beginning of the test, followed by a

couple of normal welds, and then expulsion welds were dominant until the end of

the test.

54



Figure 4.6: Weld quality based on the proposed ANFIS model

From Figure 4.6 it can be seen that the secondary current in the ANFIS-based

control system was responding to the weld status; in case of expulsion welds, the

secondary current was decreased, and in case of cold welds, the secondary current

was increased. Thus, the ANFIS-based control scheme was able to adapt the

secondary current level according to the weld state as shown in Table 4.4

Table 4.4: General rules for the ANFIS controller

Weld quality class welding state Action

Cold welds (C) Poor welding Increase welding current

Normal welds (N) Good welding No action

Expulsion welds (E) Excessive welding Decrease welding current
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Figure 4.7: Comparison between ANFIS and conventional control models

The results obtained when applying the ANFIS-based controller trained using very

limited data collected during the stabilization process are summarized in Figure

4.7. It can be seen that using the conventional controller, from the total number of

spot welds, 12% were cold welds, 46% were normal welds and 42% were expulsion

welds. while for the ANFIS-based controller the total cold welds produced were

11%, 77% normal welds and 12% expulsion welds. Hence, the proposed control

algorithm based on ANFIS demonstrated robust performance reducing the number

of expulsion welds by 30% compared to the conventional controller, while increasing

the number of normal welds by 31%. Which is far better than the conventional

controller.
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4.4 Summary

In this chapter, the results obtained from the experiment demonstrated the rela-

tionship between the welding current and welding time on the weld quality. The

developed online weld quality monitoring system satisfactorily predicted the weld

quality, based on the weld’s dynamic resistance curve. Experimental results show

that the performance of the proposed controller is superior to that of a conventional

controller, as commonly used in actual RSW applications.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, a model for weld quality monitoring and control to predict quality

of the weld nugget in a RSW process was developed and validated through the

experimental work. Firstly, the effects of welding current, as well as welding time

on the weld quality were investigated. Secondly, an on-line quality assessment and

control model based on LVQ-NN system and ANFIS model were developed.

Based on the experimental results it is confirmed that the welding current seems to

be giving the most significant contribution of 88.65%. This is followed by welding

time with 9.99% contribution to improve on the weld quality in relation to nugget

diameter, if simultaneously considered.

The results from applying the LVQ-NN trained using the dynamic resistance data

collected during the stabilization process are very promising, 82% of the total

number of specimens were successfully inferred within a range of 18% error.

The proposed control algorithm based on ANFIS demonstrates robust performance
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reducing the number of expulsion welds by 30% compared to the conventional con-

troller, while increasing the number of normal welds by 31%. It can be concluded

that the ANFIS based controller is capable of successfully varying the welding

current according to weld’s state and to maintain a robust performance.

5.2 Recommendations

Though the proposed system has been experimentally validated in the laboratory,

the robustness of the system has not been verified in the harsh environment of

the production line. Extra work should be performed in both the hardware and

software design before the proposed system can be implemented in practice, as,

for example, in developing a unified control system to handle the control and qual-

ity monitoring simultaneously. In addition, a better filter algorithm should be

developed to further improve the performance of the system, especially when the

working environment changes from the laboratory to the real production line.

In this work, the experiments were conducted on welds made of steel of a limited

size. Whether the proposed model can be extended to other materials, such as

stainless steel, zinc, aluminum, etc., need to be investigated in the future. As a

result, a more sophisticated mode of combining the parameters of material char-

acteristics or other effective information may also be obtained.
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