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ABSTRACT 

The steady increase in the number of vehicles on the road has increased traffic congestion in 

most urban cities. Inadequate space and funds for the construction of new roads has 

prompted scholars to investigate other solutions to traffic congestion. Most popular approach 

in use is the traffic light system. Adopted strategies include; static and vehicle actuated (VA) 

lights. However, these models have limitations. The static model does not take into account 

the non-uniform and dynamic nature of traffic because they do not operate with real time 

data. VA lights were an attempt to improve the static model; they activate a change in light 

signal when cars are present. However, they only detect presence of cars; they do not count 

number of cars. To help solve these weaknesses, this research presented a novel approach to 

traffic routing. Our approach uses smart traffic control systems (STCS) to make traffic 

routing decisions. STCS use real time data and mimic human reasoning thus prove 

promising in vehicle traffic control. We present a smart traffic light controller using fuzzy 

logic and wireless sensor network (WSN). The approach is designed for an isolated four way 

roundabout. It employed fuzzy logic to control the lights and determine how the green light 

will be assigned for each approach. The WSN collected the traffic data in real time. This data 

is aggregated and fed into a fuzzy logic controller (FLC) in form of two inputs – traffic 

quantity (TQ) and waiting time (WT) for each approach. Based on the inputs, the FLC then 

computes an output priority degree (PD) that controls green light assignment. Using the PD, 

an algorithm is formulated that assigns green light to the lane with highest PD. The cycle 

continues until all approaches get green. Given the practical nature of the thesis, applied 

research was the core methodology used. This research design made it possible to gather 

necessary data, analyze it and develop a solution to address the weaknesses of the current 

traffic light controllers. To test and analyze the approach, we designed and simulated a 

model of a traffic light in Java. This provided a virtual representation of the proposed 

approach. The test bed provided 94.7% accuracy. The results further demonstrated that; a 

smart traffic light controller has better performance than a static one; when it comes to 

reducing average WT at intersections. Our approach recorded an average WT of 2.985 

minutes while the fixed had an average WT of 8.955 minutes. It also showed that STCS can 

fairly manage traffic at four-way intersections. This is proven by the fact that our average 

WT was 2.985 minutes against the 6 minute maximum WT limit; and the average PD was 

5.091, against a PD range of 2.500 and 7.500. Lastly the results indicate that a smart traffic 
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light controller can effectively replace an experienced traffic officer managing traffic at a 

roundabout.
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

Road transportation remains a key socioeconomic infrastructure today even with the 

increased advancements in air, rail and water transport. The steady increase in the 

number of vehicles on the road has increased traffic congestion in most urban cities 

around the world. Owing to this traffic congestion, a number of challenges arise. To 

a commuter or traveller, congestion means lost time, missed opportunities, and 

frustration. To an employer, congestion means lost worker productivity, trade 

opportunities, delivery delays, and increased costs (Wen, 2008). 

 

One approach most countries are taking to address this issue is the expansion of 

roadways. This approach still comes with its share of challenges. Demolition of older 

roads can be quite costly. Most urban cities lack the free space required for such a 

venture. Even with the improvements in road infrastructure, it is evident that the rate 

at which travellers buy vehicles has surpassed that of new infrastructure 

development. Also due to expansions, roads are able to serve more vehicles; 

consequently utilising the additional capacity. 

 

In 1942, Robert Moses, observed that the highways he built around New York in 

1939 were in the long run generating greater traffic congestion than had existed 

previously. This observation prompted scholars to further investigate on the causal 

relationship between traffic congestion and road supply. A recent study done at 

University of Toronto by Duranton and Turner (2011), confirms the „fundamental 

law of highway congestion‟ suggested by Downs (1962) that an extension of roads is 

met with a proportional increase in traffic. 

 

Locally, Kenyan commuters also face traffic jams. In fact according to the  IBM 

(2011), Kenya was ranked 4
th
 among the 20 cities in the world with the worst traffic 
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jams, with 35% of drivers in Nairobi reporting that they have spent three hours or 

more in traffic. Kenya‟s Vision 2030 launched in 2006 has prompted the expansion 

of highways and bypasses country wide (GoK, 2007). However, this approach has 

not proven to be so effective in managing traffic in Nairobi. This is consistent with 

Downs‟ law (1962) that increasing road supply invariably increases vehicle traffic. 

From this it is evident that Kenya also needs new traffic management alternatives 

besides the traditional approach of just building more roads. Christian Scholsser 

Chief of Urban Transport with UN-Habitat, suggests that smarter transport 

transcends infrastructure. He proposes that physical infrastructure needs to be 

combined with new ways of thinking and new technologies (IBM, 2012).  

 

There has been little use of smart technology in managing traffic flow in developing 

countries. Most popular approach in use in Kenya is the static traffic light system. 

The main reason being, they are easy to implement and inexpensive. The static 

model‟s traffic lights timing and switching patterns are predetermined despite 

prevailing traffic conditions. They behave in the same way during the peak and 

normal hours and even during special situations such as parade, accident, floods 

(Runyoro et al., 2014). It does not take into account the non-uniform and dynamic 

nature of traffic because they do not operate with real time data. Consequently, this 

lack of adaptive strategies in these devices does very little in improving the road 

network performance and the traffic congestion levels (Kumar, 2011). This was 

demonstrated in Kenya when the country recently experienced a setback when the 

Nairobi County Government pulled out policemen from the roads to test the newly 

automated static traffic lights. The lights had an additional counter feature – that 

counts down from one light to the other (Ndonga, 2014). This meant that the 

motorists could then know how long to wait before moving. However, this operation 

was not successful; there was a traffic gridlock in most parts of the city with some 

motorists spending close to 4 hours in traffic. (Hawi, et al., 2015).  

 

This thesis strives to introduce a novel approach to traffic management – fuzzy logic 

aggregation of wireless sensor network data for smart traffic light control. Our 

approach is designed to alleviate the weaknesses of the current traffic control 
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systems. This is achieved by integrating advanced traffic management system 

(ATMS). This is one of the four subsystems of intelligent transportation system 

(ITS). ATMS performs tasks such as surveillance, control and management of 

freeway and arterial networks, intersection traffic light control and congestion and 

incident management (Patel et al., 2001).  Our research interest being developing 

countries particularly Kenya; incorporating ITS as a whole would be too large and 

complex hence very costly (Yokota, 2004). Therefore our approach mainly focused 

on integrating ATMS in traffic lights so as to dynamically route traffic at a four-way 

isolated junction. We employ fuzzy logic to control the traffic lights and determine 

how the green light will be assigned for each approach. The wireless sensor network 

(WSN) collects traffic data in real time. This data is aggregated and then fed into a 

fuzzy logic controller (FLC) engine in form of two inputs – traffic quantity (TQ) and 

waiting time (WT) for each lane. Based on the inputs, the FLC then computes an 

output priority degree (PD) that controls green light assignment in traffic lights. 

Using the PD, an algorithm is formulated that assigns green light to the lane with 

highest PD. Once a lane gets green light, it has to wait till all other lanes get green 

light before being assigned green again. This is referred to as a cycle. To test and 

analyze our approach, we design a simulation in Java to virtually represent the 

functions of the WSN and FLC. The results from our simulations demonstrate that 

our approach if implemented can effectively reduce traffic congestion and replace 

traffic officers managing traffic at a roundabout.  

 

1.2 Problem Statement 

The gravity of road traffic congestion has worsened worldwide particularly in 

developing countries. A number of factors contribute to this traffic problem. Firstly, 

there is a steady increase in number of vehicles on the roads. The Kenya Revenue 

Authority registered 205,841 vehicles in 2011 up from 161,813 vehicles in 2009 

(KIPPRA, 2013). Emerging economies are resorting to expand and build new roads 

as a solution. However, this approach is not sustainable due to costs. Also new roads 

generate new journeys and increase traffic pressure on the surrounding local network 

(CBT, 2012). Consequently, the road infrastructure is still not able to keep up with 

the growing traffic demand. 
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Another factor is use of old traffic control technologies. The major traffic control 

systems used in developing countries are pre-timed. Unfortunately, the nature of 

traffic is uncertain and non-uniform. Consequently use of these predetermined 

controllers becomes inefficient when traffic demand and fluctuation is high. (Kumar, 

2011). For instance, the current traffic lights in Nairobi use timers and counters; in 

which data is pre-programmed into the light‟s chip/PLC. It does not matter whether 

at a particular period of time route one normally has more cars than route two; the 

green light allocation time will still remain the same. This will definitely cause some 

congestion, especially on route one.  

 

Lastly, poorly planned road networks are also a major contributor to the increased 

road traffic congestion levels in Kenya. Traffic junctions are the major causes of 

delays in most road networks because they are where most roads converge and 

vehicles need to traverse different directions. Lack of existing sensor networks 

synchronising the traffic lights at different junctions leads to a mismatch in flow of 

traffic of vehicles from one intersection to another. 

 

1.3 Objectives 

The main goal is to develop an approach to smart traffic light control to 

autonomously manage traffic at a four way roundabout. 

The following are the specific objectives that will help achieve this goal: 

i) To investigate the use of sensor networks in vehicle traffic management. 

ii) To identify techniques for aggregating traffic data for traffic light control. 

iii) To formulate a fuzzy logic based architecture that aggregates traffic sensor 

data fed from a WSN. 

iv) To develop an algorithm that uses data from the WSN and FLC to 

dynamically allocate traffic light signal to each lane.  

v) To evaluate the effectiveness of using fuzzy logic and WSN in traffic control 

systems. 
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1.4 Research Questions 

i) How does the current vehicle traffic management system operate at 

roundabouts? 

ii) What techniques will be employed to gather traffic data? 

iii) How will the fuzzy logic based architecture be designed? 

iv) What level of complexity is allowed for the algorithm? 

v) What level of efficiency and availability is expected for the proposed system? 

 

1.5 Justification 

The system will be beneficial to the following: 

 

The Government. In that by adopting an adaptive traffic control system, they will be 

able to effectively reduce traffic congestion levels. This in turn will have a positive 

impact on the economy which is currently affected substantially by traffic 

congestion. With decreased delays on the roads there will be an increase in worker 

productivity rates which will in turn boost trade opportunities. 

  

The Commuters. The system will reduce the overall waiting time. This is because the 

system will be allocating green time based on priority i.e. which lane needs green 

light because it has waited the longest or which lane needs more green light duration 

because it has more vehicles queued up. The commuters will be able to reach their 

destinations much faster as well as save on fuel consumption. 

 

The Traffic Policemen. With this system in place, the policemen are saved from 

standing for long hours a day controlling traffic. The system will run autonomously 

and make intelligent decisions on behalf of the traffic personnel. Their presence on 

the roads will not be needed most of the time; unless to enforce traffic rules for 

instance; in the event where road users fail to obey the traffic light signals. 

 

1.6 Knowledge Contributions 

While this thesis adopts similar methods used in related works, the main 

contributions are:  
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1. We introduce a unique intelligent hybrid approach that integrates a WSN and an 

FLC to control traffic lights.  

The WSN is able to collect and store large amounts of environmental data at minimal 

costs and the FLC will use this data in its knowledgebase to derive traffic routing 

decisions.  

 

2. We integrate a unique algorithm that autonomously routes traffic based on FLC 

processed data. 

The algorithm uses the output variable (PD) processed by the FLC to dynamically 

control the traffic lights at the junction based on urgency. That is, it assigns green 

light to the lane with the highest PD value. 

 

3. We propose a new way of how the weaknesses accrued by the lack of learning 

ability of fuzzy systems can be solved without having to integrate an artificial 

neural network.  

The proposed approach incorporates a mini program that stores the traffic data 

collected from the WSN. This program can then help experts to review and analyse 

the data to come up with traffic patterns over a specified period of time. This 

information can be used later to modify /adapt the model to the derived patterns. For 

instance if from the analysis the experts realise that at a certain time of the day lane 1 

always gets the highest number of cars or lane 3 usually waits the longest for green 

light then they can modify the system according to that pattern for that specific 

period only. Also in the event the WSN experiences a downtime, the traffic lights 

can be controlled using the stored data in the mini program/reference log file. 

 

1.7 Scope 

This research is limited to and concerned with controlling traffic lights at four or less 

approach junctions. The limitations of the model are:  

i) It does not include the synchronization of traffic lights among the different 

intersections, such that, intersection one operates independently of 
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intersection two decisions. The system assumes that the opposite road to 

which a lane flows into is free/not occupied. 

ii) It does not control traffic at an intersection with more than the four 

approaches (North, East, South and West). 

 

1.8 Outline of the Thesis 

The rest of the thesis is organized as follows:  

Chapter 2  

It discusses what has already been done to address the road traffic congestion 

problem. It provides an in-depth review on the techniques that are currently in use to 

manage road traffic and points out the motivations that influenced use of WSN and 

FLC in this research.  

Chapter 3  

This describes in detail the methods as well as development tools and procedures that 

were employed during this research.  

Chapter 4 

This gives a detailed account of how the proposed approach was evaluated in a 

simulated environment. The chapter further discusses the research findings of the 

experiments carried out to illustrate efficiency of the proposed approach.  

Chapter 5 

Concluding remarks and recommendations for future work are given in this chapter. 
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CHAPTER TWO 

LITERATURE REVIEW 

The steady increase in number of vehicles on the roads has caused an increase in 

traffic congestion in most urban cities around the world. One measure being taken to 

solve the congestion problem is the expansion of roads. However, infrastructure 

investments alone will not help eliminate traffic congestion. Downs (1962) confirms 

that an extension of roads is met with a proportional increase in traffic. The negative 

effects of traffic congestion have prompted scholars to further investigate and come 

up with other solutions to address this traffic jam problem.  

 

This review serves to discuss what has already been done to address this traffic jam 

problem. It discusses the techniques that are currently being used to manage road 

traffic. In addition we describe some of the benefits and limitations of these 

solutions. The chapter will be organized into four main topics; Sensing Systems, 

Existing Traffic Control Systems, Research gap and Conclusion. 

 

2.1 Sensing systems 

 

2.1.1 Sensor Networks 

Advancement in very large scale integration (VLSI) and semiconductor technologies 

have enabled the development of smaller, tiny, low power, and inexpensive sensors 

and controllers/microprocessors. Furthermore, developments in wireless technologies 

have made it possible for the use of sensors to collect large amounts of 

environmental data at minimal costs. In light of this, implementation of distributed 

sensing systems proves to be one of the sustainable solutions to road congestion. 

This is because sensing systems provide a cheaper alternative to that of expansion of 

roadways and building of new infrastructure. (Dargie et al. & Poellabauer, 2010) 
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Sensor networks have been used to gather real time information about the density, 

sizes, and speed of vehicles on the roads. For instance, Knaian (2000) proposed the 

adoption of sensors to manage traffic flow in Vassar Street, Cambridge, 

Massachusetts. He deployed a prototype that used magnetic sensors. Each sensor 

node consisted of two Anisotropic Magneto-Resistive (AMR) magnetic sensors, one 

at the back and another placed in front of the node (Knaian, 2000). The movement 

and speed of a vehicle is captured by observing the disturbance it creates in the 

Earth‟s magnetic field. To determine movement, as the vehicle approaches the sensor 

it pulls field lines away from the sensor and then towards the sensor when it drives 

away from it; to measure speed, once the node detects a signal from the rear sensor‟s 

baseline it begins to count number of samples until the signal from the forward 

sensor crossed the baseline (Dargie & Poellabauer, 2010).  

 

Developing countries are also moving towards this approach. Kenya has since 

adopted the use of these sensing systems. On 8
th
 October 2013, IBM opened a 

commercial technology research facility based in Catholic University of East Africa 

in the Karen suburb. The lab's research agenda includes the development of cognitive 

computing technologies which integrate learning and reasoning capabilities enabling 

experts to make better decisions in the search for solutions to Africa's most pressing 

challenges (IBM, 2013). In an effort to tackle the traffic congestion problem, IBM 

partnered with Kenyan internet service provider Access Kenya to develop a pilot 

solution to enable Nairobi commuters to use their mobile phones to get advice on 

driving routes through the city depending on estimates of traffic congestion.  

 

The project dubbed Twende Twende, is a mobile application that uses specialized 

algorithms to do image processing and interpret visual data received from closed-

circuit television (CCTV) cameras positioned around Nairobi. Motorists are then able 

to get information on a) what areas to avoid because of congestion by suggesting 

alternative routes and b) updates on road conditions to allow them get from point A 

to point B safely. This information is retrieved via an SMS-based query for basic 

phones and on smart phones the service is accessed via an application through which 

users can view a map of the city showing route options and potential traffic hotspots. 
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The project‟s main focus is data collection, analysis and information dissemination, it 

does not actively control traffic on the roads. (IBM, 2013) 

 

2.1.2 Wireless Sensor Networks (WSN) 

When sensing systems are comprised of hundreds or even thousands of nodes, it is 

nearly impossible to wire all these distributed sensors. Therefore wireless 

technologies (such as Radio Frequency, Infrared and Laser) are incorporated, 

resulting in a wireless sensor network (WSN). Wireless sensors not only 

communicate with the base station but also with each other. For this reason, the 

nodes in the WSN often assume additional responsibilities, such as, own processing, 

communication and storage capabilities, as opposed to relying entirely on the base 

station (BS). (Dargie & Poellabauer, 2010) 

 

Owing to the fact that sensors are microelectronic devices, they operate on a limited 

energy budget. For this reason, WSNs need to regulate their energy consumption 

during communication. One common route used is multi-hop communication (mesh 

topology), whereby, large distances between the nodes are split up into several 

distances. The sensor nodes then serve as relays for other sensor nodes and find the 

most energy efficient route to transmit sensor data towards the BS.  Short range 

transmission minimizes power consumption during data transmission. Due to the 

wide geographical coverage of sensor networks, multi-hop is preferred because it 

conserves more energy as opposed to the single hop (star topology) where all nodes 

directly communicate with the base station regardless of the distance (Dargie & 

Poellabauer, 2010). 

 

WSNs in road traffic monitoring have recently become prominent. This is because of 

their ad hoc and easy deployment capability. Large numbers of sensors can easily be 

installed throughout the road network. They are also flexible. The network can be 

expanded without interfering with existing network infrastructure. Pascale et al 

(2012), introduce an ITS that uses WSN to monitor traffic. Their system comprises 

of a network of traffic sensors deployed throughout the roads that collect and forward 

measurements to a remote server. The server aggregates and processes macro-
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parameters of traffic flows arising from heterogeneous monitoring systems, then it 

distributes the data to traffic management centres, road control units (RCU) and 

information providers. The macro-parameters can be used for traffic analysis and 

management and road safety applications. (Pascale et al, 2012)  

 

Zhou et al (2013) further back up Pascale et al that efficient traffic information 

collection is an important part of traffic monitoring systems. In their paper they 

introduce a framework that uses WSN to collect traffic information based on user 

requests. Three types of sensors are deployed for data acquisition. They further 

propose a data centric routing scheme for traffic information delivery to the user 

based on the user‟s required traffic information. (Zhou, et al, 2013) 

 

The two mentioned frameworks successfully prove that use of WSN to monitor and 

collect real time road traffic data is an optimal solution, especially due to the 

uncertain nature of traffic. WSN offer a high level of adaptability to managing these 

ever changing road traffic characteristic. These systems collate information; infer 

congestions; and suggest to drivers some alternative routes and emergency exits 

(Dargie & Poellabauer, 2010). However these discussed systems do not actively 

control traffic – their main focus is data collection, analysis and information 

dissemination.   

 

2.2 Existing Traffic Control Systems 

Almost all urban cities in the world use traffic lights to control the traffic on the 

roads. The traffic lights switch from red which means stop to green meaning move. 

Over time there have been developments of different types of traffic light control 

systems: static systems and smart sensor based systems; each with their own 

advantages and disadvantages.  

 

2.2.1 Static systems 

These systems use fixed plans. The traffic lights timing and switching patterns are 

predetermined despite prevailing traffic conditions. Such systems are commonly 

used in emerging economies because of low costs of implementation. They do not 
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require advanced communication systems to be installed in vehicles such as sensors 

or radio frequency identification reader (RFID) tags. Consequently this lack of 

intelligent and/or adaptive strategies in these devices does very little in improving the 

road network performance and the traffic congestion levels. One of the major 

downside of this approach is that the lights do not operate with real time traffic data. 

This means that they do not take into account the non-uniform nature of traffic. As a 

result, it does not matter whether at a particular period of time route one has more 

cars that route two; the green light allocation time still remains the same for all routes 

possibly causing increased traffic on route one (Kumar, 2011). 

 

For instance Runyoro et al. (2014) provide evidence of three cities in Tanzania that 

are greatly congested due to use of old technology static traffic lights. They further 

propose a framework to assist in automation of road traffic management. Moreover, 

Kenya also experienced the shortcomings of these static lights in early 2014 when 

the county government decided to pull out traffic personnel and let the lights control 

traffic. This was so that they can test the efficacy of the lights. However, the 

demonstration was a failure which resulted in a four hour bumper to bumper gridlock 

(Ndonga, 2014).  

 

India tried to use VA lights but this approach also is ineffective especially when 

controlling traffic at major intersections (Kumar, 2011). VA lights switch to a green 

signal when they detect presence of cars, however, they do not count number of cars 

present (Fahmy, 2007). As a result, more than one approach can have a green signal 

for as long as the VA detector registers a car‟s presence despite the traffic density of 

cars in the individual approaches. This will consequently lead to traffic congestion 

and confusion, with simultaneous movement of cars from different directions of the 

junction. 

 

2.2.2 Sensor based smart systems 

The development of smart traffic light control system was as a result of scholars 

trying to solve the weaknesses of static traffic light systems. Smart traffic light 

controls are dynamic. This means that they use real time data to make priority based 
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decisions. They use advanced communication systems based on sensors and/or RFID 

tags to collect data and provide the system with information on current situation on 

the roads (such as number of vehicles on individual roads or how long vehicles have 

been waiting for green light). The smart system then uses an algorithm to process this 

information and make decisions; that is, it automatically determines the duration of 

each traffic light signal based on prevailing traffic situation on the roads. Commonly 

used systems include fuzzy expert systems, artificial neural networks and wireless 

sensor networks. 

 

a) Fuzzy Expert Systems (FES) 

Fuzzy expert systems are a suitable approach to dynamic traffic signal control 

because of the nature of uncertainties on road traffic where the traffic distributions 

fluctuate non-uniformly.  Fuzzy logic is a field started by Zadeh (1965). It is a 

superset of Boolean logic that has been extended to handle partial truths between 

completely false (0) and completely true (1). This is in an attempt to mimic or reflect 

how humans think, to model our sense of words when describing certain phenomena 

as well as our common sense in decision making. The sensors collect data from the 

environment which in turn is fed into the fuzzy controller for processing. The 

inference process in a fuzzy controller is similar to the way a traffic policeman 

handles the traffic flow at a typical roundabout. It assigns green or red light signal 

based on urgency or as traffic fluctuates; and selects the best decision that will 

minimize congestion at a particular interval.  (Fahmy, 2007; Khiang, Khalid, & 

Yusof, 1997., para. 5) 

 

Khiang et al (1997) present a fuzzy logic traffic light controller. Their approach uses 

two input variables; quantity of traffic on the arrival side (arrival) and quantity of 

traffic on the queuing side (queue) collected from the sensors on the lanes. Their 

system controls traffic on multiple lanes simultaneously i.e. North and south lanes 

move together while east and west lanes move together. When North and South have 

green light, East and West stop (queue).  The fuzzy controller observes the density of 

north and south as one side and east and west as another side. Their system then 

determines green light allocation and extension based on the side that has the highest 
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traffic quantity. From their experiments, they are able to demonstrate that their fuzzy 

logic traffic light controller performs better than the fixed-time (static) controller.  

 

From a comparison made between the performance of the fuzzy logic controller and 

that of a fixed-time (static) controller; Khiang (1997) observed from the results that 

the fuzzy logic controller had a lower average waiting time – a difference of 6 

minutes.  

 

Fahmy (2007) later presents another system, fuzzy logic adaptive traffic signalling 

control (FLATSC) that uses fuzzy logic controller to manage traffic at a four 

intersection roundabout. However, unlike Khiang et al (1997) system, his system 

employs another input variable, waiting time, to determine green light allocation and 

extension. FLATSC therefore uses traffic quantity and waiting time to determine the 

priority degree (output variable) for each lane on the roundabout. The output value is 

the green light time/extension for each lane. The lane with the highest output value 

gets allocated the green light. When cars in one lane move the other lanes stop. The 

green light extension was not a fixed value; it was dependent on real time data 

collected from the sensors. The value changed as the traffic variables fluctuated from 

cycle to cycle and/or lane to lane. This ensured that traffic was controlled based on 

prevailing traffic conditions on the roads. 

 

From a comparison with the fixed controller and vehicle actuated systems, FLATSC 

proved to be more effective in managing the changing traffic patterns. In addition 

FLATSC attempted to resolve starvation. Starvation describes a situation whereby 

some lanes end up always getting last priority because they usually get the least 

traffic consequently ending up always queuing for the longest time during a cycle. 

FLATSC addressed this issue by incorporating waiting time as a factor in 

determining green light allocation. For instance a lane that has low traffic but very 

high waiting time still has a chance of getting a high priority degree just as a lane 

with high traffic but low waiting time; depending on the fuzzy inference. 
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Although use of fuzzy expert systems in traffic light control systems enhances the 

efficiency of traffic movement in roads, the downside of such systems is that, they do 

not have the ability to learn, they are not adaptive. Meaning, they do not incorporate 

past knowledge or experiences to make current decisions; rather they only make 

decisions based on the current knowledge they have of the situation. 

 

b) Artificial Neural Networks (ANNs) 

The major difference between ANN (learning systems) and FES is that; while an 

FES uses present knowledge to make decisions, in a learning system, the decisions 

are computed using the accumulated experience or knowledge from successfully 

solved examples. Since ANNs try to mimic the human brain they possess an adaptive 

feature that allows each node within the network to modify its state in response to 

past and present knowledge. (Beattie, 2011; Patel & Ranganathan, 2001) 

 

An adaptive traffic light system was modelled using ANN approach. Dai et al 

(2011), designed a neural network (NN) based signal controller to control the traffic 

lights in an urban traffic road network. The input given to the ANN models are the 

list of data collected by the sensors which are placed around the traffic lights. The 

sensors give the traffic light ANN model all the data which are related to the past and 

present traffic parameters. The model then processes this input and selects the most 

suitable output that suits current traffic situation. These results are then used by the 

traffic lights to set the timing for the red and green lights (Mittal & Singh, 2013).  

 

Michael et al. (2014) also present a neural networks based traffic light controller 

called Environment Observation Method based on Artificial Neural Networks 

Controller (EOM-ANN) to control urban traffic. Their approach is different from 

(Patel et al, 2001; Dai et al, 2011) because they also incorporate mathematical 

strategies (EOM) to make signal allocation decisions. EOM is a mathematical 

methodology for obtaining timing plans for isolated intersections. It achieves this by 

calculating the minimal green time for each phase then to prevent congestion, an 

additional green time is allocated to each lane that still has cars even after getting 

green light. However, the downside of using EOM and most traditional mathematical 
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models in traffic control is that it sets traffic light timing based on averages of the 

basic parameters (Dai et al., 2011). Due to the fact that these basic parameter figures 

are constants, the EOM does not incorporate the real time nature of traffic that is 

characterized by the constant change in traffic parameter values. The EOM-ANN is 

an attempt to resolve this issue of real time data, Michael et al., propose use of ANN 

to obtain this traffic data patterns.  That way, the green light timing and allocation is 

based on actual/prevailing traffic conditions rather than analytical calculations. 

(Michael et al., 2014) 

 

EOM-ANN uses the feed-forward method with 8 neural nodes in total for input, 

hidden and output layers. It is further divided into two modules; reviser and the 

neural. The former defines correct traffic light timing and the latter provides the most 

appropriate value for the current traffic behaviour. The inputs of the ANN are the 

number of light, medium and heavy vehicles. (Michael et al., 2014) 

 

From a comparison between static time controller, EOM and EOM-ANN EOM-ANN 

reported better traffic flow and congestion management. The average traffic flow of 

the individual controllers was as follows: static controller - 82.55, EOM - 68.70 and 

EOM-ANN registered an average of 53.75. (Michael et al., 2014) 

 

While Dai et al. (2011), Michael et al. (2014) and Patel et al. (2001) proved in their 

work that using ANN to manage traffic was effective; ANNs training process in most 

cases is a time-consuming task requiring the application of input training patterns in 

an iterative manner. This was experimentally demonstrated by Barbosa et al (2010), 

who showed that by increasing the amount of data the performance of the ANN 

system improved. The error margin was lower when training was extended to 15 

minutes of collecting data as opposed to 5 minutes. 

 

Also another drawback of ANNs is the lack of rules or guides to support the 

decisions to be made; resulting in development of solutions that are mostly specific 

or case base problems. This means no explanation or guarantee that the solution 

chosen is the optimum one (Barbosa & Pinto, 2010). This is proven by Patel et al 
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(2001) who demonstrate that the ANN had a correct decision rate of 73% as opposed 

to the intelligent decision making system for urban traffic control applications 

(IDUTC) and FES which both had a 95% rating. They further realised in their 

experiments that the ANN approach had difficulty in generalizing on the various 

numbers and the combinations of traffic parameters and required cycle-time 

adjustments (desired outputs). (Patel et al., 2001) 

 

c) Hybrid systems 

To overcome the limitations of the individual implementations mentioned above 

(ANN and FES approaches), such as; lack of learning ability of fuzzy systems and 

high implementation time costs as well as lack of inference process of ANNs, Patel 

et al. (2001), developed IDUTC. This approach integrated the learning abilities of an 

ANN and the knowledge-based decision-making ability of the FES. The back 

propagation-based ANN allowed the model to learn and adapt to the dynamically 

changing environment and the FES was employed for decision making using the IF-

THEN rules.  

 

A summary of the simulations for the IDUTC, the ANN, and the FES approaches 

indicate that: the IDUTC provided 95% correct decision rate and an average waiting 

time of 2.186 minutes. It relieved intersection congestion better than the ANN 

approach which provided 73% correct decision rate and an average waiting time of 

2.958 minutes. While the FES approach correct decision rate was equal to that of 

IDUTC, it was observed that the computed decision did not lead to a better reduction 

in the wait times. The FES had an average wait time of 2.975 minutes which is lower 

than the other two approaches. (Patel et al., 2001).  

 

However, the initial implementation cost of hybrid systems can be quite costly, 

considering that A.I is still considerably a new research area in traffic control. Also 

the fact that a hybrid is a combination of two or more smart traffic control system 

(STCS), the development time can take a long time in an attempt to ensure successful 

integration of the different systems. 
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d) WSN-based traffic control systems 

In the event WSN is used to not only collect traffic data but also actively control road 

traffic, additional functionalities are incorporated into the network‟s controller. An 

algorithm is embedded to control the traffic lights – it generates routing decisions 

based on sensor data aggregated. 

 

Yousef et al. (2010), present an adaptive traffic light control model for single and 

multiple intersections using WSN. Their work uses the WSN to route traffic based on 

traffic density and waiting times. It is composed of: sensors that detect the presence 

of vehicles and have a memory that stores their waiting times on each road. It also 

has an intelligent traffic controller that processes the sensor data then employs three 

algorithms traffic system communication algorithm (TSCA), traffic signal time 

manipulation algorithm (TSTMA) to route traffic based on the traffic variations of all 

lanes of the intersections at a particular time and traffic control algorithm on multiple 

intersections (TCAMI).   

 

TSCA main objective is to enable exchange of information between the sensors‟ base 

station (BS) and the controller using a direct routing scheme approach. This means 

all sensors are within range of the BS and directly communicate with it. On the other 

hand, TSTMA main responsibility is to set the traffic signal duration in an efficient 

and dynamic manner such that traffic flow is maximized while at the same time 

ensuring minimal average queue length (AQL) and average waiting time (AWT). 

TSTMA makes use of the traffic information gathered at the traffic BS from the 

sensors to calculate in intelligent manner, the expected queue length, for the next 

traffic cycle, and then schedule efficient time setting for the various traffic signals. 

TSTMA achieves this objective through three main techniques: (a) Dynamic 

selection and ordering of the traffic phases based on the number of lanes allowed in 

the intersection; (b) Dynamic adaptation to the changes in the arrival and departure 

rates and thus dynamic decisions about queues‟ lengths and their importance; (c) 

Dynamic control of the traffic cycle timing of the green and red periods. TCAMI 

main objective is coordination and setting of traffic parameters and conditions on the 

multiple intersections in general and on the successive intersections in specific, with 
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the objective of minimizing delays, caused by stopping, waiting and then speeding 

up during road trips (also known as green wave – where drivers need not stop on 

multiple intersections thus achieving, if implemented correctly, an open route for the 

vehicles). When TCAMI is executed on each intersection it will generate traffic 

information, which in turn represents an input to the subsequent intersection, and so 

on. As such, the traffic flow will be controlled in a flexible manner. (Yousef et al., 

2010) 
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Figure 0.1: High level description of traffic time manipulation algorithm (TSTMA)[Yousef et al., 2010] 

To show efficiency of proposed scheme, Yousef et al compared the system to the 

traditional traffic light control approach which uses static plans i.e. fixed time 

control. The results indicate that the proposed system had a better performance rate 

in managing traffic; its AWT was much lower at 2.98 minutes compared to 7.87 

minutes of the fixed time controller. A low AWT means that the flow of traffic is 
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increased hence lower average queue time (AQT) of 9 cars as opposed to 36 cars per 

queue in the fixed time controller. The dynamic approach was able to handle queues 

quickly with less cars accumulating on a lane during the observed time (Yousef et 

al., 2010). 

 

Bhuvaneswari et al (2012) further support Yousef et al by developing a traffic 

congestion control system – adaptive traffic signal flow control using wireless sensor 

networks (ATSWSN) that is adaptive in nature and provides time slots to each route 

based on traffic density. The system collects real time data using infrared (IR) 

sensors and the microcontroller‟s scheduled algorithm that performs all intersection 

control traffic light functions based on the data fed from the sensor nodes. When 

compared to the conventional fixed time approach, ATSWSN registers a higher 

traffic flow rate and as a result lower average waiting time. They observed that in the 

fixed time approach, the waiting time increased as the number of vehicles increased 

irrespective of their speeds and speed factors.  (Bhunaneswari et al., 2012) 

The mentioned approaches have one limitation; they do not take into account 

„starvation‟. They control the light signals based on traffic density only. For this 

reason, it is very likely that a particular lane that usually has low traffic levels will 

always be given last priority or might not get green light altogether; consequently 

always registering higher AWT during the signal cycles/phases. A downside of this 

is that, motorists will avoid this lane and move to the lanes with lower AWT. This 

will lead to an increase in congestion levels on the lanes that usually get first priority. 

The downside of using this approach is accrued to the fact that sensors are micro-

electric devices, this means they operate on a limited energy budget. For this reason 

WSNs are faced with the problem of having to regulate their energy consumption. 

This can be a daunting task especially when dealing with large complex traffic 

networks with multiple intersections. The interdependency of each intersection on its 

neighbours makes it extremely important to ensure that the different sensors in each 

intersection are in constant communication to ensure real time data processing. This 

consequently takes a toll on the energy consumption rate of the sensors especially if 

the distance between them is wide. The wider the distance between nodes and BS the 
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higher the attenuation rate; consequently leading to increased power needed during 

data transmission/communication. Failure of a node could lead to massive traffic 

congestion; also, a downside of this is that motorists will avoid this lane and move to 

the lanes with lower AWT. This could lead to an increase in congestion levels on the 

lanes that usually get first priority. 

 

2.3 Research gap 

From the extensive background research on previously done work, the following are 

the gaps we identified: 

 Most hybrid systems only incorporate intelligent systems; fuzzy systems and 

neural networks, to control and manage traffic.  

 Most WSN based approaches do not take into account issue of starvation. 

They control the traffic lights based on traffic density only, the waiting 

time or queuing time of the cars is excluded in the algorithms. 

 

2.4 Conclusion 

A review of the several investigations carried out on the use of technology to control 

and manage traffic was presented in this chapter. It is observed that the 

implementation of information communication and technology (ICT) on 

transportation systems does have a major impact on traffic levels. While the static 

systems provide a simpler method of automatically controlling traffic; they do not 

have the flexibility needed on most urban junctions which serve non uniform traffic 

from the various approaches/roads. Advancements in AI further led to the 

development of intelligent traffic control systems. The main objective of these smart 

systems is to have the traffic lights mimic the human intelligence thus eliminating the 

need of having policemen control traffic on the roads. These intelligent systems 

provide a way for the lights to change from red to green based on current traffic 

conditions. Though these systems provide substantial benefits to management of 

traffic, fuzzy expert systems and ANNs are a branch of AI which is still an emerging 

field in information technology (IT); hence the implementation of such systems as 

stand alone is still quite costly, especially in the developing countries. An alternative 

to using the intelligent systems is sensor networks. These networks gained popularity 
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especially due to the low cost of implementation compared to the AI based systems. 

The network is comprised of many sensors that cooperate to monitor and collect data 

about traffic conditions on the roads. This information is then forwarded to a 

controller that processes the data into meaningful information. Using an algorithm 

the controller is able to make routing decisions based on current traffic conditions. 
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CHAPTER THREE 

METHODOLOGY 

This section, discusses the methods/techniques as well as development tools that 

were employed while carrying out the research. The first section describes the 

research methodology – where it discusses the type of research design, research 

methods and data collection tools used to gather information during the research. 

Second section describes the software development process – where the techniques 

that were used to demonstrate our proposed approach are discussed. Fig. 3.1 is a 

summary of how this research was carried out.  
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3.1 Research Methodology 

3.1.1 Research Design 

Given the practical nature of the thesis, applied research design was adopted. This 

design deals with gathering information related to a specific subject; then using that 

information to determine what worked and what did not work so as to come up with 

a better way of solving a practical real life problem. This design was convenient for 

this research since the main aim was to demonstrate the efficacy of using smart 

traffic control systems i.e. WSN and FLC to route dynamic traffic. Applied research 

design methods, made it possible to gather necessary information, analyse it and 

develop a novel approach/solution to the traffic jam problem. 

 

3.1.2 Research Methods/Process 

The works reviewed in this thesis were selected and analysed based on the following 

criteria (Hawi et al, 2015): 

i) Approaches used to make traffic routing and light signal allocation decisions. 

For instance adaptive (learning) versus non-adaptive strategies; offline 

versus real time strategies; and hybrid strategies. 

ii) Number and types of parameters/variables (input and output) used. We 

review systems that use single variables (e.g. traffic quantity) and ones 

that use several variables (e.g. traffic quantity, waiting time, past and 

present traffic data knowledge) to make traffic routing decisions. 

iii) Traffic data collection methods used (such as sensor types) and 

communication methods applied (such as multi-hop or single-hop) to 

transmit collected data. 

iv) STCS that control traffic at an isolated junction or multiple intersection 

junction or both. 

v) Ways to improve overall performance of already existing intelligent/smart 

systems (STCS) in use. 

Figure 0.1: Research Process Flowchart 
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3.1.3 Data Collection Tools 

The techniques used to collect data include: 

i) Studying existing literature 

This research was mostly built upon the course work done and elements of past 

research. This formed a rich source of information and was the basis of all the other 

data collection techniques to be used. It allowed for a thorough review of the existing 

related work done – the accumulated theories, knowledge, methods, and techniques 

on the research variables; traffic, WSN and traffic lights. The bodies of knowledge 

used as references include: studying journals, online articles, reports and technical 

manuals. 

 

To provide for a good grasp of the study, it was necessary to conduct an extensive 

literature review and background study on topics such as; WSN for dynamically and 

automatically controlling traffic lights, intelligent decision making systems for urban 

traffic control using ANNs and fuzzy expert systems and Traffic congestion in urban 

cities. This tool was effective in helping to identify existing gaps – through 

evaluation of what worked and what did not work previously. 

 

ii) Observations 

This tool was inevitably employed in daily commuting activities. Commuting to and 

from home, enabled firsthand experience and collection of data on the effects of 

traffic congestion; such as how many hours on average are spent stuck in traffic daily 

or how effective the static traffic lights systems are in controlling the dynamic nature 

of traffic on the roads throughout the day. This tool was particularly effective when 

answering the following research question; „How does the current Nairobi vehicle 

traffic management system operate at junctions?‟ 

 

3.2 Development Tools 

3.2.1 Process Model 

 

Prototyping 
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In order to effectively control the design of the thesis experiments, demonstrate as 

well as evaluate efficiency of the proposed approach, we developed a model of a 

smart traffic light control. This model is known as the prototype. It enabled us to 

build an experimental prototype for our approach rapidly. It also allowed us to have 

an early look of the proposed approach through an iterative experimentation process. 

Moreover, it allowed previous sections to be revisited if new designs were realized. 

This made it easier to review the performance of the model, and detect any 

deficiencies during the development process (Munassar & Govardhan, 2010). While 

the prototype has its benefits, the structure of the research can be compromised due 

to constant changes. Therefore, careful consideration was taken when managing 

scope change. 

 

3.2.2 Development Procedure  

To demonstrate the proposed approach, this thesis developed a fuzzy logic based 

software system based on Java and qtFuzzylite 4.0 
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3.2.2.1 Conceptual Framework  
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Figure 0.2: Conceptual Framework for Smart Traffic Light Control Using Fuzzy Logic and WSN 

 

 

 

 

3.2.2.2 Design of the Software System 
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Figure 3.3 describes the abstract class diagram of our software system. Brief Description 

of the class diagram‟s components: 

 

SmartTrafficLight – This is the overall class that holds all other components. It provides 

the interface for the entire system. It has an aggregation relationship with 

TrafficLightController. This means the two classes are peers and can exist independently 

of each other. TrafficLightController can only have one instance of SmartTrafficLight ; 

whereas, SmartTrafficLight can have more than one instance of TrafficLightController. 

Setup() and StartingCar() are responsible for creating the system‟s graphical interface; 

Countdown() is responsible for comparing the PD values (derived from MyListener 

class) of all four lanes so as to determine which lane gets assigned green light first; 

CalculateTicker() is responsible for calculating the green light duration of each lane 

based on inputs (TQ and WT derived from MyListener class); Repeat() is responsible for 

looping all the processes involved in controlling the traffic lights, so as to ensure 

program runs continuously without human input. Lastly main() ensures that the program 

runs, without it, all other operations will not function. 

MyListener – this is an inner class of the SmartTrafficLight class. This is denoted by the 

circle with a plus sign in figure xxx. It‟s actionPerformed() method is responsible for 

carrying out the entire fuzzification process; i.e. handles all the processing from inputs to 

inference to defuzzification and finally output. As a result, MyListener has a dependency 

relationship with TrafficLightController class. This means that if the specifications of 

the TrafficLightController change then MyListener will also have to be updated 

accordingly. This relationship is denoted in Figure 3.3 by the broken arrow. 

TrafficLightController – this is the fuzzy logic controller engine. Every time the inputs 

are set process() is called. This class has composition relationship with three other 

objects, namely; InputVariable, RuleBlock and OutputVariable. This relationship is 

denoted by the black (filled) diamond symbol in Figure 3.3. FireRules() in RuleBlock is 

responsible for triggering the inference process. The defuzzify() in OutputVariable is 

responsible for defuzzifying the accumulated outputs into crisp set values. 

 

 InputVariable 

input: scalar 

terms: vector<Term> 

 

 SmartTrafficLight 

Inputs: int <TQ>, float <WT> 

Outputs: double <PD> 

+Setup(): void 

+Countdown(): void 
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3.2.2.3 Description of the Software System 

i) Java  

We developed a model of a smart traffic light control supported by fuzzy logic and 

WSN using java language. This enabled the simulation of the proposed approach in a 

virtual environment. Consequently this provided the research with an early look at 

the functions and interactions between the WSN and FLC through an iterative 

experimentation process.  

 Assumptions of Simulation Setup 

The following were the assumptions considered during simulation setup 

(implementation). 

1. The roundabout is an isolated four-way junction with traffic coming from west 

(lane 1), south (lane 2), east (lane 3) and north (lane 4). It follows the left hand 

drive rules. 

2. The Base Station of the WSN has already aggregated the sensor data from all 

the 32 sensors. Therefore, our system only uses the two inputs TQT and WTT 

derived from aggregation (refer to equation 1 and 2 below). 

3. Only one approach gets green light signal at a time. There is no concurrent 

movement of vehicles from different approaches. 

4. The minimum and maximum number of cars any lane can get at a time is 0 

cars and 30 cars respectively; while the maximum duration of green light any 

lane gets is 3 minutes (see equation 4). 

The following are the components that were directly created in the Java IDE: 

a) WSN 

Prior to describing the simulated WSN, it is necessary to briefly describe the actual 

WSN that enabled us to create the simulated WSN version (that had its basis from 

the second assumption in section 3.2.2.2). 

 Actual WSN 

1. Sensors: 32 in total. Each approach at the junction has 4 sensors, 2 

that collect the number of cars (TQ1, TQ2) and two collect the time the cars 
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in a lane wait for a green light signal (WT1, WT2). TQ1 and WT1 are 

placed at the entrance of the lane so as to; count the cars entering the lane 

for the current cycle and record the time the cars of current cycle entered 

the lane respectively. WT2 and TQ2 are placed at the exit to record the time 

cars in the previous cycle crossed the light and record number of cars that 

cross the lane in the current cycle respectively.  

2. Base Station (BS): responsible for aggregating the data from the 

sensors and prepares it for processing by the FLC embedded in a remote 

computer. The BS compares data collected from the 4 sensors and analyses 

them. The difference between the respective sensors gives the total number 

of cars queued up (TQT) and the total amount of time waited for green light 

(WTT). Owing to the fact that the system is designed for an isolated 

junction; there is no communication between sensors of two or more 

junctions. As a result, multi-hop communication was not necessary. Single 

hop communication proved effective due to the short range communication 

between the sensors and the BS. Below are simple mathematical equations 

describing how the BS aggregates and analyses the sensor data: 

TQT  = TQ2 – TQ1 ... (1) 

WTT  = WT2 – WT1 ... (2) 

 

3. Persistent Storage: this is where the aggregated sensor data, TQT and 

WTT are stored in a file. They can later be used by experts in the event they 

need to analyse traffic patterns (such as: which lane usually gets more cars 

at a particular time of the day or which lane usually gets last priority for 

green light etc). 

 

 Simulated WSN 

1. Sensors – 8 in total (refer to second simulation setup assumption in 

section 3.2.2.2). Each lane has two sensors each; TQT and WTT  

2. Random Sensor Data Generator Program – designed a program that 

would randomly generate sensor data (TQT and WTT) for each lane. 

(Refer to second simulation assumption in section 3.2.2.2). To ensure 
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randomness, we employed ThreadLocalRandom() which is a sub class of 

Java‟s random() function.   

- ThreadLocalRandom() allowed the software system to randomly 

generate values between a given range for each variable (TQ and WT) 

respectively (refer to fourth simulation setup assumption in section 

3.2.2.2). 

- ThreadLocalRandom() was preferred over just Java function random() 

and/or math.random() because it allows for multiple tasks to use 

random numbers in parallel and each instance has its own thread. This 

prevents contention (which can be defined as, conflict over access to a 

shared resource such as – memory/storage) and improves 

performance. However, in random() function the same instance of 

random() is shared by multiple threads. This leads to contention 

between multiple threads and so to performance degradation (Kumar, 

2012).  

- The simulated WSN in this thesis has to perform multiple data 

assignment to each sensor in each lane concurrently. Hence use of 

ThreadLocalRandom was appropriate. (See Figure 0-1 in Appendix 

for code snippet of the random sensor data generator program) 

 

3. Persistent Storage – developed a mini program that stores the aggregated 

sensor data, TQT and WTT in an SQL database. This can later be used by 

experts in the event they need to analyse traffic patterns (such as: which 

lane usually gets more cars at a particular time of the day or which lane 

usually gets last priority for green light etc). Figure 3.4 shows the 

interface of the application that allows for retrieval and analysis of the 

stored data. 
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Figure 0.4: Interface for our Persistent Storage for data retrieval/reference 

 

b) Routing Algorithm 

We integrated an algorithm in the java application which used the FLC output (PD) 

to dynamically control traffic flow on all lanes starting from the one with the highest 

PD. The algorithm is able to make smart decisions such as: if route one higher PD 

than route two at a particular time then assign green light duration to route one at that 

moment; if route two has a higher PD than route one then assign green light to route 

two at that moment. Green light allocation is spontaneous and controlled based on 

PD value. Figure 3.5 is a pseudo-code that describes a high level view of the 

proposed algorithm: 
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START 

While (model = in run mode) Loop 

INPUT PD1, PD2, PD3, PD4 

IF (PD1>PD2 & PD1>PD3 & PD1>PD4) THEN 

Lane 1 = green 

IF (Lane 1 green_time = 0) THEN 

 Lane 1 = red 

IF (PD2>PD3 & PD2>PD4) THEN 

 Lane 2 = green 

IF (Lane 2 green_time = 0) THEN 

 Lane 2 = red 

IF (PD3>PD4) THEN 

 Lane 3 = green 

IF (Lane 3 green_time = 0) THEN 

 Lane 3 = red, Lane 4 = green 

IF (Lane 4 green_time = 0) THEN 

 Lane 4 = red 

END IF END IF END IF END IF END IF END IF 

ELSE IF (PD2>PD1 & PD2>PD3 & PD2>PD4) THEN 

Lane 2 = green 

IF (Lane 2 green_time = 0) THEN 

Lane 2 = red 

IF (PD1>PD3 & PD1>PD4) THEN 

Lane 1 = green 

IF (Lane 1 green_time = 0) THEN 

Lane 1 = red 

IF (PD3>PD4) THEN 

Lane 3 = green 

IF (Lane 3 green_time = 0) THEN 

Lane 3 = red, Lane 4 = green 

IF (Lane 4 green_time = 0) THEN 

Lane 4 = red 

END IF END IF END IF END IF END IF END IF 

ELSE IF (PD3>PD1 & PD3>PD2 & PD3>PD4) THEN 

Lane 3 = green 

IF (Lane 3 green_time = 0) THEN 

Lane 3 = red 

IF (PD1>PD2 & PD1>PD4) THEN 

Lane 1 = green 

IF (Lane 1 green_time = 0) THEN 

Lane 1 = red 

IF (PD2>PD4) THEN 

Lane 2 = green 

IF (Lane 2 green_time = 0) THEN 

Lane 2 = red, Lane 4 = green 

IF (Lane 4 green_time = 0) THEN 

Lane 4 = red 

END IF END IF END IF END IF END IF END IF  

ELSE IF (PD4>PD1 & PD4>PD2 & PD4>PD3) THEN 

Lane 4 = green 

IF (Lane 4 green_time = 0) THEN 

Lane 4 = red 

IF (PD1>PD2 & PD1>PD3) THEN 

Lane 1 = green 

IF (Lane 1 green_time = 0) THEN 

Lane 1 = red 

IF (PD2>PD3) THEN 

Lane 2 = green 

IF (Lane 2 green_time = 0) THEN 

Lane 2 = red, Lane 3 = green 

IF (Lane 3 green_time = 0) THEN 

Lane 3 = red 

END IF END IF END IF END IF END IF END IF  

OUTPUT red signal, amber signal, green signal 

End While 

STOP 

 Figure 0.5: Smart Traffic Light Routing Algorithm 
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c) System‟s Interface Design 

In order to demonstrate the approach, it was necessary to simulate the model in one 

application which was Java. Each approach indicates two sensor input values the 

TQT and WTT (refer to second simulation setup assumptions in section 3.2.2.2); has a 

timer (located at the top of the traffic lights) that will count down green light duration 

of the lane and a traffic light with green, amber and red signals. It also has two 

command buttons; „Controller‟ – which activates the WSN and the FLC functions in 

an iterative process, „Analysis‟ – provides the reference log of traffic data stored. 

 

Figure 0.6: Screenshot of the system's interface in Java 

 

ii) qtFuzzylite 

This was the software used to design the FLC „Traffic Light Controller‟ that 

responsible for processing the data from the base station (WSN); so as to determine 
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the order of green light allocation for each approach on the junction. It is an 

application based on Fuzzylite, a fuzzy logic controller library in C++ developed by 

Rada-Vilela (2012). This tool was chosen because it is a graphical user interface FLC 

application, which makes it easier to use and design own FLC than other fuzzy tools 

such as Matlab (Rada-Vilela, 2011). 

For this research, three system variables were designed for the FLC, namely: TQ, 

WT (inputs) and PD (output). Figure 3.8 – Figure 3.10 describe the graphs we used 

to design the inputs and outputs in our qtFuzzylite application. Figure 3.11 is a 

screenshot of how the Traffic Light Controller in qtFuzzylite application looked. 

a) Membership Function Distribution 

The type of membership function (MF) used to distribute our system variables (TQ, 

WT and PD) in our simulated FLC is the Triangular MF (TriMF).  

 Triangular Distribution MF 

It is specified by three parameters, a (minimum limit); b (peak location); and c 

(maximum limit) which is set to 1.  The figure 3.7 describes it: 

 

 

 

 

 

 

 

 

The following are the reasons that justify our choice of this type of MF distribution: 

- The research had limited access to actual sample data (due to high cost of 

collection), therefore we used synthetic data. Use of synthetic data allowed 

us to easily set a and c limits even though data distribution between these 

two points was not known. TriMF is also known as „lack of knowledge’ 

distribution because of scarcity of data (Hogan, 2015). 
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Figure 0.7: Graphical representation of TriMF 
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- Nature of traffic is uncertain and keeps fluctuating. Meaning it is close to 

impossible to set a single fixed value for it. Therefore use of TriMF was 

appropriate as it allowed us to specify the most likely values (estimates) of 

low(a), high(b) and mode(c). This is reasonable considering the uncertain 

nature of traffic.  

 

b) System Variables 

Inputs and Outputs: The design of an FLC consists of modelling the system inputs 

and outputs as linguistic variables. A linguistic variable is a set of terms expressed in 

natural language that can represent the possible values that a system variable can take 

(Rada-Vilela, 2012). 

 

Our system input variables include: TQT and WTT (refer to equation 1 and 2) while 

the output system variable is Priority Degree (PD). The associated terms (linguistic 

variables) for the three variables are Low (L), Medium (M) and High (H). 

 

These are linguistic variables with crisp sets because for every possible value, the 

terms are associated with a degree of either 0 or 1. That is, either the term is 

associated (1) or it is not (0). For instance, TQT can be low and medium (1) but not 

high (0); or medium and high (1) but not low (0).   

 

Once the inputs are ranked (low, medium or high), they will undergo three stages 

namely Fuzzification, Inference and Defuzzification and finally the output is 

obtained. Using the Triangular Membership Function, the three parameters (a, b, c) 

are represented as shown in equation 3: 

 

 

 

 

 

 

  

 

 

 

 

  
 

 

 

a ≤  x ≤ b . 

b ≤  x  ≤ c 

.. 

0 , x  ≤  a . 

c  ≤  x . 0 , 

x-a  , 

b-a 

 c-x  , 

c-b 

 

triangle (x; a, b, c) =  

 

… (3) 
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Then to determine the x coordinates of the three corners (a, b, c) of each linguistic 

term, we modify equation 3 using our max and min limits. Therefore the final 

formula used to distribute our system variables and their linguistic terms is 

represented in equation 4: 

 

 

 

 WT 

- The range set for this input system variable is 0 to 6 minutes (refer to second 

assumption in section 3.2.2.2) 

 

 

 

 

 

 

 

 

 TQ 

- The range set for this input system variable is 0 to 30 cars (refer to second 

assumption in section 3.2.2.2) 

 

 

 

 

 

 

Figure 0.8: Graphical representation of input variable WTT 
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Figure 0.9: Graphical representation of input variable TQT 

 

triangle (x; a, b, c)  = max 

 

x - a   , 

b - a 

 

c  - x   

c - b 

 

min 
… (4) 
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 PD 

- The range set for this output system variable is 0 to 10. 

 

 

 

 

 

 

 

c) FLC interface Design 

 

Figure 0.11: Graphical representation of our qtFuzzylite application 

Figure 0.10: Graphical representation of output variable PD 
PD (degree) 
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The FLC developed is responsible for processing the data from the BS so as to 

determine the order of green light allocation for each approach. This is achieved by 

using the two inputs, traffic quantity (TQT) and waiting time (WTT) to produce the 

output, priority degree (PD). The routing algorithm in Figure 3.5 will then assign 

green light starting from the approach with the highest PD value. Figure 3.12 

describes the stages the inputs of our FLC system undergo after being ranked (low 

medium high) till an output is derived. 

 

 

 

 

 

 

  

1) Fuzzification: this is the conversion of crisp input values to fuzzy set. This 

provides more information about the system variables by using membership 

functions (the degree to which a variable is associated with a term) that range 

between 0 and 1. For instance some variables are ranked with more than one term.  

 

Consider the example in Figure 3.13. It illustrates how crisp set value WT (3.5) that 

is medium and high but not low is converted to fuzzy set that gives additional degree 

values of the variable (WT). The associated terms are then described as 0.4 high and 

0.7 Medium. These inputs are mapped into fuzzy numbers (i.e. 0.4 and 0.7 

respectively) by drawing a line up from the inputs to the input membership functions 

and marking the intersection point (Princeton, 2007). This is represented as follows:  

WTT (3.5) = 0.0/L + 0.7/M + 0.4/H ... (5) 

 

 

 

 

Figure 0.12: FLC Process 
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Figure 0.13: Graphical representation of fuzzification 
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2) Inference: at this stage rules are activated that will generate outputs. Inference 

rules are conditional statements that control the system. Each rule consists of an 

antecedent and a consequent, each of which comprises of propositions in the form 

“variable is term”. The structure of the antecedent is “If variable is term” while that 

of the consequent is “then variable is term”. When there is more than one proposition 

in the antecedent, then the propositions can be connected using either the conjunction 

and or disjunction or. The antecedent will look as follows: “if variable is term and/or 

variable is term” (Rada-Vilela, 2012). 

 

The two commonly used types of inference systems include: Mamdani and Takagi-

Sugeno (Rada-Vilela, 2012).  These two inference systems are similar during 

fuzzification, however, they differ when it comes to the way their outputs are 

determined.  

 

 Mamdani Inference System 

- This inference type expects the output membership functions have to be fuzzy 

sets, meaning there is a fuzzy set for each output variable that needs 

defuzzification (MathWorks); using either centroid and maxima defuzzifiers. 

Centroid gets the centre mass of the accumulation of all fuzzy set output 

distributions while Maxima gets the mean of the accumulation of all fuzzy 

set output distributions (Princeton, 2007). 

- Typical rule in Mamdani fuzzy model has the form: 

If (input1 is membership function1) and/or (input2 is membership function2) then 

(outputN is membership functionN) 

- The final output in a Mamdani system is represented in the equation 6: 

... (6) 
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- Where:  is the membership function () of the region  of the output 

variable   at a given value/position 
 th

 of the output variable  on the x co-

ordinate; and  represents the number of rules. 

 

 

 Takagi-Sugeno 

- Output membership functions are either linear or constants (MathWorks, 

2016). The output is a crisp number computed by multiplying each output by 

a constant and then adding up the results (Princeton, 2007). 

- Typical rule in a Sugeno fuzzy model has the form: 

If Input 1 = x and/or Input 2 = y, then Output is z = ax + by + c ... (7) 

where a, b and c in equation 7 are user-defined constants.  

- Each rule weights its output level, zi, by the firing strength of the rule, wi. 

Using equation 8 as example, wi is computed as follows: 

wi=AndMethod(F1(x),F2(y))... (8) 

where F1,2(.) are the membership functions for Inputs 1 and 2. 

- The final output of the system is the weighted average of all rule outputs, 

computed as (MathWorks, 2016): 

... (9) 

Our proposed system uses the Mamdani system. This is because the Sugeno model 

does not provide a good intuitive method for determining the coefficients (a, b, c in 

equation 7) (Princeton, 2007)). Our Mamdani inference system consists of four logic 

operators; The T-norm (defines connective and), the S-norm (defines connective or), 

the activation operator (which is a T-norm) and accumulation operator (which is an 

S-norm) (Rada-Vilela, 2012; 2014). 

 

Since our system has two inputs (TQT and WTT), our generated IF...THEN rules are 

based on these two inputs and the propositions are connected using the conjunction 
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and (T-norm operator). Each of these two inputs has three linguistic terms (Low, 

Medium and High). Therefore the number of rules in our fuzzy engine totals to 9 as 

shown in Figure 3.14.  TQ and WT represent the antecedents with their respective 

membership functions and the PD represents the consequent with its respective 

membership function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These rules are generated in qtFuzzylite using the Operation::increment() method. It 

finds all possible combinations of rules based on our linguistic variables. Given a 

vector x = <0, 0, 0> an upper limits u = <3, 3, 3>, the algorithm basically increments 

the vector x by the unit. The index in the vector refers to the proposition index in the 

antecedent, and the value refers to the index of the term in the linguistic variable. See 

Figure 0-5 in the Appendix (Rada-Vilela, 2015). 

 

Fuzzy logic rules with two inputs can also be represented in matrix form to represent 

AND conditions. Table 3.1 describes our 3 × 3 matrix (9 rules) that uses the two 

inputs, TQ and WT, and our one output PD. One advantage of this matrix 

representation is that it makes it easy to represent all the rules in a system. 

Rule 1: if TQ is low and WT is low then PD is low 

Rule 2: if TQ is low and WT is medium then PD is low 

Rule 3: if TQ is low and WT is high then PD is medium 

Rule 4: if TQ is medium and WT is low then PD is low 

Rule 5: if TQ is medium and WT is medium then PD is medium 

Rule 6: if TQ is medium and WT is high then PD is high 

Rule 7: if TQ is high and WT is low then PD is medium 

Rule 8: if TQ is high and WT is medium then PD is high 

Rule 9: if TQ is high and WT is high then PD is high 

 

Figure 0.14: FLC rules for Traffic Light Controller 
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Table 0.1:  Matrix representation of the fuzzy set rules 

 

 

 

 

 

 

 

The fuzzy inputs from the fuzzification stage are taken through 3 steps in the 

inference stage, namely: 

 Activation of antecedent – this is where the membership function values derived 

from the fuzzification stage are assigned to each of their corresponding 

proposition in the antecedent. These values are then referred to as activation 

degrees (weight of rule) of the antecedents. Considering our previous example in 

equation 3 an input value of 3.5 for WT variable, the following Fig. 3.15 

describes how the activation degree is assigned: 

 

 

 

 

 

 

 

 Modification of consequent – this is done by multiplying the activation degree 

computed before with the linguistic terms in each of the consequents using an 

activation operator (which is a T-norm). The Mamdani T-norms that can be used 

to modify the consequents are the minimum and algebraic product between two 

values (Rada-Vilela, 2012). For example if we use our example WT (3.5) fuzzy 

set, then Figure 3.16 describes in graph form how each consequent is modified 

   WT 

TQ 

L M H 

L L L M 

M L M H 

H M H H 

Figure 0.15: Activating the antecedent 

WTT (3.5) = 0.0/L + 0.7/M + 0.4/H  

 

 

 

If (WTT is low) = 0.0 

If (WTT is medium) = 0.7 

If (WTT is high)) = 0.4 

Activation 

PD 
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using minimum as the activation operator (represented by the  symbol seen in 

Figure 3.16). The consequents are clipped at the rule strength respectively. 

 

 

 

 

 

 

 

 

 

 

 Accumulation of consequents – this is done by summing up all consequents using 

an accumulation operator (which is an S-norm). The Mamdani S-norms that can 

be used here are the maximum and algebraic sum between two values (Rada-

Vilela, 2012). For instance using our example in Figure 3.16; Figure 3.17 

describes how the consequents are summed up using the maximum as the 

accumulation operator (represented by the  symbol seen in fig. 3.8). 

 

 

 

 

 

 

 

 

 

 

3) Defuzzification:  this is the process of converting fuzzy outputs above into 

crisp values (the system output), which are computed using a defuzzifier. Mamdani 

Figure 0.16: Graphical representation of modification of consequents 
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uses centroid and maxima defuzzifiers. For our system we used the centroid which 

computes the x (WTT) value of the centre of mass of the fuzzy set to give us the PD 

output (Rada-Vilela, 2012). Using Figure 3.17 as an example, the crisp value after 

centroid defuzzification is the x value indicated in Figure 3.18. 

 

 

 

 

 

 

 

 

 

 

 

3.2.2.4 Implementation of the Software System 

The following procedure describes how we merge Java and qtFuzzylite into one 

application:  

 Import jFuzzylite 1.0 library into our java application. This allows us to use 

the Fuzzylite FLC components within java. 

 With the library in place, the next step is to convert the qtFuzzylite code that 

created our engine from C++ to Java. This feature is provided by the 

qtFuzzylite application (Rada-Vilela, 2014). We then proceed to export the 

code to our system in java. 

 The random sensor data generator program is then used to randomly generate 

sensor data (TQT and WTT) for each lane. 

 All the sensor data inputs aggregated are then fed into the fuzzy engine which 

then computes the PD (output) for each lane. 

 The routing algorithm then compares the PD value (output generated by the 

fuzzy engine) of each lane. This algorithm in turn is used to control the traffic 

Figure 0.18: Graphical representation of centroid defuzzifier 
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lights and allocates green light starting from the lane with the highest PD to 

the one with the least. 

 To get the green light duration of each lane, we use the product value of TQT 

and WTT generated for a lane and assume that value to be in seconds. For 

instance if the TQ for lane 1 is 23 cars and the WT is 3 minutes, then the timer 

for lane 1 will count down from 69 seconds and not minutes. 

Timer = TQT * WTT ... (10) 

In Figure 3.19 we see the model in operation. The PD output (on the left side of fig. 

3.15) for each lane based on the inputs is as follows: 

PD of Lane 1 (TQT8, WTT5.0) = 5.1151727013327415 

PD of Lane 2 (TQT27, WTT2.0) = 5.7351853252174845 

PD of Lane 3 (TQT13, WTT5.0) = 6.929879693519826 

PD of Lane 4 (TQT21, WTT2.0) = 5.3653033450474785 

According to the PD values, Lane 3 will be the first to get green light (as indicated), 

then Lane 2 (indicated with the amber signal), then Lane 4 and finally Lane 1. The 

green light duration is as described in equation 10. 
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Figure 0.19: Screenshot of our model in operation 

Careful consideration was taken during simulation. This is because performing a 

simulation poses a few risks. For instance, any incorrect key stroke has the potential 

to alter the results of the simulation and give you the wrong results. Also the fact that 

the environment is a representation of the real world means that it might not produce 

100% correct results always, rather a close estimate. To ensure that the simulation 

provided accurate results we first ran a base line to prove that it works. We then 

carried out several similar experiments and checked whether the experimental data 

sets compare. This was so that we can ascertain that the simulated environment and 

data derived had credibility. 

 

3.3 Conclusion 

This chapter gave a detailed account of the research design and methods/techniques 

used to collect as well as analyse the data about the research. It also provided an 
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overview of how the research was carried out and how the data collected was used to 

develop the proposed approach. It also discussed the tools used to design the model. 

The research methodology took on the applied research design. This is because we 

used the data collected from the different tools (observations and literature reviews) 

to come up with the solution for the traffic jam problem in the urban towns of 

Nairobi city. To test the hypothesis, we further used a prototype model for the 

development process. With this prototype model together with a smart routing 

algorithm, we were able to recreate a virtual environment which provided a test bed 

to support our hypothesis that, traffic levels can be reduced by developing a smart 

traffic light controller using fuzzy logic and WSN. The simulated WSN was 

responsible for collecting data. The FLC was responsible for aggregating the sensor 

data (inference process) to derive an output (PD) which was then used by the 

formulated algorithm to intelligently route traffic starting with the lane with the 

highest PD value. The prototype allowed us to evaluate the performance and 

effectiveness of the proposed approach before actual adoption. 
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CHAPTER FOUR 

RESEARCH FINDINGS AND DISCUSSION 

4.1 Experimental Setup 

To evaluate the performance of the proposed approach the model was tested for 100 

minutes in total. This was further divided into 5 independent rounds (R1, R2, R3, R4, 

R5) each consisting of 20 minutes each.  The minimum (min) and maximum (max) 

green light extension; that we allocated for each lane in the simulated junction is 1 

second and 3 minutes respectively. The rationale behind this being that the proposed 

model‟s architecture assumes that the minimum and maximum number of cars a lane 

can get is 1 and 30. The following equation 11 illustrates how the green extension 

values were arrived at: 

Min/Max. Green extension (seconds) = No. of Cars * min/max. WT… (11) 

30 cars * 6 minutes = 180 (seconds) – maximum green time 

1 car * 1 minute = 1 (second) – minimum green time 

All errors encountered during execution were counted and their details recorded. 

After every round (20 minutes), the number of cycles and the averages of PD, TQ 

and WT for each lane and round was calculated. The five rounds were then compared 

to each other. Finally the overall averages of PD, WT and TQ (accumulation of all 

rounds) was calculated. Analysis of these overall averages made it possible to 

evaluate and derive conclusions about the performance of the proposed approach.  

 

To demonstrate this proposed approach we used synthetic data generated by a mini 

java program as opposed to actual data. Nevertheless, we were still able to measure 

proposed model‟s performance and evaluate/simulate how it would operate in real 

world scenarios. Synthetic data mimic the result set in a far more controlled and 

accelerated fashion (GENTRIG, 2013). Okeyo et al. (2012) prove that using 

synthetic data can produce system accuracy levels of 83% in activity recognition 

systems. To test their model, they use a simulation tool to mimic activation of 
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sensors in a dense sensor based deployment, the simulation tool then plays back the 

synthetic data generated and feeds this data to the activity recognition system as if 

the sensor activations are occurring in real-time (Okeyo et al., 2012). In this research, 

synthetic data offered flexibility to test our approach in different scenarios. For 

instance, we were able to control the volume of the two variables WT and TQ so as 

to test the model‟s responsiveness (PD) under different scenarios such as peak (time 

of the day when the system variables are at their highest) and off-peak (time of day 

when the system variables are at their lowest).  Moreover, using synthetic data we 

were able to manipulate the data so as to correct any performance errors that came up 

during testing. Manipulation would not be possible if we used actual data, because 

the moment its manipulated then it ceases to be actual data. By having control over 

our experimental data, we were able to accelerate the testing phase of our approach.  

 

4.1.1 Metrics for Evaluation/Performance measures 

i) WT – evaluated our model‟s performance by comparing the total WT average 

derived in the 5 rounds value against maximum (max) and minimum 

(min) WT value our model can have; which we set to 6 minutes and 1 

minute respectively. The model was also evaluated by comparing the 

effect of WT on PD averages.  

ii) TQ – we evaluated the model‟s performance by comparing effect of TQ on 

PD averages. 

iii) PD – investigated the model‟s performance by comparing the total PD 

average value (derived in the 5 rounds) against the maximum and 

minimum PD value our model can have; which is 7.500 and 2.500 

respectively. This range was derived from the FLC centroid defuzzifier 

function (see section 3.2.2.2 and fig. 3.9 of this thesis). 

iv) Accuracy and Error margin– analysed our system performance by setting an 

80% benchmark. This means that from the experiments the approach was 

to record an 80% and above correct decision rate. Equation 12 below 

describes how this figure was calculated. We arrived at this figure by 

stating that out of the 5 rounds of testing, 4 rounds were meant to run 

without any errors.  
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v) Fixed time controller - while we did not design a fixed time controller, we 

were still able to compare and evaluate the proposed model's performance 

results to that of a static controller. This is because the timing parameters 

of a static controller are not dependent on real time data so we were still 

able to derive simulation results mathematically. The following was the 

fixed time controller setup for this research:  

 We took the proposed model‟s average WT value 2.985 minutes 

(see section 4.3 on simulation results) and used that as the fixed 

green light extension for our static controller. Meaning each lane 

got 2.985 minutes of green signal per cycle. The red light duration 

for each lane is therefore 8.955 minutes. 

 The red light duration (WT) was derived on the following basis: in 

a fixed controller, the green light is assigned sequentially from 

lane 1 to lane 4, so for instance lane 2 will have to wait for lane 3, 

4 &1 to complete their green time phase before it (lane2) gets 

green signal. That means if 2.985 minutes is the green extension 

for each lane then it means wait time will be number of lanes (NL) 

before lane 2 multiplied by green extension (GT) as shown in 

equation 13 below:. 

WT = NL * GT … (13) 

 

4.2 Observations 

Each round had varying number of cycles as well as PD, TQ and WT averages. Table 

4-1 to table 4-5 provides the tabulated raw data (TQ and WT values) recorded for 

each round in all four lanes. R1 had a total of 19 cycles, R2 had 17 cycles, R3 had 12 

cycles, R4 had 13 cycles and R5 had 15 cycles. 
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Table 0.1: R1 data collected from the four approaches for TQ and WT 

 

 

 

Table 0.2: R2 data collected from the four approaches for TQ and WT 
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Table 0.3: R3 data collected from the four approaches for TQ and WT 

 

 

Table 0.4: R4 data collected from the four approaches for TQ and WT 

 

 

Table 0.5: R5 data collected from the four approaches for TQ and WT 
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The tabulated data in table 4.6 to table 4.10 illustrate the computed PD values for 

each approach in each round. 

Table 0.6: R1 computed PD values from the four approaches  

 

 

Table 0.7: R2 computed PD values from the four approaches  
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Table 0.8: R3 computed PD values from the four approaches  

 

 

 

Table 0.9: R4 computed PD values from the four approaches 



59 

 

 

 

 

 

 

 

 

 

 

Table 0.10: R5 computed PD values from the four approaches 
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Table 4.11 describes a summary of the average results we obtained from the 

experiments. A graphical representation of the relationship between the three system 

variables, TQ, WT and PD is shown in fig. 4.1. 

 

Table 0.11: Average results of the data collected on TQ, WT and PD for all four lanes in 76 cycles for the 

five rounds  

 

 

 

The Chart in fig. 4.1 provides a summary of the average distribution of WT and PD 

with relation to TQ across the five rounds of tests. 
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Figure 0.1: Average distribution of WT and PD with relation to TQ across the 5 rounds 

 

The chart in fig. 4.2 describes the average PD distribution for all lanes in each round 

with a total of 76 cycles (19, 17, 12, 13 and 15 cycles for R1, R2, R3, R4, and R5 

respectively). The columns indicate the individual PD average registered for each 

lane per round. For instance in R1 lane 1 recorded a PD average of 5.135 (see 

column PD1 in table 4.11). The line graph indicates the PD average registered in 

each round after accumulating all the individual lane PD averages in a round. For 

instance in R1 all four lanes recorded an average PD of 4.894. 
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Figure 0.2: Average PD distribution for all lanes in each round  

 

4.3 Simulation Results 

From the simulation our system recorded a total of 76 cycles; 19, 17, 12, 13 and 15 

cycles for R1, R2, R3, R4 and R5 respectively. There were 4 errors recorded; 2 errors 

from R1 and 2 from R4 in cycles 6, 10, 61 and 67 respectively. All the errors were as 

a result of the fuzzy engine inference shooting wrong PD. For instance, in cycle 10, 

lane 2 was given green light before lane 3 yet lane 2 had TQ=25 and WT=5.0 and 

lane 3 had TQ=29 and WT= 5.0 (refer to Table 4.1, 4.4, 4.6, 4.9 and 4.12 for more 

information on raw data of these cycles). However, the error was negligible.  
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Table 0.12: Description summary of the errors encountered 

Item R1 R2 R3 R4 R5 

No. of errors 2 nil nil 2 nil 

Cycles with 

errors 

6 and 10 nil nil 61 and 67 nil 

Error description 

Wrong PD value 

assignment for lane 3 & 

4 and 2 & 3 

respectively. 

nil nil Wrong PD value 

assignment for lane 1 

& 4 and lane 2 & 3 

respectively. 

nil 

Error margin 

Negligible - 

0.000000000000001 

and 

0.000000000000004 

respectively 

nil nil Negligible - 

0.000000000000001 

and 

0.000000000000009 

respectively 

nil 

 

We also observed that the highest WT resulted in highest PD in 4 rounds (R2, R3, R4 

and R5) out of the 5 rounds; highest TQ on the other hand resulted in high PD in 3 

rounds (R1, R2 and R4). Further, lowest WT resulted in lowest PD in 3 rounds (R1, 

R2 and R4) while lowest TQ resulted in lowest PD in 2 rounds (R4 and R1). This is 

described in table 4.13. 

 

Table 0.13: Comparison of highest and lowest TQ and WT averages with relation to highest and lowest PD 

averages for all 5 rounds 

 HIGHEST LOWEST 

 TQ WT TQ WT 

PD R1  X   

PD R2   X  

PD R3 X  X X 

PD R4     

PD R5 X  X X 
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The model registered an average PD of 5.091; this was an average PD accumulation 

of all rounds (see table 4.11 average row); which was at the mid mark of our PD 

metric range (2.500 to 7.500). A WT average of 2.985 minutes was recorded, 

meaning on average the lanes usually wait 2.985 minutes before getting green light 

which was at the mid way mark of our WT metric range (1 minute to 6 minutes); for 

each lane in our simulated junction.   

 

Lastly our system recorded a 94.7% correct decision rate. This was calculated by 

deducting the error margin which was obtained as shown in equation 14: 

  

 

 

4.4 Discussion 

From the experiments, the following theories were derived: 

i) Wait Time (WT) influences nature of traffic (i.e. traffic flow and traffic 

congestion) more than traffic quantity (TQ). For instance, when it comes 

to traffic congestion, a high WT means possible congestion in the lanes. 

The longer the cars wait for green light the more TQ increases because 

cars from other intersections join the lane. For this reason, there is a need 

to increase traffic flow. This is supported by the fact that 4 out of 5 

rounds a high WT resulted in a high priority degree (PD). Meaning on 

average anytime the lanes registered a high WT they got green light 

priority. A high TQ on the other hand registered a high PD only 3 out of 5 

rounds. Further, we can also conclude that WT also influences traffic flow 

because; a high PD influenced by high WT will trigger green light signal 

(movement of cars) in the lanes that record the high PD; also a low WT 

means increased traffic flow because cars wait less time to get movement 

signal (green). This is supported by the fact that in 3 out of 5 rounds a low 

WT resulted in a low PD compared to 2 out of 5 that a low TQ resulted in 

low PD. 
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ii) A low TQ does not mean there is no congestion on the lanes. This is 

supported by the fact that a low TQ influenced a low PD 2 out of the 5 

rounds. 

iii) Starvation can be resolved by ensuring that TQ is not ignored no matter how 

low it is and WT is not prolonged. For as long as a lane has cars 

regardless of the quantity it should not be skipped. From our experiments 

we are able to prove that our approach caters for starvation because 3 out 

of 5 rounds a low TQ did not register the lowest PD value. In R2 a low 

TQ was awarded 3
rd

 priority, in R3 it was awarded 2
nd

 priority and in R5 

it was awarded 1
st
 priority. Also our approach ensured that WT was not 

prolonged because in 4 out 5 rounds; anytime a lane registered a high WT 

it was awarded high PD (1
st
 green light priority). 

iv) If a traffic light is to effectively manage traffic lights at a 4 way intersection, 

it needs to incorporate both WT and TQ in deciding red and green light 

allocation. This is supported by the fact that, as much as WT came top 

factor in determining green light allocation, we observed that TQ was not 

far behind. The margins were separated by just one round. For instance: 3 

out f 5 rounds a high TQ resulted in a high PD while a high WT resulted 

in high PD 4 out of 5. Also a low TQ resulted in a low PD 2 out of 5 

rounds while a low WT resulted in low PD in 3 out of 5 rounds.   

v) Smart traffic lights perform better than the fixed time lights. This is supported 

by the fact that our system recorded an average WT of 2.985 minutes 

while that of the fixed time controller was 8.955 minutes. As mentioned 

earlier a low WT results in increased traffic flow because the cars do not 

wait too long to get movement signal (green). Therefore, our approach is 

better at controlling and managing traffic flow and consequently 

congestion within the junction. 

 

4.5 Conclusion 

From our simulations, the benefits are two-fold; firstly, by registering an average WT 

of 2.985 minutes which was below the 6 minutes maximum WT limit; it means that 

the proposed approach successfully managed to increase traffic flow/movement of 
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cars uniformly for all lanes. This is evident in fig. 4.1 which indicates a fairly 

balanced WT curve across all approaches in the five rounds. A low WT value results 

in increase in traffic flow since cars do not wait too long for green light. The WT 

also being within the stated maximum green extension time of 3 minutes meant that 

our systems‟ functionality was operationally sound; if the average WT was above the 

green extension then it would mean that the proposed model allows lanes to wait 

longer than the stipulated green extension which is not ideal and will consequently 

increase congestion. Second benefit is that our approach managed to address the 

issue of starvation.  Our PD value of 5.091 being right at the middle of the PD range 

expected (2.500 -7.500) meant that there was fair allocation of green light among the 

lanes (see fig. 4.1 and fig. 4.2). The PD average has a fairly balanced curve across all 

lanes and rounds. In conclusion, from the experiments and comparison to a fixed 

time controller we are able to support the fact that a smart traffic light controller can 

autonomously and efficiently control and manage traffic at a four-way intersection. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusion 

This research was set out to find a sustainable solution to the traffic congestion 

problem faced in most urban cities. Our research mainly targeted Kenya, particularly 

its capital city Nairobi; where the traffic congestion is so inflated that it was ranked 

5
th
 place in the world (IBM, 2012) among the countries with the worst traffic jams. 

One solution Kenya has adopted since launch of Kenya‟s Vision 2030 in 2006 is the 

construction of new roads (GoK, 2007). However, this approach has not proven to be 

so effective in managing traffic in Nairobi for a number of reasons. First reason 

being that the rate at which travellers buy cars has surpassed that of new 

infrastructure, this is consistent with Downs‟ law (1962) that increasing road supply 

invariably increases vehicle traffic. Second reason, construction of roads is quite 

costly, most developing countries such as Nairobi are not able to sustain this solution 

without incurring debts. Thirdly due to effects of urbanization, getting the space to 

construct these roads on has become an issue. One area gaining interest in ATMS is 

the use of artificial intelligent systems/techniques to make traffic routing decisions. 

These systems include; FES, ANN and WSN. These systems use real time data and 

try to mimic human reasoning thus prove promising in vehicle traffic control and 

management. In this research we presented a novel model of a smart traffic light 

control using fuzzy logic and wireless sensor networks to resolve or at least minimize 

this traffic congestion problem. 

We successfully managed to achieve all the research objectives. The first and second 

objectives were realized through studying of related works. The parameters 

considered during related work selection was on traffic data collection methods used 

(such as sensor types), communication methods applied (such as multi-hop or single-

hop) to transmit data and data aggregation techniques (such as offline versus real-

time, adaptive versus non-adaptive or hybrid strategies). The third, fourth and fifth 
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objectives were achieved through the design of a simulation model of the FLC, WSN 

and junction using Java; this made it possible to demonstrate and evaluate 

effectiveness of the proposed approach. 

 

The outcome of this research based on our experiments was three-fold. Firstly we 

successfully managed to demonstrate that a smart traffic light controller performs 

better than a static controller when it comes to reducing average waiting times at 

intersections. The dynamic nature of the proposed approach, i.e. ability to assign 

green light based on prevailing traffic conditions, meant it was better tuned to control 

the ever changing and uncertain traffic conditions on the roads. Secondly, the 

experiment results showed that the smart traffic light control model can fairly and 

uniformly route and manage traffic flow at a four-way intersection. This is evidenced 

by the fact that on average all the lanes registered a WT and PD values that were 

close to or at the mid way mark of their respective ranges. This meant that the 

waiting time and green light allocation was fairly distributed among the 4 lanes of 

the junction hence resolving issue of starvation. Lastly the approach used in this 

research was able to demonstrate smart traffic routing decisions (assigning green 

light based on urgency/priority), consequently minimizing the need of having traffic 

personnel on the roads. 

 

This research not only proposed a solution to traffic congestion but also contributed 

to the existing body of knowledge by introducing a novel approach for smart traffic 

control. The experience we gained during the research was a valuable asset to our on-

going interest in the fields of pervasive computing and artificial intelligence. It 

provided an excellent platform to learn how smart systems can be embedded in day 

to day objects allowing them to communicate and co-operate in accomplishing tasks. 

 

5.2 Recommendation for future work 

Currently our proposed approach does not include the synchronization of traffic 

lights among the different junctions, such that, roundabout 1 operates independently 

of roundabout 2 decisions. A future recommendation for the research is to implement 

a model that controls traffic in more than one junction. This can be achieved by using 
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already available infrastructure (such as the CCTVs already installed in most of the 

Nairobi city highways). Also incorporate emergency cases (such as, ambulances, 

road accidents) as input variables in determining green light allocation and duration. 

In addition, the data collected (logged) should be analysed to derive other input 

variables in determining green light; such as day of the week and time of day 

(peak/off peak). 
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APPENDIX 

Important Software System Code Snippets 

a) Simulated WSN –  Random Sensor Data Generator Program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//Randomly generate TQT sensor data values 

TQ1 = (ThreadLocalRandom.current().nextInt(1, 29)); 

TQ2 = (ThreadLocalRandom.current().nextInt(1, 29)); 

TQ3 = (ThreadLocalRandom.current().nextInt(1, 29)); 

TQ4 = (ThreadLocalRandom.current().nextInt(1, 29)); 

                     

//Display the values 

lblTQ3.setText(String.valueOf(TQ3)); 

lblTQ4.setText(String.valueOf(TQ4)); 

lblTQ2.setText(String.valueOf(TQ2)); 

lblTQ1.setText(String.valueOf(TQ1)); 

 

//Randomly generate WTT sensor data values 

WT1 = (ThreadLocalRandom.current().nextInt(1, 5)); 

WT2 = (ThreadLocalRandom.current().nextInt(1, 5)); 

WT3 = (ThreadLocalRandom.current().nextInt(1, 5)); 

WT4 = (ThreadLocalRandom.current().nextInt(1, 5)); 

                     

//Display the values 

lblWT3.setText(String.valueOf(WT3)); 

lblWT4.setText(String.valueOf(WT4)); 

lblWT2.setText(String.valueOf(WT2)); 

lblWT1.setText(String.valueOf(WT1)); 

 

Figure  0-1: Generation of synthetic sensor data for TQ and WT of all four roundabout lanes 
using ThreadLocalRandom() method 
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b) Entire FLC process carried out by the actionPerformed() operation of inner 

class MyListener. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

engine.getInputVariable("TQ").setInputValue(TQ1); 

engine.getInputVariable("WT").setInputValue(WT1); 

engine.process(); 

output1 = engine.getOutputVariable("PD").defuzzify(); 

System.out.println("PD (Lane 1)= " + output1); 

 

engine.getInputVariable("TQ").setInputValue(TQ2); 

engine.getInputVariable("WT").setInputValue(WT2); 

engine.process(); 

output2 = engine.getOutputVariable("PD").defuzzify(); 

System.out.println("PD (Lane 2)= " + output2); 

 

engine.getInputVariable("TQ").setInputValue(TQ3); 

engine.getInputVariable("WT").setInputValue(WT3); 

engine.process(); 

output3 = engine.getOutputVariable("PD").defuzzify(); 

System.out.println("PD (Lane 3)= " + output3); 

 

engine.getInputVariable("TQ").setInputValue(TQ4); 

engine.getInputVariable("WT").setInputValue(WT4); 

engine.process(); 

output4 = engine.getOutputVariable("PD").defuzzify(); 

System.out.println("PD (Lane 4)= " + output4); 

 

Figure 0-2: FLC operations – setting inputs (TQ and WT) of all four lanes, fuzzification of 

the inputs, inference process and defuzzification 
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c) Calculating green light duration 

 

 

 

 

 

 

 

 

 

 

 

d) Automatic looping of the software system’s operations to ensure autonomous 

system execution 

 

 

 

 

 

 

 

 

 

public void CalculateTicker() { 

  TickResult1 = TQ1 * WT1; 

  TickResult2 = TQ2 * WT2; 

  TickResult3 = TQ3 * WT3; 

  TickResult4 = TQ4 * WT4; 

 

lblTick1.setText(String.valueOf(TickResult1)); 

lblTick2.setText(String.valueOf(TickResult2)); 

lblTick3.setText(String.valueOf(TickResult3)); 

lblTick4.setText(String.valueOf(TickResult4)); 

} 

Figure 0-3: Calculating green light duration for all four lanes by multiplying the 

respective values of their two inputs variables (TQ and WT) 

public void repeat(){ 

    

if(lblTick1.getText().equals("0")&&lblTick2.getText().equals("0")&&

lblTick3.getText().equals("0")&&lblTick4.getText().equals("0")){ 

            Controller.setEnabled(true); 

            Controller.doClick(); 

        } 

 } 

Figure 0-4: Looping all software system processes to ensure autonomous system re-execution (iteration) 
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e) ‘Traffic Light Controller’ (FLC) rule extraction 

and generator 

 
inline bool Operation::increment(std::vector<int>& x, 

std::vector<int>&min, std::vector<int>& max){ 

return increment(x, -1 + x.size(), min, max); 

} 

 

inline bool Operation::increment(std::vector<int>& x, int 

position, std::vector<int>& min, std::vector<int>& max){ 

 

if(x.empty() or position<0) return true; 

bool overflow = false; 

 

if (x.at(position) < max.at(position)) { 

  ++x.at(position); 

}else{ 

overflow = (position= =0); 

x.at(position) = min.at(position); 

--position; 

 

if(position >=0){ 

overflow = increment(x, postion, min, max); 

} 

} 

return overflow; 

} 

 

Figure 0-5: Operation::increment() method that generates our 9 fuzzy system’s rules 


