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ABSTRACT 

All over the world, power systems are being operated in more stressed conditions as 

modernisation and globalization increase demand for electricity. In Kenya, the 

government has in the last few years been on a drive to connect more consumers to 

the national grid in line with its Vision 2030. The national electricity distribution 

utility, Kenya Power Company, has been on a drive to connect 300,000 new 

customers each year to the grid since 2009 while the Rural Electrification Authority 

was established in 2007 and is mandated with connecting rural customers. The 

increase in the consumer load has however not been matched by increase in the 

generation.  

Consequently, the system is operated closer to its stability limit and is thus more 

prone to instability in case of contingencies as was witnessed during the April - June 

2012 long rains when the system experienced nationwide blackouts. It further puts 

pressure on system controllers to operate the system within the lower security 

margins and defensively operate the system during conditions of peak loads. 

This research thesis aimed at evaluating the dynamic voltage security of the Kenya 

Power System using decision trees. These would establish the real time voltage 

security status of the system and the likely final voltage stability status if the system 

is allowed to continue operating with the given loading – contingency configuration. 

This would allow system operators to quickly establish the voltage stability status of 

the system. At the same time, it will help in indicating how close the voltage insecure 

buses are to voltage collapse by using an Artificial Neural Network (ANN) based 

proximity-to-collapse index instead of the conventional Continuation Power Flow 

(CPF) which takes a lot of computing effort. Dynamic Voltage stability analysis of 

any system is studied by considering load changes within the system and how 

voltage magnitudes at the load buses within the system are affected by the load 

changes. The analysis can be further complicated by considering probable 

contingencies within the system that are caused by line outages. The dynamic nature 

of the load can be considered by using dynamic load models and evaluating the 

changes, with time, of the bus voltages. However, the model-driven voltages take 
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time to compute which may not give the system operator time to act since voltage 

collapse occurs within a very short period.  

This research considered 100 random load variations without regard to power factor 

for each probable single – line outage. This gave many snapshots of the dynamic 

load from which the dynamic tendency of the system was then evaluated by 

constructing a decision tree for each load bus within the system. The algorithm was 

first validated on the IEEE test systems (9 - Bus  and 30 - Bus ) before being applied 

to the Kenya Power System. 

The Decision Trees show the relationship between a particular bus’s voltage 

magnitude and the contingency and power demand at other buses. The results 

demonstrated relationships between bus power demands and voltages at other buses 

that would otherwise not be visible by simply evaluating load flow studies from 

static snapshots of the Kenyan system. The resulting decision trees for the buses 

within the Kenya Power System show the most influential variable at each bus and 

give a binary split for each variable, and the expected voltage magnitude at that bus.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

A power system is an interconnection of generators, transmission lines and electrical 

loads which form a large network. Various other devices such as transformers are 

introduced into the system to make it feasible to increase the power transmission 

capacity from the generators to the loads using the transmission lines. The nature of 

the transmission lines and the loads distributed over large distances makes the buses’ 

voltage magnitudes within the power system to fall below optimum operating values. 

Faults or contingencies as well as load changes also vary the voltage and generator 

angles within the system. 

Voltage stability analysis interrogates the ability of the power system to maintain the 

voltage magnitude at all buses within a small operating margin. The mathematical 

nature of the analysis means it takes time to carry out a stability analysis, whether 

static or dynamic. The advent of modern technologies such as artificial intelligence 

techniques has reduced the time it takes to carry out voltage stability analyses leading 

to the development of design tools that can evaluate voltage stability even on an 

online basis. 

Traditionally, dynamic voltage stability analysis is studied with a time aspect which 

shows how the voltage at a bus changes as load variations occur with time. This 

analysis is difficult to evaluate on a real time basis for all buses as the techniques 

used take a lot of computational effort. Additionally, the existing methods such as 

singular value decomposition while able to evaluate the dynamic voltage stability of 

the entire system can only work with a single system layout at a time and require to 

be recalculated for each change in the system configuration. Also, they can only give 

the mechanism through which voltage collapse could occur in a system but not how 

close the system is to collapse. Other tools such as PV curves and QV curves can 

only tell the margin of loading allowable at a bus before its voltage dips below 
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allowable levels but require to be computed for each bus for every single change in 

system loading configuration. 

In order to address the shortcomings of these methods, an alternative is to take 

multiple static snapshots of the system as it varies with time. Doing so means that the 

analysis is limited to linear equations which can be solved using the conventional 

load flow calculation. By having sufficient static snapshots of the system from the 

initial base case conditions, it is then possible to perform a dynamic analysis of the 

whole system. By using predictive artificial intelligence techniques such as Artificial 

Neural Networks  (ANNs) and decision trees, it then becomes possible to create a 

predictive model of the system, which can be used dynamically by predicting voltage 

magnitudes at load buses as the loads vary with time making it possible to predict the 

safety margin before voltage collapse occurs. 

This research thesis aimed at exploiting the potential of Decision Trees to carry out 

dynamic voltage stability analysis on the Kenya Power System. The decisions trees 

are developed from multiple loading and single – line outage conditions which 

simulate dynamic operating conditions. The resulting decision trees can then be used 

to develop an online dynamic voltage stability monitoring tool. 

1.2 Problem Statement 

Operating a system close to its loading limit reduces the safety margin of operation 

and makes the system more unstable in case of any contingency occurring. However, 

economic reasons limit the expansion of transmission and generation capacity hence 

the system is gradually operated closer to its loading limit as more customers are 

connected to the grid. As a result of the increased loading at the buses, the voltage 

magnitudes at heavily loaded buses will drop. This drop further reduces the capacity 

of transmission lines to transmit power which further compounds the problem, 

especially if there is a contingency affecting a transmission line within the system. 

While the system operator may have real time readings of voltage magnitudes at each 

bus, this may not be the case in quickly determining how much more load can be 

added to a particular bus without its voltage dropping below viable operation levels. 

Further, this may not also show which buses will be adversely affected by a line 
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contingency occurring within the system, or how the loading at one bus affects the 

voltage magnitude at another bus. 

1.3 Justification 

Conventional dynamic voltage stability analysis methods such as modal analysis and 

continuation power flow require a lot of computational effort and take considerably 

more time to compute. In addition, some methods require to be computed repeatedly 

for each change in the systems loading configuration. However, the power system 

takes a very short time to slip dynamically from a stable operating condition to an 

unstable condition. By using artificial intelligence technologies like artificial neural 

networks and decision trees, the time taken to predict the voltage stability of a 

particular bus can be reduced considerably. This gives the system operator more time 

to take remedial measures to avoid voltage collapse and enables defensive operation 

of the system. 

1.4 Objectives 

1.4.1 Main Objective 

The main objective of this thesis was to perform dynamic voltage stability analysis of 

the Kenya power system using decision trees and to suggest possible mitigation 

measures of voltage instability. 

1.4.2 Specific Objectives 

i. To carry out load flow studies on the Kenyan system and identify weak buses 

ii. To construct decision trees for analyzing dynamic voltage stability for the 

Kenya Power System 

iii. To suggest possible mitigation measures for dynamic voltage instability  

1.5 Scope 

The scope of this research was limited to the Kenya Power System, (1996) model. 

The IEEE 9 – Bus System and the IEEE 30 – Bus system were also used in 

validating the various algorithms. An MVA base of 100MVA was adopted for all the 

systems. The base case values for the IEEE 9 – Bus System and the IEEE 30 – Bus 
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system are given in appendix A1 and A2 respectively. The base case values for the 

Kenya Power System are given in appendix A3. Dynamic voltage stability analysis 

was achieved by use of multiple static power flow analyses. The research was also 

limited to the use of the Voltage Collapse Proximity Indicator (VCPI) index and the 

Classification And Regression Tree (CART) decision trees. 

1.6 Thesis Organization 

Chapter 1  

This chapter presents an overview of the various sections and the work they cover 

within this thesis. The breakdown of the rest of the thesis is given in the following 

sections: 

Chapter 2 

This chapter presents a literature review on Power Systems Stability, Voltage 

Stability, Load Flow Studies and Artificial Intelligence Techniques. It also gives a 

review of recent works related to dynamic voltage stability and decision trees 

Chapter 3 

This chapter gives an overview of the methodology followed in performing this 

research.  

Chapter 4 

This chapter presents the results obtained from the analysis and accompanying 

discussion and analyses of the results 

Chapter 5 

This chapter presents a conclusion of the work and gives recommendations for future 

research 

1.7 Journal Papers Published from this Thesis 

From this research, the following journal papers have been published; 

1. Dynamic Voltage Stability Analysis of the Kenya Power System Using VCPI 

Stability Index and Artificial Neural Networks, S. N. Njoroge, C. M. Muriithi 

and L. M. H.  Ngoo, European International Journal of Science and 

Technology, Vol. 3(7) September, 2014, pp. 23-30.  
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2. Dynamic Voltage Stability Analysis of the Kenya Power System Using 

Decision Trees, S. N. Njoroge, C. M. Muriithi and L. M. H. Ngoo, 

International Organisation of Scientific Research, Vol. 04 Issue 12 

December, 2014, pp. 20-24 .  

1.8 Conclusion 

In this chapter, a brief introduction of voltage stability is given. In addition, the 

problem statement, justification, objectives and scope of this thesis is outlined. 

Additionally, an outline of the thesis is given as well as a list of publications derived 

from the content of the research. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, a review of power flow studies, voltage stability and various 

techniques used in the evaluation of voltage stability analysis are given. Several 

artificial intelligence techniques are also reviewed. This background forms a basis 

that will be referred to in the rest of the thesis. 

2.2 Power System Stability 

Power system stability is the ability of a power system to remain in a state of 

operating equilibrium under normal operating conditions and to regain an acceptable 

state of equilibrium after being subjected to a disturbance [1].The main parts of a 

power system are the generators, the transmission lines and the loads. Generators 

generate the electrical energy mostly at the sources which are natural resources like 

steam, water in dams or wind. Transmission lines transfer the energy from the 

generation locations to the loads which are the energy consumption centers and are 

located at human settlement locations and industrial installations. The loads are 

connected to the system through buses which are electrical nodes. Power system 

stability can be viewed from either the generator and its rotor stability and frequency 

stability or from the load buses’ voltage stability. This thesis focuses on the voltage 

stability.  

2.3 Voltage Stability 

Voltage Stability is the ability of a power system to maintain steady acceptable 

voltages at all buses in the system under normal operating conditions and after being 

subjected to a disturbance [1]. Voltage Stability may also be described as the ability 

of a system to maintain voltage magnitudes so that when load admittance is 

increased, load power will increase, and so that both power and voltage are 

controllable [2]. A power system at a given operating state and subject to a given 

disturbance is voltage stable if voltages near loads approach pre-disturbance 

equilibrium values. The disturbed state is within the region of attraction of the stable 
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post-disturbance equilibrium [3]. Devices connected at the load buses are designed to 

operate at a particular rated voltage. An increase beyond this voltage is likely to 

damage the devices and incur losses to the customer and the utility. Conversely, a 

drop beyond the rated voltage will affect the devices’ normal operation. Static 

devices will tend not to function properly as the power transmitted to them will drop 

since power is a product of the voltage and current. Dynamic loads, especially 

inductive motor loads, will tend to draw more current above the rated current so as to 

compensate for the reduced voltage and still meet the load torque demand. This has 

the effect of lowering the bus voltage even further, leading to a voltage collapse at 

that particular bus. Since it is also no practical to operate the system at a static 

constant voltage, a small margin of voltage oscillation is normally provided. In 

general, the voltages of the buses within a power system are required to remain 

within a particular margin from the specified voltage. Most systems have this margin 

as 4% or 5% of the nominal bus voltage in line with ANSI standard C84.1. Voltage 

Stability can further be classified as either Static Voltage Stability or Dynamic 

Voltage Stability depending on the time frame of reference of the stability analysis. 

Further, voltage stability can be studied in terms of the proximity to voltage collapse 

or the mechanism of voltage collapse [4]. 

Proximity to Voltage Collapse is concerned with how close the system voltage is to 

collapse. This “distance to collapse” can be quantified in terms of loading levels, 

active power flow through a critical line or reactive power reserve within a system. 

More recently, voltage stability indices that combine many parameters into one index 

have been developed that indicate the distance to collapse in terms if an index. 

Mechanism of Voltage Collapse is concerned with the how and why of voltage 

instability occurrence by looking at the contributing factors to voltage instability in a 

system. Time domain simulations are ideal for this method of voltage stability 

analysis but since the parameters affecting voltage stability are slow acting, static 

analyses taking snapshots of probable operating conditions can be used to validly 

point out the mechanism of voltage collapse in a system for different operating 

conditions [1]. 
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Dynamic Voltage Stability Analysis deals with how the bus voltages change with 

changes in system operating parameters. It is useful in detailed studies of voltage 

collapse situations and also for coordination of protection devices and controls within 

a healthy power system by identifying the system elements that will contribute first 

to a voltage collapse situation and setting the protection devices to isolate these 

elements first. It is also useful in simulation of remedial measures to possible 

contingencies within a system to see if they can adequately protect the system from 

collapse.  

Dynamic voltage stability analysis can be carried out by analysing the system as 

follows; 

A power system can be represented as a system of first order differential equations 

which can be written in general as 

 ̇   (   )                                                                            (   ) 

as well as the algebraic equations 

 (   )                                                                        (   ) 

When starting with a set of initial operating conditions (     ) 

Where 

  – state vector of the system 

  – bus voltage vector 

  – current injection vector 

  – network node admittance matrix 

The solution of equations (2.1) and (2.2) represents the dynamic state of the system 

and is usually studied for several minutes to see the changes occurring in the system 

during the period. The methods of solution for equations (2.1) and (2.2) can be 

numerical integration in the time domain. More recently, methods like singular value 

analysis have been used in dynamic voltage stability analysis [5,6]. 
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2.4 Voltage Stability Indices 

In considering the dynamic voltage stability of a system, the proximity to collapse is 

a critical factor to be evaluated. Voltage stability indices provide a means of 

evaluating various parameters in a system with a view of establishing how close the 

system is to voltage collapse and allowing for defensive measures to be taken to 

avert the collapse. Several indices exist that have been used in voltage stability 

analysis as discussed in the sections below; 

2.4.1 PV and QV Curves 

The loading margin provides the most accepted method of approximating proximity 

to voltage collapse. From a static stable operating point on a particular bus, the total 

increment in loading that can occur and following a particular loading pattern can be 

plotted using either a PV curve (Figure 2.1) or a QV curve (Figure 2.2)[7].  

 

Figure 2.1: PV Curve 
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Figure 2.2: QV Curve 

The increment of the loading which is done by simulation is stopped at the nose of 

the curve which is the voltage collapse point. Realistically, only during the 

simulation can a system arrive at the nose of the PV curve. A real system would have 

collapsed by the time it reaches this point. From the resulting curve, the loading 

margin or reserve is the distance from the current operating point on the curve to the 

maximum loading point on the curve and represents the distance to collapse in MW 

or MVAR. In Figure 2.1,    is the load power at the current operating point, and    

is the maximum active power that the load can consume from the system. In Figure 

2.2, it is possible to know the maximum reactive power that can be drawn at a bus 

before reaching the minimum voltage limit. The curve can be produced by varying 

the reactive power demand at the load bus while maintaining the active power 

constant. The corresponding load voltage is determined through load flow 

recalculation. The reactive power margin is the MVAR distance from the operating 

point to the bottom of the Q-V curve. 

2.4.2 VCPI Index 

Another Voltage Stability Index is the VCPI (Voltage Collapse Proximity Indicator). 

It is developed using the voltage phasor information of the participating buses in the 

system and the system’s admittance matrix [8], [26]. The technique draws from the 

basic power flow equations. From the solution of the power flow equations using the 
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Newton – Raphson  method, a matrix of the output voltages for all the buses is 

obtained. This index is calculated at a bus for a particular loading condition [9] as; 

   |
   
 

      
 |                                                               (   ) 

where 
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The VCPI is calculated for the load buses within the system. It has a value of 0 for 

stability and 1 for complete instability.  

2.4.3    
⁄  Index 

A third index is the    
⁄  index. It is formulated for each bus by considering the 

variation of the bus voltage magnitude at no load to the nominal loading condition 

[26]. A load flow of the power system in question is performed with the base case 

system values with the loading of each bus at its nominal value and the voltage 

magnitude   at each bus recorded. After this, a second load flow is performed with 

all loads in the system set to . The resulting bus voltage magnitudes    are then 

recorded. The ratio of    
⁄  at a bus is then its stability index. The index represents 

the variation of the voltage magnitude from the base case voltage magnitude. It has a 

value of 1 if the voltage magnitude during the loading condition is unchanged from 

the no-load condition. Alternatively, its value is greater than 1 if the on-load bus 

voltage is greater than the no load voltage and a value of less than 1 if the on-load 
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bus voltage is less than the no-load bus voltage. Since it gives a bus voltage as a ratio 

of the no-load voltage, it doesn’t give the voltage in p.u. and hence depends on the 

value of the no load voltage. Although the    
⁄  is easy to compute for a single bus 

the main shortcoming it has is that it requires 2 load flows to compute, which would 

require a large computing capacity for multiple load changes. 

2.4.4 FVSI Index 

Another voltage stability index is the FVSI (Fast Voltage Stability Index) [27]. This 

index is calculated for a transmission line as 

       
     

  
  

                                                            (   ) 

Where 

   is the sending end bus voltage 

   is the reactive power flow at the receiving end 

  is the line impedance 

  is the line reactance 

The main shortcoming is that the index was developed for a system having only one 

transmission line. For a heavily interconnected system, the FVSI has to be calculated 

at a bus for all lines connected to the bus. It helps in identifying the most critical line 

for a particular bus, and identifying critical lines within the whole system. It has a 

value of 0 for non – critical lines and 1 for the most critical lines. 

2.4.5     Index 

Yet another voltage stability index is the Line Stability Index     index [28].  It is 

also based on a system with a single transmission line. The index is formulated as 

    
    

[     (   )] 
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Where 

  is the line impedance angle 

δ is the angle between the sending end voltage and the receiving end voltage. 

  is the line reactance 

   is the reactive power flow at the receiving end 

Lines that exhibit values of     close to 0 are stable while those with     values 

approaching 1 are close to their instability points. Like the FVSI index, the     

index has to be calculated for all lines connected to a load bus. It’s main 

disadvantage for this research was that it required to be calculated multiple times for 

a single bus. 

2.4.6 LQP Index 

Still another voltage stability index is the LQP line index [29]. The index takes into 

consideration the real and reactive power flow across a transmission line and is 

defined as 

     (
 

  
 )(

 

  
   

    )                                        (   ) 

Where 

  is the line reactance 

   is the voltage at the sending end 

   is the active power flow at the sending end 

   is the reactive power flow at the receiving end bus 

Voltage secure lines have a LQP value of less than 1. Like the other line based 

indices, the LQP index has to be calculated for all lines connected to a bus. It still has 

the shortcoming of being a line based index hence requiring multiple calculations for 

a single bus. 
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2.5 Power Flow Analysis 

This analysis is also called Load Flow Analysis. It involves the calculation of 

load/power flows and voltages of a transmission network for specified terminal or 

bus conditions. Such calculations are required for the analysis of steady state and 

dynamic performance of power systems [1]. The system is assumed to be balanced 

allowing for a single phase representation and the generator, transmission lines and 

loads modeled to form network equations whose solution gives the power flow and 

voltages at all the buses within the system. The network equations for the     bus in 

the system are given by 

   |  |∑|  |

 

   

|   |    (         )                                                    (   ) 

    |  |∑|  |

 

   

|   |    (         )                                                 (   ) 

Where   is the number of buses in the system [1]. 

The solution to these network equations is found using non-linear mathematical 

equation solution methods like the Gauss Seidel and Newton Raphson. The Newton 

Raphson method is preferred due to its quadratic convergence as compared to the 

linear convergence of the Gauss Seidel method. The Newton Raphson method was 

adopted in this research. Using this method, the Jacobian matrix is used to evaluate 

small changes in   and   for small changes in   and    .  

         [

  

  

  

  
  

  

  

  

]   [
    
    

]                                                      (   ) 

The    and    components of the Jacobian matrix were used in this research. 

2.6 Artificial Intelligence 

These techniques are artificial replications of the natural workings found throughout 

nature. The difficulty of computing equations with many variables such as the power 

system equations has necessitated the borrowing of solutions from nature by 
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formulating algorithms from natural occurrences into mathematical equations and 

using them to finding solutions to complex non-linear problems. Normal 

computation technologies that simply automate mathematical formulae have the 

main disadvantage of taking comparatively long time to produce results mainly 

because they are exact methods. They also do not utilize the vast experience and 

wide knowledge that a system operator for instance may have. In comparison, 

artificial intelligence methods boast learning capability and are much faster as they 

use a knowledge base or learn trends to produce results for future problems 

2.6.1 Fuzzy Logic 

Fuzzy logic is based on fuzzy set theory. It operates on a set of IF-THEN rules which 

govern what the inputs will map to in the output. Input variables are members of 

input sets and the membership is weighted in membership functions depending on 

how well they can be described by the variables of that particular set. Similarly, 

output variables are members of output sets. Based on a knowledge base and past 

experience, IF-THEN rules are made that map between the input variables and output 

variables. The selected output is also weighted since the output membership set is a 

mathematical function. The resulting rules and sets form a Fuzzy Controller that can 

be used generically for a given application. The mathematical calculations involved 

are inbuilt in the simulation software hence once the rules have been written, fuzzy 

logic is faster than normal computational methods which require the user to make 

manual calculations. 

2.6.2 Artificial Neural Networks 

These mimic the human brain and consist of an interconnection of artificial neurons. 

Neural Networks can be defined as a class of mathematical algorithms designed to 

solve a specific problem [10]. Basically they are parallel computational models 

comprised of densely interconnected adaptive processing units. An extremely 

important and human characteristic of ANN is their adaptive nature, where learning 

by experience replaces programming in solving problems. ANN learn the pattern on 

which they are trained. 
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The fundamental building block in an Artificial Neural Network is the mathematical 

model of a neuron as shown in Fig. 2.3.  

 

   Figure 2.3: Artificial Neuron Model 

The three basic components of the (artificial) neuron are the synapses that connect 

from the output of other neurons and have input weights, an adder that sums up the 

weighted inputs and an activation function that maps the output of the adder to the 

required output of the neuron as given in equations (2.11). 

          ( )   (                )              (    ) 

ANNs can be trained in a supervised manner where input-output data sets are used to 

modify the weights and activation functions or in an unsupervised manner where 

only input sets are used to modify the weights of the input synapses. 

2.6.3 Decision Trees 

Decision Trees (DT) are not a new method though their uptake has been slow. They 

are based on the classical decision tree which involves splitting. Decision tree 

learning is a method commonly used in data mining. The goal is to create a model 

that predicts the value of a target variable based on several input variables. The 

variables are successively split into a dichotomy (binary) at each step according to a 

given criteria relating that variable to the selected output variables at the node. The 

variable with the greatest effect on the output variable is split first while the one with 

least observable effect is split last. 
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If we considered an example in medicine where the goal is to predict the obesity 

status of a child based on their bio – data, we may use 3 variables namely; 

                                    

The possible outcomes of the child’s obesity status can be broadly classified as 

                                                               

Using the three variables and outcome classes above, several observations are taken 

of children’s weight, age and height. Based on their obesity status, we can then have 

a decision tree as shown in Figure 2.4 below; 

 

Figure 2.4: Decision Tree Example 

The DT methodology is a nonparametric learning technique able to produce 

classifiers about a given problem in order to deduce information for new unobserved 

cases [11]. The DT has the hierarchical form of a tree structured upside down. The 

construction of a DT is based on a knowledge base (KB) consisting of a large 

number of operating points (OPs) covering all possible states of the power system 
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under study in order to ensure its representativeness. A vector of pre-disturbance 

steady-state variables, called attributes, characterizes each OP. The KB is divided in 

a learning set (LS) used for deriving the classifier structures and a test set (TS) used 

to evaluate the performance of these structures on new, unobserved OPs. The 

resulting decision tree can then be used to evaluate future operating conditions and 

predict the stability of a bus voltage based on the state of the attributes. 

Decision trees have 3 main types of nodes; 

i. A Root Node – this exists at the top of the decision tree and represents the 

first split which affects all observations within the KB. The variable that 

appears at the root node is the variable with the greatest weight and effect on 

all the observations hence it is split first. In Figure 2.4, the root node has a 

split of    at a value of 28kg. 

ii. A Splitting / Decision Node – these exist below the root node but are not 

terminal points. They represent split point in variables that occur as 

subordinate to the root node. They cascade down as the variables are split 

further and further into purer groupings. One variable can appear in several 

splitting nodes. In Figure 2.4, the node with a split for     at 75cm is a 

decision node. 

iii. Terminal Nodes – these are the final points in the decision tree and represent 

the purest classification of a variable subsequent to the root and decision 

nodes. The path taken from the root node, through the decision nodes to the 

terminal nodes gives the set of splits undertaken in classifying the final 

variable appearing at the terminal node. In Figure 2.4, the terminal nodes are 

the ones with spits for     at 5 years as well as the split for    at 2.8 years. 

In splitting all the variables in the KB according to their values, a split is done 

according to a predetermined algorithm. This algorithm can be determined in 

advance for small datasets where the values of the variables used to differentiate 

different classes in the observations KB are known. However, for large datasets with 

multiple variables, it is almost impossible to determine the split points.  
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As such, different heuristic algorithms have been developed which help in the 

splitting. These enable the observations to be classified starting at the root node and 

down through the decision nodes to the terminal nodes based on the relative values 

of the variables found in the observations. This further enables the sizing of the 

resulting decision tree by pre-determining either the minimum and maximum number 

of terminal nodes desired or determining the nodes based on the maximum allowable 

error within a root or decision node. In uni-variate discrete splitting (where only one 

variable is considered at a node), impurity criteria are used in determining the quality 

of a split, hence determining the value of a variable at a node that is used in splitting 

the observations. To determine impurity, if we have a variable   which has k discrete 

values distributed according to   (           ), an impurity function can be 

formulated as   [   ]    which must satisfy the following conditions [30]; 

a)  ( )    

b)  ( ) is minimum if     such that component      (minimum 

impurity occurs when one value has a probability of 1 

c)  ( )is maximum when                   (Maximum 

impurity is found when all values have equal probability distribution) 

d)  ( )is symmetrical with regards to the components of   

e)  ( )is differentiable everywhere within its range 

The quality of a split from a set of observations S is then determined relative to an 

attribute    as the reduction in the impurity of the attribute within the child nodes 

after the split. For instance, a node which has a class distribution [0,1] has 0 impurity 

while a node with a class distribution [0.5,0.5] has maximum impurity. Some 

common impurity measures include; 

i. Information Gain / Entropy – this criterion is also impurity based but 

employs an entropy measure as the impurity measure to check the quality of a 

split and aims at having a split that will maximise the entropy [31]. If at a 

node   there are   classes, the entropy at that node   can be defined as; 
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        ( )   ∑ ( | )      ( | )

   

   

                        (    ) 

ii. Classification Error – here the maximum error is calculated by looking at 

the split that will result in the purest split and comparing it with a perfect spit 

where all observations are classified in one class [31]. It’s defined as; 

     ( )       
 
[ ( | )]                                          (    ) 

iii. Gini Index – The Gini index is a measure of impurity used to split nodes. It 

is calculated based on the number of observations belonging to one class at a 

node as a fraction of all the observations at that node. It is given by; 

    ( )    ∑[ ( | )]                                         (    ) 

where  ( | ) is the relative frequency of observations for class   at node  . 

The Gini index is maximum at (      ) when all observations are divided 

equally among all classes while it is minimum at 0 when all observations   at 

a node belong to one class  . The Gini index is then used to find the largest 

and purest partition at a node to ensure the observations are split in a way that 

reduces the chance of misclassifying an observation in a wrong class. A 

comparison of the 3 criterion is shown in Figure 2.5 below; 

 

Figure 2.5: Comparison of DT Impurity Measures 
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Once the process of splitting nodes begins, it continues but must come to an end to 

prevent having an infinitely large tree. The criteria used to stop the splitting process 

is called the Stopping Criterion. This stopping criteria can be determined in several 

ways [30]; 

i. When all observations belong to one single class 

ii. When the maximum tree depth has been reached in terms of levels of 

decision nodes 

iii. When the number of observations in a terminal node is less than the 

minimum number of observations set for a parent node hence that particular 

node cannot become a decision node. 

iv. When the number of observations in a child node would be less than the 

minimum number set for child nodes, even if the parent node has more than 

the minimum number of observations required. 

v. The splitting criteria to be applied is not greater than a set threshold. 

There exist several ways of generating decision trees. These techniques result in the 

decision trees types classifications. The most common types of decision trees are 

given below;  

2.6.3.1    ID3 Decision Trees 

This type of tree uses the information gain impurity measure in the splitting [32]. The 

process of splitting is stopped when all observations belong to a single class or when 

the best value of information gain falls to below 0. Its main advantage is in the ease 

of construction but its biggest shortcoming is that it cannot be pruned to give trees 

with less leaf nodes if need arises. 

2.6.3.2   C4.5 Decision Trees 

This tree is a simple evolution from the ID3 tree [33]. It uses a modified gain 

criterion to split the observations and stops the stopping when any set criteria for 

stopping is reached. The main improvement is that it can be pruned to produce 

smaller trees. In addition, unlike the ID3 tree, the C4.5 tree can be used to handle 

purely numeric attributes and can induce missing observations or values from a given 

data set using the information gain criterion. 
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2.6.3.3 Classification and Regression Trees (CART) 

Some situations arise where the input variables are known and a matching output is 

known as well. If very many instances of the input-output set exists, the relationship 

between the input variables and the outputs can be determined by performing a 

regression analysis on the variables. The output of this regression analysis indicates 

the correlation between each input variable and the output which is quantified as a 

weight. A decision tree is then constructed by splitting the input variables according 

to the weight and the range of the variable. In addition, CART involves a 

misclassification calculation so as to identify the variable to be split in the next level 

or whether the current splitting provides for a final node. 

The process starts with the CART splitting the output based on a split using one 

variable only. It then evaluates the purity of the output using the single variable by 

using the Gini index and stores the heterogeneity score for that variable. It then 

repeats this process for all the variables. The variable that has the highest 

heterogeneity score is then considered the primary node and split first. The splitting 

then moves to the next level and continues with the splitting for the remaining 

variables. This form of regression and classification stops either when a desired level 

of heterogeneity is reached or when the number of splits specified is reached [34]. 

The last step is the pruning of the decision tree. If classification was done and a great 

number of nodes obtained, it may not be practical to work with a very large tree and 

so “pruning” of the tree is done. This involves reducing the number of splits and 

hence branches on the tree and evaluating what the error resulting from a 

miscalculation by having fewer splits would be. The smallest size of the tree that 

results in the lowest misclassification then becomes the optimum size of the pruned 

decision tree where a further decrease in the size of the tree results in a higher 

misclassification cost. This is because some variables may not be “costly” if 

misclassified in terms of the output as compared to others. The Gini index is most 

preferred in the misclassification computation [12]. 

The main advantage of CART over other decision trees is its ability to produce 

regression trees, hence being able to predict terminal values in terms of numbers not 
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just as classes. This ability is crucial in this research due to the need to predict bus 

voltages which will be in pu. values which are numbers. 

Previously, decision trees have been used in data mining applications such as 

medicine for diagnosis of diseases [34] and in power systems for security studies 

[11] and more recently in voltage prediction [33] and voltage stability enhancement 

[35]. In this thesis, CART decision trees are used in the construction of decision trees 

for the buses within the IEEE 30 – Bus system and the Kenya Power System which 

are then used to predict the voltage magnitude and hence the voltage stability of load 

buses within the systems.  

 2.7 Previous Works 

A weak bus can be defined as a bus within a power system that possesses the least 

capacity for increased reactive power demand during otherwise normal operations. 

Alammari [13] defines a weak bus as a bus that experiences a significant voltage and 

reactive power deviation for a small load change. Such a bus would then be very 

susceptible to voltage collapse in case of an increase in loading or a fault. Even if the 

fault occurs at a different bus connected to the weak bus through a transmission line, 

the weak bus would have a decreasing voltage magnitude, perhaps falling below 

feasible levels and causing either a brown-out or the protection system to isolate it as 

a fault. Identification of weak buses is critical as it enables system controllers to 

focus on the buses during peak loads and strained conditions and also provides a 

means for selecting optimized locations for FACTS devices. 

Several methods have been used over the years to identify weak buses but artificial 

intelligence methods are the most popular in recent times. Alammari [13] used fuzzy 

logic in the identification of weak buses. In his paper, he develops a fuzzy logic 

algorithm with membership functions for the bus voltage and another for total 

reactive power demand at the bus. The fuzzy set so obtained by fuzzy multiplication 

of the two sets yields a decision set that is evaluated for each bus and used to classify 

the strengths of all the load buses. 

Muriithi and Njoroge [14] used CPANN’s to classify weak buses based on 

parameters from the Jacobian matrix used in load flow analyses. The procedure 
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involved performing multiple load flows with varying loading and contingency 

configurations and then using the resulting Jacobian values to train a CPANN 

network. The buses were then lumped together based on their voltage magnitudes for 

the various loading and contingency configurations to indicate their strength. 

Cai and Erlich [15,16] used Singular Value Decomposition to perform dynamic 

voltage stability analysis on a 4-machine 2-area power system using a Multiple Input 

Multiple Output (MIMO) system. The system model included generator governor 

controls as well as SVC and STATCOM controllers. Voltage dependent loads were 

also included as well as the influence of tap changing transformers. They used the 

reduced Jacobian     to obtain the transfer function of the system for use in the 

MIMO system. The inputs came from controllers for real and reactive power at the 

generator and load buses while the outputs were the incremental bus voltages at all 

the buses in the system. The results indicated that generator AVR influence was 

highest in static stability while SVC controls have greatest influence when load 

modulation is introduced. 

Ioannis and Konstadinos [17] performed dynamic voltage analysis by using multi-

variable control theory with a MIMO system. Their work involved minimizing 

oscillations of state and network variables. This decoupled voltage stability from 

angle dynamics and assumed that all electromechanical oscillations are stable by use 

of the Eigen values of the voltage stability matrix. Their MIMO system had the 

system transfer function matrix using all generation and load controls as inputs and 

change in the voltage magnitudes at load buses as outputs. 

Soni [18] used bifurcation analysis to perform voltage stability analysis. He 

considered changes in the system parameters with time which caused the stable 

equilibrium points at different loading levels to lose dynamic stability. This loss was 

caused by one of 3 bifurcations – singularity induced, saddle-node or Hopf 

bifurcations. He used Eigen value analysis to identify the bifurcation where the 

bifurcation is a sudden change in behaviour of the system as the system parameter 

passed through a critical value- the bifurcation point. 
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Cai et al [19] investigated the dynamic voltage stability of a system with the 

integration of a large wind farm. They used a MIMO system and analyzed stability 

by use of singular value decomposition of the reduced Jacobian. Further, they 

incorporated modal analysis to identify the critical oscillation modes. Their analysis 

was able to obtain the stability, controllability and participation indices for the 

system parameters. 

Sun et al [20] performed dynamic security assessment using phasor measurements 

and decision trees. Their analysis involved simulation of a 24-hour period for the 

Entergy system and contingency analyses for n-1 and n-k probable contingencies. 

The results for all the operating conditions and contingency states were then used to 

train a decision tree using the Classification and Regression Tree (CART) algorithm. 

The decision tree was used to identify critical attributes from the system parameters 

that characterised the system’s dynamic performance. Phase measurements of the 

critical attributes could then be compared to the decision tree to give the terminal 

node which indicated the insecurity score of the present operating condition. 

Karapidakis and Hatziargyriou [21] used decision trees to construct an online based 

economic dispatch decision system for the island of Crete. Their research focused on 

balancing the cost of maintaining a spinning reserve big enough to maintain dynamic 

stability and meet any load changes with the cost of load shedding associated with 

loss of a generating unit due to stressed system operation occasioned by not having 

enough spinning reserve. The costs were calculated with various generation mixes to 

develop a decision tree that could be used for online determination of the optimum 

generation mix for any given loading condition. 

Subramani et al [22] used a line stability index to classify weak and critical lines in 

the IEEE Reliability Test System. They developed a line outage contingency index as 

a predictor of voltage stability since line outages contribute greatly to voltage 

instability. The index was then tested for different loading conditions in order to 

identify what effect increased loading would have on the voltage stability during 

critical line outages and thereafter rank weak areas within the system. Their research 
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also yielded a contingency ranking based on the line outage index as an indicator of 

voltage stability. 

Izzri et al [23] used a Power Transfer Stability Index as an online based indicator of 

distance to voltage collapse. The PTSI was constructed using an RBFNN using 

training data from various loading and contingency conditions on the Iraqi Super 

Grid Network. The input variables consisted of bus voltages, real and reactive power 

demand at each bus and generator load angles for the RBFNN. The resulting index 

then makes it possible to automatically classify critical buses based on loading and 

contingency conditions of the system on an online basis since the parameters can be 

measured using a SCADA system. In their research, the classification using the PTSI 

was faster than the use of a Back Propagating Neural Network in classification of 

critical buses for the same data, showing the superiority of the index compared to the 

traditional load flow. 

Kumaraswamy et al [24] used the L-index in calculating an optimal power flow on 

the IEEE 6-bus and IEEE 9 - Bus test systems. The L-index was constructed from the 

basic Kirchoff’s laws as applied in the Y-bus matrix as shown in equation (2.14) 

below; 
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   is the      element of the Objective Function Matrix 

   is the       element of the impedance matrix 

  is the complex power demand at bus   

 ̅ is the bus voltage at bus   

   is the total number of generator buses 

   is the total number of Load buses in the system 

From the voltage stability index L, they were able to relate the increase in loading 

condition with the index and use it as a predictor of voltage collapse. The L-indicator 

is applicable in both static and transient conditions and so provides a powerful tool 

for both static and dynamic analysis.  

2.8 Conclusion  

From the techniques and areas highlighted in this chapter, the following were 

adopted for this research; 

i. The type of voltage stability to be investigated would be Dynamic Voltage 

Stability. This dynamic nature of the analysis would be achieved by taking 

numerous load variations while tracking the changes in voltage so as to 

simulate the changes in the voltage magnitudes at the load buses with 

changes in loading and line contingencies. 

ii. Only one type of contingency, a single – line outage, would be studied at a 

time in order to limit the scope of the research. 

iii. The VCPI index was selected for use in this research. This was due to the fact 

that it is calculated for load buses and not lines and so would only require to 

be calculated once for a load bus unlike the line indices that are calculated 

many times for a single bus. Also, the variables required for its calculation 

are easily retrievable after a load flow. 

iv. The CART decision tree was selected as the type of artificial intelligence for 

study in the research. This was due to the fact that the Gini index used to 
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calculate the error at each classification split reduces the probability of 

erroneous classification of observations. In addition, the CART trees have the 

ability for classifying observations and predicting numerical terminal nodes, 

instead of using classes. This was critical to the research as they could then be 

used to predict voltage magnitudes at a bus. Also, CART trees carry an 

inherent ability to produce regression trees and be pruned to several levels.  

v. The IEEE 9 – Bus and 30 – Bus systems were selected for validating the 

various developed algorithms. The IEEE 9 – Bus is a relatively small system 

which enabled the development and debugging of the algorithms while the 

IEEE 30 – Bus was similar in size to the Kenya Power System – 1996 Model 

which has 37 buses. 

vi. The MATLAB © software was used for simulation in this research. 

Specifically, the R2010 version, 32-Bit MATLAB software was used. An 

addition of the Power System Toolbox developed by A. Sadaat was 

incorporated to enable the performance of Load Flow studies. MATLAB was 

selected because it enables the creation of user defined codes for variations of 

various parameters during the simulation. In addition,  MATLAB has an 

inbuilt CART creation model within its Statistics Toolbox, as well as an 

inbuilt Artificial Neural Network toolbox which enables the creation, training 

and deployment of ANNs. The addition of the Power System Toolbox which 

has load flow calculations inbuilt also made the retrieval of the load flow 

results possible. MATLAB also has an ability to export and import data to 

Microsoft Excel documents, which was instrumental in storing the results. 

The software was run on a computer running a 32 bit version of Microsoft 

Windows 7 operating system with a 2.8GHz processor and 4GB of RAM. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

In this chapter, the Kenya Power System in appendix A4 is analysed using the CART 

method during the dynamic voltage stability analysis. The Kenya Power System has 

37 buses. 

The contingency considered involved a single – line outage for each of the 38 lines in 

the Kenya Power System 

In the Kenya Power System, the parameters of interest are; 

i.   – the Active power demand at all the buses within the system 

ii.   – the reactive power demand at all the buses within the system  

iii.   – the single line outage 

iv.    
  

  
  the partial derivative of the active power with respect to the pf at a 

bus 

v.    
  

  
 the partial derivative of the reactive power with respect to the p.f. at a 

bus 

The Kenya Power System model used in the 1996 model which has 37 buses and 38 

lines.  The IEEE 30 – Bus test system was used for validation of the VCPI and 

CART algorithms by virtue of being close in terms of bus number to the Kenya 

Power System. The Newton – Raphson power flow solution method was used for 

performing the power flow analysis. The one-line diagram as well as the base case 

values for the IEEE 9 – Bus, IEEE 30 – Bus and the Kenya Power systems are 

described in detail in the Appendix section. For uniformity, the base MVA was 

selected as 100MVA for all the systems. 

In performing the dynamic voltage stability analysis of the Kenya Power System, the 

following steps were followed; 
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3.2 Verification of VCPI Parameters - IEEE 9 – Bus System 

Using the IEEE 9 - Bus system in Fig. 3.1 below, a load flow study was carried out 

on the system using the base case system values. The detailed system model is given 

in appendix A1.  

 

Figure 3.1: IEEE 9 – Bus  System 

Since bus 5 had previously been identified as the weakest bus in the system [24], the 

loading on Bus 5 was increased in steps of 0.001pu while maintaining power factor 

until when the power flow solution failed to converge. At each loading step, the 

VCPI index was calculated and the results of the VCPI and voltage magnitude at bus 

5 were then compared with those from literature. The procedure is detailed in Figure 

3.2 below; 
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Figure 3.2 : VCPI Calculation Algorithm for IEEE 9 - Bus  (Bus 5) 

The results of the procedure were then compared with those from literature in order 

to validate the calculation of the VCPI for incremental loading. 

3.3 Application of VCPI with ANN - IEEE 30 – Bus System 

Next the IEEE 30 - Bus system as shown in Figure 3.3 was studied. The detailed 

system model is given in appendix A2. 
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Figure 3.3: IEEE 30 – Bus System 

This involved iterations for the base case and with an     contingency. The 

contingencies were selected as single – line outage and for transformers the tap 

settings were varied between 90% and 110% of the nominal tap setting, which is the 

maximum variation of the transformer tap possible. For each line contingency and 

the base case system values, 100 random loading configurations of between 30% and 

200% at each load bus were done without maintaining power factor. The 

randomization of the load was done in order to simulate dynamic operating 

conditions. The maximum and minimum load setting was varied in order to capture 

overload conditions and light loading conditions as well. Within each of these nested 

iterations, a load flow study was run with the single line outage and load 

configuration. From the load flow, the voltage magnitudes, real and reactive power at 

each bus and for the whole system were recorded. The L – index was then calculated 

for that configuration. This data was then used to train an ANN with 100 neurons in 
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the hidden layer. The ANN used had 5 inputs for the following inputs 

                    representing the real power demand at bus 26, total real 

power demand in the whole system, reactive power demand at bus 26, total reactive 

power demand in the whole system and the line contingency respectively. It had 2 

outputs for the voltage magnitude and VCPI index at bus 26. The training method 

used was Levenberg-Marquardt using the mean squared error with 70% of the 

sample used for training, 15% for validation of the network and 15% for testing the 

final network. Each epoch was limited to a maximum of 1000 iterations and 6 

validation checks were performed. Previous studies [14] found bus 26 to be the 

weakest bus in the system. A comparison of the VCPI calculated from the Power 

Flow and that predicted by the ANN was then carried out using a separate set of 

loading and contingency snapshots for the system to determine the dependability of 

the VCPI index with varying loading and contingencies, and the effect of the real and 

reactive power demands at the weak bus and in the whole system. The procedure is 

detailed in Figure 3.4 below. The IEEE 30 - Bus system has 41 lines. 
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Figure 3.4(a): VCPI – Line Contingency Simulation 
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Figure 3.4(b): VCPI - Bus Loading Variation 

3.4 VCPI with ANN Based Analysis - Kenya Power System 

Based on the results from the IEEE 9 - Bus  and IEEE 30 - Bus  system and the 

algorithm developed for the ANN for predicting VCPI, the study in section 3.2 was 

repeated on the Kenya Power System as shown in Figure 3.5 below. The detailed 

system model is given in appendix A3. 
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Figure 3.5: Kenya Power System 

 A previous study [14] had identified buses 10, 22, 30 and 31 as the weakest buses 

within the system and so the study focused on bus 10 and 30. Bus 22 is a generator 

bus and bus 31 is a node bus having no load connected to it hence they were ignored. 

100 iterations of load flows were conducted each with the loads at each load bus 

varied by between 50% and 150% of the nominal value for each contingency, in 

order to simulate light loading and overloading conditions. Increasing the loading 

margin of the Kenya Power System below 50% and above 150% led to the non-

convergence of the load flow hence the loading was limited to 50% - 150%.  This is 
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due to the fact that the Kenya Power System data is ill-conditioned and not as 

optimised as the IEEE 30 – Bus system data, especially for experimental analysis. 

For each loading-contingency configuration, a load flow calculation was performed 

and each bus voltage and VCPI for each bus calculated and stored. The results were 

used to train an ANN. The ANN was used to predict the VCPI using a separate 

generated set of loading and contingency contingencies. The results for the 

calculated VCPI values and those from the ANN were then compared for the 2 weak 

buses. The procedure is detailed in Figure 3.6 below. The Kenya power system has 

37 buses and 38 lines; 

 

Figure 3.6 (a): VCPI Application - Kenya Power System – Load Flow 

Calculation 
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Figure 3.6 (b): VCPI Application - Kenya Power System – Load Variation 

In the second set of simulations, the loading at each weak bus was increased, while 

maintaining power factor and the power at all other buses at their nominal value, until 

the voltage magnitude dropped to 0.9pu at the weak bus. The VCPI was obtained at the 

point which coincided with the voltage magnitude being 0.95 in order to obtain the VCPI 

at the minimum allowable voltage level of 95% in the Kenya power system. The 

procedure was repeated for the 2 weak buses. The procedure is detailed in Figure 3.7 

below.  
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Figure 3.7: VCPI at 95% Weak Bus Voltage Drop – Kenya Power System 

3.5 Developing of CART Algorithm – IEEE 30 – Bus System 

A similar algorithm to the one used in the VCPI with ANN training in section 3.2 was 

used. The iterations were done for the base case and for the case with an     line 

contingency. The contingencies were selected as single – line outages and for 

transformers the tap settings were varied between 90% and 110% of the nominal tap 

setting. For each contingency configuration, 100 random loading configurations of 

between 50% and 150% of the base case values at each load bus were done without 

maintaining power factor. Within each of these nested iterations, a load flow study was 

run with the single line outage and load configuration. From the load flow, the following 

variables were recorded and stored for each load bus  ; 
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   and    were the vectors for all the real and reactive power supplies at all the buses 

within the system corresponding to the load-contingency configuration after the load 

flow calculation.  

The 6 variables formed the inputs used in construction of the CART tree. The bus 

voltage obtained at bus   after the power flow iteration formed the target output for the 

Decision Tree. The minimum number of variables set for observation was set at 3000. 

This number of observations was set so as to achieve a decision tree that wasn’t too 

small such as to draw very wide conclusions or too large as to make it difficult to read. 

Cross validation using the Gini index was used in pruning the tree and obtaining the 

minimum cost tree. 

The study focused on bus 26 in the IEEE 30 - Bus system, which had previously been 

identified as the weakest bus in the system [14]. Once the complete tree had been 

constructed, the minimum – cost tree was plotted. For analysis purposes, the pruning 

level of the decision tree was increased by 1 in order to have a CART decision tree with 

more than 1 node. This was also plotted. The procedure is detailed in Figure 3.8; 
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Figure 3.8: CART Construction Algorithm – IEEE 30 – Bus System 
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3.6 CART Based Analysis - Kenya Power System  

Using the algorithm developed with the IEEE 30 – Bus system, CART decision trees 

were constructed for the Kenya power system. The steps involved were the exact 

ones used in the one for the IEEE 30 – bus system except for the number of buses 

and lines.  The Kenya Power System has 37 buses and 38 lines. The study focused on 

the 2 weak load buses within the system, buses 10 and 30. The procedure is detailed 

in Figure 3.9; 

 

Figure 3.9(a): CART Construction Algorithm – Kenya Power System – Load 

Flow Calculation 
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Figure 3.9(b): CART Construction Algorithm – Kenya Power System – Load 

Variation 

3.7 Conclusion 

In this chapter, a detailed description of the steps followed in undertaking the 

research leading to the thesis is given. The steps involved verification of the VCPI 

calculation algorithm and testing it on the IEEE 9 – Bus system. This was followed 

by testing of the predictive capacity of an ANN for the VCPI index and testing it on 

the IEEE 30 – Bus system. After that, the CART development algorithm is described 

and tested on the IEEE 30 – Bus system before being applied to the Kenya Power 

System.  
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CHAPTER FOUR 

RESULTS AND ANALYSIS 

4.1 Introduction 

In this chapter, the results focus on the application of VCPI with ANN for the IEEE 9 

– Bus test system, development of an algorithm on application of VCPI with ANN to 

the IEEE 30 – Bus system and analysis of the same for the Kenya Power System.  

Based on the results of the above, a CART algorithm for the IEEE 30 – Bus system 

is developed and applied on the Kenya Power System. 

4.2 Verification of VCPI Parameters - IEEE 9 – Bus System 

Using the IEEE 9 - Bus  system, the loading in bus 5 was increased starting from 

0p.u. until when the load fow calculation using the Newton-Raphson iterative 

method failed to converge, while maintaining power factor at the base case value. 

The corresponding values of the voltage magnitude and VCPI values were then 

plotted against the loading as shown in Figure 4.1 

 

Figure 4.1: VCPI and Voltage at bus 5 for bus 5 loading – IEEE 9 - Bus System 
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This result matched previous studies using the VCPI [24] with the non-convergence 

of the load flow for Bus 5 occurring at 2.971pu (371+j149MVA). The curve for the 

voltage magnitude follows the general PV curve shape with the voltage magnitude 

decreasing with the inrease in power demand. The curve for the VCPI index is 

inverse of the voltage magnitude and increases with increase in the power demand at 

bus 5. The results showed that the voltage at bus 5 would drop to 0.95 pu when the 

loading was at 1.09pu based on the base case values. This result validated the code 

used in the calculations of the VCPI. The load in bus 5 was increased in steps of 

0.001p.u. hence in Figure 4.1 the x-axis indicates the percentage load.  

4.3 Application of VCPI with ANN - IEEE 30 – Bus System 

To take into account the effect of the loading on all the other buses, the second 

algorithm was developed and applied on bus 26. It involved creating singe line 

outage and then varying the loading on each bus randomly between 0.5p.u. and 

1.5p.u., in order to mimic realistic loading conditions, and then calculating a load 

flow with this load-contingency configuration. For lines which were transformers, 

the tap position was randomly varied between 90%-110%. From the load flow, the 

VCPI at bus 26 was calculated. For each contingency, 100 random loading 

configurations were performed. The resulting data was then used to train an ANN 

and a comparison between the data generated by the calculated load flow and the 

ANN were compared as shown in Table 4.1; 
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Table 4.1:Comparison of VCPI using Load Flow and ANN (Bus 26 – IEEE 30 - Bus  

System) 

All values in (pu) 
VCPI 

METHOD  

                  Line 

outage 

Calculated ANN Error 

(pu) 

1.03 0.68 0.802 0.977 18 0.017716343 0.017671996 0.00004 

1.31 0.75 0.795 0.836 4 0.022009059 0.022171478 0.00016 

0.55 1.07 0.893 1.022 8 0.014192884 0.014241535 0.00005 

1.25 0.7 0.900 1.160 4 0.021715184 0.021684374 0.00003 

0.94 1.18 0.898 0.809 25 0.0196072 0.019471719 0.00014 

0.98 1.34 0.832551 1.022147 34 0.021028836 0.021253513 0.00022 

1.03 1.34 0.973613 1.170182 27 0.022764464 0.022584672 0.00018 

0.56 0.56 0.973737 0.973296 17 0.010444373 0.010501276 0.00006 

0.97 1.34 1.053596 0.914952 1 0.02089014 0.021338839 0.00045 

1.15 1.4 1.07819 1.058376 11 0.024649791 0.024517657 0.00013 

1.5 1.08 0.924584 1.202393 17 0.027959071 0.027665566 0.00029 

1.03 1.28 0.918574 0.874635 39 0.02153542 0.021375219 0.00016 

1.3 0.85 0.903493 0.983185 38 0.022614455 0.022791696 0.00018 

1.36 0.79 0.921351 0.965 39 0.023441694 0.023538126 0.00010 

1.15 1.23 1.054414 0.932005 24 0.022850865 0.022853261 0.00000 

0.73 0.76 1.227085 0.800697 33 0.014181215 0.014141223 0.00004 

0.92 1.45 0.831189 1.040158 34 0.021552404 0.021524221 0.00003 

1.35 1.19 1.212689 1.079501 8 0.026614541 0.026526106 0.00009 

0.62 0.65 0.763278 0.959643 15 0.011803074 0.011804038 0.00000 

1.03 1.19 0.913342 0.99874 16 0.020926418 0.020901713 0.00002 

 

From Table 4.1, the ANN is capable to predict the VCPI values to an accuracy of 

above 99%. This concurs with the results from [25] which are given in appendix A4. 

Also, it shows that the VCPI doesn’t have to be calculated directly from the load 
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flow which means an online system can be used to predict VCPI values based on 

power demand parameters which can be read online from a SCADA system.  

4.4 VCPI with ANN Based Analysis - Kenya Power System 

To begin with, the loading at each individual weak bus was increased in steps of 

0.001p.u. and the effect on the voltage magnitude and VCPI was recorded as seen in 

Figure 4.2 and Figure 4.3 for bus 10 and  Figure 4.4 and Figure 4.5 for bus 30. 

 

Figure 4.2: VCPI and Voltage at bus 10 for bus 10 loading – Kenya Power System 
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Figure 4.3: VCPI and Voltage at bus 30 for bus 10 loading – Kenya Power System 

 

Figure 4.4: VCPI and Voltage at bus 30 for bus 30 loading – Kenya Power System 
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Figure 4.5: VCPI and Voltage at bus 10 for bus 30 loading – Kenya Power System 

For loading on bus 10, the voltage magnitude and VCPI at bus 10 show a correlation 
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nominal level. For bus30, the physical and electrical distance between them makes 

the effect on the loading on bus 10 insignificant. Bus 30 (Naivasha) is approximately 

500 km away from bus 10 (Kisumu) with many nodes in between them. This 

explains why the loading on bus 10 has little effect on the voltage and VCPI at bus 

30. 

For loading on bus 30, a similar effect to that from bus 10 loading is experienced. 

The voltage magnitude and VCPI at bus 30 are affected by the loading but bus 10 not 

significantly affected. 

To simulate multiple loading conditions, the algorithm in section 3.3 was applied to 

the Kenya Power System with one ANN being trained for bus 10 and another for bus 
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use of a ANN were compared as seen in Table 4.2 for bus 10 and Table 4.3 for bus 

30 below; 

Table 4.2: Comparison of VCPI using Load Flow and ANN (Bus 10 – Kenya 

Power System) 

All Values in (pu) 

VCPI 

Method  

                      

Line 

outage Calculated ANN 

Error 

(pu) 

1.11 0.64 1.024 1.057 11 0.008598 0.008598 0.000000 

1.15 0.6 0.992 0.954 18 0.008881 0.008879 0.000002 

1 1 1.000 1.000 0 0.007928 0.007924 0.000004 

0.61 1.42 1.158 0.926 21 0.005605 0.005609 0.000004 

0.63 0.92 0.812 0.843 10 0.00517 0.005164 0.000006 

0.63 0.6 0.980 0.925 22 0.004878 0.004886 0.000007 

0.87 1.46 1.074 0.736 20 0.007326 0.007315 0.000011 

1.36 1.27 1.248 1.092 27 0.011108 0.011119 0.000011 

0.74 1.27 1.054 1.112 16 0.006293 0.006282 0.000012 

0.55 0.64 1.070 1.111 24 0.004362 0.004377 0.000015 

0.73 0.78 1.022 0.888 35 0.005785 0.005768 0.000017 

0.69 1.26 1.070 1.051 6 0.005961 0.005937 0.000024 

1.08 0.94 1.022 1.187 33 0.008514 0.00854 0.000026 

0.67 1.01 0.978 0.965 13 0.005542 0.005515 0.000028 

0.81 0.86 0.945 0.956 26 0.00642 0.006392 0.000028 

0.55 1.41 0.882 0.744 1 0.005113 0.005143 0.000030 

0.8 1.21 0.900 1.181 31 0.006681 0.006651 0.000030 

1.08 0.73 0.921 0.790 20 0.008368 0.008402 0.000034 

0.95 1.15 1.008 1.092 33 0.007703 0.007669 0.000034 

0.88 1.36 0.981 0.900 1 0.007308 0.007342 0.000034 
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Table 4.3: Comparison of VCPI using Load Flow and ANN (Bus 30 – Kenya 

Power System) 

All Values in (pu) 

VCPI 

Method  

                      

Line 

outage Calculated ANN Error (pu) 

1 1 1.039369 1.119826 10 0.005914 0.005914 0.00000001 

1.33 1.25 1.02525 1.126762 20 0.007809 0.007809 0.00000003 

1.44 0.76 0.89508 0.976154 11 0.00794 0.00794 0.00000004 

1 1 1 1 0 0.005914 0.005914 0.00000004 

0.62 0.71 1.021315 0.98173 17 0.003757 0.003757 0.00000004 

0.54 0.94 1.022036 0.957835 14 0.003741 0.003741 0.00000006 

0.96 1.25 0.941386 1.200582 38 0.006042 0.006042 0.00000017 

0.73 1.49 1.062345 0.942928 30 0.005455 0.005455 0.00000018 

0.73 0.64 0.838208 1.085164 14 0.004206 0.004206 0.00000018 

1.04 0.67 1.111917 0.927714 3 0.005796 0.005796 0.00000018 

0.75 0.78 0.964976 0.959773 36 0.004457 0.004456 0.00000020 

1.27 0.94 1.228703 1.010434 32 0.007199 0.007199 0.00000021 

1.37 1.04 0.875861 0.959267 9 0.007798 0.007798 0.00000021 

1.47 0.66 1.119349 0.950884 29 0.008036 0.008036 0.00000024 

0.67 0.8 1.014636 1.104771 23 0.004104 0.004104 0.00000028 

0.55 1.07 1.034707 0.907257 33 0.004005 0.004004 0.00000028 

0.57 1.21 0.929119 0.954326 38 0.004334 0.004334 0.00000029 

0.58 1.13 1.150198 1.008111 9 0.004228 0.004228 0.00000030 

1.27 1.28 1.039261 1.021798 25 0.007548 0.007548 0.00000032 

1.22 0.74 0.952579 0.968406 1 0.006778 0.006778 0.00000037 

 

The comparison showed the difference between the 2 pair of values being very small 

(less than 0.01%) hence showing that ANNs can be used for the online prediction of 

VCPI values for the Kenya Power system. 

From the foregoing results, an extension was made to use CART decision trees in 

predicting the voltage magnitude at the load buses as discussed next. 
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4.5 Developing of CART Algorithm using the IEEE 30 – Bus System 

Since a previous study [14] had identified buses 26,29 and 30 as the weakest bus in 

the system, CART trees were plotted using the algorithm described in section 3.3.2. 

The resulting decision tree for bus 26 plotted using 3000 minimum observations for a 

node to be split is shown in Figure 4.6 below; 

 

Figure 4.6: CART Tree (3000 Minimum Observations) Bus 26 – IEEE 30 Bus 

System 

From the algorithm, the iteration using the base case (without a line contingency) is 

stored as the 42
nd

 load-contingency configuration. From Figure 4.6, the CART tree 

shows the FAULT as the most significant variable affecting the voltage magnitude. 

Without any line fault (        ), the voltage magnitude at bus 26 is at 0.999 

p.u. but varies in the presence of any line fault in the system, depending on the other 

variables which form the other nodes in the decision tree. The CART tree makes it 

possible to see which variables affect the voltage magnitude at bus 26 the most. From 

Figure 4.6, the 5 most significant variables to the voltage magnitude at bus 26 are the 
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fault,     reactive power demand at bus 3,    – real power demand at bus 3      

 change in real power demand at bus 1 with change in the power factor at bus 1 and  

     real power demand at bus 21.  

The presence of the fault is expected to affect power flows within the system and 

thus it has the greatest influence on the voltage magnitude on many buses, including 

bus 26. 

Bus 3 is a relatively small bus with a load of (2.4+j1.2)MVA. Its connection to the 

slack bus and bus 4 both of which have voltage magnitudes greater than 1p.u. is what 

makes the reactive demand at bus 3 to be an influence on the voltage magnitude at 

bus 26.  

Bus 8 has a comparatively large highly inductive load (30+j30)MVA which is 11% 

of total real power demand and 24% of the total reactive power demand in the 

system. It has the lowest pf in the system 0.71 and also has reactive compensation 

hence the real power demand at this bus affects the voltage magnitude at bus 26 and 

other buses. 

   is an indicator of the sensitivity of the power demand at bus 26 to the power factor 

and also has an influence on the voltage magnitude as expected. 

Bus 21 is a comparatively large load (17.5+j11.2)MVA. In addition, it is only 

connected radially to bus 10 which has reactive compensation. This means that while 

its reactive load may be compensated by the static compensation, the real power 

demand will affect power flows within the rest of the system including bus 26. 

In order to reduce the size of the CART decision tree, the minimum number of 

observations required for a terminal node were increased to 4000 giving the CART 

decision tree in Figure 4.7 which was pruned by two levels to give the minimum tree 

in Figure 4.8; 
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Figure 4.7: CART Tree (4000 Minimum Observations) Bus 26 – IEEE 30 Bus 

System 

 

Figure 4.8: CART Tree (Pruned 2 levels) Bus 26 – IEEE 30 Bus System 

4.6 CART Based Analysis - Kenya Power System  

The algorithm described in section 3.5 was applied to the Kenya Power System. In 

addition, taking from the results in section 4.4 for the IEEE 30 – Bus System, a 

minimum number of observations for node splitting was selected at 3500 to give a 

balance between capturing the most influential variables without going into too much 
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detail in the CART decision tree. Buses 10 and 30 were the main focus since they 

had earlier [14] been identified as the weak buses. The CART trees resulting are 

shown below; 

 

 

Figure 4.9: CART Tree (3500 Minimum Observations) Bus 10 – Kenya Power 

System 
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Figure 4.10: CART Tree (Level 2 Pruned) Bus 10 – Kenya Power System 

From Figure 4.9, excluding the single – line contingency, the 5 most influential 

variables influencing the voltage at bus 10 are the fault,            and     .  

   represents the sensitivity of the real power at bus 10 to the power factor which as 

expected would influence the voltage magnitude at bus 10.  

Bus 35 is physically and electrically distant from bus 10. It’s intriguing that its 

reactive power demand would affect the voltage magnitude of bus 10 so far away. 

Also interesting is the range of the split at the node due to the reactive power at bus 

35, 0.505p.u. Bus 35 has a relatively small load (8.1+j1.3) MVA. This means that the 

threshold above which it influences the voltage at bus 10 is also very low. Both bus 

10 and bus 35 are terminal buses connected radially quite far from the main 

generators. The distance that reactive power has to travel from the generators and 

compensators to the buses is hence quite long meaning that when reactive power 

demand is high at one end, it reduces the amount of reactive power available at the 

opposite end and thus affects the voltage magnitudes. 

Bus 29 is also electrically distant from bus 10 and on the opposite end of the power 

system. It therefore has a similar effect as bus 35 with a similarly low split in the real 

power demand 0.035p.u. that affects voltage at bus 10. 

Bus 12 on the other hand is close to bus 10. However, it is connected to bus14 which 

is a generator bus. Since the generator at bus 14 is the closes to bus 10, then the real 
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power demand at bus 12 affects the real power available to bus 10 and thus affects its 

voltage. 

Figure 4.10 shows the effect of any line contingency on the voltage at bus 10. As 

expected, it is low when there is a fault (0.961p.u.) and slightly higher (0.988p.u.) 

when there is no fault. 

 

Figure 4.11: CART Tree (3500 Minimum Observations) Bus 30 – Kenya Power 

System 
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Figure 4.12: CART Tree (Level 1 Pruned) Bus 30 – Kenya Power System 

From Figure 4.11 for the CART tree for bus 30, the effect of buses at the extremes of 

the system, bus 10 and bus 35, is reflected with the reactive power demands at the 

two buses having a considerable effect on the voltage magnitude at bus 30. Also, the 

pruned tree for bus 30 as shown in Figure 4.12 shows that the fault and the sensitivity 

of the real power demand at bus 30 to the power factor have a similar weight in their 

effect on the voltage at bus 30. 

The CART trees for the other load buses showed a similar trend as those for the 

weak buses 10 and 30 as given in the appendix. For all the buses, the fault has the 

highest effect on their bus voltages and the absence of a fault has most of the buses 

having a voltage magnitude of between 0.98p.u. and 1.01p.u. In addition, the most 

common variables affecting most of the buses are                           and 

   . Bus 3 (22+j11)MVA and Bus 5 (15.9+j6.3)MVA are the largest loads in the 

western side of the system and it would thus so follow that power demand at these 

buses would have a larger effect on the voltage magnitude at other buses in the 

system. Bus 25 (1.8+j0)MVA, bus 29 (4.3+j1)MVA and bus 35 (8.5+j1.3)MVA are 

relatively small loads but are located physically far away from the large generators 

within the system. This means that their electrical distance is also larger due to the 

line impedance required to cover the long physical distances. The load demand at 
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these buses therefore tends to affect other buses’ voltage magnitudes. Similarly, due 

to their small magnitudes, their effect when measured in p.u. would appear larger. 

Bus 11 (16+j4.7)MVA , bus 12 (7.5+j4.8)MVA, and bus 13 (53+j26)MVA are 

relatively large loads located near the central region of the country and also near the 

major generators. It follows that their power demand would have a pronounced effect 

of other buses given that power can flow much easily to them compared to distant 

buses within the system. 

4.7 Conclusion 

In this chapter, the results of the research are presented. The VCPI verification 

algorithm as tested on the IEEE 9 – Bus system are presented as compared to those 

from literature. The comparison of the values of the VCPI index for the IEEE 30 – 

Bus system using the conventional load flow calculation with those predicted using 

an ANN showed the capacity of using an ANN as a predictor instead of using the 

conventional load flow calculation which takes a longer period to calculate. The 

extension of the prediction to using CART trees for dynamic voltage stability 

analysis as tested on the IEEE 30 – Bus system before being applied on the Kenya 

Power system showed the capacity of CART trees to predict the likely value of the 

voltage magnitude at the weak buses within the systems based on the power demands 

at other buses within the 2 systems. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

From the results, the research was successfully carried out with decision trees being 

constructed for all the load buses within the system. Specifically, the following stood 

out; 

The results for the VCPI from the IEEE 9 – bus were able to match those from 

previous study and this validated the algorithm used in calculation of the VCPI. The 

same algorithm was extended to the IEEE 30 – bus and the Kenya Power System and 

used in the calculation of the VCPI indices for the various buses for steady load 

increments as well as randomised loading. In addition, the use of ANNs to predict 

the VCPI gave results which closely matched those from the use of the conventional 

load flow method. This indicated that the use of artificial intelligence could be 

extended to calculate the VCPI without necessarily using the load flow calculation. 

Also, the validation of the VCPI meant that the variables used in its calculation could 

be used independent of the VCPI as is the case in the application of CART decision 

trees. 

Using the methodology developed, the main variables used in calculating the VCPI 

were extracted and used in the construction of the CART decision trees for the IEEE 

– 30 Bus and the Kenya Power System as required in the main objective of the thesis. 

The CART decision trees showed the following regarding the dynamic voltage of the 

load buses in the system; 

i. The absence or presence of a line fault has the greatest effect on all load 

buses within the system, as predicted in all the CART trees for the IEEE 

systems and the Kenya Power System 

ii. The Jacobian sub – matrix    for all buses has the greatest effect on the 

voltage at the load bus. This was expected since the    component of the 

Jacobian matrix relates to sensitivity of the real power to changes in the 

power factor. 
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iii. The analysis of the weak buses using the CART decision trees indicated that 

different buses are affected by the real and reactive power demand at various 

other buses within the system. The use of the CART decision tree shows the 

power demands that affect the voltage magnitude at a particular bus and also 

in the order of the magnitude of their effect on the voltage magnitude of the 

bus in question. 

iv. The CART decision tree method can relate different buses that are located 

physically and electrically apart. Buses located physically and electrically 

further away from the main system generators were seen to have an effect on 

the voltage magnitude of load buses. This was an unexpected phenomenon 

and shows that the CART decision tree can find relationships by data mining 

of information related to buses that are not easily detected otherwise. 

In order to mitigate dynamic voltage instability, the following measures are 

suggested; 

i. The system operator should focus on the main buses whose active and 

reactive loads are seen to affect the voltage magnitude at other distant or 

weak load buses e.g. buses 25, 29 and 35 should always have their loads 

being monitored as increases in these buses’ loads affects the voltage at 

multiple buses within the system. 

ii. In case of reactive power support, the reactive power supply should also be 

placed at these major buses in order to meet their load demands and reduce 

their effect on other distant load buses. 

iii. In case of impending voltage collapse, as a last resort, load shedding can be 

carried out in order to maintain voltage stability. The 3 main buses, 25, 29 

and 35, should be the first to be load shed in order to maintain voltage 

stability of the rest of the system by reducing load demand at these main 

buses. 

Further research areas recommended from this work could include; 

i. An analysis of the correlation between the buses whose real or reactive power 

affects many buses and the impact which support measures like distributed 
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generation and reactive power support would have on other buses if the 

support was located at these buses. 

ii. The use of Fuzzy Logic or a similar artificial intelligence method in 

developing an online SCADA based system for predictive voltage protection. 
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APPENDIX 

Appendix A1: IEEE 9 - Bus  System 

 

Figure A1: IEEE 9 – Bus  System 

Table A.1: IEEE 9 – Bus System Bus Data 

               Load Generation 

Bus 

No 

Bus 

Code 
|V| δ MW Mvar MW Mvar Qmin Qmax Injected 

1 1 1 0 0 0 247.5 0 0 0 0 

2 2 1 0 0 0 163.2 0 0 101.14 0 

3 2 1 0 0 0 108.8 0 0 67.428 0 

4 0 1 0 0 0 0 0 0 0 0 

5 0 1 0 125 50 0 0 0 0 0 

6 0 1 0 90 30 0 0 0 0 0 

7 0 1 0 0 0 0 0 0 0 0 

8 0 1 0 100 35 0 0 0 0 0 

9 0 1 0 0 0 0 0 0 0 0 
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Table A.2: IEEE 9 – Bus System Line Data 

Bus No Bus No R X 1/2B Tranformer 

tap setting nl nr pu pu pu 

1 4 0 0.0576 0 1 

2 7 0 0.0625 0 1 

3 9 0 0.0586 0 1 

4 5 0.01 0.085 0.088 1 

4 6 0.017 0.092 0.079 1 

5 7 0.032 0.161 0.153 1 

6 9 0.039 0.17 0.179 1 

7 8 0.0085 0.072 0.0745 1 

8 9 0.0119 0.1008 0.1045 1 

 

Appendix A2: IEEE 30 - Bus  System 

 

Figure A2: IEEE 30 – Bus  System 
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Table A.3: IEEE 30 – Bus System Bus Data 

               Load Generation 

Bus 

No 

Bus 

Code 

|V| δ MW Mvar MW Mvar Qmin Qmax Injected 

1 1 1.06 0 0 0 0 0 0 0 0 

2 2 1.043 0 21.7 12.7 40 0 -40 50 0 

3 0 1 0 2.4 1.2 0 0 0 0 0 

4 0 1.06 0 7.6 1.6 0 0 0 0 0 

5 2 1 0 94.2 19 0 0 -40 40 0 

6 0 1 0 0 0 0 0 0 0 0 

7 0 1 0 22.8 10.9 0 0 0 0 0 

8 2 1.01 0 30 30 0 0 -30 40 0 

9 0 1 0 0 0 0 0 0 0 0 

10 0 1 0 5.8 2 0 0 -6 24 19 

11 2 1.082 0 0 0 0 0 0 0 0 

12 0 1 0 11.2 7.5 0 0 0 0 0 

13 2 1.071 0 0 0 0 0 -6 24 0 

14 0 1 0 6.2 1.6 0 0 0 0 0 

15 0 1 0 8.2 2.5 0 0 0 0 0 

16 0 1 0 3.5 1.8 0 0 0 0 0 

17 0 1 0 9 5.8 0 0 0 0 0 

18 0 1 0 3.2 0.9 0 0 0 0 0 

19 0 1 0 9.5 3.4 0 0 0 0 0 

20 0 1 0 2.2 0.7 0 0 0 0 0 

21 0 1 0 17.5 11.2 0 0 0 0 0 

22 0 1 0 0 0 0 0 0 0 0 

23 0 1 0 3.2 1.6 0 0 0 0 0 

24 0 1 0 8.7 6.7 0 0 0 0 4.3 

25 0 1 0 0 0 0 0 0 0 0 

26 0 1 0 3.5 2.3 0 0 0 0 0 

27 0 1 0 0 0 0 0 0 0 0 

28 0 1 0 0 0 0 0 0 0 0 

29 0 1 0 2.4 0.9 0 0 0 0 0 

30 0 1 0 10.6 1.9 0 0 0 0 0 
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Table A.4: IEEE 30 – Bus System Line Data 

Bus No Bus No R X 1/2B Tranformer 

tap setting nl nr pu pu pu 

1 3 0.0452 0.1852 0.0204 1 

2 4 0.057 0.1737 0.0184 1 

3 4 0.0132 0.0379 0.0042 1 

2 5 0.0472 0.1983 0.0209 1 

2 6 0.0581 0.1763 0.0187 1 

4 6 0.0119 0.0414 0.0045 1 

5 7 0.046 0.116 0.0102 1 

6 7 0.0267 0.082 0.0085 1 

6 8 0.012 0.042 0.0045 1 

6 9 0 0.208 0 0.978 

6 10 0 0.556 0 0.969 

9 11 0 0.208 0 1 

9 10 0 0.11 0 1 

4 12 0 0.256 0 0.932 

12 13 0 0.14 0 1 

12 14 0.1231 0.2559 0 1 

12 15 0.0662 0.1304 0 1 

12 16 0.0945 0.1987 0 1 

14 15 0.221 0.1997 0 1 

16 17 0.0824 0.1923 0 1 

15 18 0.1073 0.2185 0 1 

18 19 0.0639 0.1292 0 1 

19 20 0.034 0.068 0 1 

10 20 0.0936 0.209 0 1 

10 17 0.0324 0.0845 0 1 

10 21 0.0348 0.0749 0 1 

10 22 0.0727 0.1499 0 1 

21 22 0.0116 0.0236 0 1 

15 23 0.1 0.202 0 1 

22 24 0.115 0.179 0 1 

23 24 0.132 0.27 0 1 

24 25 0.1885 0.3292 0 1 

25 26 0.2544 0.38 0 1 

25 27 0.1093 0.2087 0 1 

28 27 0 0.396 0 0.968 

27 29 0.2198 0.4153 0 1 

27 30 0.3202 0.6027 0 1 

29 30 0.2399 0.4533 0 1 

8 28 0.0636 0.2 0.0214 1 

6 28 0.0169 0.0599 0.065 1 
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Appendix A3: Kenya Power System (37-Bus Model) 

 

Figure A3: Kenya Power System 
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Table A.5: Kenya Power System Bus Data 

                Load Generation 

Bus No Bus 

Code 

Vmag Angle MW Mvar MW Mvar Qmin Qmax Injected 

1 1 1 0 0 0 0 0 0 0 0 

2 0 1 0 13 6 0 0 0 0 0 

3 0 1 0 22 11 0 0 0 0 0 

4 0 1 0 9.2 4 0 0 0 0 0 

5 0 1 0 15.9 6.3 0 0 0 0 0 

6 0 1 0 0 0 0 0 0 0 0 

7 0 1 0 0 0 0 0 0 0 0 

8 0 1 0 33.5 21 6  0 0 0 0 0 

9 2 1 0 0 0 106 65.72 0 0 0 

10 0 1 0 18 5.3 0 0 0 0 0 

11 0 1 0 16 4.7 0 0 0 0 0 

12 0 1 0 7.5 4.8 0 0 0 0 0 

13 0 1 0 53 26 0 0 0 0 0 

14 2 1 0 0 0 27.5 17.05 0 0 0 

15 0 1 0 95 46 0 0 0 0 0 

16 2 1 0 0 0 40 24.8 0 0 0 

17 0 1 0 0.8 0 0 0 0 0 0 

18 0 1 0 0 0 0 0 0 0 0 

19 2 1 0 0 0 225 139.5 0 0 0 

20 0 1 0 0.2 0 0 0 0 0 0 

21 0 1 0 0 0 0 0 0 0 0 

22 2 1 0 0 0 94.2 58.4 0 0 0 

23 2 1 0 0 0 0 0 0 0 0 

24 0 1 0 0 0 0 0 0 0 0 

25 0 1 0 1.8 0 0 0 0 0 0 

26 0 1 0 84 54 0 0 0 0 0 

27 0 1 0 10 4.8 0 0 0 0 0 

28 2 1 0 0 0 44 27.28 0 0 0 

29 0 1 0 4.3 1 0 0 0 0 0 

30 0 1 0 12 5.8 0 0 0 0 0 

31 0 1 0 0 0 0 0 0 0 0 

32 0 1 0 0.9 0 0 0 0 0 0 

33 0 1 0 15.5 14 0 0 0 0 0 

34 0 1 0 6.8 3.3 0 0 0 0 0 

35 0 1 0 8.1 1.3 0 0 0 0 0 

36 0 1 0 13.8 6.7 0 0 0 0 0 

37 2 1 0 79.8 38.7 63 39.06 0 0 0 
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Table A.6: Kenya Power System Line Data 

nl nr R X 1/2B Tran. 

Tap. 

24 21 0.001663 0.010124 0.01655 1 

24 28 0.001529 0.00624 0.01111 1 

28 31 0.019153 0.078326 0.13948 1 

6 9 0.009483 0.038802 0.69115 1 

21 26 0.000196 0.001209 0.00192 1 

1 2 0.024277 0.017593 0.00143 1 

2 3 0.012397 0.008988 0.00073 1 

2 4 0.022498 0.016374 0.00134 1 

4 5 0.022096 0.016074 0.00131 1 

4 7 0.039027 0.028306 0.0023 1 

7 11 0.02112 0.015331 0.00225 1 

7 10 0.033402 0.024256 0.00197 1 

4 8 0.042958 0.031612 0.00256 1 

8 12 0.023072 0.016725 0.00136 1 

12 14 0.023072 0.016725 0.00136 1 

12 13 0.00551 0.011839 0.00092 1 

13 15 0.001435 0.00125 0.0001 1 

19 23 0.000517 0.000372 0.00003 1 

15 16 0.070535 0.060393 0.00477 1 

16 19 0.010904 0.009339 0.00074 1 

23 27 0.002296 0.001952 0.00002 1 

22 19 0.06095 0.044174 0.00358 1 

27 30 0.035468 0.025702 0.00209 1 

15 17 0.074093 0.06343 0.00501 1 

17 20 0.025482 0.021818 0.00171 1 

20 25 0.050964 0.043636 0.00385 1 

25 29 0.053375 0.045682 0.00361 1 

29 32 0.016586 0.018347 0.00112 1 

32 34 0.050964 0.043636 0.00345 1 

33 34 0.014233 0.010537 0.00084 1 

33 36 0.011708 0.008492 0.00069 1 

33 37 0.023072 0.016725 0.00136 1 

33 35 0.031279 0.022665 0.00185 1 

15 18 0.000459 0.000103 0.00008 1 

6 4 0.0021 0.0706 0 0.9 

19 24 0.0021 0.0706 0 0.9 

21 18 0.0021 0.0706 0 0.9 

31 33 0.0021 0.0706 0 0.9 
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Appendix A4: ANN vs Load Flow Calculation for VCPI Calculation 

 

Table A.7: Comparison of VCPI Values Using Load Flow Calculations and 

ANNs for IEEE 14 – Bus System [25]  

Test 

Case 

Input (all quantities in per unit) 
Method 

Output / VCPI 

  
     

               
     

     
   

1 0.1300 0.0700 2.7000 1.6000 
CA 0.1224 0.2039 0.1339 

PA 0.1228 0.2034 0.1347 

2 0.1500 0.0900 1.8000 1.3500 
CA 0.0911 0.1408 0.0941 

PA 0.0914 0.1409 0.0947 

3 0.1800 0.0800 2.1000 1.0100 
CA 0.0893 0.1359 0.0904 

PA 0.0897 0.1354 0.0918 

4 0.2200 0.1300 2.1000 1.5800 
CA 0.1327 0.2102 0.1442 

PA 0.1329 0.2100 0.1440 

5 0.3500 0.1750 3.6000 1.2000 
CA 0.2360 0.4381 0.2685 

PA 0.2360 0.4381 0.2685 
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Appendix A5: Selected CART Decision Trees For Kenya Power System Load 

Buses 

 

 

Figure A5.1: CART Tree (3500 Minimum Observations) Bus 2 – Kenya Power 

System 

 

Figure A5.2: CART Tree (3500 Minimum Observations) Bus 3 – Kenya Power 

System 
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Figure A5.3: CART Tree (3500 Minimum Observations) Bus 4 – Kenya Power 

System 

 

Figure A5.4: CART Tree (3500 Minimum Observations) Bus 8 – Kenya Power 

System 
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Figure A5.5: CART Tree (3500 Minimum Observations) Bus 13 – Kenya Power 

System 

 

Figure A5.6: CART Tree (3500 Minimum Observations) Bus 15 – Kenya Power 

System 
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Figure A5.7: CART Tree (3500 Minimum Observations) Bus 26 – Kenya Power 

System 

 

Figure A5.8: CART Tree (3500 Minimum Observations) Bus 31 – Kenya Power 

System 


