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ABSTRACT 

Analysis of magneto-hydrodynamic fluid flow between parallel plates where the upper 

plate is porous in presence of variable transverse magnetic fields has been investigated. 

Both the plates are non-conducting and horizontally placed, constant suction taking 

place in the upper plate. The upper plate moves in the opposite direction of the fluid 

flow as the lower plate remains stationary. The electrically conducting Newtonian fluid 

is unsteady and incompressible. The governing equation for the flow includes the 

continuity equation, Navier stokes equation and the energy equation. The equations have 

been formulated and later on non-dimensionalised. The velocity equation is solved 

simultaneously with the energy equation by the finite difference technique since both the 

equations are highly non-linear and coupled. The finite difference form of velocity and 

temperature equations are implemented in MATLAB software version 7.14.0.739 and 

the results obtained are presented graphically. The effect of varying various parameters 

on the velocity and temperature profiles has been discussed. These parameters include 

magnetic parameter M, pressure gradient dp/dx, prandtl number Pr, Eckert number Ec, 

joules heating parameter R and suction parameter S0. An increase in suction parameter 

lead to a decrease in velocity and an increase in temperature profiles of the fluid. The 

results obtained for the velocity and temperature profiles will provide useful information 

to the engineers in designing and improving efficiency and performance of machines 

and especially in the dyeing industry and in extraction of metal industry. 
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Overview 

In this chapter the key terms used in the thesis are defined and an explanation of the 

main concepts is made. A review of literature related to the present work and the 

problem statement of the study is outlined. The objectives of the study are discussed and 

the justification of the present work is stated at the end of this chapter.  

1.2 Introduction 

There are three classes of matter solid, liquid and gas. Liquids or gases are termed as 

fluids. There are two types of fluids, that is, Newtonian fluids where viscosity does not 

change with the rate of deformation and non-Newtonian fluids where viscosity varies 

with the rate of deformation. A solid is a matter in which the distance between its 

molecules does not change when a force is applied on it.    

Magneto-hydrodynamic (MHD) is the study of motion of electrically conducting fluid in 

presence of magnetic fields. The flow of an electrically conducting fluid under a 

magnetic field gives rise to induced electric currents. The magnetic field exerts 

mechanical forces on the induced electric currents. The induced electric currents flow in 

the direction perpendicular to both the magnetic field and the direction of motion of the 

fluid. However the induced currents also generate their own magnetic field, which in 

turn affects the original magnetic field.  The interaction of the electric current and the 

applied magnetic fields give rise to Lorentz force which affects the velocity of the 

Newtonian fluid. The hydro-magnetic flow between parallel plates and magnetic field 

lines applied normal to the moving plate of the channel was first investigated both 

theoretically and experimentally by Hartman (1937).  
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This flow has been investigated by many researchers due to its varied applications in 

dyeing industry, geothermal reservoirs, underground energy transport, petroleum and 

mineral industries and in purification of crude oil. 

1.3 Definition of key terms 

1.3.1 Fluid 

A fluid is a substance whose constituent particles may continuously change their 

positions relative to one another when shear force is applied to it. If a fluid is at rest, 

there are no shearing forces acting on the fluid and therefore, all forces in the fluid are 

perpendicular to the planes upon which they act. Shear stresses are developed when the 

fluid is in motion such that the particles of the fluid move relative to each other with 

different velocities and on the other hand if the velocity of the fluid particles are the 

same at every point, no shear forces can be produced since the fluid particles are at rest 

relative to each other. 

1.3.2 Ideal and Real fluids 

An ideal fluid is one that is incompressible and its flow exhibits no viscous effect. Real 

fluids are compressible and their flow exhibits viscous effect which means that 

whenever there is a velocity gradient across the real fluid’s flow path, frictional forces 

arise between the adjacent fluid particles due to the viscosity   of the fluid. Real fluids 

obey the Newton’s law of viscosity         

i.e 
y

u




                      (1.1) 

Where  is the shear stress, u  is the fluid velocity y is the transition distance and is 

a symbol for proportionality. This means that the shear stress  in the fluid is 

proportional to the velocity gradient, which is the rate of velocity across the fluid flow 

path.   
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For a Newtonian fluid, we can express shear stress as;  

y

u




       (1.2) 

The constant of proportionality   is known as the coefficient of viscosity or viscosity 

of the fluid. The viscosity of a Newtonian fluid depends on temperature and pressure. A 

boundary layer is formed in the fluid flow region close to the solid wall and when 

viscous fluid flows between stationary solid boundary surfaces, the velocity of fluid 

particles in contact with the solid boundary is zero due to the no slip boundary condition 

at the solid wall boundary where a type of frictional force called skin friction exists. The 

thickness of the boundary layer will be dependent on the Reynolds number and other 

flow variables. 

1.3.3 Porous medium 

A porous medium is a material containing pores or spaces between which solid 

materials, liquid or gas can pass through. Porosity refers to a measure of void spaces in a 

material and can also be defined as the fraction of volume of voids over the total 

volume. Fluid flow through porous media is of interest to researchers due to its varied 

applications to the petroleum engineers who are concerned with the movement of oil and 

gas in pipes and in analysis of the spread of pollutants in groundwater.   

1.3.4 Steady and Unsteady flow 

Fluid flow can be classified as either steady or unsteady. The flow is said to be steady if 

the fluid flow variables such as velocity, applied magnetic field and temperature are 

independent of time while on the other hand if the flow variables are dependent on time 

the flow is said to be unsteady. 
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1.3.5 Laminar flow and turbulent Flow  

Laminar, flow refers to the motion of the fluid particles in an orderly manner with the 

fluid particles moving in a straight line parallel to the boundary walls and the fluid 

particles do not encounter a disturbance along their path. Turbulence in fluid flow occurs 

when a flowing fluid suddenly encounters a disturbance such as a solid obstruction or a 

force. As a result, the fluid particles move in a disorderly manner with different 

velocities and energies. The shape of the velocity curve (the velocity profile across any 

given section of the flow channel) depends upon whether the flow is laminar or 

turbulent. For turbulent flow in a pipe a fairly flat velocity distribution exist across the 

section of the flow field, with the result that the entire fluid flows at a given single value. 

If the flow is laminar the shape is parabolic with the maximum velocity at the center 

being about twice the average velocity in the pipe. 

1.3.6 Magneto-hydrodynamics flow 

Magneto-hydrodynamic (MHD) is the study of an electrically conducting fluid flow in 

presence of a magnetic field. MHD entails the study of dynamics of the interaction of 

electrically conducting fluids and electromagnetic field. The fluid can be ionized gases 

(commonly called plasmas) or liquid metals. When a conducting fluid flows through the 

magnetic lines of force the positive and negative charges are each accelerated in such a 

way that their average motion gives rise to an electric current given by; 

           BqEJ        (1.3)  

In accordance with the dynamo rule, the voltage drop or electric field which causes this 

current is at right angles to the direction of the fluid motion and the magnetic field lines. 

In the case of a fluid conductor flowing in presence of a transverse magnetic field, the 

ordinary laws of hydrodynamics can easily be extended to cover the effect of magnetic 

fields and electric fields.   



5 

 

This is done by adding magnetic force to the momentum conservation equation. The 

magnetic force also referred to Lorentz force is in a direction perpendicular to both J and 

B and is proportional to the magnitude of both J and B and is given by; 

  BJeF        (1.4) 

In MHD this force acts on the fluid particles and is reffered to as electromagnetic force. 

1.3.7 Viscosity 

This refers to the resistance set up due  to shear stresses within the fluid particles and the 

shear stresses between the fluid particles and the solid surface for a fluid flowing around 

a solid body.As fluid exerts a shear stress on the boundary,the boundary exerts an equal 

and opposite force on the fluid called shear resistance. Drag coefficient always depends 

on the hydrodynamic Reynolds number (Re)  and the shape of the body. The work done 

against the viscous effects usually causes fluid to flow,consequently the energy spent in 

causing the fluid to flow is converted to heat energy. 

1.3.8 Boundary layer 

The concept of boundary layer was first introduced by Prandtl  and since then it has been 

applied to several fluid flow problems. The fluid layer in the neighborhood of the solid 

boundary where effects of fluid friction (viscous effects) are predominant is known as 

the boundary layer. Boundary layers are thin fluid layers adjacent to the surface of a 

body or solid wall in which strong viscous effects exist. Flow outside this layer is 

considered frictionless. The velocity near the boundary is affected by boundary shear 

stress. At low Reynolds number, viscous forces dominate over the inertial forces.     

1.3.9 Velocity Boundary Layer 

Velocity boundary layer arises as a result of the velocity difference between the fluid 

particles adjacent to a solid surface and those in the free stream. The fluid particles 

adjacent to the solid surface acquire the velocity of that surface due to the assumption of 
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no-slip condition. The latter is a physical requirement that the fluid and solid have equal 

velocities at their interface. Thus the flow velocity of a fluid is retarded by a fixed solid 

surface, and a finite, slow-moving boundary layer is formed. For a viscous fluid, 

velocity boundary layer thickness is defined as the perpendicular distance, measured 

away from the solid surface, where the velocity of the fluid becomes 0.99 of the free 

stream velocity. As the fluid moves past the surface of the object, collisions of the fluid 

molecules within the fluid with those molecules touching the object’s surface reduce the 

kinetic energy of the molecules that are farther away from the solid-fluid interface. Thus 

a relatively thin layer of fluid is formed near the solid-fluid interface in which there is a 

rapid change of velocity from zero to the free stream value. This is the layer referred to 

as the velocity boundary layer. 

1.3.10 Thermal Boundary Layer 

When temperature difference exists between the solid-fluid interface and the fluid in the 

free stream, a thermal boundary layer is formed. The fluid particles in contact with the 

solid- fluid interface acquire the temperature of the interface. If the temperature of the 

interface is higher than that of the ambient fluid, the kinetic energy of the molecules of 

the adjacent fluid particles increases. These particles in turn exchange the acquired 

kinetic energy with those fluid particles in the adjacent fluid layers further away from 

the interface. This process continues in the adjacent fluid layers and temperature 

gradients develop in the fluid. 

1.3.11 Lift and Drag 

The sum of all the forces on a body that acts perpendicularly to the direction of flow is 

referred to as lift. This force occurs when fluid moves over a stationary solid body. On the 

other hand, drag is the force parallel and in opposition to the direction of motion of an object 

moving in the fluid. Drag takes two forms; form drag or pressure drag which is dependent 

on the shape of the object moving in the fluid and the other form is skin friction which is 

dependent on the viscous friction between a surface of a moving solid body and a fluid. 
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1.4 Literature review 

The first quantitative observation relating to magnetic and electric fields were made by 

Faraday (1831) in experiments on the behavior of current in circuits placed in transverse 

magnetic fields. In this experiment with mercury as the conducting fluid flowing in a 

glass tube placed in a magnetic field, he observed that a voltage was induced in a 

direction perpendicular to both the direction of the flow and magnetic field. 

Riche (1832) studied analysis of Poiseuille flow of a reactive power law fluid between 

two parallel plates and discovered that when an electric field is applied to conducting 

fluid in a direction perpendicular to a magnetic field a force is exerted on the fluid in a 

direction perpendicular to both the electric field and magnetic field. 

Maurice (1843) studied the analysis of boundary conditions of a fluid and showed that 

the no slip condition was satisfied for the fluids and wall materials tested .He came up 

with the famous couette flow which refers to the laminar flow of a viscous fluid in the 

space between parallel plates, one of which is moving relative to the other. The flow is 

driven by virtue of viscous drag force acting on the fluid and applied pressure gradient 

parallel to the plates.  



8 

 

 He found out that the flow is due to the relative motion of the surfaces and its velocity 

varies linearly with distance perpendicular to the surface. 

Alboussiere (1869). also studied the concept of motion of fluids between two parallel 

plates by introducing the method of measuring blood pressure. He studied the flow of 

liquids through tubes and found that the rate of flow depended on the diameter and 

length of the tube and pressure difference between the ends. 

Alfven (1942) studied unsteady hydro-magnetic fluid flow between two parallel plates 

where he established transverse waves in electrically conducting fluid and explained 

other astrophysical phenomenon in relation to transverse waves. 

Katagiri (1962) investigated unsteady hydro-magnetic coquette flow of a viscous, 

incompressible and electrically conducting fluid under the influence of a uniform 

transverse magnetic field when the fluid flow within the channel is induced due to 

impulsive movement of one of the plates of the channel. He found out that for the case 

of impulsive as well as accelerated motion of one of the plates, the magnitude of the 

shear stress component due to the primary flow decrease whereas that due to the 

secondary flow decrease with increase in hall parameter. 

Muhuri (1963) studied unsteady hydro-magnetic couette flow of a viscous, 

incompressible and electrically conducting fluid between two infinitely long parallel 

porous plates, taking Hall current into account, in the presence of a transverse magnetic 

field. Fluid flow within the channel is induced due to impulsive movement of the lower 

plate of the channel Uniform magnetic fields is in the direction orthogonal to the 

permeable plates, uniform suction and injection through the plates are applied. He found 

that when the magnetic field is considered to be fixed relative to the plate, the flow is 

accelerated by the magnetic field. However, the magnetic field retards the fluid flow 

when the magnetic field is fixed relative to the flow.  
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Jain (1968) concentrated on the effect of wall porosity on the stability of hydro-magnetic 

flow between parallel plates under transverse magnetic field and expressed the idea that 

the flow is largely influenced by porosity and the flow parameters such as velocity, 

pressure and temperature.  

Singh (1970) investigated unsteady MHD Couette flow of a viscous, incompressible and 

electrically conducting fluid near an accelerated plate of the channel under constant 

magnetic field. He compared the unsteady free convection coquette flow at large values 

of time with the corresponding steady-state problem and found that they are in good 

agreement. It was also observed that the flow velocity decreases with increasing Prandtl 

number. 

Apere (2000) considered the unsteady MHD free convection coquette flow between two 

vertical parallel porous plates with uniform suction and injection. The magnetic field is 

considered fixed relative to the fluid and fixed relative to the moving plate were 

considered. The velocity and temperature distributions were obtained using the Laplace 

transform technique. The results revealed that both temperature and velocity decrease 

with increasing Prandtl number and with increasing suction/injection parameter. The 

velocity was also found to increase with increasing Grashof number. 

Kim (2010) studied unsteady MHD convective heat transfer past a semi-infinite vertical 

porous moving plate with variable suction. The radiative heat flux was described using 

the Rossel and approximation, the temperature and suction velocity at the plate were 

taken to be time-dependent. The velocity and temperature distributions were obtained 

using an asymptotic expansion of velocity for small magnetic number, as well as a 

similarity transformation. The results showed that a decrease in both velocity and 

temperature with increasing radiation and suction parameter.  

Chauhan and Agrawal (2010) studied Hall effects on MHD slip flow and heat transfer 

through a porous medium over an accelerated plate in a rotating system and found that 

interplay of Coriolis force and hydro-magnetic force in the presence of boundary slip 

and Hall current plays an important role in characterizing the flow behavior. 
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Seth (2011) studied the problem considered when the fluid flow is confined to porous 

boundaries with suction and injection considering two cases of interest namely the 

impulsive movement of the lower plate and the uniformly accelerated movement of the 

lower plate .Seth concluded that the suction exerted a retarding influence on the flow 

while the magnetic field, time and injection reduce shear stress at lower plate in both the 

cases while suction increases shear stress at the lower plate.  

Kumar (2012) studied on MHD flow and heat transfer along a porous flat plate with 

mass transfer and found that the fluid velocity component increased with an increasing 

value of time and Hall parameter, but decreases owing with an increasing value of 

transpiration parameter and magnetic field parameter. 

 Victor (2013) studied unsteady MHD free convection couette flow between two vertical 

permeable plates in the presence of thermal radiation using galerkin’s finite element 

method. It was found that the radiation parameter and Prandtl number have a greater 

effect on the temperature than on the velocity. On the other hand, the magnetic 

parameter and Grash of number have no effect on the fluid temperature.  

Venkateswarlu (2013) studied hydro-magnetic unsteady MHD flow of an 

incompressible, electrically conducting, and viscous fluid past an infinite vertical porous 

plate along with porous medium of time dependent permeability under oscillatory 

suction velocity normal to the plate. He found that the velocity of the fluid decreases 

with the increase of magnetic parameter values and an increase in Prandtl number 

caused a decrease in Temperature profile. 

Gunakala (2014) investigated unsteady MHD couette flow between two infinite parallel 

porous plates in an inclined magnetic field with heat transfer. The lower plate was 

considered to be porous and stationary. He found out that an increase in the magnetic 

number lead to a decrease in the velocity of the fluid. 
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 1.5 Problem statement 

This study has considered the analysis of the unsteady hydro-magnetic fluid flow 

between two parallel plates in presence of variable magnetic fields applied 

perpendicularly to the top moving plate which is porous and has a constant suction. 

Initially (when time t 0) both the plates are stationary and when time t 0 the upper 

plates starts moving in the opposite direction of the main flow while the lower plate 

remain stationary. The fluid in consideration is unsteady, viscous, incompressible and 

electrically conducting between two parallel plates located at a distance y=-h and y=h. 

The plates are of infinite length in both the x and z directions and the variable transverse 

magnetic fields are applied parallel to y-axis and the upper porous plate has a constant 

suction as show in figure 1.1 below. 

 

Porous plate                                        Hy Hy 

    Motion 

           

 2h 

Fluid flow    Suction     

   

 

 

 

  

 
Y-axis 

X-axis 

Z-axis 
    Figure 1.1: Flow configuration 
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1.6 Justification of the study 

The experimental and theoretical research on MHD flows is important to scientific and 

engineering fields. In particular the influence of a magnetic field on a viscous, 

incompressible flow of an electrically conducting fluid is encountered in engineering 

devices such as MHD generators, MHD fluid dynamos, flow meters, heat exchangers 

and pipes that connect system components.  The study of MHD flow through porous 

media is of fundamental importance in a wide range of disciplines, including natural 

sciences and technology. MHD flow finds more applications in horticulture and 

hydrogeology in dealing with ’seepage’ problems in rock mass, sand beds and 

subterranean aquifers. The applications of MHD in engineering structures such as flow 

of liquid metals, extrusion of plastics in the manufacture of rayon and nylon, cooling of 

nuclear reactors, electromagnetic casting, behavior of plasma in fusion reactors, cooling 

of moving parts in automobile engines, MHD electric current generators and dyeing 

industry gives this study a practical  frame work. 

There is need to carry out a study on unsteady hydro-magnetic fluid flow between two 

parallel plates in presence of variable magnetic fields applied perpendicularly to the top 

moving plate which is porous and has a constant suction as this will find major 

applications in dyeing industries, engineering and many other scientific fields useful to 

the welfare of mankind. 

1.7 Null Hypothesis 

The applied variable transverse magnetic field has no effect on both the velocity and 

temperature profiles. 
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1.8 Objectives of the study 

1.8.1      General objective 

To determine the effect of applying variable transverse magnetic fields to fluid flow 

between parallel plates where the upper plate is porous with a constant suction. 

1.8.2 Specific objectives 

i). To determine the velocity profiles of the flow between the horizontal plates. 

ii). To determine the temperature profiles of the flow between the horizontal plates. 

iii). To determine the effects of varying Magnetic number M, Reynolds number Re, 

Pranstl number Pr, Pressure number, Suction parameter So and Eckert number Ec 

on the velocity and temperature distributions. 

The governing equations for the unsteady hydro-magnetic fluid flow between two 

parallel plates in presence of variable magnetic fields applied normal to the top moving 

plate which is porous includes the equation of conservation of mass, the equation of 

momentum, the equation of conservation of energy and the Maxwell’s equations are 

outlined in the next chapter. 
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CHAPTER TWO 

GOVERNING EQUATIONS 

2.1 Overview 

This chapter has outlined the assumptions and the equations that govern magneto-

hydrodynamic fluid flow between the two parallel plates which includes continuity 

equation, momentum equation, Maxwell’s equations and the energy equation. Towards 

the end of the chapter, non- dimensionalization process is also stated.  

2.2 Assumptions  

To simplify the equations governing the fluid flow in this study, the following 

assumptions was made; 

i). The fluid is incompressible. 

ii). Thermo conductivity, electrical conductivity and coefficient of viscosity are 

constants. 

iii). The flow is unsteady and the plates are of infinite length in x and z directions. 

iv). The no-slip condition is satisfied. 

v). The flow is two-dimensional. 

vi). The fluid does not undergo any chemical change. 

vii). The force due to electric field is negligible as compared to Lorenz force due to 

magnetic force.  

viii). The pressure gradient dp/dx is assumed to be a constant. 

2.3 Governing equations of the flow 

2.3.1 Equation of conservation of mass 

This is also referred to as the equation of continuity. The law of conservation of mass 

states that under normal conditions mass can neither be created nor destroyed.  It can 



15 

 

also be defined in a mathematical statement as any process where the rate at which mass 

enters a system is equal to the rate at which mass leaves the system. This implies that 

inflow into the control volume equals outflow. For an unsteady fluid flow, the tensor 

form of the equation of continuity is given by; 

 
0

.











i

i

x

u

t


     (2.1a)  

Where i =1, 2, 3 represent the x, y and z directions respectively. The flow is between 

two non -conducting horizontal plates with the plates being of infinite length in the x and 

z directions making the derivative with respect to x and z negligible. Equation (2.1) will 

therefore reduce to; 

    

0









y

v

t



         (2.1b) 

For an incompressible fluid flow density of the fluid is a constant and by differentiating 

the first term in equation (2.1b) with respect to time is equals to zero and therefore 

equation (2.1b) reduces to;

 

  0




y

v
      (2.2)  

The integral of the derivative in equation (2.2) is equals to a constant Vo. This constant 

represents the suction velocity through the upper porous plate. 

2.3.2 Electromagnetic equations   

These are the basic equations in electricity and magnetism and they give the relations 

between the interacting electric and magnetic fields. The electromagnetic equations 

gives the relationship between the electric field ( E ), the magnetic induction vector ( B ), 

magnetic field intensity ( H ), the electric displacement (D) and induction current density 

( J  ) in accordance with Griffiths.  
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The following are the basic Electromagnetic equations; 

a) Gauss’ law for electricity  

This law states that net flux of electric field lines out of a closed surface S is 

proportional net charge enclosed within the surface 

0. B       (2.3) 

b) Faraday’s law of induction 

The law states that changing magnetic fields produces an electric field. The 

electromagnetic force induced in a circuit is equal to the rate of change with time of the 

total magnetic flux through the circuit no matter how the flux changes. 

t




B
E

      (2.4) 

HB eμWhere
      (2.5) 

c) Ampere’s law; 

The law states that for a constant current flow, flux of the electric current through a 

surface is proportional to the line integral of the magnetic field (counterclockwise) 

around its boundary. Ampere's Law states that for any closed loop path, the sum of the 

length elements times the magnetic field in the direction of the length element is equal to 

the permeability times the electric current enclosed in the loop.  

  IL 0B        (2.6) 

The magnetic field strength is given by; 

e
0B

H        (2.7) 

  

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html#c3
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2.3.3 Lorentz’s force law 

The law defines the total force resulting from both the electric and magnetic fields. 

BvEmFeFF  QQ     (2.8) 

Where Q is the test charge placed in an electric field E, EF Qe  is the electric force and 

BvF  Qm Which is the magnetic force experienced by the test charge. 

2.3.4 Charge conservation 

The principle of charge conservation states that under normal conditions, charge is 

conserved and thus cannot be created nor destroyed. 

t
J







.        (2.9) 

Where from the generalized Ohm’s law, 

 BuEJ       (2.10)  

2.3.5 Equations of conservation of momentum 

The equation of conservation of momentum is derived from the Newton's second law of 

motion, which states that, the time rate of change of momentum of a body is equal to the 

external force applied to the body. This external force is divided into two types of forces 

i.e. surface forces (e.g. forces due to static pressure and viscous stresses) and body 

forces (e.g. gravitational force, centrifugal force, magnetic force or electric fields).   
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The surface forces are due to the interaction between the body and the matter in the 

immediate contact with it and act on the bounding surfaces. These intensities are 

expressed in terms of stress and defined as force per unit area. 

The body forces are defined as the forces which act on a body from a distance and are 

usually expressed as forces per unit mass;   

  e

2

ρ

μ
P

ρ

1
.

t
Fuuu

u






  

(2.11)  

The first term is the temporal acceleration while the second term is the convective 

acceleration. On the right hand side, the first term is the pressure gradient, second term 

is the force due to viscosity and third term is the body force. The electromagnetic force 

eF   can be expressed as BJF e from equation (2.8) above, Equation (2.11) can thus 

be written as; 

    )(
ρ

1

ρ

μ
p

ρ

1

t

2
BJu.uu

q





  (2.12) 

From the flow in consideration, all quantities except for the pressure gradient
xd

dP , 

which is assumed to be a constant, do not depend on the x and z coordinates. The 

velocity vector of the fluid is   ),( tyuu   Considering equation (2.10) 

 BuJ   where the electric fields E is assumed to be negligible as indicated in 

assumption (vii) above, we have; 

kB

kji

BuJ yu

yB

u  

00

00      (2.13) 

uiBo

yB

yu
2

00

00   B

kji

BJ    (2.14) 

  



19 

 

Since 00 HB e   then, 

 iBJ uHoe

22
       (2.15)  

Since    ),( tyuq the viscous term u2

ρ

μ
  takes the form  

2

2

ρ

μ

y

u



 .        (2.16) 

Substituting equations (2.16) and (2.15) in the momentum equation (2.12) we have; 

    
  

ρ

1

ρ

μ

xρ

1

yt

22

2

2

0 uH
y

u

d

dPu
v

u
oe














  (2.17)  

2.3.6 Equation of conservation of energy 

The equation of conservation of energy is derived from the First Law of 

Thermodynamics. It states that energy cannot be created nor destroyed under normal 

conditions but can be transformed from one form to another. For the flow of an 

incompressible fluid with constant fluid conductivity k , the energy equation is given by; 

             
μTk

Dt

DT
ρ

2

pc  
      

(2.18)  

For an incompressible two-dimensional fluid flow 

 =
222
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

     (2.19) 

Which reduces to,  =
2

y

u











 since the plates are of infinite length along both x and z 

directions and thus
x

u



 =0 and 0
x

v




 .    
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The term  0
dy

dv  from the continuity equation (2.2), considering Ohmic heating











2J  

due to electrical resistance of the fluid, equation (2.18) becomes 

  








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

2J    (2.20)  

The term  T.u   in equation (2.20) simplifies to; 

                                              

            (2.21) 

 

From continuity equation (2.2), v=Vo, and  0




x

T   equation (2.20) reduces to; 
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From Ohm’s law,
 

           BuEJ                                                                   (2.23) 

Since there is no voltage applied externally then E=0. Therefore equation (2.23) reduces 

to; 

           BuJ    (2.24)  

The term Bu   of equation (2.24) reduces to; 

        
kB

kji

Bu yu
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u 

00
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(2.25)
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Therefore equation (2.24) reduces to; 

           
kJ yuB

                                                                 
(2.26)

 

 The joules heating term in equation (2.22) simplifies to; 

          

22

2

uyB
J


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
                                                      

(2.27)

 

 

But,    2
yH

2
eμ

2
y B thus equation (2.27) reduces to; 
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  (2.28) 

 

Substituting equation (2.28) in equation (2.22) yields; 
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(2.29) 

The initial and boundary conditions of this problem are: 

hyatTTuut

hyatwTTut

hyhatTut







:0

,0:0

0,0:0

 

2.4 Non-dimensionalization 

Non- dimensionalization of the equations governing a particular fluid flow falls under a 

broad area of study known as dimensional analysis. Dimensional analysis is a method 

which describes a natural phenomenon by a dimensionally correct equation with certain 

variables which affect the phenomenon. Dimensional analysis considers how to 

determine the required set of scales for any given problem. It is a process that starts with 

selecting a suitable scale against which all dimensions in a given physical model are 

based.   
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Non‐dimensionalization is basically aimed at ensuring that the results are applicable to 

other geometrically similar configurations under a similar set of flow conditions. The 

following non-dimensional transformations have been used: 

  
*

LXX    
*

LYY      
*

Uuu       (2.30)                      

 
*

PpP  ,  
*

Ttt      
T

wTT
T




*

    
(2.31)

            

2.4.1 Hydrodynamic Reynolds number (Re)  

This is a non-dimensional parameter which is defined as the ratio of inertial force to 

viscous force. It gives the relative significance of inertial force to viscous force in a fluid 

flow problem. Small Reynolds number corresponds to slow viscous flow where 

frictional forces are dominant. When Reynolds number increases, a flow are 

characterized by rapid regions of velocity variation and the occurrence of vortices and 

turbulence .Reynolds number is expressed as;

 



UL
Re 

       (2.32)  

2.4.2 Prandtl Number (Pr) 

Prandtl number (Pr) gives the ratio of the velocity boundary layer thickness and the 

thermal boundary layer thickness. If the Prandtl number is 1, the two boundary layers 

are of the same thickness. If the Prandtl number is greater than 1, the thermal boundary 

layer is thinner than the velocity boundary layer. If the Prandtl number is less than 1, 

which is the case for air at standard conditions, the thermal boundary layer is thicker 

than the velocity boundary layer. This non dimensional parameter is a property of the 

fluid, not of particular flow. Hence, there is a restriction on the transfer of information 

from experiments with one fluid to those with another. It can also be defined as an 

approximation of the ratio of momentum diffusivity and thermal of viscous force to the 

thermal force expressed as; 
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r


        (2.33)     

2.4.3 The Eckert number (EC) 

It is the ratio of kinetic energy of the flow to the thermal energy. It represents the 

conversion of kinetic energy into internal energy by the work that is done against the 

viscous fluid stresses. It has been deduced that a positive Eckert number implies loss of 

heat from the plate to the fluid .This number is expressed as; 
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U
E

p

C


 

2

       (2.34)  

2.4.4 Joules heating parameter (R) 

Joule heating refers to the ratio between amount of heat released from an electrical 

resistor to its resistance and the charge passed through it. When a current flows through 

a conductor, an increase in temperature of the conductor occurs due to its electrical 

resistance. This phenomenon is called joule heating and is named after the scientist 

Prescott Joule having been the first scientist to establish Joule’s law.This non-

dimensional parameter is expressed as; 
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       (2.35)  

2.4.5 Magnetic parameter (M) 

This number is obtained from the ratio of electromagnetic force to the inertial force and 

is expressed as; 
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(2.36)      
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2.4.6 Suction Parameter (S0) 

It is expressed as a ratio between the velocity through the network of pores to the main 

stream velocity. 

                         U

V
S 0

0                                                                   (2.37)  

In order to transform the equations of momentum and energy into their respective non‐

dimensional form, the following analysis is carried out: 
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Substituting equations (2.37) - (2.45) in equations (2.17) and (2.29) and dividing 

equation (2.17) of the resulting terms by 
L

U 2

,  and dividing equation (2.29) of the 

resulting terms by
L

TU

 
the two equations of momentum and energy  respectively 

becomes; 
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Substituting equations (2.32) - (2.35) in equation (2.46) and (2.47) leads to the final 

form of the momentum equation and energy equation respectively as follows; 
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2.5 Initial and boundary conditions 

The initial and boundary conditions of equations (2.47) and (2.48) appear as follows 

when transformed to their equivalent non‐dimensional form: 

  0* t       0* u , oT *

   At LyL  *

   

  0* t       1* u , 0* T    At Ly *

   

0* t      0* u , 1* T      At Ly *
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In the next chapter, the method of solution is outlined and the governing equations are 

presented in their finite difference forms. The final set of the governing equations of the 

flow in finite difference form are then implemented in a MATLAB version 

7.9.0(R2009b) computer program and the results generated.  
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CHAPTER THREE 

METHODOLOGY 

In this chapter, the method of solution is discussed and the governing equations are 

presented in their finite difference forms. The equations are solved using the numerical 

method called finite difference method since the equations governing the flow are non-

linear in nature and cannot be solved by analytical methods. The final set of the 

equations are presented in this chapter and later on implemented in a MATLAB version 

7.9.0(R2009b) computer program which will generate the results in graphical form.  

3.1 Finite difference method 

The finite difference approximation method for derivatives is one of the methods used to 

solve differential equations. The principle of finite difference methods is close to the 

numerical schemes used to solve ordinary and partial differential equations. It consists in 

approximating the differential operator by replacing the derivatives in the equation using 

difference quotients. The domain is partitioned in space and in time and approximations 

of the solution are computed at the space or time points. Equations (2.48) and (2.49) are 

non-linear hence cannot be solved analytically. Therefore the finite difference method is 

used in their solution subject to the initial conditions. 

The finite difference approximations of the partial derivatives appearing in equations 

 48.2  and  49.2 are obtained by performing Taylor series expansion of the dependent 

variable and substituting the truncated expressions into the differential equation. The 

differentials are approximated by differences in the solution at various points.  

By definition,  

   
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yuyyu
u

t

u

y
t











lim

0

         1.3  
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When y  is small, this formula can be used as an approximation for the derivative of u

at y . From Taylor series  

      HOTu
y

yyuyuyyu yyy 



2

2

    2.3  

By rearrangement 
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yyy 








2
     3.3  

If y is small, the higher order terms in the expansion will be very small values and so it 

is possible to write equation (3.3) as; 

 
   

 y
y

yuyyu
yu y 




 0       4.3  

From equation  4.3 , the leading term of the error in approximating 
yu  by the right hand 

side is of order y and so this represents a first order approximation. It is possible to 

define other difference formula to approximate derivatives and these may have different 

orders of accuracy.  

The above analysis deals with the continuous solution however the objective is to 

calculate u at a set of discrete points on the mesh, and this is the numerical solution. The 

numerical solution of equations  48.2  and  49.2  will be approximated at a discrete 

number of points arranged to form a rectangular grid.  

3.2 Definition of the mesh 

In a finite difference grid to calculate the values at the mesh points, each nodal point is 

identified by a double index  kj,  that defines its location with respect to y and t as 

indicated in the figure 3.1. For this particular flow problem we chose the step value 

t=0.00125 and y=0.05 where these step values are chosen so as to bring about 

convergence, stability and consistency in the values to be obtained. Each corner of the 

cell forms the mesh or grid point. Considering the y-t plane it is subdivided into uniform 

rectangular cells of height of y=0.05 and width of t=0.00125. Considering a reference 
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point  kj, where j and k represent distance y and time t respectively and using the 

notation  1k  for  ( t ±t) and   1j  for ( y ±y)  we define the adjacent points to y 

and t, the points that are k and j units from the reference point have the coordinates  

(jy, kt) as shown figure 3.1 below. 

 

 

 

 

 

  

         (J+1, k) 

 

                                   (j, k-1)      (j, k)       (j, k+1) 

          

              (j-1, k) 

 

  

 

  

y- axis 

t- axis 

y               

Figure 3.1 :  Mesh configuration 

 t              

x  
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The partial derivatives of TandU  at each grid point are expressed using finite 

difference approximation. k

jU  and k

jT for each j are calculated directly from the initial 

value condition. Thus it is convenient to start from the known boundary at the edges of 

the mesh and working inwards so as to obtain 1k

jU  and 1k

jT  respectively. The 

derivatives are approximated using the Forward Time Backward Space finite difference 

scheme that averages the values velocity profiles at step 1j , and j  . The FD 

expressions for Ut , yU  and 
yyU  averaged for times are given below. 
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Equation  5.3  represents forward time difference approximation for the partial 

derivative
t

U



  at 1k

jU  having a truncation error of order 0  t  that represent the 

neglected higher order terms.  
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Equation  6.3  represents forward time difference approximation for the partial 

derivative
y

U



  at 1k

jU  having a truncation error of order 0  t  that represent the 

neglected higher order terms.  
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Equation  7.3  represents forward time difference approximation for the partial 

derivative
2

2

y

U



  at 1k

jU  having a truncation error of order 0  2
t  that represent the 

neglected higher order terms.
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Similarly the finite difference approximation Tt, Ty and 
yyT are: 
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Substituting the finite difference equations (3.5) - (3.13) in the Momentum equation 

(2.48) and temperature equation (2.49) above yields; 
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Multiplying equation (3.14) through by t and making 
1k

jU results to; 
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Energy equation in finite differences 
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Making
1k

jT in the equation (3.16) the subject of the equation yields; 
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(3.17) 

The equations (3.15) and (3.17) are the final set of equations solved simultaneously 

using a computer code in MATLAB version 7.9.0(R2009b) computer program. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Equations (3.15) and (3.17) are solved using the MATLAB version 7.9.0(R2009b) 

computer code. The results obtained after running the code are presented graphically and 

later discussed after varying various parameters which includes  the hydrodynamic 

Reynolds number, Eckert number, Suction parameter, Pressure number, Magnetic 

number and  Pranstl number. 

 

 

Figure 4.1: Velocity profiles for different values of hydrodynamic Reynolds 

number (Re). 
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From figure 4.1 above it is noted that that holding other parameters constant, an increase 

in hydrodynamic Reynolds number (Re) leads to an increase in the velocity profiles. An 

increase in the hydrodynamic Reynolds number will lead to a decrease in the viscous 

forces which is the force that opposes the motion of the fluid which leads to an increase 

in velocity profiles of the fluid. An increase in the inertia forces would cause an increase 

in the hydrodynamic Reynolds number and a decrease in the velocity profile. An 

increase in the hydrodynamic Reynolds number leads to an increase in the flow velocity 

due to the dominance of inertia forces over the viscous forces.  

 

 

Figure 4.2: Velocity profiles for different values of So. 

From figure 4.2 above it is noted that holding other parameters constant an increase in 

Suction parameter leads to a decrease in the velocity profile of the fluid indicating the 

usual fact that suction stabilizes the boundary layer growth.   
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Suction reduces the pressure of the fluid inside the conduit. This means that the effect of 

increasing suction parameter retards the fluid flow which can be attributed to the 

convection of the fluid across the plates. 

 

 

Figure 4.3: Velocity profiles for different values of Magnetic parameter (M) 

Figure 4.3 above shows that holding other parameters constant an increase in magnetic 

parameter (M) leads to a decrease in the velocity profile of the fluid. The presence of a 

magnetic field in an electrically conducting fluid introduces a force called Lorentz force 

which acts against the flow if the magnetic field is applied in the normal direction as 

considered in the present problem. This type of resistive force tends to slow down the 

flow field. 
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Figure 4.4: Velocity profiles for different values of Pressure gradients (dp/dx) 

Figure 4.4 shows that holding other parameters fixed an increase in pressure gradient 

leads to an increase in the velocity profiles. When the pressure gradient is negative  that 

is ( 300
dx

dp ) ,the pressure force term acts in the same direction as that of the fluid 

flow hence aiding the fluid flow. It is observed that, at the stationary plate the flow 

assumes the velocity of the pate. Velocity increases gradually as you move away from 

the lower plate and reach maximum at the free stream region at the center of the two 

plates. The velocity starts decreasing gradually as it approaches the upper porous plate 

and  finally the fluid particles that come into contact with the upper plate assumes the 

velocity of that plate u=-1 due to the no- slip condition.  
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Figure 4.5:Temperature profiles for different values of hydrodynamic Reynolds 

number  

From figure 4.5 above it is noted that keeping other parameters fixed an increase in 

hydrodynamic Reynolds number (Re) leads to a decrease in the temperature profiles. For 

an increased in hydrodynamic Reynolds number (Re), the viscous forces reduce and the 

boundary layer thickness reduces and this in turn reduces the dissipation of heat within 

the boundary layer. Hence when Re was increased, the boundary layer thickness reduced 

and the temperature also reduced and when Re was reduced, the boundary layer 

thickness increased and the temperature also increased. Hence hydrodynamic Reynolds 

number (Re) is inversely proportional to the boundary layer thickness and temperature. 
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Figure 4.6: Temperature profiles for different values of suction ( 0S ) 

Figure 4.6 above indicates that keeping other parameters fixed an increase in suction 

parameter (So) leads to an increase in the temperature profiles. This is due to the fact 

that increasing suction parameter (So) is to decrease the thermal boundary layer 

thickness and in turn increases the temperature gradient at the surface.  

From figure 4.7 below it shows that keeping other parameters fixed an increase in 

Prandtl (Pr) causes a decrease in temperature profiles. This is due to the fact that a fluid 

with high Prandtl number has a relatively low thermal conductivity which results in the 

reduction of the thermal boundary layer thickness and thus a decrease in temperature 

with an increase in prandtl number. 
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Figure4.7:Temperature profiles for different values of prandtl (Pr)  

  

 Figure 4.8: Temperature profiles for different values of Eckert (Ec) 
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From figure 4.8 above it is noted that keeping other parameters fixed an increase in 

Eckert number (Ec) leads to an increase temperature profiles. This is because for an 

increase in Eckert number, it implies that the kinetic energy is large and hence the 

velocities are higher hence when this particles attained high velocity, the vibrations also 

increases and this leads to increased collision of the particles. This increased collision of 

particles brings about dissipation of heat in the boundary layer region hence an increase 

in temperature profiles.  

In the next chapter, a conclusion based on the results obtained and the recommendations 

for further research has been outlined.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, a conclusion based on the results obtained and the recommendations for 

further research are presented. 

5.1 CONCLUSIONS 

Magneto-hydrodynamic fluid flow between parallel plates where the upper plate is 

porous in presence of variable transverse magnetic field has been investigated. The 

direction of the applied magnetic field is considered to be normal to the direction of the 

flow. The PDE’s governing the flow are highly non‐linear and coupled, and the 

equations have been solved by using the finite difference method.  The FD method the 

spatial mesh sizes used in the computations are reduced and there is no significant 

difference in the results obtained. Thus the scheme used in the computations is stable. 

The results obtained in Chapter 4 show that the rates of heat transfer and mass transfer 

on the parallel plates is influenced by the Magnetic number M, hydrodynamic Reynolds 

number Re, Prandtl number Pr, Eckert number Ec, Pressure number and Suction 

parameter So. For instance the current study has shown that imposing a transverse 

magnetic field to a flow slows down the velocity of the fluid and decreases the 

temperature of the fluid. Increasing the value of Eckert number (Ec) leads to an increase 

temperature profiles. Increasing the value of Suction parameter leads to a decrease in the 

velocity profile and an increase in the temperature profiles of the fluid. Increasing the 

value of Prandtl (Pr) causes a decrease in temperature profiles and increasing the value 

of pressure numbers leads to an increase in the velocity profile of the fluid. The results 

obtained in this study regarding thermal and mass diffusion effects can be applied in the 

dyeing industry.  
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5.2 Validation of the results. 

Magneto-hydrodynamic fluid flow between two parallel plates, the top plate being 

porous with a constant suction and variable magnetic field lines are fixed relative to the 

top moving plate has been investigated. It is found that an increase in Suction parameter 

leads to a decrease in the velocity profile and an increase in the temperature profiles 

respectively. When suction is not considered in the flow the results are similar to those 

of Gunakala, (2014) who found that increase in the magnetic parameter retarded the 

motion of the fluid.  

Other important findings include: 

1) The velocity and temperature of a fluid can be controlled by varying the 

hydrodynamic Reynold’s number whereby an increase in  hydrodynamic 

Reynolds number (Re) leads to an increase in the velocity profiles whereas 

increase in hydrodynamic Reynolds number (Re) leads to a decrease in the 

temperature profiles. 

2) The velocity of a fluid can be controlled by varying the Magnetic parameter 

since an increase in magnetic parameter leads to a decrease in velocity. 

3) The velocity and temperature of a fluid can be controlled by varying the Prandtl 

number. 

4) The velocity and temperature of a fluid can be controlled by varying the Suction 

parameter. 

5) The velocity and temperature of a fluid can be controlled by varying the Eckert 

number. 
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5.3 Recommendations 

In this thesis, our study of MHD flow between two parallel plates was not exhaustive but 

can provide a basis for further research while considering the following areas; 

1. Hydro-magnetic fluid flow between porous parallel plates in presence of variable 

transverse magnetic field when the upper plate is corrugated and vibrating. 

2. Two parallel plates inclined at an angle one porous and the other impulsively 

started under a transverse magnetic field. Fluid flow in an inclined infinite 

Annulus under a radial magnetic field. 

3. Fluid flow under the action of a variable magnetic field inclined at an angle to 

the flow direction. 

4. Fluid flow under the action of variable magnetic fields lines fixed parallel to the 

plates in a rotating system. 

5. Hydro-magnetic fluid flow between porous parallel plates in presence of variable 

transverse magnetic field in three dimensions. 
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APPENDICES 

APPENDIX 1: Computer code in MATLAB  

In order to solve the governing Equations (3.2.0) and (3.2.1), the following computer 

program code was developed using MATLAB version 7.9.0(R2009b), subject to the 

boundary conditions as discussed herein. The results were obtained by varying various 

flow parameters, notably Reynolds number, magnetic number, prandtl number, Eckert 

number, pressure gradient and the suction parameter. 

% NUMERICAL SOLUTION OF MHD PROBLEM 

function MBURU ZACHARIAH code() 

clear all; 

clc 

     N = 2.00 ;ITMAX = 1.00;  

   % 'Grid  

   Pr=0.5;Ec=0.05;Pg=-450;M =30.5;So=-150; R=0.5;Re=3.5;  

    Nsteps=40; Tsteps=6000; 

  

Y = linspace(0,2,Nsteps); 

U= zeros(N,ITMAX); 

T= zeros(N,ITMAX); 

delY=N/Nsteps; 

delT = ITMAX/Tsteps; 
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% Initial condition  

for K = 1 

for J = 1 : Nsteps 

   

    U( J, 1) = 0;  T( J, 1) = 0; 

 end  

 end 

  

    % Boundary conditions: 

%     stationary plate 

  

     J =1; 

    for K = 1 :Tsteps 

    

        U(J, K) = 0; 

        T(J, K)= 1; 

    end 

     

%     for J=Nsteps-1; 

 

%      for K = 1 :Tsteps 

%         U(J,K)=0.5; 

%      end 
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%     end 

     

%     'porous plate 

      

      

 J=Nsteps; 

     for K = 1 :Tsteps 

        U(J,K)=-1.; 

        T(J,K)=0; 

     

    end 

     

       

  

for J = 2 : Nsteps -1 

for K = 2 : Tsteps - 1  

  

U(J, K + 1) = (U(J,K)-((delT*So)*((U(J-1,K+1)-U(J,K)+U(J-

1,K))/(2*delY)))-(Pg*delT)+((delT/Re)*((U(J+1,K+1)+... 

    U(J-1,K+1)+U(J+1,K)-2*U(J,K)+U(J-1,K))/(2*delY*delY)))-

(M*U(J,K)*delT))/((1-((delT*So)/(2*delY))+(delT/... 

    (2*Re*delY*delY)))); 

  



50 

 

T( J, K + 1) =(T(J,K)- ((delT*So)*(T(J-1,K+1)-T(J,K)+T(J-

1,K)/(2*delY)))+(((Ec*delT)/Re)*(((U(J,K+1)-... 

    U(J-1,K+1)+U(J,K)-U(J-1,K))/(2*delY))*((U(J,K+1)-U(J-

1,K+1)+U(J,K)-U(J-1,K))/(2*delY))))... 

    +(delT/(Re*Pr))*((T(J+1,K+1)+T(J-1,K+1)+T(J+1,K)-

2*T(J,K)+T(J-

1,K))/(2*delY*delY))+(R*delT*(U(J,K)*U(J,K))))... 

    /(1-((delT*So)/(2*delY))+(delT/(Re*Pr*delY*delY))); 

end 

end 

  

hold on 

figure(1) 

hold on 

grid off 

plot(Y,U(:,50),'r','LineWidth',1,'LineSmoothing','on'); 

title('Velocity vs Distance between the plates.'); 

xlabel('Distance y'); 

ylabel('Velocity U'); 

hold off 

  

 hold on 

figure(2) 

 hold on 
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grid off 

plot(Y,T(:,50),'r','LineWidth',1,'LineSmoothing','on'); 

title('Temperature vs Distance between the plates.'); 

xlabel('Distance y'); 

ylabel('Temperature theta'); 

hold off 
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