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ABSTRACT 

Application of infrared spectroscopy (IR) in soil studies is well established. 

However, there has been little focus on examining IR for soil stability pedotransfer 

purposes. This study aimed to evaluate the use of IR in diagnosing soil stability 

related problems and assessing their prevalence with a case study of Lake Victoria 

Basin (LVB) in Kenya. Specifically to develop alternative IR-based models for 

screening soil stability related properties and compare these with predictions using 

conventional soil  properties, validate the IR-based models using independent 

datasets, assess prevalence of stability related problems in two sentinel sites, and 

assess indices of soil stability functional attributes most appropriate for screening 

stability problems using IR-based models. Two samples sets representing different 

soils were used for the study.  A model calibration set (n = 136) was obtained 

following a conditioned Latin hypercube sampling, and a validation set (n = 120) 

using spatially stratified random sampling.  Spectral measurements were obtained 

for air-dried (< 2 mm) and for ground (< 0.5 mm) soil sub-samples using 

multipurpose analyzer and Tensor 27 spectrometers for near infrared (NIR) and 

mid-infrared (MIR) ranges, respectively. Soil laboratory data were also obtained for 

wet aggregation indices (WSA): macro, micro and unstable fractions from two 

different wet-sieving pretreatments. Soil properties were screened for prediction of 

the WSA using Classification and Regression Tree analysis. The WSA were 

calibrated to the soil-based predictors and to smoothed first derivative spectra and to 

spectra wavelet transform variables using partial least squares regression (PLS). 

WSA threshold values developed using soil predictors and spectra were used to 

diagnose soil stability related problems and assess their prevalence in Lower 

Nyando (LNY) and Homa Bay (HB) sentinel sites. Key soil predictors were: soil 

organic carbon and pH water (macro), water dispersible clay (micro) and 

exchangeable sodium (unstable). Coefficient of determination (R2) for full cross 

validation PLS and IR-methods was: 0.6 (macro and unstable); 0.4 (micro) 
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fractions. The R2 for soil-based PLS was: 0.3 (micro); 0.5 (unstable). Independent 

testing of IR-methods gave R2 and RPD (ratio of prediction deviation) (R2, RPD) as 

follows: macro (0.81, 1.4); unstable (0.65, 1.1). The LNY and HB sites indicated 66 

% low stability prevalence, and 80 % of the sites were at risk. The study showed 

that IR-based predictors are superior over soil properties for stability transfer 

purposes. That 70 to 80 % of the soils in the sites had low stability problems and the 

risk of stability related problems increased with soil depth. Soil wet stable macro 

aggregate at10 and 50 %, stable micro at 20 and 40 %, and unstable fraction at 70-

65 and 20-40%, define low and high stability, respectively. The models developed 

can be used to diagnose and assess prevalence of soil stability related problems in 

the LVB in Kenya and other regions. Further efforts should, however, widely test 

similar soil property predictor sets, aggregation indices and IR to: (i) validate 

established soil-based predictors, (ii) counter variability from sample provenance 

for improved model geographic transferability, and (iii) assess suggested 

performance improvement with calibration spiking. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background  

The requirements of agricultural and environmental sustainability have dramatically 

redefined soil quality or soil health from the traditional view of soil quality as measured 

by soil performance and productivity. Soil health is currently defined as the capacity of a 

soil to sustain ecosystem services, including provisioning, regulating, supporting and 

cultural services. The soil health paradigm (theory, methods and practice) in the 

temperate region was developed to establish standards in a bid to address air and water 

quality issues arising from large nutrient and energy inputs to agricultural lands. In the 

tropics the main concerns for soil health are food insecurity, rural poverty and ecosystem 

degradation including accelerated soil erosion, depletion of soil organic matter, soil 

nutrients, and the deterioration of soil structure. It has been estimated that the degraded 

area of the world’s arable land increased from 10 % in the early 1970s to about 40 % in 

the early 1990s, and that globally more than 1.0 million ha of agricultural land is 

annually lost due to human induced soil degradation. This calls for remedial measures 

and that the greatest need for remediation is in the developing regions of the world, 

where the rate of loss of agricultural usable land has been estimated at 0.3 % per year 

(Farley, 2012; Bouma, 2010).  

 

It has been hypothesized that in the new Millennium, a renaissance is taking place in soil 

science as a response to the current threat posed by global environmental degradation, 

climate change and world-food production. A renewed interest in agriculture (food, 

fibre, feed, and fuel), erosion, nutrient depletion and pollution, for example, has brought 

soils back onto the global research agenda and evoked an aggressive search for up-to-

date soil information. A whole set of new techniques and methodologies are evolving 

particularly in developed economies.  Soil resources information acquisition has been 
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accomplished nationally at large scale where, for example, Western Europe has coverage 

at 1: 100,000 or larger. In terms of capability and capacity Africa may not have joined 

the hypothesized soil renaissance where land resources inventory have hitherto followed 

conventional methods. Most countries in Africa have no country-wide soil information 

(Sanchez et al., 2009; Hartemink & McBratney, 2008; Swift & Shepherd, 2007). 

 

In Kenya soil survey at country wide coverage is at a scale 1:1 million, 15 – 30 % 

coverage is at between 1:1,000,000 and 1:250,000 and 10-15 % at larger scale. Soils 

with stability related problems (including sodic and saline-sodic) are estimated to cover 

30 - 40 % of the country’s land area. However, there is currently no system for direct 

measurement and monitoring of soil functional capacity. Soil and water resources are 

especially significant in Kenya because agriculture remains the mainstay of the 

economy. Agricultural production has, however, been constrained by prevailing agro-

ecological conditions where more than four-fifths of the total land surface is arid to 

semi-arid (ASAL). The ASAL constitute rangelands where over 25 % of the total human 

population, more than 50 % of livestock, and about 80 % of the total wildlife derive their 

livelihood. The lowlands within Lake Victoria Basin (LVB) of Kenya occur in the 

ASAL and are characterized by extremely deep, unconsolidated, stratified, sodic, fragile, 

eroding soils, rural poverty and low agricultural productivity (Waruru et al., 2003a; 

Swallow et al., 2001). 

 

Sustainable management of land resources in the developing world particularly Africa 

has been hampered by the high cost of conventional research approaches and 

constrained budgets of National Agricultural Research Systems (NARS). Infrared 

spectroscopy (IR) has now been adopted for routine analysis of land and water resources 

in several laboratories in developed economies, but many of the developments have 

occurred in Africa (Shepherd & Walsh, 2007). The technology uses only light for rapid, 

non-destructive analyses of soil and plant materials in the laboratory and is therefore 
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cheap, fast and versatile. Combined with geographic positioning systems and satellite 

remote sensing the technology can provide rapid large area mapping of soil constraints.  

 

Sustainable monitoring and protection of the Kenyan environmental health is envisioned 

in EMCA (Environmental Monitoring and Co-ordination Act) (EMCA, 1999). This is in 

line with also stated millennium development goals (MDG), specifically on goals 1 and 

7 on eradication of extreme poverty and hunger and, ensuring environmental 

sustainability, respectively.  The provisions under EMCA and MDGs support realization 

of Kenya’s new long-term national planning strategy, Kenya Vision 2030 blueprint that 

aims at making the country a newly industrializing, ‘middle income economy that 

provides high quality life for its citizens. The Social pillar of the vision seeks to build “a 

just and cohesive society with social equity in a clean and secure environment” (GoK, 

2007). 

 

1.2 Problem statement 

Land resources inventory is recognized as basic prerequisite for development planning. 

Inadequacy of land resources inventory including soil health surveillance (Shephed and 

Walsh, 2007) is among the major challenges of national development planning and 

agricultural production intensification in the developing world, particularly in Africa 

where most countries have no adequate country-wide soil information. In Kenya 

country-wide soils information is only at scale 1: 1 million meaning that the current soil 

databases are of low intensity and land use planning recommendations are based on few 

observations and thus are less effective. Development planning is constrained when 

information on soil resources is inadequate, unreliable or unavailable. A challenge is that 

conventional soil information generation is slow, expensive, and not sustainable. 
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Conventional land capability assessment requires expensive soil data collection and 

sample analysis making broad-scale quantitative land suitability assessments difficult. 

The FAO Guidelines for Land Evaluation (FAO, 1986), for example, is resources 

intensive and not sustainable. Technological paucity in capacity in new and rapid 

methods to quantify soil properties, variability and prediction uncertainty have hitherto 

constrained capability for building appropriate databases for land capability assessment 

for temporal and spatial monitoring in Kenya. In a situation analysis on ‘the changing 

face of irrigation in Kenya’, it was concluded, among other things that the database was 

inadequate and of low quality and that efforts aimed at improving the quantity and 

quality is constrained by technology and hitherto low priority accorded to the building of 

databases (Sijali, 2001).  

 

Efforts on research and development of appropriate technologies for management of 

stability related problems have been hampered by, among others, a lack of a clear 

definition of what constitutes stable and unstable soils. It is commonly accepted that 

sodic, highly dispersive, and /or soils of low wet water stable aggregates constitute 

unstable soils. No easily accessible studies have, however, demonstrated a clear 

correlation of sodicity, dispersivity, and/or low wet water stable aggregation.  Sodicity 

has been applied as the yardstick for evaluation of soil stability in Kenya and ESP 15 % 

taken as the critical limit. No reported studies were available on the validity of this 

threshold. Some studies (Sumner, 2000) considered this rating rather severe as soil 

degradation can take place at lower ESP. No systematic effort has been made to 

delimitate stable from unstable soils using one standard definition. This has challenged 

effective diagnosis and management of soil stability related problems. 
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Application of IR for soil compositional analyses is now well established. However, 

there has been little focus on examining the application of soil reflectance in 

pedotransfer functions for prediction of soil functional attributes related to soil stability 

(Canasveras et al., 2010). Also, there are no studies comparing performance of 

alternative IR-based predictors: near infrared (NIR), mid-infrared (MIR), and their 

respective wavelet transform variables and soil-based predictors although the choice has 

both operational and performance implications. 

 

Few found studies (Canasveras et al., 2010; Madari et al., 2006) have defined a limited 

number of  water stable aggregation  indices (mainly fraction > 250 µm and < 250 µm), 

whereas a wider range (macro, meso, micro, colloidal fractions) and from different 

breakdown mechanisms, could better mimic soil behavior under wetting field 

conditions.  In Kenya little fundamental research, especially on soil function has been 

reported and more focus has been on adaptive research.  No studies on, for example, soil 

aggregation and its stability to establish critical values for benchmarking soil condition 

were available although few (point) studies (Gachene et al., 2003) have been reported. 

 

1.3 Study Justification 

Re-building soil health is now being recognized as a prerequisite for African food 

security, development and environment and over the past decade a number of key 

science and technology developments have occurred in Africa that has potential to 

enable rapid progress in addressing the gaps and accelerating soil improvement at scale. 

These include advances in soil health surveillance concepts for diagnosing and 

monitoring soil health and associated risk factors, and the large area application of these 

concepts using new methods in remote sensing, geographic information systems and 

chemometrics. Putting these advances into large-scale action, however, implies a 

reorientation of conventional approaches to soil science, new skills and the re-tooling of 

soil laboratories with access to facilities for, among others, remote sensing and other 
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geographic information system (GIS) technologies, and new infrared spectroscopic 

techniques that allow rapid, reliable, low-cost soil analysis (Hartemink & McBratney, 

2008; NEPAD OST, 2008). 

 

The Africa Soil Information Service (AfSIS) uses spectral diagnostics – low cost, high 

throughput analytical techniques based on reflectance of electromagnetic radiation 

(infrared spectroscopy (IR), total x-ray fluorescence spectroscopy (TXRF), x-ray 

diffraction spectroscopy (XRD), and laser diffraction particle size analysis (LDPSA)) 

techniques to measure soil functional properties on tens of thousands of geo-referenced 

soil samples in a consistent way. The low cost high-throughput spectroscopy methods 

are being used both as a front line screening technique for development of pedotransfer 

functions and for the direct development of indicators of soil functional properties. The 

data generated by these high-throughput techniques is treated as spectra and used as 

input to pedotransfer functions for prediction of soil functional properties that are 

expensive or time-consuming to measure (McBratney et al., 2006). The potential for 

establishment and application of stability functional attributes based on wet-sieving for 

modeling against basic soil properties and infrared spectral data is anchored on the proof 

of concept using LDPSA data, and recently developed analytical protocols including a 

modern laboratory infrastructure at the World Agroforestry Centre (ICRAF) Soil-Plant 

Spectral Diagnostics Laboratory (Shepherd, 2010; www.africasoils.net). This now offers 

opportunity in research organizations for capacity building and mainstreaming this high 

technology but simple approach for rapid analysis of land resources and interpretation of 

these analyses into improved recommendations for integrated management and health 

improvement. 

 

Characterization of key soil properties using IR is successful (Shepherd & Walsh, 2002), 

however, utility of reflectance spectroscopy for direct prediction of soil functional 

attributes for agricultural, environmental and engineering applications, and development 
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of operational schemes for its use in risk-based soil assessments remained largely 

unexplored. Also scanty information was available (Canasveras et al., 2010) on 

superiority of IR over basic soil properties for pedotransfer purposes, although Shepherd 

and Walsh (2002) argued that ‘because soil reflectance provided an integrated measure 

of a number of fundamental properties, such calibrations could performan better, and 

would certainly be more rapid, than pedotransfer functions based on conventional 

measurement of soil properties’.  

 

The selected spectral measurement region commonly near infrared (NIR) and mid-

infrared (MIR) has shown variable performance for estimation of soil properties. Key 

question remained the veracity of reported superiority of MIR over NIR, where MIR is 

found superior for some properties and NIR superior for others (Canasveras et al., 2010; 

Madari et al., 2006). Assumed value added using spectral wavelet transform variables in 

place of Fourier transform spectral data is not also rigously tested.  The choice on either 

NIR or MIR is informed by performance difference and intended use of the data 

considering also practicalities in data acquisition using MIR and NIR (Bellon-Maurel & 

McBratney, 2011). 

 

Aggregate slaking or spontaneous disruption and slaking plus mechanical dispersion are 

two different aggregate breakdown mechanisms that better mimic soil behavior under 

wetting field conditions.  Slaking common to soils subject to flooding or (basin, furrow) 

irrigation present hazard for dams through sub-terranean (piping, sink holes) (Bell, 

2000), and gully development via retreat through slumping highly prevalent in lowland 

LVB of Kenya. Slaking plus mechanical disruption as common to heavy tropical storms 

(Barthes & Roose, 2002) or disturbances from tillage practices (Ashmana & Hallett, 

2003), enhances surface runoff, nutrient depletion, sedimentation and eutrophication. No 

studies were found that developed and applied aggregation indices (stable macro, stable 
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micro, unstable/ colloidal and macro: micro ratio) from both slaking only and slaking 

plus mechanical dispersion wet-sieving pretreatments for air air-dried (≤ 2000 µm) soil. 

 

Accelerated soil erosion is among key drivers of soil degradation in Kenya. The country 

continues to be highly dependent on its land and particularly soil resource for continued 

agricultural production.  To avoid further depleting this resource, there is a need to 

identify soils and associated land management practices where there is a risk of 

accelerated soil degradation using new simple fast inexpensive yet accurate methods. 

Research has an obligation to feed-in and support sustainable land management and 

administration by providing efficient and effective evidence-based information on land 

health packages providing guidelines for best management practices for land managers 

and farmers alike that allow them to make sustainable soil management decisions. This 

will particularly be important for county governments as the focal points of 

development. The current study acknowledged the central role that soil stability plays in 

sustainable land management and proposed a framework for soil stability diagnosis 

using inexpensive data in support of assessment and monitoring of soil health status 

specifically for the Lake Victoria basin of Kenya and generally for similar environments. 

 

1.4 Objectives of the study  

1.4.1 Main objective 

The main objective of this study was to evaluate the use of infrared spectroscopy (IR) in 

diagnosing soil stability related problems and assessing their prevalence with a case 

study of Lake Victoria Basin (LVB) in Kenya. 
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1.4.2 Specific objectives   

Specific objectives were:  

1. To develop alternative IR-based models for screening soil stability related 

properties across a range of sensitive soils and compare these with predictions 

using conventional physico-chemical properties. 

2. To further validate the IR-based models using an independent set of soil samples 

set from two sentinel sites.  

3. To assess the prevalence of soil stability related problems in two sentinel sites 

using IR-based models. 

4. To assess indices of soil stability functional attributes most appropriate for 

screening stability problems using IR-based models. 

1.4.3 Research questions 

1. Do IR-based predictors provide superior models over soil physic-chemical 

properties for estimation of stability related properties? 

2. Do alternative IR-methods provide robust models for estimation of stability 

related soil properties?  

3. What is the prevalence of stability related problems in LVB of Kenya? 

4. Which soil aggregation indices are more appropriate for screening stability 

related problems using IR in LVB of Kenya? 

1.5 Study Conceptual Framework 

A scheme based on development of soil spectral libraries and the double sampling 

approach was proposed for effective diagnostic screening and prevalence assessment of 

stability related problems using IR-based models in LVB of Kenya (Figure 1.1). In the 

scheme two sets of soil samples are collected from LVB of Kenya. Set 1 is obtained 

from sites selected to represent a wide range of stability sensitive soils from across LVB. 

The sites are selected based on available legacy data (several soil profiles with property 

analytical data), following a strategy that allow accurate recovery of the original 

variation in the larger property dataset with fewer samples/ sampling sites (Stenberg et 
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al., 1995). Similar strategy has successfully been applied by other workers (Genot et al., 

2011; Viscarra Rossel et al., 2008). Set 1 is used for model calibration. Set 2 is selected 

to represent a larger set that is representative of the major landform, soils and landuse 

and land cover types in two sentinel sites from LVB.  Soil reflectance spectra are 

generated for Set 1 and for the larger set. A representative subset (Set 2) is obtained 

using the spectra of the larger set (Naes et al., 2002), and used for calibration validation. 

Reference data is obtained for a suite of selected soil basic properties commonly 

deployed in land capability/ suitability assessments for Set 1 and Set 2. Also obtained for 

Set 1 and Set 2 is reference data for selected stability functional attributes (SFA). The 

soil basic properties are screened for prediction of the SFA and key few soil predictor 

properties that are strongly correlated to spectra selected. Regression models for selected 

soil properties (developed using the more robust of Set 1 and Set 2) are used to predict 

these properties in the larger set, using the latters’ spectra data. The predicted values are 

used to predict the SFA in the larger set from the two sentinel sites. The predicted SFA 

indices are used to define cutoffs for low/ high stability category for each sample of the 

larger set. The low stability tally is used for prevalence assessment of stability problems 

within the larger set. The potential for development of pedotransfer functions and 

inference systems for more effective estimation of functional attributes from spectra and 

basic soil properties has been demonstrated by other workers (Minasny & McBratney, 

2008; Tranter et al., 2008). The double sampling approach and development and 

deployment of spectral libraries for rapid diagnostic screening for land health 

surveillance was illustrated by Shepherd and Walsh (2002; 2007). 
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Figure 0.1.1: Scheme for development of IR-based models for diagnostic screening  
  and prevalence assessment of stability related problems in LVB of  
  Kenya.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

Soil health can be viewed as the capacity of a soil to sustain ecosystem services, 

including provisioning, regulating, supporting and cultural services. The role of soil 

aggregation and aggregate stability in assessment and monitoring of soil health is well 

documented (Osuji & Onweremadu, 2007; Wei et al., 2006). A renewed interest in soil 

wet stable aggregation (WSA) is probably borne of the need for development of fast 

cheap yet accurate soil health indicators. Conventional laboratory methods of soil 

analyses have challenges including: low precision, the use of analytical methods which 

generate chemical waste and are time-consuming (Nocita et al., 2015; Lyons et al., 

2011). Wet-sieving and aggregate fractionation, for example, is laborious and involves 

also sample peroxidation and use of surfactants (Marquez et al., 2004) whose effluents 

pose environmental hazard. Differences in aggregation and aggregate stability (AS) 

results, attributable to differences in critical aspects (sampled depth and sample 

distribution; sample pretreatment and treatment, selection of fractionation sizes and units 

of expression), all make it difficult to compare different studies and this has constrained 

inclusion of AS in minimum datasets (MDS) for soil health assessment (Merrington, 

2006). 

 

Diffuse Reflectance Infrared Fourier Transform Spectroscopy  (DRIFTS) (commonly 

IR) is known to be a physical, non-destructive, rapid, reproducible and low cost method 

for analyses of several constituents simultaneously in samples from very diverse 

materials (Shepherd & Walsh, 2007). The selected spectral measurement has shown 

variable performance for estimation of several soil properties.   Key question from 

among comparative studies remained the veracity of reported performance superiority of 
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mid-infrared (MIR) over near-infrared (NIR) spectral ranges, and value added using 

spectra wavelet transform variables. 

Key challenge with application of chemometrics and spectroscopy (soft modeling) in 

soil health studies remained model robusticity. The opportunity now is to harness 

technological advancement for more efficacious assessment and monitoring of soil 

health. This could be made feasible by deployment of approaches that combine among 

others, pedotransfer functions and spectral analysis to derive relationships that link the 

basic soil properties to functional soil properties that are more difficult to measure. The 

approaches promise to help in solving also the “model transferability” problem (Linker, 

2012).  

 

The deployment of data mining or machine learning techniques could help to improve 

on efficiency in selecting key basic variables from a complex multivariate data set of 

potential predictors without significant loss of information. The successful use of spectra 

for creation of diagnostic screening tests, especially for soil properties that were 

otherwise moderately calibrated to spectra (Shepherd & Walsh, 2002) has allowed 

satisfactory spectra classification for benchmarking soil condition and developing 

quality indices.  

 

2.2 Soil aggregation and aggregate stability (AS) 

Soil aggregation is the arrangement of primary soil particles into compound elements, 

which are separated from adjoining structural elements by surfaces of weakness. For 

good plant growth and soil health soil aggregation must be stable to disruption on 

wetting with optimal pores for water storage, water transmission, and for roots to grow. 

Soil aggregation and its stability (AS) is widely recognized as a key indicator of soil 

quality particularly soil physical health. This is attributed to the sensitivity of AS to both 

natural and/or cyclic factors, to anthropogenic (human-induced) soil and land 
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management practices (Wei et al., 2006), and also due to observed relationship of AS 

with basic soil properties (Canasveras et al., 2010; Li et al., 2005). 

2.2.1 AS relationship with soil basic properties 

Soil aggregation and aggregate stability (AS) exhibit variable relationship with soil basic 

physico-chemical properties including pH and electrical conductivity (EC), carbonates, 

soluble and exchangeable bases, soil moisture content (mc), texture, soil organic matter 

(SOM) (Canasveras et al., 2010; Igwe & Nwokocha, 2005; Igwe & Stahr, 2004).  

  

AS relationship with pH: Westerhof et al. (1999) found that soil pH was positively 

correlated with the amount of clay dispersed after 3 h of shaking in water, suggesting 

that management practices that increases soil pH has deleterious effects on aggregation 

(Idowu, 2003), in support of earlier works (Auerswald, 1995) that established an inverse 

relationship of pH with percolation stability. 

 

AS relationship with particle-size: The clay mineralogy of the soil influences 

aggregate slaking (Boucher, 2010), and soils with higher clay content have lower 

aggregate stability due to presence of expandable clay (Le Bissonnais et al., 2002). 

However, Levy et al. (2003) found that generally soils with < 25 % clay content were of 

inherently lower stability while > 35 % clay had inherently higher aggregate stability. 

Boix-Fayos et al. (2001) found that aggregates 1000 - 105 µm in diameter were 

positively correlated to medium, fine, very fine sand and silt fractions; aggregates < 105 

µm were positively correlated to clay content, and; water stability of micro-aggregates 

was positively correlated with clay content. The later findings were affirmed by other 

workers (Zhang et al., 2008; Li et al., 2005). These studies suggested that textural 

separates could be potential proxies of water stable micro aggregates and unstable 

aggregate fraction.  
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AS relationship with SOM:  Soil organic matter (SOM) contributes significantly to soil 

structural formation, however, contribution of SOM to maintenance of AS is 

controversial. Some studies reported significant relationship between AS and SOM, 

others found weak to no relationship, whereas others emphasize conditional relationship 

of AS and SOM including particle size, clay mineralogy, and characteristic of soil 

organic carbon (SOC) fraction (Wei et al., 2006). Significant relationships was found, 

for example, on the number of drop impacts and SOM (Cantón et al., 2009); AS against 

slaking was correlated to SOC (R2 = 0.71), and water drop penetration time increased 

with carbon contents (Chenu et al., 2000). Chaudhary et al. (2009) found that SOM had 

no direct contribution to surface or subsurface stability in semi-arid shrublands. Zhang 

and Peng (2006) found significant (albeit weak) linear correlation (r2 = 0.34 - 0.46, p < 

0.05) of AS and SOC pools. Ashmana and Hallett (2003) suggested that the linkage 

between AS and SOM was an artefact of the fractionation procedure. This suggested that 

there was still much uncertainty in the dynamics of SOM in macro- and micro-

aggregation. Important however, is that AS plays key role in SOC storage for carbon 

sequestration (Lal, 2009; Denef et al., 2004). 

 

AS relationship with exchangeable bases and CEC: Significant relationship has been 

reported of AS with exchangeable Ca (eCa) and exchangeable Na (eNa) (Osuji & 

Onweremadu, 2007), and with effective CEC (Zhang & Horn, 2001). The clay activity 

(ratio CEC: % clay) values > 0.55 (Irvine & Reid, 2001) or > 0.8 (Dawes & Goonetilleke, 

2006), is associated with a predominance of 2:1 lattice clays mainly smectites and a 

higher predisposition to instability. Several workers (Ward & Carter, 2004; Sumner, 2000) 

consider sodicity (reflected by measures of eNa, exchangeable sodium percent-ESP and 

sodium adsorption ratio- SAR) a measure of soil AS by enhancing dispersion.  

 

An increase of SAR has been associated, for example, with a decrease in water stable 

aggregates and an increase in amount of water dispersible clay (WDC) (Tajik et al., 
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2003). The ratio of EC of a 1: 5 water extract (EC5) to eNa and to ESP has been 

proposed Electrochemical Stability Indices (ESI) (ESI 1 and ESI 2, respectively), to 

predict dispersion (Hulugalle & Finlay, 2003). The 0.05 ESI thresh hold is proposed 

structural stability diagnostic tool (Dawes & Goonetilleke, 2006). Studies on soil 

sodicity amelioration using gypsum (Levy et al., 2006; Choudhary et al., 2004) 

indicated improved soil physical conditions, suggesting that soil gypsum requirement 

(GR) presented potential indicator of soil structural instability. These studies affirm that 

basic soil chemical properties provide potential pedotransfer functions for estimation of 

AS.  

 

AS relationship with sodicity: Weak correlation of AS with sodicity (Levy et al., 2003; 

Levy & Mamedov, 2002), was partly attributed to lack of control/isolation of slaking (by 

capillary wetting pretreatment, for example), before wet sieving. Levy et al. (2003) 

argued that the effect of sodicity on AS was too low and required high sensitivity 

measurement method like the High Energy Moisture Characteristic (HEMC) (Mamedov 

et al., 2007), to quantify. Most studies (Sumner, 2000) associated sodicity (probably 

erroneously) with aggregate slaking and dispersion, although Yoder (1936) 

demonstrated that the stresses created upon rapid wetting of soil were caused by 

entrapped air and differential swelling of clay particles resulting in aggregate slaking, 

suggesting that slaking is more a physical than a chemical process.  Arguably, however, 

sodicity might have significant contribution in enhancing differential swelling due to the 

high hydration power of Na+ and this might be among the reasons sodicity confounded 

relationship of AS with other soil properties (Ward & Carter, 2004; Barthes’ & Roose, 

2002). 

 

AS relationship with mechanical properties: Shrink-swell is a physical process that 

has profound effects on soil stability. Commonly used shrink-swell indicators COLE 

(coefficient of linear extensibility) and associated VS (volumetric shrinkage), have 
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shown close relationship with basic soil properties including elemental concentration, 

CEC, mc, liquid limit (LL), plastic limit (PL), plasticity index (PI), linear shrinkage 

(LS), and activity (A) (Fratta et al., 2007; Thomas et al., 2000). The LL combined with 

mc at 0.03 MPa provided a useful tool to evaluate the structural stability of a calcareous 

saline-sodic soil under reclamation, and; soils having a PI < 0.1 kg kg-1,  LL < 0.3 kg kg-

1 have been categorized as dispersive and erodible (Lebron et al., 1994). Mechanical soil 

properties could, therefore, be treated as soil basic properties and included as potential 

predictors of stability functional attributes. These properties are otherwise commonly 

deployed as ‘standard soil tests’ for Materials Testing in engineering applications. 

 

2.2.2 Aggregation and aggregate stability in soil studies 

The sensitivity of aggregation and aggregate stability (AS) is manifest in its response to 

the effects of a wide range of natural and human-induced soil conditions including 

action of plants and microorganism (Chaudhary et al., 2009); rangeland conditions (Bird 

et al., 2007); soil erodibility (Cantón et al., 2009); vegetation, land use, slope, and 

climatological gradients (Osuji & Onweremadu, 2007; Boix-Fayos et al., 2001), 

allowing effective assessment and monitoring of soil health. Quantifying effects of 

biological communities (flora and fauna) on soil stability inform, for example, the 

relative amounts of resources that erosion control practitioners should devote to 

promoting these communities (Chaudhary et al., 2009). The AS has effectively been 

used to assess, for example, so-called natural ecosystem or earth engineers’ contribution 

to improvement and maintenance of soil health and this has led to ways to enhance 

inputs for sustainable agricultural systems (Chaudhary et al., 2009). Other efforts 

(Krasilnikov et al., 2008) focused on stability spatial mapping. 

 

Sensitivity to soil erodibility: AS is probably the single most important soil property 

governing soil erodibility.  The susceptibility of soil to particularly crusting and erosion 

is often inferred from measurements of AS (Cantón et al., 2009). Stability of topsoil 
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aggregates is a valuable indicator of field-assessed runoff and inter-rill erosion (Cantón 

et al., 2009), and the development of the seal and soil infiltration capacity are related to 

AS (Le Bissonnais & Arrouays, 2005). 

Response to influence of cyclic/seasonal conditions: The AS has effectively been used 

to quantify the influence of cyclic/ seasonal conditions on soil health including 

climatological gradients (Boix-Fayos et al., 2001); vegetation, land use and slope 

gradients (Cantón et al., 2009; Osuji & Onweremadu, 2007 ), and in differential soil 

wetting (water repellency) (Roper, 2005).  Different aggregate sizes along a 

climatological transect provide good indicator of soil degradation. Large aggregates 

(>10,000, 10000 - 5000, 5000 - 2000 µm) present in highest proportions in the most arid 

of the studied areas were associated with high values of water-stable micro-aggregates 

and were related to high bulk density (BD) and low water retention, whereas small 

aggregate sizes (1000 - 105 and < 105 µm) had a positive influence on soil water 

retention (Boix-Fayos et al., 2001).  

 

Response to human-induced management interventions: Measurements of AS 

provide effective indicator of the status and changes of soil health as a result of different 

human-induced management interventions (Wei et al., 2006). This includes: assessing 

the response to organic and inorganic additions (Li & Zhang, 2007; Haynes & Swift, 

2006); response to land cover and land use intensities (Zhang et al., 2008); sodic and 

saline-sodic amelioration (Levy et al., 2006), and; prognostic monitoring post-

restorative soil quality (Zhang & Peng, 2006).   

    

Reported AS in the order: forestland > orchard > cropland > bareland (Zhang et al., 

2008), affirmed now generally expected effect of land use intensity on soil health. The 

negative influence of conventional tillage on soil AS has demonstrated the gains of 

conservation tillage (Williams et al., 2005). Soils which have been cropped for long 

periods of time have unstable aggregates and on these soils, the type of crop grown has a 
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greater benefit on AS than the type of tillage or method of managing crop residues. This 

is in contrast to a soil with stable aggregates, where the type of tillage has a greater 

influence on AS than crop residue management or crop rotation.  

These studies indicate the central role given to AS, as a sensitive indicator of effect of 

land management practices on soil health. Importantly that conventional cultivation 

decreased the quantity and quality of SOM and caused a loss in AS resulting in an 

overall decline in soil quality (Williams et al., 2005). 

 

2.2.3 AS measurement methods and indices 

Common approaches for evaluating the state of soil aggregation have included 

determination of: the aggregate-size distribution following dry or wet sieving where 

aggregation is expressed as mean weight diameter (MWD) (Canasveras et al., 2010) or 

mean geometric diameter (MGD) (Madari et al., 2006). The pore size distribution 

following changes in saturated and unsaturated infiltration rates and saturated hydraulic 

conductivity has been used as indices of stability (Vahyala, 2009). The ratio of the 

intrinsic permeability of the soil to air (ka) and to water (kw) (ka/kw) has been proposed 

also as structural stability index (Waruru & Wanjogu, 2002; Whelan et al., 1995), with 

unity representing fundamental stability. Determination of wet water stable aggregates 

and aggregate size distribution mainly from wet sieving-based method (Kemper & 

Rosenau, 1986) was the most widely reported. 

 

AS from wet-sieving: Wet-sieving method has involved procedures that applied 

aggregate slaking (rapid wetting) (Angers et al., 2008), capillary wetting to control or 

enhance slaking (Levy et al., 2003), slaking plus mechanical disruption (Boucher, 2010), 

or combined three tests in one: slaked, capillary-wetted and slaked plus dispersed 

pretreatments (Marquez et al., 2004). The fraction of the original aggregates that has 

some degree of resistance to slaking is referred to as water stable aggregates and is used 

as an index for aggregate stability (Angers et al., 2008). 
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Aggregate slaking plus dispersion: Aggregate dispersion is either ‘spontaneous’ or 

‘mechanically- induced’ (Rengasamy & Olsson, 1991) and several tests have been 

proposed for identification of dispersive soils including the water-drop test, crumb or 

Emerson test, pinhole test (PHT), turbidity ratio test, amount of total soluble salts in soil 

water, double hydrometer test (Boucher, 2010; Bell, 2000).  

 

Based on the double hydrometer test (USDA- NRCS, 1996), different attributes have 

been proposed as aggregation indices including: water-dispersible clay (WDC) content, 

the clay (< 5 µm) dispersion ratio (CDR), soil  (silt+clay) dispersion ratio (DR), clay 

flocculation index (CFI), ratio total silt : total clay, ratio WDC: WDSi, aggregated clay 

index (ACI) (WDC: tClay ratio), and aggregated silt and clay (ASC) (Canasveras et al., 

2010; Oguike & Mbagwu, 2009). The soil material < 20 µm (wt %) define dispersion 

index (DI) [100 × (< 20 µm from water) / (< 20 µm total)] (Hulugalle et al., 1999). The 

material < 20 µm from wet sieving has been expressed also as ‘instability index’ (IS) = 

[% < 20 / (WSAma + WSAmi)], where WSAma and WSAmi is the fraction > 250 µm and < 

250 µm, respectively (Fortun et al., 2006; Hulugalle & Finlay, 2003). Dispersion groups 

(DR: < 30, 30 - 65, and > 65%) were used to effectively differentiate soils and the 

categories to establish association with basic soil properties (Ward & Carter, 2004).  

 

The proposed aggregation indices from double hydrometer test could be efficacious for 

soil (in) stability assessment, however, some of the indices (CDR, CFI and FI; DR, DI 

and ASC) might present redundant information, and also the treatment of the indices as 

functional attributes could be subjective considering rules of pedotransfer functions 

(Minasny, 2007).  Some of the dispersion tests (crumb, PHT, water-drop,) have also 

(reliability) limitations despite/inspite of their simplicity (Farres & Cousen, 2006).  
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AS universal measurement method and index: Differences in AS results, attributable 

to differences in critical aspects including: the sampled depth and sample distribution; 

sample pretreatment and treatment, including initial size of test sample, handling of 

primary sand; selection of fractionation sizes and units of expression, all make it 

difficult to compare different studies and to make meaningful interpretation of AS data. 

Also efforts towards developing universal AS measurement method and index have 

largely been uncoordinated.  This has constrained inclusion of AS in minimum datasets 

(MDS) for soil health assessment (Merrington, 2006). 

 

Sampled depth and sample distribution: Most AS studies (Le Bissonnais et al., 2007) 

are based on one depth (particularly top 0-20 cm) samples, and from a limited number of 

soil types. Reasons include that the surface horizon is most sensitive to disturbance from 

tillage, rainfall impact and runoff, and management practices. Some workers 

(Merrington, 2006; Yoder, 1936) argued that aggregate stability studies for subsoil 

horizons were not relevant and this could partly explain why relatively few studies 

(Ward & Carter, 2004; Tajik et al., 2003) have incorporated soils from subsurface, 

particularly deep subsoil (> 50 cm) horizons. Arguably, surface horizon are less 

susceptible to dispersion as a result of higher organic matter, lower accumulation of 

exchangeable cations, low bulk density and thus present lower AS hazard (piping, 

sinkholes, gully collapse and retreat), suggesting that subsurface horizons might be more 

critical for stability diagnostic studies. Aggregate breakdown and dispersion and 

particularly the influence of sodicity is more a subsurface than surface phenomena 

(Ward & Carter, 2004). Other workers (Bouajila & Gallali, 2008; Tajik et al., 2003) 

have demonstrated significant differences in AS between soil types and different soil 

pedon horizons.  
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Optimal aggregates size: A desirable range of pore sizes for a tilled layer occurs when 

most of the clay fraction is flocculated into micro-aggregates and the micro-aggregates 

are bound together into macro-aggregates (Angers et al., 2008), however, there were no 

set standards for soil size fraction for analysis.  There was also no optimal stable macro- 

or micro- aggregate size and different fractionation sizes have been proposed: macro-

aggregates (> 200, > 250, > 212 µm); micro-aggregates (<  200, <  250, and 50 - 250 

µm); macroscopic and colloidal clay (<  20 µm) (Oguike & Mbagwu, 2009; Marquez et 

al., 2004). On the one hand, aggregates ranging from 1000 - 5000 µm size are 

considered valuable for agriculture and weighting is proposed for the various size ranges 

for stability measurements. The proportion of aggregates ≥ 2000 µm are  considered 

suitable indicator of the influence of tillage systems on aggregation, and; the largest (> 

2000 µm) and the smallest (< 250 µm) aggregates were preferentially enriched in carbon 

and nitrogen relative to the 2000 - 250 µm range aggregates (Angers et al., 2008; Wei et 

al., 2006). On the other hand, aggregates ranging from 200 to < 20 µm size are valuable 

for soil stability and erodibility studies (Le Bissonnais et al., 2007; Marquez et al., 

2004).  

 

Accounting for sand in stable aggregates: Sand plays a passive role in the formation 

and stabilization of aggregates, however, correction for sand is needed in AS 

determination to put on similar footing soil samples with different amounts of total sand 

and to remove undesirable effects introduced by sand content (Marquez et al., 2004). 

There were no set standards for accounting for the presence of various sand fractions 

[(coarse: 2000 - 500 µm; medium: 500 - 250 µm; fine: 250 - 50 µm)] (Zobeck, 2004). 

Some studies corrected for sand, for example, using the same sieve-size as for the stable 

aggregates fraction (Angers et al., 2008). Other workers (Fortun et al., 2006; Barthes & 

Roose, 2002) refer to correction for coarse sand but used the 200 µm sieve effectively 

correcting for coarse and medium sand content, and inardvertently not accounting for 

sand in < 200 µm size range. Other studies (Marquez et al., 2004) refer to correction for 
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total sand and used the 53 µm sieve. Notably, soil fraction 20 - 53 µm may comprise of 

fine sand and/or of stable micro-aggregate fraction and correction of sand using 53 µm 

sieve, might underestimate the stable micro-aggregate fraction.  

 

Expression of results, measurement precision, and critical values: Expression of 

results from different AS methods and their interpretation might conflict (Le Bissonnais 

et al., 2007), or complicate comparison where for instance stable aggregates are 

expressed in seemingly unrelated units, for example, water stable aggregates as g kg-1  or 

g 100-1g soil (Shulka et al., 2004; Barthes & Roose, 2002). There was paucity of 

information also on data reproducibility of the procedures (Le Bissonnais et al., 2007). 

Few found studies reported different results on AS for the same soil samples using 

different methods (Levy et al., 2003). Exception was the High Energy Moisture 

Moisture Characteristic (HEMC) method that demonstrated reproducible data on weakly 

aggregated (loessial) soils from the USA and Israel (Levy et al., 2003).  

 

Critical (threshhold) values are important for soil health and also economy, however, 

scanty information was found on, for example, AS cost-benefit analysis (for instance in 

crop yields, soil loss, loss/gain in monetory terms). Pringle (1975) found that the critical 

stability index values had been reached when the crop yield got lower than the farm 

average. Shulka et al. (2004) described water stable aggregate in terms of a 

sustainability index where value greater than 700 (g kg-1) was described as highly 

sustainable and value less than 150 g kg-1 as unsustainable. 

 

Advances towards universal AS method and index: There were no systematic 

advances towards development of a universal AS measurement method. Several workers 

(Cantón et al., 2009; Li & Zhang, 2007) focused, however, on comparing 

(correspondence/ agreement) and merit of indices from different fraction sizes and 

measurement methods, and validating the three tests method presented by Le Bissonnias 
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(1996). Considerable efforts have been put also in improving on the wet-sieving method 

of Yoder (1936) in methodology and definition of stability indices (Kemper & Rosenau, 

1986; Le Bissonnais, 1996; Marquez et al., 2004; Angers et al., 2008) to better relate AS 

and other important soil properties.  

 

Mbagwu (1992) found that for the soil micro aggregate indices:  fraction < 250 µm, 

aggregated silt and clay (ASC), and aggregated clay index (ACI), the fraction < 250 µm 

reflected differences in organic cabon levels more than the ASC and the ACI. The ASC 

correlated positively whereas the fraction < 250 µm correlated negatively with the macro 

aggregate indices (fraction > 250 µm), suggesting that these two fractions measure 

different dimensions of AS. 

 

Ashmana and Hallett (2003) found that in the slaked treatment, micro-aggregates (< 250 

μm) contained 17 % more soil organic carbon (SOC) and had 30 % faster rates of 

respiration, while for slaked and shaken treatment the aggregates contained 12 % more 

SOC and had 14 % faster rates of respiration, suggesting that the linkage between soil 

aggregate size class, soil organic matter (SOM), and respiration rate were artefacts of the 

fractionation procedure. The authors concluded that relationships between aggregate size 

and other properties must be interpreted in terms of the disruptive mechanisms used to 

fractionate aggregated soil. This suggested that the two wet sieving pretreatment 

procedures (slaking only and slaking plus mechanical shaking), provided different 

dimensions on the relationship between AS and basic soil properties. 

 

Le Bissonnais (1996) three treatments in one method allowed better correlation of 

stability with soil erodibility under field conditions.  Amezketa (1999) emphasized 

attention to the conditions of sample collection in the field and sample preparation and 

treatments in the laboratory to address difficulties in obtaining consistent correlation 

between AS and other important soil properties such as soil erodibility, crusting 
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potential, and SOM enrichment. Marquez et al. (2004) proposed a framework involving 

three pretreatments: slaked; capillary-wetted, and; subsequent slaking of aggregates > 

250 µm in size that permitted both accurate determination of aggregate-size stability 

distribution, and distinction between amounts of stable and unstable macro-aggregates 

(> 250 µm) based on their resistance to slaking.  Angers et al. (2008) defined both macro 

and micro water stable aggregates and accounted for both the total sand and air-dried 

moisture content (mc), since initial or antecedent mc controls soil behavior including 

water stability of aggregates.  

 

A challenge with these advances is in methodological rigor. The efforts were also 

largely uncoordinated and a universal method remained unlikely. What may be feasible 

is probably to rigorously test and ‘standardize’ field and laboratory methods for specific 

land uses, soil or land management practices. A broad criterion for choice of laboratory 

and/ or field method includes that the method is simple, fast, accurate, and sensitive for 

intended use.  While this might reduce the number of test methods, a limitation would 

still be the criteria for choice of particular test method and acceptability. Angers et al. 

(2008) proposed detailing the particular procedure used from sample collection, 

transportation, pretreatment, treatment, data measurements, indices and expression of 

results.  Arguably, the most appropriate AS measurement method will consider the local 

circumstances and purpose. For large area diagnostic screening, for example, key 

consideration could be simplicity (in terms of field data collection, sample preparation, 

wet-sieving pretreatment and aggregate fractionation), and measurement precision. 

 

2.3 Diffuse reflectance infrared spectroscopy  

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) or commonly 

infrared spectroscopy (IR) is the study of the interaction of infrared light with matter and 

an infrared spectrum is the fundamental measurement obtained in infrared spectroscopy.   

IR is defined to include near infrared (NIR: 0.75 µm to 2.5 µm) and mid-infrared (MIR: 
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2.5 µm to 25 µm) spectral ranges.  As an analytical technique IR has shown great 

potential for solving analytical problems of samples found in numerous fields including 

agriculture, geology, pharmaceuticals, and medicine (Shepherd & Wash, 2007; 

McClure, 2003). The potential of IR for non-destructive analyses of soils have been also 

intensively investigated (Linker, 2012; Viscarra Rossel et al., 2011; Stenberg et al., 

2010). Great efforts and advances have been made also in the use of IR for soil type 

differentiation and pedogenetic classification (Dematte et al., 2012; Ben-Dor et al., 

2008), mapping of the spatial and temporal variability of soil properties in extensive 

areas (Deng et al., 2013), with implication for improved efficiency in soil mapping for 

soil survey, including digital soil mapping (Sanchez et al., 2009; Hartemink & 

McBratney, 2008). Efforts are being directed also to application of spectral libraries and 

spectroscopy as a diagnostic screening tool that can aid the development of a reliable 

spectral case definition to characterize soil health for agricultural and environmental 

management at the farm and landscape level (Shepherd & Walsh, 2007). Less focus has, 

however, been in the use of IR for soil aggregation (Canasveras et al., 2010) although 

soil functional attributes may be estimated with higher precision and sometimes 

accuracy from IR than from conventional laboratory measurements (Shepherd et al., 

2005). 

 

2.3.1 Soil spectra acquisition and interpretation 

To generate a soil spectrum, radiation containing all relevant frequencies in the 

particular range is directed to the sample. Depending on the constituents present in the 

soil the radiation will cause individual molecular bonds (typically H - C, C – O, carbonyl 

groups, C – N bonds)  to vibrate, either by bending or stretching, and they will absorb 

light, to various degrees, with a specific energy quantum corresponding to the difference 

between two energy levels. As the energy quantum is directly related to frequency (and 

inversely related to wavelength), the resulting absorption spectrum produces a 
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characteristic shape that can be used for analytical purposes (Viscarra Rossel et al., 

2011).   

 

Qualitative spectra interpretation: Reflectance increases, for example, as particle or 

aggregate size decreases (Atzberger, 2002), effectively lowering apparent absorbance.  

The reflectance curve shape changes due to also the strong moisture absorption bands 

near 1400 and 1900 nm (Stenberg et al., 2010) and the shoulder of the 1900 nm and 

2200 nm absorption features is highly diagnostic in classifying aggregates (macro, meso, 

and micro fractions, and organic matter) across different sites, reflecting difference in 

OH vibrations in adsorbed water and lattice water, respectively (Mutuo et al., 2006). 

Verchot et al. (2011) found characteristic absorption band patterns in the frequency 

range of 800 - 4000 cm-1 with prominent diagnostic features for three different aggregate 

size fractions (macro, meso, and micro). Spectra for micro-aggregates were very similar 

across the two different sites and showed increased average absorbance values for all 

functional groups with depth, whereas there were no apparent trends with depth for the 

meso- and macro-aggregates (Verchot et al., 2011). However, soil spectra are complex 

attributed to soil compositional complexity making qualitative interpretation less 

effective. 

 

Quantitative spectra interpretation: The complex soil absorption patterns are 

mathematically extracted from the spectra and correlated with soil properties using 

multivariate calibrations (Viscarra Rossel et al., 2006). Calibration performance is 

influenced, however, by several factors including samples characteristics (provenance, 

composition), soil property characteristics (spectral response, data quality), spectra 

measurement region, and calibration method (Reeves, 2010; Stenberg et al., 2010).  
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2.3.2 Factors influencing IR calibration performance 

Influence of samples characteristics: Differences in calibration performance could be 

explained by the sample size and sampling strategy, sample provenance (location/ sites, 

sampled depth and soil type), and sample presentation (Reeves, 2010; Stenberg et al., 

2010). A limited number of samples or samples from a limited number of sites of similar 

soil types can limit, for example,  the calibration to a certain type of soil or only be 

applicable to the landscape studied (Islam et al.,  2003). Shepherd and Walsh (2002) 

found a gradual decrease in predictive performance with decreasing sample size at large 

sample sizes, but a rapid decrease as sample size decreased below about 100 to 200 

samples.  

Sampling strategy: Important for a representative sample set is that the (re) sampling 

strategy recovers the original variation in the larger set with fewer samples. Genot et al. 

(2011) found that the data range (separate test set) obtained based on a “conditioned 

Latin hypercube sampling – cLHS” strategy (Minasny & McBratney, 2006) was within 

the range of values for calibration set, a prerequisite for robust modeling. Stenberg 

(2010) obtained a representative subsample from a large dataset of Swedish agricultural 

soils to cover clay and organic matter contents without co-variation using cLHS.  Very 

poor prediction power for soil constituents in a large set of archived samples was highly 

improved using datasets from a representative sub sample obtained following cLHS 

(Viscarra Rossel et al., 2008). 

 

Sampled depth: topsoil  models for some properties (pH, OC, CEC, eCa and eMg) were 

superior over counterpart subsoil models, whereas the converse was true for other 

properties (eNa, EC, eK, ESP) (Dunn et al., 2002), attributed to also differences in 

sample composition that influence analyte content and data distribution. Similarly, better 

silt in subsurface than surface, and better clay activity in subsurface than surface data 

sets (Nanni & Dematte, 2006), presumably was attributable to variation in analyte 

concentration. This suggests the importance of developing also separate depth models 
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from interval depth sample set datasets although Merry and Janik (2001) argued that 

mixed depth models are more effective than separate depth models since they take 

account of both surface and subsurface soil variability.  

  

Influence of soil property characteristics: Calibration performance is influenced by 

property characteristics including: spectral response (active or inactive); quality of 

reference data, the form of analyte (directly measured or derived), data range and data 

distribution (Linker, 2012; Reeves, 2010).  Calibration is successful for wide range in 

reference analytical data and for test set data that is in the range of calibration set 

(Stenberg et al., 2010).   

 

Spectral response: calibration of spectrally active (primary) soil properties including: 

mc, SOM, SOC, clay mineralogy, and Fe oxides (soil chromophores) is direct, whereas 

calibration for non-responsive (secondary) properties (including EC, pH, soluble and 

exchangeable bases, micro elements, and derived properties) is through co-variation 

(auto-correlation) with soil chromophores (Stenberg et al., 2010). Reeves (2010) refer to 

calibration of secondary properties as surrogate calibration. Calibration for primary 

properties is strong and robust (model geographic transferability is more successful). 

Secondary calibrations are:  (i) highly variable and not-so-robust due to lack of direct 

relationships between the spectra and these properties, and (ii) work best over 

geographical areas with a homogeneous geology and anthropogenic history, therefore, 

are local and largely specific to a particular data set (Stenberg et al., 2010). 

 

The mechanism responsible for calibration of aggregation indices remained 

controversial (Stenberg et al., 2010). Soil structure is assumed to have primary response 

to spectra, attributed to unique effect of soil surface physical properties (such as size and 

shape of soil aggregates) on influence of the light scattering and light path lengths 

(Atzberger, 2002; Chang et al., 2001). Efforts at establishing absorption features 
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associated with aggregation indices (Verchot et al., 2011; Mutuo et al., 2006) were, 

however, not conclusive. Canasveras et al. (2010); attributed calibration of aggregation 

indices (water stable aggregates, mean weight diameter, and water-dispersible clay) to 

also their individual association with spectrally responsive soil basic properties. High 

variability is also found for calibration of water stable aggregates on IR from different 

studies (R2 = 0.46, 0.56, 0.60, 0.92) (Canasveras et al., 2010; Madari et al., 2006; Chang 

et al., 2001; Ben-Dor & Banin, 1995). 

 

Quality of reference data: calibration performance depends on the quality of reference 

input data (Reeves, 2010), yet when performed by different laboratories routine soil 

analyses can yield very different results, even when they use the same methodologies 

(Nocita et al., 2015; Lyons et al., 2011; Cantarella et al., 2006). Different results are 

reported on AS for the same soil samples using different methods (Le Bissonnais et al., 

2007). This is contrary to spectral measurements that are highly precise (Shepherd et al., 

2005). Shepherd and Walsh (2003) showed how IR may be used to improve the 

accuracy of the reference wet chemistry method.  

 

Properties from direct measurements perform better than derived, especially ratios of 

soil constituents may be predicted less accurately than the individual constituents 

(Stenberg et al., 2010), because of an error propagation of the individual error terms 

from reference measurements (Ludwig et al., 2008), and the level of interaction among 

the constituents (Nanni & Dematte, 2006). The silt: clay ratio (R2 = 0.78) was better than 

for silt (R2 = 0.27) but lower than clay (R2 = 0.92) (Nanni & Dematte, 2006), suggesting 

more influence by clay and no apparent interaction between clay and silt. Sensitivity of 

the measurement may lower detection limit presenting (higher quality) reference data 

better correlated to spectra (Viscarra Rossel et al., 2006). Exceptionally high prediction 

of otherwise spectrally non-responsive soluble and exchangeable Na (R2 > 0.9) in 



31 

 

surface samples (Chodak et al., 2004), was probably partly due to the high sensitivity 

measurement (mg g-1 and µg g-1). 

 

Influence of spectral measurement region: The selected spectral measurement region 

commonly: UV-VIS-NIR (250-2500 nm), VIS (400-700 nm), VIS-NIR (400-2500 nm), 

NIR (700 – 2500 nm), and MIR (2500 – 25000 nm) has shown variable performance for 

estimation of soil properties (Canasveras et al., 2010). Key question from among 

comparative studies is the veracity of reported superiority of MIR over NIR (NIR region 

to include: UV-VIS-NIR, VIS-NIR, and NIR) (Madari et al., 2006; Viscarra Rossel et 

al., 2006) for estimation of primary and secondary soil properties, especially for 

independent samples datasets. 

 

Performance of MIR and NIR: Reported superiority of MIR over NIR for estimation 

of several soil properties is predicted on the relative strength of absorbance spectra. 

Absorption peaks associated with key soil chromophores (SOM and clay minerals) are 

more pronounced in MIR and weaker (masked due to overlapping bands) in NIR. The 

NIR is insensitive to quartz, a main soil constituent, whereas silica shows strong 

absorption features in the region 1200-900 cm-1 (Viscarra Rossel et al., 2006) although 

Terhoeven-Urselmans et al. (2010) showed that calibration of total sand in MIR is 

surrogate. The superiority of MIR over NIR is not, however, adequately interrogated. 

Especially the difference in performance might be cancelled out by the practical 

advantages using NIR (Bellon-Maurel & McBratney, 2011).  

 

Superiority of MIR might be conditional: test sample characteristics and analyte 

characteristics. The MIR and NIR, for example, indicated comparable performance for 

estimation of mean-weight diameter (MWD) for soils from southern Spain (Canasveras 

et al., 2010), however, MIR was clearly superior for estimation of MWD in soils from 

Brazil (Madari et al., 2006). The NIR was superior for total clay for soils from Spain 
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(Canasveras et al., 2010), whereas performance was comparable for soils from Brazil 

(Madari et al., 2006). Canasveras et al. (2010) concluded that the wavelength range 

providing the highest model fit (R2 values) and accuracy is dependent on particular soil 

property. Important also is that for the same dataset, IR has shown superiority over NIR 

for some properties, the methods are comparable for others and NIR is superior for 

others (Canasveras et al., 2010). 

 

MIR superior over NIR: MIR performed better for MWD (R2 = 0.79 vs 0.66) and 

MGD (R2 = 0.79 vs 0.67), for interval depth samples from deeply weathered soils from 

Brazil (Madari et al., 2006).  MIR was superior for estimation of pHw1:5 (R2 = 0.71 vs 

0.65), OC (R2 = 0.85 vs 0.76), tClay (R2 = 0.72 vs 0.61) in interval depth samples of 

soils from NSW and Queensland Australia (Pirie et al., 2005).  

 

NIR/MIR comparable performance:  NIR and MIR were comparable for pHw (R2 = 

0.69 vs 0.68), CaCO3 (R2 = 0.91 vs 0.95), FeCBD (R2 = 0.79 vs 0.81), and MWD (R2 = 

0.52 vs 0.59) (Canasveras et al., 2010). The methods compared well for TOC (R2 = 0.93 

vs 0.90), TN (R2 = 0.99 vs 0.97), tSa (R2 = 0.99), and tClay (R2 = 0.96 vs 0.94) (Madari 

et al., 2006), and for eNa (R2 = 0.20 vs 0.18) (Pirie et al., 2005). 

 

NIR superior over MIR: NIR was superior for prediction of tClay (R2 = 0.84 vs 0.77, 

water stable aggregates (fraction > 250 µm) (R2 = 0.60 vs 0.56), and WDC (R2 = 0.66 vs 

0.30) (Canasveras et al., 2010). NIR was superior for CEC (R2 = 0.83 vs 0.56) (van 

Groenigen et al., 2003), and for water stable aggregates (fraction <.250 µm (R2 = 0.92 vs 

0.80) (Madari et al., 2006). 

 

Properties based on ratios of soil constituents (ESP, C: N ratio, clay activity, silt: clay 

ratio) may be predicted less accurately than the single constituents for NIR analysis 

(Stenberg et al., 2010). The opposite may be true, however, for MIR analysis. The ESP 
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was better calibrated to MIR than eNa (R2 = 0.68 vs 0.43) (Viscarra Rossel et al., 2008), 

however, the ESP model involved more rigorous data pretreatment and was therefore 

less efficient. 

 

Comparative studies suggested that the NIR might perform as well or sometimes better 

than MIR for soil properties whose determination is related with moisture content and 

for secondary soil properties. Important from these findings is that the performance 

difference should be interpreted in terms of intended use of the data considering also 

practicalities in data acquisition using MIR and NIR (Bellon-Maurel & McBratney, 

2011). Further, superiority of MIR for estimation of especially secondary properties is 

conditional and depends on sample provenance. The MIR models were more complex 

(more PLS factors) for physical properties total sand (11 vs 3), silt (11 vs 2), clay (11 vs 

3), mean-weight diameter (5 vs 3), mean geometric diameter (5 vs 3) (Madari et al., 

2006). The NIR models were more complex for chemical properties (pH, EC, OC, eCa, 

eK, CEC) (Viscarra Rossel et al., 2006). Model complexity has implications for 

robusticity of calibration. 

 

MIR – NIR trade off: MIR is superior over NIR for majority of primary soil properties, 

however, the difference is not profound and NIR is better commercially supported for 

routine soil analysis (Bellon Maurel & McBratney, 2011). NIR provide higher 

throughput and great potential for on-site and on-the-go field measurements (Stenberg et 

al., 2010), whereas MIR measurements under uncontrolled condition are rare (Merry & 

Janik, 2001).  

 

Available information is not conclusive, however, and more comparative studies are 

needed that, especially address the basic factors that influence calibration performance 

(sample provenance, quality of reference data) and some standards on sample 

presentation and spectral data preprocessing. 
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Spectra data pretreatment and handling of outliers: Spectra data pretreatment 

including four main procedures: Detrend-D, SNV, MSC, derivatives and combinations1 

have been applied, in attempt to linearly align spectra absorbance to reference values, to 

optimize calibration (Genot et al., 2011). 

 

Characteristics of most of the numerous soil studies that applied rigorous spectra data 

pretreatment (Knadel et al., 2013; Muhati et al., 2011; Madari et al., 2006; Chodak et 

al., 2004; Moron & Cozzolino, 2003) include: exceptionally high determination 

coefficient (R2) and/ or low error rates for some soil properties for calibration that 

involved less validation rigor, suggesting high risk of over-fit models. Also, none of the 

studies provide information on calibration performance without the spectra pretreatment 

(except Genot et al., 2011). Genot et al. (2011) reported R2 for no-pretreatment and for 

the best of 15 different techniques (in parenthesis) as follows: 0.72 (0.79), 0.39 (0.58), 

0.32 (0.36), and 0.51 (0.67) for total carbn, total nitrogen (TN), clay, and CEC, 

respectively, suggesting that the rigor was to advantage for only TN and CEC.  

 

Optimal spectral pretreatment: Spectra data pretreatment is, however, resources 

intensive; oftentimes results in modest to slight improvement, and; optimal pretreatment 

is specific to the soil property (Sorensen & Dalsgaard, 2005). The utility of IR as a 

viable alternative to wet chemistry is anchored on simplicity, rapidity and precision on 

                                                   
1 (i) Detrend (D) removes the linear and quadratic curvature of each spectrum; (ii) 
standard normal variate (SNV) reduces the light scattering caused by particle size 
effects. Each corrected value is the original absorbance from which the mean of the 
whole spectrum is subtracted and divided by the SD of the spectrum, (iii) multiplicative 
scatter correction (MSC) eliminates or reduces the difference in light scatter between 
samples, (iv) first (1_4_4) or second (2_8_6) derivatives of the data is used to remove 
part of the particle size influence. The first number represents the number of the 
derivative (1st or 2nd); second number represent the gap between wavelength over which 
derivative is calculated, and third number represent the smoothing of the points). 
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measurements. Testing the main four mathematical treatments of spectra Sorensen and 

Dalsgaard (2005) found the first derivative spectra without any scatter correction was 

optimal for estimation of SOC, clay, sand, and silt. The first derivative spectra and 

smoothing using a Savitzky-Golay filter as the only spectral pretreatment have provided 

optimal models for several soil properties (Stenberg, 2010; Viscarra Rossel et al., 2008).  

 

Handling of outliers: Samples coming from outside the population covered by the 

calibration set may not fit the calibration.  Successful calibration requires detection of 

both spectra (X- outliers) and samples falling outside the content range (Y- outlier) of the 

calibration set. The X-outliers are detected before calibration, whereas Y- outliers are 

checked after model development (Sorensen & Dalsgaard, 2005).  

 

Spectral outlier: commonly X-outliers (or H- statistic) are identified using the principle 

of Mahalanobis distance (H) applied on principal component analysis (PCA) reduced 

data2  (Deng et al., 2013).  The aim is to calculate the Mahalanobis distance (H), which 

illustrates the way the spectra deviates from the average spectrum. When the H value 

exceeds the warning limit, there is a risk of increased uncertainty of the IR result and the 

risk increases with increasing H value (Sorensen & Dalsgaard, 2005). The setting of H 

value is, however, not standard and values: H > 3 (Genot et al., 2011); H > 3.5 

(Sorensen & Dalsgaard, 2005), and; H > 12 (Terhoeven-Urselmans et al., 2010) have 

been applied.  

 

                                                   
2 Spectra PCA scores are used to calculate a standardized H distance (Mahalanobis 
distance) for each sample. Relative H distances, calculated for all soil samples in the 
population are used to define and reduce the population. The algorithm ranks the 
samples according to their H distance from the average scores calculated for the 
population. The H statistics is associated with spectral characteristics of the sample and 
represent the distance from a sample to the population. 
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Reference values outlier: The Y-outlier (or T- statistic) is a sample whose residual 

(difference between measured and predicted value) is > 3 × RMSECV or RMSEP 

(Sorensen &Dalsgaard, 2005). Moron and Cozzolino (2003) defined reference outlier as 

sample with residual greater than 2.5 * RMSECV. A sample that fails the H and or T – 

statistics is recommended for re-scanning and re- analysis by the reference method, and 

those that persist are excluded from analysis (Sorensen & Dalsgaard, 2005). 

 

Influential outlier: Influential outlier is characterized by high leverage and high 

residual and is identified via a plot of residuals vs leverage. Influential outlier presents 

also spurious prediction (extremely high or negative values) (CAMO ASA Inc., 1998). 

 

Few studies (Genot et al., 2011; Sorensen & Dalsgaard, 2005) were explicit on handing 

(H- and T- statistic) outliers, although their removal might have implication on sample 

size (especially for modest sets, n < 200) and model robusticity. Influential outliers are 

excluded from analyses (CAMO ASA Inc., 1998).   For robust calibration validation, the 

validation dataset should be within the range of calibration set for the majority of soil 

attributes and this is why reference values outliers are commonly identified for the 

validation set (Sorensen & Dalsgaard). 

 

A challenge with soil chemometric and spectroscopic modeling is on how to extract 

predictive information, which consists of largely localized features of the spectrum, from 

noisy and strongly correlated data (Viscarra Rossel & Lark, 2009). Also, linear modeling 

techniques are not optimal for data with non-linear behavior, especially at very high 

analyte concentration (Linker, 2012). Spectra wavelet transform ensures reduction or 

elimination of both irrelevant and noisy features, and optimizes calibration by avoiding 

the a priori assumption of linearity (Linker, 2012).   
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Spectra Wavelet transformation: A wavelet (commonly a wave-like oscillation with 

amplitude that starts out at zero, increases, and then decreases back to zero) is a compact 

analyzing kernel (mathematical function) that can be moved over a sequence of data to 

measure variation locally.  A wavelet transform is the representation of a signal/ 

spectrum by wavelets. Wavelets have special properties valuable for analysis of soil 

diffuse reflectance spectra including that: (i) its basis functions (mother wavelet) 

represent distinct scales of variation, (ii) a single basis function is localized (i.e., the 

coefficients correspond to features in a delimited part of the spectrum), and (iii) for 

many wavelets, adjacent coefficients at a particular scale are typically uncorrelated 

(Viscarra Rossel & Lark, 2009).   

 

Compressing a large data set with the wavelet transform and then performing regression 

analysis on some of the wavelet coefficients is fast comparing to calculating the PLS 

model on the original full spectrum data set, and this can drastically increase the model’s 

predictive ability and its stability (Gributs & Burns, 2006).  Viscarra Rossel and Lark 

(2009) found that transforming soil spectra into the wavelet domain and producing a 

smaller representation of the data improved the efficiency of the calibrations; the models 

were computed with reduced, parsimonious data sets using simpler regressions, and; 

further improvement in modeling efficiency and accuracy was found for some attributes.  

 

Discrete wavelet transform (DWT): There are a large number of wavelet transforms 

(Torrence & Compo, 1998; Walczak & Massart, 1997). The discrete wavelet transform 

(DWT) is most common in infrared spectroscopic applications (Viscarra Rossel & Lark, 

2009; Trygg & Wold, 1998). The DWT analyzes the scale-position information of a 

spectrum, resulting in a set of wavelet coefficients associated with a range of scales and 

positions. Each coefficient is directly related to the amount of energy in the spectrum at 

a particular position and scale. Characteristic of DWT is the use of orthogonal basis 

(orthogonal wavelets) that operates over a specific subset of scale and translation values 
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or representation grid. The DWT effectively compress the spectral data into discrete 

wavelet coefficients in a procedure referred to as multi-resolution analysis (MRA) using 

the pyramid algorithm. The DWT and MRA apply only to a spectrum of discrete length 

2n, where n is an integer, and a spectrum will need to be padded to the nearest 2n prior to 

the decomposition (Viscarra Rossel & Lark, 2009). This explains why the same number 

of wavelet coefficients could be extracted for both NIR and MIR despite the fact that 

these represent different spectral ranges and wavebands (data points). 

 

Choice of wavelet and their deployment: There are numerous different mother 

wavelets (for instance, Daubechies and Coiflet), and appropriate choice of the specific 

(child) wavelet will depend on several factors including: the structure of the data, the 

goals of the analysis, and computational considerations (Koger et al., 2003; Bradshaw & 

Spies, 1992). The Haar analyzing wavelet of the Daubechies’ family (Daubechies, 

1992), is among the most popular (Viscarra Rossel & Lark, 2009), due to their simplicity 

and ease of computation.  

 

Wavelets have been deployed to extract information from different kinds of data and in 

diverse fields of science including: analytical chemistry, geophysics, medicine, 

agriculture, forestry, and soil science (Linker, 2012). Wavelets have been effective for 

spectral data compression and denoising for feature extraction (Trygg & Wold, 1998), 

multivariate calibration (Viscarra Rossel & Lark, 2009), image processing (Bradshaw & 

Spies, 1992), and in the classification of infrared spectra (Koger et al., 2003).  Wavelet 

analysis has potential also in conventional and digital soil mapping provided sufficient 

data can be obtained from survey, including exploration of wavelet bases in established 

libraries (Sanchez et al., 2009). Lark (2007) presented a case study in which a 

decomposition of sensor data on soil electrical conductivity resulted in better predictive 

models for other soil properties. 
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Potential of wavelet-based modeling in soil studies: A challenge with wavelet 

transform for soil spectroscopy studies remained, to establish whether reported 

advantage over alternatives like Fourier Transform (FT) is reflected in improved 

calibration and classification for all soil properties. The one available study by Viscarra 

Rossel and Lark (2009) found that predictions of soil organic carbon (SOC) and total 

clay content (tClay) using all significant wavelet coefficients were not significantly 

different to those using the original spectra, and only slight improvement in prediction of 

SOC and degradation in tClay was found using only relevant coefficients. Classification 

based on spectra wavelet transform models were only slightly more robust than models 

based on original spectra and on spectra PCs (for instance, accuracies of 87, 83 and 81 

%, comparing wavelets, raw spectra and PCs, respectively) (Koger et al., 2003). It 

remained subjective also whether wavelet coefficients in modeling should routinely be 

treated as spectral or non-spectral data and; the requisite data preprocessing (mean-

centered and with or without standardization).  Scaling of the compressed wavelet 

coefficient data matrix sometimes presented a more parsimonious regression model; 

however, this could lead to perturbation of the systematic information, and hence, model 

instability (Trygg & Wold, 1998). 

 

2.4 Exploring relationship in multivariate data  

 The complexity and large amount and variance of environmental data sets with a 

multiplicity of variables limit the use of univariate statistical methods for applications 

including assessment and monitoring of environmental health. Paradoxically, working 

with many variables expands the size of the input space, complicating establishment of 

relationships, technically referred to as the “curse of dimensionality” (Dwinnell, 1998). 

However, environmental data sets including soil spectra and also reference property data 

tend to have some degree of correlation among their variables, and this reduces the 

effective dimensionality of the input space. Correlated inputs imply that the data will 

cluster in a subset of the entire space and paring down the number of inputs often results 
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in models that are more accurate and more robust. Multivariate statistical methods 

including exploratory data analysis (EDA), principal component analysis (PCA), 

principal component regression (PCR) and partial least square regression (PLSR) 

(commonly PLS) are among soft modeling (unsupervised) methods commonly deployed 

to explore multivariate empirical data sets and establish relationships (Maindonald & 

Braun, 2003). 

 

2.4.1 Development of quality attributes and parametric modelling 

Principal Component Analysis (PCA): PCA is a method of data reduction that applied 

to a data matrix of samples by variables (for instance soil spectra and/or reference data), 

it constructs new variables (latent variables, hidden variables, linear combinations, or 

principal components)  such that: the new variables are linear combinations of the 

original ones; are uncorrelated (orthogonal); the first new variable captures as much as 

possible of the (co-) variability in all the original variables; each successive new variable 

accounts for as much of the remaining variability as possible (Naes et al., 2002). PCA 

makes it possible to describe a very large proportion of the variability in highly 

multivariate (and collinear) data with a modest number of principle components (PCs). 

The analysis places the PCs in order, using as an ordering (importance) criterion the 

amounts that the individual PCs contribute to the sum of the variances of the original 

variables. Usually, only the first few PCs contain genuine information, while the later 

PCs most likely describe noise. Therefore it is useful to study the first few PCs only 

instead of the whole raw data table. This is less complex and also ensures that noise is 

not mistaken for information (CAMO ASA Inc., 1998). The output of PCA has been 

interpreted using among others, the retained PCs through graphical inspection (scores 

plots, residual/explained variance plot) and numerical loadings (Martens & Martens, 

2001).  
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A potential challenge is that with the different methods of extraction of important PCs 

(varimax rotation with Kaiser Normalization criteria of eigen-value > 1, the scree test 

and the broken- stick eigen-value criteria) (Maindonald & Braun, 2003), the same data 

set might present different interpretations even for the same objective. Maindonald and 

Braun (2003) caution that although PCA is tauted the ‘mother’ of all multivariate 

analysis methods, appropriate data set, and requisite preprocessing and indeed relevant 

optimal PC extraction criterion is necessary for a valid and meaningful PCA construct. 

 

Appropriate dataset and requisite preprocessing: most of the variables should 

indicate moderate to high correlation.  PCA exploits the noted correlations to produce a 

smaller set of new variables in such a way that most of the variability between the 

samples measured on the original variables is maintained (Maindonald & Braun, 2003). 

Preprocessing aims to remove or reduce irrelevant sources of variation or ‘noise’. 

Pretreatment might include a monotonic transformation3 (for instance, log, inverse, 

square, or square root- SQRT) to reduce data heterogeneity, and column  mean - 

centering (variable means are subtracted from each element in their respective columns). 

Logarithmic (log) transformation, for example, makes the distribution of skewed 

variables more symmetrical, and is used also when measurement error on a variable 

increases proportionately with the level of that variable (ensures a relative uniform 

precision over the whole range of variation or variable stabilization). In the case of only 

slight asymmetry, SQRT can serve same purpose as log (CAMO ASA Inc., 1998). 

 

                                                   
aA (positive) monotonic transformation is a way of transforming one set of numbers into 
another set of numbers so the the rank order of the original set of numbers is preserved. 
It is thus a function, f, mapping real numbers into real numbers, which satisfies the 
property that, if x > y, then f(x) > f(y). 
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Where input variables come in very different measurement scales (for instance unitary, 

%, cmol (+) kg-1, mS cm-1, mg kg-1), and/or are suspected to have very different error 

levels (measured by variance and SD), the variables are weighted, commonly by 

standardization or scaling. Standardization (1/SD) allows comparison of the variation of 

different variables by expressing the variable variance in the same standard unit, thus 

giving all variables the same chance to influence the estimation of the components 

(CAMO ASA Inc., 1998). Martens and Martens (2001) refer to scaling as ‘balancing the 

error levels in the input variables’. Variables of the same type and measured on the same 

or similar scale for instance spectral data, and those based on linear measurements, 

however, should be analyzed in their original form (CAMO ASA Inc., 1998). 

Importantly, variable data preprocessing for PCA is standard procedure as demonstrated 

by some workers (Muhati et al., 2011), and should be explicit to avoid pitfalls of 

presenting highly redacted analyses.  A potential drawback with scaling is that it might 

increase the relative influence of unreliable / noisy properties (Martens & Martens, 

2001). 

 

Multivariate calibration: The partial least square regression (PLSR) and principal 

component regression (PCR) are probably the two most common linear methods applied 

in soil chemometrics and spectroscopic studies (Linker, 2012; Stenberg et al., 2010).  

PLS and PCR are data projection methods whose algorithm reduces large numbers of 

correlated data into a limited number of orthogonal components, which are used as 

independent variables in a multiple linear regression (MLR) on dependent variable(s). 

Non-linear models (McBratney et al., 2003)4 have, however, outperformed linear 

methods for estimation of some physico-chemical soil properties (Viscarra Rossel & 

                                                   
4Non-linear or data mining methods including: multivariate adaptive regression splines 
(MARS), classification and regression tree (CART), artificial neural networks (ANN), 
TreeNet, boosted regression trees (BRT), random forests, and fuzzy systems. 
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Behrens, 2010; Brown et al., 2006).  Compared to PCR, PLS only selects components 

that are relevant to the requested model i.e., strong components that are not correlated to 

the soil variable in question, are not included in the final model.  PLS results, therefore, 

in more parsimonious models with similar or better predictive capabilities (Naes et al., 

2002). Numerous studies (Knadel et al., 2013; Genot et al., 2011; Stenberg et al., 2010; 

Viscarra Rossel et al., 2006) are based on PLS. 

 

Calibration spectrometry: Three metrics: coefficient of determination or model fit 

(R2), accuracy or root mean square error (RMSE) and model reliability (RPD) are 

commonly used to assess IR PLS performance for estimation of soil properties. 

Important is that model interpretation might be subjective when either of the statistics 

(R2 and RMSE) is used independently (Bellon-Maurel & McBratney, 2011).  

 

Coefficient of determination: The R2 value is an expression of the percentage of 

variance present in the measured property values, which is reproduced in the prediction 

and approaches 100 % as the predicted values approach the true values. The R2 is 

dependent on the measurement range, however, and when used alone could be a 

subjective indicator of prediction performance. Reported R2 = 0.13, 0.07, and 0.04 for 

estimation of CEC, exchangeable calcium - eCa and electrical conductivity - EC, for 

example, might suggest no predictive relationship between spectra and these properties. 

Fair correspondence was found, however, in the data range (min – max) for observed 

and predicted (in parenthesis) values: [(CEC: 24.0 - 72.0: (29.7 - 56.0) mmol (+) kg-1; 

eCa: 11.0 - 46.0: (13.2 - 37.5 mmol (+) kg-1; EC: 0.02 - 0.07 (0.04 - 0.06) dS m-1)] 

(Viscarra Rossel et al., 2006), probably sufficient to allow quick management decision. 

This suggested that model performance should be interpreted based also on the purpose 

as suggested by Sorensen and Dalsgaard (2005). For cases with genuinely poor model 

fit, spectral screening using critical values of the analytes (Shepherd & Walsh, 2002; 

2007), might be more informative than quantitative calibration. 
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Prediction accuracy/error: The RMSE present a more efficient measure of the 

uncertainty on future prediction (Yp) (Yp = ± 2SE×RMSE), whose measure is valid 

provided that the new samples are similar to the ones used for calibration (otherwise, the 

predicted error might be much higher) (Bellon-Maurel & McBratney, 2011). However, 

different measurement scales for the same soil property could constraint comparing error 

rates from different studies. It is not straight forward comparing  RMSE and 

corresponding data range values, for example, for texture parameters for reference 

values expressed in g kg-1   (Araujo et al., 2013),  kg kg-1 (Chang et al. , 2001), mg g-1 

(Couillard et al., 1997), or (the uncommon) dag kg-1 (Viscarra Rossel et al., 2006). Inter-

conversion of the measurement scale might not be trivia. The use of R2 and RMSE could 

present challenges also when comparing calibrations with different ranges for a 

constituent. The RPD has been proposed to boost R2 and RMSE since it provides a more 

‘universal’ statistic allowing comparison across soil properties and diverse databases 

(Chang et al., 2001). 

 

RPD statistic: The RPD (ratio of prediction deviation) attempts to standardize the value 

of the RMSE, with respect to the natural dispersion of the samples (RPD = SD ×RMSE-

1). Larger values of RPD indicate better fitting models. The RPD has been widely 

adopted by the soil community (Knadel et al., 2013; Canasveras et al., 2010; Terhoeven-

Urselmans et al., 2010; Pirie et al., 2005) since Chang et al. (2001) who set up RPD 

thresholds to gauge the performance of the prediction, although Bellon-Maurel et al. 

(2010) question the relevance of this parameter since it depends on the range and 

distribution of the population. 

 

Calibration performances thresh holds: No universal standards have been established 

although largely comparable ratings for R2 and RPD have been proposed. No thresholds 

for RMSE were available in the literature. The values of 0.5 < R2 < 0.65 were fixed to 
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indicate the possibility to differ high to low concentration of a soil attribute in a NIR 

model, and; values of R2 0.66 - 0.81, 0.82 - 0.90, and > 0.90 were proposed to indicate, 

acceptable, good and excellent quantitative models, respectively (Araujo et al. , 2013). 

The R2 values > 0.71 are satisfactory and values < 0.5 weak (Williams, 2001). Other 

workers (Saeys et al., 2005) proposed R2 as follows: > 0.8 (very good), 0.8 – 0.7 (good), 

0.6 – 0.5 (approximate), 0.5 – 0.3 (very approximate) and < 0.3 (not predictable). 

Notably, spectra of organic material (for instance Hog manure used by Sayes et al. 

(2005)) and cereals by Williams (2001)) is less complex compared with soil spectra and 

models from organic materials are better performing, suggesting that the thresh holds 

might be rather conservative for soil studies. Terhoeven-Urselmans et al. (2010) 

considered R2 > 0.75; 0.65 < R2 < 0.75, and; R2 < 0.65 to indicate good, satisfactory, and 

poor performance, respectively for MIR analysis.  

 

RPD threshold: three categories of RPD, > 2.0; 2.0-1.4; < 1.4 and corresponding R2: 

1.0 - 0.8, 0.8 - 0.5, and < 0.5, respectively, indicated decreasing reliability of prediction 

of soil properties using NIR (Chang et al., 2001). Prediction of soil properties in the 

middle RPD category could be improved by using calibration optimization strategies 

including improving quality of reference data (Reeves, 2010), whereas properties in the 

lower category may not be reliably predicted by NIR (Chang et al., 2001). The RPD 

categories: ≥ 2.0; 1.5 < RPD < 2.0, and; < 1.5 are associated with high, moderate and 

poor reliability of MIR PLS analysis, respectively (Viscarra Rossel et al., 2008).  

 

Calibration validation requirement: Soil chemometrics and IR modeling requires both 

calibration and validation stages; that the validation set data range is within the range of 

calibration set, and; that the calibration models are appropriately validated (Brown et al., 

2005). Validation strategies include: leverage correction, cross validation, separate test 

set validation, and independent set validation (Naes et al., 2002). Leverage correction is 

effective for rapid selection of a representative set from a large sample set using, for 



46 

 

example, PC scores of spectra, however, the strategy can sometimes be highly over-

optimistic and is not appropriate for actual analysis (Naes et al., 2002).  

 

Cross validation: The leave-out-one cross validation (looCV) strategy provides a good 

estimate of the uncertainty of the model when the calibration samples are properly 

selected using for instance, a conditioned Latin hypercube sampling (Stenberg, 2010). 

The potential risk is that looCV may underestimate the ruggedness of the calibration and 

the predicted uncertainty because validation samples are taken from the pool of samples 

used for calibration (Sorensen & Dalsgaard, 2005). Independent set is different from the 

calibration set both spatially and temporary (Sorensen & Dalsgaard, 2005). 

 

Independent validation: Few studies (Terhoeven-Urselmans et al., 2010; McCarty et 

al., 2002) demonstrated completely independent validation although the veracity of 

chemometric- based models could only be established using test sets, preferably 

collected after model calibration (Dardenne et al., 2000). Testing calibration models of 

properties in bulk soil samples (BS) on spectra and reference values in aggregate size 

fractions (ASF) of the BS (Madari et al., 2006) or interchanging surface and subsurface 

datasets as calibration and validation sets (Nanni & Dematte, 2006) are strategies, for 

example, that run the risk of pseudo-independent validation (Brown et al., 2005), since 

the calibration and validation samples might be pseudo-replicates (Terhoeven-

Urselmans et al., 2010). The use of samples sets from the relatively more homogeneous 

surface horizon and a restricted clay range (< 26 %) for independent prediction of soil 

organic carbon and total clay (Sorensen & Dalsgaard, 2005), might be also suspect for 

independent validation.  

 

The requirement for calibration independent validation is especially critical/ basic for 

spectrally non-responsive soil properties characterized by high variation in (surrogate) 

calibration performance (Reeves, 2010).  A drop in performance for independent 
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datasets is to be expected, even for spectrally active soil constituents, attributed to 

variable sample characteristics from different provenance (Reeves, 2010; Minasny et al., 

2009). 

 

2.4.2 Deployment of soil and spectra for pedotransfer purposes  

The role of aggregation and aggregate stability (AS) in soil health is well elucidated 

(Wei et al., 2006). The AS indicates significant association with other soil properties 

(Igwe & Nwokocha, 2005). Available works (Canasveras et al., 2010; Idowu, 2003) 

have developed aggregation proxies from multivariate calibration of a limited number of 

soil properties although multiplicity of properties could potentially influence soil 

function (Minasny, 2007).  This is attributed partly to limiting/ stringent data quality 

requirement for successful calibration. Few studies (Canasveras et al., 2010; Madari et 

al., 2006) were available also on development of spectra-based pedotransfer functions 

for estimation of soil aggregation indices. There were scanty information (Canasveras et 

al., 2010) comparing spectra and soil-based properties for pedotransfer purposes. 

 

Reported performance for estimation of aggregation indices by alternative  spectral 

predictors (NIR and MIR) is variable and inconclusive: R2 = 0.92 - 0.80 for stable micro 

aggregates (fraction < 250 µm) (Madari et al., 2006); R2 = 0.60 - 0.31 for stable macro 

aggregates (fraction >250 µm) and R2 = 0.66 - 0.28 for aggregated clay (< 20 µm) 

(Canasveras et al., 2010), and; R2 = 0.60 - 0.46 for aggregation indices: > 2000, 1000, 

500, 250 µm, and > 250 µm fractions (Chang et al., 2001). Performance for estimation 

of aggregation indices by soil-based predictors is also variable. The R2 values 0.23, 0.43 

and 0.49 were found for prediction of aggregation indices wet stable aggregates, mean-

weight diameter, and water-dispersible (WDC), respectively, using six soil-based 

predictors. Corresponding R2 0.60, 0.62, and 0.66, respectively, found using spectral 

predictors indicated better performance. A combined dataset of spectra and the six soil 

predictors was also better than the soil-based predictors (R2 = 0.53, 0.60, and 0.47, 



48 

 

respectively), for estimation of the indices (Canasveras et al., 2010). This suggested 

potential of developing effective spectral and /or in combination with soil-based 

pedotransfer functions for estimation of aggregation indices. The inclusion of WDC as 

aggregation index by Canasveras et al. (2010) is insightful; however, this might be 

subjective considering rules of pedotransfer functions (Minasny, 2007). The release of 

WDC defines, however, stability for soil types (for instance Oxisols) whose aggregation 

is not supported by the hierarchical model (Azevedo & Schulze, 2007). Soil 

compositional complexity would suggest also that soil aggregation interacts with many 

more of the basic soil properties than the six found by Canasveras et al. (2010). 

 

Prediction via pedotransfer functions and inference systems: The current challenges 

in direct calibration of soil properties to spectra has led to ‘ emerging applications’ that 

improve on prediction performance and help in solving also the “model transferability” 

problem (Linker, 2012). In the new approaches estimates obtained by (MIR) 

spectroscopy are used in an inference system that uses pedotransfer functions for 

estimation of (functional) soil properties with no associated distinct spectral absorbance 

bands.  Once regression models based on (MIR) spectra have been calibrated for 

properties with predictive relationship (such as clay, mc, and OC), these models are used 

to estimate the same properties of a new sample, together with their uncertainties. These 

values are then used to predict the functional attribute(s) (McBratney et al., 2006). An 

important feature of this approach is that the determination errors are propagated 

through the various estimation stages so that a confidence interval can be associated with 

each prediction (McBratney et al., 2006). This approach improved considerably the 

estimation of soil water retention, which was very poorly estimated directly from the 

MIR spectra (Tranter et al., 2008). More parsimonious models and greater accuracy was 

reported when using an inference system, than when using straightforward PLS 

regression on the MIR spectra (Minasny & McBratney, 2008). 
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Analogously, selected soil-based predictors of wet stable aggregation (WSA) indices 

would be calibrated to MIR spectra; the models are used to predict the values in samples 

from a new (larger) set using their MIR spectra, and; the predicted values are then used 

to estimate the WSA indices in the large set. This approach appeared most appropriate 

for diagnostic screening and prevalence assessment of stability related problems for 

large area soil health assessment and monitoring using spectral libraries and the double 

sampling approach (Shepherd & Walsh, 2007). 

 

The appropriateness of selected aggregation indices (response) and the (predictive) 

relationship with established soil predictor variables and with IR-based predictors might 

influence opportunity of response to be estimated by selected regression methods 

(Canasveras et al., 2010; Idowu et al., 2008). This has attendant influence on efficacy of 

developed soil health status. 

 

2.4.3 Relationship of basic properties and functional attributes:  CART regression 

CART an acronym for Classification and Regression Trees (Breiman et al., 1984) is 

among adaptive (data mining or “machine learning”) modeling techniques that are based 

on highly automated search procedures to discover patterns and relationships in data that 

may be used to make valid predictions.  CART can be used to advantage as a stand-

alone package or as a pre-processing complement to other modeling packages.   

 

CART operation and quality features: As a data preprocessor, CART can extract the 

most important variables from a very large list of potential predictors. CART algorithm 

bypasses “noise” and irrelevant variables, quickly and effectively selecting the best 

variables for input.  This is attributed to inherent quality features including that CART is 

non-parametric and can handle numerical data that are highly skewed. Operationally, 

CART is not affected by outliers, missing values, multi-collinearities, heteroskedasticity 

or distributional error structures that affect parametric procedures.  This permits minimal 
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preprocessing of the data. CART performs better when there are numerous independent 

variables, but the final decision tree will only include the independent variables that 

were predictive of the dependent variable (Steinberg & Golovnya, 2006; Steinberg & 

Colla, 2001).  

 

The cutoff points CART uses to generate splits on continuous variables indicate where 

these variables may be split into categorical variables (Steinberg & Colla, 2001), 

allowing establishment of critical (thresh hold) values effective for diagnostic screening 

(Tittonell et al., 2008), for instance delimitation of low/high stability categories. A key 

feature of CART analysis is it’s seemingly simplicity with semi-automation (in selection 

of variables, internal tests, and optimal decision trees), and ease with data exploration. 

However, some CART outputs could be counter-intuition and rationalization of the 

outputs is needed to allow making logical interpretation and valid conclusions (Steinberg 

& Colla, 2001). 

 

CART application studies: The CART approach to multivariate data analysis has been 

used increasingly in diverse fields of research including medical (Lemon et al., 2003); 

network security systems (Srilatha et al., 2005); forensic science (Phelps & Merkle, 

2008); food security and socio-economics (Yohannes & Webb, 1999), and; agriculture 

and soil science (Tittonell et al., 2008; Yang et al., 2004). In soil science, CART has 

gainfully been applied in developing  screening tests for environmental health 

monitoring including soil physical degradation (Omuto & Shrestha, 2007); assessing 

organic quality attributes (Shepherd et al., 2003); soil fertility constraints (Shepherd & 

Walsh, 2002; 2007), and; establishing crop-yield controlling factors (Tittonell et al., 

2008).  

Paucity in CART regression studies: Characteristic of majority of the reported studies 

is that they are based on CART classification tree (McBratney et al., 2003) and only few 

(Tittonell et al., 2008) applied CART regression tree analysis. This was probably 
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attributed to paucity of information on veracity of predicted values from CART 

regression for defining critical values to enable assigning cases into different categories. 

Tittonell et al. (2008) suggested and demonstrated an approach that provides insight for 

establishment of robust thresholds for diagnostic screening from CART regression. The 

authors noted the need for making some subjective decisions, such as defining cut-off 

values for dividing variables into discrete classes, and defining the acceptable error in 

the final model, and that the decisions should be made explicit. Among great potential of 

CART regression is the efficiency in selecting key variables from a complex 

multivariate data set of potential predictors without significant loss of information 

(Tittonel et al., 2008). 

 

2.4.4 Soil spectral libraries and diagnostic screening 

The spectral libraries approach provides a tool for generalizing results of soil 

assessments  that are conducted at a limited number of sites, and thereby increasing the 

efficiency of expensive and time- consuming soil-related studies (Shepherd & Walsh, 

2002; 2007)). The approach is critical as a tool for advice on land management, such as 

the classification of new samples into basic soil quality classes, particularly in data-

sparse situations (Terhoeven-Urselmans et al., 2010). 

 

Spectral libraries for prediction and screening: The spectral libraries approach has 

been deployed to great effect for estimation of several soil properties (Terhoeven-

Urselmans et al., 2010; Viscarra Rossel et al., 2008; Brown et al., 2006). Satisfactory 

performance was found, for example, for calibration of several soil chemical properties 

in a large set (n = 582) of topsoil samples collected from forest-cropland 

chronosequence age classes (Awiti et al., 2009). Good predictions for fertility valuable 

soil properties were reported for a globally distributed (n = 971) set (Terhoeven-

Urselmans et al., 2010). Successful spectral screening tests  developed for soil properties 

that were otherwise moderately calibrated to spectra (Shepherd & Walsh, 2002), 
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suggested that spectral screening would allow satisfactory classification of soils into 

basic quality classes.  Following this lead other workers (Viscarra Rossel et al., 2010; 

deGraffenried Jr.  & Shepherd, 2009; Vågen et al., 2006) have developed spectral 

screening tests for benchmarking soil condition and developing quality indices. Notable 

was paucity on deployment of reflectance spectra for screening stability problems 

although several workers (Reeves, 2010), related soil structure with reflectance 

spectroscopy. 

 

Land degradation surveillance framework (LDSF):  the LDSF (Walsh & Vagen, 

2006), uses the spectral libraries approach for assessing large area land degradation and 

risk. Rigorous case definitions for target soil problem are established to define ‘affected’ 

and ‘non-affected’ states. Spectral screening tests are then developed to be able to 

rapidly dichotomize test observations to ‘affected’ or ‘non-affected’ categories 

(Shepherd & Walsh, 2007). Important is that the case definition itself may be defined in 

relation to the screening test where an arbitrary cut-off value of the screening test is used 

as a decision threshold for intervention (Tittonell et al., 2008). The framework applied to 

a 10*10 km block (sentinel site), uses a novel field sampling protocol (Vågen et al., 

2013), whose geo-referenced sampling plots data can directly be linked to satellite 

imagery data. This provides opportunity to further develop scale flexible digital attribute 

maps that are amenable to temporal monitoring (UNEP, 2012; Sanchez et al., 2009). 

Important also is that the approach provides prevalence data on the target soil problem, a 

basis for quantifying risk factors and a baseline for change detection (Shepherd & 

Walsh, 2007). Vågen et al., (2006) demonstrated, for example, a dominant effect of 

historic land use on the spectroscopy-derived soil condition index, with areas originally 

under forest having higher soil fertility than areas originally under grassland, whereas 

current land use had relatively little effect on soil condition. 
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2.5 IR soil-based studies in Kenya 

Several workers have demonstrated the potential of IR in soil studies in Kenya. These 

include  works relating spectra to aggregation and aggregate size fractions (Verchot et 

al., 2011; Mutuo et al., 2006); assessing and monitoring changes in soil quality attributes 

(Shepherd et al., 2003; Awiti et al., 2009); soil erosion condition and  condition 

benchmarking (deGraffenried Jr. & Shepherd, 2009); assessing soil physical degradation 

(Vågen, 2009; Omuto, 2008); assessing soil chemical and microbial properties within 

riparian wetland systems (Cohen et al., 2005); in soil nutrient diagnostics (Muhati et al., 

2011), and; soil classification to swelling potential based on spectrally derived clay 

mineralogy differences (Kariuki et al. , 2003ab). Reflectance spectra is being used also 

as a soil monitoring tool in Kenya, among other African countries in the Africa Soil 

Information Service (AfSIS) project (Vågen et al., 2013; Shepherd, 2010; 

www.AfricaSoils.net;) to assess the impact of soil management interventions as part of a 

land degradation assessment framework applied to development projects over large 

areas.  

 

2.6 Review concluding remarks; summary and research gaps 

Soil aggregation and aggregate stability (AS): The behavior of a soil regarding the 

dispersion and aggregation of its particles is important for the development of 

environmental and agricultural soil functions. Soil aggregation and its stability (AS) play 

a critical role in both the physico-chemical and biological spheres of soil health. The 

relationship of AS with other soil properties; soil response to natural and /or cyclic 

conditions; land management practices, and; interaction with soil organic matter (SOM), 

is all attributed to sensitivity of the indices. Interaction of AS with SOC is complex; 

especially the uncertainty in the dynamics of SOM in macro and micro aggregate 

stability, important for C-sequestration, and more research is needed. 
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Sodicity is a major risk factor for dispersion, however, not all sodic soils are dispersed 

and certainly not all dispersive soils are sodic since several other physicochemical and 

mechanical factors also contribute to soil dispersion.  Slaking is more a physical than a 

chemical process and contribution of exchangeable sodium (eNa) to aggregate slaking is 

not well supported, whereas influence of eNa could be significant with capillary wetting 

(controlled slaking) of aggregates. Oxisols and sodic soils indicate similar behavior 

regarding their aggregate breakdown and dispersion in water: Oxisols exhibit direct 

(mechanically-induced) dispersion of aggregates without first slaking; Sodic soils 

exhibit direct (spontaneous) dispersion, and; in both the hierarchical model concept for 

aggregation is not supported. 

 

Various studies applied active selection (or exclusion) of study sites and/or data from 

tested parameters in analyses so as to establish significant relationships between AS and 

soil physicochemical properties and avoid confounding the results. Effective advances in 

better understanding and modeling relationship of AS with other properties would 

require, however, unbiased selection of study sites following, for example, randomized 

systematic sampling schemes. 

 

A universal method for AS and indices might not be feasible and rigors might not be 

worthwhile. Angers et al. (2008) argument appears definitive: provide a detailed account 

on sampling, transport, storage, pretreatment and treatment methods, measurement 

indices for the specific purpose and method used. This could ensure effective 

communication and comparison. More important for wet-sieving approaches, is that the 

choice procedure is fast, simple, and ruthlessly reproducible and the indices highly 

sensitive for intended purposes.  

 

Establishing relationships in multivariate data: The utility of principal component 

analysis (PCA) is anchored on the principle that information can be assimilated in 
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variation. Extracting information from a data table means finding out what makes one 

sample different or similar to another. PCA can be a very useful method in itself and can 

form the basis for several classification (soft independently modeling class analogy, 

SIMCA) and regression (PCR, PLS, MLR) methods.  

 

Moderate to strong association of majority of soil properties in a multivariate non-

designed (empirical) dataset is requisite for successful PCA construct.  Requisite is also 

adequate and appropriate preprocessing (including summary statistics for quality 

control). These need to be explicit to avoid pitfalls of presenting highly redacted 

information. 

 

Diffuse reflectance infrared spectroscopy (IR): The IR used in the laboratory can 

provide a framework for rapid and simultaneous prediction of several key soil physical 

and chemical properties, either directly or through secondary (surrogate) calibration.  

Performance of IR for estimation of aggregation indices and textural attributes is 

unreliable and at best modest, and IR-based predictor variables are superior over basic 

soil properties for prediction of soil aggregation indices. Aquaphotomics (water-light 

interactions) attributed to Stenberg (2010) could provide insights on mechanisms for 

prediction (direct or indirect), for especially soil properties whose determination is 

related to soil moisture content. 

 

Factors influencing IR calibration performance:  IR soil calibrations are influenced 

by several factors key among which are:  sample characteristics especially provenance, 

property characteristics including spectral response and quality of reference data, the 

spectra measurement region, and the calibration method. Greater variation in calibration 

performance is to be expected for different samples datasets, especially for spectrally 

non-responsive soil constituents (including pH, EC, extractable, soluble and 

exchangeable bases and derived attributes).  The rigor in spectral data pretreatment for 
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modest calibration improvement is not justified, considering that the first derivative 

spectra and smoothing provides optimal calibration performance for several soil 

properties, and; the utility of IR as alternative to wet chemistry methods is premised on 

simplicity, rapidity and precision. Accounting for outliers has implication for calibration 

performance; however, no studies were found that assessed the effect on prediction 

performance with and without accounting for both spectra and reference values outliers 

in both calibration and validation datasets. 

 

Most appropriate spectral region: Reported MIR (2500 – 25000 nm) superiority over 

NIR (NIR to include: UV-VIS-NIR, VIS-NIR, and NIR) is not adequately supported, 

especially for spectrally non-responsive soil properties, and NIR could be superior for 

properties related to soil moisture content, including aggregation indices.  The higher 

equipment maintenance (liquid nitrogen) for MIR, higher throughput with NIR and the 

demonstrated potential of NIR for on-site and on-the-go field measurements, could give 

NIR spectrometry practical advantage over MIR.  Calibration performance for derived, 

especially ratio-based soil properties is lower than for directly measured individual 

properties for NIR PLS analyses, whereas the contrary might be the case for MIR PLS 

analyses. 

 

Calibration geographic transferability: model transferability remains a key challenge 

for wide use of IR in soil studies, particularly for routine soil analysis. Chemometric and 

spectra-based  PLS calibrations are inherently local and specific to applied datasets, and 

appropriate calibration validation strategy must be explicit to avoid pitfalls in 

(presumed) calibration robusticity prevalent in contemporary studies, for especially 

secondary properties. Independent set is different from the calibration set both spatially 

and temporary. Model transferability is more successful for primary than for secondary 

properties. 
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Spectra wavelet transform: There may be theoretical advantages in using wavelets 

over alternative data compression methods, however, the final proof will lie in whether 

they provide consistently better predictive performance on independent validation data 

sets than alternatives. Optimizing spectral transforms for each calibration data set and 

variable can just lead to over fitting. Scanty information on performance of spectra 

wavelet transform vis a vis Fourier transform for calibration of soil properties is 

inconclusive.  

 

Relationship of basic properties and functional attributes: Screening of multiple soil 

properties for selection of a few key predictor variables (through CART regression), 

avoids potential pitfalls associated with inclusion of poor quality (noisy) predictor 

variables. 

 

The CART methodology and the results from CART regression analysis suggest that 

this technique offers considerable potential for assisting in the analysis of large 

multivariate and complex soil datasets. Seemingly simplistic, CART regression decision 

tree efficiently uncover the predictive structure of the problem, unveiling the variables or 

interaction of variables that are responsible for a given phenomenon and that best 

determine one outcome rather than another. Such predictor variables or regression rules 

enable predicting the mean or median value, of future observation (s) from the profile 

characteristics submitted for analysis. 

 

CART can effectively be used to improve conventional (parametric) models where 

CART can assist in variable selection (to pare a large number of potential predictors to 

few key variables), and; to suggest breakpoints for converting continuous to categorical 

variables. Few soil studies (Tittonell et al., 2008) have used CART regression trees for 

final analysis, whereas most CART-based studies are classification problems. Studies in 

other fields (medical, insurance, banking, security) present insights that suggest potential 
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success of CART regression in soil studies.  CART is generic (as opposed to dedicated) 

software and can produce wide range of outputs (some spurious) for presented input 

data. For effective application including interpretation of CART regression outputs, 

there is need for contextual knowledge on the problem, adequate analytical skills and 

prognostic intuition.   

 

Spectral libraries for calibration and diagnostic screening:  There is paucity in 

information on the use of soil reflectance in pedotransfer functions for estimation of soil 

functional attributes. Soil spectral libraries  approach provide a framework for  effective 

development of calibration models and  spectral screening tests for diagnostic screening 

and prevalence assessment of soil stability related properties to an accuracy level that is 

acceptable for large-area applications. 

 

New modeling approaches has demonstrated the use of MIR spectroscopy in an 

inference system that uses pedotransfer functions for  robust estimation of (functional) 

soil properties that otherwise indicate poor direct correlation to MIR.  In an analogous 

way selected soil-based predictors of wet stable aggregation (WSA) indices would be 

calibrated to MIR spectra; the models are used to predict the values in samples from a 

new (larger) set using their MIR spectra, and; the predicted values are then used to 

estimate the WSA indices in the large set. This approach was considered most 

appropriate for ‘diagnostic screening and prevalence assessment of stability related 

problems using diffuse reflectance infrared spectra’ reported in this study. 
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CHAPTER THREE 
MATERIALS AND METHODS 

 

3.1 Study area and sample collection. 

The study area falls within the Lake Victoria Basin (LVB) in the western part of the 

Republic of Kenya in an area covering approximately 46,400 km2 and bound by latitudes 

007’ 48”N and 0024’ 36”S and longitudes 34051’E and 350 43’ 12”E (Figure 3.1). The 

area is within lowland LVB (1400 m asl and below contour) of Kenya and comprises of 

a wide-range of stability sensitive soils (Solonetz, Planosols, Vertisols, Luvisols), 

developed predominantly on Recent undifferentiated unconsolidated deposits from 

various sources. The area was within pilot districts of the Kenya Agricultural 

Productivity Project (KAPP), where the problem of sodium-affected soils has been 

identified among major constraints to smallholder agricultural productivity (Waruru et 

al., 2003a). Two sets of soil samples were collected: a calibration set and a validation 

set.  
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Figure 3.1: Location of study area and distribution of calibration set sampling  
  sites within Lake Victoria basin of Kenya. 
 

 

3.1.1 Calibration and validation sets 

Calibration set: The calibration set (n =136) was obtained from a total of 46 

representative sites. Selection of the sites followed a simplified version of a conditioned 

Latin hypercube sampling (Minasny & McBratney, 2006). The distribution of 

calibration sampling sites within lowland (< 1400 m asl contour) LVB is illustrated in 

Figure 3.1 (also indicating two sentinel sites used for obtaining validation samples).  At 

each site in the field soil samples were collected at three depth intervals (0-20, 20-50, 

50-100 cm) using a Dutch soil auger. 
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Validation set:  The validation set (n =120) was obtained from a larger sample set ( n = 

417) from two different and spatially separated sentinel sites (10×10 km blocks) of 

Homa Bay (HB)  (n = 207) and Lower Nyando (LNY) (n = 210) within LVB (see inset 

in Figure 3.1 ), one year after collection of the calibration set.  Location of HB and LNY 

sentinel sites was selected to represent the major soil types, landforms, land cover and 

land use within the study area ((Waruru et al., 2003b). The sampling design and sample 

collection in the field followed the land degradation surveillance framework (LDSF) 

protocol (UNEP, 2012; Walsh & Vågen, 2006). At each site a 10×10 km block was 

demarcated and spatially stratified into 16 sub-blocks each 2.5×2.5 km. Within each sub-

block a one km2 cluster was randomly located. Within each cluster, ten (10) sampling 

plots were randomly selected from a possible 1000 plots” . Figures 3.2 and 3.3  

illustrates layout and distribution of sampling plots within clusters in LNY and HB, 

respectively. In the field, samples were collected at three depth intervals (0 - 20, 20 - 50, 

50 - 100 cm) using a Dutch soil auger.  

 

Prior to analyses, bulk soil samples were air-dried in a room at 40 oC for two weeks 

followed by gently crushing to pass a 2-mm sieve. Each air-dried bulk sample was 

thoroughly homogenized and a representative sub sample taken using coning and 

quartering (Zobeck, 2004). Sub-samples were then used for various analyses. 
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 Figure 3.2: Distribution of clusters and sampling plots in Lower Nyando (LNY) sentinel site 
(plots marked in red were priority locations). 
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Figure 3.3: Distribution of clusters and sampling plots in Homa Bay (HB) 

sentinel site (plots marked in red were priority locations). 
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3.2 Development of soil spectra and property reference data 

Spectral measurements (NIR and MIR) were conducted for calibration samples (n = 

136) and for all samples from LNY and HB (n = 417).  Reference data was generated for 

calibration set and for selected representative subsample from the larger set for 

validation. NIR and MIR spectra for calibration and validation set were also transformed 

into corresponding wavelet coefficients. Repeatability test was conducted for the two 

aggregate wet-sieving pretreatments. 

 

3.2.1 Soil spectral data 

MIR spectral data:  Spectral measurements for calibration set ( n = 135) and for the 

larger set from HB and LNY ( n = 417) were conducted using a High Throughput 

Screening device (HTS–XT) attached to a TENSOR 27 spectrometer (Bruker Optics, 

Germany) customized for MIR spectral region (4,000 - 400 cm-1) (Plate 3.1).    

 

The measurement protocol elaborated by Terhoeven-Urselmans et al. (2010) was 

followed. About 5.0 g sub sample of the air-dry < 2 mm soil was ground to < 0.5 mm 

using natural stone pestle and mortar. The ground sample was thoroughly mixed and 

homogenized and approximately 0.5 g loaded into labeled wells in four replicates in 

aluminum micro-titre plates consisting of 96 wells. The first two wells of the plate were 

used for the standard and blank respectively and the first sample was placed in the third 

well. Scanning was done sequentially for each well. The average reflectance of 32 scans 

per sample was transformed to absorbance and recorded using the Optics Users Software 

(OPUS) (Bruker Optics, Germany).   
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Plate 3.1: MIR diffuse reflectance measurement of soil samples ((a) Tensor 27 

Fourier Transform Infrared spectrometer, (b) high throughput screening device (HTS – 

XT), (c) robotic arm for holding and conveying samples into HTS-XT and (d) measured 

soil absorbance spectra). 

 

 

MIR spectral variables:  MIR absorbance spectra were modified by first derivative 

transformation and smoothed using Savitzky - Golay filters (a nine point re-sampling 

algorithm) (Viscarra Rossel et al., 2008).  The spectral range 4,000 - 600 cm-1 (2500 - 

25000 nm) were selected on the transformed spectra to eliminate wavebands with low 

signal to noise ratio. This provided a total of 1755 wavebands (data points), that were 

used as independent variables. Preprocessing was conducted in The Unscrambler version 

9.02 (CAMO technologies, Inc, Woodbridge, NJ). The 1755 MIR wavebands were 

transformed also into 128 wavelet coefficients (MIRwc) using R software version 2.15.1 

(R-Development Core Team, 2012).  

 

NIR spectral data:  Spectral measurements for calibration set (n = 136) and for the 

larger set from HB and LNY (n = 417) were conducted using a Fourier-transform diffuse 

reflectance spectrometer (Multi-Purpose Analyser (MPA), Bruker Optics, Germany) 

customised for the NIR region (12,500 - 3,600 cm-1). Measurements for air-dried < 2 
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mm sub sample were made using resolution of 8 cm-1, taking an average of 32 scans. 

Reflectance spectra were transformed to absorbance spectra and recorded using OPUS 

(Bruker Optics, Germany) (Shepherd, 2010).  

 

NIR spectral variables: NIR absorbance spectra were transformed for first derivative 

and smoothed using Savitzky - Golay filter (a nine point smoothing function) (Shepherd 

& Walsh, 2002). The range (8,000 - 4,000 cm-1) (700 - 2500 nm) was selected to 

eliminate noisy spectral bands (bands with low signal to noise ratio).  This resulted in 

1038 data points (NIR wavebands) that were used as predictors (independent variables). 

Preprocessing was conducted in The Unscrambler version 9.02. The 1038 NIR 

wavebands were transformed also into 128 wavelet coefficients (NIRwc) in R software.  

 

Notably, the discrete wavelet transformation (DWT) and multi-resolution analysis 

(MRA) applies to a spectrum of discrete length 2n, where n is an integer (Viscarra 

Rossel & Lark, 2009). Each NIR and MIR spectrum was padded to the same length of 

2n, (where n = 7), prior to DWT decomposition. For this reason the same number (128) 

of wavelet coefficients was extracted for NIR and MIR spectra despite the fact that they 

had different wavebands (data points). 

 

Selection of validation sample set: Principal component analysis (PCA) of the MIR 

spectra for the combined (LNY and HB, n = 417) set was used to select representative 

120 (~ 25 %) samples. The scores plot for the first two principal components (PC1 vs 

PC2) that together accounted for 68.1 % of the total variance was used to establish the 

distribution pattern of the soils. An average of 30 representative samples was selected 

from each of the 4 quadrants based on the Euclidean distance of the PC space (Naes et 

al., 2002). Samples with extreme scores in different quadrants were selected also to 

broaden the spectral diversity and corresponding reference validation data range. The 

selected samples were used to provide reference and spectral values for validation. 
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3.2.2 Soil property reference data 

Soil physicochemical properties: Reference data was developed for calibration (n = 

136) (Set 1) and validation (n = 120) (Set 2) samples sets. Soil physical and chemical 

analyses were conducted using standard laboratory methods as reported by Shepherd and 

Walsh (2002) and Hinga et al. (1980). Air-dried soil moisture content (mc %) was 

determined by gravimetric method. Particle-size distribution was by hydrometer method. 

One sub sample set was with aided dispersion for total textural separates (tClay, tSi, tSa) 

(%) and other without for water-dispersed separates (WDC, WDSi, WDSa) (%). 

Flocculation index (FI, %) was computed as [100× (tClay - WDC) × tClay-1)] ; clay 

dispersion ratio (CDR, %) as [100 × (WDC×tClay-1)], and; soil dispersion ratio (DR, %) 

as [100 × (WDC + WDSi) × (tClay + tSi)-1].  Median geometric particle diameter (dg, 

µm) and its standard deviation (δg, µm) were computed from total textural data (Shirazi 

& Boersma, 1984). Soil pH water (pHw, unit) and electrical conductivity (EC, dS/m) 

were read in 1:2.5 and 1:5 soil-water extracts using respective electrode meters. Na+ 

in1:2.5 and 1:5 soil-water extracts (Na2.5, Na5 (mg kg-1) were read on Na-ion electrode 

meter (Irvine & Reid, 2001). The pH-KCL (unit) was read on a 1:2.5 soil-to- 1.0 N KCL 

solution extract. Soluble Ca, Mg, K and Na were read in the 1:5 soil-water extract: Ca 

(sCa) and Mg (sMg) (mmol (+) L-1) by atomic absorption using spectrophotometer 

(AAS) and Na (sNa) and K (sK) (mmol (+) L-1) by atomic emission on flame 

photometer (AES).  Sodium adsorption ratio (SAR, unit) was computed as [sNa× (sCa + 

sMg)2)-1] . Total C (totC, %) and total N (totN, %) were by dry combustion (Madari et 

al., 2006). One sub sample set was acidified for organic C (OC, %). The C: N was 

calculated as [totC × totN-1]. Inorganic carbon (inC, %) was the numeric difference of totC 

and OC. Exchangeable Ca (eCa) and Mg (eMg) (cmol (+) kg-1) were measured by AAS 

and Na (eNa, cmol (+) kg-1) by AES in a 1:10 soil - to- 1.0 N KCL solution extract. 

Exchangeable K (eK), extractable P and micro-elements (Fe2+, Mn2+, Cu2+ and Zn2+) 

were read in 1:10 soil-to- modified Olsen extracting solution extract. The eK (cmol (+) 

kg-1) from flame photometer, P (mg kg-1) from spectrophotometer using P color reagent 
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and the micro-elements (mg kg-1) using AAS. Extractable boron (B, %) was by hot 

water extraction. Soil gypsum requirement (GR, cmol (+) kg-1) followed US Salinity 

Laboratory Staff (1954) method 22d.  Effective CEC (CEC1, cmol (+) kg-1) was the 

numeric sum of exchangeable bases (eCa, eMg, eNa, and eK); clay activity (CEC2, cmol 

(+) kg-1) as (CEC1× tClay-1); and CEC3 (cmol (+) kg-1) from CEC2 after accounting for 

contribution of SOC to CEC. The percent eNa (ESP), eK (ePP), eCa (eCaP), and eMg 

(eMgP) (%) were computed as the ratio of the respective bases to CEC1. The eNa ratio 

(eNaR, unit) as [eNa × (eCa + eMg)-1)] (US Salinity Laboratory Staff, 1954). 

Electrochemical stability indices (ESI) were computed as: (EC1:5×eNa-1) (ESI 1, unit) 

and (EC1:5×ESP-1) (ESI 2, unit) (Hulugalle & Finlay, 2003). Determination of Atterberg 

limits (liquid limit (LL) and plastic limit (PL) and linear shrinkage (LS) (%) followed 

British Standards Institution (BSI: 1377, 1975). Plasticity index (PI %) was computed as 

the numerical difference between LL and PL. The activity number (A, unit) was obtained 

as the ratio of PI to tClay (Fratta et al., 2007). The coefficient of linear extensibility 

(COLE, unit) and soil volumetric shrinkage (VS, %) were computed using LS (%) data 

(COLE = (Lm-Ld) /Ld]; where: Lm = length of moist soil in the brass trough (= 140 

mm), Ld = length of dry soil (140 mm – LS mm) and VS = [(COLE + 1)3 - 1] ×100) as 

reported by Igwe (2003).  

 

Data quality control:  variable values suspected to be due to operator error 

(measurement or transcription) and/or samples with inadequate sample material for a 

property were marked ‘missing’. Zero measurement value for a sample was replaced 

with a value obtained by multiplying the minimum (non-zero) value for the variable by 

0.1 (Rule of Thumb). Variable values for samples that were non-plastic (recorded as 

‘NP’) for Atterberg limits and LS determination were replaced with zero (0). The zero 

value was entered also for all other related variables (PL, PI, A, COLE, VS) for the 

particular sample. Established (total 59) soil physico-chemical and mechanical 

properties were screened for prediction of WSA indices.  
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Wet stable aggregation (WSA) indices: A simplified and rapid version of wet sieving 

and aggregate fractionation (Kemper & Rosenau, 1986) was used. One set of soil 

subsamples (50 g of < 2 mm soil weighed in triplicate) was subjected to slaking (rapid 

wetting) and another set to slaking plus mechanical shaking during 1 h. Manual sieving 

under tap water was used for stable macro aggregates (2000 - 212 µm) and the leachate 

secured in a plastic basin. The leachate was similarly sieved and fractionated for stable 

micro aggregates (212 - 20 µm). In order to correct for the sand (particles > 53 µm) 

present in the two aggregate fractions, a 50 mg L-1 Na hexametaphosphate-dispersed 

sample was sieved under the same operating conditions. The average sand free stable 

macro aggregates were computed and expressed in percentage [ % macro =  100 × (wt of 

uncorrected macro - wt of sand in macro) × (wt of soil sample - wt of total sand)-1], and 

stable micro aggregates [ % micro =  100 × (wt of uncorrected micro - wt of sand in 

micro) × (wt of soil sample - wt of total sand)-1], where wt of total sand = sand in macro 

fraction + sand in micro fraction (Canasveras et al., 2010; Madari et al., 2006). The 

unstable aggregate (fraction < 20 µm) (%) was obtained by subtraction [100 - (stable 

macro + stable micro)]. For each wet sieving pretreatment four (4) WSA indices were 

defined and assigned codes, respectively for macro, micro, unstable and macro: micro 

ratio as follows: slaking only (masp, misp, unsp and sponR); slaking plus mechanical 

disruption (mame, mime, unme and mechR). 

 

Repeatability tests were conducted for Na-ion meter readings, for slaking only and for 

slaking plus mechanical disruption wet-sieving pretreatments. Repeatability was 

assessed using the coefficient of variability (CV), expressed in percentage [% CV = 

(SD/mean) ×100], where SD is the standard deviation of the measurements. 
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3.3 Exploratory data analyses (EDA) 

Principal component analysis (PCA) and summary statistics were conducted for NIR and 

MIR spectra and property reference values for calibration (Set 1) and validation (Set 2) 

sets. The suite of (59) soil properties was screened for prediction of the WSA indices 

using CART regression tree analyses. 

 

3.3.1 Soil spectral data 

Plots for raw NIR and MIR absorbance spectra were used to illustrate characteristic 

spectral patterns and absorption features. PCA of spectra was used to assess association 

of calibration and validation soils and complexity of the data structure.  The plots were 

made using R software.  

 

3.3.2 Soil reference property data 

Data distribution: One-way statistics (min, max, mean, SD, and percentiles/quartiles) 

was used to summarize soil property data for the suite of (59) properties and for wet 

stable aggregation (WSA) indices. Density plots and numerical skewness were used to 

determine appropriate linearization transformation (none, SQRT or log). Descriptive 

statistics and transformation were done using The Unscrambler software.   

 

Data structure: PCA for combined soil properties and WSA indices was used to 

establish data structure and complexity. Prior to running, PCA data for each variable was 

mean centred then standardized by scaling (1/ SD). A full model with 20 principal 

components (PCs) and full cross validation for model testing was also specified. PCA 

was done using The Unscrambler software.  

 

Association of soil properties: Pair-wise correlation coefficient was used to assess 

association of the (59) soil properties and the (8) WSA indices. Pearsons’ correlation 

coefficient was used to establish association of soil properties with individual WSA 
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indices. Correlations were developed in R. Correlation was considered strong for r ≥ 

0.71; and weak for r ≤ 0.51 (Mead et al., 2002). 

 

3.3.3 Screening soil properties for prediction of WSA indices 

 The suite of 59 soil properties was screened for prediction of the eight (8) wet stable 

aggregation (WSA) indices. Prior to development of CART regression decision tree 

models, soil property (predictor) and WSA indices (target) data matrix was preprocessed 

in Microsoft MS Excel (Steinberg & Golovnya, 2006). Variable code name with a 

mixture of character and numeric codes (for instance pH2.5, Na5) were revised to have 

complete character names (pHtwfv, Nafv). Missing variable data (N/A) was replaced 

with a blank; no data cell was allowed to have input of a character value, and; commas 

were not part of the data values. In CART one WSA indices was sequentially selected as 

the target and the (59) soil properties retained as potential predictors. Other model 

specifications were: 10-fold cross validation for model testing; least- square (LS) 

splitting rule method, and; the best tree (optimal decision tree) was set at one standard 

error (1SE) from the (maximal) minimum cost tree. Regression tree analysis was 

conducted using CART software version 6.0 (Salford Systems Inc., 2008).  Output for 

each target included: the primary splitter, the (residual) relative error (RE), the primary 

splitter split point, and the five top primary split competitor and surrogate variables 

(Steinberg & Golovnya, 2006). The primary splitter was designated soil predictor for the 

target. Good decision tree model was indicated by low RE. Where predictions were 

unacceptable (high RE), CART returned a verdict that no decision tree could be grown, 

in which case suggested predictor variables that were qualitatively associated with the 

particular response were used to evaluate performance. The screened soil properties 

were used for development of partial least-square (PLS) models against predicted WSA 

indices. The principle and rationale of CART regression tree analysis is summarized in 

Appendix 1. 
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3.4 Calibration of WSA indices on IR- and soil-based predictors 

Calibration set5 comprising alternative IR-based predictors (NIR, NIRwc, MIR and 

MIRwc) and soil-based predictors from CART screening was used for developing 

calibration models for WSA indices (target).  Prior to calibration development 

transformed reference data for WSA indices (target) and predictor soil property was 

mean-centred and then scaled (1/SD). Preliminary tests were conducted to optimize 

NIRwc and MIRwc input data for PLS modeling in The Unscrambler. 

 

3.4.1 Calibration of WSA indices on IR-based predictors 

The preprocessed WSA indices data was calibrated against each of the IR-based 

predictor variables: NIR (1038), MIR (1755), NIRwc (128), and MIRwc (128). 

Calibrations were developed using partial least-square regression (PLS 1) using The 

Unscrambler software. Calibrations were evaluated using leave-out-one cross-validation 

(looCV). In The Unscrambler, NIRwc and MIRwc were used as non-spectral data (based 

on optimization test runs). A full model with a maximum 20 principle components (PCs) 

was set; however, the optimal number of PCs to be used for each property was 

determined using residual variances. The number of PLS factors (PLS PCs) chosen in 

each case was that resulting in the most parsimonious model with the lowest RMSECV 

(Stenberg, 2010).  A plot of predicted vs measured values was used to compute the 

coefficient of determination (R2). The R2 and RMSECV and ratio of prediction deviation 

(RPD) (ratio of SD of the reference values to RMSECV) were used to evaluate the 

predictive ability of the models. The RMSECV was computed as follows:  

 

RMSECV = [∑(y – x) 2 / (n – 1)]1/2       (Equation 1) 

                                                   
5 The initial samples for calibration (n = 136) were sorted to correspond/ match with 
those available for laser diffraction particle size distribution (LDPSD) analyses (n = 
128).  Models based on LDPSD spectroscopy could, however, not be included in this 
report. 
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Where; y is the predicted value by NIR, MIR, NIRwc and MIRwc and PLS technique, x 

is the observed or measured value, and n is the total number of samples used.   

 

Optimization of wavelet input data for PLS modeling: Prior to use of NIRwc and 

MIRwc data two sequential tests were conducted to optimize wavelet coefficients (wc) 

PLS model performance in The Unscrambler.  In Test 1 four different pre-processing 

procedures for  the wc were tested for prediction of WSA indices: (i) the wc were 

entered as spectral data without standardization, (ii) the wc were entered as spectral data 

with standardization, (iii) the wc were entered as non-spectra data without 

standardization, and (iv) the wc were entered as non-spectra with standardization.  The 

R2 and RMSECV were used to assess the models. In Test 2, the wc were entered based 

on the optimal preprocessing established in test 1. PLS regression model computation 

time for selected diverse soil properties in calibration set (pH2.5, totC, eNa, tSi, Cu, 

tClay, and CEC1) against each of the IR-based methods (NIR, MIR, NIRwc and 

MIRwc) was recorded by noting the model start- and end- time in s. Identified 

influential outliers (samples with high residuals and high leverage) were removed and 

the model recalculated. Model computation time reduction factor by wc for both NIR 

and MIR was calculated as follows:  Reduction factor by NIRwc = (NIR model time/ 

NIRwc model time) and by MIRwc = (MIR model time/ MIRwc model time). Input data 

reduction rate with wc was calculated as follows: Data reduction using NIRwc % = (NIR 

data points - NIRwc data points/ NIR data points) × 100 %, and using MIRwc % = (MIR 

data points - MIRwc data points/ MIR data points) × 100 %. Other workers (Viscarra 

Rossel & Lark, 2009) used similar approach to assess model performance with spectra 

wavelet transform. 

 

Calibration optimization: The PLS looCV predictions were optimized following four 

different trials as follows: (i) prediction without removal of outliers, (ii) prediction with 

removal of identified spectral outliers, (iii) prediction with removal of reference values 
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outliers, and (iv) prediction with removal of both spectral and reference value outliers. 

Spectral outliers were checked for NIR, MIR, NIRwc and MIRwc using Mahalanobis 

distance (H) (Genot et al., 2011) implemented in R. Reference values outliers were 

defined as samples whose difference between predicted and measured value for a 

property was greater than 3× RMSECV (Sorensen & Dalsgaard, 2005).  

 

3.4.2 Calibration of WSA indices on soil-based predictors 

The established soil predictors were used for development of PLS looCV models against 

predicted WSA indices (target) in The Unscrambler. Prior to calibration, data for target 

and predictors were mean centred and standardized by scaling. In The Unscrambler the 

predictor and target variables were entered as non-spectra data. The R2 and RMSECV 

and RPD were used to evaluate the predictive ability of the models. The RMSECV was 

computed using Equation (1), where; y is the predicted WSA indices value by the soil-

based predictors and PLS technique; x is the observed or measured WSA indices value. 

The PLS looCV predictions were optimized following available two different trials as 

follows: (i) prediction without removal of outliers and (ii) prediction with removal of 

reference values outliers.  Performance of the best IR- based method was compared with 

corresponding soil-based model using model fit (R2) prediction error (RMSECV) and 

model reliability (RPD). 

 

3.5 Further independent validation of IR-based WSA indices models 

WSA indices and their CART selected soil-based predictors (WSA indices) in the 

calibration set (Set 1)6  were used for developing PLS 1 looCV models against 

alternative IR-based methods. The looCV predicted values were further tested against 

                                                   
6The initial samples for calibration (n = 136) were sorted to correspond/ match with 
those available for laser diffraction particle size distribution (LDPSD) (n = 128).  
Models based on LDPSD spectroscopy could, however, not be included in this report. 
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corresponding values generated from independent validation set (Set 2)7. Calibration and 

validation models were developed in The Unscrambler version 9.02. Four different trials 

were conducted to assess effect of outliers on calibration validation as follows: (i) 

prediction without removal of outliers in the validation set, (ii) prediction with removal 

of reference values outliers in validation set, (iii) prediction with removal of spectral 

outliers in the validation set, and (iv) prediction with removal of both reference values 

and spectra outliers. For optimization criterion, trial (i) was compared with trials (ii), 

(iii) and (iv).  A Rule of Thumb change in model R2 during optimization trials was 

scored to assess the effect of removal of outliers in trials (ii), (iii) and (iv). Three 

categories as ‘no effect’, ‘significant effect’, and ‘profound effect’ were used to 

summarize the effects. The trials were then summarized with indication of maximal 

(trial with highest R2) and optimal (trial with highest R2 relative to trial (i)) model for 

each WSA indices and for each IR-method. The optimal model with the highest R2 

across the IR-methods was selected as the most appropriate validation and IR-method 

for each WSA indices.  

 

3.5.1  Calibration validation without removal of outliers 

Calibration of WSA indices on IR-based predictors: Preprocessed WSA indices data 

(target) was calibrated against preprocessed IR-based predictors (NIR, MIR, NIRwc and 

MIRwc) from the calibration set (n = 128) (Set 1). Calibrations were developed using 

PLS 1 in The Unscrambler and assessed using looCV. The R2 and RMSECV and the 

RPD were used to evaluate the predictive ability of the models. The RMSECV was 

computed using Equation (5). Influential outliers that met the set (Rule of Thumb) 

criterion (R2 change with removal ≥ 10.0 %), were removed and the model recalculated. 

                                                   
7The initial samples for independent validation (n = 120) were sorted to correspond/ 
match with those available for LDPSD (n = 79). Models based on LDPSD spectroscopy 
could, however, not be included in this report. 
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The WSA indices looCV models with R2 > 0.3 (Saeys et al., 2005) were further 

validated using independent sample set ( n = 79) (Set 2).  

 

Validation without removal of outliers (optimization trial (i)): Prediction of WSA 

indices were made using the looCV models and corresponding spectral-based data for 

the validation set (Set 2). Predictions were made in The Unscrambler. A plot of 

predicted vs measured/ observed values in Set 2 was used to compute the R2. A check 

was made to confirm that both predicted and measured data were on the same 

measurement scale. Where the scales were different, the measured values were 

transformed to conform with the scale of predicted. The predictive ability of the looCV 

models was evaluated by the R2, the root mean square error of prediction (RMSEP) and 

the RPD (ratio of SD to RMSEP for validation sample set).  The RMSEP was computed 

using Equation (1), where; y is the predicted WSA indices value by the looCV predictors 

and PLS technique; x is the observed or measured WSA indices value in the validation 

set. 

 

Prediction performance was compared for WSA indices from the same aggregate 

fraction but different wet sieving pretreatment (mame vs masp, mime vs misp, unme vs 

unsp, and mechR vs sponR). 

 

3.5.2 Assessing effect of outliers on calibration validation 

Reference values outliers (optimization trial (ii)): Reference values outliers were 

defined as samples in the validation set with data range (min-max) for particular indices 

that were out-of-range of the calibration set.  Prediction of WSA indices were first made 

without removal of outliers. Identified outlier samples for particular indices were then 

removed and validation model (R2, RMSEP and RPD) recalculated. The change (%) in 

validation R2 and RMSEP after removal of outliers relative to the values before removal 
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was used to assess the effect of removal of the outlier(s) on validation. The change in R2 

and RMSEP respectively was calculated as follows: 

 

R2 (%) change = [100*(R2 after- R2 before) × (R2 before)-1]   (Equation 2) 

 

RMSEP (%) change = [100*(RMSEP after - RMSEP before) × (RMSEP before)-1] 

(Equation 3) 

 

Spectral outliers: optimization trial (iii): Spectral outliers in validation set were 

identified using Robust Mahalanobis distance measures (H) and implemented in R. A 

sample was defined outlier when H > 2. Outliers were identified for each of the IR-based 

predictor sets (NIR, NIRwc, MIR, and MIRwc). Prediction for WSA indices was first 

made without removal of outliers. Identified outlier sample(s) were then deleted and the 

prediction statistics (R2, RMSEP and RPD) recalculated.  The change (%) in R2 and 

RMSEP with trial (iii) relative to trial (i) was used to assess the effect of removal of the 

outlier(s) using Equations (2) and (3), respectively. 

 

Reference values and spectral outliers: optimization trial (iv): Prediction of WSA 

indices in the validation set was first made without removal of outliers. Identified 

reference values and spectral outlier samples for the particular indices were then 

removed and validation model (R2, RMSEP and RPD) recalculated. The change (%) in 

R2 and RMSEP with trial (iv) relative to trial (i) was used to assess the effect of removal 

of the outliers using Equations (2) and (3), respectively. 

 

The change in model R2 (%) after removal of reference values, spectral and  both outlier 

types in the validation set relative to validation without removal of the outliers was 

summarized into three broad categories: (i) ± 0 – 10, as “no effect”; (ii) ± 10 – 50, as 
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“significant (positive/ negative) effect, and; (iii) ± > 50, as “profound (positive/ 

negative) effect”.   

 

Best validation and corresponding IR- method: Maximal validation for each WSA 

indices and for each IR- based method was the trial that yielded the highest R2 

comparing optimization trials (ii), (iii), and (iv) with trial (i). Optimal validation was the 

maximal validation that additionally presented R2 ≥ 10 % (Rule of Thumb) relative to 

trial (i), otherwise trial (i) was considered optimal validation.  For each WSA indices the 

optimal validation with the highest R2 across the IR-methods was selected the best (most 

appropriate) validation and IR-method.  

  

3.6 Diagnostic screening and prevalence assessment of stability related 

 problems using IR-based models in two sentinel sites 

Calibration (Set 1, n = 128) and validation (Set 2, n = 79) sample sets were used to 

provide separate MIR PLS looCV models for the suite of 59 soil properties.  Soil 

properties with modest to strong correlation to MIR (R2 ≥ 0.6) from each set were 

selected and screened for prediction of WSA indices using CART regression.  MIR PLS 

looCV models for the screened properties from Set 1 were independently validated using 

Set 2 and key three properties selected. The more ‘robust’ of Set 1 and Set 2 based on 

CART regression screening was used for developing MIR PLS looCV models for each 

of the three selected properties. The models were used for prediction of the three 

properties in the larger set of samples from two sentinel sites of LNY and HB (n = 339) 

using their MIR spectra. The robust set was used also for developing grove files 

(calibration models in CART) for WSA indices with the selected three soil properties as 

the only predictors using CART regression. The predicted values of the properties in the 

larger samples set were used for predicting (scoring) each of the WSA indices in the set 

using the respective grove files. The predicted indices values were categorized into low 

or high stability based on observed predictor - response relationship and contextual 
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knowledge. A count (tally) of low and high stability categories for each sample across 

the WSA indices was taken for all samples of the larger set. A sample was designated as 

low stability when the tally for low stability category was higher than the tally for high 

stability. A sample was designated high stability when the tally for high stability was 

higher than for low stability. Prevalence of stability problems (low stability) for the two 

sentinel sites was calculated as the total ‘low stability’ divided by the total samples and 

expressed as percent. Similarly prevalence of stability problems in different clusters and 

sampled depth intervals of the sentinel sites was calculated as the total ‘low stability’ in 

a cluster/ depth interval divided by the total samples in that cluster/ depth interval. 

Analogous approaches for development of pedotransfer functions and inference systems 

for more effective estimation of functional attributes from spectra and basic soil 

properties has been demonstrated by other workers (Tranter et al., 2008; McBratney et 

al., 2006). 

 

3.6.1 Screening soil properties for prediction of WSA indices 

Separate MIR PLS models for the suite of 59 soil properties were developed for 

calibration (Set 1, n = 128) and validation (Set 2, n = 79) sample sets. The models were 

developed in The Unscrambler and evaluated using looCV. Soil properties in Set 1 and 

Set 2 that were strongly correlated to MIR (R2 ≥ 0.6) were separately screened to 

establish key few predictors of WSA indices. Screening was conducted using CART Pro 

V6.0 software. In CART each of the WSA indices was entered as the target and the set 

of selected properties as predictors. Ten (10) fold cross validation was confirmed model 

testing method, the best CART regression tree was set at 1SE from the minimum cost 

tree and least square (LS) splitting rule as regression method. Output for each WSA 

indices included: the primary splitter(s), relative error (RE), split point for each splitter, 

and the variable importance score for the primary splitter(s). Complex decision tree 

models (more than two primary splitters) were rationalized by elimination of the 

predictor(s) with lower contribution. Simpler models were preferable (Steinberg & 
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Golovnya, 2006), however, an objective trade-off between model complexity and 

compromise on RE was observed. The screening provided information also on the more 

‘robust’ of the two samples sets (Set 1 and Set 2).  

 

Predictive relationship of predictor soil properties and predicted WSA indices was 

illustrated using scatter plot plots.  Raw data for predictor variable(s) were plotted 

against raw data for corresponding predicted indices. Indication of split points on the 

plots was used to illustrate the efficacy of the predictive relationships.  

 

MIR PLS looCV models for CART selected soil properties from Set1 were tested using 

MIR spectra and reference data in Set 2. The more strongly validated soil properties 

were selected and key three properties further selected. The selected (3) properties were 

used (as predictors) for development of PLS models for prediction of wet stable 

aggregation (WSA) indices in the larger set from lower Nyando (LNY) and Homa Bay 

(HB) sentinel sites. 

 

3.6.2 Prediction of WSA indices in LNY and HB sentinel sites 

Prediction of key three soil properties in LNY and HB: The more robust of the two 

sets (Set 1 and Set 2) from CART screening was used to develop MIR PLS looCV 

models of the selected key three soil properties. The models were used to predict the 

three properties in the larger sample set (n = 339) from LNY and HB using the MIR 

spectra of the larger set.  Calibration and prediction was conducted in The Unscrambler.  

For prediction, the MIR spectra were entered as predictors and the looCV model for 

each of the properties as the response.  Where the predicted values were on transformed 

scale the values were back-transformed to actual values. The predicted values were 

sorted in a data matrix that included sentinel site (LNY or HB), cluster ID (1-16), 

sampling plot number (between 1 and 10), and sampled depth interval (0-20, 20-50, 50-
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100 cm). The data matrix provided the Data File used in CART to predict (score) WSA 

indices using the respective grove files. 

 

Developing grove files for WSA indices:  The more robust of Set 1 and Set 2 was used 

also for developing grove files (calibration models in CART) for each WSA indices.  

Grove files were developed using CART Pro V6.0. In CART, the selected three soil 

properties were marked as the predictors and one WSA indices as target. Other model 

set-up specifications included 10-fold cross validation for model testing, optimal tree at 

one standard error (1SE) from the minimum cost tree, and LS splitting rule. For each 

model run the RE, terminal nodes, splitters and split points and splitter importance score 

were recorded. The grove files were used for scoring (predicting) WSA indices in 

samples from the larger set (LNY and HB, n = 339). 

 

Scoring WSA indices in two sentinel sites: Grove files for WSA indices and the Data 

File of predicted three soil properties in the larger sample set were used for scoring 

(predicting) each of the WSA indices in samples of the larger set. CART Pro V6.0 was 

used for scoring.  In CART, the grove file was used to split (predict mean value for 

terminal node) for particular WSA indices for each sample in a procedure known as 

“dropping predictor data down a tree model” or “scoring data” (Steinberg & Golovnya, 

2006). 

 

Dropping data down CART tree model: during prediction, each sample was processed 

case by case (case = node content) beginning at the root node. The splitting criterion 

specific for each WSA indices was applied, and in response to each yes/ no question, the 

case moved left or right down the tree until it reached a terminal node. The main 

predictor variable for the particular WSA indices in the grove file was used for scoring 

the data. If the primary criteria could not be used because the case was missing data, a 

surrogate split criterion was used. The number of predicted (mean) values for the indices 
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was the same as the number of terminal nodes of the corresponding grove file. After all 

samples in the larger set (cases) were dropped down the particular indices tree model, 

the output (predicted score value (s)) was saved. The procedure was repeated for each 

WSA indices grove file and the predictor Data File for all cases and saved in separate 

files. The score values were used for prevalence assessment. 

 

3.6.3 Assessing prevalence of stability related problems in LNY and HB sentinel 

 sites 

Prevalence of stability categories for individual WSA indices: The scored (predicted) 

value(s) for each of the WSA indices for each sample in the larger set were categorized 

into low or high stability. Stability category assignment was dependent on observed 

(scatter plot) relationship between predictor variable(s) and target indices, the number of 

score values, and contextual judgment. For WSA indices with two score values, for 

example, one of the values was assigned to low stability and the other to high stability 

category. For three splits the intermediate score value was considered transitional and 

assigned to moderate category. For more than three splits a rationalization was used to 

incorporate the intermediate splits into the main low and high categories (for instance, 

‘slightly low, and slightly high). For each WSA indices, a total count of each stability 

category for all sentinel samples was made. Prevalence of the category was calculated 

and expressed in percentage as follows: 

 

Prevalence of stability category (%) = [100 × (count of category) × (total sentinel 

samples)-1]         (Equation 4) 

 

Prevalence of stability problems in LNY and HB: The two main categories of 

stability (low and high) established for each sentinel sample and for each WSA indices 

were used to assess prevalence of stability problems (low stability) within LNY and HB. 

The categories were assigned to codes one (1) for low and zero (0) for high stability. The 
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total count of low and high category for each sample across WSA indices was taken. 

Stability sub-categories ‘slightly low’ and ‘slightly high’ were counted with the 

corresponding main category. Stability sub-category moderate was, however, uniquely 

categorized and assigned code (mod). A column each for the total count of low, 

moderate and high stability was used. Where the tally for low stability for a sample was 

higher than for high stability the sample was designated low stability. Where the total 

count for high stability was higher than low stability the sample was designated high 

stability. Where the tally for low plus moderate stability was higher than that for high 

stability the sample was assigned to low stability. Likewise where the tally for high plus 

moderate stability was higher than that for low stability the sample was assigned to high 

stability. Where low and high stability tally were equal, the sample was assigned to 

moderate stability. In this way all the sentinel samples were assigned to low, moderate 

or high stability. Prevalence of low stability in each of the two sentinel sites was 

computed as the number of samples of low stability divided by the total samples and 

expressed in percentage as follows:  

 

Prevalence of low stability (%) = [(low stability count) × (total samples)-1] ×100]    

(Equation 5) 

 

Prevalence of soils at risk of stability related problems was assessed as prevalence of 

low stability plus prevalence of moderate stability. 

 

Prevalence of stability problems in different clusters: The assigned stability category 

for each sample in the two sentinel sites was used for prevalence assessment of low 

stability in different clusters of the sites.  Clusters from LNY and HB were assessed 

separately. A count of low stability samples for each cluster was made and prevalence 

computed as follows:  
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Low stability prevalence in cluster (%) = [(total count of low stability in cluster) × (total 

samples in cluster)-1] × 100]       (Equation 6) 

 

Cluster(s) that were scored as high stability for all or majority of WSA indices were 

considered stable, whereas clusters that were scored as low stability for all the indices 

were designated ‘hotspot’.  

 

Prevalence of low stability for different depth intervals: The data matrix with 

assigned stability categories for all sentinel samples and information on sentinel site 

name, cluster number, sampling plot number and, depth sampled was used for 

prevalence assessment of low stability for different depth intervals in LNY and HB. The 

samples were sorted on sampled depth interval as follows: 0 - 20 cm; 20 - 50 cm and 50 

- 100 cm. A count of samples of low stability for each depth interval was made. 

Prevalence of low stability within a depth interval was computed as follows: 

 

Low stability prevalence in depth interval (%) = [(total count of low stability in depth 

interval) × (total samples in the depth interval)-1] × 100]   (Equation 7)

   

 

In this way low stability prevalence for each sentinel site and for both sites were 

computed for the three depth intervals. Similarly prevalence of moderate and high 

stability within depth intervals was computed. 

 

3.7 Assessing WSA indices most appropriate for screening stability problems  using 

IR-based models in LVB of Kenya 

The selected key soil-based predictors of WSA indices from calibration (Set 1, n = 128) 

and validation (Set 2, n = 79) sets (see section 3.6.1), were sorted into four different 

subsets. Each subset comprised of three properties. The four subsets and MIR were 
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compared for prediction of WSA indices in Set 2 using PLS.  CART regression was 

used also for screening each of the four soil-based sets for prediction of WSA indices. 

The two more robust sets were established from the PLS and CART regression. MIR 

PLS looCV  models for each of the three properties in each of the selected two sets were 

developed and used for predicting these properties in the larger set  (n = 339) from LNY 

and HB sentinel sites. The predicted values constituted the Data File, whereas the CART 

models for the two selected sets provided the grove files. The Data File and grove files 

from each of the two sets were used for scoring (predicting) WSA indices in samples of 

the larger set. The two sets were compared for their performance in assessing prevalence 

of stability related problems in the two sentinel sites. This involved assessing: (i) 

prevalence of stability categories for individual WSA indices, (ii) prevalence of low 

stability in the two sites, (iii) prevalence of low stability in clusters within each of the 

sites, and (iv) prevalence of stability problems for sampled depth intervals in the sites. 

The final determination of the most appropriate WSA indices for diagnostic screening 

stability related problems in LVB considered also: performance of the sets during CART 

regression screening; ease of data acquisition (laboratory determination) of the predictor 

properties; predictor property based on direct measurement was preferred over derived. 

 

3.7.1 Selection of most appropriate soil predictor sets of WSA indices 

The selected soil-based predictors of WSA indices in the two reference sample sets (Set 

1, n = 128 and Set 2, n = 79) (see section 3.6.1) were sorted into four different subsets 

each comprised of three properties. The subsets sets were separately screened for 

prediction of WSA indices in Set 2 using CART regression.  In CART each set of 

properties was marked as predictors and one WSA indices as the target. Model testing 

was confirmed as 10-fold cross validation, best decision tree set at 1SE from the 

minimum cost tree, and LS as splitting rule.  Selected output was: primary splitter(s) and 

split points, RE, terminal nodes, and variable importance score for the primary 

splitter(s).  The two predictor sets that had predictive relationship with most of the WSA 
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indices (considering also the RE) were proposed as most appropriate for predicting the 

indices.  

 

Two sets of PLS looCV models were developed for WSA indices using Set 2. The first 

set of models calibrated WSA indices directly onto MIR. The second set calibrated 

WSA indices on each of the four soil-based predictor sets. The models were developed 

in The Unscrambler.  Model R2 and RMSECV were used to compare performance and 

affirm the two most appropriate soil-based sets for prediction of WSA indices. The 

CART models for the selected two sets were used as Grove files for scoring (prediction) 

of these indices in the larger set samples from LNY and HB sentinel sites. 

 

3.7.2 Prediction (scoring) of WSA indices in LNY and HB sentinel sites 

MIR PLS looCV models for the properties in the selected two soil-based sets were 

developed using Set 2. The models were used for prediction of the properties in the 

larger sample set (n = 337) from LNY and HB, using the MIR spectra of the larger set. 

Calibration and prediction models were developed in The Unscrambler. The Data File 

with predicted values of soil properties in the larger set together with the grove file for 

each WSA indices (see section 3.7.1) were used to score value(s) of the indices in 

samples from the larger set. The number of predicted values for particular indices was 

dependent on the number of terminal nodes of the corresponding grove file. The 

predicted values were used for assessing the prevalence of stability related problems in 

LNY and HB. 
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3.7.3 Assessing prevalence of stability related problems in LNY and HB sentinel 

sites 

Prevalence of stability categories for individual WSA indices: The scored value(s) 

for each WSA indices and for each of the larger set samples was categorized into low, 

moderate or high stability. For each WSA indices a total count of each stability category 

for all sentinel samples set was made. Prevalence of the category was calculated and 

expressed in percentage using Equation (4). A comparison was made of prevalence of 

stability category for WSA indices from the same aggregate fraction but from the two 

different wet sieving pretreatments. 

  

Prevalence of stability problems in LNY and HB: The total count of low, moderate 

(mod) and high stability categories for each sample across the WSA indices for LNY 

and HB was taken.  Sub-categories ‘slightly low’ and ‘slightly high’ were counted with 

the corresponding main category. Where the tally for low was higher than for high the 

sample was designated low stability. Where the tally for high was higher than low, the 

sample was assigned to high stability. Where the tally for low plus moderate was higher 

than that for high, the sample was assigned to low stability. Likewise where the tally for 

high plus moderate stability was higher than that for low the sample was assigned to 

high stability. Where low and high stability tally were equal, the sample was assigned 

moderate stability. Prevalence of low stability in the two sentinel sites was computed 

using Equation (5). Prevalence of soils at risk of stability related problems was assessed 

as prevalence of low plus moderate stability. 

 

Prevalence of stability problems in clusters within LNY and HB: The assigned 

stability category for samples in LNY and HB was used for prevalence assessment of 

low stability in the different clusters of the sites.  Clusters from each site were assessed 

separately. A count of low stability samples for each cluster was made and prevalence 

calculated using Equation (6). Cluster(s) that were scored as high stability by all or 



88 

 

majority of WSA indices were considered stable. Clusters that were assigned low 

stability for all indices were designated ‘hotspot’. 

 

Prevalence of stability problems for different depth intervals: The data matrix with 

assigned stability categories for all sentinel samples and also information on depth 

sampled was used for prevalence assessment of low stability for different depth intervals 

(0 - 20, 20 - 50, and 50 - 100 cm). A count of samples of low stability for each depth 

interval was made. Prevalence of low stability for a depth interval was computed using 

Equation (7). Similarly prevalence of moderate and high stability classes was computed. 

 

3.7.4 Determination of the most appropriate WSA indices for screening stability 

related problems in LNY and HB 

Performance correspondence for prevalence assessment using models based on the two 

alternative sets of soil-based predictor properties was used to establish WSA indices and 

their  thresh hold values most appropriate for diagnostic screening and prevalence 

assessment of stability related problems in LNY and HB. The final determination of the 

most appropriate indices considered also: performance of the soil-based predictor sets 

during CART regression screening; ease of data acquisition (laboratory determination) 

of the predictor soil properties; property based on direct measurement was preferred 

ahead of derived; residual value of the predictor property, including support in the 

literature of the property in soil stability related studies. 

 

Performance correspondence of soil predictor sets: Performance of the models of 

selected two  soil predictor sets in assessing stability related problems in LNY and HB 

was compared (for concurrence). This involved comparing: (i) prevalence of stability 

categories for individual WSA indices, (ii) prevalence of low stability in  the two sites, 

(iii) prevalence of low stability in clusters within each of the sites, and (iv) prevalence of 

stability problems for sampled depth intervals in the sites.  
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Most appropriate WSA indices and thresholds: The most appropriate WSA indices 

for diagnostic screening stability related problems in LVB were determined by the 

correspondence of the two sets in the prevalence assessment. This included 

correspondence of prediction error (RE), the number of grove files terminal nodes (TN) 

and corresponding score (predicted) WSA indices values from CART analysis. The 

selection took into consideration also the ease of soil property data acquisition 

(laboratory determination), and potential residual value of the property. 

Soil property based on direct measurement was preferred over derived. The WSA 

indices predicted by the two soil sets were designated most appropriate indices, and their 

score values used to define low/ high stability thresholds. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

This chapter presented results  for reference property data and soil spectra, performance 

of IR- and soil-based predictors for estimation of  WSA indices, and on further testing of 

the IR-methods using dataset of independent samples. Presented is also  observed  

prevalence of soil stability related problems in Lower Nyando (LNY) and Homa Bay 

(HB) sentinel sites, including the different clusters and sampled depth intervals. Finally 

the most appropriate WSA indices for screening soil stability problems using IR-based 

models in LVB of Kenya. 

 

4.1  Soil properties and calibration of WSA indices on IR- and soil-based predictors 

Results are presented for observed soil (NIR and MIR) absorbance spectra; spectra and 

soil basic property data structure (pattern and complexity); wet-sieving precision and 

WSA indices distribution; association of soil properties with WSA indices; the key soil-

based predictors of WSA indices from CART screening; and; performance of spectra 

wavelet transform coefficients in PLS modeling.  Performance of alternative IR-methods 

(NIR, MIR, NIRwc and MIRwc) for estimation of WSA indices is compared with 

performance using soil-based predictors.  

 

4.1.1 Soil Properties 

Soil spectra: Soil absorbance spectra pattern for calibration and validation samples sets 

were similar for NIR and for MIR, indication that the samples belonged to the same soil 

population (Figure 4.1 (a) and (b); spectra is after removal of the noisy parts (> 8,000 

and < 4,000 cm-1 for NIR and < 600 cm-1 for MIR; spectra is shown in both 

wavenumbers (cm-1) and wavelength (nm) for easy reference, where [(10,000,000 × 

wavenumbers-1) = wavelength)]).  
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NIR absorbance spectra (8,000 - 4000 cm-1) followed established basic shape 

(Canasveras et al., 2010), with subtle but characteristic peaks at about 1400, 1900  and 

2200 nm, ascribed to moisture (vibrational absorbance due to the –OH in minerals, and 

to –OH and -CH, and NH organic functional groups in soil organic matter (Viscarra 

Rossel et al., 2006). The absolute magnitude and range of the MIR absorption (4000 - 

600 cm-1) are much greater than those found for the corresponding NIR spectra, and the 

MIR spectra indicate more distinctive spectral features than the NIR spectra (see also 

Canasveras et al., 2010). This suggested that MIR might be more resourceful than NIR. 

Few atypical spectra (wavebands between 2000 and 1000 cm-1 and at frequencies below 

1100 cm-1 (Figure 4.1), suggested potential outliers. 
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Figure 4.1: NIR and MIR soil absorbance spectra for (a) calibration (n = 136) and 

(b) validation (n = 120) samples sets. 
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The first principle component (PC1) explained 79 - 76 % and 51 - 45 %; and the first 5 

PCs explained 98 and 88 % of the total variance based on NIR and MIR measurements, 

respectively (Figure 4.2). The first 5 PCs individually contributed 76.4, 8.7, 1.6, 1.0 and 

0.6 % (NIR) and 44.7, 22.8, 9.7, 7.6 and 4.7 % (MIR) of the total explained variance for 

calibration set, suggesting spectra provides effective data structure. Notably fewer PCs 

were required to explain the limited extractable information from NIR spectra, 

demonstrated by the few NIR absorption features, whereas several absorption features 

from MIR (Figure 4.1), required more PCs to explain all the variance. 

 
Figure 4.2: Cumulative variance explained by the principal components based on 

measurements with multipurpose analyzer (NIR range) and the Tensor 27 (MIR 

range). 
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Soil property reference data: Soil from three depth intervals (0 - 20, 20 - 50, 50 - 100 

cm) were combined providing a wide data range for calibration (Set 1) and validation 

(Set 2) sets. The soils ranged, for example, from acid to alkaline (pHw 4.6 -10.5), very 

coarse to clayey (tSa 11 - 89 %; tClay 9 - 81 %) texture, low to high OM (OC 0.1 - 7.1 

%), from non-sodic to severely sodic (eNa 0.0 - 64 cmol (+) kg-1), and; from low to high 

dispersibility (WDC 3 - 69 %).  Data  for  EC,  C and N, soluble bases, exchangeable 

bases (eNa, eK) and derived variables (ESP, EPP, ESI 1, ESI 2, CEC2, and CEC3), 

micro elements (Fe, Mn, Zn) and P, particle-size based variables (tSa, tSi:tClay, WDSa, 

CDR, WDSi:WDC), and mechanical properties (PL, A) indicated high skewness in their 

distribution. Long tails of a majority of samples with low values and few samples with 

very high values characterized the skewed distributions.  The natural logarithm (ln) 

transformation was applied to reduce skewness.  For variables with slight skewness 

(sMg, eCa, eMg, CEC1, Cu, B, and VS), square root (SQRT) transformation was used. 

Data for pH, particle-size (tClay, tSi, WDC, WDSi, DR, FI), eMgP, mechanical 

properties (LL, PI, LS, COLE) and mc assumed a Gaussian distribution and no 

transformation was used. The suite of properties and data range for individual properties 

was typical, therefore, of soil property datasets commonly used for land capability/ 

suitability evaluation (Hazelton & Murphy, 2007; Peverill et al., 1999). Appendix 2 

presents summary data of soil properties for the calibration and validation sets. 

 

Soil property data structure: PCA for combined (59 soil properties and 8 WSA 

indices) dataset revealed that 16 PCs were needed to explain 83 % of the variance in 

calibration soils (Table 4.1). The first PC explained 26 %, the first four PCs explained 

55 %, whereas the first 10 accounted for 75 % of the total variation. This is contrary to 

soil spectra where the first 5 PCs accounted for ≥ 88 % of the total variation. The last six 

PCs (PC 11 - PC16) contributed about 9 % of the variation. The PCs 9, 15, and 16, made 

higher contributions than preceding PCs, suggesting that the reference data was noisy 
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(complex). It is characteristic of complex soil data sets, however, that important 

variables may be lurking in otherwise lowly ranked PCs (CAMO ASA Inc., 1998).  

 

Table 4.1: Variance explained by the principal components based on reference 

measurements of soil properties for calibration samples.  

 PC a 

% explained  variance 
cumulative 
(calibration) 

% explained  variance 
cumulative (validation) 

% explained  
variance each PC 

PC_01 28.6 25.7 25.7 
PC_02 46.0 41.8 16.1 
PC_03 54.4 48.3 6.5 
PC_04 61.8 55.4 7.1 
PC_05 66.9 58.3 2.9 
PC_06 71.6 63.7 5.5 
PC_07 75.5 67.9 4.2 
PC_08 78.2 69.3 1.4 
PC_09 80.8 72.8 3.5 
PC_10 82.9 74.5 1.7 
PC_11 84.7 75.7 1.2 
PC_12 86.2 77.2 1.5 
PC_13 87.6 78.0 0.8 
PC_14 88.9 78.6 0.6 
PC_15 90.2 81.2 2.6 
PC_16 91.3 83.4 2.2 
Total explained variance by first 16 PCs 83.4 

Note: PCa, principle component; 

 

For representative data sets cumulative % variance explained at the validation stage 

closely follows corresponding values for the calibration (CAMO ASA Inc., 1998). The 

difference between explained calibration and validation variance increased from 3- 5 % 

for the three first PCs to an average of about 10 % for lower ranked PCs (Table 4.1), 

suggesting potential for less representative reference calibration data (CAMO ASA Inc., 

1998). 
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The complexity in input data (contrasting spectra and wet chemistry data) has 

implications on performance of linear models. The reference properties indicated 

presence of non-linear structure with potential suboptimal performance for parametric 

analyses (Linker, 2012). Fewer PCs based on NIR and MIR measurements (Figure 4.2), 

suggested higher parsimony, therefore, more robust models, affirming Canasveras et al., 

(2010) who found superior usefulness of diffuse reflectance over basic soil properties for 

developing pedotransfer functions for estimation of soil aggregation indices. 

 

Precision of aggregate wet-sieving pretreatments:  Slaking plus mechanical shaking 

wet-sieving pretreatment was more precise than slaking only (% CV 28.7-2.8 vs 57.5-

3.3). This was attributed to breakdown of unstable and metastable wet aggregates with 

shaking (Marquez et al., 2004) to the limiting stability analogous to percolation stability 

(Auerswald, 1995). Micro aggregates were more repeatable than macro aggregates, 

associated with difficult to (standardize) control manual wet sieving, especially for 

macro aggregate fraction, where sieving was assumed complete when tap water passing 

under the sieve screen was clear. There was a general increase in measurement precision 

with increasing eNa levels (Table 4.2). 

 

Table 4.2: Repeatability (% CV) of slaking only and slaking plus mechanical 

shaking wet sieving pretreatments.  

 Sodicity unit Slaking only Slaking + mechanical shaking 

eNa maspa misp a unsp a mame a mime a unme a 
0.25 25.2 10.3 4.3 13.8 3.9 0.9 
0.5 57.5 4.8 6.5 28.7 7.2 2.1 
14.3 17.2 4.6 1.7 6.7 3.4 0.8 
19.3 18.4 5.1 2.5 10.1 3.7 0.7 
45.3 6.8 3.3 0.1 7.2 2.8 0.1 

Note: a Wet aggregation indices: stable macro (masp/ mame); stable micro (misp/ 

mime); unstable (unsp/ unme); eNa, exchangeable sodium (cmol (+) kg-1); 
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Lower precision (% CV up to 57) for low sodicity soils, especially for macro aggregate 

fraction (Table 4.2), suggested unreliable reference data and potentially weak NIR PLS 

performance (Stenberg et al., 2010). Low wet chemistry precision is contrary to reported 

high precision of soil spectral measurements (Shepherd et al., 2005). 

 

Wet stable aggregation (WSA) indices: Three interval-depths (0-20, 20-50, 50-100 

cm) were combined for both calibration and validation samples sets. This presented a 

wide range in WSA indices. The validation data were within the range of the calibration 

set for all indices (except for minimum values of mime and misp), requisite for 

successful calibration (Stenberg et al., 2010). PLS analysis is suboptimal for skewed 

data (Linker, 2012) and requisite linearization transformation was used (Table 4.3).  

  

Table 4.3: Wet stable aggregation (WSA) indices for calibration samples set (the 

corresponding values for validation samples is shown in parenthesis). 

Indices min 25% 50% 75% max SD transformationa 
mame 
 

0.1 
(0.4) 

2.7  
(2.4) 

4.7  
(4.1) 

9.1 
(10.0) 

63.9 
(58.7) 

10.2 
(12.2) ln (ln) 

masp 
 

0.8  
(0.5) 

6.0  
(6.0) 

9.5 
(13.1) 

17.4 
(23.3) 

68.5 
(61.3) 

12.4 
(14.6) ln (ln) 

mime 
 

9.6  
(3.9) 

22.2 
(15.9) 

28.6 
(21.6) 

34.2 
(28.5) 

48.9 
(49.2) 

9.1  
(8.4) ln (sqrt) 

misp 
 

11.8 
(3.9) 

30.61 
(20.3) 

38.8 
(27.3) 

46.6 
(35.8) 

66.9 
(59.3) 

11.1 
(11.3) none (sqrt) 

unme 
 

19.0 
(18.6) 

57.2 
(61.0) 

64.5 
(72.4) 

71.2 
(80.0) 

90.4 
(95.7) 

13.5 
(16.5) ln (none) 

unsp 
 

12.0 
(13.5) 

40.5 
(40.9) 

47.5 
(54.7) 

56.3 
(68.4) 

86.2 
(100) 

14.9 
(19.6) none (none) 

mechR 
 

0.01 
(0.04) 

0.10 
(0.12) 

0.17 
(0.20) 

0.31 
(0.44) 

4.15 
(2.60) 

0.51 
(0.51) ln (ln) 

sponR 
 

0.02 
(0.03) 

0.16 
(0.23) 

0.25 
(0.41) 

0.46 
(0.85) 

3.89 
(2.77) 

0.57 
(0.63) ln (ln) 

Note: a linearization transformation applied to WSA indices data: ln, logarithmic; sqrt, 

square root; none, no transformation; validation data for WSA indices are shown in 

parenthesis.  
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Association of WSA indices:  Very strong association of stable macro (mame and 

masp) and micro (mime and misp) aggregate indices and unstable fractions (unme and 

unsp) from slaking only and slaking plus mechanical disruption wet sieving 

pretreatments (pair-wise correlation coefficient r = 0.8), suggested potential for 

information redundancy among the two sets of indices (Table 4.4).  Stable macro 

aggregates were uncorrelated with their stable micro aggregate counterparts (r < 0.2).  

Stable micro aggregates were moderately associated with the unstable aggregate 

fractions (r = 0.7 - 0.4). Notable was the very strong (positive) association of mechR 

(ratio mame: mime) with mame (r = 0.95), and of sponR (ratio masp: misp) with masp (r 

= 0.92), and; poor (negative) correlation of mechR with mime (r = 0.2) and sponR with 

misp (r = 0.4), respectively (Table 4.4). This suggested dominant influence of macro 

aggregates over micro aggregates for the studied soils.   

 

Table 4.4: Correlation coefficients (r-value) (upper diagonal) of wet stable 

aggregation (WSA) indices for calibration sample set.   

mame masp mime misp unme unsp mechR sponR   
1.00 0.83 -0.02 -0.12 -0.74 -0.60 0.95 0.80 mame 
  1.00 0.01 -0.19 -0.63 -0.69 0.78 0.92 masp 
  

 
1.00 0.77 -0.66 -0.58 -0.20 -0.18 mime 

  
  

1.00 -0.43 -0.58 -0.26 -0.38 misp 
  

   
1.00 0.84 -0.58 -0.48 unme 

  
    

1.00 -0.46 -0.49 unsp 
  

     
1.00 0.85 mechR 

              1.00 sponR 
 

Correlation of WSA indices with basic soil properties: Calibration on spectra of 

spectrally non-responsive soil attributes is through co-variation (auto-correlation) with 

soil chromophores (mc, texture, SOC, Fe-oxide) (Stenberg et al., 2010).  Canasveras et 

al. (2010) ascribed attained prediction of water stable aggregates (fraction > 250 µm) (R2 

= 0.60 - 0.23) partly to correlation (Pearson’s correlations coefficient, R = 0.45 - 0.23) 
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with basic soil properties (tSa, tClay, CaCO3, pHw, OM, and Fe-oxides). Observed level 

of association of individual WSA indices with soil properties including mc, totC, OC, 

totN, WDC, WDSa, tClay, tSa, CEC, LL, PL, PI, pH2.5 and Fe (Table 4.5), was 

considered to influence calibration of the indices on spectral based predictors. 

 

Table 4.5: Pearson’s correlations coefficient (R - value) of wet stable aggregation 

(WSA) indices with soil properties. 

Property mame masp mime misp unme unsp mechR sponR 
mc -0.07 -0.02 -0.29 -0.40 0.25 0.32 -0.02 0.04 
pHw2.5 -0.39 -0.43 -0.11 -0.08 0.37 0.42 -0.33 -0.36 
totC 0.49 0.47 -0.09 -0.33 -0.30 -0.14 0.52 0.57 
totN 0.57 0.58 0.02 -0.19 -0.44 -0.34 0.58 0.65 
OC 0.52 0.53 -0.08 -0.30 -0.34 -0.22 0.55 0.62 
inC 0.15 0.10 -0.06 -0.21 -0.07 0.08 0.17 0.16 
Fe 0.40 0.38 -0.01 -0.15 -0.29 -0.21 0.39 0.45 
CEC  -0.30 -0.29 -0.41 -0.52 0.51 0.63 -0.21 -0.17 
tclay -0.21 -0.16 -0.36 -0.46 0.40 0.48 -0.13 -0.06 
tSa 0.21 0.14 0.21 0.43 -0.30 -0.43 0.16 0.07 
WDC -0.39 -0.33 -0.47 -0.51 0.61 0.64 -0.29 -0.21 
WDSa 0.37 0.31 0.24 0.42 -0.45 -0.57 0.30 0.20 
WDSi: WDC 0.32 0.26 0.32 0.13 -0.46 -0.31 0.26 0.28 
PL 0.37 0.41 -0.13 -0.33 -0.17 -0.05 0.35 0.43 
LL 0.09 0.13 -0.29 -0.46 0.15 0.26 0.12 0.20 
PI -0.06 -0.03 -0.33 -0.45 0.28 0.38 -0.01 0.05 

 

4.1.2 Soil predictors of WSA indices from CART screening 

Modest cross-validated decision tree models (2 terminal nodes, TN) were grown for 

stable micro aggregate (mime, misp) and unstable (unme, unsp) fractions. No decision 

tree could be grown for macro aggregate (mame, masp) and ratio (mechR, sponR) 

indices (RE ≥ 1.0).  
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CART regression decision tree typology and model statistics is illustrated using unme 

(Figure 4.3 screenshot). The tree shows one split (2 TN) at the Root node (upper panel); 

the relative error (RE) curve showing the optimal tree (tree with 2 TN, RE = 0.714) at 

one standard error (1SE) from the minimum cost tree (tree with 10 TN, RE = 0.654) 

(lower panel), and; model statistics:  potential (59) predictor variables, model selected 

important (6) predictors, 2 TN and minimum (62) samples in a TN (bottom right hand 

corner).  Notably, the largest (maximal) tree (27 TN) is less accurate (higher RE) than 

the minimal cost tree (10 TN), and has similar accuracy as the optimal (2 TN) tree. The 

larger trees (more TN) are complex and overfit and less robust a factor in favour of the 

small tree, a key quality feature of CART regression analysis (Steinberg & Colla, 2001). 

 

 
Figure 4.3: CART regression decision tree typology and model statistics for 

prediction of unme.   
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Six important variables (from total 59) could together explain variation in unme and 

unsp with accuracy of 28.6 % (RE 0.714) and 35.6 % (RE 0.644), respectively (see 

model statistics in Figure 4.3). The exchangeable sodium (eNa) at a split point 1.25 

(unme) and 0.98 (unsp) cmol (+) kg-1 provided the greatest improvement in reducing 

heterogeneity in unme and unsp data (dichotomous separation), and was designated the 

primary splitter (soil predictor) of unme and unsp (Table 4.6)”. Six important variables 

could together explain variation in mime and misp with accuracy of 18.0 % (RE 0.822) 

and 31.7 % (RE 0.683), respectively. The water dispersible clay (WDC) at a split point 

34. 0 % (mime) and 32.5 % (misp) provided the greatest improvement in reducing 

heterogeneity in mime and misp data, and was designated the primary splitter (soil 

predictor) of mime and misp (Table 4.6). 

 

Table 4.6: Soil predictors of wet stable aggregation indices and their competitor 

and surrogate variables.  

WSA 
indices RE a 

primary 
split 

split 
point competitor b  surrogate c  

unme 
 

0.71 
 

eNa 
 

1.25 
 

ESP, WDC, eNaR,  
ESI 1, sCa 

ESP, eNaR, ESI 1,  
Na2.5, sNa 

unsp 
 

0.64 
 

eNa 
 

0.98 
 

ESP, WDSa, Na2.5,  
WDC, eNaR 

ESP, eNaR, Na2.5, Na5,  
ESI 1 

mime 
 

0.82 
 

WDC 
 

34 
 

eNa, ESP, eNaR,  
tClay, CEC1 

δg, tSa, WDSi:WDC, 
WDSa, tClay 

misp 
 

0.68 
 

WDC 
 

32.5 
 

tClay, sMg, eNa, mc,  
ESI 1, 

tClay, δg, WDSa, eMg, 
WDSi:WDC 

Note: aRE, relative (prediction) error; bCompetitor variable compete for the primary 

split; cSurrogate is “back-up splitter” when the primary splitter is missing (for instances 

missing cases in the data set).  

 

Table 4.6 present also top five split competitors and surrogates of eNa and WDC. The 

competitor and surrogate variables are listed sequentially in order of importance. 

Notably, all eNa surrogates were Na-based, whereas WDC surrogates were based on 

particle size (except eMg for misp). This affirmed that stability could be assessed from 
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measurement of Na+ concentration (Ward & Carter, 2004) and/or from particle-size 

distribution (Canasveras et al., 2010), and; superiority of eNa over ESP (Cook & Muller, 

1997).  

 

At 1.25 and 0.98 cmol (+) kg-1, eNa provided the best dichotomous separation of 

calibration samples along the mean values of unme and unsp, respectively (Steinberg & 

Golovnya, 2006). Samples with eNa <= 1.25 (unme) or <= 0.98 (unsp) were allocated to 

the Left Child Node (TN 1), while samples with values > 1.25 (> 0.98) were allocated to 

the Right Child Node (TN 2) in the binary split (Figure 4.3). Cases in the Left Child 

Node comprised soils with lower than mean levels of unme (or unsp) thus fell under 

relatively stable category. Soils in the Right Child Node presented higher than mean 

levels of unme (or unsp) and fell under less stable category.   

 

Figure 4.4 (screenshot) illustrates box plots for the binary split and terminal node (TN) 

contents for unme.  The blue box depicts the inter-quartile range, with the top of the box 

(upper hinge) marking the 75th quartile and the bottom (lower hinge) marking the 25 th 

quartile.  The horizontal (green line) denotes the node-specific median value, while the 

whiskers (upper and lower fences) extend to ± 1.5 times the inter-quartile range. Red 

crosses (+) represents values outside the fences, probably outliers (Steinberg & 

Golovnya, 2006). The eNa split resulted in clear separation of unme data into higher 

than average (~ 64 %) values (eNa > 1.25) represented by TN 2 (right hand box plot) 

and to lower than average values of unme (eNa ≤ 1.25) represented by TN 1(left hand 

box plot); TN 1 had median unme value of 58 % while TN 2 had median value 69.2 % 

presenting, therefore, considerable data overlap, a measure of residual impurity or 

unexplained variation. The tail end of TN 1 box plot indicates presence of samples with 

extremely low unme values (probably influential outliers). 
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Figure 4.4: Box plots and terminal node (TN) allocation of unme by eNa split for 

calibration samples. 

 

At 34 and 32.5 %, WDC provided the binary split and separation of the calibration 

samples along the mean values of mime and misp, respectively.  Samples with WDC ≤ 

34 % (mime) or ≤ 32.5 % (misp) were allocated to the Left Child Node (TN 1), while 

samples with WDC values > 34 (> 32.5) were allocated to the Right Child Node (TN 2) 

(similar to Figure 4.3).  

 

Figure 4.5 (screenshot) illustrates box plots and TN allocation of misp by WDC split. 

All samples with WDC ≤ 32.5 % were allocated to the Right hand box plot and 

represented soils that were relatively stable (with higher than mean value of misp (~ 38 

%). All samples with WDC > 32.5 were allocated to the Left hand box plot representing 

soils that were relatively less stable (lower than mean values of misp). The split resulted 
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in a clear separation of misp data. The  TN 2 had a median misp value of 29 % while TN 

1 had median value 44 % presenting considerable  overlap, indication of relatively high  

unexplained variance; extreme values (tail end of TN 1) suggested potential  influential 

outlier samples. 

 

 
Figure 4.5: Box plots and terminal node (TN) allocation of misp by WDC split for 

calibration samples.  

 

Prognostic intuition is key for proper interpretation of CART regression split terminal 

node (TN) allocation (Figure 4.3) and TN box plot contents (Figure 4.4 and 4.5) 

(Steinberg & Golovnya, 2006). Low values of unme (or unsp) are to be associated, for 

example, with low values of eNa, whereas low values of misp (or mime) are to be 

associated with high values of WDC. 

  

The quality of data split reflects the efficacy of the predictive relationship between soil 

predictors and target WSA indices.  For values of eNa > 1.25 (vertical line, Figure 4.6), 

for example, there were no values of unme lower than 50 %, and for values ≤ 1.25, only 

few samples hand unme larger than 70 %.  At WDC >  32.5 % (vertical line, Figure 4.7), 
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majority of the soils indicated misp values < 40.0 %, whereas for values of WDC ≤ 32.5 

%, only few samples had misp values lower than 30 %.   

 

 
Figure 4.6: Relationship of eNa and unme in the calibration sample set (vertical 
line indicates unme (%) data dichotomous split by eNa at 1.25 cmol (+) kg-1); raw 
data plot was for calibration set).   
 

 
Figure 4.7: Relationship of WDC and misp in the calibration sample set (vertical 
line indicates misp (%) data dichotomous split by WDC at 32.5 %; raw data plot 
was for calibration set). 
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The soils were inherently unstable demonstrated by concentration of most of the samples 

at high level of unme, even at very low levels of eNa. The eNa split was edge cut where 

all samples with unme > 50 % had eNa > 1.25 (Figure 4.6), whereas WDC presented a 

more even split and separated majority of misp at 40 - 45 % (Figure 4.7). 

 

The modest dichotomous separation of stable micro and unstable aggregate fractions 

(appreciable unexplained heterogeneity) (Figures 4.4 - 4.7), suggested that eNa and 

WDC individually provide weak indicators of soil (in) stability. This was associated 

partly also with observed modest correlation of eNa with unme and unsp (Pearson’s 

correlations coefficient R-value 0.53-0.42) and WDC with mime and misp (R-value 

0.51-0.47) (Table 4.5). Soil behavior especially aggregate breakdown and dispersion 

under wetting field conditions is a function of sodicity among other factors (types and 

amount of clay, electrolyte concentration, amount of SOM, and soil physical or 

mechanical disturbance (Ward & Carter, 2004). 

 

The (59) soil properties had no predictive relationship with stable macro aggregates 

(mame, masp) and ratio indices (mechR and sponR) for the calibration set. However, 

CART suggested soil organic carbon (SOC) among potential predictors. This affirmed 

other works that link stability of macro aggregates to enmeshing by organic materials 

(mainly plant roots) (Wei et al., 2006). CART ranked eNa among zero - score 

importance variables for prediction of mame. The eNa indicated very poor (r < 0.2) 

(albeit negative) association with mame, similar to (negative) r = 0.05 for correlation of 

eNa with soil macro-aggregate (2000 - 250 µm) reported by Chang et al. (2001). The 

more abrasive slaking plus mechanical disruption wet sieving pretreatment might have 

obscured sensitivity of macro aggregates to eNa as suggested by Levy et al.  (2003). 

Notably, ESP was among potential splitters for prediction of masp, affirming that 

sodicity is more important in slaking of macro aggregates (Levy et al.,2003) as shown 

also by the Crumb Test (Boucher, 2010). Successful development of CART decision 
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tree models is a function of, among others, the provenance of test soils. Using the 

validation sample set and a similar set of (59) soil properties, decision tree model was 

generated for mame (RE = 0.599) with soil predictors as pH2.5 in water and soil organic 

carbon (SOC). At pH2.5 values ≤ 5.85 few samples had mame values > 15 % (Figure 

4.8 (a)). Few samples indicated mame values > 15 % for SOC values lower than split 

point at 2.2 % (Figure 4.8 (b)). This affirmed established relationship of aggregation 

with pH (Idowu, 2003; Auerswald, 1995), and with SOC (Wei et al., 2006). CART 

regression screening the suite of (59) soil properties suggested that eNa, pH2.5 water, 

SOC, and WDC were the key predictors of selected (8) WSA indices. 

 

 
Figure 4.8:  Relationship of (a) mame and pHw and (b) mame and SOC (dotted 

vertical lines indicates mame (%) data dichotomous split by pHw at 5.84 and by 

SOC at 2.2 %, respectively; raw data plots were for validation set). 

 

Optimal wavelet data input for PLS modeling: There was no difference in 

performance (R2 and RMSECV) for PLS prediction of the WSA indices for NIRwc and 

MIRwc entered in The Unscrambler as spectra or as non-spectral data. Models for WSA 

indices (except mime) were optimal with scaling (1/SD) of MIRwc. All NIRwc models 
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were optimal without scaling. The NIR model run time averaged 58.0 s, whereas 

corresponding NIRwc averaged 8.0 s, a reduction of 88 %. MIR model run time 

averaged 94 s, whereas corresponding MIRwc averaged 8.0 s, a reduction of > 90 %. 

NIRwc indicated degraded model performance (lower R2 and higher RMSECV) 

compared to NIR. Improved model performance was observed with MIRwc relative to 

MIR (except for CEC 1) (Table 4.7). 

 

Table 4.7: Model computation time and performance for NIR and MIR and 

corresponding wavelet coefficients (NIRwc and MIRwc) for selected soil properties.  

  NIR NIRwc MIR MIRwc 
Test R2 RMSE t, s R2 RMSE t, s R2 RMSE t, s R2 RMSE t, s 
pH2.5 0.74 0.09 56 0.65 0.11 8 0.72 0.1 94 0.74 0.09 7 
totC 0.79 0.18 61 0.56 0.26 9 0.89 0.13 94 0.90 0.12 8 
eNa 0.55 1.81 54 0.50 1.89 8 0.74 1.39 100 0.75 1.34 9 
tSi 0.23 8.92 62 0.14 9.18 8 0.33 8.06 87 0.37 7.85 8 
Cu 0.46 0.12 66 0.27 0.14 8 0.61 0.1 98 0.63 0.10 10 
tClay 0.46 11 55 0.38 11.72 8 0.60 9.43 89 0.65 8.84 8 
CEC1 0.75 0.7 53 0.74 0.72 8 0.88 0.48 99 0.87 0.51 8 

Note: R2, coefficient of determination; RMSE, root mean square error with cross-

validation; t, model run time in second (s)) 

 

Wavelet transform effectively reduced the MIR spectral data matrix to slightly over 7 % 

of its original size [(128/1755)×100], and NIR data matrix to slightly more than 12 % 

[(128/1030)×100] of its original size.  Viscarra Rossel and Lark (2009) achieved 

reduction of soil vis-NIR (1076 wavebands) and mid-IR (933 wavebands) data to less 

than 7 % of their original size. Trygg and Wold (1998) reduced model computation time 

by almost 80 % and attained compression of vis-NIR spectral data to 3 % of its original 

size with almost no loss of information. There was up to 10 % improvement in R2 and 6 

% decline in prediction error by substituting MIR with MIRwc for the test runs (Table 

4.7). Viscarra Rossel and Lark (2009) found also only a slight improvement using 

selected  vis-NIR and MIR wavelet coefficients relative to vis-NIR and MIR PLS for 
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prediction of tClay (vis-NIR vs NIRwc: R2 = 0.82, RMSE = 8.2 % vs  R2 = 0.86, RMSE 

= 7.1 %; MIRwc vs MIR: R2 = 0.88, RMSE = 6.4 % vs  R2 = 0.90, RMSE = 5.8 %) and 

SOC (vis-NIR vs NIRwc: R2 = 0.79, RMSE = 1.1 % vs  R2 = 0.86, RMSE = 0.9 %; 

MIRwc vs MIR: R2 = 0.95, RMSE = 0.5 % vs  R2 = 0.94, RMSE = 0.5 %).  

 

The preliminary test runs indicated that wavelet transform of NIR and MIR spectra 

drastically reduced model input data and speeded up model computation time. However, 

NIRwc caused degradation in model performance, whereas, there was only a slight gain 

in predictive ability by substituting MIR with MIRwc. The tests showed that for PLS 

modeling in The Unscrambler, it does not matter whether wavelet coefficients are 

entered as spectra or non-spectra data, however, MIRwc need to be standardized, 

whereas NIRwc should be used without standardization. The test runs suggested limited 

advantage including MIRwc and NIRwc as alternative predictors of WSA using PLS 

regression.   

 

4.1.3 Calibration of WSA indices on IR-based predictors 

Stable macro aggregate (mame/ masp): The looCV calibration for mame and masp 

was moderate to weak (R2 = 0.58 - 0.42, RMSECV = 8.43 - 6.26 %, RPD = 1.64 - 1.47), 

across IR-methods (Table 4.8). This was attributed to variable effect of particle-size 

variation on the path of light and reflectance spectra for different samples (Stenberg et 

al., 2010). Observed performance was attributed to also moderate to weak correlation (R 

= 0.58 - 0.40) of mame/ masp with soil chromophores (totC, OC, totN, Fe, WDC) (Table 

4.5) (Canasveras et al., 2010). The models were optimal without removal of outliers 

(optimization trial (i)) (Table 4.8). The MIR/MIRwc models were better than 

NIR/NIRwc, a result of MIR being energetic enough to excite molecular vibrations to 

higher energy levels than NIR (Bellon-Maurel & McBratney, 2011). Observed weaker 

performance for masp (R2 = 0.54 - 0.42, RMSECV = 8.43 - 7.54 %, RPD = 1.64 - 1.48) 

was attributed to lower quality reference data for masp (Table 4.2) (Reeves, 2010).   
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Few comparative studies were available using interval- depth samples data sets. 

Performance for mame/ masp compared well with R2 = 0.5, RMSE = 7.7 %, RPD = 1.4 

(NIR) and R2 = 0.56, RMSECV = 6.9 %, RPD = 1.5 (MIR) PLS prediction of WSA (> 

250 µm) in surface soils from southern Spain (Canasveras et al., 2010). Performance 

compared well also with R2 = 0.58 - 0.46, RMSECV = 5.67 - 4.28 %, RPD = 1.55 - 1.34 

for individual macro aggregation indices (2000, 1000, 500, and 250 µm) using NIR-PCR 

in interval-depth samples (0-30 cm depth) of soils from Major Land Resource Areas 

(MLRAs) in the USA (Chang et al., 2001). However, prediction of macro aggregate 

fraction (0.25 to 2.0 mm) (R2 = 0.60, RPD = 1.58) by Chang et al. (2001) indicated 

higher error than observed for this study (RMSECV = 14.01 vs 8.43 - 6.26 %), probably 

due to poor quality of their reference data attributed to error propagation in 

determination of the individual 4 aggregation indices. 
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Table 4.8: Performance of alternative IR-based methods for PLS looCV prediction 

of WSA indices and their soil-based predictor variables.  

Indices IR-method PLS looCV model statistics Optimization3 
PLS 
PCs n r2 RMSE 

RPD 

mame 
NIR 
NIRwc 
MIRb 
MIRwc 

3 
3 
3 
2 

128 
128 
126 
127 

0.56 
0.55 
0.58 
0.56 

6.52 
6.45 
6.26 
6.32 

1.56 
1.58 
1.63 
1.61 

(i) 
(i) 
(i) 
(i) 

masp 
NIR 
NIRwc 
MIRb 
MIRwc 

3 
3 
3 
2 

128 
128 
127 
127 

0.43 
0.42 
0.54 
0.51 

8.38 
8.43 
7.54 
7.62 

1.48 
1.47 
1.64 
1.63 

(i) 
(i) 
(i) 
(i) 

mime 
NIR 
NIRwc 
MIR 
MIRwcb 

14 
1 
8 
9 

127 
127 
126 
125 

0.40 
0.11 
0.30 
0.41 

7.2 
8.45 
7.66 
6.9 

1.26 
1.08 
1.19 
1.32 

(iii) 
(i) 
(iii) 
(iii) 

misp 
NIRb 
NIRwc 
MIR 
MIRwc 

5 
5 
10 
4 

121 
123 
122 
121 

0.39 
0.38 
0.38 
0.36 

7.97 
8.38 
8.46 
8.41 

1.39 
1.32 
1.31 
1.32 

(ii) 
(ii) 
(ii) 
(ii) 

unme 
NIRb 
NIRwc 
MIR 
MIRwc 

13 
5 
10 
8 

126 
127 
126 
126 

0.65 
0.45 
0.63 
0.62 

7.37 
9.25 
7.58 
7.72 

1.83 
1.46 
1.78 
1.75 

(iii) 
(i) 
(iii) 
(iii) 

unsp 
NIRb 
NIRwc 
MIR 
MIRwc 

12 
5 
10 
5 

125 
127 
126 
127 

0.62 
0.47 
0.52 
0.44 

8.28 
9.84 
9.37 
10.24 

1.80 
1.51 
1.59 
1.46 

(iii) 
(iii) 
(iii) 
(i) 

mechR 
NIRb 
NIRwc 
MIR 
MIRwc 

3 
3 
3 
2 

128 
128 
127 
127 

0.41 
0.39 
0.39 
0.37 

0.38 
0.38 
0.38 
0.38 

1.34 
1.34 
1.34 
1.34 

(i) 
(i) 
(i) 
(i) 
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Table 4.8 Contd. 

Indices IR-method PLS looCV model statistics Optimization3 
PLS 
PCs n r2 RMSE 

RPD 

sponR 
NIR 
NIRwc 
MIRb 
MIRwc 

7 
6 
3 
2 

128 
128 
127 
127 

0.59 
0.45 
0.45 
0.44 

0.32 
0.35 
0.36 
0.36 

1.78 
1.63 
1.58 
1.58 

(i) 
(i) 
(i) 
(i) 

WDC 
NIRb 

NIRwc 
MIRb 
MIRwc 

18 
6 
8 
6 

118 
117 
117 
119 

0.75 
0.64 
0.73 
0.70 

5.82 
6.78 
5.88 
6.32 

2.08 
1.78 
2.06 
1.91 

(iii) 
(iii) 
(iii) 
(iii) 

eNa 
NIR 

NIRwc 
MIR 
MIRwcb 

5 
5 
11 
9 

127 
126 
127 
124 

0.44 
0.37 
0.11 
0.73 

25.45 
10.64 
38.18 
5.15 

0.50 
1.18 
0.33 
2.45 

(iii) 
(iii) 
(i) 
(iii) 

Note: Optimizationa: (i), prediction without removal of outliers; (ii), prediction with 

removal of identified spectral (Robust Mahalanobis) outliers; (iii), prediction with 

removal of reference values outliers; b the best IR-method for each indices is marked; 

NIRwc were used without scaling (1/SD) of the coefficients whereas MIRwc were with 

scaling). 

 

Stable micro aggregate (mime/ misp): Calibration for mime and misp was weak to 

poor across IR-methods (R2 = 0.40 - 0.11, RMSECV = 8.5 - 6.9 %, RPD = 1.4 - 1.1). 

This is a reflection of the negative effect of particle-size variation on the path of light 

and reflectance spectra, including specular reflectance, especially for the < 425 µm 

particle-size fraction (Bellon-Maurel & McBratney, 2011). This was attributed to also 

weak correlation (R = 0.5 - 0.4) of the indices with mc, tClay, WDC, LL and PI and poor 

correlation (R ≤ 0.3) with totN, totC, and OC (Table 4.5). Prediction for mime and misp 

was comparable across IR-methods (except mime using NIRwc). Notably, mime models 

were optimal with removal of reference values outliers (except NIRwc). The misp 
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models were optimized with removal of spectral outliers. The mime using NIRwc 

presented the poorest model (R2 = 0.1, RMSECV = 8.5 %, RPD = 1.1) (Table 4.8).  

 

Observed poor prediction of misp/ mime was contrary to R2 = 0.8, RMSECV = 3.83 %, 

RPD = 2.22 (MIR) and R2 = 0.92, RMSECV = 2.41 %, RPD = 3.53 (NIR) for estimation 

of aggregate stability index (fraction < 250 µm) for mixed depth (0-30 cm depth) sample 

set reported by Madari et al. (2006). Madari et al. (2006) followed, however, very 

rigorous spectral data pretreatment (a total of 22 different spectra pretreatments were 

tested) prior to calibration development, compared with only first derivative spectra and 

smoothing used in this study. Rigorous spectra pretreatment could, however, over train 

calibration with implication on model robusticity (CAMO ASA Inc., 1998).  

 

Unstable aggregate fraction (unme/unsp):  Calibration for unme and unsp was 

satisfactory to moderate (R2 = 0.7 - 0.5, RPD = 1.8 - 1.5) across IR-methods (Table 4.8).  

This fairly good performance was attributed to observed moderate correlation (R = 0.6 - 

0.5) with texture parameters tClay, WDC, WDSa (Table 4.5), considered spectrally 

active (Viscarra Rossel et al., 2008). Notably performance was better than for stable 

macro and micro aggregate fractions. Presumably metastable macro- and micro- 

aggregate information lost through wet-sieving was added to the unstable fraction 

(Marquez et al., 2004). The weaker models for unsp (R2 = 0.62 - 0.44, RMSECV = 

10.24 - 8.28, RPD = 1.80 - 1.46) was attributed to lower quality reference data (Table 

4.2). The MIR/NIR models were superior (but more complex) than MIRwc/ NIRwc, 

indicating that suggested improved performance with spectra wavelet transform 

(Viscarra Rossel & Lark, 2009) is not supported for all soil properties. However, 

wavelet transform presented more parsimonious models as found by Viscarra Rossel and 

Lark (2009). The wavelet-based models were optimal with removal of reference values 

outliers. Exception was unme (NIRwc) and unsp (MIRwc) that were optimal without 
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removal of outliers (Table 4.8). There were no available studies in the literature to 

compare with these results. 

 

Ratio macro: micro (mechR/sponR): Calibration of sponR (masp: misp) and mechR 

(mame: mime) was moderate to weak (R2 = 0.6 - 0.4, RPD = 1.8 - 1.3) across IR- 

methods (Table 4.8). This was attributed to observed moderate correlation (R = 0.65 - 

0.40) of the indices with basic properties totC, OC, totN, Fe, and PL (Table 4.5).  The 

performance suggested superior influence on behavior of the soils of stable macro 

aggregates (mame, masp) over micro aggregates (mime, misp). The models were 

optimal without removal of outliers. The NIR models were superior over MIR, probably 

due to microstructural information loss by sample grinding for MIR (Canasveras et al., 

2010), and; enhanced performance in the NIR from effect of water-light interactions 

(Stenberg, 2010). The sponR models were more reliable (higher RPD) than mechR, 

mame, masp, mime and misp. Directly measured properties are better calibrated to 

spectra than derived properties (Stenberg et al., 2010). This was the case for mame and 

mechR; however this was not true for masp and sponR (Table 4.8).  Also, observed 

lower prediction of mechR (R2 = 0.4, RPD = 1.3) than sponR (R2 = 0.6 - 0.5, RPD = 1.8 

- 1.6) was unexpected since mame/mime presented better quality reference data than 

masp/misp (Table 4.2). No immediate adequate explanation was found. Probably relict 

non-linear data distribution even with logarithmic transformation (Table 4.3), where 

PLS analyses is suboptimal (Linker, 2012), had more (negative) influence on mechR 

model. 

 

Exchangeable sodium content (eNa): Calibration for eNa ranged from satisfactory to 

very poor (R2 = 0.7 - 0.1, RPD = 2.5 - 0.3) across IR-methods, a reflection of high 

variation in calibration performance of spectrally non-responsive (secondary) soil 

properties, whose calibration is based on strength of association with responsive soil 

properties (Stenberg et al., 2010).  Observed poor performance for eNa (R2 = 0.4 - 0.1, 
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RMSECV = 38.2 - 10.6 cmol (+) kg-1, RPD = 1.2 - 0.3) (Table 4.8), was attributed to 

poor association (r < 0.3) of eNa with totC, OC, tClay and WDC (Appendix 3); relic 

skewed data distribution (Appendix 2), where PLS analyses is suboptimal (Linker, 

2012). Prediction was optimized with removal of reference values outliers (except MIR 

model). Prediction followed the order: MIRwc >> NIR > NIRwc >> MIR (Table 4.8). 

 

 Few available studies (Viscarra Rossel et al., 2008; Pirie et al., 2005; Islam et al., 2003) 

have reported on IR-based prediction of eNa using interval-depth samples sets data sets. 

Observed prediction using NIR (R2 = 0.44) was comparable, however, with R2 = 0.46 

reported by Islam et al. (2003) and better than R2 = 0.18 attained by Pirie et al. (2005) 

for prediction of eNa.  Chang et al. (2001) found very poor NIR-PCR prediction of eNa 

(R2 = 0.09, RPD = 0.92) and attributed this to among others, the very low and narrow 

range of eNa values (mean: 0.2, min: 0.1, max: 1.8, cmol (+) kg-1).  Observed 

performance using MIR (R2 = 0.11, RPD = 0.33) was poorer than R2 = 0.39 and RPD = 

1.2 found by Viscarra Rossel et al. (2008) and R2 = 0.2 and RPD = 1.1 reported by Pirie 

et al. (2005) for prediction of eNa. High performance (R2 = 0.73, RMSECV = 5.2 cmol 

(+) kg-1, RPD = 2.5) was observed for estimation of eNa using MIRwc. 

The selection of 128 wavelet coefficients from 1750 MIR spectral wavebands (together 

with exclusion of one influential outlier), effectively removed noise in the data resulting 

in better correlation of the coefficients with eNa reference data. However, Viscarra 

Rossel and Lark (2009) found only slight improvement using selected relevant MIR 

wavelet coefficients relative to MIR PLS for prediction of tClay (R2 = 0.90 vs 0.88) and 

SOC (R2 = 0.95 vs 0.94). Also, wavelet transform of spectral variables was not superior 

for prediction of WSA indices (exception mime) (Table 4.8). Observed great variation in 

MIRwc and MIR performance for prediction of eNa is insightful and requires further 

investigations. 
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Water dispersible clay content (WDC): The looCV estimation of WDC was 

satisfactory (R2 = 0.75 - 0.64, RPD = 2.1 - 1.8) across IR-methods, attributed to the fact 

that soil texture exhibits a primary response to IR spectra (Viscarra Rossel et al., 2008; 

Chang et al., 2001). The WDC indicated also strong association with tClay (r = 0.78), 

WDSa (r = 0.80) and modest association (r = 0.67) with mc. There was insignificant 

difference in WDC prediction performance across IR-methods (except NIRwc that 

indicated weaker performance) (Table 4.8), affirming spectral activity across IR-

methods. The models were optimal with removal of reference values outliers. The MIR/ 

NIR models were superior over MIRwc/ NIRwc, however, Viscarra Rossel and Lark 

(2009) found slight model improvement for estimation of tClay using MIRwc. 

Canasveras et al. (2010) found that UV-vis-NIR (R2 = 0.66) and vis-NIR (R2 = 0.55) 

performed better than MIR (R2 = 0.30) for estimation of WDC. 

 

The weaker performance of WDC relative to other spectrally active soil constituents like 

mc (R2 ≥ 0.8) for the same data set, could be a result of the negative effect of particle-

size variation for different samples on the path of light and reflectance spectra, 

especially for the < 425 µm particle-size fraction (Bellon-Maurel & McBratney, 2011). 

However, WDC was better estimated than tClay (NIR: R2 = 0.46, RMSECV = 11 %, 

RPD = 1.4 and MIR: R2 = 0.6, RMSECV = 8.7 %, RPD = 1.7), for the same data set. 

This suggested that WDC correlates better with spectra than tClay. The WDC indicated 

also strong association (r = 0.7) with LL, whose strong looCV prediction (NIR R2 = 0.8, 

RPD = 2.7; MIR: R2 = 0.9, RPD = 2.8) was predicated on the influence of water-light 

interactions, suggesting aquaphotomics (Stenberg, 2010) enhance WDC performance. 

There were no available studies in the literature using mixed depth samples data sets for 

estimation of WDC. For surface horizon samples Canasveras et al. (2010) found weaker 

prediction of WDC using NIR (R2 = 0.66 - 0.55, RMSECV = 2.9 - 3.3 %, RPD = 1.7 - 

1.5) and MIR (R2 = 0.30, RMSECV = 4.2 %, RPD = 1.2). Notably, Canasveras et al. 

(2010) WDC prediction indicated lower determination coefficients (R2) and reliability 
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(lower RPD) but higher accuracy (lower prediction error) than reported study, 

suggesting higher measurement errors (SD) from their reference methods. 

 

Plots of predicted vs measured values for the best IR-based PLS looCV prediction of 

WSA indices and their soil-based predictor variables are presented in Figure 4.9.  
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Figure 4.9: Scatterplot plots for predicted vs observed values for the best PLS 

looCV predictions of WSA indices ( (a), mame using MIR; (b), masp using MIR; (c), 

mime using MIRwc; (d), misp using NIR; (e), unme using NIR; (f), unsp using NIR; (g), 

mechR using NIR; (h), sponR using NIR; (i), WDC using NIR, and; (j), eNa using 

MIRwc).  Indicated on each plot also is R2, coefficient of determination;  RMSECV, root 

mean square error of cross validation; RPD, the ratio of prediction deviation 

(SD/RMSECV); n, number of samples used; 1:1 regression target line, and error bars for 

quartile data). 
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The concentration of data points at lower values of mame/ masp (Figure 4.9 (a) and (b)) 

and at higher values of unme (Figure 4.9 (e)) and less evident for unsp (Figure 4.8 (f)), 

affirms that the soils are largely unstable as observed in CART regression (Figures 4.4, 

4.6 and 4.7)). Large standard errors for quartile data suggests that PLS analyses is less 

useful for extreme values of microaggregates (Figure 4.9 (c) and (d)), WDC (Figure 4.9 

(i)), and is more useful for non-sodic soils (Figure 4.9 (j)). Data distribution for ratio 

indices mechR and sponR (Figure 4.9 (g) and (h)), illustrate the predominant influence 

of macro aggregate over micro fractions for the studied soils. 

Other workers (Mouazen et al., 2005; Sorensen & Dalsgaard, 2005) found improved 

performance for fit-for-purpose models of soil properties by thresh holding data range to 

develop separate models. Such strategy could improve calibration for mame/ masp and 

unme. 

 

4.1.4 Calibration of WSA indices on soil- based predictors 

 The WDC was the key predictor of stable micro aggregates mime and misp, whereas 

eNa predicted unstable fraction unme and unsp. There were no soil-based predictors for 

mame, masp, mechR and sponR (Table 4.9). Prediction without removal of outliers was 

superior for estimation of mime and unsp. Prediction of misp and unme was optimal 

with removal of reference values outliers. 
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Table 4.9: Performance of IR- and soil-based methods for estimation of WSA 

indices. 

    PLS looCV prediction   PLS looCV prediction 

Indice
s 

IR-
predicto
r R2 

RMSEC
V 

RP
D 

soil 
predictor R2 

RMSEC
V RPD 

mame MIR 0.58 6.26 1.63 N/A N/A N/A N/A 
masp MIR 0.54 7.54 1.64 N/A N/A N/A N/A 
mime MIRwc 0.41 6.90 1.32 WDC 0.15 8.28 1.10 
misp NIR 0.39 7.97 1.39 WDC 0.29 8.87 1.25 
unme NIR 0.65 7.37 1.83 eNa 0.29 10.62 1.27 
unsp NIR 0.62 8.28 1.80 eNa 0.45 11.04 1.35 
mechR NIR 0.41 0.38 1.34 N/A N/A N/A N/A 
sponR NIR 0.59 0.32 1.78 N/A N/A N/A N/A 

Note: N/A (not applicable), means there were no soil-based predictors.   

 

Prediction of mime and misp was poor (R2 ≤ 0.2, RMSECV = 10.0 - 8.3 %, RPD = 1.1). 

Prediction of misp was slightly improved (R2 = 0.29, RMSECV = 8.9 %, RPD = 1.3), 

however, with removal of three (3) outliers (Table 4.9). Calibration performance (albeit 

weak), reflects the (inverse) predictive relationship between WDC (< 20 µm) and stable 

micro aggregate fraction (212 - 20 µm) (Figure 4.7). The unsp could be modestly 

predicted (R2 = 0.5, RMSECV = 11.0 %, RPD = 1.4), whereas, unme was poorly 

predicted (R2 = 0.3, RMSECV = 10.6 %, RPD = 1.3) (Table 4.9). Better estimation of 

unsp than unme affirmed the stronger resonance of soil eNa content with spontaneous 

(slaking) aggregate disruption in agreement with Levy et al. (2003) and the Crumb Test 

(Boucher, 2010).. There was scant available information (Canasveras et al., 2010) on 

development of soil-based PLS models for prediction of aggregation indices from wet 

sieving. Canasveras et al. (2010) reported R2 = 0.23, 0.43 and 0.49 for prediction of 

water stable aggregates (fraction > 250 µm), mean-weight diameter, and water 

dispersible clay (WDC), respectively, using six soil-based predictors (tSa, tClay, pH-

water, CaCO3, OM, and Fe).  Notably, Canasveras et al. (2010) considered WDC among 
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functional attributes, whereas rules on pedotransfer functions (PTFs) (Minansny, 2007), 

would suggest inclusion of WDC among basic soil PTFs, as applied in this study.  

 

Figure 4.10 presents scatterplot plots for predicted vs observed values for the soil-based 

PLS looCV predictions of WSA indices. The wide scatter of observation points from the 

target line suggested weak relationships. Scatter was particularly more for lower values 

for unme and unsp (see error bars, (c) and (d)). Narrow data range for predicted mime 

and misp ((a) and (b)), suggested insensitivity of the soil-based predictors to extreme 

values of the indices. Concentration of data points at higher values of unme ((c)), 

affirmed high aggregate instability (see also Figure 4.6). Slaking is mild and allows 

sensitivity to lower values of eNa (Figure 4.10 (d)). 
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Figure 4.10: Scatterplot plots for predicted vs observed values for the soil-based 

PLS looCV predictions of WSA indices ((a) mime using WDC, (b) misp using 

WDC, (c) unme using eNa, and (d) unsp using eNa. 

 

Performance of IR- and soil-based models: There were no soil-based predictors of 

mame, masp, mechR and sponR, whereas IR could predict these attributes with accuracy 

ranging from 41 to 59 % (Table 4.9). The IR predictors were superior over soil-based 

predictors, however, WDC could closely match NIR for prediction of misp and eNa 

could closely match NIR for prediction of unsp. Canasveras et al. (2010) found R2 = 

0.23 for prediction of water stable aggregates using six basic soil properties, whereas 

spectral predictors achieved R2 = 0.6, affirming superiority of spectral predictors over 

soil-based predictors. Performance for indices from slaking plus mechanical disruption 

(mime and unme) was lower than from slaking only (misp and unsp) wet sieving 

pretreatment using soil-based predictors. This was contrary to IR-based methods where 

slaking plus mechanical disruption models indicated higher performance than slaking 

only (Table 4.9). No immediate adequate explanation was found. The soil is a non-ideal 

system; mechanisms of soil processes are only partially understood and the fundamental 

links between measured soil chemistry and particular soil attributes for specific data sets 

may be complex (Stenberg et al., 2010). Probably the abrasive wet-sieving pretreatment 
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obliterated all sensitivity for the weak predictive relationships of the WSA indices with 

soil- based predictors, whereas IR readily detects and quantifies subtle changes in 

absorption features (Shepherd & Walsh, 2002).  

 

4.1.5 PLS and IR calibration efficiency and fitness for purpose 

Overall performance:  PLS looCV prediction of the WSA indices was modest to weak 

(R2 = 0.65 - 0.39, RPD = 1.8 - 1.3) (Table 4.10). Prediction performance followed the 

general order: unme ~unsp > mame~masp ~sponR > mechR > mime~misp.  Models for 

indices from slaking plus mechanical disruption wet sieving pretreatment were superior 

over those from slaking only pretreatment across IR-methods (except mechR). There 

was no clear trend on performance of alternative IR-methods for particular WSA 

indices; however, MIR indicated superiority for stable macro aggregates, whereas NIR 

was superior for stable micro aggregates, ratio-based indices and unstable fraction 

(Table 4.10). Canasveras et al. (2010) concluded that the wavelength providing the 

highest R2 and accuracy is specific to the soil property. 
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Table 4.10: Model statistics and associated IR-method for optimal PLS looCV 

estimation of WSA indices and their soil-based predictor variables.  

Indices IR-method 
PLS 
PCs R2 RMSE RPD n optimisation 

mame MIR 3 0.58 6.26 1.63 126 (i) 
masp MIR 3 0.54 7.54 1.64 127 (i) 
mime MIRwc 9 0.41 6.9 1.32 125 (iii) 
misp NIR 5 0.39 7.97 1.39 121 (ii) 
unme NIR 13 0.65 7.37 1.83 126 (iii) 
unsp NIR 12 0.62 8.28 1.80 125 (iii) 
mechR NIR 3 0.41 0.38 1.34 128 (i) 
sponR NIR 7 0.59 0.32 1.78 128 (i) 
WDC NIR 18 0.75 5.82 2.08 118 (iii) 
eNa MIRwc 9 0.73 5.15 2.45 124 (iii) 

 

Note: Optimization: (i), prediction without removal of outliers (exception influential 

outliers); (ii), prediction with removal of identified spectral (Robust Mahalanobis) 

outliers; (iii), prediction with removal of reference values outliers. 

 

The looCV models for mame, masp, mechR and sponR were optimal without removal of 

outliers across alternative IR-methods. Removal of reference values outliers optimized 

models for unme, unsp, WDC and eNa (Table 4.10). Spectral outliers had no influence 

on estimation of the WSA indices (except misp using NIR), affirming that there were no 

serious atypical samples from the calibration sample set (see Figure 4.1). 

 

Highly reliable PLS looCV predictions were obtained for eNa (RPD = 2.5) and WDC 

(RPD = 2.1) using MIRwc and NIR, respectively. Moderately reliable predictions were 

obtained, in decreasing order (RPD, IR-method), for: unme (1.83, NIR), unsp (1.80, 

NIR), sponR (1.78, NIR), masp (1.64, MIR) and mame (1.63, MIR). Models for mime 

(MIRwc) and mechR (NIR) were unreliable (RPD < 1.4).  
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Soil-based PLS looCV predictions were unreliable with, RPD in decreasing order: unsp 

(1.35), unme (1.27), misp (1.25) and mime (1.10). Reliability for mame and masp using 

MIR (RPD = 1.64) and using NIR (RPD = 1.6 - 1.5) (Table 4.8) was better than RPD = 

1.5 and RPD = 1.4 - 1.3 for looCV estimation of WSA using MIR and NIR, respectively 

found by Canasveras et al. (2010). Reliability for the WDC models was higher than 

RPD = 1.7 - 1.5 (using NIR ranges) and RPD = 1.2 (using MIR) reported by Canasveras 

et al. (2010). Observed performance was in the same range as RPD = 1.4 - 2.0 for NIR-

PCR prediction of wet aggregation measures macro-, 1.0 and 0.5 mm and better than  

RPD < 1.4 for the 2 and 0.25 mm aggregates achieved by Chang et al. (2001).  

 

The PLS looCV IR-based analyses were unreliable for assessment of mime and mechR 

(RPD = 1.3). Important is that model improvement strategies including improving 

quality of reference data (Reeves, 2010) could be used to improve reliability for 

prediction of misp (RPD = 1.4). 

 

A statistical description (mean, SD and data range) of the observed WSA indices 

analyzed using conventional methods of analyses and their looCV predictions using IR- 

methods is shown in Table 4.11.  In most cases there was a good correspondence 

between predicted and observed ranges. Even for poor calibrations (mime, misp), the 

predictions are in the same order of magnitude as observed values. However, some of 

the estimates were less accurate than those obtained by routine laboratory methods. 
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Table 4.11: Observed WSA indices analyzed using conventional methods of 

analyses and their looCV predictions using IR- methods.   

  Observed              Predicted 
Indices mean ± SD data range mean ± SD data range 
 mame 8.0 ± 10.2 0.1 - 63.9 5.8  ±  4.4 1.8 - 27.8 
 masp 13.6 ± 12.4 0.8 - 68.5 10.5 ± 6.2 3.9 - 41.4 
 mime 28.4 ± 9.1 9.6 - 48.9 28.8 ± 7.5 12.5 - 45.5 
 misp 38.1 ± 11.1 11.8 - 66.9 38.4 ± 7.1 17.6 - 60.3 
 unme 63.6 ± 13.5 19.0 - 90.4 63.9 ± 10.8 26.2 - 93.9 
 unsp 48.4 ± 14.9 12.0 - 86.2 48.4 ± 11.8 11.5 - 83.7 
 mechR 0.3 ± 0.5 0.0 - 4.2 0.2 ± 0.1 0.1 - 0.8 
 sponR 0.4 ± 0.6 0.0 - 3.9 0.3 ± 0.2 0.1 - 1.5 
 WDC 26.9 ± 12 5.0 - 60.0 26.9 ± 11.0 5.2 - 47.9 
 eNa 6.6 ± 12.6 0.0 - 63.8 4.5 ± 9.6 0.0 - 65.9 

 

Given the relative speed and cost of IR approach and the large local variation of soil 

properties, the ability to analyse large number of samples involving multiple variables at 

finer sampling intervals using the spectroscopic technique may in some circumstances 

outweigh the loss in analytical accuracy. The IR is also known to be more reproducible 

(precise) than the reference methods (Genot et al., 2011) and this could convey a distinct 

advantage. Ultimately, the key criterium for judging acceptable prediction accuracy and 

utility of soil IR-based PLS analysis is fitness for purpose, well illustrated by Sorensen 

and Dalsgaard (2005). For rapid preliminary site investigations, it might be sufficient to 

sort soils into stability classes (Canasveras et al., 2010), allowing to make management 

decision (for instance, site is stable or unstable). 

 

Wide range in calibration performance:  wide range in prediction performance was 

observed across alternative IR-methods (Table 4.12). This is in agreement with reported 

highly variable and sometimes weak soil chemometrics and spectra-based models. This 

is due to several reasons, including: complexity in the composition, spectral inactivity of 

several soil constituents; lack of correlation of secondary properties with primary 
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properties, poor quality reference data, and; confounding and distortion of weak spectral 

intensities, due to overlap with more intense absorption features (Stenberg et al., 2010). 

Weak and less reliable estimation could be due to also artifacts related to sample 

handling (size-sorting, redistribution); use of first derivatives of reflectance data may 

remove some of particle size influence (Chang et al., 2001), and; calibration model used 

may be less appropriate for analyzing some of the soil properties.   

 

Table 4.12: Range in performance (R2) of alternative IR-based methods for PLS 

looCV prediction of WSA indices and their soil-based predictor variables. 

Indices  NIR NIRwc MIR MIRwc across IR-methods 
mame 0.56-0.31 0.55-0.31 0.58-0.46 0.56-0.43 0.58-0.31 
masp 0.43-0.19 0.42-0.18 0.54-0.34 0.51-0.33 0.54-0.18 
mime 0.40-0.36 0.11-0.10 0.30-0.27 0.41-0.33 0.41-0.10 
misp 0.39-0.38 0.38-0.37 0.38-0.37 0.36-0.34 0.38-0.34 
unme 0.65-0.54 0.45-0.33 0.63-0.51 0.62-0.50 0.65-0.33 
unsp 0.62-0.51 0.47-0.39 0.52-0.47 0.44-0.39 0.62-0.39 
mechR 0.41-0.16 0.39-0.14 0.39-0.18 0.37-0.30 0.41-0.14 
sponR 0.59-0.35 0.45-0.34 0.45-0.30 0.44-0.29 0.59-0.29 
WDC 0.75-0.72 0.64-0.54 0.73-0.67 0.70-0.67 0.75-0.54 
eNa 0.44-0.41 0.37-0.27 0.11-0.10 0.73 0.73-0.10 

 

The PLS method is easy and straight forward and among the most commonly used 

methods for spectra and chemometrics soil multivariate calibration (Naes et al., 2002).  

PLS spectroscopy analysis is suboptimal, however, for property data with non-linear 

behavior. Spectra wavelet transform is among proposed spectra pretreatment prior to 

calibration development (Linker, 2012). 

 

Influence of spectra wavelet transform:  From the preliminary test run (see section 

4.1.3), WSA indices models were superior without standardization (1/SD) of NIRwc, 

whereas the models were superior with scaling of MIRwc (except mime). The models 

were based on calibration set (n = 136) and without optimization (handling of outliers).  
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For optimized models (using reduced calibration sample size, n = 128), NIRwc models 

without standardization were clearly superior over NIRwc models with standardization 

for estimation of all WSA indices and for optimization trials (i) through (iv). Variation 

was observed, however, with MIRwc models as follows: without removal of outliers or 

with removal of spectral outliers, models without scaling were superior over those with 

scaling for mame, masp, unsp, mechR, and sponR; with removal of reference values 

outliers, models without scaling were superior for masp, unsp, and sponR, and; with 

removal of spectral and reference values outliers models without scaling were superior 

for mame, masp, unsp, and sponR (data not shown). A number of observations can be 

made, that: (i) the sample size (and attendant samples composition) influence effect of 

wavelet coefficients in PLS MIR analyses; (ii) optimal preprocessing of MIRwc input 

data for PLS analyses is specific for WSA indices, suggesting low efficiency for studies 

involving large sample sizes and multiple variables; (iii) the NIRwc was not superior 

over alternative methods for estimation of any of the WSA indices, and; (iv) MIRwc was 

overall superior for only mime and eNa (Table 4.8). This suggested limiting advantage 

with spectra wavelet transformation relative to Fourier transform (DRIFT) in PLS 

multivariate calibration in soil aggregation studies. There were no available soil 

aggregation related comparative studies. Viscarra Rossel and Lark (2009) found only a 

slight improvement in prediction of tClay with MIR wavelet transform (R2 0.90 vs 0.88 

and RMSEP 5.77 vs 6.35 %). 

 

Performance of MIR relative to NIR:  Models from MIR were weaker than NIR for 

WSA indices (mime, misp, unme, unsp, mechR, and sponR) and WDC (Table 4.8). This 

is despite reported superiority of MIR over NIR for estimation of several soil physical 

and chemical properties (Viscarra Rossel et al., 2006).  Notably, Madari et al. (2006) 

and Canasveras et al. (2010) did not find MIR superior over NIR for prediction of wet 

aggregation indices. The moisture related absorption features (bands around 1430, 1920, 

and 2200 nm) are prominent in NIR (Figure 4.1), and probably aggregation indices data 
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based on wet sieving find higher resonance with the moisture absorption features in NIR 

range. Presumably water-light interactions (aquaphotomics), recently introduced in soil 

spectroscopy studies by Stenberg (2010) provide additional insight in the mechanism 

responsible for higher calibration of WSA indices in the NIR region. Important, 

however, is the robusticity of the NIR looCV models Vis a Vis those for MIR, especially 

for independent predictions. Higher model complexity of looCV calibrations has 

negative implication also for independent validation (Naes et al., 2002). The NIR PLS 

looCV performed better than MIR for instance mime, misp, unme, unsp, mechR, sponR, 

and WDC, however, the NIR models indicated similar or higher complexity than MIR 

models (Table 4.8). This suggested potential for lower NIR robusticity when subjected 

to independent testing. The higher performing NIR PLS looCV model for prediction of 

aggregate stability index (fraction < 250 µm) found by Madari et al. (2006) was more 

complex (9 PLS factors) than the corresponding MIR model (5 PLS factors), however, 

the authors did not report on independent testing of the looCV models. Madari et al. 

(2006) found that the NIR-PLS looCV prediction of otherwise spectrally active soil 

carbon (10 PLS factors) degraded from R2 = 0.90 to 0.58, whereas corresponding model 

using MIR (4 factors) degraded from R2 = 0.93 to 0.74, with somewhat independent 

testing, suggesting higher robusticity of MIR analysis.  Other workers (Viscarra Rossel 

et al., 2006) found MIR models more parsimonious than corresponding NIR models for 

several soil properties. 

 

Implication for soil stability studies: The scanty available literature on spectroscopic 

calibration of measures of aggregation (Canasveras et al., 2010; Madari et al., 2006) has 

focused on few stability indices water stable aggregates and aggregate size distribution, 

although  soil aggregation and aggregate stability is among key functional attributes that 

define the dynamism in soil behaviour. This study has demonstrated efficacy also of 

measures of aggregate “instability” and also the potential influence of mild/ spontaneous 
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(slaking only) and abrasive (slaking plus mechanical shaking) on aggregate breakdown 

dynamics.   

 

Slaking common to soils subject to flooding or (basin, furrow) irrigation present hazard 

for dams through sub-terranean (piping, sink holes) (Bell, 2000), and gully development 

via retreat through slumping highly prevalent in lowland LVB of Kenya. Slaking plus 

mechanical disruption as common to heavy tropical storms (Barthes & Roose, 2002) or 

disturbances from tillage practices (Ashmana & Hallett, 2003), enhances surface runoff, 

nutrient depletion, sedimentation and eutrophication. The mame/ masp indicate 

distribution of macro pores for aeration and water movement, whereas mime/misp 

indicates distribution of water retention pores. Boix-Fayos et al. (2001) found small 

aggregate sizes (1.0 – 0.105 and < 0.105 mm) to have a positive influence on soil water 

retention and they seemed a good indicator of soil degradation. The mechR (ratio mame: 

mime) and sponR (masp: misp) provide good indicator of porosity (Mbagwu, 1992), and 

soil air- moisture balance.  

 

The study affirmed eNa and WDC as “wet stable aggregation indices”, as suggested by 

Canasveras et al. (2010) that is, WDC. The study affirmed also, stability threshold at 1- 

2 cmol (+) kg-1 for eNa and and 34 % for WDC, suggested in earlier works by US 

Salinity Laboratory Staff (1954) and Knodel (1991), respectively.   

 

This study showed that spectra based predictors were superior over soil-based predictors 

for estimation of WSA indices, in agreement with Canasveras et al. (2010) who found 

that 4 spectra PCs were superior over 6 soil-based predictors (sand, clay, CaCO3, pHw, 

OM, Fe) for estimation of water stable aggregates (R2 = 0.42 vs 0.23), and that a 

combination of spectra and the soil predictors was even better (R2 = 0.53). This 

suggested great potential of spectral variables and /or in combination with soil-based 
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variables for development of pedotransfer functions for estimation of soil aggregation 

and aggregate stability. 

 

 Canasveras et al. (2010) considered water dispersible clay (WDC) among functional 

attributes, whereas Rules on pedotransfer functions (PTFs) by Minansny (2007), would 

suggest inclusion of WDC among basic soil PTFs as applied by Igwe (2005) and also in 

this study.  The WDC is, however, a measure of stability of soils (for instance Oxisols) 

whose aggregation is not supported by the hierarchical model concept (Azevedo & 

Schulze, 2007).  Important is the renewed discovery of the great potential of WDC in 

aggregate stability studies and the need to mainstream its determination in routine soil 

survey and mapping and in soil capability assessments. 

 

Further validation requirement: The looCV testing provides a good indicator of the 

robustness of a model, especially when calibration sample set is well selected using a 

conditioned Latin hypercube sampling strategy (Stenberg, 2010), also used in this study. 

This validation strategy could overestimate, however, the predictive performance of a 

model since samples from the same set are used for calibration and validation (Brown et 

al., 2005).  The looCV models present practical application challenges, foremost being 

limitation for geographic transferability, especially for spectrally non-responsive soil 

properties. The efficacy of IR-based models could only be ascertained with independent 

testing using samples collected after calibration development (Sorensen & Dalsgaard, 

2005). The robusticity of the looCV models of WSA indices and their soil-based 

predictors (eNa and WDC) were, therefore, subjected to further testing using data sets of 

similar soils from independent sites. 

 

4.2 Further validation of IR-based models for estimation of WSA indices   

Results are presented for looCV calibration and independent validation of WSA indices 

(including their soil-based predictor variables eNa and WDC) for alternative IR-based 
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methods. Models are for calibration (n = 128) and validation (n = 79) data sets. The 

influence of outliers on calibration performance is assessed for validation optimization 

trials as follows: Trial (i), prediction without removal of outliers in validation set; Trial 

(ii), prediction with removal of reference values outliers (samples in validation set with 

reference data out-of-range of calibration set); Trial (iii), prediction with removal of 

spectral outliers in validation set, and; Trial (iv), prediction with removal of both 

reference values and spectra outliers. 

 

4.2.1 Calibration and independent validation of WSA indices for alternative IR-

based methods   

PLS looCV calibration of WSA indices and corresponding performance for independent 

set for validation without removal of outliers in the validation set is presented in Table 

4.13. 

 

Calibration of WSA indices:  Stable macro aggregates: The looCV calibration for 

mame and masp was moderate (R2 = 0.6 - 0.4, RPD = 1.6 - 1.5), across IR-methods 

(Table 4.13). This was attributed to the effect of particle-size, shape and aggregation on 

light transmission through the soil and hence its reflectance (Chang et al., 2001). 

Performance was attributed to also modest correlation (R = 0.58 - 0.40) of the indices 

with soil chromophores (totC, OC, totN, Fe, WDC (Table 4.5). The MIR/ MIRwc 

models were superior over NIR/ NIRwc). The MIR range is energetic enough to excite 

molecular vibrations to higher energy levels than NIR (Bellon-Maurel & McBratney, 

2011). The weaker models for masp (R2 = 0.5 - 0.4, RPD = 1.6 - 1.5) were attributed to 

lower quality reference data (Table 4.2) (Reeves, 2010). Performance for mame and 

masp compared well with R2 = 0.5 and RPD = 1.4 (NIR) and R2 = 0.56 and RPD = 1.5 

for estimation of water stable aggregate (fraction  > 250 µm) reported by Canasveras et 

al. (2010). Prediction of mame and masp using NIR compared well with R2 = 0.58 - 0.46 
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and RPD = 1.55 - 1.34 reported by Chang et al. (2001) for prediction of macro 

aggregation indices (2000, 1000, 500, and 250 µm). 
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Table 4.13: Calibration and independent validation statistics for estimation of WSA 

indices for alternative IR-based methods without removal of outliers in the 

validation set.  

    PLS looCV model statistics Validation with Trial (i) 
Soil 
test 

IR-
method 

PLS 
PCs n R2 RMSECV RPD R2 RMSEP RPD 

mame MIR 3 126 0.58 6.26 1.63 0.70 7.42 1.37 
  MIRwc 2 127 0.56 6.32 1.61 0.72 7.68 1.33 
  NIR 3 128 0.55 6.52 1.56 0.81 7.40 1.38 
  NIRwc 3 128 0.55 6.45 1.58 0.57 8.36 1.22 
masp MIR 3 127 0.54 7.54 1.64 0.26 13.53 0.92 
  MIRwc 2 127 0.51 7.62 1.63 0.31 12.73 0.97 
  NIR 3 128 0.43 8.38 1.48 0.42 11.44 1.08 
  NIRwc 3 128 0.42 8.43 1.47 0.35 53.12 0.23 
mime MIRwc 9 127 0.33 7.68 1.18 0.13 9.48 0.96 
  NIR 14 128 0.36 7.54 1.21 0.03 35.10 0.26 
misp MIR 10 127 0.37 8.64 1.28 0.14 15.03 0.74 
  MIRwc 4 126 0.34 8.55 1.30 0.21 14.64 0.76 
  NIR 5 126 0.38 8.12 1.37 0.27 15.62 0.71 
  NIRwc 5 128 0.37 8.50 1.31 0.34 14.65 0.76 
unme MIR 10 127 0.60 8.03 1.68 0.44 13.56 1.00 
  MIRwc 8 127 0.58 8.21 1.64 0.56 11.24 1.20 
  NIR 13 127 0.61 7.83 1.72 0.56 12.50 1.08 
  NIRwc 5 127 0.45 9.25 1.46 0.65 12.16 1.11 
unsp MIR 10 127 0.51 9.67 1.54 0.21 18.33 0.81 
  MIRwc 5 127 0.44 10.24 1.46 0.37 17.37 0.86 
  NIR 12 128 0.56 9.30 1.60 0.46 16.41 0.91 
  NIRwc 5 128 0.45 10.28 1.45 0.48 16.04 0.93 
mechR MIR 3 127 0.39 0.38 1.34 0.59 0.37 1.38 
  MIRwc 2 127 0.37 0.38 1.34 0.64 0.36 1.42 
  NIR 3 128 0.41 0.38 1.34 0.50 0.41  1.24 
  NIRwc 3 128 0.39 0.38 1.34 0.31 0.42 1.21 
sponR MIR 3 127 0.45 0.36 1.58 0.21 0.58 0.98 
  MIRwc 2 127 0.44 0.36 1.58 0.26 0.55 1.04 
  NIR 7 128 0.59 0.32 1.78 0.14 0.60 0.95 
  NIRwc 6 128 0.45 0.35 1.63 0.32 0.51 1.12 
eNa MIR 11 126 0.49 9.34 1.35 0.30 15.68 0.80 
  MIRwc 9 126 0.73 10.30 1.22 0.46 14.79 0.85 



135 

 

    PLS looCV model statistics Validation with Trial (i) 
Soil 
test 

IR-
method 

PLS 
PCs n R2 RMSECV RPD R2 RMSEP RPD 

  NIR 5 127 0.41 45.52 0.28 0.14 10.01 1.26 
WDC MIR 8 120 0.68 6.75 1.79 0.65 9.13 1.33 
  MIRwc 6 120 0.68 6.75 1.79 0.71 8.25 1.47 
  NIR 18 120 0.72 6.33 1.91 0.40 14.18 0.85 
  NIRwc 6 121 0.55 8.08 1.50 0.39 11.50 1.05 

Note: (PLS-PCs, partial least-square regression factors; n, calibration samples without 

influential outliers (computed as N-n; where N = 128; except WDC where N = 121); R2, 

coefficient of determination; RMSECV, root mean-square error of cross validation; 

RMSEP, root mean-square error of prediction; looCV models for sample set (n = 128) 

from across LVB of Kenya were further validated with independent set (n = 79) from 

selected two sentinel sites of LNY and HB from LVB; NIRwc data was used without 

standardization, whereas MIRwc was standardized; RMSECV/ RMSEP is shown for 

backtransformed values; looCV models with R2 < 0.3 (mime: MIR and NIRwc; eNa: 

NIRwc) were not considered for further validation). 

 

Stable micro aggregates: Calibration for mime and misp was weak (R2 = 0.4 - 0.3, RPD 

= 1.4 - 1.2) across IR-methods (Table 4.13), attributed to weak correlation (R = 0.5 - 0.4) 

with mc, tClay, WDC, LL and PI and poor correlation (r ≤ 0.3) with totN, totC, and OC 

(Table 4.5). The mime models for MIR and NIRwc were very poor (R2 = 0.27, 

RMSECV = 7.53 %, RPD = 1.2 and R2 = 0.11, RMSECV = 8.44 %, RPD = 1.1, 

respectively). The NIR/ NIRwc methods were superior over MIR/ MIRwc for both 

mime and misp. The NIR (< 2 mm) is much more affected by the surface physical 

properties (such as size and shape of soil aggregates) because of their influence on the 

light scattering and light paths lengths (Chang et al., 2001), unlike MIR (< 0.1 mm) 

whose smoother surface results in higher specular reflectance. Superiority of NIR is 

presumably due to also loss of microstructure information with sample grinding for MIR 

as suggested by Canasveras et al. (2010). Probably also due to the effect of water-light 

interactions (aquaphotomics) (Stenberg, 2010) more pronounced in the NIR region. The 
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MIR/ NIR models were more complex than MIRwc/ NIRwc models (Table 4.13), due to 

the smoothing effect of spectra wavelet transform (Viscarra Rossel & Lark, 2009).  

Madari et al. (2006) found higher performance for prediction of micro aggregate indices 

(fraction < 250 µm) using both MIR (R2 = 0.8; RPD = 2.2) and NIR (R2 = 0.9; RPD = 

3.5). Madari et al. (2006) followed very rigorous spectral data pretreatment prior to 

calibration development, whereas only first derivative spectra and smoothing was used 

prior to calibration of mime and misp. 

 

Unstable aggregate fraction: The looCV calibration for unme and unsp was moderate 

(R2 = 0.61 - 0.44, RPD = 1.72 - 1.45), across IR-methods (Table 4.13), attributed to the 

moderate correlation (R = 0.6 - 0.5) with texture parameters tClay, WDC, WDSa, and 

ratio WDSi: WDC (Table 4.5), considered spectrally active. The weaker models for unsp 

was attributed to lower quality reference data (with CV % 6.5 - 0.1 and 2.1 - 0.1 for unsp 

and unme, respectively). The performance for unstable fraction was much better than for 

micro aggregate fraction (mime, misp).  Presumably metastable micro- aggregate 

information lost through wet-sieving was added to the unstable fraction (Marquez et al., 

2004). The MIR/ NIR models performed better (but were more complex) than MIRwc/ 

NIRwc for both unme and unsp (Table 4.13), suggesting that improved performance 

with wavelet transform is specific to the soil property. 

 

Ratio macro: micro: Estimation of sponR (ratio masp: misp) and mechR (ratio mame: 

mime) was moderate to weak (R2 = 0.6 - 0.4, RPD = 1.8 - 1.3) across IR-methods (Table 

4.13). This was attributed to moderate correlation (R = 0.65 - 0.40) of the indices with 

basic properties totC, OC, totN, Fe, and PL (Table 4.5). Estimation of sponR (R2 = 0.6 - 

0.5, RPD = 1.8 - 1.6) was better than mechR (R2 = 0.4, RPD = 1.3). This was unexpected 

since mame and mime indicated higher quality reference data than masp and misp 

(Table 4.2), and; calibration of mame was superior over masp. Performance for the ratio 

indices was better than for individual indices for sponR and mechR (than mime). This 
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suggested that the widely held fact that directly measured properties presented better 

models than derived properties (Bellon-Maurel & McBratney, 2011), could not be 

supported. The NIR/ NIRwc methods were superior over MIR/ MIRwc for sponR and 

mechR (Table 4.13). This was partly ascribed to microstructural information loss with 

sample grinding for MIR (Canasveras et al., 2010), and; enhanced performance in the 

NIR from effect of water-light interactions (Stenberg, 2010). There were no available 

comparative studies in the literature. 

 

eNa content: Calibration of eNa was satisfactory to very poor (R2 = 0.7 - 0.3, RPD = 1.4 

- 0.3) across IR-methods (Table 4.13), affirming high variability for secondary 

calibration (Stenberg et al., 2010) . The poor performance (R2 = 0.5 - 0.4, RMSECV = 

45.5 - 9.3 cmol (+) kg-1, RPD = 1.4 - 0.3), was attributed to poor association of eNa (r < 

0.3) with spectrally active totC, OC, tClay and WDC (Appendix 3); and possible 

residual non-linear eNa data (see strongly skewed eNa in Appendix 2), where PLS 

analyses is suboptimal (Linker, 2012). Observed high model fit using MIRwc (R2 = 

0.73), that Stenberg et al. (2010) refer to as ‘occasional high performance’ is 

characteristic of surrogate calibration (Reeves, 2010). The high performance was after 

excluding one identified influential outlier. The performance using NIR (R2 = 0.41) was 

comparable with R2 = 0.34 reported by Islam et al. (2003) and better than R2 = 0.18 and 

0.09 attained by Pirie et al. (2005) and Chang et al. (2001), respectively.  Prediction of 

eNa using MIR (R2 = 0.49, RPD = 1.35) was better than R2 = 0.39 and RPD = 1.2 found 

by Viscarra Rossel et al. (2008) and R2 = 0.2 and RPD = 1.1 reported by Pirie et al. 

(2005).  Very poor looCV model for eNa (NIRwc: R2 = 0.27, RMSECV = 50.53 cmol 

(+) kg-1, RPD = 0.25) (Saeys et al., 2005) was not considered for further validation. 

 

WDC content: The looCV calibration for WDC was satisfactory to moderate (R2 = 0.7 - 

0.6, RPD = 1.9 - 1.5) across IR-methods. This was attributed to strong association (r = 

0.78) with tClay, affirming r = 0.76 of WDC with tClay by Canasveras et al. (2010).  
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There was insignificant difference in WDC prediction across IR-methods (except 

NIRwc) (Table 4.13), attributed to the fact that soil texture exhibits a primary response 

to IR spectra (Viscarra Rossel et al., 2008). The NIR presented the best estimation of 

WDC (R2 = 0.72, RPD = 1.9) attributed to resonance to strong moisture absorption 

bands in NIR. The WDC indicated also strong association (r = 0.7) with LL and mc, 

suggesting that aquaphotomics (Stenberg, 2010) enhanced performance. The NIR model 

was, however, more complex (Table 4.13), with potential for lower robusticity. There 

was no available information on prediction of WDC for interval- depth samples data set. 

However, observed lower looCV prediction of tClay for the same data sets (NIR: R2 = 

0.46, RMSECV = 11 %, RPD = 1.4 and MIR: R2 = 0.6, RMSECV = 8.7 %, RPD = 1.7) 

suggested that WDC correlated better with spectra than tClay. Canasveras et al. (2010) 

found weaker performance for prediction of WDC for surface horizon samples using 

NIR (R2 = 0.66 – 0.55, RPD = 1.7 – 1.5) and MIR (R2 = 0.30, RPD = 1.2).   

 

Notably looCV models for WSA indices and eNa and WDC were similar as in previous 

study (see section 4.1.3; Table 4.8) since the same calibration sample set (n = 128) was 

used. The looCV models in section 4.1.3 were optimized with/ without removal of 

(reference values and spectral) outliers, to partly explain slightly better performance than 

corresponding looCV models. However, this inadvertently occasioned some level of 

overlap in observed results and discussion for respective WSA indices (Tables 4.8 and 

4.13). This was deemed necessary to minimize cross-referencing. 

 

The looCV testing provides a good indicator of the robustness of a model for a well 

selected calibration sample set for instance using a conditioned Latin hypercube 

sampling strategy (Viscarra Rossel et al. 2008). This testing could overestimate, 

however, the predictive performance of a model since samples from the same set are 

used for calibration and validation (Brown et al., 2005).  The robusticity of the looCV 
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models of WSA indices and their soil-based predictors (eNa and WDC) were, therefore, 

further tested and optimized using data sets of similar soils from independent sites.  

 

Validation without removal of outliers (optimization trial (i)): macro aggregates: 

The looCV model indicated excellent to moderate performance for independent 

estimation of mame across IR-methods (R2 = 0.8 - 0.6, RPD = 1.4 - 1.2) (Table 4.13). 

This was attributed to robust response of particle-size and aggregation to spectra, and to 

presumed correlation of mame with soil chromophores (totC, OC, totN, Fe, WDC). The 

weak prediction of masp (R2 = 0.4 - 0.3, RPD = 1.1 - 0.2) was attributed to low quality 

reference data from the reference method (Table 4.2) (Reeves, 2010). The NIR model 

was more robust for mame and masp (Table 4.13), affirming more robust effect of 

water-light interactions in the NIR region (Stenberg, 2010).  

 

Micro aggregates: The weak mime and misp looCV models could not reproduce the 

indices in the independent set (R2 ≤ 0.34) (Table 4.13). This was attributed to poor 

correlation of the indices with mc, tClay, WDC, LL, PI, totC, and SOC (Table 4.5), also 

in the validation set. This was probably due to also confounding/distortion of their weak 

absorption features by strong features of SOC and quartz (Stenberg et al., 2010). 

 

Unstable aggregate fraction:  Satisfactory estimation of unme and unsp (R2 = 0.7) was 

ascribed to robust association with texture parameters tClay, WDC and WDSa.  The 

wide range in performance (R2 = 0.7 - 0.2, RPD = 1.2 - 0.8) (Table 4.13), is a reflection 

of highly variable effect of particle-size variation on the path of light and reflectance 

spectra for the < 425 µm particle-size fraction, especially for samples from different 

provenance (Bellon-Maurel & McBratney, 2011). Similar high variability in 

performance for prediction of tClay (R2: 0.88, 0.83, 0.72; RPD: 2.9, 2.4, 1.6) is reported 

in other studies (Terhoeven-Urselmans et al., 2010; Viscarra Rossel et al., 2008; Pirie et 

al., 2005).  Lower performance for unsp (R2 = 0.5 - 0.2, RPD = 0.9 - 0.8) was associated 
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with lower quality reference data (Table 4.2). Observed more robust NIR/NIRwc models 

than MIR/ MIRwc, suggested that aggregation indices from wet-sieving find higher 

resonance with the moisture absorption features in NIR range. 

 

macro: micro ratio: The moderate to weak looCV mechR model was sustained (R2 = 

0.6 - 0.3, RPD = 1.4 - 1.2) across IR-methods (Table 4.13). This suggested robust (albeit 

moderate) correlation of mame and mime with basic properties totC, OC, totN, Fe, and 

PL for the independent set. Degradation of sponR (R2 = 0.3 - 0.1, RPD = 1.0) could 

partly be associated with low quality of the reference data, that is, masp (Table 4.2), and 

higher looCV model complexity (NIR and NIRwc). The MIR/ MIRwc models were 

more robust than NIR/ NIRwc models for mechR, where the contrary was the case for 

looCV prediction (Table 4.13). No immediate explanation was found for this reversal. 

 

eNa content: Prediction of eNa was weak to poor (R2 = 0.5 - 0.1, RPD = 1.3 - 0.8) 

across IR-methods (Table 4.13), courtesy of surrogate calibration (Reeves, 2010), and 

residual skewness. The surrogate poor looCV performance (R2 = 0.5 - 0.4, RPD = 1.4 - 

0.3) was reliably sustained, however, for the independent set (R2 = 0.5 - 0.1, RPD = 1.3 - 

0.8), suggesting that surrogate relationship i.e. correlation of eNa with totC, OC, tClay, 

WDC (albeit weak) worked as well in independent as in the calibration set (Reeves, 

2010). The calibration and validation soils came from the same soil population (Table 

4.3). The drastic drop (collapse) of eNa MIRwc model (from R2 = 0.73 to 0.46) (Table 

4.13) with independent testing, is characteristic of surrogate calibrations.  

 

WDC content: Estimation of WDC ranged from satisfactory to weak (R2 = 0.7 - 0.4, 

RPD = 1.5) across IR-methods (Table 4.13), attributed to primary response of texture 

parameters to spectra.  The wide range in performance is a reflection of highly variable 

effect of particle-size and shape variation on the path of light and reflectance spectra for 

different samples (Bellon-Maurel & McBratney, 2011). Models based on MIR/ MIRwc 
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were more robust (R2 = 0.7, RPD = 1.3 - 1.5) than from NIR/ NIRwc (R2 = 0.4, RPD = 

0.9 - 1.1) (Table 4.13). This was a consequence of lower parsimony (higher complexity) 

of looCV NIR models.  There were no available studies in the literature to compare with 

these results. However R2 = 0.61, RMSEP = 13.3 %, RPD = 1.3 and R2 = 0.52, RMSEP 

= 16.0 %, RPD = 1.1 was observed for independent testing of tClay looCV models of 

MIR and NIR respectively, for the same datasets. This suggested superiority of MIR 

over NIR for estimation of textural parameters. 

 

Without removal of outliers in the validation set, looCV models for WSA indices based 

on slaking plus mechanical disruption (mame, unme, mechR) were more robust than 

those from slaking only wet-sieving pretreatment (masp, unsp, sponR). Notably models 

based on spectral variables (MIR/ NIR) were more complex, and less robust than 

corresponding models from wavelet transform variables (MIRwc/ NIRwc) (misp, unme, 

unsp, sponR). The MIRwc models were more robust, for example, than their MIR 

counterparts for all WSA indices, eNa and WDC (Table 4.13). The NIR models were 

more robust for mame, masp, mime, mechR, eNa and WDC, whereas NIRwc models 

were superior for estimation of misp, unme, unsp, and sponR (Table 4.13).  Without 

removal of outliers, parsimonious wavelet transform-based models were more robust 

than their spectra-based counterparts. Viscarra Rossel and Lark (2009) found slight 

improvement for SOC and degradation for tClay using selected relevant wavelet 

coefficients. 

 

4.2.2 Effect of outliers on independent estimation of WSA indices 

Reference values outliers (optimization trial (ii)): The mame, masp, mechR, sponR 

and eNa did not present reference values outliers in the validation set (sample with data 

in validation set that was out-of-range in calibrations set). Outliers in other indices were 

as follows: 2 (mime), 3 (misp), 2 (unme), 4 (unsp), and 6 (WDC). Removal of the 

outliers degraded performance (-ve change in R2) of the looCV models across IR-
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methods (except for mime using NIR). Effectively, removal of the outliers had a 

profound (positive) effect on mime NIR model. The removal had significant (negative) 

effect on models for misp (NIR, NIRwc), unme (MIR, MIRwc and NIR), and unsp 

(MIR, NIR). The removal had no impact on mime (MIRwc), misp (MIR, MIRwc), unme 

and unsp (NIRwc) and WDC (Table 4.14). 

 

Table 4.14: Effect of removal of reference values outliers on independent 

estimation of WSA indices.  

  Stable micro aggregate 
unstable 
fraction   

IR-method mime misp unme unsp WDC 
MIR N/A  (o)  (-)  (-)  (o) 
MIRwc  (o)  (o)  (-)  (o)  (o) 
NIR  (++)  (-)  (-)  (-)  (o) 
NIRwc  N/A  (-)  (o)  (o)  (o) 

Note: (R2 change (%) ± 0 – 10 was assigned zero (o) and designated “no effect”; ± 10 – 

50 % was assigned (-/+) and designated “significant effect”, and; ± > 50 was assigned 

(++/--) and designated “profound effect” comparing trial (i) with trial (ii); N/A (not 

applicable) for looCV model with R2 < 0.3). 

 

Spectral outliers (optimization trial (iii)): Identified Robust Mahalanobis distance (H) 

(H > 2) outliers were: 7 (MIR), 4 (MIRwc), 2 (NIR), and 1 (NIRwc). Effectively, 

removal of MIR outlier samples had a positive impact on unsp and eNa, no impact on 

mame, masp misp, unme, mechR and sponR, and negatively impacted on WDC (Table 

4.15).  The MIRwc outliers had no effect on models for mame, masp, misp, unme, unsp, 

mechR, sponR and WDC, but had negative effect on mime and eNa. The NIR outliers 

had positive influence on estimation of misp, sponR and eNa and profound influence on 

mime. The removal had no effect on mame, unme, unsp and WDC, but negatively 

affected masp and mechR. Removal of NIRwc outlier sample had a positive impact on 

WDC and no effect on mame, masp, misp, unme, unsp, mechR, sponR (Table 4.15). 
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Table 4.15: Effect of removal of spectral outliers on independent estimation of 

WSA indices.  

  

Stable 
macro 
aggregate 

stable 
micro 
aggregate 

ratio 
macro:micro 

unstable 
fraction     

IR-
method 

mam
e 

mas
p 

mim
e 

mis
p 

mech
R 

spon
R 

unm
e 

uns
p 

eN
a 

WD
C 

MIR  (o)  (o)  N/A  (o)  (o)  (o)  (o)  (+)  (+)  (-) 
MIRwc  (o)  (o)  (-)  (o)  (o)  (o)  (o)  (o)  (-)  (o) 
NIR  (o)  (-)  (++)  (+)  (-)  (+)  (o)  (o)  (+)  (o) 

NIRwc  (o)  (o)  N/A  (o)  (o)  (o)  (o)  (o) 
N/
A  (+) 

Note: (R2 change (%) ± 0 – 10 was assigned zero (o) and designated “no effect”; ± 10 – 

50 % was assigned (-/+) and designated “significant effect”, and; ± > 50 was assigned 

(++/--) and designated “profound effect” comparing trial (i) with trial (iii); N/A (not 

applicable) for looCV model with R2 < 0.3). 

 

Notable, prediction of WSA indices was more sensitive to NIR outliers than to other IR-

methods. Removal had, for example, profound positive effect on prediction of mime, 

and significant effect on prediction of masp, misp, mechR, mechR and unme (Table 

4.15). The models were less sensitive to MIRwc and NIRwc outliers, ascribed to 

smoothing effect of spectra wavelet transform that effectively bypasses outliers 

(Viscarra Rossel & Lark, 2009). The model for eNa was sensitive to NIR, MIR, and 

MIRwc outliers (Table 4.15), characteristic of surrogate calibrations (Reeves, 2010). 

Wavelet coefficients were treated as non-spectral data in PLS modeling in The 

Unscrambler and were probably not appropriate for spectral outlier detection. 

 

As might be expected, the same outlier samples identified for MIR were obtained for 

MIRwc. Similarly the same outliers for NIR were identified for NIRwc. Outliers for the 

wavelets were fewer than those for the corresponding spectra (7 MIR vs 4 MIRwc and 2 

NIR vs 1 NIRwc), since wavelet transform effects noise removal (Viscarra Rossel & 
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Lark, 2009). Also, identified outlier samples for MIR/ MIRwc were different from those 

for NIR/ NIRwc, since the effective spectral ranges are mutually exclusive. This 

suggested complementarity in NIR and MIR. The presentation of both NIR and MIR 

models has, therefore, the potential advantage of giving different dimensions of soil 

behavior, and probably, the term “alternative IR-methods” could be more appropriately 

substituted with ‘ comparable IR-methods’.  

 

Reference value and spectral outliers (optimization trial (iv)): Performance degraded 

with sequential removal of the outliers. The exception was models for mime (NIR), unsp 

(MIR) and WDC (NIRwc) that indicated improvement. Noteworthy, removal of the 

outliers downgraded MIR model for unme but enhanced model for unsp by a similar 

margin (16 - 20 %). Models for mime (MIRwc), misp, unme, and unsp indicated further 

degradation compared with removal of only spectral outliers. The exception was WDC 

(MIR) that indicated more than 80 % performance improvement. Notably, there were no 

samples that were both reference values and spectral outliers for mime, misp, unme, and 

unsp, whereas, five samples (of the 7 MIR and 6 WDC outliers) were MIR and WDC 

outliers. Prediction for a majority of WSA indices got poorer compared to when only 

either spectral or reference value or none were removed. 

 

Effectively, removal of both reference and spectral outliers had either no effect or 

negatively affected prediction of WSA indices with exception of mime (NIR), unsp 

(MIR) and WDC (NIRwc) (Table 4.16). 
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Table 4.16: Effect of removal of reference value and spectra outliers on 

independent estimation of WSA indices.  

  Stable micro aggregate unstable fraction   
IR-
method mime misp unme unsp WDC 
MIR N/A  (o)  (-)  (+)  (o) 
MIRwc  (-)  (-)  (-)  (-)  (o) 
NIR  (++)  (o)  (-)  (-)  (o) 
NIRwc N/A  (-)  (o)  (o)  (+) 

Note: (R2 change (%) ± 0 – 10 was assigned zero (o) and designated “no effect”; ± 10 – 

50 % was assigned (-/+) and designated “significant effect”, and; ± > 50 was assigned 

(++/--) and designated “profound effect” comparing trial (i) with trial (iv); N/A (not 

applicable) for looCV model with R2 < 0.3). 

 

4.2.3 PLS and IR performance and reliability for estimation of WSA indices 

Maximal and optimal validation models: Validation without removal of outliers (Trial 

(i)), and with removal of spectral outliers (Trial (iii)) presented maximal8 models for 

estimation of WSA indices across IR-methods. The maximal trial was also the optimal 

model9 across IR-methods for majority of WSA indices (data not shown). Trial (i) was 

optimal for estimation of WSA indices. Exceptions were mime, misp and sponR (NIR) 

and unsp (MIR) where prediction with removal of spectral outliers (trial (iii)) was 

optimal. Trial (iii) was optimal for eNa (MIR and NIR) and WDC (NIRwc). 

 

Models for majority of WSA indices for MIR and MIRwc were optimal following trial 

(i), whereas NIR and NIRwc indicated more indices optimized following trial (iii), 

suggesting practical advantage of MIR/MIRwc over NIR/NIRwc. Noteworthy, where 

Trial (i) had an edge over Trial (iii), the difference was not significant, suggesting a 

                                                   
8 Maximal model defined the trial with highest R2 for  estimation of WSA indices  across 
trials (i), (ii), (iii), and (iv)) for each IR- method. 
9 Optimal validation trial was the maximal trial with ≥ 10.0 % change in R2 (Rule of 
Thumb) relative to Trial (i), else Trial (i) was defined optimal for each IR- method. 



146 

 

lurking influence of spectral outliers. However, where Trial (iii) maximized validation, 

there were large differences with Trial (i) particularly for NIR and sometimes NIRwc 

models (data not shown). This is reflection of somewhat weakness (lower stability) of 

NIR models, a consequence of higher sensitivity to (spectral) outliers.   

 

Overall validation without removal of outliers (Trial (i)) presented the best validation10  

for all WSA indices except mime (Table 4.17).  

 

Table 4.17: Validation statistics for the best model and associated IR-method for 

independent estimation of WSA indices.  

Soil test IR-method R2 RMSEP RPD n optimization trial 
mame NIR 0.81 7.40 1.38 79 (i) 
masp NIR 0.42 11.44 1.08 78 (i) 
mime NIR 0.30 12.80 0.71 77 (iii) 
misp NIRwc 0.34 14.65 0.76 78 (i) 
unme NIRwc 0.65 12.16 1.11 79 (i) 
unsp NIRwc 0.48 16.04 0.93 79 (i) 
mechR MIRwc 0.64 0.36 1.42 79 (i) 
sponR NIRwc 0.32 0.51 1.12 78 (i) 
eNa MIRwc 0.46 14.79 0.85 79 (i) 
WDC MIRwc 0.71 8.25 1.47 78 (i) 

Note: (trial (i), prediction without removal of outliers in the validation set; (iii), 

prediction with removal of spectral outliers in the validation set; n, validation samples). 

  

Figure 4.11 presents comparison of measured vs predicted values of WSA indices for 

the best validation and corresponding IR-based method (indicated also for each plot is 

1:1 regression target line and error bars for quartile data). Excellent performance was 

attained for independent estimation of mame (R2 = 0.8, RPD = 1.4; Figure 4.11 (a)), 

whereas estimation of masp was weak (R2 = 0.4, RPD = 1.1; Figure 4.11 (b)). Stable 

                                                   
10 Optimal trial with the highest R2 across the IR-methods was designated the best trial. 
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micro aggregates (mime and misp) could not be reproduced in the validation set (R2 = 

0.3, RPD = 0.7), illustrated by the wide data scatter (Figure 4.11 (c) and (d)). Estimation 

of unstable fraction (unme and unsp) was satisfactory to moderate (R2 = 0.7 - 0.5, RPD = 

1.1 - 0.9; Figure 4.11 (e) and (f)). Prediction of mechR was satisfactory (R2 = 0.64, RPD 

= 1.4) with data distribution similar to mame (Figure 4.11 (g)), whereas estimation of 

sponR was poor (R2 = 0.3, RPD = 1.1; Figure 4.11 (h)). Performance for eNa was weak 

(R2 = 0.5, RPD = 0.9; Figure 4.11 (i)), especially prediction error (RMSEP = 14.8 cmol 

(+) kg-1) was very high (Table 4.17). Estimation of WDC was satisfactory (R2 = 0.7, 

RPD = 1.5; Figure 4.11 (j)). Model for WDC was more robust than eNa (Table 4.17); 

like tClay, WDC is spectrally responsive, whereas calibration for eNa is surrogate. 

Notably estimation of WDC using MIRwc was much better than R2 = 0.3 and RPD = 1.2 

using MIR reported by Canasveras et al. (2010) using the less rigorous cross validation.  

Similarly, estimation of eNa was better than R2 = 0.39 (Viscarra Rossel et al., 2008) and 

R2 = 0.2 (Pirie et al., 2005) using MIR following separate test set validation strategy. 

This affirmed improved (and more robust) performance with MIRwc for the soil-based 

predictors (WDC and eNa). 
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Figure 4.11: Scatterplot plots of measured vs predicted values for the best model 

and associated IR-method for independent estimation of WSA indices ((a) mame 

using NIR, (b) masp using NIR, (c) mime using NIR, (d) misp using NIRwc, (e) unme 

using NIRwc, (f) unsp NIRwc, (g) mechR using MIRwc, (h) sponR using NIRwc, (i) 

eNa using MIRwc, and (j) WDC using MIRwc). 

 

Influence of wet-sieving pretreatment and IR-method: Models for indices from 

slaking plus mechanical disruption wet sieving pretreatment were superior over those 

from slaking only pretreatment (except mime) (Table 4.17). This was attributed to lower 

quality reference data for the slaking only-based indices. Performance followed the 

general order: mame > unme ~ mechR > unsp > masp > misp ~ sponR ~ mime. The 

performance has implications for utility of the indices for diagnostic screening and 

prevalence assessment of stability related problems in LVB. The poor performing sponR 

was strongly associated with mechR (r = 0.8) and with masp (r = 0.92). There was no 

clear trend on performance of alternative IR-methods. However, NIR and NIRwc were 

associated with the best validation for WSA indices (except mechR). The NIR was 

associated with indices from direct measurements; whereas NIRwc was associated with 

derived indices. The MIR was not associated with the best estimation of the indices 

(Table 4.17). The NIR (< 2 mm) is much more affected by the surface physical 
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properties (such as size and shape of soil aggregates) because of their influence on the 

light scattering and light paths lengths (Chang et al., 2001), whereas MIR (< 0.1 mm) 

present more homogeneous/ smooth surface with higher reflectance (including specular 

reflectance) and consequently lower relative absorbance. Canasveras et al. (2010) 

attributed weaker MIR performance relative to NIR to loss of microstructure information 

by grinding. Presumably, NIR models were also more enhanced by the effect of water-

light interactions (Stenberg, 2010) since very strong mc absorption bands are found in 

the NIR region (mainly around 1400, 1900 and 2200 nm). Remarkably, replacing NIR 

with NIRwc resulted in degradation of looCV models for estimation of all WSA indices 

(Tables 4.8 and 4.13), whereas NIRwc presented best models for independent estimation 

of misp, unme, unsp, and sponR (Table 4.17). This affirmed the fact that robusticity 

(stability and reliability) of PLS IR-based analyses could only be ensured with 

independent testing (Brown et al., 2005). 

 

Reliability of PLS analyses for estimation of WSA indices: Calibration spectrometry 

(model fit (R2), prediction error (RMSE) and associated model reliability (RPD) is 

critical for assessing utility of PLS (Bellon-Maurel & McBratney, 2011), for also ‘fit-

for-purpose’ soil analyses (Sorensen & Dalsgaard, 2005). 

 

Model fit and reliability: PLS looCV calibration (reflected by coefficient of 

determination, R2) could be reproduced in independent set with similar or enhanced 

level of efficiency for WSA indices (except sponR and eNa). This affirmed robusticity 

of WSA indices models, attributed to the fact that soil particle-size and soil structure 

exhibits primary (albeit weak) response to reflectance spectra (Chang et al., 2001). 

Observed lower performance for eNa affirmed inherent challenges with geographic 

transferability of surrogate calibration (Reeves, 2010) (Tables 4.13 and 4.17).  
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Larger RPD values indicate better fitting models (Bellon-Maurel & McBratney, 2011). 

Based on established RPD categories (> 2.0, 2.0-1.4, and < 1.4 for high, moderate, and 

low reliability of PLS and IR models, respectively, moderately reliable looCV 

predictions were obtained for WDC (RPD = 1.8), mame and sponR (RPD = 1.6), masp, 

unme, and unsp (RPD = 1.5). Models for mime, misp, mechR and eNa were unreliable 

(RPD < 1.4). Importantly, moderately reliable independent prediction was achieved for 

WDC (RPD = 1.5) similar to Canasveras et al. (2010) following less rigorous cross 

validation. Also models for mame and mechR (RPD = 1.4) could be improved by 

improving quality of reference data (Stenberg et al., 2010). 

 

Reliability for ‘fit-for-purpose’ analyses:  Observed acceptable looCV prediction of 

stable macro aggregate (mame and masp) and unstable fraction (unme and unsp) (R2 = 

0.6, RPD = 1.7-1.6), and for soil-based predictors eNa (R2 = 0.7, RPD = 1.2), and WDC 

(R2 = 0.7, RPD = 1.9), suggested that IR-based calibrations using air-dried (< 2 and < 

0.5 mm) soil samples are feasible in principle (Reeves, 2010), for rapid characterization 

of  the indices. Independent testing suggested strong potential for estimation of mame 

and WDC (R2 = 0.8 - 0.7) and moderate potential for unme, unsp, mechR, and eNa (R2 ≥ 

0.5), however, reliability of the models was moderate to poor (RPD = 1.5 - 0.9).  

Estimation of sponR and stable micro aggregates (mime and misp) was unacceptable (R2 

= 0.3, RPD = 1.1 - 0.7). Importantly, models for WDC, mame and mechR could be 

improved (RPD ≥ 1.4) by improving quality of reference values (Chang et al., 2001).  

Table 4.18 presents a statistical description (mean, SD and data range) of the observed 

data of WSA indices analyzed using conventional methods and their independent 

predictions. 
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Table 4.18: Statistical description of the observed WSA indices analyzed using 

conventional methods of analyses and their independent predictions using IR-

methods.   

  Observed predicted 
Soil test mean ± SD data range mean ± SD data range 
mame 9.0 ± 12.0 0.6 - 58.7 7.4 ± 5.8 1.5 - 28.8 
masp 16.8 ± 14.4 1.9 - 61.3 13.5 ± 8.5 4.0 - 44.3 
mime 23.0 ± 8.2 7.0 - 44.1 31.8 ± 10.9 8.7 - 79.1 
misp 30.2 ± 11.3 10.1 - 59.3 41.5 ± 8.0 22.7 - 66.6 
unme 68.0 ± 16.4 18.6 - 92.3 60.7 ± 11.8 21.5 - 92.7 

unsp 53.5 ± 19.3 
13.5 - 
100.0 45.4 ± 13.1 10.5 - 82.9 

mechR 0.4 ± 0.5 0.0 - 2.6 0.2 ± 0.2 0.1 - 1.3 
sponR 0.6 ± 0.6 0.1 - 2.8 0.4 ± 0.3 0.1 - 1.8 
eNa 6.4 ± 9.2 0.0 - 42.4 6.5 ± 19.5 0.0 - 123.5 
WDC 28.2 ± 12.9 3.0 - 61.0 23.6 ± 10.8 2.9 - 48.6 

 

There was general correspondence of observed and predicted values for WSA indices 

and WDC. Even for poor calibrations (for instance misp, Table 4.17), the predictions are 

in the same order of magnitude as observed values (Table 4.18). Notably, the IR-

methods indicated higher precision (lower SD) (except for mime and eNa) than 

conventional methods. However, the PLS analyses overestimated lower values of mame, 

masp, and misp ( see also error bars Figure 4.11  (a), (b), and (d), respectively), and 

higher values of mime and eNa (Table 4.18; Figure 4.11 (c) and (i), respectively). The 

PLS analyses underestimated higher values of mame, masp, mechR, sponR and WDC 

(Table 4.18; Figure 4.11 (a), (b), (g), (h), and (j), respectively).  

 

The quality of the quantitative independent models for mame, masp, unme, unsp, 

mechR, WDC, and eNa might be valuable for providing indices for sorting soils into 

broad stability classes. These findings support the few studies available in the literature 

on performance of IR-methods for prediction of soil aggregation indices. Canasveras et 

al. (2010) found, for example, R2 = 0.60 - 0.67 and RPD = 1.7-1.5 for prediction of 
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aggregation indices (water stable aggregate, mean-weight diameter, and water 

dispersible clay), and concluded that the spectral predictors are valuable for sorting soils 

into stability categories.  Madari et al. (2006) reported R2 values 0.66 and 0.67 for NIR 

PLS prediction of soil mean-weight diameter and mean geometric diameter, 

respectively, and concluded that the performance provide a reasonable estimate of soil 

aggregation properties, and valuable information on soil structure, especially since the 

standard way of determination of these indices is the result of a long and laborious 

laboratory procedure that itself holds various opportunities for error inclusion.  

 

The relatively high speed and lower cost of IR-methods combined with PLS calibration, 

and; the large local variation of soil properties suggest that the ability to analyze large 

number of samples involving multiple variables at finer sampling intervals using the 

spectroscopic technique may in some circumstances outweigh the loss in analytical 

precision. The IR-methods are known additionally to be more reproducible (precise) 

than reference methods (Shepherd et al., 2005) and this could convey a distinct 

advantage. 

 

4.2.4 Factors influencing PLS performance for estimation of WSA indices 

Overall, there was observed lack of impact of outlier removal where validation Trial (i) 

was adjudged optimal validation for WSA indices (except mime) (Table 4.17).  This 

suggested that the rigors in optimization (Trials (ii), (iii) and (iv)) might not be 

worthwhile for studies involving large sample sizes and multiple variables.  However, 

interpretation of performance of PLS and IR-methods has to consider a number of 

factors. These include outlier definition and choice of thresh hold values, calibration 

spectrometry (R2, RMSEP, RPD), correspondence of IR-methods, and appropriateness 

of selected WSA indices including data quality. 
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Soil analyte characteristics (quality, distribution): The poorer predictive performance 

for WSA indices at high and/or extreme (quartile) values (Figure 4.11) was partly 

attributed to low quality (skewed distribution) reference values (Table 4.3), rather than 

genuine lack of predictive power of IR-methods. At very high concentration of eNa 

(Figure 4.11 (i)), for example, there is greater variability in amounts of ions extracted 

(therefore higher analytical error) resulting in weak correlation of reference values with 

spectra or soil chromophores as suggested by Shepherd and Walsh (2002). Other 

possible sources of error include changes in soil properties between the times of 

analytical and spectral measurement and variation among subsamples used for analytical 

and spectral measurements (Shepherd & Walsh, 2002). Notably, validation samples and 

datasets were obtained one year after calibration development.  Reference data range 

thresh holding and development of separate models for the different (more linearly 

distributed) segments, is a strategy commonly applied for improved calibration 

performance (Stenberg, 2010). This was not feasible in this study due to the small 

validation quartile sample size (n < 30).  

 

Outlier definition and (choice of) threshold values:  The set Rule of Thumb threshold 

change in R2 to assess effect of outliers [(0 - 10 %, no effect; 10 - 50 %, significant 

effect, and; > 50.0 %, profound effect)], might be too broad probably masking the 

effects.  Robust Mahalanobis distance (H) to define spectral outlier is not also 

standardized.  The set value (H > 2) might be restrictive considering that the higher the 

H value selected the broader the diversity of validation set. However, Terhoeven-

Urselmans et al. (2010) found Mahalanobis H > 12 outliers to have no significant 

influence on independent estimation of fertility valuable soil properties. 

 

Reference values outliers were defined as samples in validations set with data range 

outside the range of calibration set and were as follows: 2 (mime), 3 (misp), 2 (unme), 4 

(unsp), and 6 (WDC). Defining reference values outlier as the sample whose prediction 
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residual is greater than 3× RMSE (Sorensen & Dalsgaard, 2005), the number of outliers 

for each WSA indices across the IR-methods was as follows: mame:  2 (MIR, MIRwc), 

3 (NIR, NIRwc); masp: 2 (MIR, MIRwc, NIR); mime: 1 (MIRwc, NIR); misp: 1 (MIR); 

unsp: 1 (NIR, NIRwc); mechR: 2 (MIR), 3 (MIRwc, NIR, NIRwc); sponR: 2 (MIR, 

MIRwc, NIR), 1 (NIRwc); eNa: 3 (MIR, NIR, NIRwc); WDC: 1 (MIR, MIRwc, NIR, 

NIRwc). Notably, WSA indices mame, masp, mechR, sponR, and eNa presented also 

reference values outliers, whereas these indices presented no outliers based on data 

range between calibration and validation sets. This could have implications on 

calibration performance and effect of Trial (ii). The assessment could, however, not be 

accommodated in this study. 

 

Correspondence of model goodness of fit and prediction error: The model goodness 

of fit (R2) was used to assess the influence of outliers on calibration validation.  

Improvement (positive change) in R2 with validation trial (ii), (iii), and (iv) relative to 

trial (i) was not always followed, however, by improvement (negative change) in 

RMSEP.  Degraded R2 was associated with improved RMSEP, for example, for unsp 

and WDC (trial (ii)) and for mime (MIRwc), mechR (NIR), eNa (MIRwc), and WDC 

(MIR) (trial (iii)) (data not shown). The conflict of R2 and RMSEP could challenge 

practical interpretation of effect of outlier on estimation of the WSA indices. Also, the 

RMSEP was substantial for some indices (Table 4.17), with negative implications for 

model robusticity. The moderate R2 = 0.5 for estimation of eNa was associated, for 

example, with high prediction error (RMSEP = 14.8 cmol (+) kg-1) and corresponding 

low reliability (RPD = 0.9).  Such performance might be unacceptable since they mask 

effect of sodicity in stability diagnostic screening, where threshold values for eNa are in 

the range 1- 2 cmol (+) kg-1 (Sumner, 2000). Some authors (Stenberg, 2010) have 

focused on prediction errors for assessing model performance since RMSE relates more 

directly with model reliability (RPD), also attested to in this study. 
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Correlation of WSA indices to IR-based predictor variables: Observed independent 

estimation of the WSA indices was strong to poor (R2 = 0.8 - 0.3), especially model 

reliability was weak to poor (RPD = 1.4 - 0.7). This is not unusual in ecological studies, 

especially for chemometrics and spectra-based soil analyses, attributed to several factors 

including: sample characteristics (provenance, composition); soil property 

characteristics (spectral response, data quality); spectra measurement region; spectral 

data pretreatment, and; calibration method (Stenberg et al., 2010).The complexity in soil 

composition distorts (through masking for example) resonance of spectra absorbance 

and reference values of analyte of interest, for example, contrary to high resonance of 

spectra and organic (plant) constituents, ascribed to the simple organic structural 

composition that is genetically controlled (Shepherd & Walsh, 2007). 

 

No absorption features have been directly associated with aggregation indices 

(Canasveras et al. 2010). However, robust (albeit weak) models for independent 

estimation of WSA indices, affirm that soil structure exhibits primary response to 

spectra as suggested by Chang et al. (2001). The role of several mechanistic processes 

responsible for calibration performance (enhancing or confounding), however, could 

only be speculative. These include effects of water-light interactions (aquaphotomics) 

(Stenberg, 2010); effect of particle-size and shape variation on spectra (Chang et al., 

2001); dynamics of microstructure and other artifacts (sample sorting) associated with 

test sample preparation and handling (Canasveras et al., 2010), and; the choice of 

aggregation indices. Further studies should focus on unraveling the mechanisms 

involved, effective indices, and the more appropriate IR-method. Stenberg et al. (2010) 

noted that rapid uptake of IR for routine soil analyses will depend on demonstrated  

understanding of the (theoretical) mechanisms involved in calibration of (especially 

secondary) soil properties. 
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IR-method sensitivity to outliers and model complexity: The NIR- based models 

were more sensitive to outliers than MIR- based models. The 2 NIR spectral outliers had 

significant effect, for example, on performance of NIR models than was the case for 7 

MIR outliers on MIR models, probably due to confounding (distortion) in absorption 

features from the weak combinations and overlapping bands in NIR. Additionally, with 

removal of spectral outliers, improved R2 was in most cases accompanied with higher 

accuracy (reduced RMSEP) for the NIR models. 

 

Models from MIRwc and NIRwc were more robust than corresponding models from raw 

spectra. Removal of spectral outliers for wavelet-based models, for example, had no 

effect on estimation of WSA indices (Tables 4.15 and 4.17). The general order of 

sensitivity to outliers was as follows: NIR > MIR ~ NIRwc/ MIRwc. Wavelet 

coefficients were entered as ‘non-spectral’ data in PLS regression modeling in The 

Unscrambler, suggesting that the coefficients might not be appropriate for subjection to 

spectral outlier removal.  

 

NIR WSA indices models indicated similar or higher complexity (more PLS PCs) than 

MIR models (except mime) (Table 4.13). Models from wavelet transform indicated 

higher parsimony than models from MIR and NIR, a finding reported also by Viscarra 

Rossel and Lark (2009). The MIRwc and NIRwc models were more robust than those of 

MIR and NIR for the soil-based predictors (eNa and WDC). The WDC models were 

more robust than eNa across IR-methods, attributed to surrogate calibration for eNa, 

whereas WDC like tClay was considered spectrally active.  

 

Effect of wet-sieving pretreatment: Models of WSA indices based on slaking plus 

mechanical disruption wet sieving pretreatment (mame, mime, unme) were less sensitive 

to outliers than those from slaking only (misp, unsp) wet sieving pretreatment.  Also, 

indices based on slaking plus mechanical disruption indicated superior models over 
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indices from slaking only through trials (i) to (iv). This was attributed to higher precision 

for the slaking plus mechanical shaking pretreatment (Table 4.2). The breakdown of 

unstable and metastable wet aggregates with shaking (Marquez et al., 2004) reduced 

aggregation to the limiting stability analogous to percolation stability demonstrated by 

Auerswald (1995). The quality of reference data greatly influences performance of IR-

based models (Reeves, 2010).   

 

Noteworthy, NIR/ NIRwc were better calibrated to wet stable micro- aggregates (mime/ 

misp) and unstable aggregate fractions (unme and unsp) than to macro aggregates 

(mame/ masp). Also NIR/NIRwc-based models were superior over their MIR/MIRwc 

counterparts across trials (i) through (iv) for WSA indices from slaking only wet-sieving 

pretreatment. This suggested that slaking only and NIR/NIRwc method was more 

appropriate for modeling wet stable micro aggregates and unstable aggregate fractions 

for the studied soils. 

 

Stable micro aggregate indices from the two wet-sieving pretreatments (mime and misp) 

were poorly calibrated to alternative IR-methods. No immediate explanation could be 

advanced since micro aggregates presented higher quality reference data than the better 

performing macro aggregates (Table 4.2). The poor performance suggested less utility of 

IR for assessing soil micro aggregation. 

 

4.2.5 Implication for soil health assessment 

IR-method and calibration validation requirement: The NIR and NIRwc were the 

IR-methods associated with the best independent estimation of the WSA indices (Table 

4.17). This might be insightful since several workers (Viscarra Rossel et al., 2006) found 

MIR superior over NIR for estimation of several soil properties.  The validation 

strategies in the reported studies (including cross validation, separate test sets) are, 

however, not as rigorous as independent testing used in this study. Notably, none of the 
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IR-methods associated with the best independent estimation of the WSA indices 

presented also the best fitting looCV models (except eNa) (Table 4.19). The strong 

looCV models could not provide, for example, the optimal (or maximal) models for the 

WSA indices when subjected to independent testing. This adds to the subjectivity of 

studies based on cross validation and affirmed the need for independent testing of soil 

IR-based looCV models (Brown et al., 2005). 

 

Table 4.19: Validation statistics and associated IR-methods comparing looCV and 

independent estimation of WSA indices.  

    Cross validation model statistics    Independent  model statistics 

Soil test 
IR-
method best trial r2 RMSECV RPD IR-method best trial r2 RMSEP RPD 

mame MIR (i) 0.58 6.26 1.63 NIR (i) 0.81 7.4 1.38 

masp MIR (i) 0.54 7.54 1.64 NIR (i) 0.42 11.44 1.08 

mime MIRwc (ii) 0.41 6.9 1.32 NIR (iii) 0.30 12.80 0.71 

misp NIR (iii) 0.39 7.97 1.39 NIRwc (i) 0.34 14.65 0.76 
unme NIR (ii) 0.65 7.37 1.83 NIRwc (i) 0.65 12.16 1.11 

unsp NIR (ii) 0.62 8.28 1.80 NIRwc (i) 0.48 16.04 0.93 
mechR NIR (i) 0.41 0.38 1.34 MIRwc (i) 0.64 0.36 1.42 

sponR NIR (i) 0.59 0.32 1.78 NIRwc (i) 0.32 0.51 1.12 

eNa MIRwc (ii) 0.73 5.15 2.45 MIRwc (i) 0.46 14.79 0.85 

WDC NIR (ii) 0.75 5.82 2.08 MIRwc (i) 0.71 8.25 1.47 
Note: (the same procedure was followed for optimization of looCV models (Table 4.10) 

and independent (Table 4.17) models; Optimization trial: (i), prediction without removal 

of outliers; (ii), prediction with removal of reference values outliers; (iii), prediction 

with removal of spectral outliers). 

 

Choice/ selected wet stable aggregation indices:  Scanty information was available 

(Canasveras et al., 2010) on spectroscopic assessment of measures of aggregation 

although soil aggregation and its stability is key for soil health (Idowu et al., 2008ab; 

Wei et al., 2006). Specifically no studies were found that further extends cross 

validation or separate test sets using independent sample datasets.  
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Superior NIR performance over MIR for independent estimation of aggregation indices 

from slaking plus mechanical disruption affirms and  extends the work of Canasveras et 

al. (2010) using looCV and that of Madari et al. (2006) using datasets highly susceptible 

to pseudo- replication and attendant pseudo-independent validation.  Superior NIR 

models for independent estimation suggested also better geographic transferability, with 

implications for robust on-site and on-the-go measurements. Notably, NIR-based 

methods were superior over MIR methods for independent estimation of aggregation 

indices from wet sieving, whereas, MIR-based methods were superior for soil-based 

indices eNa and WDC.  

 

Performance for independent estimation of macro aggregates and unstable aggregate 

fraction in this study has demonstrated potential of IR for rapid assessment of soil 

physical quality. Also available studies have focused on few aggregation indices ( 

fraction > 250 or < 250µm) and measures of aggregate-size distribution, whereas this 

study tested 8 indices including  efficacy also of IR for estimation of measures of 

aggregate “instability” and also the potential influence of mild/ spontaneous (slaking 

only) and abrasive (slaking plus mechanical shaking) aggregate breakdown.  

 

Slaking only and slaking + mechanical disruption of aggregates under controlled 

conditions mimic the effect on soil stability of low and high intensity rainfall, 

respectively. Slaking as is common to soils subject to flooding (basin, furrow) irrigation, 

and slaking plus mechanical disruption common to overhead (sprinkler) irrigation. The 

two pretreatments represent two different triggers of soil (in) stability and erosion 

(aggregate break down, detachment and transport).  The selected WSA indices provide, 

therefore, good indicators/ proxies of stability. The mame/ masp indicate, for example, 

distribution of macro pores for aeration and water movement; mime/misp distribution of 

water retention pores; unme/ unsp the risk of permeability problems with pore clogging. 
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The mechR (ratio mame: mime) and sponR (masp: misp) provide good indicator of 

porosity (and soil moisture balance).  

 

The WSA indices provide measures for wide range/ broad spectrum of stability 

sensitivity, effective for screening and prevalence assessment of stability related 

problems. The scatter for stable micro aggregates (mime), for example, is the 

converse/inverse of unme; the concentration of data points at high levels of unme and 

low levels of mime, respectively, suggested that the soils were largely unstable (see 

Figure 4.11 (c) and (e)).  

 

Most appropriate IR-method for screening WSA indices in LVB: The NIR/ NIRwc 

were associated with the best independent estimation of WSA indices. The difference 

was not profound however, comparing MIR models from Trial (i) with the statistics for 

the best validation, especially for  commonly deployed stability indices (mame, eNa, 

WDC) (Table 4.20). This suggested that the rigors in validation optimization including 

testing alternative IR-methods might not be worthwhile strategy for studies on 

diagnostic screening of stability related problems involving several hundred samples and 

multiple variables.  
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Table 4.20: Validation statistics comparing the best validation model and MIR 

(trial (i)) models for independent estimation of WSA indices. 

  
IR-method & optimal 
trial validation model 

MIR validation with 
Trial (i) 

Soil 
test IR-method best trial r2 RMSEP RPD r2 RMSEP RPD 
Mame NIR (i) 0.8 7.4 1.4 0.7 7.4 1.4 
Masp NIR (i) 0.4 11.4 1.1 0.3 13.5 0.9 
Mime NIR (iii) 0.3 12.8 0.7 N/A N/A N/A 
Misp NIRwc (i) 0.3 14.7 0.8 0.1 15.0 0.7 
Unme NIRwc (i) 0.6 12.2 1.1 0.4 13.6 1.0 
Unsp NIRwc (i) 0.5 16.0 0.9 0.2 18.3 0.8 
mechR MIRwc (i) 0.6 0.4 1.4 0.6 0.4 1.4 
sponR NIRwc (i) 0.3 0.5 1.1 0.2 0.6 1.0 
eNa MIRwc (i) 0.5 14.8 0.9 0.3 15.7 0.8 
WDC MIRwc (i) 0.7 8.3 1.5 0.7 9.1 1.3 

 

Observed calibration performance improvement with spectra wavelet transform might 

not justify, for example, the additional analytical step.  The MIR looCV models 

indicated similar or higher parsimony as NIR models, suggesting high robusticity. MIR 

was also less sensitive to outliers than MIRwc and NIRwc, whereas NIR was most 

susceptible.  This relative immunity to the presence of outliers suggested MIR to have 

additional practical advantage over the other IR-methods.  Local practicalities (MIR 

infrastructure, operator skills, soil response) suggested MIR as the more appropriate IR-

method for screening stability related problems in LVB of Kenya. 

 

4.3 Evaluation of soil stability related problems in Lower Nyando and Homa Bay 

sentinel sites 

Results are presented for key soil-based predictors of WSA indices and the predicted 

(score) value (s) of the WSA indices in LNY and HB. The established stability 

categories for individual WSA indices are followed by prevalence of stability related 

problems in the sites, within the different clusters and for different depth intervals. 
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4.3.1 Key soil-based predictors of WSA indices 

Twenty eight (28) soil properties presented strong MIR PLS models (looCV R2 ≥ 0.6) in 

sample Set 1 (n = 128) and Set 2 (n = 79) (performance is shown in Appendix 4). The 

properties were screened (separate run for Set 1 and Set 2) for prediction of each of the 

(8) WSA indices using CART regression.  There were no soil predictors of masp, 

mechR and sponR (RE ≥ 0.9). The mame (Set 1) and mime (Set 2) presented also no 

acceptable predictors (Table 4.21). 

 

Stable macro aggregate:  The mame could be predicted by pH in 1:2.5 soil-to-water 

extract (pH2.5) and soil organic carbon (OC) with 40 % accuracy. The pH2.5 was the 

main predictor with 100 % importance score while OC contributed about 56.0 %. 

Exclusion of OC as predictor (model rationalization) elevated total carbon (totC) to 

primary predictor with similar contribution as OC. This resulted, however, in a slight 

increase in prediction (relative) error (RE 0.60 to 0.68) (Table 4.21). 

 

Stable micro aggregate: The mime could be predicted by water dispersible clay (WDC) 

with modest 20.0 % accuracy. The misp presented a rather complex model with WDC, 

plastic limit (PL), and exchangeable sodium (eNa) as the key primary predictors. The 

WDC was the main predictor (100 % importance score), whereas PL and eNa made a 

contribution of 41 and 24 %, respectively. The PL split misp data twice at PL 19.3 and 

33.8 %. Removal of PL and eNa as predictors presented WDC as the sole predictor of 

misp but the RE increased from 0.50 to 0.61(Table 4.21). 

 

Unstable fraction: The unme could be predicted with 25 % accuracy by eNa in Set 1. 

The Na+ in 1:2.5 soil-to-water extract (Na2.5), PL and totC could predict unme with 34 

% accuracy in Set 2. The Na2.5 split unme data twice at 3.3 and 14.5 mg kg-1. Exclusion 

of PL and totC presented Na2.5 and pH in 1:2.5 soil-to- 1.0 N KCL solution extract 

(pHKCL) as primary predictors, however, the prediction error increased (RE 0.66 to 
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0.79). The Na2.5 could predict unsp with 32 % accuracy in Set 2. In Set 1, eNa, WDC 

and PL could estimate unsp with 37 % accuracy. Exclusion of WDC and PL presented 

eNa and effective cation exchange capacity (CEC1) as main predictors and with marked 

improvement in predictive performance (RE 0.63 to 0.59) (Table 4.21). 

 

Table 4.21: Performance of selected soil properties for prediction of WSA indices in 

two different reference sample sets.  

Target samples set RE predictor split point Importance score (%) 
mame Set 2 0.599 pH2.5 5.84 100 
      OC 2.2 55.7 
(-) OC   0.676 pH2.5 5.84 100 
      totC 2.39 50.9 
mime Set 1 0.807 WDC 34 100 
misp Set 1 0.499 WDC 32.5 100 
      PL 19.3 40.7 
      PL 33.8   
      eNa 0.34 24.1 
(-) PL & eNa   0.606 WDC 32.5 100 
  Set 2 0.636 WDC 26 100 
unme Set 1 0.75 eNa 1.25 100 
  Set 2 0.661 Na2.5 3.25 100 
      Na2.5 14.5   
      PL 23.6 13.4 
      totC 1.9 15.7 
 (-) PL & totC   0.792 Na2.5 3.25 100 
      Na2.5 14.5   
      pHkcl 4.39 13.3 
unsp Set 1 0.632 eNa 0.95 100 
      WDC 36 42.4 
      PL 23.4 33.8 
 (-)  WDC & PL 

 
0.594 eNa 0.95 100 

      CEC1 42.95 36.6 
  Set 2 0.684 Na2.5 12.75 100 
      Na2.5 61.25   
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Note: (Set 1, n = 128 from across LVB and Set 2, n = 79 representative of LNY and HB 

sentinel sites in LVB). 

````` 

Rationalized soil predictor models: The pH2.5 and OC were retained as the main 

predictors of mame. The WDC was retained sole predictor of mime and misp. The 

relatively higher RE (for misp) with exclusion of PL and eNa could be justified by the 

easy determination of WDC relative to PL and eNa. The model with Na2.5, PL, and totC 

as primary predictors (Set 2) was used for prediction of unme since the seemingly less 

complex model after removal of PL and totC significantly compromised prediction 

accuracy. The improved model for unsp with eNa and CEC1 was used (Table 4.21). 

Presumably, WDC and PL were stronger competitors of eNa (Table 4.6) masking 

importance of CEC1 for prediction of unsp.  

 

From 28 potential predictors, 8 soil properties (pH2.5, OC, WDC, eNa, Na2.5, PL, totC, 

and CEC1) indicated predictive relationship with one or more of the WSA indices. 

Notably, the list included properties shown to relate well with soil aggregation and 

stability. Kodešová et al. (2009) found, for example, that the strong correlation of WSA 

and aggregate vulnerability indices (akin to WSA indices from slaking and slaking plus 

mechanical shaking) were dependent on soil contents of OM, tClay, CEC, and pH.  Six 

soil properties (tSa, tClay, pHw, CaCO3, OM and free Fe) were key predictors of 

aggregation indices water stable aggregates, mean-weight diameter, and water 

dispersible clay (Canasveras et al., 2010). This suggested that the established 8 

properties could provide effective surrogates of the predicted WSA indices. To establish 

the three (3) more robust soil predictors, MIR PLS looCV models for the 8 properties in 

Set 1 were independently tested in Set 2. 
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Key three predictors of WSA indices: The 8 soil properties presented excellent to 

modest independent MIR models (R2 = 0.9 - 0.5) (Table 4.22).  Three properties (pH2.5, 

Na2.5 and WDC) had comparative advantage over the others including: prediction 

efficiency (RE) and variable importance score (Table 4.21). The pH2.5, Na2.5 and WDC 

were selected as the key soil-based predictors of WSA indices mame, mime, misp, unme 

and unsp. 

 

Table 4.22: Calibration and independent MIR PLS models for selected 8 soil-based 

predictors of WSA indices.  

    
Calibration with 
looCV (Set 1) 

independent validation 
(Set 2) 

Soil test  transform r2  RMSECV r2 RMSEP 
pH2.5 sqrt 0.67 0.13 0.64 0.13 
Na2.5 ln 0.57 1.61 0.52 2.80 
totC ln 0.89 0.24 0.87 0.28 
OC sqrt 0.86 0.12 0.81 0.18 
eNa ln 0.73 1.38 0.53 2.03 
CEC1 sqrt 0.86 0.52 0.89 0.63 
WDC sqrt 0.72 0.62 0.65 0.95 
PL ln 0.62 0.18 0.61 0.18 

Note: The RMSECV/ RMSEP are for transformed data. 

 

Selection of Na2.5 ahead of eNa and CEC1:  The eNa and Na2.5 indicated similar 

independent prediction (R2 = 0.52) (Table 4.22), and the two were strongly associated (r 

= 0.9). The Na2.5 had comparative advantage and was selected ahead of eNa. The Na2.5 

was easier to determine than eNa and could be read from the same soil-water suspension 

used for pH2.5 making measurements more efficient. The Na2.5 indicated slight 

superiority over eNa for prediction of unme and unsp (Set 2) (Table 4.21). The two data 

split points of Na2.5 at 3.3 and 14.5 (mg kg-1) (unme) and 12.8 and 61.3 (mg kg-1) 

(unsp), suggested potential cutoffs for more effective stability screening (Tittonell et al., 

2008). The Na2.5 was also a strong competitor and/or surrogate of eNa for prediction of 
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unme and unsp (Table 4.6). The CEC1 was strongly validated (Table 4.22) and has great 

residual value, however, routine laboratory determination was considered too rigorous. 

Figure 4.12 illustrates the predictive relationships of data for soil predictor variables 

pH2.5, WDC and Na2.5 against predicted WSA indices mame, misp, and unme. 

 

Relationship of WSA indices and predictor variables: The moderate to weak 

predictive relationships of WSA indices and the three soil properties pH2.5 water, 

Na2.5, and WDC (RE = 0.50 - 0.75) (Table 4.21) were largely non-linear (Figure 4.12). 
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Figure 4.12: Scatterplot plots for predictive relationship of  soil-based predictors 

and predicted WSA indices ( (a) pH2.5 vs mame, (b) WDC vs misp, and (c) Na2.5 vs 

unme (for Na2.5 split at 3.3 mg kg-1), and (d) Na2.5 vs unme (for Na2.5 split at14.5 mg 

kg-1)); the illustrations are based on sample Set 2, n = 79).  

   

Split interpretation for macro and micro- aggregate fraction: the combination of 

pH2.5 and OC could predict mame with accuracy of 40 % (Table 4.21). At a split point 

of 5.84 (vertical line Figure 4.12 (a)), the pH2.5 could separate lower than average 

values from higher than average values of mame. The pH2.5 values ≤ 5.84 were 

associated with higher than average values of mame (relatively stable soils). High values 

of stable macro aggregates are commonly associated with soils of low pH (Westerhof et 

al., 1999; Auerswald, 1995). Notably, there were many samples with higher than 

average mame values for pH > 5.84 (Figure 4.12 (a)), a reflection of substantial 

unexplained variance (residual heterogeneity). The WDC could predict misp with 36 % 

efficiency (Table 4.21). The WDC dichotomized misp data at WDC 26 %.  Higher than 

average values of misp had WDC values lower than the split point (Figure 4.12 (b)), 

suggesting that lower than split point values of WDC are associated with more samples 

with higher than mean values of stable micro-aggregates. This is in agreement with 
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Boix-Fayos et al. (2001) who found that aggregates < 105µm were positively correlated 

to clay content, and; water stability of micro-aggregates was positively correlated with 

clay content. The observation on WDC appeared contrary to interpretation for total clay 

where, soils with < 25 % clay were considered of inherently lower stability and those of 

> 35 % clay of inherently higher aggregate stability (Levy et al., 2003).  

 

Split interpretation for unstable fraction: Values of unme higher than about 40 % 

were associated with values of Na2.5 higher than the first split point at 3.3 mg kg -1 

(Figure 4.12 (c)). Values of unme higher than about 60 % were associated with values of 

Na2.5 higher than the second split point at 14.5 mg kg-1 (Figure 4.12 (d)). The splits 

indicated that soils with values of Na2.5 higher than the split point were relatively less 

stable than those with lower values (as expected) and also that there existed two 

identifiable levels of stability. 

 

Majority of the studied soils were unstable, demonstrated by the occurrence of most of 

the soils at low levels of wet stable macro- and micro aggregate fractions (mame and 

misp), higher levels of unstable fractions (unme and unsp), and edge cut splits (Figure 

4.12). 
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4.3.2 Predicted WSA indices in LNY and HB sentinel sites 

 

Predicted key soil predictors in LNY and HB: predicted pH2.5, Na2.5 and WDC in 

LNY and HB (Data File) is summarized in Table 4.23.   

 

Table 4.23: Predicted key three soil properties in LNY and HB sentinel sites.   

Property min 25th 50th 75th max SD 
pH2.5 
 

4.1  
(5.0) 

6.6  
(6.6) 

7.4  
(7.4) 

8.1  
(8.2) 

10.2 
(10.1) 

1.1  
(1.0) 

Na2.5 
 

0.4  
(2.0) 

5.7  
(5.0) 

14.0  
(14.5) 

32.5  
(30.6) 

755.2  
(235.0) 

49.8  
(38.3) 

 WDC 
 

1.1  
(3.0) 

23.2  
(21.0) 

28.9  
(27.0) 

35.5  
(41.0) 

50.0  
(69.0) 

9.3  
(14.0) 

 Note: (Shown are predicted values for samples in the larger set (n = 339); 

corresponding observed values for initially selected set 2 (n = 120) representative of the 

sentinel sites (in parenthesis) affirm that both sets belong to the same soil population). 

 

WSA indices grove files: Calibration models (CART grove files) for WSA indices 

mame, misp, unme, and unsp using Set 2 (n = 79) are summarized in Table 4.24. The 

mime had no predictive relationship with the set of three soil predictors (RE = 0.869). 

The unme could be predicted by Na2.5 and pH2.5 with accuracy of about 45.0 %, and 

each of the predictors split unme data twice. Removal of pH2.5 as predictor resulted in a 

slight improvement in accuracy. The Na2.5 could predict unsp with 38 % accuracy. 

 

Scoring (prediction) of WSA indices in LNY and HB: The Data File and grove files 

were used to predict (score) WSA indices mame, misp, unme and unsp for each of the 

samples in LNY and HB. The main predictor variable in the grove file determined the 

splitting (mean value (s) for the target. When the Data File was ‘dropped down’ the tree 

model (Grove File) of mame, for example, it was pH2.5 splitting rule (Table 4.24) that 

was used for scoring the data. Similarly, WDC and Na2.5 splitting rules were used for 
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splitting misp and unme/ unsp data, respectively. The score (predicted) WSA indices 

value(s) corresponded with the number of terminal nodes (TN) in the grove file 

(Steinberg & Golovnya, 2006). 

 

Table 4.24: Calibration models (CART grove files) for WSA indices using soil 

predictor set.  

Target RE 
terminal 
nodes predictor split point importance score 

mame 0.749 2 pH2.5 5.84 100 
misp 0.624 2 WDC 26 100 
unme 0.552 5 Na2.5 3.25 100 
      Na2.5 14.5   
      pH2.5 5.84 23.2 
      pH2.5 6.64   
(-) pH2.5 0.549 3 Na2.5 3.25 100 
      Na2.5 14.5   
unsp 0.615 2 Na2.5 12.75 100 

Note: (pH2.5, Na2.5, and WDC was the predictor set; Set 2 (n = 79) was used for 

developing grove files; split point: pH (unit), WDC (%), Na2.5 (mg kg-1)). 

 

Grove files of mame, misp, and unsp had two terminal nodes (Table 4.25). The 

corresponding prediction (score output) for mame was 7.3 % (TN 1) and 51.7 % (TN 2), 

misp 23.3 % (TN 1) and 37.5 % (TN 2), unsp 39.1 % (TN 1) and 66.3 (TN 2). The unme 

grove file had five terminal nodes and corresponding five score (split) values were 22.8 

(TN 1), 48.8 (TN 2), 55.2 (TN 3), 69.7 (TN 4), and 77.8 (TN 8). With exclusion of 

pH2.5 as predictor, unme grove file presented 3 terminal nodes and corresponding 3 

score (split) values as 42.3 % (TN 1), 64.9 (TN 2) and 77.8 (TN 3) (Table 4.25). 
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Table 4.25:  Predicted (score) of WSA indices and stability class in LNY and HB 

sentinel sites.  

WSA 
indices 

grove 
TN 

score 
(%) 

stability 
class 

score 
(%) 

stability 
class 

score 
(%) 

stability 
class 

mame 2 7.3 low (1) 51.7 high (0) N/A N/A 
misp 2 23.3 low (1) 37.5 high (0) N/A N/A 
unme 3 42.3 high (0) 64.5 mod 77.8 low (1) 
unsp 2 39.1 high (0) 66.3 low (1) N/A N/A 

Note: (TN, terminal node; LNY, lower Nyando; HB, Homa Bay). 

 

Assigning WSA indices score values to stability classes: The low amounts of mame 

(limit at 7.3 %) were used to define low stability and the higher score (51.7 %) to define 

high stability. Similarly low amounts of misp (23.3 %) defined low stability and the 

higher score (37.5 %) high stability.  There was no available literature providing stability 

thresh hold limits, however, the assignment was logical since the higher the amounts of 

wet stable aggregates from wet-sieving is an indication of high stability. The higher the 

amounts of water dispersed aggregates (100 – (stable macro + stable micro)) is an 

indication of low stability of the soil. For this reason, the low amounts of unme and unsp 

(22.8 and 39.1 %) were used to define relatively stable soils, while the highest amounts 

(77.8 and 66.1 %) were used to define low stability soils.  Tittonell et al. (2008) alluded 

to efficacy of imputing split values from CART regression screening to effective 

categories in soil studies. In view of the five score values for unme data, a moderate 

category (55.2 %) was defined together with two sub-categories, slightly high and 

slightly low to define transitional categories towards low and high stability soils. These 

subcategories were used only in assessing the prevalence of the different categories of 

WSA indices and were rationalized to low and high stability in assessing prevalence of 

stability problems within the sentinel sites. Samples with ≤ 48.8 % unme were classified 

as high stability, those with ≥ 69.7 % were categorized as low stability, while those with 

unme value 55.2 % were considered transitional and categorized moderate stability.  
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4.3.3 Prevalence of stability related problems in LNY and HB sentinel sites 

Prevalence of stability categories for individual WSA indices (mame, misp, unme and 

unsp) and prevalence of stability problems in LNY and HB sites, for different clusters 

within the sites and for sampled depth intervals is summarized in Tables 4.26 - 4.31.  

 

Stable macro aggregates:  more than 90.0 % of the soils in LNY and HB indicated low 

macro aggregate stability, associated with the low score (7.3 %) of mame (Table 4.26). 

This suggested high susceptibility of the soils to problems associated with poor aeration, 

low infiltration capacity and flooding hazard. Slaking plus mechanical disruption of 

wetted aggregates mimic effect of raindrop impact under field conditions (Cantón et al., 

2009). This is characteristic of tropical environments with high intensity rainfall 

(Barthes & Roose, 2002). The rigorous mechanical disruption (shaking for 1 h in a 

reciprocal shaker) might cause, however, excessively higher aggregate breakdown and 

low prevalence of stable macro-aggregates. 

 

Table 4.26: Prevalence of stability categories for WSA indices in LNY and HB 

sentinel sites.  

WSA indices 
Score 
(%)  count 

stability 
category Prev (%) =100×(count/339) 

mame 7.3 310 low 91.4 
  51.7 29 high 8.6 
misp 23.3 219 low 64.6 
  37.5 120 high 35.4 
unme  22.8 14 high 4.1 
 48.8 33 slightly high 9.7 
 55.2 38 moderate 11.2 
 69.7 88 slightly low 26.0 
 77.8 166 low 49.0 
unsp 39.1 158 high 46.6 
  66.3 181 low 53.4 
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Stable micro-aggregates: based on misp, 65 and 35 % of the soils indicated low and 

high stable micro-aggregate stability, respectively (Table 4.26). The rather narrow 

separation between low and high stability (split of misp at 23.3 and 37.5 % respectively), 

could partly be explained by the very mild aggregate break down (slaking/ spontaneous 

disruption), characteristic of overland flow/ runoff, drip or flood irrigation. The soils 

presented higher prevalence of low macro- aggregate stability (90 %) than low micro-

aggregate stability (65 %) (Table 4.26), suggesting potential for high aeration problem 

for these soils. 

 

Unstable aggregate fraction:  more than 95 % of the soils in the two sentinel sites were 

dispersible based on unme. Combining the subcategories (slightly high, slightly low) 

indicated that < 15 % of the soils could be considered stable, whereas 75 % were in low 

stability category (Table 4.26).  For mild disruption (unsp) a more even split in 

prevalence between low and high stability was observed (Table 4.26). The five score 

values for unme suggested that the unstable fraction had inherent functional 

characteristics that could be segregated.  It was not possible to establish definitive 

stability sub-categories, however, for the intermediate split points. The rigorous wet 

sieving pretreatment for unme might partly explain the lower split (score) value for high 

stability (23 %) compared to unsp (39 %) (Table 4.26). 

 

The WSA indices indicated variation in prevalence for low stability: mame (90 %), misp 

(65 %), unsp (53 %), and unme (75 %), suggesting that the aggregation indices 

explained different dimensions of stability problems. The low amounts of mame raises 

hazard for low air and water movement. The low stable micro aggregates and high 

unstable fraction aggravates aeration problems and high water retention raising hazard of 

waterlogging. Between 50 and 65 % of the soils were highly susceptible to disruption as 

would be occasioned by light rainfall shower or flood irrigation. About 75 % of the soils 
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were highly susceptible to effect of high intensity rainfall (aggregate breakdown and 

surface transport). There were no comparable prevalence studies in the literature.  

 

Prevalence of stability problems in LNY and HB:  The soils within lower Nyando 

(LNY) and Homa Bay (HB) sentinel sites indicated 66 % low stability prevalence.  

Prevalence of low stability was higher in HB (73 %) than LNY (61 %). The sites 

indicated about 80 % risk (combining low and moderate categories) of stability 

problems (Table 4.27). 

  

Table 4.27: Prevalence of stability related problems in LNY and HB sentinel sites. 

Site stability class count Prevalence (%) = (count/n)×100 
LNY (n = 172) low 104 60.5 
  mod 33 19.2 
  high 35 20.3 
HB (n = 167) low 122 73.1 
  mod 9 5.4 
  high 36 21.6 
both (n = 339) low 225 66.4 
  mod 41 12.1 
  high 71 20.9 

 

Low stability in clusters within LNY and HB: Four clusters representing 25.0 % of 

lower Nyando (LNY) site indicated 100.0 % low stability prevalence. The clusters are 

flagged (*) and marked ‘hotspot’. Additional 25.5 % (clusters 2, 3, 7, and 12) had ≥ 70.0 

% low stability prevalence. Clusters with between 0.0 and 25.0 % low stability 

prevalence (clusters 1, 5, 13, and 14) (Table 4.28) were considered at low risk. Figure 

3.2 illustrates the distribution of the different clusters in LNY. 
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Table 4.28: Low stability prevalence of different clusters in LNY sentinel site.  

Cluster 
ID 

low 
count 

mod 
count 

high 
count 

total 
samples 

low prev (%) = (100×(low count/ 
total)) 

1** 2 5 5 12 16.7 
2 9 1 2 12 75.0 
3 10 3 0 13 76.9 
4* 12 0 0 12 100.0 
5** 2 1 5 8 25.0 
6 5 5 0 10 50.0 
7 12 3 0 15 80.0 
8* 15 0 0 15 100.0 
9 3 1 7 11 27.3 
10* 10 0 0 10 100.0 
11* 11 0 0 11 100.0 
12 5 1 1 7 71.4 
13** 1 0 11 12 8.3 
14** 0 6 1 7 0.0 
15 3 5 1 9 33.3 
16 4 2 2 8 50.0 

Note: (*, low stability count by all WSA indices and designated hotspots; * *- high 

stability count by all or majority WSA indices). 

 

Four clusters (1, 3, 5 and 9), representing about 25.0 % of Homa Bay (HB) site indicated 

100.0 % low stability prevalence (hotspot). Additional six clusters (2, 6, 7, 8, 10 and 13) 

(Table 4.29) had ≥ 70.0 % low stability prevalence and were considered at risk. Clusters 

12 and 16 indicated 0.0 % low stability prevalence and were considered at low risk. 

Figure 3.3 illustrates the distribution of the different clusters in HB. 
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Table 4.29: Low stability prevalence in different clusters in HB sentinel site.  

Cluster 
ID 

low 
count 

mod 
count 

high 
count 

total 
samples low prev (%) = (100×(low count/total)) 

1* 12 0 0 12 100.0 
2 13 2 0 15 86.7 
3* 11 0 0 11 100.0 
4 5 0 5 10 50.0 
5* 12 0 0 12 100.0 
6 8 0 2 10 80.0 
7 7 1 2 10 70.0 
8 5 0 1 6 83.3 
9* 14 0 0 14 100.0 
10 8 0 1 9 88.9 
11 3 2 5 10 30.0 
12** 0 0 7 7 0.0 
13 13 0 2 15 86.7 
14 4 3 0 7 57.1 
15 5 1 3 9 55.6 
16** 0 0 7 7 0.0 

Note: (*, low stability count by all WSA indices and designated hotspot; * *- high 

stability count by all or majority WSA indices). 

 

Study field- data collection following the LDSF protocol included recording of also 

ancillary data in each of the 16 clusters for each sentinel site. The data included field soil 

texture, land use/ land cover including bare ground and vegetation cover, visible erosion, 

and basic infiltration rates. Analyses of this data together with predicted values for 

stability indicator soil properties (pH, Na2.5 and WDC) should enable future more 

effective characterization of the ‘hotspot’ and stable clusters within sentinel sites. This 

analyses could, however, not be realized in this study. 

Low stability prevalence for each cluster was based on a maximum of 15 samples (5 

plots sampled at three depth intervals) due to cost constraint of wet chemistry analysis). 

There were clusters also where far less samples were available where depth was 

limiting. This indicated low intensity data suggesting caution in prevalence 
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interpretation.  The trends were evident, however, for rapid diagnostic screening 

purposes. Also the LDSF protocol is unbiased in cluster and sampling plot selection. The 

LDSF protocol allows determining the number of sampling plots within a cluster and 

future similar studies should consider using more plots for instance 10 to 15 

(deGraffenried & Shepherd, 2009), for more effective cluster-based low stability 

prevalence assessment.  Soil stability is a major risk factor of soils degradation in LVB 

of Kenya (Waruru et al., 2003ab). 

 

Low stability for different depth intervals in LNY and HB:  In LNY 50 - 57 % of the 

top (0-50 cm soil depth) and 71 % of the deeper (50 - 100 cm) subsoil were of low 

stability. In HB 60 % of the surface (0 - 20 cm), 80 % of immediate subsurface (20 – 50 

cm) and > 90 % of deeper subsoil (50 - 100 cm) were of low stability. About 55 % of 

topsoil, 68 % subsoil and 80 % deeper subsoil in LNY and HB indicated low stability 

(Table 4.30). 

 

Table 4.30: Low stability prevalence for different depth intervals in LNY and HB 

sentinel sites. 

Site 
depth 
(cm) 

low 
count 

total 
samples prev (%) = [(low count/total)×100] 

LNY 0 -20 29 58 50 
  20 - 50 31 54 57.4 
  50 - 100 32 45 71.1 
HB 0 -20 35 59 59.3 
  20 - 50 37 46 80.4 
  50 - 100 32 35 91.4 
Both 0 -20 64 117 54.7 
  20 - 50 68 100 68 
  50 - 100 64 80 80 
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In LNY 75 % for the top and 85 % for the deeper subsoil were at risk (low + moderate 

prevalence) of stability related problems.  More than 66 % of the topsoil, 83 % of 

subsoil and 94 % of deeper subsoil in HB were at risk (low + moderate) of stability 

related problems. About 72 % of topsoil, 78 % of immediate subsoil and 89 % of deeper 

subsoil in LNY and HB were at risk (low + moderate prevalence) of stability related 

problems (Table 4.31). 

 

Table 4.31: Risk of stability problems for different depth intervals in LNY and HB 

sentinel sites.  

    Count prev (%) = 100×(count/total) 

Site 
Depth 
(cm) low  mod  high  total  low  mod  high  low + mod 

LNY 0 -20 29 16 13 58 50 27.6 22.4 77.6 
  20 - 50 31 9 14 54 57.4 16.7 25.9 74.1 
  50 - 100 32 6 7 45 71.1 13.3 15.6 84.4 
HB 0 -20 35 4 20 59 59.3 6.8 33.9 66.1 
  20 - 50 37 1 8 46 80.4 2.2 17.4 82.6 
  50 - 100 32 1 2 35 91.4 2.9 5.7 94.3 
Both 0 -20 64 20 33 117 54.7 17.1 28.2 71.8 
  20 - 50 68 10 22 100 68 10 22 78 
  50 - 100 64 7 9 80 80 8.8 11.3 88.8 

 

Prevalence of stability problems for different depth-intervals informs potential risk for 

soil splash, sheet wash, rill and inter-rill and gully erosion. About 75 % of the surface 

and 85 % of the deeper subsoil in LNY were highly susceptible to erosion. In HB 66 % 

of the surface and 94 % of the deeper subsoil were highly susceptible. Removal of the 

topsoil through inappropriate land use practices has exposed the more vulnerable deeper 

soils contributing to severe gully development within LVB (Waruru & Wanjogu, 2002). 
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4.4 Wet stable aggregation (WSA) indices most appropriate for screening soil 

stability problems using IR-based models in LVB of Kenya 

 Performance of soil property sets: (i),  pH2.5, Na2.5, WDC; (ii), pH2.5, Na5, WDC; 

(iii), pH2.5, eNa, WDC, and; (iv), pH2.5, ESP, WDC) for prediction of WSA indices 

from CART regression is presented in Tables 4.32 - 4.34. Tables 4.35 - 4.42 present 

performance of sets (i) and (iii) in assessing prevalence of stability related problems in 

lower Nyando (LNY) and Homa Bay (HB) sites. Table 43 presents the most appropriate 

WSA indices for screening stability problems in LVB. 

 

4.4.1 Performance of soil property sets and MIR for estimation of WSA indices 

Soil properties pH2.5, Na2.5, Na5, eNa, ESP and WDC were key for prediction of WSA 

indices (Table 4.22). Tables 4.32 and 4.33 present the performance of the four three 

property sets ((i),  pH2.5, Na2.5, WDC; (ii), pH2.5, Na5, WDC; (iii), pH2.5, eNa, WDC, 

and; (iv), pH2.5, ESP, WDC) and MIR for PLS estimation of the WSA indices. 

 

Soil-based estimation of WSA indices:  The sponR could not be predicted by the four 

soil predictor sets (RE > 1.0) (Table 4.32). Sets (i) and (ii) could not predict masp and 

mime. Set (i) (with Na2.5) could not predict mechR, whereas set (ii) (with Na5) could 

predict mechR with 42 % accuracy. Set (i) presented an elaborate (albeit more complex) 

decision tree model for prediction of unme with double split points for both Na2.5 and 

pH2.5, whereas set (ii) presented weak model with < 10 % accuracy.  Set (i) could 

predict unsp with higher efficiency than set (ii), whereas set (ii) could predict mame with 

higher accuracy. Set (i) was considered more appropriate for prediction of WSA indices 

ahead of set (ii), also because both pH2.5 and Na2.5 could be read from the same soil-

water extract making data acquisition more efficient. Sets (iii) and (iv) indicated similar 

RE for prediction of mame, mime, misp, and mechR. Set (iv) (with ESP) could not 

predict masp, but could better predict unme and unsp than set (iii) (with eNa). Set (iii) 

models for unme and unsp were more complex than set (iv), a practical advantage for 
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screening purposes. Set (iii) was considered more appropriate ahead of set (iv) for 

prediction of WSA indices, also due to easier determination of eNa than ESP. 
 

Notably, eNa was less sensitive to unme (eNa was for instance outdone by pH2.5 for 

prediction of unme), but was more sensitive to unsp in set (iii), affirming Bell (2000) 

that eNa is key for assessing spontaneous aggregate disruption (slaking). The effect of 

sodicity on aggregate stability was low to quantify (Levy et al., 2003), and was probably 

further obscured by mechanical disruption.  Effective assessment of sodicity on soil 

aggregation requires use of the more sensitive High Energy Moisture Characteristic 

(HEMC) method by Mamedov et al. (2007). 

  

Table 4.32: Performance of four different soil predictor sets for estimation of WSA 
indices.  

    mame masp mime misp unme unsp mechR 

Set (i) RE 0.75 0.97 0.9 0.62 0.55 0.62 0.79 

  TN 2 N/A N/A 2 5 2 N/A 

  Splitter (s) pH2.5 N/A N/A WDC Na2.5a/pH2.5b Na2.5 N/A 

  Split (s) 5.84 N/A N/A 26 3.3; 14.5 / 5.8; 6.4 12.8 N/A 

  Score 100 N/A N/A 100 100 / 23 100 N/A 

Set (ii) RE 0.52 0.85 0.9 0.62 0.9 0.7 0.58 

  TN 2 N/A N/A 2 2 2 2 

  Splitter (s) pH2.5 N/A N/A WDC Na5 Na5 pH2.5 

  Split (s) 5.84 N/A N/A 26 14.5 14.5 5.84 

  Score 100 N/A N/A 100 100 100 100 
Set 
(iii) RE 0.52 0.71 0.89 0.62 0.89 0.72 0.58 

  TN 2 2 2 2 2 2 2 

  Splitter (s) pH2.5 eNa WDC WDC pH2.5 eNa pH2.5 

  Split (s) 5.84 0.47 28 26 6.23 3.72 5.84 

  Score 100 100 100 100 100 100 100 
Set 
(iv) RE 0.52 0.88 0.84 0.62 0.61 0.61 0.58 

  TN 2 N/A 2 2 4 5 2 

  Splitter (s) pH2.5 N/A WDC WDC ESP/pH2.5/WDC ESPc/pH2.5/WDC pH2.5 

  Split (s) 5.86 N/A 28 26 2.4/6.3/26 4.3 ; 27.8/6.3/26 5.84 

  Score 100 N/A 100 100 100/44/19 100/6/22 100 



183 

 

Note: (CART regression models were developed using Set 2, n = 79; predictor set (i): 

pH2.5, Na2.5, WDC; set (ii): pH2.5, Na5, WDC; set (iii): pH2.5, eNa, WDC, and; set 

(iv): pH2.5, ESP, WDC; Na2.5a, Na2.5 split unme data twice, at 3.3 and 14.5 (mg kg -1); 

pH2.5b, the pH2.5 split unme data twice, at 5.8 and 6.4 (unit); ESPc, the ESP split unme 

data twice at 4.3 and 27.8 (%); RE, regression relative error; TN, terminal node; N/A 

(not applicable), no regression tree model was grown (RE ≥ 0.9)). 

 

PLS calibration of WSA indices on soil predictors and MIR: The MIR was superior 

over soil-based predictor sets for estimation of mame, unme and mechR. The soil-based 

sets were superior over MIR for masp, misp, unsp, sponR and for mime.  The sponR 

could not be estimated by MIR or soil property sets (R2 < 0.24) (Table 4.33). Notably, 

the MIR was superior over the soil property sets for prediction of WSA indices from 

slaking plus mechanical disruption wet-sieving pretreatment, whereas the soil-based sets 

were superior over MIR for indices from slaking only pretreatment.  This suggested 

combining to advantage MIR and soil-based sets for development of more effective 

pedotransfer functions for estimation of WSA indices from the two different wet-sieving 

pretreatments. Canasveras et al. (2010) found R2 = 0.23 for prediction of water stable 

aggregates (fraction > 250 µm) using a set of six soil properties (tSa, tClay, pHw, 

CaCO3, OM, and Fe), and R2 = 0.53 combining spectra and the soil property set datasets. 
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Table 4.33:  Performance of four different soil predictor sets and MIR for 

estimation of WSA indices.  

  Set (i) set (ii) set (iii) set (iv) MIR 

Target r2 RMSECV r2 RMSECV r2 RMSECV r2 RMSECV r2 RMSECV 
mame 0.44 0.78 0.42 0.79 0.41 0.80 0.45 0.78 0.68 0.60 
masp 0.47 0.63 0.46 0.64 0.42 0.66 0.46 0.64 0.34 0.71 
mime 0.31 0.70 0.28 0.71 0.26 0.72 0.28 0.71 0.19 0.76 
misp 0.32 9.33 0.30 9.41 0.28 9.59 0.27 9.63 0.09 10.80 
unme 0.44 12.17 0.41 12.48 0.41 12.55 0.45 12.12 0.65 9.69 
unsp 0.58 12.49 0.55 12.83 0.54 13.09 0.56 12.73 0.38 15.13 
mechR 0.28 0.78 0.28 0.78 0.28 0.78 0.30 0.77 0.58 0.59 
sponR 0.23 0.76 0.23 0.76 0.21 0.77 0.24 0.75 0.18 0.79 

Note: (PLS models were developed using samples Set 2, n = 79; calibration is with 

looCV; RMSECV values for mame, masp, mechR and sponR are shown on logarithmic 

(ln) scale and mime on sqrt scale); (set (i): pH2.5, Na2.5, WDC; set (ii): pH2.5, Na5, 

WDC; set (iii): pH2.5, eNa, WDC, and; set (iv):pH2.5, ESP, WDC). 

 

The two most appropriate soil predictor sets: Set (i) (pH2.5, Na2.5, WDC) and set 

(iii) (pH2.5, eNa, WDC) were considered most appropriate for estimation of WSA 

indices. The PLS models using these predictor sets could match MIR for masp, mime, 

misp, unsp, and sponR (Table 4.33). 

 

The four soil-based sets alternated sodicity indices (Na2.5, Na5, eNa and ESP) in the 

three-variable predictor sets. Sodium is a major risk factor in soil degradation, especially 

in relation to stability in LVB of Kenya (Waruru et al., 2003b; Waruru & Wanjogu, 

2002). Using set (i) with Na2.5 unme data was split by Na2.5 and pH2.5 and at different 

data points, presenting better opportunity for separation of low and high stability 

categories for prevalence assessment, unlike set (ii) with Na5 that presented only one 

split (Table 4.32). The accuracy was much higher also using set (i) than using set (ii). 

Also Na2.5 could be read from the same soil-water extract used for pH2.5. Set (iv) with 

ESP appeared more appropriate proxy for WSA indices ahead of set (iii) with eNa from 
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CART screening, however, ESP is a derivative of eNa and its computation requires also 

determination of effective CEC making data acquisition more rigorous and expensive.  

Table 4.34 illustrates rationalization (based on RE) used to establish set (i) and set (iii) 

as the more appropriate soil-based sets for estimation of WSA indices. 

 

Table 4.34: Efficiency of soil predictor sets for estimation of WSA indices.  

Target 
set 
(i) 

set 
(ii) 

set 
(iii) set (iv) 

mame (o) (-) (-) (-) 
masp N/A N/A ** N/A 
mime N/A N/A * ** 
misp (-) (-) (-) (-) 
unme ** (o) (-) * 
unsp * (-) (-) ** 
mechR N/A (-) (-) (-) 

Note: [(**), highest efficiency ;(*), second best; (o), lowest efficiency; (-), no difference 

between sets; N/A (not applicable), no predictive relationship; set (i), (ii), (iii) and (iv) 

as defined in Table 4.33].   

 

4.4.2 Predicted (score) values for WSA indices in LNY and HB 

Tables 4.36 and 4.37 present grove files (calibration models) and predicted (score) 

values of WSA indices for soil predictor sets (i) (pH2.5, Na2.5, WDC) and (iii) (pH2.5, 

eNa, WDC). 

 

Predicted (score) WSA indices in LNY and HB: Predicted (MIR) soil property data in 

LNY and HB (n = 339) (Data File) was in similar range as for observed values in the 

representative (n = 79) set.  MIR overestimated, however, upper range values for Na2.5 

and eNa (Table 4.35). 
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Table 4.35: Data range for predictor soil properties in LNY and HB sentinel sites. 

Soil 
property 

observed in representative 
set   
(n = 79) 

predicted in LNY and HB  
(n = 339) 

 min max min max 
pH2.5 5.0 10.1 4.1 10.2 
WDC 3.0 61.0 1.1 50.0 
Na2.5 2.0 235.0 0.4 755.2 
eNa 0.0 42.4 0.0 83.9 

 

Grove Files for WSA indices: Set (i) and (iii) could not predict sponR (RE > 1.0). Set 

(i) models for also masp, mime, and mechR were not acceptable (RE ≥ 0.8), whereas set 

(iii) could predict these indices with 12 to 42 % accuracy. Set (i) was superior over set 

(iii) for unme and unsp, whereas set (iii) was superior for mame and masp. Notably only 

mame, misp, unme and unsp were available for prevalence assessment using set (i) 

predictor properties (Table 4.36), similar to Table 4.21 using identical set of soil 

predictor properties. 

 

Table 4.36: Grove files for WSA indices using selected two different soil predictor 
sets. 
 

  Set (i) set (iii) 
Target RE TN splitter (s) split score RE TN splitter split score 
mame 0.749 2 pH2.5 5.84 100 0.522 2 pH2.5 5.84 100 
masp 0.966 N/A N/A N/A N/A 0.707 2 eNa 0.47 100 
mime 0.896 N/A N/A N/A N/A 0.888 2 WDC 28 100 
misp 0.624 2 WDC 26 100 0.623 2 WDC 26 100 

unme 0.552 5 Na2.5a/pH2.5b 3.25/ 5.84 100/ 23 0.893 2 pH2.5 6.23 100 
unsp 0.615 2 Na2.5 12.8 100 0.718 2 eNa 3.72 100 
mechR 0.785 N/A N/A N/A N/A 0.581 2 pH2.5 5.84 100 
sponR 1.126 N/A N/A N/A N/A 1.018 N/A N/A N/A N/A 
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Note: (set (i): pH2.5, Na2.5, WDC; set (iii): pH2.5, eNa, WDC; grove files were 

developed using reference Set 2, n = 79 representative of LNY and HB; Na2.5a, Na2.5 

split unme data twice at 3.3 and 14.5 mg kg-1; pH2.5b, pH2.5 split unme data twice at 

5.8 and 6.6; Na2.5 indicated 100 % importance score, whereas pH2.5 contributed 23 % 

to unme split; TN, terminal node; RE, relative error). 

 

Predicted (score) values for WSA indices in LNY and HB: Performance 

correspondence was observed for set (i) and set (iii) for scoring misp and unsp data 

(Table 4.37). Observed five score values for unme (18.3, 27.5, 55.2, 69.7, and 77.8 %) 

using set (i), suggested high sensitivity of unstable aggregate fraction to different levels 

of Na2.5 and pH2.5. The single score value for mame, unme, and mechR using set (iii) 

(for 2 TN), suggested less efficacy of set (iii) for prediction of these indices. CART is 

generic software, however, and some of its outputs could be counter-intuition (Steinberg 

& Colla, 2001). 

 

Table 4.37: Score values of WSA indices for selected two soil predictor sets. 

 
    WSA predicted (score) values 

Target 
predictor 
set 

grove 
TN TN1 TN2 

 mame set (i) 2 7.3 51.7 
  set (iii) 2 7.3   
masp set (iii) 2 10.7 28.4 
mime set (iii) 2 18.3 27.5 
misp set (i) 2 23.3 37.5 
  set (iii) 2 23.3 37.5 
unme set (i)a 5 22.8 48.8 
  set (iii) 2 71.1   
unsp set (i) 2 39.1 66.3 
  set (iii) 2 40.2 66.5 
mechR set (iii) 2 0.31   
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Note: (set (i): pH2.5, Na2.5, WDC; set (iii): pH2.5, eNa, WDC; TN, terminal node; set 

(i)a,  prediction (score) values for TN 3, 4 and 5 were 55.2, 69.7 and 77.8 (%), 

respectively); Data file of predicted soil predictors was dropped down (scored) grove 

file for each of the WSA indices; the score value (s) coincided with the TN of the 

particular grove file).  

 

The scored WSA indices were used to categories samples in the sites to (low/ high) 

stability. The tally for category score was used to assess prevalence for the category in 

LNY and HB. Separation of low and high stability categories for slaked only (and 

micro-aggregate) indices (masp, mime, misp, unsp) was evident but not so for mame, 

unme, and mechR (Table 4.37). This affirmed observed more sensitivity of WSA indices 

to eNa for slaked only (and for also micro-aggregates) fractions. The eNa was outclassed 

by Na2.5, however, for prediction of both unme and unsp (Table 4.36). 

 

4.4.3 Prevalence of stability related problems in LNY and HB sentinel sites 

Stability categories for indivindual WSA indice: Separation (albeit weak) of low/high 

prevalence based on predictor set (i) indicated that mame was more sensitive to pH2.5 

with Na2.5 than to pH2.5 with eNa in set (iii). The five levels of prevalence from set (i) 

for unme, suggested better delimitation of soil dispersion potential in the sentinel sites. 

Set (iii) could better discern differences in prevalence of masp. Correspondence for 

score values for misp and unsp (set (i) and set (iii)) was followed by corresponding 

prevalence (misp that is). Single score value for mame, unme and mechR and 

corresponding 100 % low prevalence using set (iii), indicated less sensitivity of the 

predictor variables,  suggesting more advantage using set (i) for these indices (Table 

4.38).  
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Table 4.38: Prevalence of stability category for WSA indices for selected two soil 

predictor sets. 

Target 
predictor 
set score 

stability 
class count prev (%) = 100×(count/339) 

mame set (i) 7.3 low 310 91.4 
  

 
51.7 high 29 8.6 

  set (iii) 7.3 low 339 100 
masp set (iii) 10.7 low 246 72.6 
  

 
28.4 high 93 27.4 

mime set (iii) 18.3 low 183 54 
  

 
27.5 high 156 46 

misp set (i) 23.3 low 219 64.6 
  

 
37.5 high 120 35.4 

  set (iii) 23.3 low 219 64.6 
  

 
37.5 high 120  35.4 

unme set (i) 22.8 high 14 4.1 
  

 
48.8 slightly high 33 9.7 

  
 

55.2 moderate 38 11.2 
  

 
69.7 slightly low 88 26 

  
 

77.8 low 166 49 
  set (iii) 71.1 low 339 100 
unsp set (i) 39.1 high 158 46.6 
  

 
66.3 low 181 53.4 

  set (iii) 40.2 high 117 34.5 
  

 
66.5 low 222 65.5 

mechR set (iii) 0.31 low 339 100 
 

Stability problems in LNY and HB: high stability prevalence was about 20 % in LNY 

and HB from both set (i) and set (iii). Set (i) indicated also 20 % moderate stability 

prevalence (Table 4.39). The low plus moderate prevalence using set (i) was similar to 

low prevalence using set (iii). 
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Table 4.39: Prevalence of stability problems in LNY and HB for selected two soil 
predictor sets.  

  
Stability 
class count prev (%) = 100×(count/n) 

Sentinel site 
 

set 
(i) set (iii) set (i) set (iii) 

LNY (n = 
172) low 104 133 60.5 77.3 
  mod 33 N/A 19.2 N/A 
  high 35 39 20.3 22.7 
HB (n = 
167) low 122 130 73.1 77.8 
  mod 9 N/A 5.4 N/A 
  high 36 37 21.6 22.2 
both (n = 
339) low 225 263 66.4 77.6 
  mod 41 N/A 12.1 N/A 
  high 71 76 20.9 22.4 

 

Set (i) was more sensitive to levels of WSA indices than set (iii), allowing prevalence 

assessment of moderate stability category. Combining moderate and low stability 

prevalence (set (i), provide better indication of stability risk for management 

intervention (Table 4.39). 

 

Stability problems in different clusters from LNY: Set (i) could discern a moderate 

stability category for some clusters, whereas set (iii) presented only low and high 

categories. The low plus moderate prevalence using set (i) was similar to low prevalence 

using set (iii) for most of the clusters. Both sets similarly identified ‘hotspot’ (100 % low 

stability prevalence) clusters 4, 8, 10, and 11, however, stable cluster 14 using set (i) was 

identified as moderate  using set (iii)  (Table 4.40). 
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Table 4.40: Prevalence of stability problems in LNY clusters for selected two soil 

predictor sets.  

 
Count   prev (%) = 100× (count/total) 

  Set (i) set (iii) 
 

set (i) set (iii) 

Cluster low mod low  mod 
 
total low mod low mod 

1 2 5 8 N/A 12 16.7 41.7 66.7 N/A 
2 9 1 10 N/A 12 75 8.3 83.3 N/A 
3 10 3 12 N/A 13 76.9 23.1 92.3 N/A 
4* 12 0 12 N/A 12 100 0 100 N/A 
5 2 1 6 N/A 8 25 12.5 75 N/A 
6 5 5 5 N/A 10 50 50 50 N/A 
7 12 3 14 N/A 15 80 20 93.3 N/A 
8* 15 0 15 N/A 15 100 0 100 N/A 
9 3 1 5 N/A 11 27.3 9.1 45.5 N/A 
10* 10 0 10 N/A 10 100 0 100 N/A 
11* 11 0 11 N/A 11 100 0 100 N/A 
12 5 1 6 N/A 7 71.4 14.3 85.7 N/A 
13 1 0 9 N/A 12 8.3 0 75 N/A 
14 0 6 1 N/A 7 0 85.7 14.3 N/A 
15 3 5 7 N/A 9 33.3 55.6 77.8 N/A 
16 4 2 6 N/A 8 50 25 75 N/A 

Note: (*, hotspot, clusters scored as low stability by all WSA indices; see Figure 3.2 for 

distribution of clusters in LNY). 

 

Stability problems in different clusters from HB: Set (i) and set (iii) indicated perfect 

correspondence in identifying hotspot (100 % low stability prevalence) clusters 1, 3, 5, 

and 9. There was perfect correspondence also in low stability prevalence for clusters 6, 

7, 10, 13, and stable cluster 16. Predictor set (i) identified moderate stability category 

(for instance cluster 2, 7, and 14), whereas set (iii) indicated only low/high categories. 

Low plus moderate prevalence using set (i) was similar; for example, to low prevalence 

using set (iii) for clusters 2, 11, and 15 (Table 4.41). 
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Table 4.41: Prevalence of stability problems in HB clusters for selected two soil 

predictor sets. 

 
Count   prev (%) = 100× (count/ total) 

  Set (i) set (iii) 
 

set (i) set (iii) 
Cluster low mod low  mod total low mod low mod 
1* 12 0 12 N/A 12 100 0 100 N/A 
2 13 2 15 N/A 15 86.7 13.3 100 N/A 
3* 11 0 11 N/A 11 100 0 100 N/A 
4 5 0 7 N/A 10 50 0 70 N/A 
5* 12 0 12 N/A 12 100 0 100 N/A 
6 8 0 8 N/A 10 80 0 80 N/A 
7 7 1 7 N/A 10 70 10 70 N/A 
8 5 0 6 N/A 6 83.3 0 100 N/A 
9* 14 0 14 N/A 14 100 0 100 N/A 
10 8 0 8 N/A 9 88.9 0 88.9 N/A 
11 3 2 5 N/A 10 30 20 50 N/A 
12 0 0 1 N/A 7 0 0 14.3 N/A 
13 13 0 13 N/A 15 86.7 0 86.7 N/A 
14 4 3 3 N/A 7 57.1 42.9 42.9 N/A 
15 5 1 6 N/A 9 55.6 11.1 66.7 N/A 
16 0 0 0 N/A 7 0 0 0 N/A 

Note: (*, hotspot, clusters scored as low stability by all WSA indices; see Figure 3.3 for 

distribution of clusters in HB). 

 

Stability problems for different depth-intervals: Low stability prevalence was 

between 50 - 70 % (LNY) and 60 - 90 % (HB) across depth-intervals for set (i). For set 

(iii) low stability prevalence was 70 - 80 % (LNY) and 70 - 95 % (HB) across depth-

intervals.  Set (i) identified also moderate stability category for the different depth-

intervals for both LNY and HB. The low plus moderate prevalence using set (i) was 

similar to low prevalence using set (iii) for the different depth-intervals from LNY and 

HB. Based on the two predictor sets between 25 and 30 % of topsoil, 20 - 25 % of 

subsoil, and 15 - 20 % of deep subsoil of LNY were of high stability (Table 4.42).  
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Table 4.42: Prevalence of stability problems in different depth intervals for selected 

two soil predictor sets. 

    Count   prev (%) = 100× (count/total) 
    Set (i) set (iii) 

 
set (i) set (iii) 

Site 
depth 
(cm) low mod low  mod total low mod low  mod 

LNY 0 -20 29 16 40 N/A 58 50 27.6 69 N/A 
  20 - 50 31 9 41 N/A 54 57.4 16.7 75.9 N/A 
  50 - 100 32 6 37 N/A 45 71.1 13.3 82.2 N/A 
HB 0 -20 35 4 40 N/A 59 59.3 6.8 67.8 N/A 
  20 - 50 37 1 38 N/A 64 57.8 1.6 59.4 N/A 
  50 - 100 32 1 33 N/A 35 91.4 2.9 94.3 N/A 
both 0 -20 64 20 80 N/A 167 38.3 12 47.9 N/A 
  20 - 50 68 10 79 N/A 118 57.6 8.5 66.9 N/A 
  50 - 100 64 7 70 N/A 80 80 8.8 87.5 N/A 

 

Stability decreased with depth for low (plus moderate) stability prevalence in LNY (73, 

75, and 83 %) and low prevalence in HB (67, 59, and 94 %) for surface, subsoil, and 

deep subsoil respectively (Table 4.42). Erosion of topsoil has exposed the more 

vulnerable subsoil causing rills and gullies in lowland LVB (Waruru & Wanjogu, 2002). 

 

4.4.4 Most appropriate WSA indices for screening stability problems in LVB 

Performance correspondence of soil predictor sets: Soil predictor sets (i) (pH2.5, 

Na2.5, WDC) and set (iii) (pH2.5, eNa, WDC) indicated high correspondence in 

prevalence assessment of stability related problems. 

 

The single score values for mame, unme and mechR were all categorized as low stability 

(Table 4.38), giving the tally for low stability already a high head start using set (iii). 

This might suggest that either: all the studied soils were unstable based on slaking plus 

mechanical shaking; that the shaking was too abrasive disrupting even stable aggregates 

and therefore was not realistic, or; that the predictor set (iii) with eNa was less 

appropriate for assessing stability problems  for the studied soil. 
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Implicit in prevalence assessment was the possibility of subjectivity also in tallying low, 

moderate, and high stability categories across WSA indices. Where the tally for 

moderate count was equal to that for low or high stability count, for example, the sample 

was assigned to moderate category, and this inadvertently might have overestimated 

moderate prevalence and probably more important underestimated low stability 

prevalence.  However, low plus moderate prevalence using set (i) was similar to low 

prevalence using set (iii), suggesting that the moderate category belong to low (more 

than high) stability in set (i). This suggested that low stability prevalence for set (iii) and 

combination of low plus moderate prevalence for set (i) provided better indicator of soils 

at risk of stability related problems in LVB.  

 

Most appropriate WSA indices and thresh hold values: The mame, misp, unme, and 

unsp and their respective thresholds for low and high stability (10 and 50, 20 and 40, 70 

and 20, 65 and 40 %, respectively), were the most appropriate indices for diagnostic 

screening and prevalence assessment of stability related problems using IR-based 

models in LVB of Kenya. This was informed by the correspondence and convergence in 

performance of the two most appropriate soil-based predictor sets for estimation of the 

WSA indices. The rounding up of the indices is for simplicity, taking into account also 

the moderate to low levels of accuracy achieved for predictions by the soil-based 

predictor sets (Table 4.32).  

 

Table 4.43: Indices of WSA most appropriate for screening stability related 

problems using IR-based models. 

WSA indices low stability index (%) high stability index (%) 
mame 7.3 (10.0) 51.7 (50.0) 
misp 23.3 (20.0) 37.5 (40.0) 
unme 69.7 (70.0) 22.8 (20.0) 
unsp 66.5 (65.0) 39.1 (40.0) 

Note: (values in parenthesis are approximations for easy reference). 
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Implication for stability related studies in LVB: The most appropriate WSA indices 

(mame, misp, unme and unsp) suggested that soil aggregation and aggregate stability 

under wetting field conditions in LVB is influenced by disruptive forces that range from 

aggregate slaking to dispersion.  The combined influence of the critical limits of indices 

from slaking only (misp, unsp) and slaking plus mechanical disruption (mame, unme) 

provides efficacious assessment of the prevalence of stability related problems in LVB. 

 

Requisite for successful rapid large area (diagnostic) screening stability related problems 

using IR-based models is development of key few basic soil properties that are easy to 

determine and that have strong and robust IR-based models and that have predictive 

relationship with target stability functional attributes.  The suite of 59 basic soil 

properties initially screened for prediction of WSA indices was reduced to three key soil 

properties (pH2.5, Na2.5 and WDC). The three property set in combination with MIR 

showed to be effective for developing pedo-transfer functions for diagnostic screening 

and prevalence assessment of stability related problems in LVB of Kenya. The three 

property set could estimate, for example, WSA indices with accuracy not uncommon in 

ecological studies:  macro aggregates (mame) with 44 - 48 %), micro aggregates (misp) 

with up to 38 %), and unstable aggregate fraction unme (41 - 45 %) and unsp (54 - 58 

%) (Table 4.33). This was better than Canasveras et al. (2010) who found 23 % accuracy 

for estimation of macro aggregates (fraction > 250 µm) from a set of six soil predictor 

properties (tSa, tClay, CaCO3, pHw, OM, Fe).  

 

 Set (i) (pH2.5, Na2.5, WDC) and (iii) (pH2.5, eNa, WDC) presented comparable 

performance for prevalence assessment (stability categories for individual WSA indices, 

low stability in LNY and HB, low stability in different clusters, and low stability for 

depth-interval samples). However, set (i) indicated superior performance (higher 

sensitivity to stability) and practical advantage (ease of data acquisition) over set (iii). 

For example, Na2.5 could be read from the same extract used for pH2.5; Na-ion meter 
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readings were very precise for sodic soils (% CV 1.8 - 4.4), and; Na2.5 and eNa were 

very strongly associated (r = 0.9). 

 

The study showed that > 77 % of soils in LNY and HB are of low stability. That > 90 % 

of the soils in LNY and HB are of low macro aggregate stability, ≥ 65 % of low micro 

aggregate stability and 50 to > 75 % are susceptible to aggregate slaking, break down 

and total dispersion. Low stability prevalence was 50 - 80 % and 60 – 95 % across 

depth-intervals in LNY and HB, respectively. Established critical values for low and 

high stability from macro aggregates ( 10 vs 50 %), micro aggregates (20 vs 40 %) and 

unstable aggregate fraction ( 65 vs 20 %) provide critical input data for modeling and 

monitoring  soil health in LVB. No related information was available for LVB. 

 

Notably, differences (albeit slight) in prevalence assessment was observed (comparing 

results under sections 4.3 and 4.4) with the same soil-based predictor set (pH2.5, Na2.5, 

WDC) and the same reference samples set (n = 79).  This could not be adequately 

explained. The several (steps) iterations in selection of the three properties in section 4.3 

could propagate errors, whereas the set in section 4.4 was selected directly. The use of a 

larger list of potential predictors (initially 28, then 8) in section 4.4 could result in better 

CART regression decision tree models for grove files. CART performs better when there 

are numerous independent variables (Steinberg & Colla, 2001) although more potential 

predictors could mask (lower importance score) for potentially more powerful primary 

predictors (Steinberg & Golovnya, 2006). 
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CHAPTER FIVE 
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Summary of the study 

Application of infrared spectroscopy (IR) for soil compositional analyses is well 

established. However, there has been little focus on examining IR in pedotransfer 

functions for prediction of functional attributes related to soil stability. This is despite 

the fact that the potential for development of pedotransfer functions and use of inference 

systems for more efficient and effective estimation of functional attributes from spectra 

and basic soil attributes has been demonstrated. Soil physical health, especially related 

to stability problems is a major risk factor for degradation in the Lake Victoria basin 

(LVB) in Kenya. This study evaluated the use of infrared spectroscopy (IR) in 

diagnosing soil stability related problems and assessing their prevalence with a case 

study of LVB in Kenya. Specifically, the study developed alternative IR-based cross-

validated (looCV) models for screening soil stability related properties across a range of 

sensitive soils from LVB of Kenya and compared these with predictions using 

conventional physico-chemical properties. The IR-based looCV models were further 

tested using datasets of similar soils from independent sites in LVB. The prevalence of 

soil stability related problems was assessed using IR-based models in two sentinel sites 

from LVB. Finally, indices of soil stability functional attributes most appropriate for 

screening stability problems using IR-based models in LVB of Kenya were developed. 

 

A suite of 59 soil basic properties from direct measurements and derived were compared 

with spectral variables from four alternative IR-methods (MIR, MIRwc, NIR, NIRwc) 

for PLS leave-one-out cross validation (looCV) estimation of selected eight (8) water 

stable aggregation (WSA) indices from slaking only (masp, misp, unsp, sponR) and 

slaking plus mechanical disruption (mame, mime, unme, mechR) wet-sieving 

pretreatments. The IR-based looCV models were further independently validated 

following optimization trials that involved with and without removal of reference values 
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and spectral outliers in the validation set. Few key soil-based predictors that were 

strongly calibrated to MIR (R2 ≥ 0.6) were used to develop PLS calibration models that 

were in turn used to estimate these properties in the larger set from LNY and HB using 

the laters’ MIR spectra. The soil-predictors were used to also develop calibration models 

(grove files in CART) for the predicted WSA indices. The grove files and the data 

matrix of predicted soil-based predictors in the larger set were used to predict (score) the 

WSA indices in LNY and HB samples in CART using a procedure called ‘ dropping 

data down a tree model’ or scoring data. The predicted indices values were categorized 

into low or high stability and used to assess prevalence of stability related problems in 

LNY and HB. Two different sets of soil properties that were strongly correlated to MIR 

and that indicated predictive relationship with WSA indices were used to develop the 

most appropriate indices of  WSA for diagnostic screening and prevalence assessment of 

stability related problems using IR-methods in LVB. 

 

5.2 Conclusions 

i. The infrared spectroscopy (IR) methods were superior over soil physicochemical 

predictors for PLS cross validation estimation of wet stable aggregation (WSA) 

indices. This affirmed that soil diffuse reflectance spectra is superior over soil 

properties for development of stability pedotransfer functions (PTFs). Further 

advantage of reflectance spectra over wet chemistry laboratory measurements 

includes rapidity, high throughput and high precision. 

 

ii. Soil pH in water (pHw) and soil organic carbon (SOC) provided effective PTFs 

for assessment of soil wet stable macro aggregation; soil wet stable micro 

aggregation could be inferred from water-dispersible clay content (WDC), and; 

soil aggregate instability (aggregate break down and dispersion) from Na+ 

concentration. This suggested exchangeable sodium (eNa), WDC, pHw and SOC 

as ‘soil stability indices’, effective for development of stability minimum 
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datasets. This affirms few found studies that established modest association of 

wet stable aggregates to soil basic properties (total sand, total clay, calcium 

carbonate, pHw, soil organic matter, and iron). 

iii. Satisfactory independent estimation of wet  stable macro aggregation (R2 = 0.81) 

and colloidal clay (unstable aggregate fraction) (R2 = 0.7 - 0.5) suggested that the 

accuracy of IR-PLS technique is sufficient to support field and pedon-scale 

analysis of water stable aggregation indices, and therefore reflectance 

spectroscopy has the potential to be used as a rapid soil testing technique for 

assessing soil physical quality. 

iv. The NIR-based methods (NIR spectra and corresponding wavelet coefficients) 

were more robust than counterpart MIR-based methods for estimation of the 

WSA indices. The NIR spectra was associated with indices from direct 

measurements (stable macro and micro aggregates), whereas wavelet coefficients 

were effective for derived indices (ratio and unstable aggregate fraction). 

Wavelet transform counteracted errors (data quality) associated with derived 

properties, improving resonance of wavelet coefficients and reference data and 

model performance.  

v. Superiority of NIR over MIR for estimation of aggregation indices is insightful 

for stability studies. The NIR is amenable to field-based (on-site or on-the-go) 

measurements, unlike MIR that is restricted to controlled (laboratory) conditions. 

This is important where utility of IR PLS is predicated on effective and efficient 

(simple, rapid, cheap, precise) soil analyses, especially for large sample sizes and 

multivariate data sets. Greater potential of chemometrics and spectroscopic soil 

studies is in landscape-level (for instance 10×10 km block) soil health 

suerveillance. 

 

vi. The study showed that 70 to 80 % of the soils in Lower Nyando and Homa Bay 

sentinel sites had low stability problems and the risk of stability related problems 
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increased with soil depth. This affirmed that soil stability is a major risk factor 

for observed soil degradation and attendant rill and inter-rill erosion and gully 

development in LVB in Kenya. 

vii. Stable macro (2000-212 µm) and unstable (< 20 µm) aggregate fraction from 

slaking plus mechanical disruption and stable micro (212-20 µm) and unstable 

fraction from slaking only wet-sieving pretreatments were the most appropriate 

indices for screening stability related problems and assessing their prevalence 

using IR in LVB of Kenya. Soil wet stable macro aggregate at10 and 50 %, 

stable micro at 20 and 40 %, and unstable fraction at 70-65 and 20-40%, define 

low and high stability, respectively. 

viii. A combination of indices from slaking only and slaking plus mechanical 

disruption wet-sieving pretreatments was found most appropriate for screening 

stability problems in LVB of Kenya. This suggested that soil aggregation and 

aggregate stability under wetting field conditions in LVB is influenced by 

disruptive forces that range from aggregate slaking to complete dispersion. 

 

5.3 Recommendations  

i. This study illustrated and demonstrated a methodological framework for rapid 

large area soil health surveillance. The study benchmarks diagnostic screening 

and prevalence assessment of soil stability related problems using diffuse 

reflectance infrared spectra. The models developed can be used to diagnose and 

assess prevalence of soil stability related problems in the LVB of Kenya and 

other regions. Further research should, however, widely test similar soil property 

predictor sets, aggregation indices and IR methods to: (i) validate established 

soil-based predictors (eNa, WDC, pHw, SOC), (ii) counter variability from 

sample provenance for improved model geographic transferability, and (iii) 

assess suggested performance improvement with calibration spiking (addition of 

few of the new samples in the calibration set prior to model development), and 
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combining IR and soil properties.  Basic soil properties water-dispersible clay 

content and sodium in soil solution (for instance from Na-ion meter readings), 

should be incorporated and mainstreamed in routine soil data collection to 

improve on development of effective minimum datasets for stability pedotransfer 

purposes. 

 

ii. Soil stability is a major risk factor of soil degradation in LVB in Kenya. Cluster-

based low stability prevalence was based on a maximum of 15 samples 

(constrained by cost of wet chemistry analysis), suggesting low intensity data for 

more efficacious prevalence interpretation. The land degradation surveillance 

framework (LDSF) protocol is otherwise flexible on the number of sampling 

plots within a cluster. Future studies should involve selection of more sampling 

plots and incorporation in analysis of also ancillary data (field soil texture, land 

use/ land cover including bare ground and vegetation cover, visible erosion, and 

basic infiltration rates) collected for each cluster in the LDSF protocol. This 

should enable more effective characterization of clusters within sentinel sites. 

 

iii. This study has assessed (geo-referenced) point-based prevalence of stability 

related problems in two sentinel sites (10×10 km blocks) that were selected to 

represent the diversity of soil types, landforms, land cover and land use types in 

the LVB of Kenya. Further investigation should assess the spatial distribution of 

stability related problems in the two sites using geo-statistical tools and integrate 

the outputs with other remote sensing techniques in a geographic information 

system to allow for mapping of stability hazard for the entire LVB in Kenya. 

 

iv. Soil- and spectra-based transfer functions developed in this study are efficacious 

for evaluation and monitoring soil health related problems for agriculture and 

environmental applications. This suggests high potential of chemometrics and 
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soil spectroscopy for civil engineering applications. Further studies should 

pursue, “diagnostic screening materials attributes using IR” in the context of civil 

engineering (roadway and building construction).  Availability of accessible 

(more than 500) archived “Roads Soil Samples” from Kenya adds to feasibility 

of such a study. 

 

v. A major advantage with spectroscopy techniques is that several soil properties 

can be determined from a single spectrum, which greatly reduces the cost of 

analysis compared to conventional laboratory methods. This study suggests 

feasibility and recommends building/development of dynamic soil spectral 

libraries and their use for assessing soil compositional and health (quality) 

attributes in Kenya at the national/ country, county and sub-county level.  

National soil spectral library would contribute also to the Global Spectral 

Libraries initiative by the International Union of Soil Science Societies. The New 

Partnerships for Africa Development Office of Science and Technology 

(NEPAD OST) and the international community could support increased training 

in ‘new’ soil science methods for improved soil health evaluation and 

monitoring, especially in data sparse case for Africa. 



203 

 

REFERENCES 
 

Amezketa, E. (1999). Soil aggregate stability: A review. Journal of Sustainable 

Agriculture, 14(2-3), 83-151. 

Angers, D. A., Bullock, M. S., & Mehuys, G. R. (2008). Aggregate stability to water. In 

M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of 

analysis, 2nd ed. (pp. 811-819), Canandian Society of Soil Science. Boca 

Raton, FL: CRC Press. 

Araújo, S. R., Demattê, J. A. M., & Bellinaso, H. (2013). Analysing the effects of 

applying agricultural lime to soils by VNIR spectral sensing: a quantitative 

and quick method. International Journal of Remote Sensing, 34(13), 4570-

4584. 

Ashmana, M.  R., & Hallett, C. P. D. (2003).  Are the links between soil aggregate size 

class, soil organic matter and respiration rate artefacts of the fractionation 

procedure? Soil Biology and Biochemistry, 35, 435-444. 

Atzberger, C. (2002). Soil Optical Properties: A review.  Remote Sensing Report, D-

54286. Tier: Germany. 

Auerswald, K. (1995). Percolation stability of aggregates from arable topsoils. Soil 

Science, 159(2), 142-148. 

Awiti, A. O., Walsh, M. G., Shepherd, K. D., & Kinyamario, J. (2008). Soil condition 

classification using infrared spectroscopy: A proposition for assessment of 

soil condition along a tropical forest-cropland chronosequence. Geoderma, 

143(1-2), 73-84. 

Azevedo, A. C., & Schulze, D. G. (2007). Aggregate distribution, stability and release of 

water dispersible clay for two subtropical oxisols. Science and Agriculture 

(Piracicaba, Brazil), 64(1), 36-43. 

Barthes, B., & Roose. E. (2002). Aggregate stability as an indicator of soil susceptibility 

to runoff and erosion: validation at several levels. Catena, 47(2), 133-149.  



204 

 

Bell, F. G. (2000). Engineering Properties of Soils and Rocks, 4th ed. Osney Mead, 

Oxford OX2 OEL: Blackwell Science Ltd. 

Bellon-Maurel, V., & McBratney, A.  B. (2011). Review: Near-infrared (NIR) and mid-

infrared (MIR) spectroscopic techniques for assessing the amount of carbon 

stock in soils – Critical review and research perspectives. Soil Biology and 

Biochemistry, 43(7), 1398-1410. 

Bellon-Maurel, V., Fernandez, E., Palagos, B., Roger, J. M., & McBratney, A. B. 

(2010). Prediction of soil attributes by NIR/MIR Spectroscopy. Coming back 

to statistics fundamentals to improving prediction accuracy. Trends in 

Analytical Chemistry, 29(9), 1073-1081. 

Ben-Dor,  E., Heller, D., & Chudnovsky, A. (2008). A novel method of classifying soil 

profiles in the field using optical means. Soil Science Society of America 

Journal, 72(4), 1113-1123. 

Ben-Dor, E., &  Banin, A. (1995). Near infrared analysis as a method to simultaneously 

evaluate spectral featureless constituents in soils. Soil Science, 159(2), 259 - 

270. 

Bird, S. B., Herrick, J. E., Wander, M. M., & Murray, L. (2007). Multi-scale variability 

in soil aggregate stability: Implications for understanding and predicting 

semi-arid grassland degradation. Geoderma, 140(1), 106-118. 

Boix-Fayos, C., Calvo-Cases, A., Imeson, A. C., & Soriano-Soto, M. D. (2001).  

Influence of soil properties on the aggregation of some Mediterranean soils 

and the use of aggregate size and stability as land degradation indicators. 

Catena, 44(1), 47-67.  

Bouajila, A., & Gallali, T. (2008). Soil organic carbon fractions and aggregate stability 

in carbonated and no carbonated soils in Tunisia. Journal of Agronomy, 7, 

127-137. 

Boucher, S. C. (2010). Aggregate slaking and clay Dispersion. Retrieved from 

http://www.dpi.vic.gov.au/dpi/vro/vrosite.nsf/pages/soil_mgmt_slaking/. 



205 

 

Bouma, J. (2010). Implications of the knowledge paradox for soil science. Advances in 

Agronomy, 106, 143-71.  

Bradshaw, G. A., & Spies, T. A. (1992). Characterizing canopy gap structure in forests 

using wavelet analysis. Journal of Ecology, 80(2), 205-215. 

Breiman, L. J., Friedman, J., Stone, C.  J., & Olshen, R. A. (1984).  Classification and 

Regression Trees.  Boca Raton, FL: CRC Press.  

British Standard Institution (BSI). (1975). Methods of Test for Soils for Civil 

Engineering Purposes. 2 Park Street, Landon: British Standard Institute.  

Brown, D. J., Bricklemyer, R. S., & Miller, P. R. (2005). Validation requirements  for 

diffuse reflectance soil characterization models with a case study of VNIR 

soil C prediction in Montana. Geoderma, 129(3-4), 251-267.  

Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., & Reinsch, T. G. (2006). 

Global soil characterization with VNIR diffuse reflectance spectroscopy. 

Geoderma, 132(2-4), 273-290. 

CAMO ASA Inc. (1998). The Unscrambler User Manual. Corvallis, OR: CAMO Inc. 

Canasveras, J. C., Barron, V., Campillo, M. C., Torrent J., & Gomez, J. A. (2010).  

Estimation of aggregate stability indices in Mediterranean soils by diffuse 

reflectance spectroscopy. Geoderma, 158(1), 78-84.  

Cantarella, H., Quaggio, J.  A., van Raij, B., & Abreu, M.  F. (2006).  Variability of soil 

analysis of commercial laboratories: Implications for lime and fertilizer 

recommendations. Communications in Soil Science and Plant Analysis, 

37(15-20), 2213-2225.  

Cantón, Y., Solé-Benet, A., Asensio, C., Chamizo, S., & Fábregas, P. J. (2009).  

Aggregate stability in range sandy loam soils relationships with runoff and 

erosion. Catena, 77(3), 192-199. 

Chang, C.W., Laird, D. A., Mausbach, M. J., Hurburgh, C. R. (2001). Near-infrared 

reflectance spectroscopy-principal components regression of soil properties. 

Soil Science Society of America Journal, 65(2), 480-490. 



206 

 

Chaudhary, B. V., Matthew, B. A., O'Dell, T. E., Grace, J. B., Redman, A. E., Rillig, M. 

C., & Johnson, N. C. (2009). Untangling the biological contributions to soil 

stability in semi-arid shrublands. Ecological Applications, 19(1), 110-122. 

Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic matter influence on clay 

wettability and soil aggregate stability. Soil Science Society of America 

Journal, 64(4), 1479-1486. 

Chodak, M., Partap, K., Balazs, H., & Friedrich, B. (2004). Near infrared spectroscopy 

for determination of total and exchangeable cations in geologically 

heterogeneous forest soils. Journal of Near Infrared Spectroscopy, 12(5), 

315-324. 

Choudhary,  O. P., Josan, A. S., Bajwa, M. S., & Kapur, M. L. (2004). Effect of 

sustained sodic and saline-sodic irrigation and application of gypsum and 

farmyard manure on yield and quality of sugarcane under semi-arid 

conditions. Field Crop Research, 87(2), 103-116. 

Cohen, M. J., Prenger, J. P., & Debusk, W. K. (2005). Visible near infrared reflectance 

spectroscopy for rapid, non-destructive assessment of wetland soil quality. 

Journal of Environmental Quality, 34(4), 1422-1434. 

Cook, G. D., & Muller, W. J. (1997). Sodium content a better index of soil sodicity than 

exchangeable sodium percentage? A reassessment of published data. Soil 

Science, 162(5), 343-349. 

Couillard, A., Turgeon, A. J., Shenk, J. S., & Westerhaus, M. O. (1997). Near infrared 

reflectance spectroscopy for analysis of Turf soil profiles. Crop Science, 

37(5), 1554-1559. 

Dardenne, P., Sinnaeve, G., & Baeten, V. (2000). Multivariate calibration and 

chemometrics for near infrared spectroscopy: which method? Journal of 

Near Infrared Spectroscopy, 8(4), 229-237. 

Daubechies, I. (1992).  Ten Lectures on Wavelets. Philadelphia, PA: SIAM. 



207 

 

Dawes, L., & Goonetilleke, A. (2006). Using multivariate analysis to predict the 

behaviour of soils under effluent irrigation. Water Air Soil Pollution, 172(1-

4), 109-127.  

de Graffenried Jr., J. B., &  Shepherd,  K. D. (2009). Rapid erosion modeling in a 

western Kenya watershed using visible near infrared reflectance, 

classification tree analysis and 137Cesium. Geoderma, 154(1), 93-100. 

Demattê , J. A. M.,  da Silva, T. F., & Quartaroli, C. F. (2012). Spectral behavior of 

some modal soil profiles from São Paulo State, Brazil. Bragantia Campinas, 

71(3), 413-423. 

Denef, K., Six, J., Merckx, R., & Paustian, K. (2004). Carbon sequestration in micro 

aggregates of no-tillage soils with different clay mineralogy. Soil Science 

Society of America Journal, 68(6), 1935-1944. 

Deng, F., Minasny, B., Knadel, M., McBratney, A. B., Heckrath, G., & Greve, M. H. 

(2013). Using Vis-NIR spectroscopy for monitoring temporal changes in soil 

organic carbon. Soil Science, 178(8), 389-399. 

Dunn, B. W., Beecher, H. G., Batten, G. D., & Ciavarella, S. (2002).  The potential of 

near infrared reflectance spectroscopy for soil analysis: a case study from the 

riverine plain of south-eastern Australia.  Australian Journal of 

Experimental Agriculture, 42(5), 607-614. 

Dwinnell, W. (1998). Modeling Methodology 2: Model Input Selection (pp23-26). In 

Principal Component Analysis (PCAI), 12. 

EMCA. (1999). The Environmental Management and Coordination ACT (EMCA). 

Kenya Gazette Supplement 3 (Acts No. 1). Nairobi: Government Printer. 

FAO. (1986). Guidelines: Land Evaluation for Rainfed Agriculture, Soils Bulletin 52. 

Rome: FAO. 

Farley, J. (2012). Ecosystem services: The economics debate. Ecosystem Services, 1(1), 

40-49.  



208 

 

Farres, P. J., & Cousen, S. M. (2006). An improved method of aggregate stability 

measurement. Earth Surface Processes and Landforms, 10(4), 321-329.  

Fortun, A., Fortun, C., & Ortega, C. (2006). Effect of farmyard manure and its humic 

fractions on the aggregate stability of a sandy–loam soil. European Journal 

of Soil Science, 40(2), 293-298.   

Fratta, D., Aquettant, J., & Roussel-Smith, L. (2007). Introduction to Soil Mechanics 

Laboratory Testing. Boca Raton: CRC Press.  

Gachene, C. K. K., Ngetich, F. K., & Anyika, F. (2003). Soil aggregate stability as 

influenced by different residue management practices (pp10-11). Legume 

Research Network Newsletter, 9. KARI: Nairobi.  

Genot, V., Colinet, G., Bock, L., Vanvyve, D., Reusen, Y., & Dardenne, P. (2011). Near 

infrared reflectance spectroscopy for estimating soil characteristics valuable 

in the diagnosis of soil fertility. Journal of Near Infrared Spectroscopy, 

19(2), 117-138. 

Government of Kenya (GoK). (2007). Kenya Vision 2030: A Competitive and 

Prosperous Nation. Government of the Republic of Kenya. Nairobi: 

Government Printer. 

Gributs, C. E. W., & Burns, D. H. (2006). Parsimonious calibration models for near- 

infrared spectroscopy using wavelets and scaling functions. Chemometrics 

and Intelligent Laboratory Systems, 83, 44-53.  

Hartemink, A. E., & McBratney, A. B. (2008).  A soil science renaissance. Geoderma, 

148, 123-129.  

Haynes, R. J., & Swift, R. S. (2006). Stability of soil aggregates in relation to organic 

constituents and soil water content. European Journal of Soil Science, 41, 

73-83. 

Hazelton, P., & Murphy, B. (2007). Interpreting Soil Test Results: What Do All The 

Numbers Mean? Collingwood, Australia: CSIRO Publishing. 



209 

 

Hinga, G., Muchena, F. N., & Njihia, C. M. (1980). Physical and Chemical Methods of 

Soil Analyses.  Nairobi: National Agricultural Research Laboratories. 

Hulugalle, N. R., & Finlay, L. A. (2003). EC1:5 / exchangeable Na, a sodicity index for 

cotton farming systems in irrigated and rainfed Vertosols. Australian 

Journal of Soil Research, 41(4), 761-769. 

Hulugalle, N. R., Entwistle, P. C., & Mensah, R. K. (1999). Can Lucerne (Medicago 

sativa L) strips improve soil quality in irrigated cotton (Gossypium hirsutum 

L.) fields? Applied Soil Ecology, 12(1), 81-92.  

Idowu, O.  J., Moebius,  B. N., van Es, H. M., Schindelbeck, R. R., Abawi, G. S., Wolfe, 

D. W., Thies, J., Gugino, B., & Clune, D. (2008a). Soil health assessment 

and management: measurements and results. What’s cropping up: Cornell 

Soil Health PWT. Retrieved from http://soilhealth.cals.cornell.edu/ . 

Idowu, O. J. (2003). Relationships between aggregate stability and selected soil 

properties in humid tropical environment. Communications in Soil Science 

and Plant Analysis, 34(5-6), 695-708. 

Idowu, O. J.,  van Es, H. M., Abawi, G. S., Wolfe, D.W., Ball, J. I., Gugino, B. K., 

Moebius, B. N., Schindelbeck, R. R., & Bilgili, A.V. (2008b). Farmer-

oriented assessment of soil quality using field, laboratory, and VNIR 

spectroscopy methods. Plant and Soil, 307, 243-253.  

Igwe, C. A. (2003). Shrink – swell potential of floodplain soils in Nigeria in relation to 

moisture content and mineralogy. International Agrophysics, 17(2), 47-55.  

Igwe, C. A. (2005). Erodibility in relation to water-dispersible clay for some soils of 

eastern Nigeria. Land Degradation and Development, 16(1), 87-96.  

Igwe, C. A., & Nwokocha,  D. (2005). Influence of soil properties on the aggregate 

stability of a highly degraded tropical soil in Eastern Nigeria. International 

Agrophysics, 19(2), 131-139.  



210 

 

Igwe, C. A., & Stahr, K. (2004). Water-stable aggregates of flooded Inceptisols from 

southeastern Nigeria in relation to mineralogy and chemical properties. 

Australian Journal of Soil Research, 42(2), 171-179. 

Irvine, S. A., & Reid, D. J. (2001).  Field prediction of sodicity in dryland agriculture in 

Central Queensland.   Australian Journal of Soil Research, 39(6), 1349-

1357. 

Islam, K., Singh, B., & McBratney, A. B. (2003). Simultaneous estimation of several 

soil properties by ultra-violet, visible, and near-infrared spectroscopy. 

Australian Journal of Soil Research, 41(6), 1101-1114. 

Kariuki, P. C., van der Meer, F. D., & Siderius, W. (2003a).  Classification of soils 

based on engineering indices and spectral data. International Journal of 

Remote Sensing, 24(12), 2567-2574. 

Kariuki, P. C., Woldai, T., & van der Meer, F. D. (2003b). Effectiveness of spectroscopy 

in identification of swelling indicator clay minerals. International Journal of 

Remote Sensing, 25(2), 455-469.  

Kemper, W. D., & Rosenau,  R. C. (1986). Aggregate stability and size distribution.  In 

A. Klute (Ed.), Methods of Soil Analysis, Part I, 2nd ed. (pp. 425-442). 

Madison, WI: American Society of Agronomy. 

Knadel, M., Stenberg, B., Deng, F., Thomsen,  A., & Greve, M. H. (2013). Comparing 

predictive abilities of three visible –near infrared spectrophotometers for soil 

organic carbon and clay determination. Journal of Near Infrared 

Spectroscopy, 21(1), 67-80. 

Knodel, P. C. (1991). Characteristics and problems of dispersive clay soils. Materials 

Engineering Branch, Research and Laboratory Services Division. Denver 

Office, Denver, Co: USDI Bureau of Reclamation.  

Kodešová, R., Rohošková, M., & Žigová, A. (2009). Comparison of aggregate stability 

within six soil profiles under conventional tillage using various laboratory 

tests.  Biologia, 64(3), 550-554. 



211 

 

Koger, C. H., Bruce, L. M., Shaw, D. R., & Reddy, K. N. (2003). Wavelet analysis of 

hyperspectral reflectance data for detecting pitted morning glory (Ipomoea 

lacunosa) in soybean (Glycine max). Remote Sensing for Environment, 

86(1), 108-119. 

Krasilnikov, P., Carré, F., & Montanarella, L. (2008). Soil geography and geostatistics: 

Concepts and Applications. Joint Research Centre, Scientific and Technical 

Reports: Institute for Environment and Sustainability. ISSN: 1018-5593. 

EUR 23290: European Commission. 

Lal, R. (2009). Sequestering carbon in soils of arid ecosystems. Land Degradation and 

Development, 20(4), 441-454.  

Lark, R. M. (2007). Decomposing digital soil information by spatial Scale. In P. 

Lagacherie, A.B. McBratney, & M. Voltz (Eds.), Digital soil mapping: An 

introductory perspective (pp. 301-326). Amsterdam: Elsevier. 

Le Bissonnais, Y. (1996). Aggregate stability and assessment of soil crustability and 

erodibility: I. Theory and methodology. European Journal of Soil Science, 

47(4), 425-437. 

Le Bissonnais, Y., & Arrouays, D. (2005). Aggregate stability and assessment of soil 

crustability and erodibility: II. Application to humic loamy soils with various 

organic carbon contents. European Journal of Soil Science, 48(1), 39-48. 

Le Bissonnais, Y., Blavet, D., De Noni, G., Laurent, J.Y., Asseline, J., & Chenu, C. 

(2007). Erodibility of Mediterranean vineyard soils: relevant aggregate 

stability methods and significant soil variables. European Journal of Soil 

Science, 58(1), 188-195. 

Le Bissonnais, Y., Cros-Cayot, S., & Gascuel-Odoux, C. (2002). Topographic 

dependence of aggregate stability, overland flow and sediment transport. 

Agronomie, 22(5), 489-501. 



212 

 

Lebron, I., Suarez, D. L., & Alberto, F. (1994). Stability of a calcareous saline - sodic 

soil during reclamation. Proceedings of Soil Science Society of America 

Journal, 58(6), 1753-1762. 

Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D., & Rakowski, W. (2003). 

Classification and regression tree analysis in public health: methodological 

review and comparison with logistic regression. Annals of Behavioral 

Medicine, 26(3), 172-181. 

Levy, G. J., & Mamedov, A. I. (2002). Aggregate stability and seal formation. Soil 

Science Society of America Journal, 66(5), 1603-1609. 

Levy, G. J., Mamedov, A. I., & Goldstein, D. (2003). Sodicity and water quality effects 

on slaking of aggregates from semi-arid soils. Soil Science, 168(8), 552-562. 

Levy, G. J., Tang, Z., Yu, J., Shainberg, A., Mamedov, I., & Ben-Hur, M. (2006). 

 Runoff and interill erosion in sodic soils treated with dry PAM and 

Phosphogypsum. Soil Science Society of America Journal, 70(2), 679-690. 

Li, J. T., & Zhang, B. (2007). Paddy soil stability and mechanical properties as affected 

by long-term application of chemical fertilizer and animal manure in 

subtropical China. Pedosphere, 17(5), 568-579. 

Li, Z. X., Cai, C. F., Shi, Z. H., & Wang, T.W. (2005). Aggregate stability and its 

relationship with some chemical properties of red soils in subtropical China.  

Pedosphere, 15(1), 129-136. 

Linker, R. (2012).  Application of FTIR Spectroscopy to Agricultural Soils Analysis. In 

Fourier Transforms – New Analytical Approaches and FTIR Strategies (pp. 

385-404). 

Ludwig, B., Nitschke, R., Terhoeven-Urselmans, T., Michel, K., & Flessa, H. (2008). 

Use of mid-infrared spectroscopy in the diffuse-reflectance mode for the 

prediction of the composition of organic matter in soil and litter. Journal of 

Plant Nutrition and Soil Science, 171(3), 384-391. 



213 

 

Lyons, D., Rayment, G., Hill, R., Daly, B., Marsh, J., & Ingram, C. (2011). Aspac soil 

proficiency testing program report 2007-08. Technical Report, ASPAC. 

Melbourne: Victoria. Retrieved from http://www.aspac-

australasia.com/index.php/documents/. 

Madari, B. E., Reeves III, J. B., Machado, P. L.O., Guimaraes, A. C. M., Torres, E., & 

McCarty, G.W. (2006). Mid- and near-infrared spectroscopic assessment of 

soil compositional parameters and structural indices in two Ferralsols. 

Geoderma, 136(1-2), 245-259. 

Maindonald, J. H., & Braun, J. (2003). Data Analysis and Graphics Using R: An 

Example –Based Approach, Cambridge Series in Statistical and 

Probabilistic Mathematics. Cambridge: Cambridge University Press.  

Mamedov, A. I., Huang, C. H., Skidmore, E., & Levy, G. J. (2007).  HEMC: a sensitive 

aggregate stability method for soil quality evaluation. ASA – CSSA - SSSA 

International Annual meetings Nov 4 – 8 (2007), New Orleans, Louisiana. 

Marquez, C. O., Garcia, V. J., Cambardella, C. A., Schulz, R. C., & Isenhart, T. M. 

(2004). Aggregate-size distribution and soil stability. Soil Science Society of 

America Journal, 68(3), 725-735. 

Martens, H., & Martens, M. (2001). Introduction to Multivariate Data Analysis for 

Understanding Quality. Chichester, UK: John Wiley & Sons. 

Mbagwu, J. S. C. (1992). A comparison of three micro-aggregation indices with other 

tests of structural stability. International Agrophysics, 6(1-2), 27-32.  

McBratney, A. B., Mendonca, S. M. I., & Minasny B. (2003).  On digital soil mapping.  

Geoderma, 117(1), 3-52.  

McBratney, A. B., Minasny, B., & Viscarra Rossel, R. A. (2006).  Spectral soil analysis 

and inference systems: a powerful combination for solving the soil data 

crisis. Geoderma, 136(1), 272-278. 

McCarty, G. W., Reeves III, J. B., Reeves, V. B., Follet, R. F., & Kimble, J. M. (2002). 

Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil 



214 

 

carbon measurements. Soil Science Society of America Journal, 66(2), 640-

646. 

McClure, W. F. (2003). Review: 204 years of near infrared technology: 1800-2003. 

Journal of Near Infrared Spectroscopy, 11(6), 487-518.  

Mead, R., Curnow, R. N., & Hasted, A. M. (2002). Statistical Methods in Agriculture 

and Experimental Biology, 3rd edition. UK: Chapman & Hall/ CRC. 

Merrington, G. (2006). The development and use of soil quality indicators for assessing 

the role of soil in environmental interactions. Science Report: SC030265. 

Almondsbury, Bristol: Environmental Agency. 

Merry, R. H., & Janik, L. J. (2001). Mid infrared spectroscopy for rapid and cheap 

analysis of soils, In Proceedings of the 10th Australian agronomy conference, 

Hobart, 28th Jan. to 1st Feb. 2001, Urrbrae, South Australia. CSIRO land 

and Water. 

Minasny, B. (2007). Predicting soil properties. Journal of Ilmu Tanah dan Lingkungan, 

7(1), 54-67. 

Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for 

sampling in the presence of ancillary information.  Computers & 

Geosciences, 32(9), 1378-1388. 

Minasny, B., & McBratney, A. B. (2008). Regression rules as a tool for predicting soil 

properties from infrared spectroscopy. Chemometrics and Intelligent 

Laboratory Systems, 94(1), 72-79. 

Minasny, B., Tranter, G., McBratney, A. B., Brough, D. M., & Murphy, B.W. (2009). 

Regional transferability of mid-infrared diffuse reflectance spectroscopic 

prediction for soil chemical properties. Geoderma, 153(1), 155-162. 

Moron, A., &  Cozzolino, D. (2003). Exploring the use of near infrared reflectance 

spectroscopy to study physical properties and microelements in soils. 

Journal of Near Infrared Spectroscopy, 11(2), 145-154. 



215 

 

Mouazen, A. M., Karoui, R., De Baerdemaeker, J., & Ramon, H. (2005).  Classification 

of soil texture classes by using soil visual near infrared spectroscopy and 

factorial discriminant analysis techniques.  Journal of Near Infrared 

Spectroscopy, 13(4), 231-240. 

Muhati, S. I., Shepherd, K. D., Gachene, C. K., Mburu, M. W., Jones, R., Kironchi, G. 

O., & Sila, A. (2011). Diagnosis of soil nutrient constraints in small-scale 

groundnut (Arachis hyopaea L.) production systems of western Kenya using 

infrared spectroscopy. Journal of Agricultural Science and Technology, A 1, 

111-127. 

Mutuo, P. K., Shepherd, K. D., Albrecht, A., & Cadisch, G. (2006). Prediction of carbon 

mineralization rates from different soil physical fractions using diffuse 

reflectance spectroscopy. Soil Biology and Biochemistry, 38(7), 1658-1664. 

Næs, T., Isaksson, T., Fern, T., & Davies, T. (2002). A User friendly Guide to 

Multivariate Calibration and Classification. Chichester, UK: NIR 

Publications. 

Nanni, M. F., & Demattè, J. A. (2006).  Spectral reflectance methodology in comparison 

to traditional soil analysis. Soil Science Society of America Journal, 70(2), 

393-407. 

NEPAD OST. (2008). New Partnerships for Africa’s Development, Office of Science 

and Technology.  Johannesburg and FAO, Rome. 

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthes, B., 

Dor, E. B., Brown, D.J., Clairotte, M., Csorba, A., Dardenne, P., Dematte, 

J.A., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., 

Ramirez-Lopez, L., Robertson, J., Sakai, H., Soriano-Disla, J.M., Shepherd, 

K.D., Stenberg, B., Towett, E.K., Vargas, R., &Wetterlind, J. (2015). Soil 

spectroscopy: An alternative to wet chemistry for soil monitoring. Advances 

in Agronomy, 132, 139-159. 



216 

 

Oguike, P. C., & Mbagwu, J. S. C. (2009). Variations in some physical properties and 

organic matter content of soils of coastal plain sand under different land use 

types. World Journal of Agricultural Science, 5(1), 63-69. 

Omuto, C. T. (2008). Assessment of soil physical degradation in eastern Kenya by use 

of a sequential soil testing protocol. Agriculture Ecosystem and 

Environment, 128(21), 199-211. 

Omuto, C. T., & Shrestha, D. (2007). Remote sensing techniques for rapid detection of 

soil physical degradation.  International Journal of Remote Sensing, 28, 

4785-4805. 

Osuji, G. E., & Onweremadu, E. U. (2007). Structural stability of dystric Nitisol in 

relation to some edaphic properties under selected land uses. Nature Science, 

5(4), 7-13. 

Peverill, K. I., Sparrow, L. A., & Reuter, D. J. (1999). Soil Analysis: An Interpretation 

Manual.  ISBN 0 643 063765. Victoria, Australia: CSIRO Publishing. 

Phelps, M. C., & Merkle, E. (2008). Classification and regression trees as alternative to 

regression (pp.77-78). Proceedings of the 4th Annual GRASP Symposium, 

Wichita State University (2008).  

Pirie,  A., Singh, B. & Islam, K. (2005). Ultra-violet, visible, near-infrared and mid-

infrared diffuse reflectance spectroscopic techniques to predict several soil 

properties. Australian Journal of Soil Research, 43(6), 713-721. 

Pringle, J. (1975). Soil stability measurement. Newcastle University, Cyclostyled. 

R-Development Core Team. (2012). R: A Language and Environment for Statistical 

Computing,   R Foundation for Statistical Computing. ISBN 3-900051-07-0. 

Vienna, Austria. 

Reeves III, J. B. (2010). Review: Near- versus mid-infrared diffuse reflectance 

spectroscopy for soil analysis emphasizing carbon and laboratory versus on- 

site analysis: where are we and what needs to be done? Geoderma, 158(1-2), 

3-14.  



217 

 

Rengasamy, P., & Olsson, K. A. (1991). Sodicity and soil structure. Australian Journal 

of Soil Research, 29(6), 935-952. 

Roper, M. M. (2005). Managing soils to enhance the potential for bioremediation of 

water repellency. Australian Journal of Soil Research, 43(7), 803-810. 

Saeys, W., Xing, J., De Baerdemaeker, J., & Ramon, H. (2005). Comparison of 

transflectance and reflectance to analyse hog manures. Journal of Near 

Infrared Spectroscopy, 13(2), 99-108. 

Salford Systems Inc. (2008). CART1 V 6.0. San Diego: Salford Systems Inc. 

Sanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., 

Lagacherie, P., McBratney, A. B., McKenzie, N. J., & Mendonça-Santos, M. 

(2009). Digital soil map of the world. Science, 325(5941), 680-681.   

Shepherd,  K.  D. & Walsh, M. G. (2007). Review: Infrared spectroscopy - enabling an 

evidence-based diagnostic surveillance approach to agricultural and 

environmental management in developing countries.  Journal of Near 

Infrared Spectroscopy, 15(1), 1-19. 

Shepherd, K. D. (2010). Soil spectral diagnostics – infrared, x-ray and laser diffraction 

spectroscopy for rapid soil characterization in the Africa Soil Information 

Service. 19th World Congress of Soil Science, Soil Solutions for a Changing 

World, 1-6 August 2010, Brisbane, Australia. Published on CDROM. 

Shepherd, K. D., & Walsh, M. G. (2002). Development of reflectance spectral libraries 

for characterization of soil properties. Soil Science Society of America 

Journal, 66(3), 988-998. 

Shepherd, K. D., & Walsh, M. G. (2003). Improving accuracy and quality of routine soil 

analyses using diffuse reflectance spectroscopy. Paper presented at ASA-

CSSA-SSSA Annual Meetings, 2-6 November 2003, Denver, Colorado, USA.  

Shepherd, K. D., Vanlauwe, B., Gachengo, C. N., & Palm, C. A. (2005). Decomposition 

and mineralization of organic residues predicted using near infrared 

spectroscopy. Plant Soil, 277(1-2), 315-333. 



218 

 

Shepherd, K. D., Walsh, M. G., &  Awiti, A. (2003). Use of soil spectral indicators for 

assessing and monitoring soil quality. Paper presented at ASA-CSSA-SSSA 

Annual Meetings, 2-6 November 2003, Denver, Colorado, USA. 

Shirazi, M. A., & Boersma, L. (1984).  A unifying quantitative analysis of soil texture.  

Soil Science Society of America Journal, 48(1), 142-147. 

Shulka, M. K., Lal, R., & Ebinger, M. (2004). Soil quality indicators for the north 

Apalachian experimental watersheds in Coshocton, Ohio. Soil Science, 

169(3), 195-205.  

Sijali, I. V. (2001). Drip Irrigation: options for smallholder farmers in eastern and 

southern Africa. Technical Handbook No. 24, Regional Land Management 

Unit, RELMA/ Sida. ICRAF House, Gigiri, Nairobi. 

Sorensen, L. K., & Dalsgaard, S. (2005). Determination of clay and other soil properties 

by near infrared spectroscopy. Soil Science Society of America Journal, 

69(1), 159-167. 

Srilatha, C., Abraham, A., & Thomas, J. P. (2004). Feature deduction and ensemble 

design of intrusion detection systems. Computers & Security, 5, 1-14. 

Steinberg, D., & Colla, P. (2001).  CART: Tree-Structured Non-Parametric Data 

Analysis. San Diego, CA: Salford Systems Inc. 

 Steinberg, D., & Golovnya, M. (2006). CART 6.0 User’s Guide Manual. San Diego, 

CA: Salford Systems Inc.  

Stenberg, B. (2010). Effects of soil sample pretreatments and standardized rewetting as 

interacted with sand classes on Vis-NIR predictions of clay and soil organic 

carbon. Geoderma, 158(1), 15-22. 

Stenberg, B., Nordkvist, E., & Salomonsson, L. (1995). Use of Near infrared reflectance 

spectra of soils for objective selection of samples. Soil Science, 159 (2), 109-

114. 



219 

 

Stenberg, B., Viscarra Rossel, R. A., Mounem, A., & Wetterlind, J. (2010). Visible and 

NIR spectroscopy in soil science: A Review. Advances in Agronomy, 107, 

163-215. 

Sumner, M. E. (2000). Hand Book of Soil Science. Taylor and Francis, CRC Press. 

Swallow, B. M. (2001). Improved land management in the Lake Victoria Basin. Annual 

Technical Report July 2000 to June 2001.  Natural Resources Problems, 

Priorities and Policies Programme, Working Paper 2001 - 4. Nairobi: 

ICRAF. 

Swift, M. J., & Shepherd, K. D. (2007). Saving Africa’s Soils: Science and Technology 

for Improved Soil Management in Africa. ISBN: 92 9059 2109. Nairobi: 

World Agroforestry Centre (ICRAF). 

Tajik, F., Rahimi, H., & Pazira, E. (2003). Effects of electrical conductivity and sodium 

adsorption ratio of water on aggregate stability in soils with different organic 

matter content. Journal of Agricultural Science and Technology, 5, 67-75. 

Terhoeven-Urselmans, T., Vagen, Tor-G., Spaargaren, O., & Shepherd, K. D. (2010). 

Prediction of soil fertility properties from a globally distributed soil mid-

infrared spectral library. Soil Science Society of America Journal, 74(5), 

1792-1799. 

Thomas, P. J., Baker, J. C., & Zelazny, L.W. (2000).  An expansive soil index for 

predicting shrink–swell potential.  Soil Science Society of America Journal, 

64(1), 268-274. 

Tittonell, P., Shepherd, K. D., Vanlauwe, B., & Giller, K. (2008). Unravelling the effects 

of soil and crop management on maize productivity in smallholder 

agricultural systems of western Kenya – an application of classification and 

regression tree analysis.  Agriculture Ecosystem and Environment, 123(1), 

137-150. 

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of 

American Meteorological Society, 79(1), 61-78.  



220 

 

Tranter, G., Minasny, B.,  McBratney, A. B., Viscarra Rossel, R. A., & Murphy, B.W. 

(2008). Comparing spectral soil inference systems and mid-infrared 

spectroscopic predictions of soil moisture retention. Soil Science Society of 

America Journal, 72(5), 1394-1400. 

Trygg, J., & Wold, S. (1998). PLS regression on wavelet compressed NIR spectra. 

Chemometrics and Intelligent Laboratory Systems, 42(1), 209-220. 

UNEP. (2012). Land health surveillance: An evidence-based approach to land 

ecosystem management. Illustrated with a case study in the West Africa 

Sahel. Nairobi: United Nations Environment Programme. 

US Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali 

soils. Agricultural Handbook 60. Washington, DC: USDA Superintendent of 

Documents. 

USDA-NRCS. (1996). Indicators of soil quality evaluation: Soil Quality Information 

Sheet. USDA Natural Resources Conservation Service. Washington, DC: 

USDA Superintendent of Documents.  

Vågen, Tor-G. (2009). Assessment of land degradation in the Sasumua watershed. 

Baseline  Report. Nairobi: World Agroforestry Centre (ICRAF).  

Vågen, Tor-G., Shepherd,  K. D., & Walsh, M. G. (2006).  Sensing landscape level 

change in soil fertility following deforestation and conversion in the 

highlands of Madagascar using Vis-NIR spectroscopy.  Geoderma, 133(3), 

281-294. 

Vågen, Tor-G., Winowiecki, L. A., Tondoh,  J.  E., & Desta, L. T. (2013). Africa Soil 

Information Service (AfSIS), Soil Health Mapping. 

http://hdl.handle.net/1902.1/19793 V2 [Version]. 

Vahyala, I. E. (2009). Soil structure control in Corn and Soybean residue management 

system. International Annual Meeting of ASA – CSSA – SSSA Nov, 1-5, 

2009, Theme: Footprints in the Landscape: Sustainability through Plant and 

Soil Science. Pittsburgh: PA.  



221 

 

van Groenigen, J. W., Mutters, C. S., Horwath, W. R., & van Kessel, C. (2003). NIR and 

DRIFT - MIR spectrometry of soils for predicting soil and crop parameters 

in a flooded field. Plant Soil, 250(1), 155-165. 

Verchot, L. V., Dutaur, L., Shepherd, K.  D., & Albrecht, A. (2011). Organic matter 

stabilization in soil aggregates: Understanding the biogeochemical 

mechanisms that determine the fate of carbon inputs in soils. Geoderma, 

161(3), 182-193. 

Viscarra Rossel, R.  A.,  Jeon, Y. S., Odeh, I. O. A., & McBratney, A. B. (2008). Using 

a legacy soil sample to develop a mid-IR spectral library. Australian Journal 

of Soil Research, 46(1), 1-16. 

Viscarra Rossel, R.  A., & Lark R. M. (2009). Improved analysis and modeling of soil 

diffuse reflectance spectra using wavelets. European Journal of Soil Science, 

60(3), 453-464. 

Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to model and interpret 

soil diffuse reflectance spectra. Geoderma, 158(1), 46-54. 

Viscarra Rossel, R. A., Adamchuk, V. I., Sudduth, K. A., McKenzie, N. J., & Lobsey, C. 

(2011). Proximal soil sensing: An effective approach for soil measurements 

in space. Advances in Agronomy, 113(1), 243-291.  

Viscarra Rossel, R. A., Rizzo, R., Dematte, J. A. M., & Behrens, T. (2010). Spatial 

modeling of a soil fertility index using vis-NIR spectra and terrain attributes. 

Soil Science Society of America Journal, 74(4), 1293-1300. 

Viscarra Rossel, R. A., Walvoort,  D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, 

J. O. (2006).Visible, near-infrared, mid-infrared or combined diffuse 

reflectance spectroscopy for simultaneous assessment of various soil 

properties. Geoderma, 131(1), 59-75. 

Walczak, B., & Massart, D. L. (1997).  Wavelets – something for analytical chemistry? 

Trends in Analytical Chemistry, 16(8), 451-463.  



222 

 

Walsh, M. G., & Vagen, Tor-G. (2006). Land Degradation Surveillance Framework 

(LDSF): Guide to Field Sampling and Measurement Procedures. Nairobi: 

World Agroforestry Centre (ICRAF).  

Ward, P. A., & Carter, B. J. (2004). Dispersion of saline and non-saline Natric Mollisols 

and Alfisols.  Soil Science, 169(8), 554-566. 

Waruru, B.  K., Njoroge,  C. R. K., & Wanjogu, S. N. (2003a).  Biophysical baseline 

information for the Nyando catchment area, The soils of the Nyando 

catchment area. Reconnaissance Soil Survey Report No. R21. Nairobi: 

Kenya Soil Survey.  

Waruru, B. K., & Wanjogu, S. N. (2002).  Intrinsic permeability and the air-to-water 

permeability ratio as a measure of the structural stability of some highly 

eroded soils in the lowlands of the Lake Victoria Basin, Kenya.  Proceedings 

of the 20th Soil Science Society of East Africa, Mbale, Uganda (pp. 282-288). 

Nairobi: Soil Science Society of East Africa.  

Waruru, B. K., Wanjogu, S. N., Njoroge, C. R. K., & Wagate, P. N. (2003b). Erosion 

Hazard within the River Nyando catchment Lake Victoria basin of Kenya. 

Proceedings of the 21st Soil Science Society of East Africa Conference 1st – 5th 

December, 2003, Eldoret, Kenya (pp.47-55). Nairobi: Soil Science Society of 

East Africa.  

Wei, C., Gao, M., Shao, J.,  Xie, D., & Pan, G. (2006). Review: Soil aggregate and its 

response to land management practices. China Particuology, 4(05), 211-219.  

Westerhof, R., Buurman, P., van Griethuysen, C., Ayarza, M., Vilela, L., & Zech, W. 

(1999). Aggregation studied by laser diffraction in relation to plowing and 

liming in the Cerrado region in Brazil. Geoderma, 90(3), 277-290. 

Whelan, B. M., Koppi,  A. J., McBratney, A. B., & Dougherty, W. J. (1995). An 

instrument for the in situ characterization of soil structural stability based on 

the relative intrinsic permeabilities to air and water. Geoderma, 65(3), 209-

222. 



223 

 

Williams, A., Xing, B., & Veneman, P. (2005). Effect of cultivation on soil organic 

matter and aggregate stability. Pedosphere, 15(2), 255-262. 

Williams, P. C., & Norris, K. (2001). Variables affecting near-infrared spectroscopic 

analysis. In P. Williams and K. Norris (Eds.), Near – Infrared Technology in 

the Agricultural and Food Industries (pp. 171- 185). St. Paul, Minnesota: 

American Association of Cereal Chemists. 

www.AfricaSoils.net/.  Africa Soil Information Service.  

Yang, C. C., Prasher, S. O., & Goel, P. K. (2004). Differentiation of crops and weeds by 

decision – tree analysis of multispectral data. Transactions of American 

Society of Agricultural Engineers, 47(3), 873-879. 

Yoder, R. E. (1936).  A direct method of aggregate analysis of soils and a study of the 

physical nature of erosion losses. Journal of American Society of Agronomy, 

28(5), 337-351. 

Yohannes, Y., & Webb, P. (1999). Classification and Regression Trees. A User Manual 

for Identifying Indicators of Vulnerability to Famine and Chronic Food 

Insecurity. ISBN 0-89629-337- 8.  2033 K Street, N.W. Washington DC: 

International Food Policy Research Institute.  

Zhang, B., & Horn, R. (2001). Mechanisms of aggregate stabilization in Ultisols from 

subtropical China. Geoderma, 99(1), 123-145. 

Zhang, B., & Peng, X. (2006). Organic matter enrichment and aggregate stabilization in 

a severely degraded Ultisol after reforestation. Pedosphere, 16(6), 699-706. 

Zhang, Z., Wei, C., Xie, D., Gao, M., & Zeng, X. (2008). Effects of land use patterns on 

soil aggregate stability in Sichuan Basin.  China Particuology, 6(3), 157-

166. 

Zobeck, T. M., 2004. Rapid soil particle size analyses using Laser diffraction. Applied 

Engineering in Agriculture, American Society of Agricultural Engineers, 

20(5), 633-639. 

\



224 

 

APPENDICES 

 

Appendix 1: Building CART regression decision tree. 

In building CART regression decision tree model, all the observations are initially placed 

in the root node. This node is impure (heterogeneous) because it contains (target) 

observations of mixed variances. The goal is to apply a rule that will break up these 

observations and create binary nodes that are internally more homogenous than the root 

node. Partitioning of the root node into binary nodes is based upon a two-format question 

as follows: Is X ≤ d, where, X is a continuous variable and d is a constant within the 

range of X values.  The ‘yes’ answers are sent to the left child node and the ‘no’ answers 

to the right child node.  To come up with candidate splitting rule, CART uses a computer-

intensive algorithm that searches for the best split at all possible split points for each 

variable. The rule is to choose that split that result in the maximum reduction in the 

impurity of the parent node. The procedure separates high (mean) values of the dependent 

variable from its low values and results in left (high) and right (low) values nodes that are 

now internally more homogeneous than the parent node. The methodology that CART 

uses for growing trees is technically called binary recursive partitioning (Steinberg & 

Golovnya, 2006).   

CART regression tree construction centers on the definition of three major elements: (1) 

the sample-splitting rule, (2) the goodness-of-split criteria, and (3) the criteria for 

choosing an optimal tree.  The CART default splitting rule (impurity measure function) is 

the Least Squares (LS) criterion, where node impurity is measured by within-node sum of 

squares, SS (t), which is defined as: 

SS (t) = Σ (yi(t) – ybar(t))2, for i = 1, 2, …., Nt,      

Where yi(t) =  individual values of the dependent variable at node t;  ybar(t) = the mean 

of the dependent variable at node  t, and; Nt = number of cases (samples) in node t.  

Given the impurity function SS(t), and a split ‘s’ that sends cases to left (tL) and right 

(tR)  child nodes, the goodness of a split is measured by the function 

Ø (s, t) = SS (t) – SS (tR) – SS (tL)      
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Where, SS (tR) is the sum of squares of the right child node, and SS (tL) is the sum of 

squares of the left child node. The best split is that split for which Ø (s, t) is the highest 

(Yohannes & Webb, 1999). 

 

CART grows an overly large (complex) tree, some of whose branches are sequentially 

pruned from the bottom up, using validation (default is 10-fold cross-validation). CART 

then rank-orders the sequence of pruned trees, and once the minimal-cost tree (tree with 

lowest mean squared error-MSE) is identified, the tree at one standard error (1SE) from 

the minimum-cost tree is picked as the optimal tree. CART avoids over-fit decision tree 

since pruning and validation is automated, and where validation fails, CART reports that 

no decision tree could be grown (Steinberg & Golovnya, 2006). After choosing an 

optimal tree, CART computes summary statistics (min, Q1, mean/ median, Q3, max, N-

cases) for each terminal node (TN).  For LS, CART computes the mean and SD of the 

target. The mean of the TN become the predicted value of the target for cases in that TN 

(Steinberg & Golovnya, 2006). 

 

A goal of CART is to develop a simple tree structure for data; therefore, relatively few 

variables may appear explicitly in the splitting criteria. However, unlike a linear 

regression model, a variable in CART regression can be considered highly important 

even if it never appears as a primary node splitter (Steinberg & Golovnya, 2006). 

Variables earn credit towards their importance in two ways: as primary splitters and as 

surrogate splitters. To calculate a variable importance score, CART looks at the 

improvement measure attributable to each variable in its role as a primary splitter and as 

surrogate to the primary split at every node in which the variable appears. The values of 

these improvements are summed over each node and totaled, and are scaled relative to 

the best performing variable. The variable with the highest sum of improvements is 

scored 100, and all other variables will have lower scores ranging downwards towards 

zero (Steinberg & Golovnya, 2006). Eliminating the primary splitter (variable with 100 % 

importance score) allows the top surrogate to effectively split the data, illustrating the 
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phenomenon of one variable hiding (masking) the significance of another (Steinberg & 

Golovnya, 2006). 
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Appendix 2: Soil properties in the calibration sample set (corresponding values in 
the validationset are shown in parenthesis). 

Soil 
property minimum 

25th 
percentile 

50th  
percentile  

75th 
percentile maximum SD 

pHw2.5 4.6 (5.0) 6.2 (6.6) 7.0 (7.4) 8.2 (8.2) 10.5 (10.1) 1.3 (1.0) 
pHw5 5.0 (3.0) 6.6 (6.9) 7.2 (7.4) 7.6 (7.9) 9.7 (9.9) 0.9 (1.1) 
pHKCL 3.6 (3.6) 5.0 (4.8) 5.8 (5.5) 6.5 (6.4) 10.2 (8.0) 1.2 (1.0) 

EC2.5 
0.00 
(0.01) 0.03 (0.04) 0.05 (0.07) 0.11 (0.12) 2.35 (2.11) 0.36 (0.33) 

EC5 
0.00 
(0.01) 0.06 (0.05) 0.11 (0.08) 0.24 (0.18) 2.52 (3.35) 0.42 (0.42) 

totC 
0.17 
(0.18) 0.77 (0.99) 1.29 (1.47) 1.78 (2.18) 8.18 (6.45) 1.03 (1.07) 

OC 
0.12 
(0.11) 0.61 (0.80) 0.96 (1.23) 1.44 (1.66) 7.05 (4.75) 0.83 (0.82) 

inC 
0.01 
(0.02) 0.11 (0.10) 0.20 (0.20) 0.31 (0.41) 3.42 (1.80) 0.47 (0.40) 

totN 
0.01 
(0.00) 0.06 (0.08) 0.09 (1.13) 0.14 (0.18) 0.70 (0.56) 0.08 (0.09) 

C:N 
4.40 
(2.67) 

11.03 
(10.06) 

12.60 
(11.67) 

15.10 
(13.62) 70.52 (164.0) 8.13 (17.11) 

sCa 0.04 (0.1) 0.3 (3.7) 0.6 (6.0) 0.8 (11.3) 6.0 (84.0) 0.6 (10.0) 

sMg 
0.03 
(0.00) 0.1 (1.2) 0.2 (2.3) 0.4 (4.1) 0.9 (25.5) 0.2 (4.6) 

sK 0.00(0.01) 0.08(0.04) 0.19 (0.07) 0.32 (0.27) 1.75 (0.05) 0.25 (0.05) 
sNa 0.00(0.00) 0.1 (0.0) 0.4 (1.5) 1.0 (4.0) 15.0 (45.0) 2.6 (7.2) 
Na2.5 0.1 (2.0) 0.0 (5.0) 2.6 (15.5) 8.5 (30.6) 355.0 (235.0) 55.3 (38.3) 
Na5 0.1 (2.0) 1.9 (5.0) 5.5 (17.0) 17.8 (33.8) 455.0 (270.0) 75.8 (46.6) 
SAR 0.01(0.00) 0.7 (0.0) 1.9 (0.7) 4.8 (2.9) 80.7 (30.5) 12.2 (4.6) 
eCa 0.2 (2.4) 9.7 (11.0) 15.0 (18.7) 22.2 (27.0) 39.6 (44.5) 9.0 (9.9) 

eMg 
0.01 
(0.30) 3.1 (2.6) 4.5 (4.5) 6.2 (6.9) 10.5 (10.4) 2.5 (2.6) 

eK 0.1 (0.0) 0.2 (0.1) 0.4 (0.2) 0.6 (0.4) 4.5 (1.3) 0.6 (0.2) 
eNa 0.0 (0.0) 0.2 (0.3) 1.5 (3.9) 4.8 (7.6) 63.8 (45.3) 12.6 (9.3) 
eCaP 0.4 (5.1) 55.7 (59.5) 68.6 (65.5) 73.5 (72.2) 90.1 (95.2) 21.3 (14.4) 
eMgP 0.03 (1.1) 13.9 (12.5) 18.8 (18.0) 24.5 (21.9) 36.2 (41.6) 8.0 (7.8) 
ePP 0.2 (0.0) 0.9 (0.3) 1.4 (0.8) 2.6 (1.7) 16.3 (6.1) 2.3 (1.3) 
ESP 0.0 (0.1) 1.5 (2.3) 5.4 (13.0) 16.3 (21.6) 99.2 (92.7) 25.3 (17.0) 

eNaR 
0.00 
(0.00) 0.02 (0.02) 0.06 (0.15) 0.20 (0.28) 166.9 (13.4) 22.2 (1.3) 
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Appendix 2: Contd. 

Soil 
property minimum 

25th 
percentile 

50th  
percentile  

75th 
percentile maximum SD 

CEC1 3.4 (4.8) 16.6 (16.8) 26.4 (30.3) 36.6 (43.8) 67.0 (76.4) 14.0 (16.6) 

CEC2 14.0 (6.7) 50.6 (52.3) 65.6 (65.0) 89.2 (81.8) 
322.6 
(172.4) 45.3 (28.8) 

CEC3 6.1 (1.8) 46.0 (47.0) 60.9 (61.5) 83.2 (77.7) 
322.1 
(167.4) 45.9 (28.7) 

GR 
0.02 
(0.00) 0.2 (0.6) 0.4 (1.2) 1.0 (1.9) 3.7 (7.5) 0.8 (1.2) 

ESI 1 
0.01 
(0.00) 0.03 (0.02 0.06 (0.03) 0.33 (0.18) 36.7 (2.0) 5.4 (0.3) 

ESI 2 
0.00 
(0.00) 0.01 (0.01) 0.02 (0.01) 0.05 (0.03) 5.43 (0.28) 0.80 (0.06) 

Fe 0.2 (0.0) 0.7 (7.8) 1.4 (18.6) 3.4 (40.0) 
36.6 
(279.0) 5.0 (44.0) 

Mn 0.2 (2.7) 1.0 (13.4) 2.1 (24.6) 4.9 (45.3) 
77.3 
(364.7) 7.4 (44.1) 

Cu 
0.01 
(0.01) 0.1 (2.1) 0.2 (3.7) 0.3 (4.9) 2.4 (8.9) 0.2 (1.8) 

Zn 0.01(0.4) 0.01(1.4) 0.1 (2.3) 0.1 (3.8) 2.2 (19.5) 0.2 (2.9) 

B 
0.00 
(0.01) 0.37 (0.43) 0.59 (0.95) 1.09 (2.14) 4.64 (5.35) 0.76 (1.20) 

P 0.4 (0.1) 2.9 (1.5) 6.8 (3.0) 18.8 (7.4) 
147.9 
(100.7) 20.9 (17.8) 

tSa 
11.0 
(11.0) 19.0 (19.0) 31.0 (33.0) 51.0 (49.5) 88.0 (89.0) 19.0 (19.2) 

tSi 3.0 (2.0) 20.0 (14.0) 26.0 (20.0) 32.0 (24.0) 56.0 (40.0) 9.8 (7.9) 
tClay 9.0 (7.0) 25.0 (30.5) 41.0 (47.0) 51.0 (61.0) 61.0 (81.0) 14.8 (17.0) 

Dg 
0.01 
(0.01) 0.01 (0.02) 0.02 (0.03) 0.07 (0.04) 0.49 (0.06) 0.08 (0.01) 

Δg 7.8 (3.9) 13.4 (13.5) 15.7 (17.9) 18.5 (21.5) 25.1 (44.7) 3.7 (7.0) 

tSi : tClay 
0.20 
(0.07) 0.44 (0.32) 0.62 (0.39) 0.96 (0.61) 2.75 (1.90) 0.46 (0.31) 

WDSa 19 (17) 29 (25) 39 (39) 59 (55) 91 (91) 18 (19) 
WDSi 3 (2) 22 (22) 30 (30) 36 (36) 52 (60) 11 (11) 
WDC 5 (3) 20 (21) 25 (27) 35 (41) 60 (69) 12 (14) 

WDSi:WDC 
0.23 
(0.13) 0.84 (0.79) 1.09 (1.03) 1.60 (1.60) 4.86 (3.33) 0.67 (0.61) 

CDR 
23.8 
(27.3) 56.7 (53.9) 69.5 (67.2) 84.0 (75.6) 100 (100) 19.5 (15.8) 

DR 
29.0 
(73.9) 84.2 (90.1) 88.2 (92.9) 91.8 (95.1) 

133.3 
(97.6) 12.4 (4.9) 

FI 0.4 (0.4) 16.0 (24.1) 30.5 (32.8) 43.3 (45.7) 76.2 (72.7) 19.4 (15.9) 
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Appendix 2: Contd. 

Soil 
property minimum 

25th 
percentile 

50th  
percentile  

75th 
percentile maximum SD 

PL 
10.8 
(11.4) 17.1 (18.1) 21.2 (22.4) 25.8 (26.8) 39.3 (45.3) 6.9 (8.0) 

LL 
21.8 
(22.2) 40.5 (44.3) 52.7 (60.8) 66.0 (73.5) 90.7 (96.7) 18.7 (22.2) 

PI 5.5 (8.4) 21.8 (22.8) 30.1 (35.6) 41.1 (47.0) 62.8 (66.1) 14.0 (16.1) 
LS 2.9 (3.6) 9.9 (11.4) 12.1 (14.3) 14.3 (15.7) 21.2 (20.0) 4.2 (4.7) 

COLE 
0.00 
(0.04) 0.10 (0.13) 0.10 (0.17) 0.17 (0.19) 0.27 (0.25) 0.1 (0.1) 

VS 9.1 (11.5) 36.6 (43.9) 47.5 (58.9) 58.8 (67.3) 
104.3 
(95.3) 20.6 (22.7) 

A 0.4 (0.3) 0.7 (0.6) 0.8 (0.7) 1.0 (0.9) 1.8 (1.9) 0.3 (0.3) 
Mc 0.7 (0.7) 4.4 (4.2) 6.5 (6.8) 8.3 (9.0) 15.9 (13.4) 3.1 (3.3) 

 

Note: pHw2.5, pH in 1:2.5 soil-water suspension (unit); pHw5, pH in 1: 5 soil-water 

suspension (unit); pHKCl, pH in 1: 2.5 soil-1.0 N KCL (unit); EC2.5, electrical 

conductivity (EC) in 1:2.5 soil-water suspension (dS/m); EC5, EC in 1:5 soil-water 

suspension (dS/m); totC, soil total carbon (%); OC, organic carbon (%); inC,  

inorganic/carbonate-carbon (%); totN, total nitrogen (%); C : N, totC/totN ratio (unit); 

soluble calcium (sCa), magnesium (sMg), potassium (sK), sodium (sNa) (cmol(+) L-1);  

Na2.5, sodium concentration (Na+) in 1: 2.5 soil-water suspension (mg kg-1); Na5, Na+ in 

1:5 soil-water suspension ((mg kg-1); SAR, sodium adsorption ratio (unit); exchangeable 

calcium (eCa), magnesium (eMg), potassium (eK), sodium (eNa) (cmol (+) kg-

1);exchangeable calcium percent (eCaP), magnesium (eMgP), potassium (ePP), sodium 

(ESP)(%); eNaR, exchangeable sodium ratio (unit); CEC1, effective cation exchange 

capacity (cmol(+) kg-1; CEC 2, clay activity (100*CEC1/tClay) (cmol(+) kg-1; CEC 3, 

clay activity accounting for contribution of SOC (cmol(+) kg-1); GR, soil gypsum 

requirement ((cmol(+) kg-1); ESI, electrochemical stability index (ESI): ESI 1 (EC/eNa), 

ESI 2 (EC/ESP) (unit); extractable/ available iron (Fe), manganese (Mn), zinc (Zn), 

copper (Cu), phosphorus (mg kg-1), boron (B) (%); total sand (tSa), silt (tSi), clay (tClay) 

(%); tSi : tClay, total silt/ total clay ratio (unit); dg, median particle diameter (µm); δg, 

standard deviation for dg measurements ((µm); water-dispersible sand (WDSa), silt 

(WDSi), clay (WDC) (%); WDSi : WDC, ratio WDSi/ WDC (unit); CDR, clay dispersion 

ratio (%); DR, soil dispersion ratio (%); FI, flocculation index (%);PL, plastic limit, LL, 
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liquid limit, PI, plasticity index (%); LS, linear shrinkage (%); VS, volumetric shrinkage 

(%), COLE,  coefficient of linear extensibility (unit); A, activity number (PI/tClay) (unit); 

mc,  air-dried moisture content (%). 
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Appendix 3: Correlation coefficient (r-value) (upper diagonal) for selected soil properties in the calibration samples set. 

pHKCl OC totC eCa eMg eNa Na5 ESI 1 CEC1 tclay WDC WDSa dg tSi:tclay FI mame sponR LL pHw2.5 pHw5   

1 -0.4 -0.2 -0.13 -0.36 0.63 0.61 -0.03 0.42 -0.33 -0.15 0.22 0.22 0.25 -0.24 -0.25 -0.27 -0.22 0.90 0.86 pHKCl 

  1 0.9 0.16 0.28 -0.2 -0.17 0.28 -0.02 0.19 0.03 -0.15 -0.2 -0.06 0.24 0.52 0.62 0.37 -0.45 -0.34 OC 

    1 0.12 0.2 -0.1 -0.04 0.24 0.04 0.12 0.01 -0.1 -0.1 0 0.16 0.49 0.57 0.34 -0.27 -0.17 totC 

      1 0.61 -0.29 -0.25 -0.14 0.48 0.5 0.42 -0.53 -0.5 -0.2 0.02 -0.19 -0.1 0.67 -0.02 0.01 eCa 

        1 -0.16 -0.17 -0.13 0.42 0.68 0.61 -0.65 -0.6 -0.26 0.03 -0.17 -0.03 0.69 -0.20 -0.17 eMg 

          1 0.87 -0.15 0.69 0.08 0.29 -0.17 -0.1 0.05 -0.37 -0.19 -0.13 0.05 0.60 0.61 eNa 

            1 -0.11 0.59 0.06 0.14 -0.12 -0 0.04 -0.19 -0.17 -0.14 0.07 0.52 0.53 Na5 

              1 -0.24 -0.15 -0.27 0.32 0.09 -0.04 0.21 0.39 0.33 -0.09 -0.15 -0.15 ESI 1 

                1 0.51 0.64 -0.61 -0.5 -0.12 -0.32 -0.3 -0.17 0.62 0.49 0.53 CEC1 

                  1 0.78 -0.8 -0.7 -0.6 0.17 -0.21 -0.06 0.79 -0.19 -0.12 tclay 

                    1 -0.8 -0.6 -0.34 -0.44 -0.39 -0.21 0.69 0.01 0.04 WDC 

                      1 0.77 0.15 0.17 0.37 0.2 -0.67 0.07 0.02 WDSa 

                        1 0.15 -0.13 0.11 -0.02 -0.72 0.12 0.02 dg 

                          1 -0.41 0.14 0.03 -0.3 0.16 0.17 Si:clay 

                            1 0.32 0.28 0.04 -0.30 -0.27 FI 

                              1 0.8 0.09 -0.39 -0.30 mame 

                                1 0.2 -0.36 -0.25 sponR 

                                  1 -0.15 -0.03 LL 

  1 0.86 pHw 2.5 

                                      1 pHw5 
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Appendix 4: Soil properties strongly correlated to MIR in two different reference 
sample sets. 

    
LooCV models Set 1  
( n = 128 ) 

looCV models Set 2  
( n = 79)  

Soil 
test transform r2 RMSECV r2 RMSECV 
mc N/A 0.91 0.96 0.87 1.16 
pH2.5 sqrt 0.67 0.13 0.81 0.08 
pH5 N/A 0.63 0.51 0.58 0.74 
pHKCL ln 0.86 0.07 0.85 0.07 
Na2.5 ln 0.57 1.61 0.71 0.64 
Na5 ln 0.62 1.53 0.65 0.75 
totC ln 0.89 0.24 0.90 0.21 
totN sqrt 0.86 0.04 0.60 0.08 
OC sqrt 0.86 0.12 0.91 0.11 
CEC2 ln 0.63 0.33 0.59 0.27 
eCa N/A 0.83 3.79 0.71 5.01 
eMg N/A 0.80 1.10 0.71 1.39 
eNa ln 0.73 1.38 0.66 1.21 
CEC1 sqrt 0.86 0.52 0.86 0.59 
ESP ln 0.63 1.36 0.74 0.86 
ESI 1 ln 0.64 1.16 0.58 1.04 
tClay N/A 0.62 9.29 0.66 9.41 
tSa ln 0.78 0.25 0.73 0.27 
WDC sqrt 0.72 0.62 0.77 0.64 
WDSa ln 0.80 0.18 0.78 0.21 
PL ln 0.62 0.18 0.63 0.17 
LL N/A 0.78 8.75 0.86 8.18 
PI N/A 0.65 8.25 0.78 7.41 
LS N/A 0.65 2.51 0.87 1.79 
COLE N/A 0.67   0.03 0.85 0.02 
VS N/A 0.63    12.53 0.83 9.44 
δg N/A 0.62    0.05 0.57 0.01 
eNaR ln 0.66    1.64 0.69 1.04 

Note: (Set 1, n = 128 from across LVB and Set 2, n = 79 representative of LNY and HB 

sentinel sites in LVB) 


