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ABSTRACT

The main aim of this research was to determine transitiyitynitivity, ranks, sub-
degrees, and suborbital graphs of cyclic gréiypand dihedral grouf,, acting on
vertices of a regulan— gon. These areas have not received much attention, in fact
most of the researchers have been focused on testing whhthaction of specific
degrees of the dihedral group are primitive or transitivétanvertices of a regular—
gon. This research extends the work of Hamma to the genega¢ele for both C,
andDy. With regard to the suborbital graphs of these two groupthing appears in
literature and so to some extent the results obtained ine¢sesarch can be regarded as
new. In this research it has been shown taandDy, act transitively on the vertices
of a regulam— gon . AlsoC, andDy, act imprimitivily on the vertices of a regular
gon if nis not prime. The rank o€, is shown to ben and the rank oDy, is shown

to be5 + 1 whenn is even and“g—l whenn is odd. It is also shown that the suborbits
of C, are not all selfpaired; only 2 are selfpaired whreis even and 1 when is odd,
the rest are paired with each other such thaof C, is paired withA,_; , but all the
suborbits ofD,, are selfpaired. The subdegreesGafare shown to be all singletons,
and the subdegrees bf, are shown to be 1,1,2,2,- ,(3 — 1) twos whem is even and
1,222, -- ,(”%1) twos whem is odd. Further it is shown that for a suborbi@l 1 in

, , i—1 ifb>a ,

Cn (a,b) € Oj_jifand only if|b—a| = , and that all suborbital
n—(i—1) ifa>b

graphs ofC,, are connected if and only if is prime. The suborbitals @, are shown
to be union of the paired suborbitals@f, and the corresponding suborbital graphs are
connected if and only ifi is prime. Finally it is shown that the number of components
of the suborbital graph;_1 for both groups isl = gcd(n,i — 1) and its girth isr = §,
whend # 5 and zero ifd = J .



CHAPTER ONE
INTRODUCTION AND LITERATURE REVIEW

1.1 Background of the Study

Some basic concepts in group theory, graph theory, sulabdmaphs and a list of
theorems which will be used in the actual research are disclis the preceding sub-
sections.

1.1.1 Group Theory

The groups which will be considered in this work grermutation groups. Let
X =1{1,2---,n},a permutation o is a one to one mapping of onto itself. The
symmetric group of degreen is the group of all permutations &f under the binary
operation of composition of mappings. It is denoteddyand is of orden!.

Let G be a group, the@ is cyclicif there exista € G such thaG =< a>= {a"|n€ Z}.
A dihedral group is the group of symmetries of a regular polygon and it is dedbly
D, wheren > 3, and has order2The vertices of the regular polygon will be denoted
astheseK ={1,2,---,n}.

The conventional way of writin®,, = <x, yIx"=y?=e yx=x"1ly= x*1y>, thusDy,
is the group generated by the elementg subject to the conditiong' =y? = 1; yx=
x"~ly = x~1y, and the & distinct elements oD, are 1,x, X, ..., X" 1y, xy, ¥y, ...,
x"~ly. Herex is a rotation about the centre of the polygon through anglé/8; it
generates a cyclic subgro@p of ordern. The elemeny is a reflectional symmetry
along the line joining a vertex to the centre of opposite atlgés odd; or a reflectional
symmetry along the line from a vertex to an opposite vertefkamn the centre of an
edge to the centre of the opposite edgeis even.

1.1.2 Group Actions

Let X be a set an&® a group. TherG acts on a seX on the left ifvg € G andx € X
there exists a unigugx € X such thatifgs, g2 € G, (91092) (X) = 91(g2(X)), and X=X,
where 1 denotes the identity (& The action ofG on X from the right can be defined
in a similar way.

If G acts on a set, theX is partitioned into disjoint equivalence classes calldater
or transitivity classes of the action. For each X, the orbit containing is denoted
by Orbg(x), thereforeOrbg(x) = {gx|g € G}. If the action of a groug on a setX
has only one orbit, the@ is said to act transitively oX. HenceG acts transitively on
X if for every pair of point, y €X, there existg € G such thagx=y.
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Thestabilizer of x € X, denoted bysStalys(X), is the set of all elements i@ that fix x
i.e. Staly(x) = {g € G| gx=x}. This set is also denoted 8% and it can be shown
thatStalys(x) < G.

Let G act on a seK. The set of elements of fixed byg € G is called the fixed point
set ofg, denoted byFix(g). ThusFix(g) = {x € X | gx=x}.

Theorem 1.1.1.(Orbit - Stabilizer Theorem - Rose 1978, p.72)
Let G be a group acting on finite set X ané . Then
|Orbg(x)| = |G : Staks(X)].

Let G be a transitive group acting on a 3€tA subsety of X is said to be dlock for
the action if, for eacly € G, eithergY =Y orgYNY = @. All 1— element subsets of
X, @, andX are obvious blocks and they are called the trivial blockghéfy are the
only blocks therG actsprimitively on X , otherwiseG actsimprimitively .

Example 1.1.2.LetG= D4 = {e, (1234, (13)(24), (1432, (12)(34), (14)(23), (24), (13)}
acting on the seX = {1,2,3,4}. ThenG acts imprimitively onX sinceY = {1,3} isa

non - trivial block.

Theorem 1.1.3.(Scott, 1964;Passman, 1968, p.15)
If G acts on a set X, where G is a transitive group of prime degtieen G is primitive.

A Maximal Subgroup of a groupG is a subgrougM not equal toG such that there
is no proper subgrou of G properly containingVl. The following theorem can be
used to test the primitivity of an action

Theorem 1.1.4.Let G be a transitive permutation group acting on a set X andde
X. Then G is primitive if and only if &Gis a maximal subgroup or equivalently G is
imprimitive if and only if G is not a maximal subgroup of G.

If a finite group G acts on a seK with n elements, eacly € G corresponds to a
permutationo of X, which is uniquely as a product dlisjoint cycles If o hasa;
cycles of length 1a2 cycles of length 2, . , ay, cycles of lengtm; we say that and
henceg has cycle typgay ay, ..., an).

Theorem 1.1.5.( Harary, 1969, p.98)
Let G be a finite group acting on a set X. The number of orbits isf G

&2

(This theorem is referred to as Cauchy - Frobenius Lemma).
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1.1.3 Graph theory

A simple graph is an ordered paiH = (V,E), whereV is a finite non - empty set
of objects called vertices artlis a (possibly empty) set of-2 element subsets &f
called edges. The sktis called the vertex set ¢4 andE is called the edge set &f.

If e={u,v} € E(H), verticesu andv are adjacent itd and thate joins or connectsl
andv. The edgeeis said to be incident withn (andv), and vice versa.

A directed graph (or digraph)(V,E) consists of a nonempty set of verticésand a
set of directed edges (or ards) Each directed edge is associated with an ordered pair
of vertices. The directed edge associated with the ordeaieduypv) is said to start at
and end av.

Degree or valencydy (v) of a vertexv of a graphH is the number of vertices df
adjacent tov. A vertex of degree 0 is an isolated vertexHfis a graph with vertices
V1, Va,..., Vn, then the degree sequencé-is the sequenady (v1), du (V2), ..., du(Vn),

it is usually ordered in such a way thé (v1) < dy(v2) <... < dy(vn). Agraphin
which every vertex has the same degree is called regular.

A walk of lengthk joining u andv in H is a sequence of vertices and edgedHof
of the formvg, ey, v1,€,Vo, ... Vik_1,&, Vk, Wherevp = u,vx = vande = {vi_1,Vv; } for
I=12,...,k. Awalk joiningu andv is closed ifu = v, and is a path if no two vertices
of the walk (except possiblyandv) are equal; a closed path is called a circuit or cycle.
The length of the shortest cycle (if any ) his called thegirth of H.

A graphH is connectedf every pair of vertices o is joined by some path; otherwise,
H is disconnected. A connected componenitias a maximal connected subgraph of
H. Each vertex and edge bf belongs to precisely one componentbf

1.1.4 Suborbital Graphs

Let G be transitive onX and letGyx be the stabilizer of a point € X. The orbits
Ao= {X},A1,A2,...,Ar—1 Of Gy on X are called thesuborbits of G. The rank ofG
isr and the sizes; = | A | (i=0,1,2,...,r —1), often called the “lengths ” of the
suborbits, are known as subdegreessofNote that both r and the cardinalities of the
suborbitsa; (i=0,1,2,...,r —1) are independent of€ X .

Let A be an orbit ofGy. Definea*= {gx|g e G,xe g A}, thena* is also an orbit oy
and is called thé&y—orbit (or the G - suborbit ) paired with. Clearly| A | =| A* |.

If A*=A, thena is called aselfpaired orbit of Gy.

Theorem 1.1.6.(Cameron, 1975 p.422)



If G is primitive, with subdegreels= ng,n1,...,Nn,_1(in increasing order of magnitude
), thennni_1 >nj fori=1,....,r —1. Now if there exist an index> 0 such that
n; > nini_1, then G is imprimitive.

Theorem 1.1.7.(Wielandt, 1964, section 16.5)
Gy has an orbit different frordx} and paired with itself if and only if G has even order.

Observe that G acts ofx X by g(x,y) = (gxgy),0e Gxye X. If OC X x X isaG

- orbit onX x X, then for a fixedk € X, A= {y € X|(x,y) € O} is a Gy — Orbit on X.
Conversely, ifAC X is aGx—orbit, thenO = {(gx, gy)|g € G,y €A} is a G— Orbit on

X x X. We say thatr corresponds t®. The G - orbits orX x X are called suborbitals.
Let O C X x X,i=0,1,2,...,r —1 be a suborbital. Then we form a graph by
taking X as the set of vertices &f;, and by including a directed edge franto y (x,
yeX) if and only if (x,y)€ O;.

The suborbital graphg corresponding to the suborhit is called the trivial subor-
bital graph. When the suborbits are selfpaired the cormdipg suborbital graphs are
undirected. If the suborbits are not selfpaired the cooedmg suborbital graphs are
directed. The trivial suborbital graph is selfpaired; ihststs of a loop based at each
vertexx € X. We are mainly interested with the non - trivial suborbitedghs. If the
suborbital graph is paired withl"*, thenl™™ is justl” with arrows reversed.

Let G act on a seK, then the character of a permutation representation@fon X is
defined byr(g) = |Fix(g)|, forallge G

Theorem 1.1.8.(Cameron, 1975)

Let G act transtively on a set X and letegG. Supposer is the character of the
permutation representation of G on X, then the number oparéd suborbits of G is

given by = ‘—(13| s 71(g?).
geG

Theorem 1.1.9.(Sims, 1967)
Let G be transitive on X. Then G is primitive if and only if eatborbital graph
Fi(i=1,2,...,r—1)is connected.

1.2 Literature Review

In this section a review of previous studies which are clpselated to this work are
discussed. Groups as mathematical structures form a nra@ichinterest for mathe-
maticians in abstract algebra. To be able to understand lte¢i@r together with their
properties, their suborbital graphs can be constructeclandt (1964) wrote a little
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monograph on finite permutation groups. In this monograpbralition for imprimi-
tivity of a group is given in terms of its subdegrees.

Higman (1964) introduced the rank of a group while workingfimite permutation
groups of rank 3. Also Higman (1970) gave a characterizatibfamilies of rank
3 permutation groups by the subdegrees. He proved that thenstric groupS, on

X=1{1,2,...,n} n>4acts as arank 3 group on the se 012 2- elements subsets

n—2
2

The idea of suborbital graphs of a permutation gr@pcting on a seX was intro-
duced by Sims in 1967.
Tchuda (1986) computed the ranks and subdegrees of prenpidkmutation represen-
tations ofPSL(2,q).
Faradzev and Ivanov (1990) computed the subdegrees oftperpermutation repre-
sentations oPSL(2,q) . If G=PSL(2,q) acts on the cosets of its maximal subgroup
H, then the rank is at Iea#,gﬁi2 and ifg > 100, the rank is greater than 5.
Kamuti (1992) devised a method for constructing some of thi@osbital graphs of
PSL2,q) andPGL(2,q) acting on the cosets of their maximal dihedral subgroups of
orderq— land Zg— 1) respectively. This method gave an alternative way of coostr

of X, with subdegrees,2(n—2),

ing the Coxeter graph which was first constructed by Coxa1e86).

Lloyd and Jones (1998) published the paRe&action Graphsn which they showed
that algebraic combinatorics and group theory are effedibols for studying such
properties as connectivity and automorphisms in chemistry

Akbas (2001) investigated the suborbital graphs for the uteodgroup. He proved
the conjecture by Jones, Singerman and Wicks (1991) thabearisiial graph for the
modular group is a forest if and only if it contains no triaegl

Kamuti (2006) computed the ranks and subdegrees of prieg@rmutation represen-
tations ofPGL(2,q). It was shown in this paper that wh&6GL(2, q) acts on the cosets
of its maximal dihedral subgroup of ordefc- 1), the rank i‘%(qjL 3) if gis odd and
3(q+2) if g is even.

Miyuki and Kano (2007) showed that a new visual cryptograptiyeme (VCS) with
dihedral groups is possible. This is one of the many appiinatof the dihedral group.
Hamma S. and Audu M. S. (2010) investigated transitivity grishitivity of D, acting
on the vertices of a regular n - gon. In their research thegidened dihedral groups
of degreep (p prime), p? and 2(r > 2). When a dihedral group is of degreeit was
shown that the action was transitive and primitive; and wherdegree ig? the action
was shown to be transitive and imprimitive. Further it wasveh that when a dihedral



group is of degree"2r > 2), the action is transitive and imprimitive. In this work they
did not concinder all values of.

Kamuti I. N., Inyangala E. B. and Rimberia J. K.(2012) invgsted the action of
» on Z and the corresponding suborbital graphs. It was shown bteatattion is
transitive and imprimitive. They also constructed subaiflgraphs corresponding to
the action and gave the conditions necessary for the subbgaphs to be connected
or disconnected.

Nyaga L., Kamuti I. N., Mwathi C. and Akanga J.,(2012) showleat the action o,

on X () is transitive and that the rankiis+ 1 if n > 2r. In the same work it was shown
that the suborbits of, acting onX (") are all selfpaired and that the subdegrees are

v () ()G () 05) - () () ()

1.3 Statement of the Problem

If a group acts on a set, the natural questions a group theoaig ask are:
e Is the action transitive
e Is the action primitive
e What are the mathematical structures and invariants agsdowith the action

In this work we try to answer the above questions with regarthé dihedral group
Dy, and the cyclic grouf, acting on the vertices of a regular gon. To this end our
research seeks to investigate transitivity, primitivigiks, subdegrees and suborbital
graphs associated with the action. This will enable us fdlgap left by Hamma et. al
(2010).

1.4 Justification

Graph theory has many application in chemistry and compgience. This is evident
from the work of Lloyd and Jones (1998) where they showed dlggbraic combi-
natorics is an effective tool for studying such propertie€@nnectivity and automor-
phisms in chemistry.

Shirinivaset al. (2010) have discussed how graph theoretical ideas can lmedti
in various computer science applications. These includeareh areas of computer
science such as data mining, image segmentation, clugtérnage capturing and net-
working . For example a data structure can be designed inaitme bf tree which
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in turn utilized vertices and edges. Similarly modeling efwork topologies can be
done using graph concepts. In the same way the most impartewcept of graph

coloring is utilized in resource allocation, schedulings@ paths, walks and circuits
in graph theory are used in tremendous applications saglingvsalesman problem,
database design concepts, resource networking. Thistedls development of new
algorithms and new theorems that can be used in tremendplisaons in computer

science.

1.5 Objectives

1.5.1 General Objective

To construct the suborbital graphs corresponding to theracof cyclic groupC, and
the dihedral grou,, acting on the vertices of a regulargon.

1.5.2 Specific Objectives

1. To determine transitivity and primitivity dd,, andC, acting on the vertices of a
regularn— gon.

2. To determine the ranks and subdegreeS,pdndC, acting on the vertices of a
regularn— gon.

3. To construct the suborbital graphdf andC, acting on the vertices of a regular
n— gon and to investigate their properties.



CHAPTER TWO
TRANSITIVITY, PRIMITIVITY AND SUBORBITS OF G,

2.1 Introduction

This chapter investigates transitivity, primitivity andorbits of the cyclic groug,
acting on the set of vertices of a regufar gon. Throughout the chapter we will be
takingG = Cp =< x>=< (12...n) > andX = {1, 2,..., n}; the set of vertices of a
regularn— gon.

2.2 Transitivity and Primitivity of G on X

Theorem 2.2.1.Letie X, then Stag(i) = {e}.
Proof. Clearly inG, it is only the identity element which fixes a pointi O
Theorem 2.2.2.G acts transitively on X.

Proof. From Theorem 2.2.1, only the identity element which has alfpeint in X
and in this case the number of points fixed by the identit)Xjs= n. Hence by Cauchy

- Frobenius lemma the number of orbits @fon X is |%gg@ﬂ‘ix(g)\ =lxn=1

Therefore from subsection 1.1@,acts transitively orX. O

Theorem 2.2.3.1f |X| = n, where n is not a prime number, then G acts imprimitively
on X.

Proof. Sincen is not prime, then there exists a positive integesuch that < k < n
andk dividesn. Now < Xk > is a proper subgroup @ of orderk properly containing
Staly(i) = {e}. Hence by Theorem 1.1@ acts imprimitively onX. O

Example 2.2.4.LetG=Cg =< X >= <(123456789>, then
H=<x®>= {1, (147)(258)(369), (174)(285)(396)} and
Stalx(1) < H < G. HenceG acts imprimitively onX = {1,2,...,n}.

2.3 Suborbits and the Rank ofG

Theorem 2.3.1.0rbits of Stalg(1) on X areAg= {1}, A1={2}, A2 ={3},..., Aj=
{i+1}, ..., Ap_1={n}. Thus the rank of G on X is n and the subdegreedatel, ..., 1,
nones



Proof. From Theorem 2.2.$taly (1) = {e}, and therefore suborbits & consist only
of singleton elements. Hence the rank®fs n and the subdegrees arglll, ..., 1;
nones U

Theorem 2.3.2.The number of selfpaired suborbits of G on Xi& n is even orl if
nis odd.

Proof. Let g € G, theng? will have fixed points inX if either g is the identity or
g is an element of order two. Als@ contains an element of order two only when
nis even. Therefore by Theorem 1.1.8 the number of selfpatdubrbits ofG is
1(n4+n)=2" =2 whennis even and:(n) = ¥ = 1 whenn is odd. O

Example 2.3.3.LetG=Cqg = <(123456789> andX ={1,2,3,4,5,6,7, 8, 9}, then

Co = {e (123456789, (135792468, (147)(258)(369), (159483726, (162738495,
(174)(285)(396), (186429753, (198765433},

Stalyi(1) = {e} and the suborbits db are

No= {1}, A1={2}, Do = {3}, As= {4}, A = {5}, As = {6}, g = {7}, A7 =
{8}, Ag={9}. Hence rank o6 is 9 and the subdegrees arel11,1,1,1, 1,1, 1. By
using the definition ofA* given in section 1.1.4 we obtain

Ay = Do
AL = Ag
Ny = Dy
Ay = Ng
A: = Ag

Hence the selfpaired suborbit is the trivial suborbyg = {1}

Example 2.3.4.Let G =Cg =< (12345678 > andX = {1,2,3,4,5,6, 7,8}, then

Cs = {e (12345678, (1357)(2468), (14725836, (15)(26)(37)(48), (16385273,
(1753)(2864), (18765433},

Stals (1) = {e} and the suborbits d& are



No={1}, A1 ={2}, Ao = {3}, Az = {4}, A= {5}, As = {6}, Ae = {7}, A7 =
{8}. Hence the rank is 8 and the subdegrees atel 1,1, 1, 1, 1.
By using the definition in section 1.1.4 we obtain

Ay = Do
AL = A,
Ny = Ng
Ay = As
Ni = Dy

The two suborbits which are selfpaired akg and/\4.
Theorem 2.3.5.Let G= C, act on X, then the suborhit; of G is paired withA\,_;.

Proof. let G =< x> andi+1 € A\ (see Theorem 2.3.1). To get the suborbit paired
with A;, first findx) € G where 0< j < n such thatx! (i + 1) = 1. The value ofj is
gotten by solving the following equatidrj +i + 1)modn= 1, which can be rewritten

in this case as

j+i+1 = n+1

] = n—i

Secondly find where! takes 1 i.ex)1, which isj+1=n—i+1. By the definition
in section 11.4, the element —i + 1 exist in the suborbit which is paired with;. If
i+1e /Aj,thenn—i+1€ Ap_j. Hence the suborbit; is paired with the suborbit
An_i, thatisAf = An_j. O

Corollary 2.3.6. Ag is the only selfpaired suborbit of G when n is odd and when n is
evenl\g andAg are selfpaired suborbits.

Proof. From Theorem 3, Aj= An—o0=An= Ao andA’g = An—g = An.

n
2
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CHAPTER THREE
TRANSITIVITY, PRIMITIVITY AND SUBORBITS OF Dy

3.1 Introduction

Stabilizer of a point, transitivity, primitivity, rank, fwrbits and subdegrees of the di-
hedral groupD,, acting on vertices of a regular=— gon are discussed in this chap-
ter. Throughout the chapteG will denote the dihedral group, acting onX =
{1, 2,..., n}; the set of vertices of a regular gon.

3.2 Transitivity and Primitivity of G acting on X

Theorem 3.2.1.Stals(1) = {e,(1)(3+1)(2n)(3n—1)...(i (n—=i+2))... (5 =4},
when n is even and when n is odd S6b = {e,(1)(2 n)(3 n—1)... (i (n—
2) . (%51 ")

Proof. Clearly whenn is even there is a reflectionthat fixes 1 andj + 1 which is
DMEB+D2 M@ Nn=-1)...(i (n—i+2)...(5 ”+4) Also whenn is odd there is
a reflectiony that fixes 1 which i1)(2 n)(3 n—1)... (i (n—i+42))... (”;1 ”;3)
Hence theStats(1) = {e (1)(3+1)(2 N3 n—1)...(i (n—i+2)...(3 %)}
whennis even andstaly (1) = {e,(1)(2 n)(3 n—1) ... (i (n—i+2))... (21 %)
whenn s odd. 0

Theorem 3.2.2.G acts transitively on X .

Proof. The order ofG = 2nand|Stali(1)| = 2. Hence by Theorem 1.1|@Orbg(1)| =

\Sta@(l}\ = % = n. Which implies that the action @& on X has one orbit. Hence the
action is transitive according to subsection 1.1.2. O

Theorem 3.2.3.G acts imprimitively on X if n is not prime.

Proof. The dihedral group is generated by two elements, a rotatidnaareflection,
that isG = {x, y|x" = y? = e} . TheStali(1) = {e, y} according to Theorem 3.2.1,
wherey is a reflection that fixes & X. Letk be such that Xk k < n andk dividesn,
then the groupd =< xK, y > is a proper subgroup @ of orderk properly containing
Stali(1). Hence by Theorem 1.1@ acts imprimitively onX. O

Example 3.2.4.ConsidelG = Dg =< X,y >= <(123456, (26)(35)>
ThenH =< x3, y >=< (14)(25)(36), (26)(35) >= {e, (14)(25)(36), (26)(35), (14)(23)(56)}
satisfies the condition th&tali (1) < H < G. ThereforeG acts imprimitively onX.

11



Now lets take a case whernis odd.

Example 3.2.5.ConsideDg =< X,y >= <(123456789, (29)(38) (47)(56)>,

ThenH =<3,y >= ((147)(258)(369), (29)(38)(47)(56))

={e, (147)(258)(369), (174)(285)(396), (29)(38)(47)(56), (17)(26)(35)(89), (14)(23)(59)(68) }.
Which satisfies the condition th&tals (1) < H < G. ThereforeG acts imprimitively

onX.

3.3 Ranks, Suborbits and Subdegrees @

Theorem 3.3.1.Orbits of Stalg(1) on X areAg = {1}, A1 ={2,n}, ..., Ai={i+
1L,n—i+1}, ..., Ap= {5+1}, when n even and when n is odd Orbits of Sdh on
XareNo={1},Ar={2n},, ..., Ai={i+1n—i+1}, ..., Aps = {4 13}

2

Proof. Clearly these are the cycles of the non identity elenyantStali (1) in Theo-
rem 3.2.1. 0J

Corollary 3.3.2. Subdegrees of G when n is even arranged in an increasing order
of magnitude ard., 1, 2, 2, ..., 2; g — 1 twos and when n is odd subdegrees of G are

1,22 ...,2; ”%Hwos. The rank of G when n is evenjis- 1 and when n is odd is
n+1

5=
Proof. Clearly from Theorem 3.1 the lengths of cycles gfarranged in an increasing
order of magnitudeare 1,2, 2, ..., 2: g —1twoswhemisevenand 12, 2, ..., 2; ”%1
twos whem is odd. The rank o6 whenn is even is computed using Theorenl.5;
which gives usj[n+2] = § + 1, and whemis odd the rank ign+1]=5+3 O

Theorem 3.3.3.All the suborbits of G are selfpaired.

Proof. Let g € G, theng? will have fixed points inX if either g is the identity org is
of order two. In either casg? will fix all the points inX. If nis evenG containsn+ 1
elements of order 2. Therefore by Theorem 1.1.8 the numbsel§daired suborbits
of Gis 2n[n—i— n(n+1)] = 5+ 1. Whenn is odd,G containsn elements of order 2.
Therefore by Theorem 1.1.8 the number of selfpaired sutsombithis case |§—n[n+
n.n) = 5+ 5 =" = "1 Hence all suborbits d are selfpaired. O

Example 3.3.4.ConsideDg =< X,y >= <(123456789, (29)(39) (47)(56)> andX =

12



{1,2,...,9}, then

= {e (123456789, (135792468, (147)(258)(369), (159483726, (162738495,
(174)(285)(396), (186429753, (198765432, (2
(1
(1

)(
5)(24)(69)(78), (17)(26)(53)(89), (19)(25)(34)(79), (12)(39)(48)(57),
4)(23)(59)(68), (16)(25)(34)(79), (18)(27)(36)(45) }

Staly(1) = {e,(2 9)(3 8)(4 7)(5 7)} and the suborbits o6 are Ay = {1},A1 =
{2,9},/2 = {3,8},A3 = {4,7}, Ay = {5,6}. Hence the rank is equal §{9+ 1] =
9+ 3 =5 and the subdegrees (lengths of the suborbits) 8e212,2. The number
selfpaired suborbits are equalrig = ﬁggG mg?) = 59+9+9+9+9+9+9+

1
9+9+9 =R =5="0

Example 3.3.5.Let G = Dg =< X,y >= <(12345@, (26)(35)> andX = {1,2,...,6},
then

= {e (123454, (135)(246),(14)(25)(36),(153)(264),
(165432, (26)(35),(12)(36)(45),(13)(46), (14)(23)(56),
(1

5)(24),(16)(25)(34)}
Stalis(1) = {e,(2 6)(3 5)} and the suborbits d& are A\g = {1},A1 = {2,6},A, =
{3,5},A3={4}. Hence the rank is equal {6+ 2] = § + 1= 4 and the subdegrees ar-

ranged in increasing order of magnitude arg, 2,2. The number selfpaired suborbits
are equal toyy = 5 3 T(Q?) = $5[6+6+6+6+6+6+6+6=1=4=7+1.
geG

13

38)(47)(56),(13)(49)(58)(67),



CHAPTER FOUR
SUBORBITAL GRAPHS OF C,

4.1 Introduction

Construction of the suborbital graphs corresponding.tacting on the set of vertices
of a regulam— gon, and discussion of the properties of these graphs is itotes
chapter. Through out this chap®randX are defined as in chapter 2

4.2 Suborbital Graphs for C, acting on X

The suborbitals in this section have a one to one correspaedgith the suborbits of
G in chapter two. S@\; corresponds t@®;. Elements inX are assumed to be arranged
cyclically and evenly spaced around a circle in anticlodendirection. Any element
xK € Gtakesi € X , k units around the circle in an anticlockwise direction.

Theorem 4.2.1.Supposél, i) is a representative of the non-trivial suborbital @ of
G, then(a, b) € O;_1 if and only if

i—1 ifb>a
Ib—al = :
n—(i—-1) ifa>b

Proof. Supposéa,b) € O;_1, wherei > 1, then there exists! € G such thai! (1,i) =
(a,b). Nowif b>a, thena=1+jandb=i+ j. Thuslb—a] =i—1. Nextifa> b,
theni+j >n;anda=1+ jandb=i+ j—nimpliesa—b=n— (i —1). Therefore
Ib—al=n—(i—1).

Conversely, suppose that

i—1 ifb>a
|Ib—al =
n—(i—1) ifa>b

We need to show thda, b) € O;_;. In other words we need to show that there exists
XK € G such thaiX(1,i) = (a,b). Nowif b>a b—a=i—1impliesa=b—i+1.
Therefore

¥ (1) =(a,a—1+i) = (ab).

14



On the other hand & > b, thena—b=n— (i — 1) impliesa=n+b—i+ land

x¥1(1,i) = (a,a+i—1) = (a,n+b) = (a,b)(modn.

Example 4.2.2.ConsiderG = Cg acting onX = {1,2,3,4,5,6,7,8,9}.

01(1,2)={(1,2),(2,3),(3,4), (4,5), (5,6),(6,7), (7,8),(8,9), (9,1)}
02(1,3) ={(1,3),(2,4),(3,5), (4,6),(5,7),(6,8), (7,9), (8,1),(9,2)}
03(1,4) ={(1,4),(2,5),(3,6), (4,7),(5,8),(6,9), (7.1), (8,2),(9,3)}
04(1,5) = {(1,5),(2,6), (3,7),(4.,8),(5,9), (6,1), (7,2), (8,3), (9,4)}
05(1,6) ={(1,6),(2,7),(3,8), (4,9), (5,1), (6,2), (7,3), (8,4),(9,5)}
06(1,7) ={(1,7),(2,8),(3,9), (4,1),(5,2),(6,3), (7,4), (8,5),(9,6)}
07(1,8) = {(1,8),(2,9). (3,1), (4,2), (5,3), (6,4), (7,5), (8,6), (9,7)}
0g(1,9) = {(1,9),(2,1), (3,2),(4,3),(5,4), (6,5),(7,6), (8,7), (9,8)}
Corresponding suborbital graphs are as shown below.

Figure 4.2.1The suborbital graph; corresponding to the action 685 onX = {1,2,...

The suborbital graph is connected and the girth is 9.
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Figure 4.2.2The suborbital grapR, corresponding to the action 65 on X = {1,2,...,9}.
The suborbital graph is connected and the girth is 9.

Figure 4.2.3The suborbital grapf3 corresponding to the action 65 on X = {1,2,...,9}.
The suborbital graph is disconnected with 3 connected coems and the girth is 3.

Figure 4.2.4The suborbital graph4 corresponding to the action 65 on X = {1,2,...,9}.
The suborbital graph is connected and the girth is 9.
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Figure 4.2.5The suborbital grapRs corresponding to the action 65 on X = {1,2,...,9}.
The suborbital graph is connected and the girth is 9.

Figure 4.2.6The suborbital grapRs corresponding to the action 65 on X = {1,2,...,9}.
The suborbital graph is disconnected with 3 connected coems and the girth is 3.

Figure 4.2.7The suborbital graph7 corresponding to the action 65 onX = {1,2,...,9}.
The suborbital graph is connected and the girth is 9.
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Figure 4.2.8The suborbital grapfRg corresponding to the action 65 on X = {1,2,...
The suborbital graph is connected and the girth is 9.

Example 4.2.3.ConsiderG = Cg acting onX = {1,2,3,4,5,6}.
The suborbitals o6 are obtained using Theoren4l

01(1,2) = {(1,2),(2,3),(3,4),(45),(5,6),(61)}
O2(1,3) = {(1,3),(2,4),(3,5),(4,6),(5,1),(6,2)}
Os3(1,4) {(1,4),(2,9),(3,6), (4,1),(52), (6,3)}
04(1,5) = {(1,5),(2,6,),(3,1),(4,2),(53),(6,4)}
Os5(1,6) = {(1,6),(21),(3.2),(4,3),(5,4),(6,5)}

The following are the non - trivial suborbital graphs cop@sding to the action.

18



Figure 4.2.9The suborbital grapR; corresponding to the action 6 on X = {1,2,...,6}.

The girth of the suborbital graph is 6, it is connected andaléd.

Figure 4.2.10The suborbital graph, corresponding to the action 6§ onX = {1,2,...,6}.
The girth of the suborbital graph is 3, it is disconnectech\ittonnected components.
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Figure 4.2.11The suborbital graphs corresponding to the action 6 onX = {1,2,...,6}.
The suborbital graph is composed of 3 lines and it is undikct

Figure 4.2.12The suborbital graph4 corresponding to the action 6§ onX = {1,2,...,6}.
The girth of the suborbital graph is 3, it is disconnectechwittonnected components.
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Figure 4.2.13The suborbital graphs corresponding to the action 6§ onX = {1,2,...,6}.
The girth of the suborbital graph is 6, it is connected andaléd.

Theorem 4.2.4.Elements of Q 1 can be obtained by pairing each point ¢tk e G
to a point it is being mapped to.

Proof. ConsideO;_1(1,i) = {(1,i),(2,i+1),...,(k,k+i—1),...,(n,i—1)} and a ro-

tationx 1 € G, where 1< i < n. In the rotation

X—1= l 2 k n , if each pointis paired
1+i—-1) (2+i-1) ... (k+i—1) ... (n+i—1)

with the point it is mapped to, we obtain

(L,1+i-1),(22+i-1),....(kk+i—1),....(n,n+i—1)}
= {(1,),(2,i+1),...,(Kk+i—1),...,(ni—1)} = O_1.

From Theorem £.4 we can deduce the following results.

Corollary 4.2.5. There is a one to one correspondence between the cycl&staind
the cycles of the suborbital gragh_;.

Corollary 4.2.6. The number of components of the suborbital graph is equal to
ged(n,i—1) =d, and its girth is r= §, where nd,r,i € Z and d# 5. When d= 3,
then the girth is zero.

Proof. The number of disjoint cycles of 1 € G is equal tagcd(n,i — 1) = d, and all
the cycles are of equal length, whichris= 5. From Corollary 42.5 we deduce that
I'i_1 hasd components each of which is a cycle of length g and therefore the girth
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of [i_1is § whend # 5. Whend = 3, thenr = 2, but sincd’j_; does not have multiple
edges, the girth df;_; must be zero in this case. O

Corollary 4.2.7. The number of connected suborbital graph®is), whereg is the
Euler's phi function.

Proof. Sinceg(n) is the number of, 1 <i < nsuch thagcd(n,i) =1, then from corol-
lary 4.2.6 the number of suborbital graphs®@fwith exactly one connected component

is @(n). O

From subsection.1.4, Theorem 8.5 and Corollary 23.6 the following two results
follow.

Theorem 4.2.8.The suborbital graph§y and o are undirected when n is even and
the other non - trivial suborbital graphs are directed .

Theorem 4.2.9.When n is odd only the trivial suborbital graphy is undirected and
the other non - trivial graphs are directed.

From Theorems.1.3,11.9 and 22.3 the following result is trivial.

Theorem 4.2.10.All the non - trivial suborbital graphs of G are connected ifchonly
if nis prime
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CHAPTER FIVE
SUBORBITAL GRAPHS OF Dy

5.1 Introduction

Construction of the suborbital graphs correspondin@jcacting on the set of ver-
tices of a regulan— gon and discussion of their properties is done in this chliapte
Throughout this chaptés andX will be used as in chapter. 3

5.2 Suborbital Graphs for D, acting on X

The suborbitals in this section have a one to one correspaedgith the suborbits of
G in chapter three. Sd\; corresponds t®@;. Suppose thatl,i) is a representative
of the non - trivial suborbital grap®;_1 of G. SinceG is acting onX andC, C G,
whereC, is composed of the rotations @, then there is a connection between the
suborbitals ofC, (in chapter 4) and the suborbitals Gfin this chapter. In both cases
same elements db (to precise the rotations @& or C, C G), act on the same sat
hence will have the same results. Which implies that theriedements of5; 1 of G
corresponds to the suborbi@]_,of C,. By Theorem 33.3 all the suborbits oG are
selfpaired. Therefore from subsectiorl. if (a,b) € O;_1, then(b,a) € O;_1 also.
That is paired suborbitals i@, become one iG.

From Corollary 33.2, Theorem 33.3 and the discussion above, the following result is
immediate.

Theorem 5.2.1.(a) G hasj selfpaired non - trivial suborbitals Q1,i=2,3,...,5+1
when n is even, where a suborbital in G is the union of two psgborbitals in G.
(b) G has™t — 1 selfpaired non trivial suborbitals Q1(1,i), i = 2,3,..., 2 when
n is odd, where a suborbital in G is the union of two paired sbhals in G,.

Example 5.2.2.ConsiderG = Dg acting onX
01(1,2) = {(1,2),(23),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,1),
(1,9),(2,1),(3,2),(4,3),(5,4),(6,5),(7,6),(8,7),(9,8)}
02(1,3) = {(1,3),(2,4),(3,5),(4,6),(57),(6,8),(7,9),(8,1),(9,2),

(1,8),(3,1),(5,3),(7,5),(9,7),(2,9),(4,2),(6,4),(8,6)}
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Os3(1,4) = {(1,4),(2,9),(3,6),(4,7),(5,8),(6,9),(7,1),(8,2),(9,3),
(1,7),(3,9),(5,2),(7,4),(9,6),(2,8),(4,1),(6,3),(8,5)}

04(1,5) = {(1,5),(2,6),(3,7),(4,8),(5,9),(6,1),(7,2),(8,3),(9,4),
(1,6),(3,8),(5,1),(7,3),(9,5),(2,7),(4,9),(6,2),(8,4)}

The following are the non - trivial suborbital graphs cop@sding to the action.

Figure 5.2.1The suborbital graph; corresponding to the action 8f on X = {1,2,...,9}.
The suborbital graph is undirected, connected and its @rgh
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Figure 5.2.2The suborbital graph, corresponding to the action 8 onX = {1,2,...,9}.
The suborbital graph is undirected, connected and the igifh

Figure 5.2.3The suborbital graph; corresponding to the action 8 onX = {1,2,...,9}.
The suborbital graph is undirected, disconnected andrits igi 3.
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Figure 5.2.4The suborbital graph 4 corresponding to the action Bfy on X = {1,2,...,9}.
The suborbital graph is undirected, connected and the igifh

Example 5.2.3.ConsidelrG = Dg acting onX

01(1,2)={(1,2),(2,3), (3,4),(4,5), (5,6),(6,1), (1,6), (2,1), (3,2), (4,3), (5,4), (6,5)}
02(1,3) ={(1,3),(2,4), (3,5),(4,6), (5,1), (6,2), (1,5), (2,6,), (3,1), (4,2), (5,3), (6,4) }
O3(1,4) ={(1,4),(2,5), (3,6), (4,1), (5,2), (6,3)}

Following are the non - trivial suborbital graphs corresgiog to the action.

Figure 5.2.5The suborbital graph; corresponding to the action 8f; onX = {1,2,...,6}.
The suborbital graph is undirected, connected and its h
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Figure 5.2.6:The suborbital graph, corresponding to the action 8f; onX = {1,2,...,6}.
The suborbital graph is undirected, disconnected with Zxeoted components and its girth is
3.

Figure 5.2.7.The suborbital graph3 corresponding to the action 8f; onX = {1,2,...,6}.
The suborbital graph is disconnected with 3 lines and it dingcted.

From Theorem 2.1 and corollaries 2.5 and 42.6 we deduce the following two
results.

Corollary 5.2.4. The number of components of the suborbital gréph is equal to
ged(n,i—1) =d and its girth is r= g, where d# 5. When d= 3, the girth is zero.

Corollary 5.2.5. The number of connected suborbital graphs of (%q’rgn).
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From Theorem 3.3 and subsection.1.4 we conclude the following
Theorem 5.2.6.All the suborbital graphs of G are undirected.
From Theorems 2.3 and 11.9 the following result are straight forward.

Theorem 5.2.7.All the non - trivial suborbital graphs of G are connected fifchonly
if nis prime
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CHAPTER SIX
CONCLUSIONS, RECOMMENDATIONS AND APPLICATIONS

6.1 Introduction

Some conclusions of this study, suggestions of areas furduresearch and applica-
tions are given in this chapter.

6.2 Conclusion

In chapter 2 it was proven th&l, acts transitively and imprimitively oX whenn

is not prime. It was also shown that the orbitsStals(1) on X were as follows
Do ={1}, A1 =12}, Lo ={3},..., A ={i+1},..., An_1 = {n}, the rank and
subdegrees were also shown torband 11,1,...,1; n ones respectively. It was
further proven that the suborhit; is paired withA,_; .

In chapter 3 it was proven th&, acts transitively and imprimitively oX whenn is
not prime. It was also shown that the orbitsQtfali;(1) on X are A = {1}, A1 =
{2,n}, .., Ai={i+1L, n—i+1}, ..., Ag = {3 +1}, whennis even and when is
odd Orbits ofStali(1) on X were Ao = {1}, A1 ={2,n},,..., Aj={i+1,n—i+
1, Apa = {1 3% The rank ofD, was shown to bd + 1 whennis even and
%1 whenn is odd. The subdegrees B, whenn is even arranged in an increasing
order of magnitude were shownto bgll?2, 2, ..., 2; g — 1 twos and when s odd the
subdegreeswere 2, 2, ..., 2; ”;21 twos . Moreover it was proven that all the suborbits
of Dy, are selfpaired.

In chapter four a general construction of suborbital graphS,, was given. It was
shown that(a,b) € O;_; if and only if

i—1 ifb>a
Ib—al = :
n—(i—-1) ifa>b

An alternative way of obtaining the elements@f ; was also derived in Theorem
4.2.4. The number of components of the non - trivial suborbitapdp™; 1 was proven
to bed = gcd(n,n—1) and its girth was = § whend # 5 and zero whed = 5. Further
the number of connected suborbital graphs corresponditigetaction is shown to be
@(n). Finally it was proven that all the non trivial suborbital gres ofG are connected
if and only if nis prime.

Chapter five dealt with investigation of the suborbital grepfDy, acting onX. It was
proven that the suborbit&;_; of D, is a union of two paired suborbitals Gf. It was
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also shown that the number of component$ of; is d = gcd(n,n— 1) and its girth
isr = § and zero wherl = . Further it was proven that the number of connected
suborbital graphs o was%(p(n). Finally it was proven that all the suborbital graphs
of G were undirected and that they are connected if and omysifprime.

6.3 Recommendations

One may investigate the action of the alternating gr8gacting on ordered and un-
orderedr — element subsets from the dét 2,...,n}.

6.4 Applications

The major role of graph theory in computer applications esdkevelopment of graph
algorithms. Numerous algorithms are used to solve probtéatsare modeled in the
form of graphs . These algorithms are used to solve the giagdrétical concepts
which in turn are used to solve the corresponding computense application prob-
lems.

Some algorithms are:

1. Shortest path algorithm in a network.

2. Algorithms to determine connectedness.
3. Algorithms to find the cycles in a graph
4. Minimun spanning tree

Various computer languages are used to support the graptytbencepts. The main
goal of such languages is to enable the user to formulateatpes on graphs in a
compact and natural manner.

1. GASP - Graph Algorithm Software Package.
2. FGRAAL - FORTRAN Extended Graph Algorithmic Language.

From the results obtained in this research new modules cadded to these already
existing algorithms to make them more efficient in dealinghvdihedral group®p,
and the cyclic group€,, and their suborbital graphs.
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