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ABSTRACT

The main aim of this research was to determine transitivity,primitivity, ranks, sub-

degrees, and suborbital graphs of cyclic groupCn and dihedral groupDn acting on

vertices of a regularn− gon. These areas have not received much attention, in fact

most of the researchers have been focused on testing whetherthe action of specific

degrees of the dihedral group are primitive or transitive onthe vertices of a regularn−

gon. This research extends the work of Hamma to the general degreen for bothCn

andDn. With regard to the suborbital graphs of these two groups, nothing appears in

literature and so to some extent the results obtained in thisresearch can be regarded as

new. In this research it has been shown thatCn andDn act transitively on the vertices

of a regularn− gon . AlsoCn andDn act imprimitivily on the vertices of a regularn−

gon if n is not prime. The rank ofCn is shown to ben and the rank ofDn is shown

to be n
2 +1 whenn is even andn+1

2 whenn is odd. It is also shown that the suborbits

of Cn are not all selfpaired; only 2 are selfpaired whenn is even and 1 whenn is odd,

the rest are paired with each other such that△i of Cn is paired with△n−i , but all the

suborbits ofDn are selfpaired. The subdegrees ofCn are shown to be all singletons,

and the subdegrees ofDn are shown to be 1,1,2,2,· · · ,(n
2 −1) twos whenn is even and

1,2,2,2,· · · ,(n−1
2 ) twos whenn is odd. Further it is shown that for a suborbitalOi−1 in

Cn, (a,b)∈Oi−1 if and only if |b−a|=







i −1 i f b > a

n− (i −1) i f a > b
, and that all suborbital

graphs ofCn are connected if and only ifn is prime. The suborbitals ofDn are shown

to be union of the paired suborbitals ofCn, and the corresponding suborbital graphs are

connected if and only ifn is prime. Finally it is shown that the number of components

of the suborbital graphΓi−1 for both groups isd = gcd(n, i −1) and its girth isr = n
d ,

whend 6= n
2 and zero ifd = n

2 .

x



CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW

1.1 Background of the Study

Some basic concepts in group theory, graph theory, suborbital graphs and a list of

theorems which will be used in the actual research are discussed in the preceding sub-

sections.

1.1.1 Group Theory

The groups which will be considered in this work arepermutation groups. Let

X = {1,2· · · ,n},a permutation ofX is a one to one mapping ofX onto itself. The

symmetric group of degreen is the group of all permutations ofX under the binary

operation of composition of mappings. It is denoted bySn and is of ordern!.

Let G be a group, thenG is cyclic if there exista∈G such thatG=< a>= {an|n∈Z}.

A dihedral group is the group of symmetries of a regular polygon and it is denoted by

Dn wheren≥ 3, and has order 2n.The vertices of the regular polygon will be denoted

as the setX = {1,2, · · · ,n} .

The conventional way of writingDn =
〈

x, y|xn = y2 = e, yx= xn−1y= x−1y
〉

, thusDn

is the group generated by the elementsx, y subject to the conditionsxn = y2 = 1; yx=

xn−1y= x−1y, and the 2n distinct elements ofDn are 1,x, x2, . . . , xn−1, y, xy, x2y, . . .,

xn−1y. Herex is a rotation about the centre of the polygon through angle 2Πc/n; it

generates a cyclic subgroupCn of ordern. The elementy is a reflectional symmetry

along the line joining a vertex to the centre of opposite edgeif n is odd; or a reflectional

symmetry along the line from a vertex to an opposite vertex orfrom the centre of an

edge to the centre of the opposite edge ifn is even.

1.1.2 Group Actions

Let X be a set andG a group. ThenG acts on a setX on the left if∀g∈ G andx∈ X

there exists a uniquegx∈X such that ifg1, g2 ∈G, (g1g2)(x) = g1(g2(x)), and 1x= x,

where 1 denotes the identity inG. The action ofG on X from the right can be defined

in a similar way.

If G acts on a set , thenX is partitioned into disjoint equivalence classes called orbits

or transitivity classes of the action. For eachx∈ X, the orbit containingx is denoted

by OrbG(x), thereforeOrbG(x) = {gx|g ∈ G}. If the action of a groupG on a setX

has only one orbit, thenG is said to act transitively onX. HenceG acts transitively on

X if for every pair of pointsx, y∈X, there existsg∈ G such thatgx= y.

1



Thestabilizer of x∈ X, denoted byStabG(x), is the set of all elements inG that fix x

i.e. StabG(x) = {g∈ G | gx= x}. This set is also denoted byGx and it can be shown

thatStabG(x)≤ G.

Let G act on a setX. The set of elements ofX fixed byg∈ G is called the fixed point

set ofg, denoted byFix(g). ThusFix(g) = {x∈ X | gx= x}.

Theorem 1.1.1.(Orbit - Stabilizer Theorem - Rose 1978, p.72)

Let G be a group acting on finite set X and x∈ X. Then

|OrbG(x)|= |G : StabG(x)|.

Let G be a transitive group acting on a setX. A subsetY of X is said to be ablock for

the action if, for eachg∈ G, eithergY=Y or gY∩Y = Ø. All 1− element subsets of

X, /O, andX are obvious blocks and they are called the trivial blocks. Ifthey are the

only blocks thenG actsprimitively on X , otherwiseG actsimprimitively .

Example 1.1.2.Le tG=D4= {e, (1234), (13)(24), (1432), (12)(34), (14)(23), (24), (13)}

acting on the setX = {1,2,3,4}. ThenG acts imprimitively onX sinceY = {1,3} is a

non - trivial block.

Theorem 1.1.3.(Scott, 1964;Passman, 1968, p.15 )

If G acts on a set X, where G is a transitive group of prime degree, then G is primitive.

A Maximal Subgroup of a groupG is a subgroupM not equal toG such that there

is no proper subgroupN of G properly containingM. The following theorem can be

used to test the primitivity of an action

Theorem 1.1.4.Let G be a transitive permutation group acting on a set X and let x∈

X. Then G is primitive if and only if Gx is a maximal subgroup or equivalently G is

imprimitive if and only if Gx is not a maximal subgroup of G.

If a finite groupG acts on a setX with n elements, eachg ∈ G corresponds to a

permutationσ of X, which is uniquely as a product ofdisjoint cycles. If σ hasα1

cycles of length 1,α2 cycles of length 2,. . . , αn cycles of lengthn; we say thatσ and

henceg has cycle type(α1,α2, . . . ,αn).

Theorem 1.1.5.( Harary, 1969, p.98)

Let G be a finite group acting on a set X. The number of orbits of Gis
1
|G| ∑

g∈G
| f ix(g)|.

(This theorem is referred to as Cauchy - Frobenius Lemma).

2



1.1.3 Graph theory

A simple graph is an ordered pairH = (V,E), whereV is a finite non - empty set

of objects called vertices andE is a (possibly empty) set of 2− element subsets ofV

called edges. The setV is called the vertex set ofH andE is called the edge set ofH.

If e= {u,v} ∈ E(H), verticesu andv are adjacent inH and thate joins or connectsu

andv. The edgee is said to be incident withu (andv), and vice versa.

A directed graph (or digraph)(V,E) consists of a nonempty set of verticesV and a

set of directed edges (or arcs)E. Each directed edge is associated with an ordered pair

of vertices. The directed edge associated with the ordered pair (u,v) is said to start atu

and end atv.

Degree or valencydH(v) of a vertexv of a graphH is the number of vertices ofH

adjacent tov. A vertex of degree 0 is an isolated vertex. IfH is a graph with vertices

v1, v2, . . . , vn, then the degree sequence ofH is the sequencedH(v1), dH(v2), . . . , dH(vn),

it is usually ordered in such a way thatdH(v1) ≤ dH(v2) ≤ . . . ≤ dH(vn). A graph in

which every vertex has the same degree is called regular.

A walk of lengthk joining u andv in H is a sequence of vertices and edges ofH

of the formv0,e1,v1,e2,v2, . . .vk−1,ek,vk, wherev0 = u,vk = v andei = {vi−1,vi} for

i = 1,2, . . . ,k. A walk joiningu andv is closed ifu= v, and is a path if no two vertices

of the walk (except possiblyu andv) are equal; a closed path is called a circuit or cycle.

The length of the shortest cycle (if any ) inH is called thegirth of H.

A graphH isconnectedif every pair of vertices ofH is joined by some path; otherwise,

H is disconnected. A connected component ofH is a maximal connected subgraph of

H. Each vertex and edge ofH belongs to precisely one component ofH.

1.1.4 Suborbital Graphs

Let G be transitive onX and letGx be the stabilizer of a pointx ∈ X. The orbits

△0= {x},△1,△2, . . . ,△r−1 of Gx on X are called thesuborbits of G. The rank ofG

is r and the sizesni = | △i | (i = 0,1,2, . . . , r −1), often called the “lengths ” of the

suborbits, are known as subdegrees ofG. Note that both r and the cardinalities of the

suborbits△i (i = 0,1,2, . . . , r −1) are independent ofx∈ X .

Let△ be an orbit ofGx. Define△∗= {gx|g∈ G,x∈ g△}, then△∗ is also an orbit ofGx

and is called theGx−orbit (or the G - suborbit ) paired with△. Clearly | △ | = | △∗ |.

If △∗=△, then△ is called aselfpaired orbit of Gx.

Theorem 1.1.6.(Cameron, 1975 p.422)

3



If G is primitive, with subdegrees1= n0,n1, . . . ,nr−1(in increasing order of magnitude

), then n1ni−1 ≥ ni for i = 1, . . . ,r − 1. Now if there exist an index i> 0 such that

ni > n1ni−1, then G is imprimitive.

Theorem 1.1.7.(Wielandt, 1964, section 16.5 )

Gx has an orbit different from{x} and paired with itself if and only if G has even order.

Observe that G acts onX×X by g(x,y) = (gx,gy),g∈ G x,y∈ X. If O⊆ X×X is aG

- orbit onX×X, then for a fixedx∈ X,△= {y∈ X |(x,y) ∈ O} is a Gx−Orbit on X.

Conversely, if△⊆ X is aGx−orbit, thenO= {(gx,gy) |g∈ G, y∈△} is a G−Orbit on

X×X. We say that△ corresponds toO. The G - orbits onX×X are called suborbitals.

Let Oi ⊆ X ×X, i = 0,1,2, . . . , r − 1 be a suborbital. Then we form a graphΓi , by

takingX as the set of vertices ofΓi , and by including a directed edge fromx to y (x,

y∈X) if and only if (x,y)∈ Oi .

The suborbital graphΓ0 corresponding to the suborbit△0 is called the trivial subor-

bital graph. When the suborbits are selfpaired the corresponding suborbital graphs are

undirected. If the suborbits are not selfpaired the corresponding suborbital graphs are

directed. The trivial suborbital graph is selfpaired; it consists of a loop based at each

vertexx∈ X. We are mainly interested with the non - trivial suborbital graphs. If the

suborbital graphΓ is paired withΓ∗, thenΓ∗ is justΓ with arrows reversed.

Let G act on a setX, then the characterπ of a permutation representation ofG onX is

defined byπ(g) = |Fix(g)|, for all g∈ G

Theorem 1.1.8.(Cameron, 1975)

Let G act transtively on a set X and let g∈ G. Supposeπ is the character of the

permutation representation of G on X, then the number of selfpaired suborbits of G is

given by nπ = 1
|G| ∑

g∈G
π(g2).

Theorem 1.1.9.(Sims, 1967)

Let G be transitive on X. Then G is primitive if and only if eachsuborbital graph

Γi(i = 1,2, . . . , r −1) is connected.

1.2 Literature Review

In this section a review of previous studies which are closely related to this work are

discussed. Groups as mathematical structures form a major area of interest for mathe-

maticians in abstract algebra. To be able to understand thembetter together with their

properties, their suborbital graphs can be constructed. Wielandt (1964) wrote a little

4



monograph on finite permutation groups. In this monograph a condition for imprimi-

tivity of a group is given in terms of its subdegrees.

Higman (1964) introduced the rank of a group while working onfinite permutation

groups of rank 3. Also Higman (1970) gave a characterizationof families of rank

3 permutation groups by the subdegrees. He proved that the symmetric groupSn on

X = {1, 2, . . . , n} n≥ 4 acts as a rank 3 group on the set of

(

n

2

)

2- elements subsets

of X, with subdegrees 1,2(n−2),

(

n−2

2

)

.

The idea of suborbital graphs of a permutation groupG acting on a setX was intro-

duced by Sims in 1967.

Tchuda (1986) computed the ranks and subdegrees of primitive permutation represen-

tations ofPSL(2,q).

Faradzev and Ivanov (1990) computed the subdegrees of primitive permutation repre-

sentations ofPSL(2,q) . If G= PSL(2,q) acts on the cosets of its maximal subgroup

H, then the rank is at least|G|
|H|2

and ifq> 100, the rank is greater than 5.

Kamuti (1992) devised a method for constructing some of the suborbital graphs of

PSL(2,q) andPGL(2,q) acting on the cosets of their maximal dihedral subgroups of

orderq−1and 2(q−1) respectively. This method gave an alternative way of construct-

ing the Coxeter graph which was first constructed by Coxeter (1986).

Lloyd and Jones (1998) published the paperReactionGraphsin which they showed

that algebraic combinatorics and group theory are effective tools for studying such

properties as connectivity and automorphisms in chemistry.

Akbas (2001) investigated the suborbital graphs for the modular group. He proved

the conjecture by Jones, Singerman and Wicks (1991) that a suborbital graph for the

modular group is a forest if and only if it contains no triangles.

Kamuti (2006) computed the ranks and subdegrees of primitive permutation represen-

tations ofPGL(2,q). It was shown in this paper that whenPGL(2,q) acts on the cosets

of its maximal dihedral subgroup of order 2(q−1), the rank is1
2(q+3) if q is odd and

1
2(q+2) if q is even.

Miyuki and Kano (2007) showed that a new visual cryptographyscheme (VCS) with

dihedral groups is possible. This is one of the many applications of the dihedral group.

Hamma S. and Audu M. S. (2010) investigated transitivity andprimitivity of Dn acting

on the vertices of a regular n - gon. In their research they considered dihedral groups

of degreep (p prime),p2 and 2r(r ≥ 2). When a dihedral group is of degreep, it was

shown that the action was transitive and primitive; and whenthe degree isp2 the action

was shown to be transitive and imprimitive. Further it was shown that when a dihedral
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group is of degree 2r(r ≥ 2), the action is transitive and imprimitive. In this work they

did not concinder all values ofn.

Kamuti I. N., Inyangala E. B. and Rimberia J. K.(2012) investigated the action of

Γ∞ on Z and the corresponding suborbital graphs. It was shown that the action is

transitive and imprimitive. They also constructed suborbital graphs corresponding to

the action and gave the conditions necessary for the suborbital graphs to be connected

or disconnected.

Nyaga L., Kamuti I. N., Mwathi C. and Akanga J.,(2012) showedthat the action ofSn

onX(r) is transitive and that the rank isr +1 if n≥ 2r. In the same work it was shown

that the suborbits ofSn acting onX(r) are all selfpaired and that the subdegrees are

1, r

(

n− r

r −1

)

,

(

r

2

)(

n− r

r −2

)

,

(

r

3

)(

n− r

r −3

)

, . . .

(

r

r −1

)(

n− r

1

)

,

(

n− r

r

)

.

1.3 Statement of the Problem

If a group acts on a set, the natural questions a group theorist may ask are:

• Is the action transitive

• Is the action primitive

• What are the mathematical structures and invariants associated with the action

In this work we try to answer the above questions with regard to the dihedral group

Dn and the cyclic groupCn acting on the vertices of a regularn− gon. To this end our

research seeks to investigate transitivity, primitivity,ranks, subdegrees and suborbital

graphs associated with the action. This will enable us fill the gap left by Hamma et. al

(2010).

1.4 Justification

Graph theory has many application in chemistry and computerscience. This is evident

from the work of Lloyd and Jones (1998) where they showed thatalgebraic combi-

natorics is an effective tool for studying such properties as connectivity and automor-

phisms in chemistry.

Shirinivaset al. (2010) have discussed how graph theoretical ideas can be utilized

in various computer science applications. These include research areas of computer

science such as data mining, image segmentation, clustering, image capturing and net-

working . For example a data structure can be designed in the form of tree which

6



in turn utilized vertices and edges. Similarly modeling of network topologies can be

done using graph concepts. In the same way the most importantconcept of graph

coloring is utilized in resource allocation, scheduling. Also, paths, walks and circuits

in graph theory are used in tremendous applications say traveling salesman problem,

database design concepts, resource networking. This leadsto the development of new

algorithms and new theorems that can be used in tremendous applications in computer

science.

1.5 Objectives

1.5.1 General Objective

To construct the suborbital graphs corresponding to the action of cyclic groupCn and

the dihedral groupDn acting on the vertices of a regularn−gon.

1.5.2 Specific Objectives

1. To determine transitivity and primitivity ofDn andCn acting on the vertices of a

regularn− gon.

2. To determine the ranks and subdegrees ofDn andCn acting on the vertices of a

regularn− gon.

3. To construct the suborbital graphs ofDn andCn acting on the vertices of a regular

n− gon and to investigate their properties.
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CHAPTER TWO

TRANSITIVITY, PRIMITIVITY AND SUBORBITS OF Cn

2.1 Introduction

This chapter investigates transitivity, primitivity and suborbits of the cyclic groupCn

acting on the set of vertices of a regularn− gon. Throughout the chapter we will be

takingG= Cn =< x >=< (12. . .n) > andX = {1, 2, . . . , n}; the set of vertices of a

regularn− gon.

2.2 Transitivity and Primitivity of G on X

Theorem 2.2.1.Let i∈ X, then StabG(i) = {e}.

Proof. Clearly inG, it is only the identity element which fixes a point inX

Theorem 2.2.2.G acts transitively on X.

Proof. From Theorem 2.2.1, only the identity element which has a fixed point in X

and in this case the number of points fixed by the identity is|X|= n. Hence by Cauchy

- Frobenius lemma the number of orbits ofG on X is 1
|G| ∑

g∈G
| f ix(g)| = 1

n × n = 1.

Therefore from subsection 1.1.2,G acts transitively onX.

Theorem 2.2.3.If |X|= n, where n is not a prime number, then G acts imprimitively

on X.

Proof. Sincen is not prime, then there exists a positive integerk such that 1< k < n

andk dividesn. Now< xn/k > is a proper subgroup ofG of orderk properly containing

StabG(i) = {e}. Hence by Theorem 1.1.4G acts imprimitively onX.

Example 2.2.4.Let G=C9 =< x>=
〈

(123456789)
〉

, then

H =< x3 >= {1, (147)(258)(369), (174)(285)(396)} and

StabG(1)< H < G. HenceG acts imprimitively onX = {1,2, . . . ,n}.

2.3 Suborbits and the Rank ofG

Theorem 2.3.1.Orbits of StabG(1) on X are△0= {1},△1= {2},△2= {3}, . . . ,△i =

{i+1}, . . . ,△n−1= {n}. Thus the rank of G on X is n and the subdegrees are1, 1, 1, . . . , 1;

n ones
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Proof. From Theorem 2.2.1StabG(1) = {e}, and therefore suborbits ofG consist only

of singleton elements. Hence the rank ofG is n and the subdegrees are 1, 1, 1, . . . , 1;

n ones

Theorem 2.3.2.The number of selfpaired suborbits of G on X is2 if n is even or1 if

n is odd.

Proof. Let g ∈ G, theng2 will have fixed points inX if either g is the identity or

g is an element of order two. AlsoG contains an element of order two only when

n is even. Therefore by Theorem 1.1.8 the number of selfpairedsuborbits ofG is
1
n(n+n) = 2n

n = 2 whenn is even and1
n(n) =

n
n = 1 whenn is odd.

Example 2.3.3.Let G=C9 =
〈

(123456789)
〉

andX = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then

C9 = {e,(123456789),(135792468),(147)(258)(369),(159483726),(162738495),

(174)(285)(396),(186429753),(198765432)},

StabG(1) = {e} and the suborbits ofG are

△0 = {1},△1 = {2},△2 = {3},△3 = {4},△4 = {5},△5 = {6},△6 = {7},△7 =

{8},△8 = {9}. Hence rank ofG is 9 and the subdegrees are 1, 1, 1, 1, 1, 1, 1, 1, 1. By

using the definition of△∗ given in section 1.1.4 we obtain

△∗
0 = △0

△∗
1 = △8

△∗
2 = △7

△∗
3 = △6

△∗
4 = △5

Hence the selfpaired suborbit is the trivial suborbit△0 = {1}

Example 2.3.4.Let G=C8 =< (12345678)> andX = {1,2,3,4,5,6,7,8}, then

C8 = {e, (12345678), (1357)(2468), (14725836), (15)(26)(37)(48), (16385274),

(1753)(2864), (18765432)},

StabG(1) = {e} and the suborbits ofG are

9



△0 = {1},△1 = {2},△2 = {3},△3 = {4},△4 = {5},△5 = {6},△6 = {7},△7 =

{8}. Hence the rank is 8 and the subdegrees are 1, 1, 1, 1, 1, 1, 1, 1.

By using the definition in section 1.1.4 we obtain

△∗
0 = △0

△∗
1 = △7

△∗
2 = △6

△∗
3 = △5

△∗
4 = △4

The two suborbits which are selfpaired are△0 and△4.

Theorem 2.3.5.Let G=Cn act on X, then the suborbit△i of G is paired with△n−i .

Proof. let G =< x > and i +1 ∈ △i (see Theorem 2.3.1). To get the suborbit paired

with △i , first find x j ∈ G where 0≤ j ≤ n such thatx j(i +1) = 1. The value ofj is

gotten by solving the following equation( j + i +1)modn= 1, which can be rewritten

in this case as

j + i +1 = n+1

j = n− i

Secondly find wherex j takes 1 i.ex j1, which is j +1 = n− i +1. By the definition

in section 1.1.4, the elementn− i +1 exist in the suborbit which is paired with△i. If

i +1 ∈ △i , thenn− i +1 ∈ △n−i . Hence the suborbit△i is paired with the suborbit

△n−i , that is△∗
i =△n−i .

Corollary 2.3.6. △0 is the only selfpaired suborbit of G when n is odd and when n is

even△0 and△ n
2

are selfpaired suborbits.

Proof. From Theorem 3.6,△∗
0 =△n−0 =△n =△0 and△∗

n
2
=△n− n

2
=△ n

2
.
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CHAPTER THREE

TRANSITIVITY, PRIMITIVITY AND SUBORBITS OF Dn

3.1 Introduction

Stabilizer of a point, transitivity, primitivity, rank, suborbits and subdegrees of the di-

hedral groupDn acting on vertices of a regularn− gon are discussed in this chap-

ter. Throughout the chapter,G will denote the dihedral groupDn acting onX =

{1, 2, . . . , n}; the set of vertices of a regularn− gon.

3.2 Transitivity and Primitivity of G acting onX

Theorem 3.2.1.StabG(1)= {e,(1)(n
2+1)(2 n)(3 n−1) . . .(i (n− i+2)) . . . (n

2
n+4

2 )},

when n is even and when n is odd StabG(1) = {e,(1)(2 n)(3 n−1) . . . (i (n− i +

2)) . . . (n+1
2

n+3
2 )}.

Proof. Clearly whenn is even there is a reflectiony that fixes 1 andn
2 + 1 which is

(1)(n
2 +1)(2 n)(3 n−1) . . .(i (n− i +2)) . . . (n

2
n+4

2 ). Also whenn is odd there is

a reflectiony that fixes 1 which is(1)(2 n)(3 n−1) . . . (i (n− i +2)) . . . (n+1
2

n+3
2 ).

Hence theStabG(1) = {e,(1)(n
2 + 1)(2 n)(3 n− 1) . . .(i (n− i + 2)) . . . (n

2
n+4

2 )}

whenn is even andStabG(1) = {e,(1)(2 n)(3 n−1) . . . (i (n− i +2)) . . . (n+1
2

n+3
2 )

whenn is odd.

Theorem 3.2.2.G acts transitively on X .

Proof. The order ofG= 2n and|StabG(1)|= 2. Hence by Theorem 1.1.1|OrbG(1)|=
|G|

|StabG(1)|
= 2n

2 = n. Which implies that the action ofG on X has one orbit. Hence the

action is transitive according to subsection 1.1.2.

Theorem 3.2.3.G acts imprimitively on X if n is not prime.

Proof. The dihedral group is generated by two elements, a rotation and a reflection,

that isG = {x, y|xn = y2 = e} . TheStabG(1) = {e, y} according to Theorem 3.2.1,

wherey is a reflection that fixes 1∈ X. Let k be such that 1< k < n andk dividesn,

then the groupH =< xn/k, y> is a proper subgroup ofG of orderk properly containing

StabG(1). Hence by Theorem 1.1.4G acts imprimitively onX.

Example 3.2.4.ConsiderG= D6 =< x,y>=
〈

(123456),(26)(35)
〉

ThenH =< x3, y>=< (14)(25)(36),(26)(35)>= {e, (14)(25)(36), (26)(35), (14)(23)(56)}

satisfies the condition thatStabG(1)< H < G. ThereforeG acts imprimitively onX.
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Now lets take a case whenn is odd.

Example 3.2.5.ConsiderD9 =< x,y>=
〈

(123456789),(29)(38)(47)(56)
〉

,

ThenH =< x3,y>=
〈

(147)(258)(369),(29)(38)(47)(56)
〉

= {e, (147)(258)(369), (174)(285)(396), (29)(38)(47)(56), (17)(26)(35)(89), (14)(23)(59)(68)}.

Which satisfies the condition thatStabG(1)< H < G. ThereforeG acts imprimitively

onX.

3.3 Ranks, Suborbits and Subdegrees ofG

Theorem 3.3.1.Orbits of StabG(1) on X are△0 = {1},△1 = {2,n}, . . . ,△i = {i +

1, n− i+1}, . . . ,△ n
2
= {n

2+1}, when n even and when n is odd Orbits of StabG(1) on

X are△0 = {1},△1 = {2, n}, , . . . ,△i = {i +1, n− i +1}, . . . ,△ n−1
2

= {n+1
2 , n+3

2 }.

Proof. Clearly these are the cycles of the non identity elementy in StabG(1) in Theo-

rem 3.2.1.

Corollary 3.3.2. Subdegrees of G when n is even arranged in an increasing order

of magnitude are1, 1, 2, 2, . . . , 2; n
2 −1 twos and when n is odd subdegrees of G are

1, 2, 2, . . . , 2; n−1
2 twos. The rank of G when n is even isn

2 +1 and when n is odd is
n+1

2 .

Proof. Clearly from Theorem 3.3.1 the lengths of cycles ofy arranged in an increasing

order of magnitude are 1, 1, 2, 2, . . . , 2 : n
2−1 twos whenn is even and 1, 2, 2, . . . , 2; n−1

2

twos whenn is odd. The rank ofG whenn is even is computed using Theorem 1.1.5;

which gives us1
2[n+2] = n

2 +1, and whenn is odd the rank is12[n+1] = n
2 +

1
2

Theorem 3.3.3.All the suborbits of G are selfpaired.

Proof. Let g∈ G, theng2 will have fixed points inX if either g is the identity org is

of order two. In either caseg2 will fix all the points inX. If n is even,G containsn+1

elements of order 2. Therefore by Theorem 1.1.8 the number ofselfpaired suborbits

of G is 1
2n[n+n(n+1)] = n

2 +1. Whenn is odd,G containsn elements of order 2.

Therefore by Theorem 1.1.8 the number of selfpaired suborbits in this case is1
2n[n+

n.n] = 1
2 +

n
2 = 1+n

2 = n+1
2 . Hence all suborbits ofG are selfpaired.

Example 3.3.4.ConsiderD9 =< x,y>=
〈

(123456789),(29)(38)(47)(56)
〉

andX =

12



{1,2, . . . ,9}, then

D9 = {e,(123456789),(135792468),(147)(258)(369),(159483726),(162738495),

(174)(285)(396),(186429753),(198765432),(29)(38)(47)(56),(13)(49)(58)(67),

(15)(24)(69)(78),(17)(26)(53)(89),(19)(25)(34)(79),(12)(39)(48)(57),

(14)(23)(59)(68),(16)(25)(34)(79),(18)(27)(36)(45)}

StabG(1) = {e,(2 9)(3 8)(4 7)(5 7)} and the suborbits ofG are △0 = {1},△1 =

{2,9},△2 = {3,8},△3 = {4,7},△4 = {5,6}. Hence the rank is equal to12[9+1] =
9
2 +

1
2 = 5 and the subdegrees (lengths of the suborbits) are 1,2,2,2,2. The number

selfpaired suborbits are equal tonπ = 1
|G| ∑

g∈G
π(g2) = 1

18[9+9+9+9+9+9+9+

9+9+9] = 90
18 = 5= n+1

2 .

Example 3.3.5.Let G= D6 =< x,y>=
〈

(123456),(26)(35)
〉

andX = {1,2, . . . ,6},

then

D6 = {e,(123456),(135)(246),(14)(25)(36),(153)(264),

(165432),(26)(35),(12)(36)(45),(13)(46),(14)(23)(56),

(15)(24),(16)(25)(34)}

StabG(1) = {e,(2 6)(3 5)} and the suborbits ofG are△0 = {1},△1 = {2,6},△2 =

{3,5},△3= {4}. Hence the rank is equal to12[6+2] = 6
2+1= 4 and the subdegrees ar-

ranged in increasing order of magnitude are 1,1,2,2. The number selfpaired suborbits

are equal tonπ = 1
|G| ∑

g∈G
π(g2) = 1

12[6+6+6+6+6+6+6+6] = 48
12 = 4= n

2 +1.
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CHAPTER FOUR

SUBORBITAL GRAPHS OF Cn

4.1 Introduction

Construction of the suborbital graphs corresponding toCn acting on the set of vertices

of a regularn− gon, and discussion of the properties of these graphs is donein this

chapter. Through out this chapterG andX are defined as in chapter 2.

4.2 Suborbital Graphs for Cn acting onX

The suborbitals in this section have a one to one correspondence with the suborbits of

G in chapter two. So△i corresponds toOi . Elements inX are assumed to be arranged

cyclically and evenly spaced around a circle in anticlockwise direction. Any element

xk ∈ G takesi ∈ X , k units around the circle in an anticlockwise direction.

Theorem 4.2.1.Suppose(1, i) is a representative of the non-trivial suborbital Oi−1 of

G, then(a, b) ∈ Oi−1 if and only if

|b−a|=







i −1 i f b > a

n− (i −1) i f a > b
.

.

Proof. Suppose(a,b)∈ Oi−1, wherei > 1, then there existsx j ∈ G such thatx j(1, i) =

(a,b). Now if b> a, thena= 1+ j andb= i + j. Thus|b−a|= i −1. Next if a> b,

theni + j > n; anda= 1+ j andb= i + j −n impliesa−b= n− (i −1). Therefore

|b−a|= n− (i −1).

Conversely, suppose that

|b−a|=







i −1 i f b > a

n− (i −1) i f a > b

We need to show that(a,b) ∈ Oi−1. In other words we need to show that there exists

xk ∈ G such thatxk(1, i) = (a,b). Now if b> a, b−a= i −1 impliesa= b− i +1.

Therefore

xa−1(1, i) = (a, a−1+ i) = (a,b).
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On the other hand ifa> b, thena−b= n− (i −1) impliesa= n+b− i +1and

xa−1(1, i) = (a,a+ i −1) = (a,n+b)≡ (a,b)(modn).

.

Example 4.2.2.ConsiderG=C9 acting onX = {1,2,3,4,5,6,7,8,9}.

O1(1,2) = {(1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,1)}

O2(1,3) = {(1,3), (2,4), (3,5), (4,6), (5,7), (6,8), (7,9), (8,1), (9,2)}

O3(1,4) = {(1,4), (2,5), (3,6), (4,7), (5,8), (6,9), (7,1), (8,2), (9,3)}

O4(1,5) = {(1,5), (2,6), (3,7), (4,8), (5,9), (6,1), (7,2), (8,3), (9,4)}

O5(1,6) = {(1,6), (2,7), (3,8), (4,9), (5,1), (6,2), (7,3), (8,4), (9,5)}

O6(1,7) = {(1,7), (2,8), (3,9), (4,1), (5,2), (6,3), (7,4), (8,5), (9,6)}

O7(1,8) = {(1,8), (2,9), (3,1), (4,2), (5,3), (6,4), (7,5), (8,6), (9,7)}

O8(1,9) = {(1,9), (2,1), (3,2), (4,3), (5,4), (6,5), (7,6), (8,7), (9,8)}

Corresponding suborbital graphs are as shown below.

b1

b2

b3

b
4

b
5

b
6

b 7

b 8

b9

Figure 4.2.1:The suborbital graphΓ1 corresponding to the action ofC9 onX = {1,2, . . . ,9}.
The suborbital graph is connected and the girth is 9.
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b1
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b
6

b 7

b 8

b9

Figure 4.2.2:The suborbital graphΓ2 corresponding to the action ofC9 on X = {1,2, . . . ,9}.
The suborbital graph is connected and the girth is 9.
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b 7

b 8

b9

Figure 4.2.3:The suborbital graphΓ3 corresponding to the action ofC9 on X = {1,2, . . . ,9}.
The suborbital graph is disconnected with 3 connected components and the girth is 3.

b1
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6

b 7
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b9

Figure 4.2.4:The suborbital graphΓ4 corresponding to the action ofC9 on X = {1,2, . . . ,9}.
The suborbital graph is connected and the girth is 9.
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b1
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b 7
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b9

Figure 4.2.5:The suborbital graphΓ5 corresponding to the action ofC9 on X = {1,2, . . . ,9}.
The suborbital graph is connected and the girth is 9.
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Figure 4.2.6:The suborbital graphΓ6 corresponding to the action ofC9 on X = {1,2, . . . ,9}.
The suborbital graph is disconnected with 3 connected components and the girth is 3.

b1

b2

b3

b
4

b
5

b
6

b 7

b 8

b9

Figure 4.2.7:The suborbital graphΓ7 corresponding to the action ofC9 onX = {1,2, . . . ,9}.
The suborbital graph is connected and the girth is 9.
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b1
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b9

Figure 4.2.8:The suborbital graphΓ8 corresponding to the action ofC9 on X = {1,2, . . . ,9}.
The suborbital graph is connected and the girth is 9.

Example 4.2.3.ConsiderG=C6 acting onX = {1,2,3,4,5,6}.

The suborbitals ofG are obtained using Theorem 4.2.1

O1(1,2) = {(1,2), (2,3), (3,4), (4,5), (5,6), (6,1)}

O2(1,3) = {(1,3), (2,4), (3,5), (4,6), (5,1), (6,2)}

O3(1,4) = {(1,4), (2,5), (3,6), (4,1), (5,2), (6,3)}

O4(1,5) = {(1,5), (2,6,), (3,1), (4,2), (5,3), (6,4)}

O5(1,6) = {(1,6), (2,1), (3,2), (4,3), (5,4), (6,5)}

The following are the non - trivial suborbital graphs corresponding to the action.

18



b
1

b2

b

3

b

4

b

5

b
6

Figure 4.2.9:The suborbital graphΓ1 corresponding to the action ofC6 on X = {1,2, . . . ,6}.

The girth of the suborbital graph is 6, it is connected and directed.
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Figure 4.2.10:The suborbital graphΓ2 corresponding to the action ofC6 onX = {1,2, . . . ,6}.
The girth of the suborbital graph is 3, it is disconnected with 2 connected components.
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Figure 4.2.11:The suborbital graphΓ3 corresponding to the action ofC6 onX = {1,2, . . . ,6}.
The suborbital graph is composed of 3 lines and it is undirected.
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Figure 4.2.12:The suborbital graphΓ4 corresponding to the action ofC6 onX = {1,2, . . . ,6}.
The girth of the suborbital graph is 3, it is disconnected with 2 connected components.
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Figure 4.2.13:The suborbital graphΓ5 corresponding to the action ofC6 onX = {1,2, . . . ,6}.
The girth of the suborbital graph is 6, it is connected and directed.

Theorem 4.2.4.Elements of Oi−1 can be obtained by pairing each point of xi−1 ∈ G

to a point it is being mapped to.

Proof. ConsiderOi−1(1, i)= {(1, i),(2, i+1), . . .,(k,k+ i−1), . . . ,(n, i−1)} and a ro-

tationxi−1 ∈ G, where 1< i ≤ n. In the rotation

xi−1 =

(

1 2 . . . k . . . n

(1+ i −1) (2+ i −1) . . . (k+ i −1) . . . (n+ i −1)

)

, if each point is paired

with the point it is mapped to, we obtain

{(1,1+ i −1),(2,2+ i −1), . . .,(k,k+ i −1), . . . ,(n,n+ i −1)}

= {(1, i),(2, i +1), . . .,(k,k+ i −1), . . . ,(n, i −1)}= Oi−1.

From Theorem 4.2.4 we can deduce the following results.

Corollary 4.2.5. There is a one to one correspondence between the cycles of xi−1 and

the cycles of the suborbital graphΓi−1.

Corollary 4.2.6. The number of components of the suborbital graphΓi−1 is equal to

gcd(n, i −1) = d, and its girth is r= n
d , where n,d, r, i ∈ Z and d 6= n

2. When d= n
2,

then the girth is zero.

Proof. The number of disjoint cycles ofxi−1 ∈ G is equal togcd(n, i −1) = d, and all

the cycles are of equal length, which isr = n
d . From Corollary 4.2.5 we deduce that

Γi−1 hasd components each of which is a cycle of lengthr = n
d and therefore the girth
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of Γi−1 is n
d whend 6= n

2. Whend= n
2, thenr = 2, but sinceΓi−1 does not have multiple

edges, the girth ofΓi−1 must be zero in this case.

Corollary 4.2.7. The number of connected suborbital graphs isφ(n), whereφ is the

Euler‘s phi function.

Proof. Sinceφ(n) is the number ofi, 1≤ i ≤ n such thatgcd(n, i)= 1, then from corol-

lary 4.2.6 the number of suborbital graphs ofG with exactly one connected component

is φ(n).

From subsection 1.1.4, Theorem 2.3.5 and Corollary 2.3.6 the following two results

follow.

Theorem 4.2.8.The suborbital graphsΓ0 andΓ n
2

are undirected when n is even and

the other non - trivial suborbital graphs are directed .

Theorem 4.2.9.When n is odd only the trivial suborbital graphΓ0 is undirected and

the other non - trivial graphs are directed.

From Theorems 1.1.3,1.1.9 and 2.2.3 the following result is trivial.

Theorem 4.2.10.All the non - trivial suborbital graphs of G are connected if and only

if n is prime
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CHAPTER FIVE

SUBORBITAL GRAPHS OF Dn

5.1 Introduction

Construction of the suborbital graphs corresponding toDn acting on the set of ver-

tices of a regularn− gon and discussion of their properties is done in this chapter.

Throughout this chapterG andX will be used as in chapter 3.

5.2 Suborbital Graphs for Dn acting onX

The suborbitals in this section have a one to one correspondence with the suborbits of

G in chapter three. So△i corresponds toOi . Suppose that(1, i) is a representative

of the non - trivial suborbital graphOi−1 of G. SinceG is acting onX andCn ⊂ G,

whereCn is composed of the rotations ofG, then there is a connection between the

suborbitals ofCn (in chapter 4) and the suborbitals ofG in this chapter. In both cases

same elements ofG (to precise the rotations ofG or Cn ⊂ G), act on the same setX

hence will have the same results. Which implies that the firstn elements ofOi−1 of G

corresponds to the suborbitalOi−1of Cn. By Theorem 3.3.3 all the suborbits ofG are

selfpaired. Therefore from subsection 1.1.4 if (a,b) ∈ Oi−1, then(b,a) ∈ Oi−1 also.

That is paired suborbitals inCn become one inG.

From Corollary 3.3.2, Theorem 3.3.3 and the discussion above, the following result is

immediate.

Theorem 5.2.1.(a) G hasn
2 selfpaired non - trivial suborbitals Oi−1, i = 2,3, . . . , n

2+1

when n is even, where a suborbital in G is the union of two paired suborbitals in Cn.

(b) G hasn+1
2 −1 selfpaired non trivial suborbitals Oi−1(1, i), i = 2,3, . . . , n+1

2 when

n is odd, where a suborbital in G is the union of two paired suborbitals in Cn.

Example 5.2.2.ConsiderG= D9 acting onX

O1(1,2) = {(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,1),

(1,9),(2,1),(3,2),(4,3),(5,4),(6,5),(7,6),(8,7),(9,8)}

O2(1,3) = {(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,1),(9,2),

(1,8),(3,1),(5,3),(7,5),(9,7),(2,9),(4,2),(6,4),(8,6)}
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O3(1,4) = {(1,4),(2,5),(3,6),(4,7),(5,8),(6,9),(7,1),(8,2),(9,3),

(1,7),(3,9),(5,2),(7,4),(9,6),(2,8),(4,1),(6,3),(8,5)}

O4(1,5) = {(1,5),(2,6),(3,7),(4,8),(5,9),(6,1),(7,2),(8,3),(9,4),

(1,6),(3,8),(5,1),(7,3),(9,5),(2,7),(4,9),(6,2),(8,4)}

The following are the non - trivial suborbital graphs corresponding to the action.

)

b1

b2

b3

b4

b

5

b

6

b 7

b 8

b 9

Figure 5.2.1:The suborbital graphΓ1 corresponding to the action ofD9 on X = {1,2, . . . ,9}.
The suborbital graph is undirected, connected and its girthis 9.
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b1
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b 6

b 7

b
8

b
9

Figure 5.2.2:The suborbital graphΓ2 corresponding to the action ofD9 on X = {1,2, . . . ,9}.
The suborbital graph is undirected, connected and the girthis 9.
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b3

b
4

b

5

b

6

b 7

b 8

b 9

Figure 5.2.3:The suborbital graphΓ3 corresponding to the action ofD9 on X = {1,2, . . . ,9}.
The suborbital graph is undirected, disconnected and its girth is 3.
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b
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b

5

b

6

b 7

b 8

b 9

Figure 5.2.4:The suborbital graphΓ4 corresponding to the action ofD9 onX = {1,2, . . . ,9}.

The suborbital graph is undirected, connected and the girthis 9.

Example 5.2.3.ConsiderG= D6 acting onX

O1(1,2)= {(1,2), (2,3), (3,4), (4,5), (5,6), (6,1), (1,6), (2,1), (3,2), (4,3), (5,4), (6,5)}

O2(1,3)= {(1,3), (2,4), (3,5), (4,6), (5,1), (6,2), (1,5), (2,6,), (3,1), (4,2), (5,3), (6,4)}

O3(1,4) = {(1,4), (2,5), (3,6), (4,1), (5,2), (6,3)}

Following are the non - trivial suborbital graphs corresponding to the action.

b
1

b2

b
3

b

4

b
5

b 6

Figure 5.2.5:The suborbital graphΓ1 corresponding to the action ofD6 on X = {1,2, . . . ,6}.
The suborbital graph is undirected, connected and its girthis 6.
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b1
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b
3

b

4

b
5

b 6

Figure 5.2.6:The suborbital graphΓ2 corresponding to the action ofD6 onX = {1,2, . . . ,6}.

The suborbital graph is undirected, disconnected with 2 connected components and its girth is
3.

b
1

b2

b
3

b

4

b
5

b 6

Figure 5.2.7:The suborbital graphΓ3 corresponding to the action ofD6 onX = {1,2, . . . ,6}.

The suborbital graph is disconnected with 3 lines and it is undirected.

From Theorem 5.2.1 and corollaries 4.2.5 and 4.2.6 we deduce the following two
results.

Corollary 5.2.4. The number of components of the suborbital graphΓi−1 is equal to

gcd(n, i −1) = d and its girth is r= n
d , where d6= n

2. When d= n
2, the girth is zero.

Corollary 5.2.5. The number of connected suborbital graphs of G is1
2φ(n).
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From Theorem 3.3.3 and subsection 1.1.4 we conclude the following

Theorem 5.2.6.All the suborbital graphs of G are undirected.

From Theorems 3.2.3 and 1.1.9 the following result are straight forward.

Theorem 5.2.7.All the non - trivial suborbital graphs of G are connected if and only

if n is prime
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CHAPTER SIX

CONCLUSIONS, RECOMMENDATIONS AND APPLICATIONS

6.1 Introduction

Some conclusions of this study, suggestions of areas for further research and applica-

tions are given in this chapter.

6.2 Conclusion

In chapter 2 it was proven thatCn acts transitively and imprimitively onX whenn

is not prime. It was also shown that the orbits ofStabG(1) on X were as follows

△0 = {1},△1 = {2},△2 = {3}, . . . ,△i = {i + 1}, . . . ,△n−1 = {n}, the rank and

subdegrees were also shown to ben and 1, 1, 1, . . . , 1; n ones respectively. It was

further proven that the suborbit△i is paired with△n−i .

In chapter 3 it was proven thatDn acts transitively and imprimitively onX whenn is

not prime. It was also shown that the orbits ofStabG(1) on X are△0 = {1},△1 =

{2,n}, . . . ,△i = {i +1, n− i +1}, . . . ,△ n
2
= {n

2 +1}, whenn is even and whenn is

odd Orbits ofStabG(1) on X were△0 = {1},△1 = {2, n}, , . . . ,△i = {i +1, n− i +

1}, . . . ,△ n−1
2

= {n+1
2 , n+3

2 }. The rank ofDn was shown to ben2+1 whenn is even and
n+1

2 whenn is odd. The subdegrees ofDn whenn is even arranged in an increasing

order of magnitude were shown to be 1, 1, 2, 2, . . . , 2; n
2−1 twos and whenn is odd the

subdegrees were 1, 2, 2, . . . , 2; n−1
2 twos . Moreover it was proven that all the suborbits

of Dn are selfpaired.

In chapter four a general construction of suborbital graphsof Cn was given. It was

shown that(a,b) ∈ Oi−1 if and only if

|b−a|=







i −1 i f b > a

n− (i −1) i f a > b
.

An alternative way of obtaining the elements ofOi−1 was also derived in Theorem

4.2.4. The number of components of the non - trivial suborbital graphΓi−1 was proven

to bed=gcd(n,n−1) and its girth wasr = n
d whend 6= n

2 and zero whend= n
2. Further

the number of connected suborbital graphs corresponding tothe action is shown to be

φ(n). Finally it was proven that all the non trivial suborbital graphs ofG are connected

if and only if n is prime.

Chapter five dealt with investigation of the suborbital graphs ofDn acting onX. It was

proven that the suborbitalOi−1 of Dn is a union of two paired suborbitals ofCn. It was
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also shown that the number of components ofΓi−1 is d = gcd(n,n−1) and its girth

is r = n
d and zero whend = n

2. Further it was proven that the number of connected

suborbital graphs ofG was 1
2φ(n). Finally it was proven that all the suborbital graphs

of G were undirected and that they are connected if and only ifn is prime.

6.3 Recommendations

One may investigate the action of the alternating groupAn acting on ordered and un-

orderedr− element subsets from the set{1,2, . . . ,n}.

6.4 Applications

The major role of graph theory in computer applications is the development of graph

algorithms. Numerous algorithms are used to solve problemsthat are modeled in the

form of graphs . These algorithms are used to solve the graph theoretical concepts

which in turn are used to solve the corresponding computer science application prob-

lems.

Some algorithms are:

1. Shortest path algorithm in a network.

2. Algorithms to determine connectedness.

3. Algorithms to find the cycles in a graph

4. Minimun spanning tree

Various computer languages are used to support the graph theory concepts. The main

goal of such languages is to enable the user to formulate operations on graphs in a

compact and natural manner.

1. GASP – Graph Algorithm Software Package.

2. FGRAAL – FORTRAN Extended Graph Algorithmic Language.

From the results obtained in this research new modules can beadded to these already

existing algorithms to make them more efficient in dealing with dihedral groupsDn

and the cyclic groupsCn and their suborbital graphs.
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