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ABSTRACT 

Analysis of curved plate elements requires a high computational effort to obtain 

reliable solutions for design purposes. Available commercial programs are 

expensive and they need thorough knowledge for effective use. There is therefore 

need to code cheaper and accessible programs. This is also in line with vision 2030 

of the government of Kenya, of using sustainable methods of production to drive the 

economy to the middle class level. To address this issue, a uniquemodel is 

formulated based on the Euler-Bernoulli beam model. This model is applicable to 

thin elements which include plate and membrane elements. 

This thesispresents a finite element theory to calculate the master stiffness of a 

curved plate. The master stiffness takes into account the stiffness, the geometry and 

the loading of the element. The determinant of the master stiffness is established 

from which the buckling load which is unknown in the matrix is evaluated by the 

principal of bifurcation.The curved element is divided into 2,3,6,9 or 12 elements; 

this demonstrates the computational effort to a reliable solution.  

Numerical analysis is carried out by abstracting the procedural development of the 

theory and programming it to run on a Visual Basic platform. The results obtained 

show that curved plates resist a higher load when it is directed towards the center of 

the arcand plates with large curvatures resist higher loads than those with smaller 

curvatures. A comparison made between the result obtained in this research and 

those of other methods show that there is a good agreement between the proposed 

and the existing methods. Thus the proposed method is suitable for analysis of 

curved plates.The research is useful for the study of curved plate elements as it 

manipulates the given plate and loading parameters to give optimal output. 



1 

 

CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Curved plate structures have been used in many civil, mechanical, and aerospace 

engineering applications such as curved roofs, curved aircraft body structures,turbo 

machineryblade, tire dynamic, and ship body parts. It can also be used as a 

simplified model of a shell structure. Key aspects of a curved plate structure relate to 

the curved form as well as the plate form (Nam-II & Chan-Ki, 2013).A plate may be 

described geometrically as a smooth 2D reference plane surrounded by material with 

thickness h to form a 3D body with one dimension much smaller than the other 

two.In general, a point in the plate can be represented mathematically by its 

Cartesian coordinates (xi, Yi) where xi, yiare two orthogonal lines in the reference 

plane. (Cem, & Eric, 2003) 

A plate structure may be as simple as the flat web of a stiffener or as complex as an 

integrally stiffened plate supported by heavy frames and rings. In the behavior of 

these plate structures under in plane compression, a critical point exists where an 

infinitesimal increase in load can cause the plate surface to buckle. The load at this 

critical point defines the buckling strength of the plate. Increases in load beyond the 

load at the initiation of buckling increases the buckling deformations until collapse 

occurs. Thus, the load at collapse defines the post buckling or crippling strength of 

the plate. The behavior of plate structures in this regard differs markedly from the 

behavior of columns and many thin curved shell structures for which the buckling 

load corresponds closely to the collapse load. 

A fundamental problem in plate design is to size plate elements so that plate 

buckling will not induce detrimental deformations at any expected service load up to 

limit load (the maximum load expected in service), and that the design ultimate load 

(the limit load multiplied by the ultimate design factor) will not exceed the plate 
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crippling strength. Buckling of a plate structure can cause an unacceptable 

degradation. It can trigger general buckling of a larger structure because of a 

redistribution of loads; it can also affect the response to the structure sufficiently to 

cause failure from excessive displacement or fatigue. 

This study presents an analytical criterion for determining the buckling load of a 

curved plate considering three load cases and recommends analysis of other loading 

cases and other plate structures. It is concerned with curved plates, but is also 

applicable for plates with shallow curvature. The analysis of the plate assemblies 

assumes a sinusoidal response along the plate length. The analysis uses stiffness 

matrices that result from the exact solution to the differential equations that describe 

the behavior of the plates. 

Currently, most programs approximate a curved plate by subdividing it into a series 

of flat-plate segments that are joined along their longitudinal edges to form the 

complete curved-plate structure (Chang-Yong Lee et al, 2013;Chernuka, M.W.et al, 

2005). This procedure is analogous to the discretization approach used in finite 

element analysis. The program uses exact stiffness’s for the flat-plate segments and 

enforces continuity of displacements and rotations at the segment connections. Thus, 

the analyst must ensure that an adequate number of flat-plate segments are used in 

the analysis. 

In this study, the capability to analyze curved-plate segments with an adequate 

number of divisions will be developed. The study will describe the methodology that 

will be used to accomplish this enhancement and will present results utilizing this 

new capability. The procedure will involve deriving a numerical method of 

appropriate differential equations of equilibrium for the analysis of fully anisotropic 

curved plates  
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1.2   Problem statement 

Existing programs for analysis of curved plates are expensive and need a thorough 

knowledge of their usage. Further, analyzing curved elements manually is time 

consuming and the results outputs have low reliability due to the operations 

involved. Results are subsequently costly in terms of production and usage hence the 

need to program the operations. 

As we enter into the evolution of smart structures, there is demand for techniques of 

analysis that will lead to design of cost effective structures. Less time should be 

spent by the engineers to do the analysis with high computational efficiency. Curved 

plates are nonlinear; they are best divided into smaller linear elements whose length 

approximates the length of the curve for analysis. Use of existing program modules 

for their analysis demands a clear understanding of the basis of their formulation 

with special regard to assumptions and limitations of the theories applied. When an 

analysis consumes time to obtain results the cost is transferred to the end users, and 

if results are not of high reliability the inherent errors results to under design or 

overdesign of elements.  

1.3 Objectives 

1.3.1 Main objective 

To develop an Euler Bernoulli simulation model for analysis of thin curved plates 

1.3.2 Specific objectives 

a)  To develop a finite element technique based on the Euler Bernoulli model for 

analysis of thin curved plate structural elements. 

b) To develop a numerical procedure of analysis of thin curved plate structural 

elements. 

c) To develop and validate a finite element computer simulation program based on 

Euler Bernoulli model for analysis of thin curved plate structural elements. 
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1.4 Limitations and scope of study 

There are limited resources to undertake a study of a physical model. This includes 

finance, lab and equipment to undertake the study. The study will cover analytical 

formulation of the curved-plate non-linear equilibrium equations. The analytical 

formulation will be implemented through a computer based program. A convergence 

study using a segmented-plate approach in will be performed for a simple example 

problem to obtain baseline results for use in future comparisons. Results comparing 

the computational effort required by the new analysis to that of the analysis from 

classical plate equations will be presented. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews existing literature on development of analysis of curved 

elements. It reviews modeling of curved elements by finite element method and 

existing theories for analysis. It also reviews the analytical and numerical methods 

of analysis. It further outlines development of programming languages, models for 

program development and available programs for analysis of curved elements. 

2.2 Analysis of curved plates 

There is a growing interest in analysis of curved plates. Chernuka et al (2005) 

analyzed curved plates using finite elements. He derived edge conditions for nodal 

points on these boundaries. He found the  error inherent in representing the shape of 

a curved boundary by a series of straight segments to be the limiting factor on 

accuracy, while the effect of approximations in the actual boundary conditions as 

negligible. To overcome the error in shape representation, the high precision 

element was modified to include one curved edge. Caramalian (2005) using the 

Cowper triangle analyzed a two-nodded curved element with 12 degrees-of-

freedom, which has one straight side and one curved side. Independent expansions 

were assumed in each domain and explicit shape functions were derived in all cases 

the curved triangle produced perfect results. 

Application of the convex composite boundary element results in less numerical 

effort for a comparable error in circular and elliptical domain test problems than the 

application of straight-edged elements when compared to the curved isoperimetric 

elements. For domains with concave boundaries, the application of straight-edged, 

concave composite boundary and curved isoparametric elements give comparable 

accuracies and numerical efforts because of a fortuitous cancellation of error that 

occurs with straight-edged elements (Silva et al, 2005). 



6 

 

Eziefula, U.G. et al (2014) developed a technique for analysis of the plastic buckling 

analysis of a thin, rectangular, isotropic plate under uniform in-plane compression in 

the longitudinal direction. This technique is applicable to analysis of plastic buckling 

of thin isotropic plates with C-SS-SS-SS boundary conditions. 

Raviprakash et al (2010) used a probabilistic approach in his analysis of plate 

structures. In his method, he kept the variance of imperfections of all the models at 

assumed manufacturing tolerance of 1.71 mm and maintained the maximum 

amplitude of imperfections within ±8 mm1024 random geometrical imperfect plate 

models were generated by the linear combination of the first 10 eigen value mode 

shapes using 2k factorial design. Murat, A.et al (2011) in his analysis of a clamped 

curved plate, used nonlinear algebraic equations obtained by the finite difference 

method and solved them by the Newton-Raphson method. The boundary conditions 

at the support and at the center of the plate were satisfied exactly. 

2.3 Modeling of plates by finite element 

Development of the finite element method began in earnest in the middle to late 

1950s for airframe and structural analysis and gathered momentum at the University 

of  Tuttgart through the work of John Argyris and at Berkeley through the work 

of Ray W. Clough in the 1960s for use in civil engineering. By late 1950s, the key 

concepts of stiffness matrix and element assembly existed essentially in the form 

used today and NASA issued a request for proposals for the development of the 

finite element software NASTRAN in 1965. The method was provided with a 

rigorous texematical foundation in 1973 with the publication of Strang and Fix's An 

Analysis of The Finite Element Method, and has since been generalized into a 

branch of applied texematics for numerical modeling of physical systems in a wide 

variety of engineering disciplines, e.g., electromagnetism and fluid dynamics. 

The finite element method became even more popular with the advancement of 

microcomputers and development of various efficient programming languages. 

http://structuralpedia.com/index.php?title=Airframe&action=edit&redlink=1
http://structuralpedia.com/index.php?title=University_of_Stuttgart&action=edit&redlink=1
http://structuralpedia.com/index.php?title=University_of_Stuttgart&action=edit&redlink=1
http://structuralpedia.com/index.php?title=John_Argyris&action=edit&redlink=1
http://structuralpedia.com/index.php?title=University_of_California,_Berkeley&action=edit&redlink=1
http://structuralpedia.com/index.php?title=Ray_W._Clough&action=edit&redlink=1
http://structuralpedia.com/index.php?title=Civil_engineering&action=edit&redlink=1
http://structuralpedia.com/index.php?title=Software&action=edit&redlink=1
http://structuralpedia.com/index.php?title=NASTRAN&action=edit&redlink=1
http://structuralpedia.com/index.php?title=Gilbert_Strang&action=edit&redlink=1
http://structuralpedia.com/index.php?title=George_Fix&action=edit&redlink=1
http://structuralpedia.com/index.php?title=Engineering&action=edit&redlink=1
http://structuralpedia.com/index.php?title=Electromagnetism&action=edit&redlink=1
http://structuralpedia.com/index.php?title=Fluid_dynamics&action=edit&redlink=1
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Energy derivations are commonly used to form the stiffness for a variety of element 

types.  The most common elements are the membrane (planar), plate, shell and solid 

elements.  Each of these elements has a given set of nodes and displacements 

associated with those nodes.  The common forms of these elements are given in 

figure 2.1. 

 

Figure 2.1 Common finite elements 

These elements have additional restrictions on their behavior that depend on their 

derivation.  However, the result is always a stiffness matrix that can then be treated 

like any other stiffness matrix and may be rotated and transformed as desired.  When 

combining these elements, the same concerns about boundary conditions and 

matching DOF at the nodes must be accounted for. Additional concerns are also 

generated since the shape function assumption can affect the accuracy of the results. 

The standard beam element can be derived in a similar fashion using the cubic beam 

functions given on Consistent Geometric Stiffness. Element derivation has become 

increasingly complex. Techniques that include nonlinearities while still reducing the 

number of unknowns in the element have become very demanding.  However the 

use of these sophisticated elements is identical to their simpler counterparts.    

The three elements most commonly used by structural engineers are the membrane, 

plate/shell and solid elements.  The membrane element is a two dimensional flat 
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extensional element. The common versions are triangular and rectangular elements 

(figure2.2) (Manjunath & Bandayopadhyay, 2007). The triangular elements vary 

from three to six nodes. The rectangular elements vary from four to nine nodes. 

There are two in-plane displacement DOF's at each node of the element.  The 

elements can be used to model two dimensional elasticity problems, plane strain and 

plane stress.  It can reproduce the two normal and one shear stress in the plane of the 

element.   

 

 Figure 2.2 Local DOF for planar Elements (Manjunath & Bandayopadhyay, 

2007). 

2.4 Plate Bending Elements 

The flat plate element is a two dimensional element that acts like a flat plate.  It is 

found in triangular and rectangular versions.  There are two out of plane rotations 

and the normal displacement as DOF.  These elements model plate-bending 

behavior in two dimensions.  The element can model the two normal moments and 

the cross moment in the plane of the element.  Some versions will also give the 

transverse shear as a result. The three node triangular version models constant 

moment.  The higher node elements can model linear variation of moment across the 

element.  This element has no rotational stiffness normal to the plane and no in plane 

stiffness.  Superimposing the membrane and plate elements on top of one another 

creates flat shell elements.  Loading on plate elements can consist of any 
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combination of forces normal to the plate and out of plane moments.  Loading on 

shell elements can consist of the combination of plate and membrane loadings. 

There has been considerable interest in the development of plate bending elements 

ever since their use became popular for representing the bending behavior of the 

shell elements. Many plate bending elements have been developed. A review of all 

plate bending elements as a part of the study on the effectiveness of plate bending 

elements has been presented (Hrabok & Hrudey, 1984).Triangular plate bending 

elements was developed by dividing the main triangle into three sub triangles 

(Clough & Tocher, 1965). 

Conforming and nonconforming plate bending elements were also developed 

(Bazeley et al, 1966). The developed triangular plate bending elements were by use 

of shape functions based on the area coordinates. The nonconforming plate bending 

element does not pass the patch test for some mesh patterns, and the confirming 

element is costly to use because of the high order numerical integration scheme 

required to determine the stiffness matrix of the element. 

Several effective triangular plate bending elements for the analysis of plates and 

shells were developed (Batoz et al, 1980). These elements had two rotational and 

one translational degree of freedom at each node for a total of 9 degrees of freedom. 

Three of plate bending elements were developed,  namely; 

(1) The DKT element based on Discrete Kirchoff Theory assumptions,  

(2) The HSM element based on the Hybrid Stress Method, to overcome the 

problems in the development of pure displacement based models, and 

 (3) The SRI element based on a Selective Reduced Integration scheme that includes 

transverse shear deformation. 

The results obtained for these elements were compared and was seen that the DKT 

and HSM elements are more effective than the SRI element. It was also found that 
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the DKT element gives better results than the HSM element as the DKT element 

requires less storage compared to the HSM element. 

Quadrilateral plate bending elements are popular in analyzing slab structures and are 

used in formulating shell elements for the analysis of regular shaped shell structures. 

Earlier attempts to develop quadrilateral plate bending elements involved combining 

four triangular plate bending elements (Batoz & Tahar, 1982).However their 

formulation was very complicated.A four node quadrilateral shell element using 

isoparametric shape functions was developed (McNeal, 1978), which gives very 

good results for plate bending.  

Earlier attempts to develop plate bending elements were reviewed and it was 

concluded that these elements were useful for thick plates (Batoz &Tahar, 1982), but 

when applied to the thin plates they do not give very good results. A four node 

quadrilateral element based on the Discrete Kirchoff theory was developed (Batoz & 

Tahar, 1992). The basis of the formulation of this element was the Discrete Kirchoff 

Triangular (DKT) element developed earlier (Batozet al., 1980). The quadrilateral 

plate bending element (DKQ) formulated by Batoz and Tahar (1982) and the 

triangular plate bending element (DKT) formulated by Batozet al. 1980, are based 

on the discrete Kirchoff assumptions in which the transverse shear strain is 

neglected. They considered transverse shear strain to be present in the element in the 

initial development and then removed the transverse shear strain terms by applying 

discrete Kirchoff constraints. Several tests on these elements were conducted by 

Batoz and Tahar (1982). Based on their study, they suggested that the convergence 

rates in displacements and stresses for DKQ element is not good as for the QUAD4 

element (McNeal, 1978) and LORA by (Robinson & Haggenmacher, 2005). 

2.5 Models for analysis of curved elements 

The selection criteria for beam theories are generally given by means of some 

deterministic rule involving beam dimensions.  
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2.5.1. Linear elastic beam model 

a) Euler-Bernoulli Model 

This model often referred to as the classical beam model accounts for the bending 

moment effects on stresses and deformations. The effect of transverse shear forces 

on beam deformation is neglected. Its fundamental assumption is that cross sections 

remain plane and normal to the deformed longitudinal axis before and after bending. 

This assumption is valid if length to thickness ratio is large and for small deflection 

of beam. However, if length to thickness ratio is small, the plane section will not 

remain normal to the neutral axis after bending and the total rotation θ will be due to 

the bending stress alone. This rotation occurs about a neutral axis that passes 

through the centroid of the cross section of the beam as shown in figure 2.3. 

 

Figure 2.3 Euler-Bernoulli beam model (Carrera et al, 2011) 

Shear forces and axial displacement are neglected in this theory. Euler-Bernoulli 

theory, slightly inaccurate results may be obtained. Timoshenko Beam Theoryis 

http://www.math.vt.edu/people/gao/papers/gaorus1.pdf
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used to overcome the drawbacks of the Euler-Bernoulli beam theory by considering 

the effect of shear and axial displacements. 

b) Timoshenko model 

This model corrects the classical beam model with first ordershear deformation 

effects (Archiniega & Reddy, 2006;Marcelo & Pachero, 2006; Hibbit et al, 2003). In 

this model, the cross sections of the beam remain plane and rotate about the same 

neutral axis as the Euler-Bernoulli model, but do not remain normal to the deformed 

longitudinal axis. The deviation from normality is produced by a transverse shear 

that is assumed to be constant over the cross section. Thus, the TimoshenkoBeam 

model is superior to Euler-Bernoulli model in predicting precisely the beam 

response. The total slope of the beam in this model consists of two parts, one due to 

bending θ, and the other due to shearβ.  

c) Gao and Russell beam model 

It is known that the classical Euler–Bernoulli beam theory is valid only for long span 

(equivalently, thin) beams. In 1921, S. P. Timoshenko proposed a dynamic beam 

theory with two generalized displacements; i.e., the deflection w(x) and the 

transverse shear deformation v(x). In 1996, Gao and Russell proposed an extended 

beam model (figure 2.4), which allows the shear deformation to vary in y-direction, 

v(x,y). 
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Figure 2.4 Extended beam model 

i) Static beam model 

                     (2.1) 

ii) Dynamic beam model 

                         (2.2) 

      (2.3) 

 

    (2.4) 
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                                                    (2.5) 

2.5.2 Elasto-perfectly plastic beam model: 

The dual problem of this model is equivalent to a quadratic minimization problem 

subjected to linear and nonlinear inequality constraints given below (Larry et al, 

2003); 

2.6 Development of numerical analysis of curved elements 

 In order to obtain the values of deflections and stresses of curved elements, various 

analyses techniques have been developed. The energy methods like Castigliano’s 

theorem(Nam-II & Chan-Ki II, 2008) can be used,Castigliano’s theorem is only 

useful in solving simple and decoupled problems, and the formulation has to be done 

separately for each problem. Rayleigh-Ritz method may be applied to evaluate 

solutions for the curved elements, but the accuracy of the results obtained by this 

method depends on the displacement functions chosen and a large number of terms 

have to be used in the displacement functions to get the good results for complicated 

problems. Moreover, this method has to be formulated separately for each problem 

since the chosen displacement functions chosen depend on the boundary conditions 

of curved beam. Thus for the analysis of curved elements, the numerical methods 

have applied finite element method mostly because of its versatility and 

applicability. This work will develop a new numerical procedure for analysis of thin 

curved plates based on the finite element method. 

2.7 Development of finite element program for analysis of curved elements 

2.7.1 Introduction 

The current target application area is analysis of thin curved plates of engineering 

structures such as water tanks, pressure vessels and roof structures. Although there 

are hundreds of engineering analysis and optimization programs having been written 

in the past 20years(Pachero, 2006; Hibbit et al, 2003; Larry et al, 2003). 

http://www.math.vt.edu/people/gao/papers/gaorus1.pdf
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During the past two decades,computers have been providing approximately 25% 

more power per dollar per year (Goodman et al, 2000; Balling, 2003).Advances in 

computer hardware and software have allowed for exploration of many new 

ideas,and have been a key catalyst in what has led to the maturing of computing as a 

discipline.In the 1970’s computers were viewed as a machines for research 

engineers and scientists-compared to today’s standards,computer memory was very 

expensive and the central processing units were very slow. 

Early versions of computer analysis and finite element were developed with the goal 

of optimizing numerical and/or instructional considerations alone.These programs 

offered a restricted,but well implemented,set of numerical procedures for static 

structural analyses,and linear/nonlinear time history calculations.And even though 

these early computer programs were not particularly easy to use,practicing engineers 

gradually adopted them because they allowed for the analysis of new structural 

systems in ways that were previously intractable. 

During the last twenty years,the use of computers in engineering has matured to the 

point where importance is now placed on ease of use,and a wide array of services 

being available to the engineering profession as a whole.Computer programs written 

for engineering computations are expected to be fast,accurate,flexible,reliable and 

easy to use.Whereas an engineer in the 1990’s might have been satisfied by a 

computer program that provided numerical solutions to a very specific engineering 

problem,the same engineer today might require engineering analysis,support for 

design code,optimization,interactive computer graphics and network 

connectivity.Many of the latter features are not a bottleneck for getting the job 

done.Rather features such as interactive computer graphics makes the job of 

describing a problem and interpreting results easier-the pathway from ease of use to 

productivity gains is well defined.Computers are now are an indispensable tool for 

computing and communications. 
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The aforementioned hardware advances with appropriate software developments is 

reflected in the economic costs of project development. In the 1970’s software 

consumed 25% while hardware consumed 75% of total costs of development of data 

intensive systems.Currently development and maintenance of software consumes 

more than 80% of the total project costs (Goodman et al, 2000; Balling R.J, 

2003).This change in economics is the combined result of falling hardware costs and 

increased software development budgets needed to implement systems that are more 

complex than they used to be. 

2.7.2 Finite element modeling 

Finite element methods are now widely used to solve structural, fluid, and multi-

physics problems numerically(Zienkiewitz & Taylor,2005).The Euler –Bernoulli 

beam model applies since only thin elements are considered here (shear 

deformations are neglected) (Memarzader  et al,2010).Two methods of analysis of 

curved elements have been considered: the eigenvalue buckling analysis and 

nonlinear buckling analysis.  

The eigenvalue analysis predicts the theoretical buckling strength of an ideal linear 

elastic structure. This is analogous to the classical plate equation approach to elastic 

buckling analysis (Bathe,2009).However, imperfections and nonlinearities prevent 

most real-world structures from achieving their theoretical elastic buckling strength.  

Nonlinear buckling analysis takes into account of imperfections and nonlinearities of 

real-world structures. In this method the load is increased until the solution fails to 

converge, indicating that the structure cannot support the applied load (or that 

numerical difficulties prevent solution) (Mohammad et al,1988). If the structure 

does not lose its ability to support additional load when it buckles, a nonlinear 

analysis can be used to track post-buckling behavior. 
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2.7.3 Basic element shapes 

For the discretization of problems involving curved geometries, finite elements with 

curved sides are useful (Pedro et al, 2011). The ability to model curved boundaries 

has been made possible by the addition of midsized nodes. Finite elements with 

straight sides are known as linear elements, whereas those with curved sides are 

called higher order elements. 

2.7.4 Size of Elements 

The size of chosen elements influences the convergence of the solution directly. If 

the size of the elements is small, the final solution is expected to be more accurate. 

 2.7.5 Number of Elements 

The number of elements is related to the accuracy required and the number of 

degrees of freedom involved (Dalvi et al, 2012). Although an increase in the number 

of elements generally means more accurate results for any given problem, there will 

be a certain number of elements beyond which the accuracy cannot be improved by 

any significant amount, as shown graphically in figure 2.6. 

 

Figure 2.5 Relationship between the number of elements and accuracy(Dalvi 

M.V. et al, 2012) 
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2.7.6 The modeling procedure 

 

 

 

 

 

 

 

 

Figure 2.6 The finite element modeling procedure.  

Finite element analysis is used in problems where analytical solution is not easily 

obtained and mathematical expressions required for solution are not simple because 

of complex geometries loadings material properties.  

a) Basic Finite Element Equation. 

 The fundamental FEA equation greatly simplifies problem formulation and solution 

(Pravin & Kachare, 2012). 

 [F] = [K] * [d]                                                                                             (2.7) 

where [F] is the known vector of nodal loads, [K] is the known stiffness matrix, and 

[d] is the unknown vector of nodal displacements 
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 This matrix equation describes the behavior of Finite element analysis models. It 

contains a very large number of linear algebraic equations, varying from several 

thousand to several million depending on the model size. The stiffness matrix [K] 

depends on the geometry, material properties, and restraints. Under the linear 

analysis assumption that the model stiffness never changes, those equations are 

assembled and solved just once, with no need to update anything while the model is 

deforming. Thus linear analysis follows a straight path from problem formulation to 

completion. It produces results in a matter of seconds or minutes, even for very large 

models. 

b) Principal Steps of Finite element analysis  

i) Pre-processing:  

The user constructs a model of the part to be analyzed in which the geometry is 

divided into a number of discrete sub regions, or elements, connected at discrete 

points called nodes Certain of these nodes will have fixed displacements, and others 

will have prescribed loads. These models can be extremely time consuming to 

prepare, and commercial codes vie with one another to have the most user-friendly 

graphical pre-processor" to assist in this rather tedious chore. Some of these pre-

processors can overlay a mesh on a pre-existing CAD, so that finite element analysis 

can be done conveniently as part of the computerized drafting-and-design process.  

The dataset prepared by the preprocessor is used as input to the finite element code 

itself, which constructs and solves a system of linear or nonlinear algebraic 

equations .Kijuj = fi where u and f are the displacements and externally applied 

forces at the nodal points. The formation of the K matrix is dependent on the type of 

problem being attacked, and this module will outline the approach for truss and 

linear elastic stress analyses. Commercial codes may have very large element 

libraries, with elements appropriate to a wide range of problem types. One of FEA's 
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principal advantages is that many problem types can be addressed with the same 

code, merely by specifying the appropriate element types from the library.  

ii) Post processing:  

In the earlier days of finite element analysis, the user would pore through reams of 

numbers generated by the code, listing displacements and stresses at discrete 

positions within the model. It is easy to miss important trends and hot spots this 

way, and modern codes use graphical displays to assist in visualizing the results. A 

typical postprocessor display overlay colored contours representing stress levels on 

the model, showing a full field picture similar to that of photoelastic or moiré 

experimental results. The operation of a specific code is usually detailed in the 

documentation accompanying the software, and vendors of the more expensive 

codes will often over workshops or training sessions as well to help users learn the 

intricacies of code operation. One problem users may have even after this training is 

that the code tends to be a black box" whose inner workings are not understood. In 

this module we will outline the principles underlying most current Finite element 

stress analysis codes, limiting the discussion to linear elastic analysis for now. 

Understanding this theory helps dissipate the black-box syndrome, and also serves to 

summarize the analytical foundations of solid mechanics.  

2.8 Programming Language 

Computer programming languages are built around two approaches; namely 

procedural programming and Object oriented programming.  

In procedural programming, the program is prepared by a series of steps or routines 

that follow the data provided. The programming languages such as FORTRAN, C 

BASIC are procedural programming languages.The main drawback of the 

procedural programming languages is that they are not structured and the flow of the 

program largely depends on conditional statements that induce more chances of 
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errors. These languages are good for small programs, but procedural programs are 

difficult to maintain when they become larger. 

In the object oriented programming approach, the program is organized around its 

data in the form of objects (Schildt, 2001). The object oriented programming 

languages are built on the concept of abstraction. Large complex procedures can be 

subdivided in to small procedures by abstraction. Each of these sub procedures 

represents different objects with their own separate identity  (Tabarrok et al, 1988; 

Kakuchi, 2014). The series of process steps can be achieved by passing information 

to the objects without being affected by the complexity of the whole procedure. The 

three unique aspects of the object oriented programming languages are; 

encapsulation, inheritance and polymorphism.  

Encapsulation is the most important aspect of the object oriented programming. In 

object oriented programming languages, classes perform the task of encapsulation. 

Class defines the structure and behavior of the process that will be shared by a set of 

objects (Schildt, 2001) such as variables and methods. The variables or methods are 

declared by access specifiers such as public, private or protected. A variable or 

method declared as public can be accessed from outside the class in the program. 

Variables or methods that are defined as private cannot be accessed from outside the 

class and hence the privacy of the data is maintained. Variables or methods declared 

protected are only accessible to the superclass and the subclass where the properties 

of the superclass are inherited. 

Many programs contain objects that are dependent on each other and inherit certain 

properties from one object to another. In object oriented programming, the classes 

are divided in the superclass and subclass. The subclass inherits all of the properties 

of the superclass except those declared as private. Any subclass that inherits 

properties from its subclass may have additional properties that give it an individual 

identity, which is not common to the other objects or subclasses that inherit the same 

properties from the super class. 
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Polymorphism is another valuable feature of object oriented programming. 

Polymorphism allows the programmer to use the same interface to perform multiple 

tasks. The same class may contain multiple methods that are related to different 

activities and each method will perform a different task when it is called by the 

object. The call to one method will not affect the contents or activity of another 

method in the same class.Several object oriented programming languages have been 

developed in recent years. These include C++, C#, and Java. Java is one of the more 

popular object oriented programming languages because it has several unique 

features. 

Java is an object oriented programming language developed by Sun Microsystems in 

1991. Java is based on the popular programming language C++. It has many of the 

same features of C++. Over the years, Java has become very popular because of 

some of its unique features. Java is platform independent, which means code 

developed in Java can be used on a variety of different computers without making 

any changes. Another advantage is that, Java programs can be embedded within 

HTML pages (where they are called applets) and can be easily transmitted over the 

internet. All this needs is a Java compatible web browser to run these applets. 

Another reason for the popularity of Java is its robustness. Java provides automatic 

protections for memory loss and run-time errors that occur during the program 

execution. 

Java has a special garbage collection class that dynamically allocates memory and 

hence reverts memory loss. In other programming languages, this is done manually 

by the programmer and any mistake in allocating or de-allocating memory may 

result in failure of the program. There is also an exception handling class for 

handling runtime errors in Java. With the use of this class it is possible to catch 

many common runtime errors which would otherwise result in program failure. 

Until recently most finite element analysis program were written in FORTRAN. 

Although FORTRAN is an efficient language for developing scientific applications, 
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it is not well suited for writing large complex programs. With the advancements in 

finite element analysis, many different types of elements are being developed and 

elements are constantly being modified to improve their behavior. It is very difficult 

to maintain the codes for the finite element analysis that were developed using 

procedural programming languages because of its complexity. An object oriented 

programming language such as Java or matlab is better suited for the development 

of large complex programs for finite element analysis, because of the many 

advantages discussed above. These advantages make it very attractive to implement 

object oriented programming techniques for the development of the finite element 

analysis codes. 

The Matlab programming language is useful in illustrating how to program the finite 

element   method due to the fact it allows one to very quickly code numerical 

methods and has a vast Predefined mathematical library. This is also due to the fact 

that matrix, vector and many linear algebra tools are already defined and the 

developer can focus entirely onthe implementation of the algorithm not defining 

these data structures. The extensive mathematics and graphics functions further free 

the developer from the drudgery of developing these functions themselves or finding 

equivalent pre-existing libraries. A simple two dimensional finite element program 

in Matlab need only be a few hundred lines of code whereas in Fortran or C++ one 

might need a few thousand lines. 

Although the Matlab programming language is very complete with respect to its 

mathematical functions there are a few finite element specific tasks that are helpful 

to develop as separate functions. As usual there is a trade on to this ease of 

development. Since Matlab is an interpretive language; each line of code is 

interpreted by the Matlab command line interpreter and executed sequentially at run 

time, the run times can be much greater than that of compiled programming 

languages like Fortran or C++. It should be noted that the built-in Matlab functions 

are already compiled and are extremely efficient and should be used as much as 
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possible. Keeping this slow down due to the interpretive nature of Matlab in mind, 

one programming constrain that should be avoided at all costs is the for loop, 

especially nested for loops since these can make a Matlab programs run time orders 

of magnitude longer than may be needed. Often for loops can be eliminated using 

Matlab'svectorized addressing.  

A typical finite element program consists of the following sections; preprocessing 

section, processing section and post-processing section 

In the preprocessing section the data and structures that define the particular 

problem statement are defined. These include the finite element discretization, 

material properties, solution parameters etc. The processing section is where the 

finite element objects i.e. Stiffness matrices, force vectors etc. are computed, 

boundary conditions are enforced and the system is solved. Thepost-processing 

section is where the results from the processing section are analyzed. Here stresses 

may be calculated and data may be visualized. 

2.9 Available programs for analysis of curved elements.  

i) Prokon Structural Analysis and Design 

This is a suite of over thirty years for structural analysis, design and detailing .The 

first Prokon programs were developed in 1989, and today Prokon is used worldwide 

in over eighty countries. The suite is modular in nature, but its true power lies in the 

tight integration between analysis, design and detailing programs.This software does 

not have a module for analysis of curved plates. Only thicker elements are 

considered. There is need to redefine the module that has buckling before usage. 

 ii) STAAD PRO 

STAAD.Pro is a general purpose structural analysis and design program with 

applications primarily in the building industry - commercial buildings, bridges and 

highway structures, industrial structures, chemical plant structures, dams, retaining 
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walls, turbine foundations, culverts and other embedded structures, etc. The program 

hence consists of the following facilities to enable this task.  

Using STAAD.Pro for analysis of curved plates, the module to use is referred to as 

STAAD. beava. This module will generate loads on plates. It is first required to 

model the element into a plate mesh model and then model some fictitious beam 

entities (with negligible section properties) from node to node within the plate mesh 

to deliver the load. This process is time consuming, needs a thorough knowledge of 

modeling and is bound to computational errors. 

iii) ANSYS 

This is researchsoftware developed by AnsysInc. It was developed into many 

different software modules; amongst these is the Ansys workbench platform. It is 

the framework upon which advanced engineering simulations are built. Ansys 

workbench combines the strength of core problem solvers with project management 

tools necessary to manage project workflow. In Ansys, Workbench Analysis is built 

as systems which can be combined together into a project. Ansys workbench is 

laborious as you have to model the element whose knowledge must be inherent 

before analysis. 

2.10 Models for Program development 

2.10.1 Introduction 

The process of building computer software and information systems has always 

been dictated by different development methodologies. A software development 

methodology refers to the framework that is used to plan, manage, and control the 

process of developing an information system (Ian Sommerville, 2011). A software 

development methodology is known as SDLC short for Software Development Life 

Cycle and is majorly used in several engineering and industrial fields such as 

systems engineering, software engineering, mechanical engineering, computer 

science, computational sciences, and applied engineering (Richard. et al,1986). In 
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effect, SDLC has been studied and investigated by many researchers and 

practitioners all over the world, and numerous models have been proposed, each 

with its own acknowledged strengths and weaknesses. The Waterfall, spiral, 

incremental, rational unified process (RUP), rapid application development (RAD), 

agile software development, and rapid prototyping are few to mention as successful 

SDLC models. In a way or another, all SDLC models suggested so far share basic 

properties. They all consist of a sequence of phases or steps that must be followed 

and completed by system designers and developers in order to attain some results 

and deliver a final product.  

2.10.2 SDLC Waterfall Model 

In this model (figure2.7), the software development activity is divided into different 

phases and each phase consists of a series of tasks and has different 

objectives.Waterfall model is the pioneer of the SDLC processes,it was the first 

model which was widely used in the software industry. It is divided into phases and 

output of one phase becomes input of the next phase. It is mandatory for a phase to 

be completed before the next phase starts. In short, there is no overlapping in  

In waterfall model, development of one phase starts only when the previous phase is 

complete. Because of this nature, each phase of waterfall model is quite precise well 

defined. Since the phase’s falls from higher level to lower level, like a water fall, it’s 

named as waterfall model. 

 
Figure 2.7 The water fall model (Youssef Bassil, 2012) 

http://en.wikipedia.org/wiki/Software_development_process
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CHAPTER THREE 

 METHODOLOGY 

3.1 Introduction 

This chapter describes the formulation of ananalytical model of analysis based on 

the Euler-Bernoulli beam model. The formulation combines other research works 

into a new formulation based on the finite element method.The chapter also 

describes the numerical procedure for analysis of curved elements. This model is 

based on the analytical finite element formulation for analysis. Lastly, an approach 

in the development of the code of analysis base of curved elements based on the 

analytical formulation of finite element is developed. 

3.2Developing analytical formulation for analysis of thin curved plates 

The work done during a virtual displacement of the element is equated to zero to 

obtain the equilibrium equations for the element (Jerrel, 1970). The bifurcation 

concept of elastic stability is used to postulate that two possible sets of, 

displacements which satisfy the equilibrium equations may exist under the same 

magnitude of external load if the magnitude is such that a structure is unstable. Each 

of these sets of displacements is substituted in turn into the equilibrium equations. 

The resulting sets of equations are combined to obtain a relationship between the 

nodal forces and the nodal displacements during buckling. When placed in matrix 

form this relationship becomes (Jerrel, 1970).  

{Q
i
} = [[K] + [G] + [L]] {q

i
} = {0}                                                                      (3.1) 

Where Q
i
 is the column matrix of nodal forces, 

q
i
 is the column matrix of nodaldis placements,K is the usual beam element 

stiffness matrix,G is the geometric stiffness matrix and L is the load behavior 

stiffness matrix. 

[G] and [L] both contain the magnitude of external load as a factor. Thus an 

element stiffness can be derived which is a function of the applied load including 

the applied load behavior. 
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A number of such elements may be combined to represent a particular structure, 

so that equation (3.1) applies to the entire structure and [K] + [G] + [L] is the 

master stiffness matrix. Boundary conditions may be applied to reduce the size of 

the master stiffness matrix. For instability to exist the determinant of the master 

stiffness matrix must vanish. Hence, an eigenvalue problem is formulated where 

the eigenvalues are the magnitudes of the applied load at which the structure is 

unstable. 

3.2.1 Development of element stiffness matrix  

a)Description of Element. 

Consider a beam column element as shown in Figure 3.1 which is subjected to 

nodal forces and moments and a uniformly distributed load, p, applied along its 

length. It is desired to determine as tiffness matrix for the element which may be 

used to calculate the stability of structures made-up of such elements. The stiffness 

matrix is to account for the fact that the components of the nodal forces or 

distributed load, or both, may be a function of the element displacements. Three 

cases are to be considered: the loads remain normal to the deformed element; 

parallel to their original direction; and, directed towards a fixed point. 

 

Figure 3.1 Element modeling 
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b) Displacement Functions.

If it is assumed that the lateral displacement of the beam element of Figure 3.1 

above may be represented by 

W= + + +                                                                                   (3.2) 

 And the longitudinal displacement is given by 

U= +            (3.3) 

then the six unknown constants, may be determined in terms of the nodal 

displacement  from the element boundary conditions  

W    = w1 at x=0 

 = at x=0 

W    = w2 at x=L 

 = at x=L 

u      = at x=0 

u= at x=L    (3.4) 

The resulting displacement functions are: 

W= w1 (1-3  + 2 ) +w1 (3  - 2 )+ (-x+2  - ) + (  - ) 

= (x) + (x) + (x) + (x) 

= wi (x)         (3.5) 

U = u1(1- ) +u2 ( ) 

= (x) (3.6) 

These displacement functions have been used by for the beam column element. 

However, it should be mentioned that an inconsistency arises when the cubic 

function is used for the lateral displacement of the present element which has a 

distributed load.   This is illustrated by taking the third derivative of w, which should 

be the equation for the shear load on the element, and observing that a constant 

results.  But the element has a distributed load, and the shear should obviously be a 

linear function, not a constant.  Since the change in shear over the length of an 
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element becomes negligible in the limit as the element becomes smaller and smaller, 

this inconsistency is not unacceptable and it will be seen that adequate results are 

obtained. The correct fourth order function could not be used for w because there is 

no other boundary condition available for evaluating another constant in equation 

(3.2). This will be discussed further in the conclusions. 

c) Development of equilibrium equations

The element equilibrium equations will now be developed from the principle of 

virtual displacements 

U – V = 0                                                                                                                        (3.7) 

Where U is the change in strain energy and V is the work done by the external 

forces during a virtual displacement. 

For the uniaxial state of stress assumed to exist in a beam the change in strain energy 

is given by  

U =                                                                                                   (3.8) 

Here,  is the strain of the beam at any point of the cross section and is given by 

 =  +                                                                                                       (3.9) 

Where  is the strain of the beam mid-surface, z is the distance of the point in the 

beam from the mid-surface, and  

 =                                                                                                              (3.10) 

is the beam curvature. The non-linear strain – displacement relationship 

 =  +  + (3.11) 

is used for the mid-surface strain. The  term in this expression is not known to 

have been used in previous derivation of non-linear beam element stiffness matrices. 

Substituting equations (3.9),(3.10) and (3.11) into equation (3.8) 

U= dxdA= E( + )E( + )dxdA                (3.12) 

= [

= zdA = 0, z
2
dA = I
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= [AE +EI ]dx (3.13) 

Where 

)+ )= +  +

= 

EA ) +  + )+ EI ] dx

EA ) +EA( )  +EI )] dx 

+higher order terms.      (3.14) 

The virtual work of the external forces acting on the element is given by: 

= [ ]dx (3.15) 

where the force components depend upon the load behavior. Three load behavior 

cases will be considered. 

Case i. Loads remain normal to the deformed element 

Figure 3.2 Loads normal to the deformed element 
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Pz   = p 

Px =

= 

=Fzi

= (3.16) 

Then 

=( ) +( )+ i+ [ ]dx     (3.17)

Case ii. Loads remain parallel to their original direction 

Figure 3.3 Loads parallel to their original direction 

Pz   = p 

Px =

= 

= 

= (3.18) 
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 =  +  + i + dx (3.19) 

Case iii Loads remain directed towards a fixed point 

Figure 3.4 Loads directed towards a fixed point 

Pz   = p 

Px =  

= +

=  - 

= (3.20) 

=( + (  - + i +  + dx       (3.21) 

Substituting equation (3.14),(3.17),(3.19), and (3.20) for the three load cases into 

equation (3.7), we obtain the following; 
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Case i 

EA ) +EA( )  + EI ] dx=

( ) + i + – ] dx      (3.22)

Case ii 

EA ) +EA ( )  + EI ] dx=

( + i + (3.23) 

Case iii 

EA ) +EA ( )  + EI ] dx

=( + (  -  + i [ ]d  (3.24)

From the displacement functions, equations (3.5) and (3.6) 

= 

   = 

 =                                                                                                        (3.25)   

And the above variation can be written,  

δu     =   

  =   

δw    =   

 =   

 =                                                                                                    (3.26) 

Upon substituting equation (3.25) and (3.26) in to equation (3.2) through (3.24) and 

recalling that  = following equations are obtained 
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Case i 

{EA[ ) +( ) ] 

+ }dx+( )  +( )

+ 1+2 [ ]dx=0 (3.27) 

Case ii 

{EA[ ) +( ) ] 

+ }dx+ - - 1+- (3.28) 

Case iii 

{EA[ ) +( ) ] 

+ }dx- (  - (  -  - 1+2 

)dx=0          (3.29) 

For independent virtual displacement, and , the equilibrium equations are 

obtained from Equations (3.27) through (3.29) 

Case i 

[EA )+ ]dx -  - 

= 0 (3.30) 

[EA  EA – ]dx-  + = 0 (3.31) 

Case ii 

[EA )]dx  = 0          (3.32) 

[EA  EI – ]dx  = 0 (3.33) 

Case iii 

[EA ) 

dx  - = 0       (3.34) 

(EA  EI – )dx  - = 0           (3.35) 
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Equations (30) through (35) are the final equilibrium equations for the beam column 

element. 

d) Bifurcation theory of instability:

Let a solution of the equilibrium equations be . According to the bifurcation 

concept of instability, at the instability load magnitude there is another set of 

displacement, arbitrarily close to the first set, which also satisfies the equations of 

equilibrium. We denote this second set of nodal displacement by  , 

Upon substituting this new solution into the equilibrium equation, the results for 

Case 1 

{EA[( + ) + ( )( ) + ( ) 

+ ) ]+p( ) } - ( )=0                  (3.36) 

[EA( + )( ) +EI( ) ]dx– + 

( )                                                                                                (3.37) 

Similar results are obtained for cases ii and iii 

If these equations are expanded, if the  state terms (which themselves satisfy the 

equations) are canceled, and if only linear terms in the arbitrarily small  state are 

retained, the following sets of equations result 

Case i 

[EA )+ pw ]dx -  = 0        

(3.38) 

[EA +EI +  = 0        (3.39) 

Case ii 

[EA ) ]dx = 0 (3.40) 

[ea ]dx=0  (3.41) 

Case iii 
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[EA ]dx+ = 0   (3.43) 

These equations may be expressed in matrix notation for all three cases as follows

[[K]+[G]+[LP]+[LF]]{q
1
} = {0} (3.44)

Or 

[k
1
] {q

1
} = {0}

Where  

[k
1
] = [K]+ [G] + [LP] + [LF]

[k] [q
1
]= (3.45) 

[k] [q
1
]=

(3.46) 

For all cases  

The  matrices are different for each case 

dx 0 

0

dx

dx dx 

dx dx 
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Case i 

(3.47) 

[LP] {q
1
}=

Case ii 

[LF] {q
1
}=

(3.48) 

[LP] = [LF]= [0]   (3.49) 

Case iii 

[LP] {q
1
} =  (3.50) 

[LF] {q
1
} =

 (3.51) 

0

dx 

0 0 

dx       0 

        0 0      

0
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d) Conventional stiffness matrix

Equation (3.45) represents the convectional beam column element stiffness matrix, 

which is suitable for use when there is no interest in nonlinear effects or instability. 

The elements of this matrix may be derived from the general expression, equation 

(3.45). For example 

=(1- ), 1 = ( 1-3 ) 

 =- , 1,X= - 6 6 , 1,Xx = - 6

Therefore 

K11 = dx=  EA ( ) dx =

K33 = dx=  EA (  + )dx =

Other elements of  are obtained similarly to yield the stiffness matrix K from the 

matrix equation 3.52  . 

  u1  u2 w1 w2    ѳ1 ѳ2

(3.52) 

[K]   = 

FX
1

FX
2

FZ
1

FZ
2

M1 

M2
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e) Geometric Stiffness Matrix G.

Equation 3.46; is the general form of the geometric stiffness matrix which accounts 

for the effect of loads existing in the element on the stiffness of the element.  For 

example, it is well known that the axial load in a beam column has an appreciable 

effect on the lateral stiffness. The geometric stiffness matrix is an adjustment to the 

conventional stiffness matrix to account for such effects.  Such matrices have also 

been referred to in the literature as stability coefficient matrices and incremental 

stiffness matrices. Elements of the G matrix will now be derived 

Evaluation of  

For i = 1 

 =  = ( 1-  ) 

 = - 

 = - 

When k=1, j=1 

1,x  (1-3  + 2 ) = -  + - (-  +  dx 

= -  -  +  dx 

= -  -  +  = -  [  -  + ] 

=  +  -  = (  +  - )  =- 

For i=2 
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 =- , ( =

 = -

Other values of j and are evaluated similarly to yield 

w1        w2 1 2

          - - ………………

(3.53) 

          -           - 

          - 

w1        w2 1 2

       -    - 

(3.54)  

Evaluation of 

For i=1 

[ ]
= 

[ ]
=      =
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 =  =  + 

j=1, k=1 

 = - 

When j=1, k=2 

(  + (  + + (- =

(3.55) 

 (3.56)

- 

- 

[ ]

- 

[ ]
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(3.57) 

(3.58) 

Evaluation of  

= - = 

Then, 

 (3.59)

[ ]

[ ]

-

-
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 = 

  (3.60) 

Evaluation of 

 = = (3.61)        

The above matrices are now multiplied by the  state displacement as indicated in 

equation (3.46) 

 =[ ] 

= [ ] (3.62) 

-

-

        - 

    - 
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 =[ ] 

= [ ] (3.63)    

 =[ ] 

      (3.64) 

 = [ ] (3.65) 

 = [ ] (3.66) 

 = [ ]  (3.67) 

 = [ ]

   - 

=[
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= [ ]            (3.68) 

 = [ ]            (3.69) 

 = [ ]            (3.70) 

 = [ ]         (3.71) 

 = [ ]          (3.72) 

 = [ ] (3.73) 

=                        

                            

   (3.74) 

d) Load behavior matrix Lp

The effect of applied load behavior on the element stiffness is obtained by adjusting 

the  matrix with the  matrix, where  

=[ ] 

3EA[ ]     EA[ ] 

3EA[ ]     EA[ ]

EA[ ]     EA[ ]

EA[ ]     EA[ ]

EA[ ]     EA[ ]

EA[ ]     EA[ ]
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[L] = [LP] + [LF] (3.75) 

The matrix will now be derived from equations (3.47) through (3.50) for each of 

the three load behavior cases.  

Case i 

 +  + - 

+  ( ) + ( )] dx

= +  - 

Then 

(3.76)

 May be written directly from equation (3.48) in view of equations    (3.38) 

And (3.39) 

                                        (3.77) 

0        0     -

0        0    -  - 

0 0 0 0  0     0 

0 0 0 0  0     0 

0 0 0 0  0     0 

0 0 0 0  0     0 

[LP]= P 

0 0        

0 0     

0 0 0 0     0 

0 0 0 0  0 

0 0 0 0  0     0 

0 0 0 0 0 0

[LF]= P 
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Where ’S are proportionality constant between the indicated forces and p. the 

magnitude of the applied forces are assumed to remain in a constant ration to each 

other and to the lateral load, p, during loading of the element. This assumption is 

made here and in the stability criterion section for illustrates purposes. The 

assumption is easily altered to study buckling under pressure with specified nodal 

forces or buckling under nodal forces with specified pressure. 

Case ii 

[LP]= [LF] = [0]                                                                                                    (3.78) 

[ (1- ) + 1- dx 

= [(1-  + )  + (  - ) dx

= [(x- ) + )  + (  - )

= [(L- )  + (  -  )

= [

[

(3.79) 

   0    0    

     0       0 0        0            0 

     0       0 0        0      0 

0 0 0        0

0 0

0 0 0        0

0 0

[LP]= P 



49 

LF be written directly from equation (3.51) 

                   (3.80)    

e) Transformation Matrix

The developments thus far have been in a coordinate system which was oriented so 

that the x-axis coincides with the element centerline. To combine several elements 

for solution of a particular problem, it is necessary to obtain the stiffness matrices of 

the elements in a common or global coordinate system. Then to determine the 

transformation matrix for the curved beam element, wefirst consider a 

transformation matrix in two dimensions of straight beam element,of length L. If the 

lateral and normal displacements are n and u, and if theangle that the element makes 

with the X direction is a, as shown in figure (3.5),then the relationship between the 

displacements n; u; q and X; Y; q is known. It is noted that the unknown vector does 

not involve the rotation angle; the essential boundary condition can be imposed with 

the penalty function method (Sun & Liew, 2008).       

  0         0     

0      

0 0          0     0 

0 0 0  0     0 

0 0 0 0  0     0 

0 0 0 0 0 0

[LF]= 
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Figure 3.5 Curved beam element related to local and global displacements 

     (3.81) 

 

 = 

Where 

 ds = the local straight beam displacement vector 

dg = global coordinate displacement vector 

X

1 

Y

1 

1

X

2

Y

2

2

u1

U1

1

w2 

W2

2
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 = transformation matrix 

α 

Figure 3.6: Straight beam element displacement 

Consider the relationship of the displacement of the curved  element w; u; qwith the 

displacements of the straight elements n ; u; q , then as indicatedin figure 3.6. 

Figure 3.7 Relation of curved beam element in local and global coordinates 

system 

 

w W 

Y 

X 
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(3.82) 

   

 =       

= the displacement vector for a curved beam in the local coordinate 

system 

 = global coordinate displacement vector 

  = the transformation matrix above. 

The relation of the nodal displacement of thecurved beam in the local systemdcand 

those in the global system dgisfor the transformation matrixglobal coordinate 

displacement vector 

dc=ɤdg ( Kakuchi,2014) 

LetT= ɤ                                                                                                  (3.83) 

Since for the nodal forces we also have to transform from local to global 

coordinatesystem, by identifying the global resultant force component when a force 

isapplied in local coordinates, thus the force vector is transformed as below 

FC =TFg 

It follows; 

Fc= K
(e)

 dc

TFg =K
(e)

Tdg

Fg=K
(e)

Tdg

X

1 

Y

1 

1

X

2

Y

2

2

u1

U1

1

w2 

W2

2
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Kg=T
T
K

(e)
 T      (3.84) 

3.2.2 Master Stiffness Matrix 

The stiffness matrix for complete structure is obtained by combining the element 

stiffness matrices in the global coordinate system.  

3.2.3 Stability Criterion 

Elements with stiffness matrices of the type given by equation (3.44) may be 

assembled into a master stiffness matrix to represent a structure subjected to the 

critical (buckling) magnitude of applied loads. Thus, 

[[  + p [ ]]{ } = {0} (3.85) 

Where 

the null matrix of applied external loads indicates that the structural stiffness has 

vanished under the critical load magnitude (a physical interpretation of 

instability).The , , and  matrices in equation 3.85 are obtained by assembly of 

element matrices as described in the preceding section. The   matrix is more 

conveniently obtained by direct application of equations (3.48) and (3.51) to each 

node of the assembled structure in the global coordinate system.A nontrivial solution 

of equations will exist only when the determinant of the matrix of vanishes; 

Det (   p  = 0 (3.86) 

This is an eigenvalue problem where the magnitudes of applied load, p, at which 

instability will occur, are the eigenvalues.This formulation combines the works of 

Thomas,1970and Kikuchi, 2014; into a new formulation, hereunder used to 

formulate a code for analysis. 
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3.3 Developing numerical procedure for analyzing thin curved plates 

The following is the numerical procedure for analysis following the analytical 

formulation. 

i) Identify the principal theory from equation 3.1

ii) Divide the curved plate into appropriate elements and calculate the arc length (L)

and the internal angle (ψ) and angle (α) of each element relative to the x axis. 

iii) Enter the following specific member properties (variables).

a) Area in m
2

b) Moment of inertia I in m
4

c) Length L in m

d) Young’s modulus E in N/m
2

e) (ψ) and (α) in degrees

iv) For each element calculate:

a) The stiffness matrix K from the matrix  from equation 3.52

b) The geometric  matrix from the  matrix from equation  3.74

c) Select the load case and calculate the load matrix L

       [L] = [LP] + [LF] 

Load case i-Loads remain normal to the element 

Load case ii-Loads remain parallel to the original direction 
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Load case iii-Loads remain directed towards a fixed point 

d) Rearranging all the matrices in the following order from equation 3.87

(3.87) 



56 

v) Matrix transformation

 Rotate all element matrices to the global coordinate system by the operation given 

in equation 3.83. 

vi) Calculate the master stiffness from the summation of all the matrices of the

system, e.g,K1+K2+K3=k, G1+G2+G3=G, L1+L2+L3 =L for three elements.

viii) Calculate the determinant of the resulting 6x6 matrix from bifurcation theory

 (3.88) 

where 

The buckling load p is obtained from the solution determinant in equation 3.88. 

3.4 Development of finite element program for analyzing thin curved plates 

The methodology approach used in this development is waterfall approach 

phases(Sun & Liew, 2008). The project was segmented into a hierarchy of the 

numerical procedures developed in section 3.3 above. This phase also involves 

developing the problem case for the project. A problem case provides the 

information that a user needs to decide whether to proceed with the program. 

Other subsequent procedures are as follows: 

a) Initiation / Software system requirements

This phase involved a macro level study of the project requirements. This phase also 

involved understanding and defining the solutions to the problem requirements and 

cost-benefit justification of these alternatives. 

b) Analysis
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This involved carrying out detailed study of the model procedure and arriving at the 

exact steps. The phase involved freezing the requirements before the design phase 

begins. 

c) Design

Involved translating the identified requirements into a logical structure that can be 

implemented in a programming logic. 

d) Construction

Involves development and integration and testing all the modules developed in the 

previous phase as a complete system. 

e) Testing

Involves integrating and testing all the modules developed in the previous phase as a 

complete system. Model used in testing is as follows   

1. Test planning

2. Test development – Creating the testing environment

3. Test execution – Writing the test cases/Creating & Executing the Test Script

4. Result analysis – Analysis result and Bug report

5. Bug tracking - Analyze Bugs and application errors

f) Implementation and deployment

Involves converting the new system design into operation. This involved 

implementing the software system and operating   the software system and its 

functionalities (figure 3.8). 
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Figure 3.8 Process of system design 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

Table 4.1 shows results obtained using the present formulation to a curved 

membrane element and this are compared with those of Jerrel M. Thomas reported 

in 1970 and the solutions from the classical plate equations.Using the program 

developed, a parametric study is done to analyze the relationship of different plate 

parameters inherent in design of plates. 

4.2 Sample problem 

Variables: 

1) Area (A) = 4.05 x 10
-4

m
2

2) Moment of area (I) = 1.31x10
-6

 M
4

3) Young’s Modulus (E) =6.9x10
10

 N/m
2

4) Radius (R) =2.54m

Figure 4.1 Circular arch under Uniform pressure p 
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4.3 Discussion of results 

 Table 4.1 Relationship number of elements and buckling pressure 

Number 

of 

elements 

Buckling pressure (N/mm
2
)

Case I Case II Case III 

This 

work 

Thomas

(1970) 

This 

work 

Thomas 

(1970) 

This 

work 

Thomas 

(1970) 

2 

3 

6 

9 

12 

16.580 

9.952 

10.012 

9.962 

9.962 

16.007 

10.000 

10.052 

9.912 

9.877 

16.580 

11.300 

10.806 

10.760 

10.801 

16.007 

11.331 

10.963 

10.840 

10.788 

16.580 

11.859 

11.964 

11.300 

11.089 

16.007 

11.331 

11.278 

11.086 

11.086 

Plate 

eq’n 

Solution 

9.959 10.673 11.114 

From this table, it is seen that as the number of elements increases, the results have 

an oscillatory convergence to the exact solution.More divisions results into output of 

higher accuracy but requires more computational effort as there are more 

calculations. The model will increase the efficiency of the final result as the 

computations have been programmed. 
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ii) Effect of various plate properties

a) Cross sectional area

Table 4.2 Relation between number of elements and buckling pressure at 

cross sectional area of 3.05 x 10
-4

 m
2

Number 

of 

elements 

Buckling pressure (N/m2) 

Case I Case II Case III 

This work This work This work 

2 

3 

6 

9 

12 

15035.443 

8348.574 

8408.561 

8358.275 

8362.302 

15035.886 

9695.646 

9202.913 

9157.455 

9195.403 

15035.886 

10255.803 

10360.651 

9696.275 

9487.40 

Table 4.3 Relation between number of elements and buckling pressure at 

cross sectional area of 2.05 x 10
-4

m
2

Number 

of 

elements 

Buckling pressure (N/m2) 

Case I Case II Case III 

This work This work This work 

2 

3 

6 

9 

12 

13738.393 

7051.524 

7111.511 

7061.225 

7065.252 

13738.836 

8398.596 

7905.596 

7860.405 

7898.353 

13738.836 

8958.953 

9063.511 

8399.225 

8190.353 
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Tables 4.2 and 4.3 show the relation between number of elements and buckling 

pressure at various cross sectional areas. It can be seen from these tables that a 

curved plate resists a higher load when it is directed towards the center of the arc. 

The loading cases vary as to the use of the plate element e.g. as a water structure or 

roof element. The program can be useful in a quick analysis considering the 

particular load case, given the load cases modeled are those frequently encountered. 

Table 4.4 relationship of curvature and buckling 

pressure 

Buckling pressure (N/m
2
)

Curvature C  

in M
-1

Case I Case II Case III 

This work This work This work 

0.4082 9962.706 10801.96 11089.7 

0.4274 10108.31 10941.42 11233.42 

0.5155 11284.06 12117.15 12409.16 

0.6494 13070.34 13903.44 14195.44 

0.7463 14362.83 15195.93 15487.93 

1.0638 18600.95 19434.05 19726.05 

1.3514 22436.5 23269.6 23561.7 

1.8519 29114.52 29947.62 30239.62 

2.9412 43649.38 44482.48 44774.48 

7.1429 99716.68 100549.8 100841.8 

Table 4.4 shows the relationship of curvature and buckling pressure for the three 

loading cases. It can be seen that curvature proportionately influences plate 

resistance to load. The higher the plate curvature the higher the load it resists. This 
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relationship can be used to optimize a curvature and load resistance in design of thin 

elements. 

iii) Implication of the research to theory and practice

The formulation presented extends the finite element method to thin elements 

curved on plan. They include membranes and thin plates. As the world gears up into 

more production of smart structures some of which have curved elements, this 

model opens up room for further research to precision production of structural 

components.  

iv) Contributionof this study to existing knowledge

The procedural analytical method arrived at is a new model as it is a combination of 

parameters of more than one referenced research work. The model has also been 

coded to run as a program in a visual basic platform, this will make research and 

relevant designs to be achieved at a sustainable cost.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion  

The overriding purpose of the study was to develop an Euler Bernoulli simulation 

model for analysis of thin curved plates with three specific objectives.This chapter 

presents the summary of the research work undertaken,the conclusions that were 

drawn,recommendations and areas of further research based on the analyzed data 

related to the general and specific objectives of the study.  

A finite element method has been developed which is based on the Euler Bernoulli 

model. This model neglects shear deformations and hence the formulation is only 

applicable to thin elements including thin plates and membranes. 

From the finite element analytical formulation a seven step chronological numerical 

procedure for analysis has been developed. From the finite element analysis the 

following conclusions can be drawn; 

a) Curved plates resist a higher load when it is directed towards the center of the arc.

b) Curved plates with large curvatures resist higher loads than those with smaller

curvatures. 

A comparison is made between the result obtained in this research and those of other 

methods.There is a good agreement between the proposed and the existing 

methods,thus this confirms therefore that the proposed method is suitable for 

analysis of curved plates.  

5.2 Recommendations 

The program developed is useful for the study of thin curved plate elements because 

it manipulates the given plate and loading parameters to give output. This can be an 

essential tool in design and research work. It is recommended to use the program in 

design and study of thin curved elements. 
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5.3 Areas of further research 

Plate structures exist under various supports and thicknesses depending on their 

usage. These systems affect the resistance of the plate to various load combinations 

and hence their design.  

Further research to include the Timoshenko model into the theory will make the 

program developed more elaborate in its usage. 
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Abstract- Analysis of curved plate elements requires a high 

computational effort to obtain a reliable solution for a buckling 

load for design purposes. Available programs are expensive to 

acquire and they need thorough knowledge for effective use. 

There is therefore need to code cheaper and accessible programs 

in line with using sustainable methods to better the livelihood of 

mankind. To address this issue a theory is formulated based on 

the Euler-Bernoulli beam model. This model is applicable to thin 

elements which include plate and membrane elements. 

      This paper illustrates a finite element theory to calculate the 

master stiffness of a curved plate. The master stiffness takes into 

account the stiffness, the geometry and the loading of the 

element. The determinant of this matrix is established from 

which the buckling load which is unknown in the matrix is 

evaluated by the principal of bifurcation. 

      The curved element is divided into 2,3,6,9 and 12 elements; 

this demonstrates the computational effort to a reliable solution. 

As expected, that as you divide the curve into smaller constituent 

elements, the solution of the buckling load is tedious as more 

mathematical operations are involved hence the need to program 

the operations. 

      Numerical analysis is carried out by abstracting the 

procedural development of the theory and programming it to run 

in a visual basic platform. The results obtained are giving a good 

agreement with results obtained with classical plate equations. 

This program is proposed to increase computational efficiency in 

the analysis of curved plates at a sustainable cost. It can also be 

used to establish the relationship between buckling load and 

curvature of plates. 

 

Index Terms- finite element method, analysis, curved plates, 

program 

 

I. INTRODUCTION 

 plate is a planar body whose thickness is small compared 

with its other dimensions. Curved plate structures are 

frequently used in; aerospace vehicles, domes, roof structures 

and pressure vessels. A plate structure may be as simple as the 

web of a stiffener or as complex as an integrally stiffened plate 

supported by heavy frames and rings. 

      Thin plates are characterized by a structure that is bounded 

by upper and lower surface planes separated by a distance h 

(figure 1). The x-y coordinate axes are located on the neutral 

plane of the plate and the z-axis is normal to the x-y plane. 

      For this paper it was assumed that h is a constant and those 

material properties are homogeneous through the thickness. 

Consequently, the location of the x-y axes(figure 2) lie at the 

mid-surface plane (z=0) with the upper and lower surfaces 

corresponding to z=h/2 and z=-h/2, respectively.  

 

 

h 

h/2 

h/2 
x 

y 

z 

mid-plane x 

y 
z 

z p 

 
Figure 1 Structure of thin plate                Figure 2 Location of 

thin plate axes 

 

      In the behavior of plate structures under in plane 

compression, a critical point exists where an infinitesimal 

increase in load can cause the plate surface to buckle; the load at 

this critical point defines the buckling strength of the plate. 

      Any further increase in load beyond the load at the initiation 

of buckling increases the buckling deformations until collapse 

occurs. Thus, the load at collapse defines the post buckling or 

crippling strength of the plate. The behavior of plate structures in 

this regard differs markedly from the behavior of columns and 

many other thin curved shell structures for which the buckling 

load corresponds closely to the collapse load. 

      Buckling of a plate structure can cause an unacceptable 

degradation. It can trigger general buckling of larger structures 

because of a redistribution of stresses; it can also affect the 

response by the structure to excessive displacement or fatigue 

which may be a cause of failure. 

      A lot of research has been done in this area of research which 

has been referenced.Available programs give criteria to do 

analysis of curved elements,but they are expensive to acquire and 

use. So, there is need to have an accessible criterion at an 

affordable cost. 

 

1.1 Objectives 

      1)  To develop an analytical program of curved plates. 

      2) To develop a numerical method for analysis of curved 

plates  

      3) To write a finite element analysis program to analyze 

curved plate elements using the method   developed. 

 

1.2 Scope for the work 

      An analytical formulation of the curved-plate non-linear 

equilibrium equations will be made. The analytical formulation 

will be implemented into a computer based program. 

A 
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A convergence study using a segmented-plate approach will be 

performed for a simple example problem to obtain baseline 

results for use in future comparisons. Results will be compared 

with results from classical plate equations.  

 

1.3 Methods of analysis 

      Finite element methods are now widely used to solve 

structural, fluid, and multi-physics problems numerically
[1].

The 

Euler –Bernoulli beam model applies since only thin elements 

are considered(shear deformations are neglected)
[2].  

Two methods of analysis of curved elements exist: the 

Eigenvalue Buckling Analysis and Nonlinear buckling Analysis.  

1.3.1 The Eigenvalue Buckling Analysis 

      The Eigenvalue analysis predicts the theoretical buckling 

strength of an ideal linear elastic structure. This is analogous to 

the classical plate equation approach to elastic buckling 

analysis
[3]

.However, imperfections and nonlinearities prevent 

most real-world structures from achieving their theoretical elastic 

buckling strength.  

1.3.2 Nonlinear Buckling Analysis  

      This method takes account of imperfections and 

nonlinearities of real-world structures. In this method the load is 

increased until the solution fails to converge, indicating that the 

structure cannot support the applied load (or that numerical 

difficulties prevent solution)
[4]

. If the structure does not lose its 

ability to support additional load when it buckles, a nonlinear 

analysis can be used to track post-buckling behavior. 

 

II. BASIC ELEMENT SHAPES 

      For the discretization of problems involving curved 

geometries, finite elements with curved sides are useful. The 

ability to model curved boundaries has been made possible by 

the addition of midsized nodes. Finite elements with straight 

sides are known as linear elements, whereas those with curved 

sides are called higher order elements
[5]

. 

 

2.1Size of Elements 

      The size of elements influences the convergence of the 

solution directly. If the size of the elements is small, the final 

solution is expected to be more accurate. 

 

 2.2 Number of Elements 

      The number of elements is related to the accuracy required 

and the number of degrees of freedom involved 
[5].

 Although an 

increase in the number of elements generally means more 

accurate results, for any given problem, there will be a certain 

number of elements beyond which the accuracy cannot be 

improved by any significant amount shown graphically in figure 

3
[5]

. 

 

 
Fig 3 Relationship between the number of elements and 

accuracy
[5]

 

 

III. PROGRAM DEVELOPMENT  

      Computer programming languages are built around two 

approaches; 

 (1) Procedural programming and  

 (2) Object oriented programming.  

 

      In procedural programming, the program is prepared by a 

series of steps or routines that follow the data provided.  The 

main drawback of the procedural programming languages is that 

they are not structured and the flow of the program largely 

depends on conditional statements that induce more chances of 

errors. These languages are good for small programs and are 

difficult to maintain when they become larger. 

      The object oriented programming languages are built on the 

concept of abstraction. Large complex procedures are subdivided 

into small procedures by abstraction, encapsulation and 

inheritance. Each of these sub procedures represents different 

objects with their own separate identity
[6,7]

. The program 

developed is object oriented and follows the following steps used 

in the formulation of the theory; 

 

      1. Identify the principal theory 

{Q
1
} = [[K] + [G] + [L]] {q

1
} = {0}

[8]
   

 

      2. Divide the curved plate into appropriate elements and 

calculate the arc length (L) and the internal angle (ψ) and angle 

(α) of each element relative to the x axis.  

       It is noted that the unknown vector does not involve the 

rotation angle; the essential boundary condition can be imposed 

with the penalty function method 
[9,10]

.        

      3. Enter the following specific member properties (variables). 

a) Area in m
2
 

b) Moment of inertia I in m
4
 

c)  Length L in m 

d) Young’s modulus E in N/m
2  

e) (ψ) and (α) in degrees for each element 
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4. For each element calculate: 

a) The stiffness matrix K from the matrix below   

 
 

a) The geometric  matrix from the  matrix below 

 
 

b) Calculate the load matrix L selecting a specific load 

case 

[L] = [LP] + [LF] 

 

 
Load case ii-Loads remain parallel to the original direction 

 
Load case iii-Loads remain directed towards a fixed point 

 
 

 
 

 

 

a) Rearrange all the matrices in the following order 
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5. Matrix transformation 

      Rotate all element matrices to the global coordinate system 

by the operation 

K
g
 =T

T 
K

 (e)
 T 

Where 

K
g =

 Global stiffness matrix 

T
T 

= transpose of T matrix 

K
 (e) 

= Local stiffness matrix 

T= ɤ  where 

          

 

      4. Calculate the master stiffness from the summation of all 

the matrices of the system 

Eg K1+K2+K3=k, G1+G2+G3=G, L1+L2+L3 =L For three 

elements 

 

      6. Calculate the determinant of the resulting 6x6 matrix from 

the sum below 

   (Bifurcation theory) 

Where  

   
From the determinant the solution for p is the value for the 

buckling load. 

 

IV. SAMPLE PROBLEM 

      The figure 4 is composed of a thin membrane forming a 

circular arch with uniform pressure. Determine the buckling 

pressure for three possible load cases. 

Input data. 

1) Area (A )= 4.05 x 10
-4

 m
2
 

2) Moment of inertia (I) = 1.31x10
-6

 m
4
 

3) Young’s Modulus (E) =6.9x10
10

 N/m
2
 

4) Radius (R) =2.54m 

 
Figure 4 Uniform circular arch under uniform pressure p 

 

4.1 DISCUSSION OF RESULTS  

i) Summary of Results 
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Table 1 Relationship of number of elements and resistance to buckling pressure 

 

 

Number of 

elements 

Buckling pressure (N/m
2
) 

Case I Case II Case III 

Astrad1.1  Astrad1.1 Astrad1.1  

     2 

     3 

     6 

     9 

    12 

Exact solution 

16580.425 

9952.05 

10012.20 

9962.183 

9962.706 

16580.84 

11299.77 

10806.076 

10760.107 

10801.956 

16580.85 

11859.48 

11964.198 

11300.183 

11089.702 

9959.463 10673.981 11113.549 

 

 

 

ii) Effect of varying plate properties 

a) CurvatureTable 2  

b) :Relationship of Buckling pressure and Curvature 

 

Buckling pressure (N/m
2
) 

Curvature C 

in m
-1

 

Case I Case II Case III 

Astrad1.1 Astrad1.1 Astrad1.1 

0.4082 9962.706 10801.96 11089.7 

0.4274 10108.31 10941.42 11233.42 

0.5155 11284.06 12117.15 12409.16 

0.6494 13070.34 13903.44 14195.44 

0.7463 14362.83 15195.93 15487.93 

1.0638 18600.95 19434.05 19726.05 

1.3514 22436.5 23269.6 23561.7 

1.8519 29114.52 29947.62 30239.62 

2.9412 43649.38 44482.48 44774.48 

7.1429 99716.68 100549.8 100841.8 
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c) Cross sectional Area 

i) Table 3 : Area = 3.05 x 10
-4

m
2
 

 

Number of 

elements 

Buckling pressure (N/m
2
) 

Case I Case II Case III 

Astrad1.1  Astrad1.1 Astrad1.1  

     2 

     3 

     6 

     9 

    12 

 

15035.443 

8348.574 

8408.561 

8358.275 

8362.302 

15035.886 

9695.646 

9202.913 

9157.455 

9195.403 

15035.886 

10255.803 

10360.651 

9696.275 

9487.40 

           

                              ii) Table 4:Area = 2.05 x 10
-4

m
2
 

 

Number of 

elements 

Buckling pressure (N/m
2
) 

Case I Case II Case III 

Astrad1.1  Astrad1.1 Astrad1.1  

      2 

      3 

      6 

      9 

      12 

 

13738.393 

7051.524 

7111.511 

7061.225 

7065.252 

13738.836 

8398.596 

7905.596 

7860.405 

7898.353 

13738.836 

8958.953 

9063.511 

8399.225 

8190.353 
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4.2 DISCUSSION OF THE RESULTS 

i) Nature of results 

      As the number of elements increases, the results have an 

oscillatory convergence to the exact solution. 

More divisions results into output of higher accuracy but requires 

more computational effort as there are more calculations. The 

program will increase the efficiency of the final result as the 

computations have been programmed. 

ii) Loading cases 

      The results show that a curved plate resists a higher load 

when it is directed towards the center of the arc. The loading 

cases vary as to the use of the plate element e.g. as a water 

structure or roof element. The program can be useful in a quick 

analysis considering the particular load case, given the load cases 

programmed are those frequently encountered. 

ii) Relationship between load and curvature. 

      From the results, load resistance of a curved plate is directly 

proportional to curvature. 

 

4.3 CONCLUSION AND RECOMMENDATIONS 
The research had 3 specific objectives which have been achieved 

a) Analytical program 

      An analysis criterion based on Euler Bernoulli theory was 

developed. This is applicable only to thin elements which 

includes thin plates and membranes. 

b) Numerical method 

      The six step procedure of analysis to arrive at a buckling load 

forms a summary of the numerical method. 

c) Finite element program 

      The six steps above were programmed to run on a visual 

basic platform. This program is referred as Astrad 1.1.This code 

was named with a future intention of redeveloping it to include 

analysis of thicker elements. The program is less costly and 

requires less effort to use. 

      In order to access the efficiency and accuracy of the program, 

an example is analyzed whose results is tabulated in tables 1,2,3 

and 4.The analysis shows a good agreement with classical plate 

equations. The program  

      It can be seen that a curved element resists more loads 

directed towards its center than other loading cases. Curvature 

and plate thickness proportionately influence plate resistance to 

load. Use of the program is useful for the study of curved plate 

elements because it manipulates the given plate and loading 

parameters to give output. 

      The program should be developed further to carter for more 

attributes like modification of thin plates into a composite 

element and with stiffeners. 

      Further research into the inclusion of the Timoshenko theory 

into the program to carter for thicker elements should also be 

done. 
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