Framework for an Effective Formal Technical Reviewin Software

Quality Assurance

Lawrence Nderu

A thesis submitted in partial fulfilment for the degree of Master of
Science in Software Engineering in the Jomo KenyaitUniversity of

Agriculture and Technology

2011

DECLARATION

This thesis is my original work and has not beezsented for a degree in any other

university.

Lawrence Nderu

This thesis has been submitted for examination aithapproval as University

Supervisors.
1. Signature:.......cooeviiiiiieie e, Date:....ccvvii i
Dr. Ronald Waweru Mwangi
J.K.U.AT, Kenya
2. Signature:........coovvveeiviiiiennn. Date:......cov v,

Dr. Stephen Kimani

J.K.U.AT, Kenya

DEDICATION

To Henry Gathura and Herman Ngure who have alwaygsidoy me and have been a

great source of inspiration.

ACKNOWLEDGEMENTS

I would like to express my gratitude to all thoseorgave me the possibility to
complete this thesis. | want to thank the stafiflospitality Software Company (HSC)
Kenya, for giving me permission to do the necessasgarch work, make use of their

departmental data and staff members.

| am deeply indebted to my supervisors Dr. Wawemakigi and Dr. Stephen Kimani
from Jomo Kenyatta University of Agriculture andcheology whose help, stimulating
suggestions and encouragement helped me in dihtleeof research for and writing of

this thesis.

My colleagues and classmates Thuku, Eric, Noel&dlVand Felix supported me in
my research work. | want to thank them for all theglp, support, interest and valuable
hints. | also want to thank Miss Esther Mumbiddirher support and her being a

source of strength during my study.

Especially, | would like to give my special thartkamy brothers Henry Gathura and
Herman Ngure for the support they offered to enaldeto complete this work. Lastly
but not the least | give thanks to Almighty God $eeing me through the tough and

good times in my life; He is my only hope.

TABLE OF CONTENTS

DECLARATION .ottt ettt sttt e ekttt e e ekttt e e e et e et e e et e e e e nbbeee e e annbbeeeenns Il
DEDICATION ..ottt e ettt s ettt e e e st et e e e e e be e e e asbb b e e e e s entbeeeesannneeeas 1]
ACKNOWLEDGEMENTSooiiiiiiitie ittt e et e e st e e e anneees v
TABLE OF CONTENTS ..ttt mmt ettt et e et e e et e e s e e e e s annbe e e e e e s \Y
LIST OF TABLESttt ettt e e e bbbt e e eaee e e st et e e s e nnbbe e e e e annees IX
LIST OF FIGUREScoiiiittiiiee ittt ceeeit ettt e et a e e st e e e e s nns e e nnsee e e s ensteeeeeannnneeens Xl
LIST OF APPENDICESctiiiii ittt e ciee ettt e et e e e et a e e s e nntaeeansaee e e s annneeaeas XV
LIST OF ABBREVIATIONSottt ettt tetee e sstee e e e s e e s e ansbenesnreeeeeannnes XV
= 1S I A PP S 1
CHAPTER ONE ... iiiiiiiie ettt mee e e e ettt e e e e ss et e e e ansteeee e e e sesesenanneeeesassseeeesannseeeeeannees 2
1.1 INTRODUCTION ...oiiiiiiiiiiiie sttt ettt e st e e e st e e e s e bbb e e ananne e s e nsabeeeeesnntneeeeans 2
1.2 Problem STALEMENT.......cooiiiiiiiit et e e e et e e e e e e s e 4
1.3 AIMS AN ODJECLIVEScoeiiiiiiiiiieiit ettt ettt e et eae e 5
1.4 DEFINALIONS ..ottt ettt e e e e s e sttt et e e e aesb b e e e et e e e e e e e e bbb e e e e eeeeens

CHAPTER TWO ..o ettt e e s e 7
2.1. METHODOLOGY ...ttt 7

2.2. Net Framework AQVANTAGES ... 9

2.3. Development APPrOACKoii ittt ettt 11
2.4, FrameWOrK DIBGIAIMttt e s s e e ts s bt s ssnbnnsnnnnne 14
CHAPTER THREEoiiiii oottt ettt et e e e e sttt e e e st e e e e snnnesanssaeaeeennsbeeeeeanns 15
LITERATURE REVIEWooiiiiiiiiiiti ettt eemtt ettt et ee e e st ae e e e n st tesanennne s e s nnnneaaenennes 15
I A [a1 0o [0 Tt i o] IO PP PPPPPPPRRPP 15
3.2 Formal Technical ReVIEW/INSPECLIONS ... couueuerrrrnmrmniniiiiiiaisssssssses s e s smssnsnenennnennnns 15
3.3 Fagan INSPECtion MOEIco ettt e e e e e e e e et e e e e e eeeeeeeeeeeees 16
3.4 Usage Of The Fagan INSPection MOUE! ... eeeeeieiiiiiiiiiiiiiiiiiiiiieiieiieviieeeeeeeaeeeaeaeaeeees 16
R 01 11 =] 1= WP PP PP PP PPPPPPPPPP 17
I S €T (o0 To [=To I I o T oSO POPPSPPPRRPRPRR 28
3.7 Defect Classification SCNEMESccuuiiiiiiiiee e 32
3.8 Related Work In Defect ClasSifiCationooiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeee e 32
3.9 Classification Of DefeCtS / BUGSooviiiiiiiiiiiiiiiiiiiiiiiiiiiiieviecieveeeseserereeeseeeeeeeeeeeeeeeeeees 33
3.10. Defects Classification SCREMES...... .o eaeiiiaiiaia e 42
3.12. Testing Defects Classification (Initial CIAESRLION)............ccoeeeeiiiiiiii 45

Vi

3.13. Initial List Of Experience Variables ... 45

CHAPTER FOUR ...ttt et e e e ettt e e e s ettt e e e e e st e annnteeeeeanntaaeeeannneeeeas 47
4.1 ANALYSIS OF RESULTS ...coii ittt ettt ettt ettt eee e s nnnee s 7.4
4.2 FlEISS' KAPP@ ... ettetttitiiitiieiieitt e e e e oo e e e e e e e e e e ettt e e et e et e e et e e et et et e aaaaaaaaaaaaaas 53
4.3 Calculation Of K Value For Different Phases ... 56
4.4 Summary Of The RESUILSoooiviiieiit e 82
CHAPTER FIVE ...ttt ettt s et e et e e e e e nnnbeeeeeann 85
5.1 REQUIREMENTS ANALYSIS ..ottt ettt tee e e st e e e e anseeesnseaee e e 85
5.2 The SUQQeSted SOIULIONcciiiiii ittt aamaae e et eseeseesnesensnenene 87
5.3 Non-Functional REQUIFEMENTS.........coi e 89
5.4 SYSIEIM DBSIGN ...eevvviiiiiiiiiiierestes e eeeeeeeeaeeaaeaaaaaaaaaaaetaeteetaettaatanaaaaaaasaaasaaaaaaaaaaaaeeaeees 89
5.5 The Database DeSIGNccoooiiiiii it r e a s e a e e e 92
5.7 WD SEIVICESeeieiiiiiitiitiitutetsmmmss ettt et s et st sts st s sttt sttt e e e e et £t e e et e et e et seeseeseesnennnees 113
oIS T IS 1 o 124
CHAPTER SIX ..ottt s+ttt ekttt e e e sttt e e e bb et e e e mnn e e s s nnb bt e e e e anbbee e e e ennes 126
6.1 RECOMMENDATIONS AND CONCLUSIONccciiiiiiimiiiiiiie et 126

vii

6.2 KEEPING RECOITS ... ettt bttt e mme et et e et e e e e s e e seeseesnesenees

REFERENCES ... ettt e e e e e e e e e e e e e e teeeeeteeeeeeeeene e

APPENDIX

viii

Table 4.1:

Table 4.2:

Table 5.1.1:

Table 5.1.2:

Table 5.1.3:

Table 5.1.4:

Table 5.1.5:

Table 5.1.6:

Table 5.2.3:

Table 5.2.4:

LIST OF TABLES

Example Table for Representing Proportions ofedeClassifications

Made BY INSPECLOIS ...t e e e e 28
Analysis Of K Value.........ccooii i 32
Document Formatting Issues Resultsccccoviiiviiiiininns 35
Terminology ISSUES ReSUIS........ovviiiiii e, 35
States ISSUES RESUIES... ... e e e 36
Data ISSUeS RESUIS.........uore e, 36
Interface and Access Issues Results.............cooiviiiii e, 37

Other Inconsistencies Issues Results..........ccccoeeeviiiiiiieeen...38

Attributes ISSUES REeSUIS. ... e e 38

ACTOrS ISSUES RESUIS. ...t e e e, 40

Table 5.2.5: Constraints ISsues ReSUltS........oooo oo e 0.4

Table 5.2.6: Relationships Issues ReSUlts.............coooiiiiiiiiiii e 41.

Table 5.2.8: Other I1SSUES ReSUILS.ovii i e 42.

Fig 2.1

Fig 2.2

Fig 5.1

Fig 5.2

Fig 5.3

Fig 5.4

Fig 5.5

Fig 5.6

Fig 5.7

Fig 5.8

LIST OF FIGURES

Fagan Inspection Modelcoo i, 8

Example of Defect Classification Method...............ccccoovinn . 11

Use Case Diagram for the Administrator Duties... wuuee..vevee........55

Use Case Diagram for the Reviewer Duties.............ccccevvnvinnnns 55
Use Case Diagram For The Customer Duties...............c..vev v 56
The Architecture for the System..........cooi i 57

The Architecture of the System with an Illustoatiof the Methods

Available........ 58
The Database Diagram...........oeiieiniie e e 59
The Class Diagram FOr Dao..........ccouvviieiiiiiiiiiin i 61.
The Class Diagram For Facade Class...........cccovvviiiininnnd 62

Xi

Fig 5.9

Fig 5.10

Fig 5.11

Fig 5.12

Fig 5.13

Fig 5.14

Fig 5.15

Fig 5.16

Fig 5.17

Fig 5.18

Fig 5.19

The Detailed Class Diagram For Fagade Class........cccccceneentes 62

The Class Diagram For Users of the System.............ccceceee.....63
Detailed Class Diagram for Users Of The System................... 64
User Interface for the Administrator..............cooovisvviceeneein e 64
User Interface for the Task Form.............coooiiiiiiiinneen. .. B4
User Interface for the Online Application................covcvenninnn 65
.Net Remoting Architecture.............oooiiii it 66
Output from the Remote Server Application.............ccoveven.... 72
First Page for LOgin.o e 73
Output from the Remote Server Application...............ccc......... 74
lllustration of Components in the Web Service...caeevvvvvvnen. ... 75

Xii

Fig 5.20

Fig 5.21

Fig 5.22

Methods Exposed Though A Web Service...........coocovvvivivs v, 16

Xml Message Returned for the Projects............ccooeii i iccnmen. 77

Web Site Home Page

Xiii

Appendix |

LIST OF APPENDICES

Questionnaires

Xiv

DAO

DK

FTR

H.S.C.

NL

PC

PM

SDE

SDLC

LIST OF ABBREVIATIONS

Data Access Objects

Domain Knowledge

Formal Technical Review

Hospitality Systems Consultancy

Natural Language

Process Conformance

Projects Management

Software Development Experience

Software Development Lifecycle

XV

ABSTRACT

Formal technical review (FTR) is an essential congmd of all software quality
assessment, assurance and improvement techniqoegever, current FTR practice
leads to significant expense, clerical overheadugrprocess obstacles, and research
methodology problems. This research aimed at fapkor ways and means of making

FTR more effective and less of a burden.

This research affirms that the background and éxpes variables of the reviewers
affect the defects a reviewer is able to uncoverdifferent phases of software
development. It then presents the most importackdraund and experience variables

for a reviewer to be able to uncover certain clasgalefects.

Software products are largely different, this colld due to for example, the
environment of use, the effects of malfunctionimgcpuld be mild or fatal). This
research provides a framework in which quality klemlge (lessons learned in software
inspection) can be captured and reused duringngection process. We pursue the
idea of the accumulation of knowledge during reemmd establish a framework and a
tool environment in which experience gained carubed by Project Managers when

preparing for Formal Technical Reviews.

CHAPTER ONE

1.1INTRODUCTION

Quality of software products has become an impbdesa in software quality
assurance, even with this importance the job ofityua

Reviewing a software product is as old as programgritself. However, the first
structured, measurement-based review process wasbliFagan's five-step
Inspection method (this method will be discussedatail under literature review). The
following is the overview:-

» The author presents an overview of the scope armubpe of the work product.

» Preparation: reviewers analyze the work produdh wie goal of understanding
it thoroughly.

» |nspection meeting: the inspection team assemibi@stee reader paraphrases
the work product. Reviewers raise issues that@sexjuently recorded by the
scribe.

» Rework: the author revises the work product, depegndn the conclusion from
the reviewers.

» Follow up: The moderator verifies the quality ofveek and decides if
reinspection is required [Fagan00].

The fundamental reason for measuring software lamdaftware process is to obtain
data that helps us to better control the schedok, and quality of software products.

It is important to be able to consistently courd ameasure basic entities that are

2

directly measurable, such as size, defects, etiod,time (schedule). Consistent
measurements provide data for doing the following:

* Quantitatively expressing requirements, goals,asugptance criteria.

* Monitoring progress and anticipating problems.

* Quantifying tradeoffs used in allocating resources.

* Predicting the software attributes for schedulst,cand quality.[Florac92]

Delaying corrections until testing and operatigol@ses may lead to higher costs and it
may be too late to improve the system significarflgrmal Technical Review (FTR) is
a tool used for early prediction of fault-prone gmam to improve software quality.
Normally FTR is conducted during each of the folilegvphases in the software
development lifecycle (SDLC).

i) Software Requirements Analysis

i) Software Design phase

iii) Software Coding phase

iv) Software Testing phase

Formal Technical Review (FTR) is an essential cameot of all modern software
quality assessment, assurance, and improvememiid¢eels, and is acknowledged to be
the most cost-effective form of quality improvemaeiiten practiced effectively.
However, Formal Technical Review methods such gigection are very difficult to

adopt in organizations and a lot of work needsetadne to make the whole process

3

less of a burden: first of all they introduce sabsial new up-front costs, training,
overhead, and group process obstacles. Sustainauitment from high-level
management along with substantial resources ia ofeessary for successful

technology transfer of FTR.

1.2 PROBLEM STATEMENT

This researcher believes that if the selectioreefewers can be made with a clear
objective of the kinds of defects that individuadish various background and
experience are able to uncover then the whole psogksoftware review can be made
more effective. This information can then be cagdun a software product tool which
will provide guidance to the project managers tdgren an effective Formal Technical

Review.

Much of the research that has been carried outdegathe FTR, has focused on
improving the meeting and making it more effectiVhis line of research makes the
assumption that individual inspectors already kinow to inspect software artifacts on
their own. Research has shown that providing inspgevith detailed techniques can
improve their performance over simple ad hoc regf8hull98]. In either case, work
on the individual inspection either prior to theetieg, or in place of the meeting, has
not been studied as much as the inspection meegingSince research has shown

improvement for individuals when given a specifiedhnique to use, there is a need for

4

aiding the inspector, either before the inspeath@®ting or in the absence of the
inspection meeting, to become better and moreieffiat the job of detecting defects

in the software artifacts.

1.3 AIMS AND OBJECTIVES
I. Investigating a useful defect classification schéonehe software development

phases.

i. Developing a list of Background and Experiencealads for the reviewers.

iii. Investigating the predictive relationship betwelea defects uncovered and the
Background and Experience of the reviewers of twswé product.

iv. Developing a support tool to help project manageselection of a team of
reviewers to carry out the FTR.

This research thus, tries to answer the followingsgion:

Do the background and Experience variables oféhiewers affect their
performance during a FTR and if this is so canitificrmation be captured in a

software tool to be able to improve future reviesver

1.4 DEFINATIONS

Software Defect can be defined as any flaw or ifigaéion in a software work product

or software process [Brad01].

Software work product - is any artifact createghag of the software process.

Software process - is a set of activities, methpds;tices and transformations that

people use to develop and maintain software wasklycts.

A defect is frequently referred to as a fault ogbu

CHAPTER TWO

2.1. METHODOLOGY

Defect classifications is subjective it is necegsarensure that they are repeatable (i.e.,
that the classification is not dependent on theviddal). An initial defect classification
scheme in the software development lifecycle welldoeated. This initial classification
will be delivered from literature materials and voié improved as new defect classes

are discovered.

The reviewers to be involved in the questioner héle their background and
experience captured as this is one of the varidhbggss being tested whether it affects
the outcome of a review meeting. An analysis ofdat collected will be carried out
with the aim of trying to establish the existentawy relationship between the
reviewers’ background and experience and the Kirtbfects discovered. These results
will be used to come up with a support tool for fineject managers to help him/her
select reviewers depending on the nature of thectiethat the project manager wants

uncovered.

In case the background and experience of the revseaffects the outcome of a review,
not only does the development organization haweaiwy about how the specific
technigues and methods will positively or negatiadfect their software development

process, they also must have a way to evaluateatieground and experience of each

of their team members. The way in which these etalns are done and the results
reported by them must give the process manager gaidance on how to staff an
inspection, this will be the reason why a softwai@ will be created to capture this

details.

For this project the researcher will build a prgpest to demonstrate desired
functionalities and achieve objectives as stateny@bTo do this a back end database
will be created using Microsoft SQL server 2008hwatconnecting front end interface
built using ASP.NET 3.5 with C#. ASP.NET 3.5 is &Msoft development tool that
allows the easy development of web applicationk #ie incorporation of a
programming language such as C# or Visual Basi®.N&T 3.5 is a very rich
programming tool and has an in built security webtml and a “membership” feature
which enables the creation of roles as well as aseounts. User account data is stored
in a predefined software generated database wieithed the permissions of roles and
users created within the system. This featurevaluable to this project and as such the
project will be exploiting the richness of this sedre development tool in during the

build.

The Formal Technical Review Tool (FTR) created Wwale to be distributed so that
users of the system can be able to access theaseftaol online. Due to this the .NET
environment will be used so as to provide the .NR€moting functionalities it also has

the following advantages.

2.2. NET FRAMEWORK ADVANTAGES

The .NET Framework offers a number of advantageet@lopers. Such as the

following:

Consistent Programming Model- Different programming languages have different
approaches for doing a task. For example, accedsitagwith a VB 6.0 application and
a VC++ application is totally different. When usidigferent programming languages to
do a task, a disparity exists among the approacéldgers use to perform the task. The
difference in techniques comes from how differamguages interact with the

underlying system that applications rely on.

With .NET, for example, accessing data with a VEETNand a C# .NET looks very
similar apart from slight syntactical differencBath the programs need to import the
System.Data namespace, both the programs estaldistnection with the database
and both the programs run a query and display &le @h a data grid. The VB 6.0 and
VC++ example mentioned in the above explains theatet is more than one way to do a
particular task within the same language. The .MkKdmple explains that there's a
unified means of accomplishing the same task bygusie .NET Class Library, a key
component of the .NET Framework. The functionatlitgt the .NET Class Library
provides is available to all .NET languages resgltn a consistent object model

regardless of the programming language the develoes.

Direct Support for Security - Developing an application that resides on alloca
machine and uses local resources is easy. Indbrsaso, security isn't an issue as all
the resources are available and accessed localhsi@er an application that accesses
data on a remote machine or has to perform a pged task on behalf of a
nonprivileged user. In this scenario security icimmore important as the application

is accessing data from a remote machine.

With .NET, the Framework enables the developerthadystem administrator to
specify method level security. It uses industryadtad protocols such as TCP/IP,
XML, SOAP and HTTP to facilitate distributed apptimn communications. This
makes distributed computing more secure becaus€ dekielopers cooperate with

network security devices instead of working arothwdr security limitations.

Simplified Development Efforts- With classic ASP, when a developer needs to
present data from a database in a Web page, bquged to write the application logic
(code) and presentation logic (design) in the stilmeHe was required to mix the ASP

code with the HTML code to get the desired result.

ASP.NET and the .NET Framework simplify developmanseparating the application
logic and presentation logic making it easier tonaan the code. You write the design
code (presentation logic) and the actual code {@gtpmn logic) separately eliminating

the need to mix HTML code with ASP code. ASP.NEM atso handle the details of

10

maintaining the state of the controls, such asergastin a textbox, between calls to the

same ASP.NET page.

Another advantage of creating applications is dgmgy Visual Studio .NET and other
third party providers provide several debugginddabat simplify application
development. The .NET Framework simplifies debugguith support for Runtime
diagnostics. Runtime diagnostics helps you to tdmkn bugs and also helps the

developer to determine how well an application gents.

Easy Application Deployment and Maintenance The .NET Framework makes it
easy to deploy applications. In the most commomfdo install an application, all you
need to do is copy the application along with tbeponents it requires into a directory
on the target computer. The .NET Framework haritlesletails of locating and
loading the components an application needs, dwaveral versions of the same
application exist on the target computer. The .NEEAmework ensures that all the
components the application depends on are avaitebtee computer before the

application begins to execute.

2.3. DEVELOPMENT APPROACH

To successfully complete this project a detailedetpment framework will be

followed. There are a number of industry standaeketbpment methods that spring to

11

mind. Dynamic Systems Development Method (DSDMyiRa&pplication
Development (RAD), Structured Systems Analysis Bedign Method (SSADM) are

examples of standard development methods and tpetsiemployed in industry.

These development methods are quite large andraleband are more suitable for use
with large industry standard projects. SSADM is@ertraditional and rigid approach
and does not allow for iteration. With this methbid assumed that requirements would
not change during the development of the projdoe Joftware product to be developed
here needs to be developed in such a way thatteaper is given an option of going

back a step or two during the development and makessary changes if needs be.

DSDM and RAD are more flexible methods as they latittw for iteration. These
methods are user centered and require a greabtesdr involvement throughout the
project life cycle. DSDM stipulates that users dd@gree to a substantial and
sustained commitment to the development process. fésdback is vital for every

stage of the development cycle.

Bearing this in mind, the researcher has extragtatibits from industry recognized
frameworks and designed a framework for the prdyedt which appropriately defines
the way this software tool will be developed. Th#ld and development of this project
will be iterative and incremental in nature. A tik@dawn of this framework is as

follows:

12

a) REQUIREMENTS ANALYSIS
An analysis of the needs the FTR tool should salMebe carried out. The objectives

of the proposed system will be clearly defined.

b) PRIORITISE REQUIREMENTS

Requirements would be prioritized at this stagg 8loSCoW analysis. Time boxing
will be employed as a time management technique.

¢) REQUIREMENTS SPECIFICATION

A logical model of the system will be producedtaststage. Data models will be
produced to engineer requirements of the system.

d) DESIGN AND IMPLEMENTATION

A database structure will be designed and a systdirbe physically produced
outlining the precept of the requirements spedificastage.

e) TESTING

A test plan is produced at this stage. The tes$ingrative and is tested during the
design and implementation stages.

f) EVALUATION

The system is evaluated.

13

2.4. FRAMEWORK DIAGRAM

Requirements Analysis

'

Prioritise Requirements-Time boxing

Requirements Specification

»!
4

Design and Implementation

|

i 4

Testing

Evaluation

Fig 3.1: Devploent Framework Diagram

14

CHAPTER THREE

LITERATURE REVIEW

3.1 INTRODUCTION

The FTR (Formal Technical Review) is a softwareli(piassurance activity with the
objectives to uncover errors in function, logiarmplementation for any representation
of the software; to verify that the software undmriew meets its requirements; to
ensure that the software has been representeddaugto predefined standards; to
achieve software that is developed in a uniformmeamnd to make projects more
manageable. FTR (Formal Technical Review) is al@aaning ground for junior
developers to know more about different approathesftware analysis, design and
implementation. It also serves as a backup andragtyt for the people who are not
exposed to the software development so far. Tieisture review places Formal
Technical Review in context as well as looking@ne of reasons for carrying out

Formal Technical Review.

3.2 FORMAL TECHNICAL REVIEW/INSPECTIONS

The concept of inspections is not unique to softweargineering. Many fields have
some type of inspection of their artifacts. Thelgad these inspections can vary from
setting to setting, but a general goal is ensutiag the artifact is of sufficient quality to

be used by the customer(s) of that document. Famele architects have their

15

drawings inspected for feasibility before passimgnt along to the construction team. In
the same way, software development teams havestivare artifacts inspected
before passing them along (to the next phase difdoycle). Many variations of
inspections have emerged [Ackerman89].

The value of software review as a mechanism fanso€ quality improvement has
been demonstrated repeatedly. Beginning with theneark work of Michael Fagan at
IBM in 1976, structured review mechanisms suchnapection have been shown
repeatedly to be an extremely effective meansbWork product defects early in the
software development process.

3.3 FAGAN INSPECTION MODEL

Fagan inspectionrefers to a structured process of trying to fiefedts in development
documents such as programming code, specificati@ssgns and others during various
phases of the software development process. #need after Michael Fagan who is

credited with being the inventor of Formal Softwhrspections.

Fagan Inspection is a group review method useddtuate output of a given process. It
defines a process as a certain activity with agpesified entry and exit criteria. In
every activity or operation for which entry andtexiteria are specified Fagan
Inspections can be used to validate if the outpth@process complies with the exit

criteria specified for the process.

3.4 USAGE OF THE FAGAN INSPECTION MODEL

16

The software development process is a typical egiptin of Fagan Inspection; software
development process is a series of operations whiitdeliver a certain end product
and consists of operations like requirements d#imj design, coding up to testing and
maintenance. As the costs to remedy a defect ate L@-100 times less in the early
operations compared to fixing a defect in the neiahce phase, it is essential to find
defects as close to the point of insertion as ptesfBrocklehurst92]. This is done by
inspecting the output of each operation and compdhat to the output requirements,
or exit-criteria of that operation.

3.5 CRITERIA

Entry criteria are the criteria or requirementsathinust be met to enter a specific
process [Fagan, 00]. For example for Fagan ingpesthe high- and low-level
documents must comply with specific entry-critdyedore they can be used for a formal

inspection process.

Exit criteria are the criteria or requirements whinust be met to complete a specific
process. For example for Fagan inspections thddeel-document must comply with
specific exit-criteria (as specified in the highvdédocument) before the development

process can be taken to the next phase.

The exit-criteria are specified in a high-level dowent, which is then used as the
standard to compare the operation result (low-ldeelment) to during the inspections.

Deviations of the low-level document from the regments specified in the high-level

17

document are called defects and cardtegorized The following flowchart shows the

Fagan inspection stages [Eickelmann2003].

A represents the starting and ending sections

B represents the output from a section

18

High-lenvel
documents —

e

Low-level

Freparation of

documents

____/f'"_"‘\

Eniry criteria

_____!/""-""\

Materials

h

Arranging of
meeting place and
participants

Assignment of
Foles

ned

Inspection of Input Kl
materials

Group education
of participants in
the materials

k4

Individual
preparation of all
participants

=
a

High-level
documents

\‘___—_/'_"\

Low-level
documents

w

Categorize and
report defect

+—Yes

©

Inspection of a
pieces of a E]
decument / code

Defect found?

Rework: Fixing of

defects
Checking if the Exit criteria for
document/code development
comglies to the |~ oCess
exit criteria

omply to ex
criteria ?

Werification of
pracess/rewark

Corrections
rework QK?

Inspected
document/code

Figure 3.1 Fagan inspection model

19

In a typical Fagan inspection the inspection pre@amsists of the following operations

[Fagan86], [Eickelmann2003]:-

Planning
o Preparation of materials
o Arranging of participants
o Arranging of meeting place
« Overview
o Group education of participants in the to be ingpenaterials
o Assignment of roles
« Preparation
o The participants prepare their roles
« Inspection meeting
o Actual finding of defect
+ Rework
o Rework is the step in software inspection in whiwd defects found
during the inspection meeting are resolved by tlitka, designer or
programmer. On the basis of the list of defectddlelevel document
is corrected until the requirements in the higrelelocument are met.
« Follow-up
o In the follow-up phase of software inspectionsiaflect found in the

inspection meeting should be corrected (as theg baen fixed in the

20

rework phase). The moderator is responsible fafyreg that this is
indeed the case. He should verify if all defecesfated and no new
defects are inserted while trying to fix the inigefects. It is trivial

that all defects are corrected as the costs afdixhem in a later phase
of the project will be 10 to 100 times higher comgghto the current

costs

Fagan argues as follows:-

“In the process of software inspection the defedth are found are categorized in
two categories: major and minor defects (often nraoye categories are used). The
defects which are incorrect or even missing fumetiidy or specifications can be
classified as major defects: the software will fusiction correctly when these defects
are not being solved”.

By using inspections the amount of errors in thalfproduct can significantly
decrease, creating a higher quality product. Irfihge the team will even be able to
avoid errors as the inspection sessions give theight in the most frequently made
errors. It is also possible for the team to imgrown the classification of defects from
the experience gained and the defects that cussoohéine documents will uncovered.
By continuously improving the inspection processsthinsights can even further be

used [Fagan, 2000].

21

Benefits have been reported by companies which adsapted the Fagan inspections
model e.g. IBM indicating that 80-90% of defects t@ found. A number of
researchers have suggested improvements to thd miblsome adjustments to the

original Fagan model [Doolan992].

The following exampleHigure 2.2 shows the use of Fagan inspection model, in which

the defects have been classified as either majorimor.

A Major Defect- This are defects such as incorrect or even nggsinctionality or
specifications: the software will not function cectly when these defects are not
solved.

A Minor Defect- In contrast to major defects, minor defects dbthreaten the correct
functioning of the software, but are mostly smailbes like spelling mistakes in

documents or optical issues like incorrect positigrof controls in a program interface.

22

High-Level Document Low-Level Document

Defect Category Dim oObject

description Cim iNumber as Integer
Always use Minor Bug

strong typed

variables.

o~

Inspection Process

Defects found

Defect description Category
Mon strong typed wariable used in line 1 : Minor Bug
"Dim oQObject”

Figure 2.2 Example of defect classification method

As can be seen in the high-level document forghigect it is specified that in all
software code produced variables should be decks'stiong typed. On the basis of
this requirement the low-level document is chedikedlefects. Unfortunately a defect
is found on line 1, as a variable is not declastbhg typed’. The defect found is then
reported in the list of defects found and categatiaccording to the categorizations

specified in the high-level document.

As the benefits of such structured review proceftypgcally referred to as “Formal
Technical Review" (FTR) became more visible, reseanrs and practitioners began to

devise variations on Fagan's original method. kangle, Tom Gilb developed a

23

comprehensive inspection method with preciselyndefiphases, metrics, and suggested
process rates for optimum defect removal effecegsnWith few exceptions, these
variations never challenged a fundamental prenfif@gan's original method: that a
face-to-face meeting of the entire review teanrsgeatial to the review's success. While
researchers have proposed changing the manneii¢ch véviewers prepared for the
meeting, or even the manner in which the meeting eeamducted, the need for a
meeting was never questioned. Fagan, Gilb, andottave argued that meetings
enable a kind of synergy between participants,hiclvdefects not found by reviewers
working individually suddenly come to light. Thelsa argue that meetings educate the

participants, clarify requirements, and provideasiibnes that facilitate progress.

Unfortunately, meetings introduce substantial coBtey require the simultaneous
attendance of all participants. Their effectivengsgends on satisfying many
conditions, such as adequate preparation, readniie¢se work product for review, high
guality moderation, and cooperative interpersoektionships. Meeting-based review
appears to add 15-20% new overhead onto developosts, and simple scheduling
issues have been shown to lengthen the startishfinterval for review by almost one
third [Philip03]. The costs of meeting-based revigve stimulated more recent
research designed to investigate whether new rewiethhods can be devised that
minimize or eliminate the cost of meetings whileg@rving the remaining benefits of
review (such as reduction in the cost of errorections in a finished product). Such

research has ranged from the design of computgyestgul cooperative work systems

24

that implement an asynchronous, non-meeting-baseew procedure to alternative

manual methods that also shift the process away fatiance on meetings.

Prior to inspections was the idea akalkthrough The walkthrough could range
anywhere from a simple peer review all the wayaip formal inspection of the type
discussed here. One of the problems with usialixthrougls in a process that is going
to be improved is that normally very little datac@lected because walkthroughs are
less formal and applied differently in each set{i@dh93]. Because of this the

efficiency of defect detection is quite variable.

[Basili at el81] observes that all project envir@mts and products are different in some
way. Because of these differences the applicatiageahniques and methods on
different projects should be expected to vary. €rse many dimensions upon which
software development organizations can differ. &@mple, the application domain

can vary. Another dimension of potential variataam be the level of risk inherent in
the project. For some applications, failure may mealy mild inconveniences, while
with other applications; it could mean loss of.I¥&hile there are some standard
methods and practices for performing inspectiamspany cases the application of

those methods may need to be tailored in some weguse of this variation.

The basic idea behind an inspection is that memifaasoftware development

organization review a software artifact to enshed it possesses some level or

25

characteristics of quality. An inspection consdtaseries of stepg-irst, the author of
the artifact gives the reviewers an introductiod amerview of the artifact. Next, the
individual inspectors review the software artifecprepare for the technical reviewer
meeting (team meeting). After the individuals hangpected the document, they meet
together as a team to record tiedectghat are found. Finally, the document author is

given this list of defect so that he or she mayneihem in the software artifact.

Many software engineering sample sizes are smdlttearefore difficult to show
statistical significance so qualitative data cdl@mt and analysis has to be employed in
order to supplement to the more common quantitamtigghods. Two popular methods
of qualitative data collection that have been tiamed from other domains for use in
software engineering are protocol analysis [Singg@nd ethnography
[Shneiderman98]. These methods involve collectiaig dbout how subjects perform
processes. The data collected includes informatimut what the subjects did as well
as what the subjects’ thought processes were gstied problems. In order to
collect this type of data, researchers must employtypes of methods. The first type
of methods isetrospective These methods involve data collection after tloegss is
complete, thorough post- mortems or questionnaiies. is the method that will be
adapted in this study and hence the sample willectsom people who have an

experience in Formal Technical Review.

26

This method has a number of limitation one of thesimg that since the data is not
collected until the end, there is an issue withrtHability of the information. Subjects
have time to think about and formulate responsefeir response may not give a
totally accurate reflection of what went on [VanSwen94].

To be able to take care of this fReiss' kappawhich is a statistical measure for
assessing the reliability of agreement betweeretfnumber of raters when assigning

categorical ratings to a number of items or clggsifitems will be used.

The second types of methods abeservationabhnd are used to collect data while the
process is executing. These methods normally irvobhservation by the researcher of
the subjects [Singer96]. The benefits of observationethods include more accurate
data because the data is collected while the psdsesxecuting rather than after it is
over. Also, there is no time for the subject t®am up’ his answers before the
researcher collects the data. On the other haatk th the potential that the observation
could cause the process to be altered. Some ssilbopegit feel uncomfortable and act
differently than they would if they were not beiolgserved. This phenomenon is known
as the Hawthorne Effect
[http:/www.nwlink.com/~Donclark/hrd/history/hawthee.html]. The observational
techniques are useful when the level of specificftthe data is at the level of

individual steps in the procedure, rather than gllatformation. One of the main

techniques for observation is callghking aloug[VanSomeren94]. A researcher

27

instructs the subject to recite his thinking pracest loud. Then the researcher can take

notes to understand what is going on.

This type of data does not lend itself to the stypes of statistical analyses that can be
performed on the quantitative information mentioeadier. In analyzing qualitative
data, researchers must examine the mostly texaialtd look for patterns. One of the

important methods of doing the analysigisunded theorywhich | will discuss below.

3.6 GROUNDED THEORY

The phrase "grounded theory" refers to theoryithdeveloped inductively from a
corpus of data. If done well, this means that #=ilting theory at least fits one dataset
perfectly. This contrasts with theory derived dedity from grand theory, without the

help of data, and which could therefore turn odittno data at all.

Grounded theory takes a case rather than variggpective, although the distinction

is nearly impossible to draw. This means in paat the researcher takes different cases
to be wholes, in which the variables interact asiaito produce certain outcomes. A
case-oriented perspective tends to assume thablesiinteract in complex ways, and

is suspicious of simple additive models, such a©OMA with main effects only.

Part and parcel of the case-orientation is a coativarorientation. Cases similar on
many variables but with different outcomes are careg to see where the key causal

differences may lie. This is based on John Studi$'NIL843,A system of logic:

28

Ratiocinative and Inductivapethod of differences -- essentially the use afyral)
experimental design [Borgatti90]. Similarly, casiest have the same outcome are
examined to see which conditions they all haveormmon, thereby revealing necessary

causes.

The grounded theory approach, particularly the $aguss develops it, consists of a set
of steps whose careful execution is thought to fgnuige" a good theory as the
outcome. Strauss would say that the quality okamy can be evaluated by the process
by which a theory is constructed. (This contrashwhe scientific perspective that how
you generate a theory, whether through dreamsogieal or dumb luck, is irrelevant:

the quality of a theory is determined by its apitid explain new data.)

This approach to theory building is based largeltree data that has been collected in
observation of the phenomenon under study [Gla$el@stead of forming theories top-
downbased on assumptions that the researchea pasri, the theory is formed
bottom-upsystematically from the data. This method comesfthe field of Sociology,
and because this work is concerned with how projetagers can have a way of
knowing which inspectors have an edge in uncovesiridgefects depending on their
background and experience, this technique will deful, it is also important to note

that the tool to be developed will take care offtm that software projects are diverse.

The main idea behind this method is that as the idadnalyzed, the theories are

continually modified and updated to take into actaach piece of data. First, after a

29

topic of investigation has been chosen, a liteeasgarch should be performed. After
this, the researcher should enter into the study an open mind, willing to observe
things that may go against his or her preconcenattbns. The first case should be
observed and described. Based on this informatioa,can begin to form theories and
hypotheses. After this observation, the literatlreuld again be searched to see if there
is any other information on the specific findingsrh the first case that was not found

in the previous literature search. The next stép @bserve a second case.

While doing this, the researcher will either comfitheories and hypotheses that were
discovered in the first case, or will have to mgdife theories and hypothesis from the
first case so that they apply to both cases. Tisgss of reviewing new cases and
modifying the hypotheses and theories to take timonaccount should continue until
some point of confidence. This confidence could e@ither when one runs out of
cases, or when each new case is causing verydittie change to the current theories
and hypotheses [Kathy06]. At this point, the thes@and hypotheses are fairly solid.
This can be considered in the light of a projechagger who is involved in several
projects and thus carries out FTR perhaps using samewers or with a slight change
and thus can have a database of which defectglandnal with a certain kind of
defects is able to uncover and continue to imptbeanspection process by involving

the “relevant” abilities.

30

Finally, [Day93] provides some rules for creatiragegories. This area of research

applies to the creation of defect classes in tlugkwEach one of those classes is, in

some sense, a category. So, the following ruledeEul to judge the defect classes.

>

>
>
>
>
>

Become thoroughly familiar with the data.

Always be sensitive to the context of the data.

Be flexible — extend, modify and discard categories
Consider connections and avoid needless overlap.
Record the criteria on which category decisionsbased.

Consider alternative ways of categorizing and prieting the data.

These pointers will be used for evaluating andauglboth the list of experience

variables as well as the defect classification sese [Seaman97] discusses the use of

this approach when in the understanding of comnatiimic among members of a

software development organization. Better and remhrtiques for software engineering

are always developed by researchers. While thesdgawhniques are often theoretically

beneficial, in many cases little empirical suppsgiven. In addition, it is rare to find

researchers who investigate not only their newrtegle, but also the context in which

the technique is to be used. There are many redsotie lack of the second type of

research, one being that it is very difficult toitlo

31

3.7 DEFECT CLASSIFICATION SCHEMES

In order to understand the types of defects thatioin software artifacts better,
researchers have developed defect classificatioenses. Defect classification
schemes, if properly specified, can be useful épeatability and comparisons across
studies and environments [Basili84]. These schattempt to group the defects that
occur in a particular environment into classesofdek the discussion of work done in
the area of classifying defects. The scope andifsgty of the classifications described
below varies greatly depending on the goals obtiganization. After the related work
is discussed, my approach to defect classificatitioe described and an initial defect

classification model will be developed.

3.8 RELATED WORK IN DEFECT CLASSIFICATION

Defects classification is not a new idea. Any orgation that wishes to measure their
process with the intent of improving must classifg defects that are found [Basili81].
This can range from relatively simple classification of only 2 classesjor and minor
as discussed earlier, to something much more etdadrhe types of classification that
an organization uses will be based on its reasoddgsifying the defects. The
classification will also depend on the lifecycleaghk in which the inspectiongeing to

occur.

32

Taking into account their local environments, reskears have proposed many different
defect classifications schemes. Some are said tsdfel for documents produced
throughout the software lifecycle. Others are dedat documents from a specific

lifecycle phase. Below | will discuss already datessification of defects.

3.9 CLASSIFICATION OF DEFECTS / BUGS

There are various ways in which we can classifiwgnke defects. Below are some of
the classifications:

Severity Wise:

« Major: A defect, which will cause an observable prodadufe or departure
from requirements.

« Minor: A defect that will not cause a failure in execnotaf the product.

- Fatal: A defect that will cause the system to crash eselabruptly or affect

other applications. [Robbins 08]

Work product wise:

« SSD:A defect from System Study document
« FSD: A defect from Functional Specification document
« ADS: A defect from Architectural Design Document

« DDS: A defect from Detailed Design document

33

« Source codeA defect from Source code
« Test Plan/ Test CasesA defect from Test Plan/ Test Cases

« User Documentation:A defect from User manuals, Operating manuals

Type of Errors Wise:

« Comments: Inadequate/ incorrect/ misleading or missing comts& the
source code

« Computational Error: Improper computation of the formulae / improper
business validations in code.

- Data error: Incorrect data population / update in database

« Database Error: Error in the database schema/Design

« Missing Design:Design features/approach missed/not documentiégkidesign
document and hence does not correspond to requiteme

- Inadequate or sub optimal DesignDesign features/approach needs additional
inputs for it to be complete Design features déscdridoes not provide the best
approach (optimal approach) towards the solutiguired

« In correct Design: Wrong or inaccurate Design

« Ambiguous Design:Design feature/approach is not clear to the resiewlso
includes ambiguous use of words or unclear desgtufes.

- Boundary Conditions Neglected:Boundary conditions not addressed/incorrect

34

Interface Error: Internal or external to application interfacingogy Incorrect
handling of passing parameters, Incorrect alignmaobrrect/misplaced
fields/objects, un friendly window/screen positions

Logic Error: Missing or Inadequate or irrelevant or ambiguaugcfionality in
source code

Message Error: Inadequate/ incorrect/ misleading or missing emessages in
source code

Navigation Error: Navigation not coded correctly in source code
Performance Error: An error related to performance/optimality of tuele
Missing Requirements:Implicit/Explicit requirements are missed/not
documented during requirement phase

Inadequate Requirements:Requirement needs additional inputs for to be
complete

Incorrect Requirements: Wrong or inaccurate requirements

Ambiguous Requirements:Requirement is not clear to the reviewer. Also
includes ambiguous use of words — e.g. like, sg¢imay be, could be, might
etc.

Sequencing / Timing Error: Error due to incorrect/missing consideration to
timeouts and improper/missing sequencing in sococe.

Standards: Standards not followed like improper exceptiondieny, use of E
& D Formats and project related design/requirenmeating standards

System Error: Hardware and Operating System related error, Mgheak

35

« Test Plan / Cases Error:Inadequate/ incorrect/ ambiguous or duplicate or
missing - Test Plan/ Test Cases & Test Scriptgrhect/Incomplete test setup

« Typographical Error: Spelling / Grammar mistake in documents/source cod

« Variable Declaration Error: Improper declaration / usage of variables, Type

mismatch error in source code

Status Wise:
« Open
+ Closed
- Deferred

« Cancelled

3.9.1 DEFECTS CLASSIFICATION SCHEMES FOR

REQUIREMENTS

In this case the defects are classified accordirige phases. In [Basili81] the authors
describe a study of the evolution of a requiremeéontument for the on-board
operational flight program for the A-7 aircraft.i$hs a complex, real-time program.
The defects are actual defects that were madesiauwblution of the document. The
authors here defined a one level classificatiorsehwith 7 categories. These classes
were used to make hypothesis about what kindsfettethat were the most common

to make [Carver03].

36

Clerical — relatively simple problems with the document liiggos.

Ambiguity — something in the document has more than one mgani
Omission— something has been left out of the document.

Inconsistency— two parts of the document are inconsistent with another.
Incorrect Fact — something in the document is incorrect with respe the domain.
Information Put in Wrong Section — information included in the document was
placed in the wrong section.

Implementation Fact not Included— information necessary for a proper
implementation was not given.

Other — defects that do not fall into other classes.

3.9.2 DEFECTS CLASSIFICATION SCHEMES FOR CODE

There have been many studies published in whidassification of code defects has
been provided. In a paper investigating testinguede reading [Basili87] provides two
defect classification schemes for defects thatb@afound in code. Four programs were
studied, each from a different domain. Two différamguages were used for those
programs, FORTRAN and Simpl-T. The four programsexe

i) A text processor

i) A mathematical plotting routine

iii) A numeric abstract data type

37

iv) A database maintainer.
The following were the defects classes:
1) Omission— Result from the programmer forgetting to inclsdenething in a
segment of code.
2) Commission— Result from an incorrect segment of existing code
And
1) Initialization — Improperly initializing a data structure.
2) Computation — Cause a calculation to evaluate the value fareble incorrectly.
3) Control — Causes the wrong control path to be taken foresoput.
4) Interface — Passing an incorrect or argument or assumingathatray passed as a
parameter was padded with blanks.
5) Data — Result from incorrect use of a data structure.

6) Cosmetic- Clerical mistakes when entering a program

Khaled in a research entitled, “The Repeatabilit¢ode Defect Classifications”
[Khaled02], developed a defect classification sohstmown below
Defect Type Description and Examples of Questions
i) Documentation
o Comments, Messages
* Is the function described adequately at the tapefile?

* Are variables described when declared?

38

* Does the function documentation describe its bedravi
properly?
i) Build/Package
o Change management, library and version control

* Is there a version number defined for the file?

» Are the correct versions of functions includedhia t
build?

iii) Assignment
o Declaration, duplicate names, scope, limits

» Are variables initialized properly?

» Are all library variables that capture a charasterior
state of the object defined?

» Are all return values that are special cases (amgerror
return) really invalid values (i.e., would nevercac
unless there was an error)?

iv) Interface
0 Procedure calls and references, 1/0, user formadgclarations
» Does the library interface correctly divide thedtians into
their different types?
* Do the functions follow the proper object accedes?

* Are the declared and expected interface signatheesame?

39

V) Checking
o Error messages, inadequate checks
» Are all possible error conditions covered?
* Are appropriate error messages given to the user?
* Does the function return the <error> value in aafserrors?
» Is there checking or debugging code that is lethefunction
that shouldn't be there?
» Does the function check for missing data beforeintak
computation?
» Are all checks for entry conditions of the functicorrect and
complete?
Vi) Data
o Structure, content, declarations
* Are files opened with the right permissions?
» Are the correct data files accessed?
» Are there any missing variables for the objectrdgfin?
» Are variable definitions of the right size to haolek data?
vii) Function
o Logic, pointers, loops, recursion, computation
» Are all branches handled correctly?
* Are pointers declared and used as pointers?

» Are arithmetic expressions evaluated as specified?
40

viii) Memory
0o Memory allocation, leaks
» Are objects instantiated before being used?
* Do all objects register their memory usage?
iX) Environment
o Design, compile, test, or other support system [eois
» Are all test cases running properly?
» Are compile options set properly (e.g., after chaggompiler

version)?

X) Naming Conventions
o Naming of files, functions, and variables
* Do the function and file names follow the namingneentions
for the project?
* Do the variable names follow the naming conventionshe
project?
Xi) Understandability
o Hinder understandability
» Are there enough explanations of functionality esidn
rationale?
» Are there any misleading variable names?

41

* Are the comments clear and correctly reflectingabee?
In a paper [Ackerman at al89] gives a classificasocheme for defects found in
requirements documents. The authors point outfféinan inspection to be effective, the
types of defects to be looked for must be specifléerefore, their goal for classifying
the defects is to provide the inspections with @g@to keep them on task during the
inspection. While they state that inspections canged on requirements, design, code,

test plans, and test specifications, they only pi®the classification for requirements.

Because the goal of this work is different from times presented above, a new set of
defect classification schemes but which is inforrhgexisting literature on defects
classification was created. Two goals exist to wuosk. One is to evaluate the
relationships between the defect classes and tiglmind and experience variables.
The other goal is to improve the inspection prodssproviding a support tool to the

project managers.

3.10. DEFECTS CLASSIFICATION SCHEMES

3.10.1. DEFECTS CLASSIFICATION SCHEMES FOR REQUIREMENTS

(INITIAL CLASSIFICATION)

Document Formatting issues- These defects deal with problems in the placéwfen

requirements within the document.

42

Terminology — These defects occur when terminology is incdliyer inconsistently
used in such a way as to confuse a later useealdbument.

States— These defects deal with system, object or datas While it is at the
requirements level, the concepts of states ispeibent.

Data — These defects deal with the actual data iteatsatte to be maintained by the
system. This includes inconsistent data typesdatbn of new data, and access
restrictions to the data.

Interface and Access- These defects deal with the way that userstaraystems
gain access to this system. They deal both witmtéehanisms of access (the interface)
as well as the restrictions placed upon the access.

Other Inconsistencies- These defects deal with situations where theiregents

document says contradictory things in two diffeneatts of the document.

3.10.2 DEFECTS CLASSIFICATION SCHEMES FOR DESIGN (INITIAL

CLASSIFICATION)

States— These defects occur when the states of the tslgee misunderstood in some
way. This includes the addition or omission of atire state, or incorrect transitions.
Messages- These defects deal with problems involving messalgat appear in the
design.

Attributes — These defects deal with problems in the waydttabutes have been

described in the design.

43

Actors — These defects deal with the misuse of the aetithén the design.
Constraints — These defects occur when constraints are onuottattorrectly used.
Relationships— These defects occur when classes are incormetdted within the
design.

Class Hierarchy— These defects describe problems within the aesitance
structure.

Other — Design defects that do not fit in other categmrbut are not major enough to

create a new category.

3.11. CODE DEFECTS CLASSIFICATION (INITIAL CLASSIFI CATION)

i) Logic- insufficient/incorrect errors in algorithms used.
* Wrong conditions.
i) Standards— problems with coding/documentation standards.
* Indentation, alignment, layout, modularity, comnsgtiard-coding,
and misspelling
iii) Redundant code—- same piece of code used in many programs bein t
same program
iv) Performance— poor processing speed: System crash becaude sizi,
Memory problems

V) Reusability — inability to reuse the code

44

Vi) Memory management defects- Defects such as core dump, array
overflow, illegal function call, system hands, oemmory overflow

vii) Consistency- failure to updating or delete records in the samder
throughout the system

viii) Portability — code not independent of the platform.

3.12. TESTING DEFECTS CLASSIFICATION (INITIAL CLASS IFICATION)

Testing Tools and resources Are the tools and resources identified and afséal
Record keeping— has the record keeping mechanism being estallish

Stress Testing Mechanisms- is the stress testing mechanism established?
Major identification of test phases —identification and sequencing of major test
phases and the sequencing.

Consistenceof the test plan with the overall project plan

3.13. INITIAL LIST OF EXPERIENCE VARIABLES

It makes sense that the background and experiefesinspector will have an effect
on the way he or she performs an inspection. &ustas been recognized by many
researches that have studied inspections and eseEsinchers take this fact into account

when planning a study or experiment [Gilb93], [S80¢ Most of the time the

45

researchers do not specifically address this battpften their observations and

conclusions point to this background as a factbe Basis of this initial experience and

background variables is literature which providdmais for the creation of initial list.

)

ii)

Domain Knowledge— This deals with the amount of knowledge about the
domain, such as banking or satellite control, witichtains the problem
being solved by the software being developed.

Software Development Experience- This contains experience in whatever
development phase the inspection is occurring,Reguirements, Design,
Code, etc., as well as with specific technologeisd used in the
development process, such as SCR or Object Oriéygsign.

Natural Language— This deals with how familiar an inspector is wiitie
language the document is written in.

Experience in Project Management- This is management of software
projects.

Process Conformance- This deals with how closely the inspector follows

the process that they have been given to aid iingpection e.g. a checklist.

46

CHAPTER FOUR

4.1 ANALYSIS OF RESULTS

The data obtained from tl@@uestionnaire(presented in the list of appendix) was
analyzed. The objective of this section is to dsscdifferent coefficients that can be
used for evaluating agreement in defect classifindbr inspectors.
Data from a reliability study can be represented table such as Fig 5 with k
defect classes. Here an expert in Formal TechRegiew will independently classify

the kind of background and experience that a resiewth a certain background and

experience will uncover.

Expert B
Class Class, Class

ClaSS Pll P12 I:’1k I:’l+
<
E C|8.S§ P21 P22 sz P2+
<
L

Clasg | Pa P2 P P+

P+]_ P+2 P+k
Table 4.1Example table for representipgoportionsof defect classifications made by

inspectors.

47

The method to be used to calculate the Agreemédntelea the rates Bleiss' kappa
which is a statistical measure for assessing tiebikty of agreement between a fixed
numbers of raters when assigning categorical ratiog number of items or classifying
items. The Fleiss’ kappa is an extension of thegdtshkappa method which measures
the agreement between two raters who each cladstgms intoC mutually exclusive
categories. The first evidence of Cohen's Kappaiimt can be attributed to Galton

1892 [Cohen60], [Bishop09].

The equation fok is:

~_ Pr(a) — Pr(e)
~ 1—Pr(e) 'Where
Pr @) is the relative observed agreement among raters
Pr (e) is the hypothetical probability of chance agreetnasing the observed
data to calculate the probabilities of each obseaaredomly saying each

category.

If the raters are in complete agreement thenl. If there is no agreement
among the raters (other than what would be expdnterhance) ther < 0.
Example
Suppose that you were analyzing data related tpleepplying for a grant. Each grant

proposal was read by two people and each readhar esidid "Yes" or "No" to the

48

proposal. Suppose the data was as follows, wherg aoe reader A and columns are

reader B:

B
Yes | No
< Yes| 20 5
No | 10 15

In the notation from above we can see that thergbdepercentage agreement is:-

Pr @) = (20+15)/50 = 0.70.

To calculate Prd) (the probability of random agreement) we note:tha

« Reader A said "Yes" to 25 applicants and "No" ta@plicants. Thus reader A
said "Yes" 50% of the time.
« Reader B said "Yes" to 30 applicants and "No" t@@plicants. Thus reader B

said "Yes" 60% of the time.

Therefore the probability that both of them woudy 8Yes" randomly is
0.50*0.60=0.30 (Considering them to be independamd)the probability that both of
them would say "No" is 0.50*0.40=0.20. Thus therallgprobability of random

agreement is Pr ("e") = 0.3+0.2 = 0.5.

So now applying our formula for Cohen's Kappa we ge

49

~ Pr(a)—Pr(e) 0.70-10.50

T Pr(e) 1-050 040

This is a fair agreement [Brennan81].

If the results were made by chance, neither regitgwing judgment the value
would be zero. If the readers were in perfect agesd, the number of agreements

would equal the number of trials and Kappa would be

FromTable 2.1above R is the proportion of ratings classified in celj)(iP. is the
total proportion for row i, and.Pis the total proportion for column j:

Pi+ =) j=1,«P;

P+ =Yi=1, kPj
The first straightforward approach to evaluatingeagnent is to consider the proportion
of ratings upon which the two experts agree:

Po =Y i=1,kPi
However, this value includes agreement that coaleeloccurred by chance. For
example, if the two experts employed completelfed&nt criteria for classifying
defects, then a considerable amount of observezbagmt would still be expected by
chance. There are different ways for evaluatingmxof agreement that is expected by
chance. The first assumes that chance agreemeu i®© the experts assigning defects
uncovered by reviewers with different background arperience randomly at equal

rates. In such a case chance agreement would be:

50

Pam L K i equation i
An alternative definition of chance agreement cders that the inspectors' tendency to
distribute their classifications in a certain wayaisource of disagreement:

Pe =iz, kPiPri o equation i
The marginal proportions in the above equatiomaaimum likelihood estimates of
the population proportions under a multinomial skngpmodel.

If each of the inspectors makes classificationsuadlom according to the

marginal proportions, then the above is chanceeageat (derived using the
multiplication rule of probability and assuming émendence between the two

inspectors). A general form for agreement coeffitsas:

Agreement = (P— R)/ (1-P)

When there is complete agreement between the tspeators, Pwill take on the value
of 1. The observed agreement that is in excesbariae agreement is given by-PR
The maximum possible excess over chance agreemgntR.

Therefore, this type of agreement coefficienhis tatio of observed excess over
chance agreement to the maximum possible excesslaece agreement. If there is
complete agreement, then the agreement coeffigentlf observed agreement is

greater than chance, then the agreement coeffisigmeater than zero. If observed

51

agreement is less than would be expected by chdrerethe agreement coefficient is
less than zero.
An agreement coefficient that considers chanceeageat as in Equation [i], Is Bennett
et al.'s S coefficient. An agreement coefficiemtt ttonsiders chance agreement as in
Equation (ii) is Cohen's Kappa (k). Kappa has jesented as a measure of
agreement in diagnosis reliability studies in maaientific fields.

Extensive use in various disciplines means thatejines have been developed
for interpreting a particular statistic. A reviewtbe literature in various disciplines
provides guidelines for interpreting Kappa, as waslinterpretation guidelines for using

Kappa in evaluating the reliability of software pess assessments [Cohen87].

K Interpretation

<0 No agreement

0.0—0.20 Slight agreement

0.21 — 0.40 Fair agreement

0.41 — 0.60 Moderate agreement
0.61 —0.80 Substantial agreement
0.81 —1.00 Almost perfect agreement

Table 4.2Analysis of K value

Fleiss' kappawhich as stated above is an extension of the Ceh€appa value

52

4.2 FLEISS' KAPPA

Fleiss' kappa is a generalization of Scott's pistie, a statistical measure of inter-rater
reliability. It is also related to Cohen's kappa statistic. WheiScott's pi and Cohen's
kappa work for only two raters, Fleiss' kappa wddtsany number of raters giving
categorical ratings, to a fixed number of itemsalh be interpreted as expressing the
extent to which the observed amount of agreemenngmaters exceeds what would be

expected if all raters made their ratings compjetahdomly.

Agreement can be thought of as follows, if a fixeoinber of people assign numerical
ratings to a number of items then the kappa wile@ measure for how consistent the

ratings are. The kapy«,can be defined as,

o]

k=

1 - F,

£

The factorl — Fe gives the degree of agreement that is attaindddeeachance and

P— P, gives the degree of agreement actually achievedeathance. If the raters are

in complete agreement then:-

k = 1. If there is no agreement among the raters (@t what would be expected

by chance) thers < 0.

In this study the Fleiss' kappa was used to firddigree of agreement between the
Expect reviewers.

53

For each of the defects the analysis was donellasviobelow:

Let N be the total number of subjects (the backgroundexiperience variables), let
be the number of raters per subject, ané ke the number of categories into which
assignments are made. The subjects are indexed lby2...N and the categories are

indexed by =1, ..k. Letn; represent the number of raters who assignedtthe

subject to th¢-th category.

First calculatg;, the proportion of all assignments which werehejith category:

1 N 1 ke
pPj = N Znij! l=- Znij
i1 e

Now calculatr,Pi, the extent to which raters agree for ithle subject:

Now computep, the mean of thp-i's, ancPewhich go into the formula fos:

54

I .

P= EZ
;ZZ N
“\.n(n—l) nij — Nn)

i=1j=1

Two variations okappaare provided: Siegel and Castellan's (1988) fixedtginal
multiraterkappaand a multirater variation (Randolph, 2005). Bieemand Prediger
suggest using free-margirkdppawhen raters are not forced to assign a certairbeum
of cases to each category and using fixed-margeggbawhen they are, thus in this
study the Free- marginal Kappa was used sinceatees were not forced to assign a
certain number of cases to each category. The samspld was from a Hospitality
software development company called Hospitalityt&ys Consultancy (H.S.C.)
located in Nairobi, A sample of 10 experts in sa@ftevdevelopment were used (Ten was
the number of experts who could be able to pa#dteifin the exercise).

The mode of data collection was a combinatiomt#rview and questioner.
Data was collected for three days just immediaadigr a software product developed
by the company was released to the market and deoh reviews were carried out on

the product.

55

4.3 CALCULATION OF K VALUE FOR DIFFERENT PHASES

NOTATION

DK — Amount of knowledge about the domain containinggfablem being solved.
SDE -Experience in whatever development phase the itispas occurring at

NL - Familiarity with the documents language.

PM — Experience in software projects management

PC- How closely the inspector uses the checklishergrocess provided.

The background and experience variable with thadsgvalue is picked.

4.3.1 REQUIREMENTS PHASE

n = 10 — Number of Expect raters
N = 5 — Background and Experience variables
k =5 — Categories e.g. Agree, Strongly Agree etc

i) Document Formatting Issues

Strongly Agree | Agree| Disagreestrongly Disagree Do not Know
DK 4 2 0 0 4
SDE | 6 0 1 0 3
NL 2 8 0 0 0
PM |4 4 1 0 1
PC 9 0 1 0 0

Table 5.1.Document Formatting Issues Results

56

Percent of overall agreement Po: 0.480000
Fixed-marginal kappa: 0.190535
Free-marginal kappa: 0.35000
A k value of 0.35 is Fair Agreement and thus thea dafairly reliable, hence
NL and PC are highly important for one to uncovecdment formatting issues under

requirements.

i) Terminology — These defects occur when terminology is incoiyex

inconsistently

Strongly Agree | Agree| Disagreeéstrongly Disagree Do not Know
DK 7 1 0 2 0
SDE | 5 4 0 0 1
NL 9 1 0 0 0
PM 6 2 1 0 1
PC 7 1 0 1 1

Table 5.1.2Terminology Issues Results

Percent of overall agreement Po: 0.493333
Fixed-marginal kappa: -0.018221
Free-marginal kappa: 0.366666

A k value of 0.366 is Fair Agreement and thus thgads fairly reliable, hence

57

NL and SDE are the most important factors for ankee able to uncover Terminology

issues under requirements

iii) States— These defects deal with system, object or datas

Strongly Agree | Agree| Disagreestrongly Disagree Do not Know
DK 4 1 3 2 0
SDE | 6 4 0 0 0
NL 2 1 0 1 6
PM 6 4 0 0 0
PC 5 1 2 1 1

Table 5.1.3States Issues Results

Percent of overall agreement Po: 0.351111
Fixed-marginal kappa: 0.0782827
Free-marginal kappa: 0.188889

A k value of 0.188889 is Slight Agreement and tthesdata is slightly reliable, hence
PM and SDE are the highly most important factorsTerminology issues.
iv) Data — These defects deal with the actual data iteatsatte to be maintained by

the system. This includes inconsistent data tyysg]ation of new data, and

access restrictions to the data.

58

Strongly Agree | Agree| Disagreestrongly Disagree Do not Know
DK 1 4 2 1 2
SDE | 4 2 0 0 4
NL 6 0 0 4 0
PM |4 4 1 1 0
PC 8 2 0 0 0

Table 5.1.4Data Issues Results

Percent of overall agreement Po: 0.368889
Fixed-marginal kappa: 0.0963474
Free-marginal kappa: 0.211111

A k value of 0.211 is a Fair Agreement and thusddua is fairly reliable, hence

PC and PM are the most important factors for orfgetable to uncover data related

defects under requirements.

V) Interface and Access- These defects deal with the way that usersharot
systems gain access to this system. They deaMatittihe mechanisms of

access (the interface) as well as the restricfgased upon the access.

59

Strongly Agree | Agree| Disagreestrongly Disagree Do not Know
DK 8 2 0 0 0
SDE | 9 1 0 0 0
NL 6 0 0 4 0
PM |4 4 1 1 0
PC 8 2 0 0 0

Table 5.1.5Interface and Access Issues Results

Percent of overall agreement Po: 0.564444

Fixed-marginal kappa: 0.0677312

Free-marginal kappa: 0.455555
A k value of 0.4555 is a Moderate agreement and the data is moderately reliable,
hence PC, DK and SDE are the most important faétorsne to be able to uncover

interface and access related defects under regentsm

Vi) Other Inconsistencies- These defects deal with situations where the

requirements document says contradictory thingaandifferent parts of the

document.

60

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 0 0 3 2 5
SDE | 2 2 1 2 3
NL 2 2 0 4 2
PM 2 2 3 2 1
PC 3 2 1 2 2

Table 5.1.60ther Inconsistencies Issues Results

Percent of overall agreement Po: 0.182222
Fixed-marginal kappa: -0.0335920
Free-marginal kappa: -0.0222225

A k value of -0.022 shows no agreement and thuslate is not reliable.

4.3.2 DESIGN PHASE

i) States— These defects occur when the states of the tslgee misunderstood in
some way. This includes the addition or omissioaroéntire state, or incorrect

transitions.

61

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 1 1 6 0 2
SDE | 7 3 0 0 0
NL 0 1 4 2 3
PM 5 3 0 0 2
PC 9 1 0 0 0

Table 5.2.10ther Inconsistencies Issues Results

Percent of overall agreement Po: 0.444444
Fixed-marginal kappa: 0.220600
Free-marginal kappa: 0.305555
A k value of 0.30555 is a fair agreement and thesdata is fairly reliable, hence PC,
PM and SDE are the most important factors for ongetable to uncover state related

defects under design.

i) Messages- These defects deal with problems involving messdigat appear in

the design.

62

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 1 1 2 5 1
SDE | 7 2 1 0 0
NL 0 2 0 2 6
PM 8 0 1 0 1
PC 6 3 0 1 0

Percent of overall agreement Po:
Fixed-marginal kappa:

Free-marginal kappa:

Table 5.2Messages Issues Results

0.426666

0.207226

0.283333

A k value of 0.283333 is a fair agreement and thesdata is fairly reliable, hence PC,

PM and SDE are the most important factors for ongetable to uncover messages

defects under design phase.

iii) Attributes — These defects deal with problems in the waydttabutes have

been described in the design

63

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 3 2 3 0 2
SDE | 9 0 0 0 1
NL 2 2 0 3 3
PM 5 3 0 1 1
PC 7 2 0 1 0

Table 5.2. Attributes Issues Results

Percent of overall agreement Po: 0.386666
Fixed-marginal kappa: 0.0763042
Free-marginal kappa: 0.233333

A k value of 0.233333 is a fair agreement and thesdata is fairly reliable, hence PC,

PM and SDE are the most important factors for ongetable to uncover attributes

defects under design phase.

iv) Actors — These defects deal with the misuse of the aetithén the design.

64

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 3 2 3 0 2
SDE | 8 2 0 0 0
NL 2 2 0 3 3
PM 5 3 0 1 1
PC 6 4 0 0 0

Table 5.2.4Actors Issues Results

Percent of overall agreement Po: 0.351111
Fixed-marginal kappa: 0.0423716
Free-marginal kappa: 0.188889
A k value of 0.188889 is a slight agreement and the data is slightly reliable, hence
PC, PM and SDE are the most important factors f@to be able to uncover actors

defects under design phase.

V) Constraints — These defects occur when constraints are onotta@ttorrectly

used.

65

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 7 2 1 0 0
SDE | 9 1 0 0 0
NL 2 2 0 3 3
PM 5 3 0 1 1
PC 4 4 0 2 0

Table 5.2.5Constraints Issues Results

Percent of overall agreement Po: 0.408888
Fixed-marginal kappa: @.0809
Free-marginal kappa: 0.26111

A k value of 0.26111 is a fail agreement and tlngsdata is fairly reliable, hence DK,
PM and SDE are the most important factors for oneetable to uncover Constraints

defects under design phase.

Vi) Relationships— These defects occur when classes are incormretdyed within

the design

66

vii)

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 0 2 1 0 7
SDE |1 1 0 0 8
NL 2 1 0 3 4
PM 0 1 0 0 9
PC 2 0 0 1 7

Table 5.2.6Relationships Issues Results

Percent of overall agreement Po: 0.524444
Fixed-marginal kappa: 0.0158195
Free-marginal kappa: 0.405555
In this case the data is reliable since k=0.4056G86shows that the experts do
not know the which factors has influence on uncioxggeof relationships
defects under design phase (may be this classettdevas not well placed)

Class Hierarchy— These defects describe problems within the aesitance

structure.

67

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 2 2 0 0 6
SDE | 7 3 0 0 0
NL 2 1 0 3 4
PM 2 4 0 3 1
PC 9 1 0 0 0

Table 5.2.TClass Hierarchy Issues Results

Percent of overall agreement Po: 0.431111
Fixed-marginal kappa: 0.181690
Free-marginal kappa: 08B

A k value of 0.288889 is a fail agreement and tihesdata is fairly reliable, hence PC
and SDE are the most important factors for onestatile to uncover Constraints
defects under design phase.

viii) Other — Design defects that do not fit in other categmrbut are not major

enough to create a new category.

68

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 0 0 0 0 10
SDE | O 0 0 0 10
NL 0 2 0 1 7
PM 0 0 0 0 10
PC 1 1 0 0 8

Table 5.2.80ther Issues Results

Percent of overall agreement Po: 0.822221
Fixed-marginal kappa: 0.0421390
Free-marginal kappa: 0.777776

A k value of 0.777776 is a Substantial agreemedtthuns the data is substantially

reliable.

69

4.3.3 CODING PHASE

i) Logic- insufficient/incorrect errors in algorithms usedrdivg conditions.

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 0 0 0 0 10
SDE | 8 2 0 0 0
NL 0 2 0 1 7
PM 2 3 3 0 2
PC 9 0 0 0 1

Table 5.3.1Logic Issues Results

Percent of overall agreement Po: 0.622222
Fixed-marginal kappa: 0.437830
Free-marginal kappa: 0.527778
A k value of 0.527778 is a Moderate agreement huod the data is moderately reliable,
hence PC and SDE are the most important factorshélexperts do not know whether
the DK affects the Logic defects uncovering undeticg phase.
i) Standards— problems with coding/documentation standalrtdentation,

alignment, layout, modularity, comments, hard-cggdend misspelling

70

Strongly Agree | Agree| Disagreestrongly Disagree Do not Know
DK 4 0 2 0 4
SDE | 8 2 0 0 0
NL 5 4 0 1 0
PM 2 3 3 0 2
PC 9 0 0 0 1

Table 5.3.5tandards Issues Results

Percent of overall agreement Po: 0.453333
Fixed-marginal kappa: 0.123931
Free-marginal kappa: 0.316666

A k value of 0.316666 is a Fair agreement and theglata is fairly reliable, hence
PC, NL and SDE are the most important factors foexpert reviewer to be able to
uncover standards defects in the coding phase.

iii) Redundant code—- same piece of code used in many programs beisame

program

71

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 4 0 2 0 4
SDE | 10 0 0 0 0
NL 1 2 6 1 0
PM 2 3 3 0 2
PC 9 1 0 0 0

Table 5.3.3Redundant code Issues Results

Percent of overall agreement Po: 0.524444
Fixed-marginal kappa: 0.270620
Free-marginal kappa: 0.405555

A k value of 0.405555 is a Moderate agreement hnd the data is moderately reliable,
hence SDE and PC are the most important factora feviewer to be able to uncover
redundant code defects under coding phase.

iv) Performance— poor processing speed: System crash becaude siz,

Memory problems

72

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 9 1 0 0 0
SDE | 8 2 0 0 0
NL 1 1 6 2 0
PM 4 3 0 0 3
PC 8 1 0 0 1

Table 5.3.4Performance Issues Results

Percent of overall agreement Po: 0.537777
Fixed-marginal kappa: 0.219218
Free-marginal kappa: 0.422221
A k value of 0.422221 is a Moderate agreement hnd the data is moderately reliable,
hence SDE, DK and PC are the most important faétora reviewer to be able to
uncover redundant code defects under coding phase.

V) Reusability — inability to reuse the code

73

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 3 2 1 4 0
SDE | 9 1 0 0 0
NL 5 0 4 0 1
PM |4 1 0 5 0
PC 10 0 0 0 0

Table 5.3.Reusability Issues Results
Percent of overall agreement Po: 0.58666
Fixed-marginal kappa: 0.19262
Free-marginal kappa: 03B3

A k value of 0.43333 is a Moderate agreement ansd the data is moderately reliable,
hence SDE and PC are the most important factora feviewer to be able to uncover
Reusability defects under coding phase.

Vi) Memory management defects- Defects such as core dump, array overflow,

illegal function call, system hands, or memory doav

74

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 3 2 1 4 0
SDE | 9 1 0 0 0
NL 2 3 1 3 1
PM 9 1 0 0 0
PC 10 0 0 0 0

Table 5.3.@8Memory management defects Issues Results

Percent of overall agreement Po: 0.595555
Fixed-marginal kappa: 0.226978
Free-marginal kappa: 0.49444

A k value of 0.494444 is a Moderate agreement hnd the data is moderately reliable,
hence SDE, PM and PC are the most important fatdois reviewer to be able to
uncover Memory management defects under codingephas

vii) Consistency- failure to updating or delete records in thesamder throughout

the system

75

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 3 2 2 3 0
SDE | 10 0 0 0 0
NL 5 0 1 3 1
PM 9 1 0 0 0
PC 8 2 0 0 0

Table 5.3.7Consistency Issues Results

Percent of overall agreement Po: 0.582222
Fixed-marginal kappa: 0.132521
Free-marginal kappa: 0.477778

A k value of 0.477778 is a Moderate agreement huod the data is moderately reliable,
hence SDE, PM and PC are the most important faftioes reviewer to be able to

uncover Consistency defects under coding phase.

viii) Portability — code not independent of the platform.

76

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 3 1 4 2 0
SDE | 10 0 0 0 0
NL 0 2 1 3 4
PM 2 1 1 4 2
PC 4 3 0 0 3

Table 5.3.8Portability Issues Results

Percent of overall agreement Po: 0.377777
Fixed-marginal kappa: 0.177824
Free-marginal kappa: 0.222221

A k value of 0.222221 is a Fair agreement and theglata is fairly reliable, hence
SDE is the most important factors for a reviewenémble to uncover Portability

defects under coding phase.
4.3.4TESTING PHASE

i) Testing Tools and resources Are the tools and resources identified and

available.

77

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 9 1 0 0 0
SDE | 10 0 0 0 0
NL 0 3 4 1 2
PM |4 4 0 0 2
PC 7 3 0 0 0

Table 5.4.1Testing Tools and resources Issues Results

Percent of overall agreement Po: 0.568888
Fixed-marginal kappa: 0.254647
Free-marginal kappa: 0.46111

A k value of 0.46111 is a moderate agreement anslttie data is moderately reliable,
hence DK, SDE and PC are the most important faétora reviewer to be able to
uncover Testing Tools and resources defects uedang phase.

i) Record keeping— has the record keeping mechanism being estellish

78

Strongly Agree

Agree| Disagreestrongly Disagree Do not Know
DK 4 4 0 2 0
SDE | 7 1 0 0 2
NL 0 2 1 2 5
PM |4 4 0 1 1
PC 6 3 0 0 1

Percent of overall agreement Po:

Fixed-marginal kappa:

Free-marginal kappa:

Table 5.4.Record keeping Issues Results

0.

0.342222

0.0635279

177778

A k value of 0.177778 is a slight agreement and the data is slightly reliable, hence

DK, SDE, PM and PC are the most important factorsafreviewer to be able to

uncover Record keeping defects under testing phase.

iii) Stress Testing Mechanisms is the stress testing mechanism established?
Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 1 8 0 0 1
SDE | 10 0 0 0 0
NL 0 3 2 2 3
PM 10 0 0 0 0
PC 9 1 0 0 0

Table 5.4.3Stress Testing Mechanisms Issues Results

79

Percent of overall agreement Po: 0.719999
Fixed-marginal kappa: 0.511171
Free-marginal kappa: 0.649999
A k value of 0.649999 is a Substantial agreemedtthuns the data is substantially
reliable, hence DK, SDE, PM and PC are the mosbitapt factors for a reviewer to be
able to uncover Stress Testing Mechanisms defectsruesting phase.
iv) Major identification of test phases —identification and sequencing of

major test phases and the sequencing.

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 10 0 0 0 0
SDE | 10 0 0 0 0
NL 2 3 2 0 3
PM 10 0 0 0 0
PC 8 2 0 0 0

Table 5.4.4Major identification of test phases Issues Results

Percent of overall agreement Po: 0.764444
Fixed-marginal kappa: 0.316833

Free-marginal kappa: 0.7(d55

80

A k value of 0.705555 is a Substantial agreemedtthns the data is substantially
reliable, hence DK, SDE, PM and PC are the mosbitapt factors for a reviewer to be

able to uncover Major identification of test phadefects under testing phase.

V) Consistenceof the test plan with the overall project plan

Strongly Agree | Agree| DisagreeStrongly Disagree Do not Know
DK 9 1 0 0 0
SDE | 10 0 0 0 0
NL |0 1 4 4 1
PM 10 0 0 0 0
PC 8 1 0 0 1

Table 5.4.5Consistence Issues Results

Percent of overall agreement Po: 0.737777
Fixed-marginal kappa: 0.396356
Free-marginal kappa: 0.672221

A k value of 0.737777 is a Substantial agreemedtthuns the data is substantially
reliable, hence DK, SDE, PM and PC are the mosbitapt factors for a reviewer

to be able to uncover Consistence defects undimggshase

81

4.4 SUMMARY OF THE RESULTS
NOTATION
Jo- Shows a very important Factors

a) Requirements Phase

Defects Background and Experience variables
DK SDE NL PM PC

Document Formatting Issues J J

Terminology J J

States J /

Data J /

Interface and Access J J J

Other Inconsistencies No Agreement

Table 5.55ummary of Requirements Phase Results

82

b) Design Phase

Defects Background and Experience variables

DK SDE NL PM PC
States J J J
Messages J J J
Attributes / / /
Actors J J J
Constraints J J J
Relationships No Agreement
Class Hierarchy J J
Other No Agreement

Table 5.5.8ummary of Design Phase Results

83

c) Coding Phase

Defects

Background and Experience varial

DK SDE NL PM PC

Logic

Standard

Redundant coc

Performanc

Reusabilit

Memory management defe

Consistenc

< 2 2] =2 <2 =2 =

Portability

< 2 <2 <2 =2 <2 =<2 =2

d) Testing Phase

Table 5.5.3Summary of Coding Phase Results

Defects Background and Experience variables
DK SDE NL PM PC
Testing Tools and resources v v N
Record keeping N N N |
Stress Testing Mechanisms v v N N
Major identification of test phases | V v N N
Consistence N N N |

Table 5.5.35ummary of Testing Phase Results

84

CHAPTER FIVE

DETAILED SYSTEM DEVELOPMENT DOCUMENTATION
OF THE

FORMAL TECHNICAL REVIEW SUPPORT TOOL

5.1 REQUIREMENTS ANALYSIS

i) Users/ Roles
a) Administrator — This is a person who is the overaladministrator of the
system
His/her responsibilities are:
- Setting up the projects
- Input personal identification details of the reveaw

- Input experience and background details of theereer.

- The number of defects uncovered under each class.

- Get recommendations on who would help him uncoveesgtiin

kinds/kind of defects depending on the phase ofifibeycle.

- Edit the above records.

85

b) Project Manager — This is the manager of a specifigroject, his/her
functions are

- He/she should be able to view the projects thaheeis assigned.

c) Reviewer — He/she is an individual with the abilityto uncovered defects
in a software product.
- Based on his/her ability he can be able to viewpttogects that

he/she is assigned to depending on his/her ahilijncover defects.

d) Customer - This is the individual or company who iitiated a project(s),
his duties includes
- Viewing project defects and other project-relate@imation for

projects that he/she has initiated.

i) Requirements Overview of the proposed system

- One system — serving a number of geographicallyeds®d users, this
introduces the concept of distributed system.

- Different types of users who require different ftiocality from the
system.

- The system needs to have some kind of data lagergtinformation

needs to be stored.

86

- The system proposed will be a distributed systechhemce the

assumption that the system is network — based.

5.2 THE SUGGESTED SOLUTION

* The database to be built using Microsoft SQL SeR@)8, including SQL
Server Management Studio

* The main system will be built using the .NET Frarnewand C#
programming language.

* The main system will also be implemented usingretgo demonstrate its
online accessibility and also its functionality Mak implemented using a
web service to demonstrate its distributed nature.

e For the UML diagrams argoUML tool will be used figsign.

* To design the user interface Mockup screens willdes.

» The administrator interface will be tightly coupledthe system and will be
built using .NET Remoting

» A website will be built to help in remote acceshitpiof the system.

87

Use Case Diagram

e
(Setuaprieed)

o

T
/ @a icerifcatior defails of the re\newer>

%1//‘ n /In;utE rperience and backgraund decails 1f the reviener \
’—\ //
R —

Fraj ectMannager

mmendahms onwkawculc help uncaverad serair defacts)

\/:“”/

T T
¢ Uatate s)

=inuiug=> _,—’;k‘
Qjﬂahcve recurdsj ceircudass
LA o e~
—_— == ke s
\""—\-_o-'—"/

Fig 5.1 Use Case diagram for the Administrator dues

=<includes= ,
———————— login

wiew projects assiogned

Reviewer

viewy defects he has uncovered

Fig 5.2 Use Case diagram for the reviewer duties

88

()—r\j Wiz Project related Details

Custarnar

Fig 5.3 Use Case diagram for the customer des

5.3 NON-FUNCTIONAL REQUIREMENTS

= Testability
» Maintainability
» Extensibility

= Scalability

5.4 SYSTEM DESIGN

i) System Architecture
The main system will be developed using the .NEEfpim since it
provides a standardized set of services. “It’s liust Windows, except
distributed over the Internet. It exports a comrdarface so that its
programs can be run on any system that supports”.N\M&ark03]. The

.Net Framework provides a very good environmemtaeelop networked

89

applications and Web Services programming API anfiedl language-

independent development framework [Simon08].

In N-Tier architectures there is a logical separatf presentation,
business and data into separate layers
» Data Tier — manages the data
* Presentation Tier — controls what a user sees amd@ with the
system
» Business Tier (middle tier) — controls everythitgegthe business
logic)
The business tier contains the core functionalithe system
v' Business rules

v" Work flows

It provides controlled access to data and enalakdation and
processing of data input, the business tier wildlegned using classes.
The collection (library) of classes representing blusiness tier will be

deployed as a component i.e. DLL

The component developed will consist of a collettd classes
developed to fulfill certain specification

e It can be re-used

90

» It should encapsulate all its behavior

* It must provide an interface to allow it to be a&smd by a client

The proposed system illustration is shown below.

Allow administrator to
System Database administer the system

Remoting
Client

Formal Technical Review Taal

ﬁj_lfl.ienl i Net Client

Browser

|| Teams should be able to aecess information

Allow users to access
information regarding their
projects

Fig 5.4: The Architectureof the System

91

Authenticate()
GetListOfProjects()

Service
oriented

operations

Task Tracking
Web Service

Admin
Component

Authenticate() % ._

GetListOfProjects()

System

Database

Fig 5.5 The Architecture of the System with an illgtration of the methods

available

5.5 THE DATABASE DESIGN

A database has been designed in order to supgoRdimal Technical
Review Support Tool; it provides the persisteneefor the system. The

following are the entities identified:

92

Manager
Administrator
Reviewer
ReviewerDetails
Customer
Project

Phases

Defect

ReviewAssignments.

The Database Design is as shown below:

93

f]
.. Reviewer . .
M Administrator : ReviewerDetails
ELLEL A 2 Adminld ? Reviewerld 7 Reviewld
Admin
M d
g Moroge Mame Name Reviewerld
Name Username K
Username
Usermame 4 Password “DE
Passwors
Password Address o
Address Addrless Enai =
] Email
Emai Telephonetlo pC
TelephoneNlo Telephonetlo
I
T2
Proiect Phases
roj ? Phaseld
I roje B
Customer 9 Projectld - o
¥ Customerld Name
Name StartDate E
Username EndDate i
Password Customerld
Email a |%| . ? Defectld
Telephonehlo Mame
Address @ Phaseld
8 DK
ReviewAssignments SDE
[p— O
[G|
Defectld p—
Projectld
Reviewerld
Phaseld

Fig 5.6: The database diagram

5.6 CLASS DIAGRAM

5.6.1 FTRLIBRARY STRUCTURE

As a business component, this project will not aosnany graphical user
interface. It will be built as a Class Library. €ertypes of classes will be
developed for the FTRLibrary.

0 Business Objects

0 DAOs (Data Access Objects)

94

o Facade Objects

5.6.2 BUSINESS OBJECTS

These are abstract representations of entities finenbusiness domain. They
represent concepts that are important to the bssitiat the system is
modelling. In this system these are abstractior2oofnal Technical Review
related concepts, such as project, reviewer, defpbiase etc. The business
objects in this component will be:
* Project
Represents a project
* Defect
Represents a defect.
* ReviewAssignments
Represents the assigning of a reviewer to a defect.
* User
Represents the general user of the system
* Manager
Represents a project manager
* Reviewer
Represents a reviewer.

e Customer

95

Represents a customer.
ReviewerDetails

Represents the background and experience informatfia reviewer.

5.6.3 DATA ACCESS OBJECTS

Data Access Objects provide abstract interfacesta sources, providing a

clear separation between the business and pexssiagic. The aim is to come

up with a system that is highly robust and alsolbascoupling between our

business classes and the database. The DAOs wildioaall the SQL code for

reading and writing to the database. There wilirdtiple DAOs, one DAO for

each different user of the system.

SuperDAO (super class for all others)
AdminDAO

ManagerDAO

ReviewerDAO

CustomerDAO

96

SuperDAO
Class

AdminDAO ReviewerDAO ¥ CustomerDAO ¥ ManagerDAO
Class Class Class Class
=+ SuperDAO =+ SuperDAQO =+ SuperDAO =+ SuperDAQ

Fig 5.7: The Class Diagram for DAO

5.6.4 FACADE OBJECTS

The Facade classes will be used to provide a pulali@ilable interface to the
business component. One facade class for eactotyser who will access the
business component. This helps in that a usersmdg what he/she needs to see.
This enhances security of a distributed system.fabade classes are:

 FTRSuperFacade

 FTRAdminFacade

 FTRManagerFacade

* FTRReviewerFacade

* FTRCustomerFacade

97

FTRSuperFacade
Class

+ MarshalByRefObject
A\

FTRAdminFacade ¥/ FTRCustomerfa,.. ¥/ FTRManagerFac... ¥ FTRReviewerFac... (¥
Class Class (Class Class
+ FTRSuperFacade + FTRSuperFacade + FTRSuperFacade + FTRSuperFacade

Fig 5.8: The Class Diagram for Facade Class

98

Class

S Fields
dac

[FTRSuperFacade

= MarshalByRefObjed

®]

& Methods
¥ FTRSuperfacade
i¥ GetlistOfDefects

¥ GetlistOfProjects

L A
| FiRAdminfacade % FIRCustomerfa... 2 | FIRManagerfac... (% FTRReviewerFac... (2
Class Class Class Class
b FTRSuperFacade b FTRSuperFacade b FTRSuperFacade b FTRSuperFacade
£ Fields = Fields = Fields = Fields
@ dao @ dao @ dao @ dao
E Methods & Methods & Methods & Methods
W Authenticate W Authenticate ¥ Authenticate W Authenticate
% CreateProject ¥ FTRCustomerFa... ¥ CreateReviewA.. * FTRReviewerfa..
% CreateReviewA ., W GetlistOfProjects FTRManagerfa... W GetlistOfRevie..
W CreateReviewer e’ W GetlistOfProjec... —
% FTRAdminFacade W GetlistOfRevie...
% GetDefect ’
@ GetlictOfCusto..,
W GetlistOfDefects
W GetlistCfMana..,
¥ GetlistOfProjec...
W GetlistOfRevie...
W GetlistCfRevie..,
W GetReviewer
W RemoveReviewer

Fig 5.9: The Detailed Class Diagram for Fagcade Clas

User
Class
JAN
Reviewer Customer Manager ¥
Class Class Class
=+ User =+ User =+ User

Fig 5.10: The Class Diagram for Users of thgystem

99

=

| User
Class

= Fields
@ id
o name
5l Properties
=
ﬁ;‘ Marne

T

)
)

| Customer Reviewer
Class Class
—+ User —+ User

= Properties = Fields
5 Narne ¥ address
= Methods g mail
@? phone
=l Properties
P Address
B Emall
ﬁ MName
F Phonehe
B Reviewerld
= Methods

¥ Customer (+ 1...

Fig B:Detailed Class Diagram for Users of the system

i) User interface

% Reviewer [+ 2 0.

|

Manager
Class
—+ User

= Properties
"‘_&? Mame
= Methods

% Manager (+ 1 o..

The mock up® screen tool was used to design theintsgface for the

system,

100

Administrator Teol

UserMame] Passuword

‘Welcome
‘Welcome ta the Formal Technical Review Tool

In Order to start using the tool, you must login using the fields above

Projects

Fig 5.12 User Interface for the adminisator

_@

Tasks‘}

Exigting Projects

Evpected Start | 1 Expected End
Select Project [Proje
Customer |
Add Task
Name iTEEH’IS
Expected Start | Task

Expected Start |

Teams [Homes ~

Fig 5.13 User Interface for the task Form

101

Welcome ta the Formal Technical Review Tool

| Administrator
Project Manager
| Project Manager |
Reviewer

Customer

Fig 5.14 User Interface for the online appation

The business component built and the GUI implentehge to
communicate. This communication will be achieveadgishe .NET
remoting. A remote server application will be cezhind will be used to
distribute the admin tool and the FTRLibrary comgan There are two
ways of building distributed systems in .NET, whpiovide means to

invoke an object on another computer via a locaxp{G.Coulouris05].

Web Services- works across platforms, so can be tesprovide
services to clients that are not under your coranal could be written in
any language.

102

.NET Remoting- works only when client and serwer\aritten in .NET,

this can be used when both client and server ateryour control.

Client Ohject Server Ohiect
Proxy

Remoting System 1] Eemaoting Systen
<’N Channel \/|>

Client Server

Fig 5.15: .NET Remoting Architecture

Marshalling- Marshalling determines how afeabis exposed to the client
application
Objects can be marshalled
» By value: a copy of the server object is sent agyat kn the client
domain
» By reference: the client only holds a referencth&object

[G.Coulouris05]

103

In this application marshalling of the businesseatg will be by value.
The objects will then reside on the client andscadithem will be faster

than marshalling by reference.

“To do this, [Serializable] attribute is added e ttlass that is to be

marshalled” [G.Coulouris05]

The superDao Code extracts are show below:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Data;

using System.Data.SqlClient;

namespace FTRLibrary.DAO

{

public class SuperDAO

public List <Project > GetListOfProjects()

string sql;

SglConnection c¢n,cn2,cn3;

104

SglCommand emd,cmd2,cmd3;
SglDataReader dr,dr2,dr3;

List <Project > projects;

projects = new List <Project >();
sql = "SELECT * FROM Project" ;
cn= new

SglConnection (Properties. Settings .Default.FTRConnectionStrin

Q);

cmd = new SglCommand(sql, cn);

try {
cn.Open();
dr=cmd.ExecuteReader();
while (dr.Read()){
sql= "SELECT * FROM Customer WHERE

Customerld="+(int)dr["Customerld" 1];

cn2= new
SglConnection (Properties. Settings .Default.FTRConnectionStrin
9);
cmd2 = new SglCommand(sql, cn2);
cn2.0pen();
dr2 =

cmd2.ExecuteReader(CommandBehavior .SingleRow);
dr2.Read();
Customer cust = new

Customer (dr2["Name"].ToString(), (int)dr2["Customerld" 1]);

105

dr2.Close();

Il

sql = "SELECT * FROM Manager WHERE
Managerld=" + (int)dr["Managerld" 1;

cn3 = new
SglConnection (Properties. Settings .Default.FTRConnectionStrin
9);

cmd3 = new SglCommand(sgl, cn3);

cn3.0pen();

dar3 =

cmd3.ExecuteReader(CommandBehavior .SingleRow);

dr3.Read();
Manager m= new
Manager (dr3["Name"].ToString(), (int)dr3["Managerld"]);
dr3.Close();

Project p= new
Project ((Guid)dr["Projectld"], drf "Name"].ToString(), m,

cust,(DateTime)dr["StartDate"],(DateTime)dr["EndDate" 1]);

projects.Add(p);

106

}

dr.Close();
}
catch (SqlException ex)
{
throw new Exception ("Error getting tasks
list" , ex);
}
finally
{
cn.Close();
}
return projects;
}
public List <ReviewAssignments > GetListOfDefects(
projectid)
{
string sql;
SglConnection cn, cn2;
SglCommand cmd, cmd2;
SglDataReader dr, dr2;
List <ReviewAssignments > defects;
defects = new List <ReviewAssignments >();
sql = "SELECT * FROM DefectDetails WHERE
Projectld="" +projectld+ " ;

107

cn = new

SglConnection (Properties. Settings .Default.FTRConnectionStrin

9);
cmd = new SqglCommand(sql, cn);
try
{
cn.Open();
dr = cmd.ExecuteReader();
while (dr.Read())
{
sql = "SELECT * FROM Defect WHERE
Defectld=" +dr["Defectld”]+™ ;
cn2 = new

SglConnection (Properties. Settings .Default. FTRConnectionStrin
9);
cmd2 = new SglCommand(sqgl, cn2);
cn2.0pen();
ar2 =

cmd2.ExecuteReader(CommandBehavior .SingleRow);

dr2.Read();
Defect d= new
Defect (dr2["Defectld"].ToString(),dr2["Name"].ToString());
dr2.Close();

108

ReviewAssignments dd= new

ReviewAssignments (dr["Defectld"].ToString(),d,(Phase)dr["Pha
seld");
defects.Add(dd);
}
dr.Close();
}
catch (SglException ex)
{
throw new Exception ("Error getting tasks
list" , ex);
}
finally
{
cn.Close();
}

return defects;

109

The remote server code extract:

namespace RemoteServerApplication

{
class Program
{
static void Main(string [] args)
{
HttpChannel channel = new HttpChannel (50000);
ChannelServices .RegisterChannel(channel, false);
RemotingConfiguration .RegisterWellKnownServiceType(typeof (FT

RLibrary. FTRAdminFacade), "FTRAdminFacade" ,
WellKnownObjectMode .Singleton);

Console .WriteLine("Press the enter key to
terminate server");

Console .ReadLine();

110

When the remote server application runs the folhgws the output

B filey///C:/Users/usen RemateServerApplication;| bin/Deb ug/RemoteServerAp

Press the enter key to terminate server

Fig 5.16: Output from the remote server application

After making sure that the remote server is running admin tool is

started. The following is the output

111

o FTR REVIEW 4 (=] = i}

Usemame | Logn

Welcome |ijed | Reviewers | Review Assi

Welcome Admin Tool

U MUst [ogin using the fields above

Fig 5.17: First Page for login

After entering the correct password and usernaméoibl will allow the

admin to carry a number of functions as shown.

112

ul FTR REVIEW a4 "EWN EEIES

Usemame
[Weane | e | Reviewes | Reven Asigmerts
Suggest Reviewer i\r.ew Defects|
FTR REVIEW
Select Project: Hosptal System -
Check Reviewers
Select Phase Requiements Phase v | Check Defect Defalls
Select Defect D ROD1 5 Suttable Reviewers
Reviewer v
Defect Detais
Name Reviewerld
Phase Address
DK] Phone No
SDE]
NL [l Email
lll]
FC] ASSIGN

Fig 5.18: Output from the remote server gplication

5.7 Web services

Web services are self-contained, self-describinggutar applications
that can be published, located, and invoked ad¢hes8Veb they can
perform functions from simple requests to compédabusiness
processes. Once a Web service is deployed, otipécaions (and
other Web services) can discover and invoke théogled service [IBM

web service tutorial]

113

Web services are distributed computing model basealsynchronous
messaging (XML), and they:
» Support dynamic application integration over thebWe
* Web Services connect computers and devices with aher
using the Internet to exchange data and accessagrv
» On-the-fly software creation through the use osklg coupled,
reusable software components

* Business services can be distributed over therlater

5.7.1 Web Service Architecture

i) Components

a) Service providers

- publish available services and offer bindings fwges
b) Service brokers

- allow service providers to publish their services

- provide mechanisms to locate services and theirigeos
c) Service requestor

- uses the service broker to find a service and then

- invokes (or binds) the service offered by a serpice/ider

114

server

Service Provider

A
52 &
Q- O
W 0
Find

Service Broker Service Requestor
Maming service client

Fig 5.19: lllustration of Components irthe web service

i) Visual Studio Development Server

Visual Studio .NET 2008 comes with an in-built ASET
development server, this is the tool that will Isedifor development
as it is possible to test your web services andsiebwithout having

to deploy to a web server

» The web server starts automatically when you rurela
service or website project

* The address is http://localhgsdrt - Where port is a port

number chosen by Visual Studio

Below is the diagram show the web Service funetiohithe admin:

115

FTRManagerWebService

The following operations are supported. For a formal definition, please review the Service Description.
¢ Authenticate

¢ CreateReviewAssignment

® GetlListOfProjectReviewers

etlistOfReviewers;

® GetListOfSpecificReviewers
® Helloworld

This web service is using http:/ /tempuri.org/ as its default namespace.
Recommendation: Change the default namespace before the XML Web service is made public.

Each XML Web service needs a unigue namespace in order for client applications to distinguish it from other services on the Web. hitp://ten]
Web services should use a more permanent namespace.

Your XML Web service should be identified by a namespace that you control. For example, you can use your company's Internet domain na
they need not point to actual resources on the Web. (XML Web service namespaces are URIs.)

For XML Web services creating using ASP.NET, the default namespace can be changed using the WebService attribute's Namespace propert
service methods. Below is a code example that sets the namespace to "http://microsoft.com/webservices/™:

c#
[Web3ervice (Ramespace="http: //microsoft com/webservices/"}]
public class MyWebService {

{{ implementaticn
}

Visual Basic

Fig 5.20: Meths@xposed though a web service

When a web method is invoked, the message is edumXML

(SOAP) e.g.

116

This XML file does not appear to have any style information associated with it. The document tree is shown below

= <ArrayOfProject>
— <Project>
<Assignments/>
<StartDate=0001-01-01T00:00-00</StartDate>
<EndDate0001-01-01T00:00:00</EndDate>
<Projectld>ebc52826-abdd-44bd-88 0f-2d7a8d59%a3 < Projectld>
<Name>Rhino Hotel Management System</Name>
<Project>
- <Project>
—<Assignments>
- <ReviewAssignments>
<Assignld=D002 </Assignld>
—<TheDefect
<Defectld=D002 </Defectld>
<Name>Messages</Name>
<ThePhase>Design</ThePhase>
<DK>false</DK>
<SDE>true</SDE>
<NL>false</NL>
<PMtrue</PN-
<PCrtrue</PC>
</TheDefect>

Fig 5.21: XML message returned for the Projects

i) Building the Customer Website

The last thing is to build a website that will al@dmin, Manager,
Reviewer and customers to log in and carry out sfumetions. The
website will be built as aASP.NET Websitgroject (still in the

FTRLibrary solution).

117

FTR REVIEW

Users

‘ Administrator

‘ Project Manager

[Reviewer

[Customer

118

Fig 5.22: Web site Home page

USER INTERACTION (PROJECT MANAGER) [SYSTEM RESPONSIB ILITY

Register System adds login details of the project

manager as a registered user.

login System logins in the registered user

Inputs the personal details of a reviewer Systemes those details in a database

Inputs the kinds of defects a certain reviewer has | This details are stored in a database

been able to uncover

Retrieves information when organizing for a reviewDetails of which reviewer should help

him/her uncover this defects are shown

Updates Deletes or adds new information to the
database
Logins off Allows the user to log off.

Table 5.1: Testing Results

119

Class Diagram

FrojectManager

LIserbame : String
Fassward ; String
Email ; String

Register)

1

0.* CapturesReviewersDetails

Revigwer

Firsthlame : String
Secondiame : String
DateofRegistering : DaterTime

Registard

Uncovers

0.r Defacts

UpdateDetails)

]

BackgroundExperience

Damainknowledge : String
SoftDevExperience : String
MaturalLanguage : String
Frojectianagement: String
FrocessConfermance © String

ReguirementsDefects

DesionDefects

codingDefects

Defectl - Intege
Doclssues : Integer

DefectlD: Integer

DefectiD: Integer

TestingDefects

DefectiD: Integer

120

Sequence Diagrams:

Capturing of
revizwers details
by the Projectanaoer

Dbject: Prejecthdanage

Object: Reviewer

Object: Defacts

121

ptures reviewers defg

updatesDetzils

Projectianager

gets recommendations
onwho should help himiher
uncowvered various kinds

of defects

Object: Projecthilanage

Object: Reviewer

Object: Defects

Collaboration diagram:

projectananer
Captures
Reviewars Details

T
|
|
|
probeswho can help him uncover cedain defec

:projecthanagerCaptu reshetails

dnputbetails

:DetailsStoredinbetabasze

dnputbefectslincovered

gets Recommendation Onwho can
Help him uncover a class of defects

(GettRecommendation

:Drisplay

122

Statechart Diagrams

Captuing Jetails

. EvterPersonzlDeails

3

FetiveDetail

ReviewerRecammendations

updateCata

A58

involveReviewers

I

(CaplureDefectsHistnw B

StoredD

BestiCerainDeects

etails

b

_

-

.

involvesBackarcund

123

5.8 TESTING

The following table shows test conditions and ressidr testing:-

S/IN TEST EXPECTED RESULT | ACHIEVED RESULT
1 Web server Web site to prompt user Prompted the user name and
User authentication | name and password | accepted the registered user
2 User authentication Web site to give error An error message was give on
message for non non registered users trying to
registered users login
3 Display results for the Four web pages to The results for the HSC
Hospitality Software | display the case results development cycles displayed.
Company (HSC) of the HSC which can
be edited
4 Records storage Storage of personal af@@apturing of details achieved
defects uncovered
details in a database.
5 Giving Able to give a reviewer| User is able to get

Recommendations

recommendations on
who best can help
him/her uncovered

defects

recommendations on who can
help him uncover certain class

defects.

Df

124

Editing of the stored

data

The system should
allow a user to modify
the initial background
and experience
variables as well as the

defects classes

The system allows modification
of the database by the registere

user.

Logs off

The system should
allow the save details

and exit

PASS

125

d

CHAPTER SIX

6.1 RECOMMENDATIONS AND CONCLUSION

Software products are built using a software precasd errors get introduced during
the process for various reasons. The errors teat@rdetected and fixed during the
software process reach customers and are calléettde Defects are often costlier to
fix than errors and also damage the developer'stagipn. Therefore, it is necessary to
reduce the errors in the end products. In orddetwer products of good quality, we

need ‘quality filters’ that can be used to detenbres.

There are many review types under the broad caterjdfTRs. These vary in the
degree of formality — walkthroughs and inspectibamg the most formal and casual
meetings being the least formal. The more formalrdview type, the more effective it
is in finding errors. While various review typesfei in their ‘exact’ activities and roles
defined, there are some common steps and rolegeneric FTR. The common steps

are:

Step 1: Pre—review meeting
Step 2: Review meeting

Step 3: Post review meeting

One of the main function in an FTR process is stgffThe generic roles are:

126

Moderator - leads the inspection, schedules meetings, dsritre meetings, reports
inspection results, and follows up on rework isstsderators should be trained in
how to conduct inspections, including how to keagipipants with strong technical

skills but low social skills from killing each othe

Author - created or maintains the work product beingaasgd. The author may
answer questions asked about the product duringpéipection, and he also looks for

defects. The author cannot serve as moderatorreadrecorder.

Reader- describes the sections of the work product ¢éotéfam as they proceed through
the inspection. The reader may paraphrase whatpigdning in the product, such as
describing what a section of code is supposed tbutohe does not usually read the

product verbatim.

Recorder - classifies and records defects and issues rdiselg the inspection. The
moderator might perform this role in a small ingpecteam. With the creation of the

Formal Technical Review Support Tool, the job af tecorder is highly improved.

Inspector - attempts to find errors in the product. All paigants actually are acting as

inspectors, in addition to any other responsiletiti

This research had two main objectives, the firstloich was to show that the reviewers
experience and background affects the kind of defewviewers are able to uncover. A

typical FTR can benefit from the following actias:

127

« Planning for project reviews
« Training reviewers on how to participate in reviews
« Ensuring that the review meeting is effective

« Using review data to see how the review procesdednrther refined

It is a known fact that the above activities cad adlue to a Review meeting,
(Ackerman89) there are some essential parametetisefaneeting such as there should
be an acceptable (between 3-5) number of persoructing the meeting and that too
after each one of them has done his/her homewarkome preparation and the
meeting should not be carried out very long whicdynead to wastage of time but
rather for duration just enough to churn out somestructive results. FTR (Formal
Technical Review) is effective when a small andcgepart of the overall software is
under scrutiny. It is easier and more productiveetoew in small parts like each
module one by one rather than to review the whalggtin one go. The target of the

FTR (Formal Technical Review) is on a componerthefproject, a single module.

The individual or the team that has developeddpatific module or product intimates
the product is complete and a review may take plelsen the project leader forwards
the request to the review leader who further infothe reviewers who undertake the

task.

It is as this stage that this study has found niy@rtance of background and experience

of the reviewers very important. In chapter Fow tasearcher has provided important

128

summery of the background and experience variabidghe kind of defects that those
individual have a potentiality to uncover in HSGwmany. This is not expected to be
uniform for all kinds of software products; thissis as software products are very

different in a number of ways.

As a company engages in FTR over a period of tmportant data is generated which
could provide set of heuristics or guideline withigh the inspection manager can
choose inspectors for his or her team. Based oortfamnization’s historical profile of
defect types, he can suggest the background aretierpe that inspectors should have
that will give them the best chance of finding thamportant defects. This then creates
a very good case for keeping records.

The second objective of this study was to develamhfor helping in keeping records.

6.2 KEEPING RECORDS

Record keeping is a major distinction between mi@rand formal review activities.
There are three aspects to this task: recordingctietiuring the inspection meeting;
collecting data from multiple inspections; and gnadg the defect trends to assess
inspection effectiveness and identify ways of inyimg software development process

to prevent common types of defects.

Many books contain sample inspection recording fortme FTR support tool can help

the project manager in the keeping of records.n&pectors raise issues during the

129

review meeting, the recorder enters them on theegsBst from The management report
contains information about the material that wapétted and the disposition of the
product (accepted with minor changes, etc.), budgtoal information about the defects
found is included. The purpose is to allow managekow how the project is
progressing and to look for areas where improvesgmbuld be made. The moderator
usually is responsible for preparing these pogtenson reports. With the Formal
Technical Review Support Tool one is able to predwports after inspections have

been carried out.

An effective, ongoing inspection process permit®aganization to combine data from
multiple inspections to gain insight into the qtiabf both the review process and the
products being reviewed. The ultimate objectivinibave a database of inspection data
so that quantitative conclusions can be drawn fidefect trends and inspection process

information.

While results will vary from one organization teethext for many reasons, if you begin
recording and analyzing your inspection data, ydub& able to determine which
methods work best for you and you can begin tosastbe quality of your work

products.

Implementing software inspections is an importaap @long the path to a more mature

software development process. In the cycle of ooiali process improvement that leads

130

to concurrent improvements in both quality and pietiyity, inspections can play a

major role.

In conclusion the research proposes the followiaghéwork for carrying out Formal

Technical Review:

1. The producer indicated they are ready for a review

2. Having knowledge about the most important defds the software
development house wants uncovered then the maselgets reviewers with
experience and background that can help the orgiamizuncover those
important defects.

3. The reviewer(s) receive the artefacts to be reviewe

4. The reviewers spend 2 hours inspecting the arefact

5. The review takes place
a) The producer walks through their product
b) The reviewer(s) ask questions on the walk through
c) The reviewers ask questions from their notes
d) This details are captured in the Formal Technieali®&v Support Tool

(FTR), that helps to automate the recording keepmogess.

e) A set of recommendations is produced and givehé@toducer to enable

improvement

131

6.3 CONCLUSION

There is little or no doubt that formal technicaViews are one of the best methods for
detecting defects at the earliest possible stagigeafoftware development life cycle.
This makes software inspections a major part dixsoe quality as a whole, as the
ability to detect and remove defects is not ontghbut also the earlier found the more

cost and time efficient for the development company

This research has therefore shown that the softveaiew meeting can be improved by
involving reviewers with background and experieticd has a higher chance of
uncovering a certain kind of defect that the sofexdevelopment company considers
“important”. A software tool has also been devetbpeimprove record keeping and
give suggestions on the most important backgromaddexperience for a certain kind of

defect.

132

REFERENCES

Ackerman, A., Buchwalk, L. and Lewski, F. (1989bf&vare Inspections: An Effective

Verification Process/EEE SoftwargMay.

Basili, V. and Weiss, D. (1981) ‘Evaluation of af8@re Requirements Document by
Analysis of Change Data.’ In Proceedings 5th I80inference on Software

Engineering]EEE CS PresdMVar.

Bassin, A., Kratschmer, T. and Santhanam P. (1®&)uating Software

Development objectivelyIEEE Softwarevol. 15, no 6, pp. 66-74.

Birk, A. and Tauz, C. (1998) ‘Knowledge ManagemeihSoftware Engineering

Lessons Learned.’ Proceedings of the Tenth Conderen Software Engineering and

Knowledge Engineerindllinois, Skokie: Knowledge Systems Instifyte. 24-31.

Brad, C. and Dave, Z. (200How Good is the Software: A review of Defect preaiic

TechniquesCarnegie Mellon University, pp 9-10.

Brennan, R. and Prediger, D. (19&€19efficientl: Some Uses, Misuses, and

Alternatives Educational and Psychological Measurement, p&81-699.

133

Brocklehurst and Littlewood (1992) ‘New Ways to @ecurate Software Reliability

Modeling. IEEE Softwarevol. 34, no. 42.

Bush, M. (1990) ‘Improving Software Quality: ThedJsf Formal Inspections at the Jet
Propulsion Laboratory.” Proc. 12th Int’l Conf. Seétre Eng.JEEE CS Presd.os

Alamintos.

Byrt, T. Bishop J and Carlin JB (2009) ‘Bias, prievece and kappa.’ Journal of Clinical

Epidemiology 46: 423.

Chillarege R., Bhandari I.S., Chaar, J.K., Halliddyl., Moebus D.S., Ray B.K. and
Wong M. (1992) ‘Orthogonal Defect Classification:Goncept for In-Process
MeasurementsIEEE Transactions on Software Engineetingl 18, no 11, pp. 943-

956.

Cohen and Jacob, A. (1960) ‘A coefficient of agreatrfor nominal scales.’

Educational and Psychological Measuremge¥bl.20, No.1, pp.37-46.

Day I, (1993) Qualitative data analysis& user-friendly guide for social scientists

New York Routledge.

134

Doolan, E.P. (1992) ‘Experience with Fagan’s InsipecMethod. Software—Practice

and Experiencevol. 22(2), February.

Eickelmann, Nancy S, Ruffolo, Francesca, Baik, doogn and Anant (2003) ‘An
Empirical Study of Modifying the Fagan Inspectiamé&ess and the Resulting Main
Effects and Interaction Effects Among Defects Fqufitbrt Required, Rate of
Preparation and Inspection, Number of Team MeméedsProduct 1st Pass Quality.’
Proceedings of the 27th Annual NASA GodddEEE Software Engineering

Workshop

F. Akiyama (1971) ‘An Example of Software SystermbDgging.’Information

Processingvol. 71, pp. 353-379.

Fagan, M. E. (2000) ‘Design and code inspectionrgdoice errors in program

development.’IBM Systems Journal

Fagan, M. E. (1986) ‘Advances in Software InspeidEEE Transactions on

Software Engineering

Ferdinand, (1974) ‘A Theory of System Complexityt’l J. General Systemsol. 1,

pp. 19-33.

135

Fredericks. (2006). Detecting Defects in Objecte@ted DesigndJsing Reading

Techniques to Increase Software Qualfp. 47-56). Denver: ACM Press

Gilgun, J.F. (1992pefinitions, Methodologies, and Methods in Qualitat~amily

Research Qualitative Methods in Family Resegph22-29.

Glaser, B. G., and Strauss, A.L. (1967) The Discpeé Grounded Theory: Strategies

for qualitative research, New York: Aldine de Greryt

Group, T. S. (20095tandish Group reportBoston : CHOAS .

http://www1.standishgroup.com/newsroom/chaos_20G9.p

http://databases.about.com Web portal containimigslto a variety of database issues

http://mwww.nwlink.com/~Donclark/hrd/history/hawthee.html [accessed on 3rd

February 2009 at 10.00 am]

Johnson, P.M. (1996 esign For Instrumentation: High Quality Measurernéx

Formal Technical RevigwSoftware Quality Journal volume 5, number 1.

136

K. Koga (1992) ‘Software Reliability Design MethodHitachi.” Proc. Third European

Conf. Software QualityMadrid.

K. Yasuda (1989) ‘Software Quality Assurance Adies in Japan.Japanese

Perspectives in Software Engp. 187-205, Addison-Wesley.

Kathy Charmaz(2006)‘Constructing Grounded Theory: A Practical Guideotigh

Qualitative Analysis.Pine Forge Press

M. Dyer (1992)The Clean room Approach to Quality Software Develept.Wiley.

Mitchell Scott (2007), Examining ASP.NET 2.0’s Meenbhip, Roles and
Profiles Part 8. Available at:

http://aspnet.4guysfromrolla.com/articles/01030&sphx [Accessed 08 March 2010].

Mitchell Scott (2007), Examining ASP.NET 2.0’s Meenbhip, Roles and
Profiles Part 1. Available at:

http://aspnet.4guysfromrolla.com/articles/12070&sfx [Accessed 01 January 2011].

MSDN Library (2009), ASP.NET Developer centre, Sith€ode Folders in
ASP.NET websites. Available at:
http://msdn.microsoft.com/enus/library/t990ks23 (83.aspx [Accessed 03 March

2010]

137

http://www.mathworks.com/matlabcentral/fileexchatigpe 26 [Accessed 04 December

2009]

M. Halstead (1977lements of Software Scienddew York Elsevier, North-Holland.

N.E. Fenton, S. Lawrence Pfleeger, and R. Glas84(1'$cience and Substance: A

Challenge to Software EngineerieEE Softwarepp. 86-95, July.

N.E. Schneidewind and H. Hoffmann (1979) ‘An Expeent in Software Error Data

Collection and AnalysisIEEE Trans. Software Engepl. 5, no. 3, May.

Nakajo and Kume (1991) ‘A Case History AnalysisSofftware Error Cause-Effect
Relationships.IEEE Trans. Software Engvol. 17, no. 8, Aug.
Pankaj Jalote (2008oftware Project Management in Practiéeldison-Wesley, pg

119.

Philip M. Johnson (1988) ‘Supporting technologynster of formal technical review

Potier, D., Albin, M., Ferreol, A. and Bilodeawd@?) ‘Experiments with Computer
Software Complexity and ReliabilityProc. Sixth Int'l Conf. Software Engp. 94-

103.
138

Pressman, R., 20050ftware Engineering: A Practitioner's Approa&ingapore:
McGraw-Hill.
Royce, W.W., 198Managing the development of large software systeorscepts

and techniqued.os Alamitos: IEEE Computer Society Press.

Sfetsos, P., Angelis, L. & Stamelos, I., 2006. Btigating The Extreme Programming

System - An Empirical Stud§Empirical Software Engineering 1(2), pp.269-301.

R.D. Buck and J.H. Robbins (2008) ‘Application aff@vare Inspection Methodology

in Design and CodeSoftware Validation, Northampton Square

R. W. Selby and A. A. Porter, Learning from examspl@eneration and evolution of

decision trees for software resource analytt<EE Trans. on Software Engineerjng

vol. 14, December.

R.B. Grady (1992)Practical Software Metrics for Project Managementdrocess

Improvement.Prentice Hall.

R.D. Buck and J.H. Robbins (2008) ‘Application af@vare Inspection Methodology

in Design and CodeSoftware Validation, Northampton Square

139

Schneider, G.M., Martin, J., and Tsai, W.T. (1992) Experimental Study of Fault
Detection in User Requirements Documem¢CM Transactions on Software

Engineering and Methodologyol. 1, April

Shneiderman, B. (1998) Designing the User Interf8tmtegies for Effective Human-

Computer InteractionAddison-Wesley.

Sim, J. and Wright, C. C. (2005) ‘The Kappa Statist Reliability Studies.Use
Interpretation, and Sample Size Requirements irsiealyTherapyVol. 85, pp. 257-

268.

Singer, J. and Lethbridge, T.C. (1996) ‘MethodsStrdying Maintenance Activities.’
In Proceedings of the 1st International Workshogfempirical Studies of Software

MaintenanceMonterey CA.

Steve Borgatti (1990ntroduction to Grounded Theargrounded Theory Institute.

T. J. McCabe (1976) ‘A complexity measur&EE Trans. On Software Engineerjng

vol. SE-2, no. 4.

Tauriainen (1999 xperience Capturing Process and Its Enactment:tbtabhesis

University of Oulu, Department of Information Preseg Science.

140

Tom Gilb (1993) ‘Software InspectiorAddison-Wesley

University of Greenwich (20083esearch Ethics Policyvailable from
http://www.gre.ac.uk/research/research_ethics_catmefpolicy [Accessed: 31

October 2010].

University of Greenwich (2008tudy Skills — Referencimyailable from

http://www.gre.ac.uk/study_skills/referencing) [Assed: 31 October 2010].

VanSomeren, M., Bernard, Y.F. and Sandberg (1984¢ Think Aloud Method: A

Practical Guide to Modeling Cognitive ProcessAsademic Press

Veevers, A. (1994) ‘A Relationship between Softw@meerage Metrics and
Reliability.” Software Testing Verification and Reliabilityol. 4, pp. 3-8.
Ward John & Peppard Joe (2002), Strategic Plarioinopformation Systems. 3rd

edition. England: John Wiley & Sons

Wiegers, K. E. (2008)mproving Quality Through Software Inspectio@hicago:

Adventure Works Press.

141

APPENDIX

142

AN INTRODUCTION LETTER

Lawrence Nderu

ICSIT, JKUAT

Dear Respondent,

| am a Post Graduate student (M.Sc. Software Ergimg) at Jomo Kenyatta
University of Agriculture and Technology (JKUAT)arying out a research study on,
“FORMAL TECHNICAL REVIEW IN SOFTWARE QUALITY ASSURAN CE".
The questionnaire (attached) aims at establistiegtfects of background and
experience of a reviewer on the defects uncoveueidglaFormal Technical Review
(FTR). The information on the questionnaire will be k&ginfidentialand no

individual names will be mentioned in the completaf the work. Your answers in this
study will go along way in assisting the researcheterstand the relationship between
the background and experience of the reviewerdladefects uncovered during a

FTR.

Thanking you in advance.

Yours faithfully

Lawrence Nderu

Researcher

143

Questionnaire

Name

Section A

General Background (tick the most appropriate)

1. My reading comprehension skills are:

o Low O
o Medium O
o0 High O

2. My listening and speaking skills are:

o Low O
o Medium O
o High L

3. What is your previous experience with software dlgwaent in practice? (Check

the bottom- most item that applies.)
o | have never developed software. O
0 | have developed software on my own. O
o | have developed software as a part of a teama@®pa course. [

o | have developed software as a part of a teanmdustry one time. U

144

o | have worked on multiple projects in industry. L

i) Please explain your answerlnclude the number of semesters or
number of years of relevant experience. (E.g. “tked for 10 years
as a programmer in industry”; “I worked on one &pgoject in

industry”; “I developed software as part of classjgct”; etc...)

Software Development Experience
Please rate your experience in this section wipeet to the following 5-point scale:
(Please include any relevant comments below eatiosg
1= No experience? = learned in class or from bodk= used on a class
project;
4 = used on one project in industB/;= used on multiple projects in industry
Experience with Lifecycle Models
4. Experience with th&Vaterfall Model 1 2 3 4
5

Comment:

145

5. Experience with th&piral Model

Comment:

6. Experience with théncremental Development Model
5

Comment:

Experience with Requirements

O Experience writing requirements

4 5

O Experience interacting with users to write requieets
4 5

O JExperience writing use cases

4 5

O Experience reviewing requirements

4 5

O Experience reviewing use cases

4 5

O Experience changing requirements for maintenance
4 5

Comments:

Experience in Design

146

O Experience in design of systems 1 32

4 5

O Experience in design of systems from requiremeséstases 1

4 5

O Experience with creating Object-Oriented (OO) desig 1 2
4 5

O Experience with creating Structured Designs 1 2
4 5

OO Experience with reading OO designs 1 2
4 5

O Experience with the Unified Modeling Language (UML) 1 2
4 5

O Experience changing designs for maintenance 1 2
4 5

Comments:

Experience in Coding

O JOExperience in coding, based on requirements/usgscas 1 2 3 4 5

[JExperience in coding, based on design 1 2435
O Experience in coding, based on OO design 1324 5
O Experience in maintenance of code 1 2435
Comments:

147

Experience in Testing

O Experience in testing software

O Experience in testing, based on requirements/usesca
OO Experience with Unit Testing

O Experience with Integration Testing

OO Experience with System Testing

Other Experience

» Experience with software project management?

» Experience with software inspections?

Comment:

4 3 4 5

1 2 3 4 5

1 23 &

1 238 5

1 2 3 &

213 4 5

1324 5

148

Section B
i) Please rate how much you think the background exjzerience (column) factor
affects the ability of the reviewer to uncover tedects categories (rows) in this
section with respect to the following 5-point scg@ease include any relevant
comments)
1= Strongly Agree; 2 Agree;3 = Disagree# = Strongly Disagree;
5= Do not Know
NOTATION
DK — Amount of knowledge about the domain containinggiablem being solved.
SDE -Experience in whatever development phase the itispas occurring at
NL - Familiarity with the documents language.
PM — Experience in software projects management

PC- How closely the inspector uses the checklishergrocess provided.

149

a) Requirements Phase

Experience and background of the reviewer (Coded asbove)

DK | SDE|NL | PM | PC

o Document Formatting issues

©

e

% Terminology — incorrect terminology

=

GE) States- deals with system, object or data states

o

3 Data —inconsistence in data types, validation, ssce

()

o) and restrictions

2

3) Interface and Access- way of accessing the system

2 _

@ also interface

(&)

[2)

g Other Inconsistencies — Contradictory things in two

©

o parts of the documents
b) Design Phase

Experience and background of the reviewer (Coded asbove)
DK | SDE|NL | PM | PC
1 Message« problems involving messages that appear

Defects classes

in the design.

Attributes — Description of attributes in the design

150

Actors — Misuse of the actors within the design.

Constraints — Constraints are omitted or incorrect

Relationships —Incorrectly related classes.

Class Hierarchy —Problems within the class

inheritance structure.

Other —Defects that do not fit in other categories.

States- states of the objects unclear

c¢) Coding Phase

Experience and background of the reviewer (Coded asbove)

Defects classes under Coding phase

DK

SDE

NL

PM

PC

Logic- insufficient/incorrect algorithms used.

Standards — problems with coding/documentation

standards.

Redundant code

Performance— poor processing speed: System cra

because of file size, Memory problems

1sh

Reusability — inability to reuse the code

Memory management defeci — e.g. array overflow

illegal function call, system hands, or memory

151

overflow

Consistenc' — Updating or deleting of records in th

same order throughout the system

Portability — code not independent of the platform

d) Testing Phase

Experience and background of the reviewer (Coded asbove)

Defects classes under Testing phase

DK | SDE|NL | PM | PC
Testing Tools and resource — Are the tools and
resources identified and available.
Record keepin¢— has the record keeping mechanism

being established.

Stress Testing Mechanisir — is the stress testing

mechanism established?

Major identification of test phases- identification
and sequencing of major test phases and the

sequencing.

152

SYSTEM HARDWARE AND SOFTWARE PACKAGES USED FOR THIS

PROJECT

» Desktop Computer — 2.8 GHZ, 40GB, 512 MB

* Windows Xp Service pack 3

* Visual Studio 2008

e Microsoft SQL server 2008

* Mockup Screen development Tool

* AgroUML

* Apache Ant

153

