
i

Framework for an Effective Formal Technical Review in Software

Quality Assurance

Lawrence Nderu

A thesis submitted in partial fulfillment for the degree of Master of

Science in Software Engineering in the Jomo Kenyatta University of

Agriculture and Technology

2011

ii

DECLARATION

This thesis is my original work and has not been presented for a degree in any other

university.

Signature:…………………………………… Date:…………………………...

 Lawrence Nderu

This thesis has been submitted for examination with our approval as University

Supervisors.

1. Signature:…………………………… Date:…………………………

 Dr. Ronald Waweru Mwangi

 J.K.U.A.T, Kenya

2. Signature:………………………… Date:…………………………

 Dr. Stephen Kimani

 J.K.U.A.T, Kenya

iii

DEDICATION

To Henry Gathura and Herman Ngure who have always stood by me and have been a

great source of inspiration.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. I want to thank the staff of Hospitality Software Company (HSC)

Kenya, for giving me permission to do the necessary research work, make use of their

departmental data and staff members.

I am deeply indebted to my supervisors Dr. Waweru Mwangi and Dr. Stephen Kimani

from Jomo Kenyatta University of Agriculture and Technology whose help, stimulating

suggestions and encouragement helped me in all the time of research for and writing of

this thesis.

My colleagues and classmates Thuku, Eric, Noela, Wakoli and Felix supported me in

my research work. I want to thank them for all their help, support, interest and valuable

hints. I also want to thank Miss Esther Mumbi for all her support and her being a

source of strength during my study.

Especially, I would like to give my special thanks to my brothers Henry Gathura and

Herman Ngure for the support they offered to enable me to complete this work. Lastly

but not the least I give thanks to Almighty God for seeing me through the tough and

good times in my life; He is my only hope.

v

TABLE OF CONTENTS

DECLARATION .. II

DEDICATION .. III

ACKNOWLEDGEMENTS ... IV

TABLE OF CONTENTS ... V

LIST OF TABLES .. IX

LIST OF FIGURES .. XI

LIST OF APPENDICES ... XIV

LIST OF ABBREVIATIONS ... XV

ABSTRACT ... 1

CHAPTER ONE .. 2

1.1 INTRODUCTION ... 2

1.2 Problem Statement ... 4

1.3 Aims And Objectives .. 5

1.4 Definations .. 6

CHAPTER TWO ... 7

2.1. METHODOLOGY ... 7

vi

2.2. .Net Framework Advantages .. 9

2.3. Development Approach .. 11

2.4. Framework Diagram ... 14

CHAPTER THREE ... 15

LITERATURE REVIEW ... 15

3.1 Introduction ... 15

3.2 Formal Technical Review/Inspections .. 15

3.3 Fagan Inspection Model .. 16

3.4 Usage Of The Fagan Inspection Model ... 16

3.5 Criteria ... 17

3.6 Grounded Theory ... 28

3.7 Defect Classification Schemes .. 32

3.8 Related Work In Defect Classification .. 32

3.9 Classification Of Defects / Bugs ... 33

3.10. Defects Classification Schemes .. 42

3.12. Testing Defects Classification (Initial Classification) .. 45

vii

3.13. Initial List Of Experience Variables ... 45

CHAPTER FOUR ... 47

4.1 ANALYSIS OF RESULTS ... 47

4.2 Fleiss' Kappa .. 53

4.3 Calculation Of K Value For Different Phases ... 56

4.4 Summary Of The Results .. 82

CHAPTER FIVE ... 85

5.1 REQUIREMENTS ANALYSIS ... 85

5.2 The Suggested Solution ... 87

5.3 Non-Functional Requirements ... 89

5.4 System Design ... 89

5.5 The Database Design ... 92

5.7 Web Services ... 113

5.8 Testing ... 124

CHAPTER SIX .. 126

6.1 RECOMMENDATIONS AND CONCLUSION .. 126

viii

6.2 Keeping Records ... 129

REFERENCES .. 133

APPENDIX .. 142

ix

LIST OF TABLES

Table 4.1: Example Table for Representing Proportions of Defect Classifications

Made By Inspectors ……………………………………………………28

Table 4.2: Analysis of K Value…………………………………….……..………….32

Table 5.1.1: Document Formatting Issues Results ……………………...…..……..35

Table 5.1.2: Terminology Issues Results………………………….………………...35

Table 5.1.3: States Issues Results……………………..……..……………………...36

Table 5.1.4: Data Issues Results……………………..………..…………..………...36

Table 5.1.5: Interface and Access Issues Results…………………...………………37

Table 5.1.6: Other Inconsistencies Issues Results……………...……………..…….38

Table 5.2.3: Attributes Issues Results…………………………...………..…………38

Table 5.2.4: Actors Issues Results…………………...…………..………………….40

x

Table 5.2.5: Constraints Issues Results………………………...…………..……….40

Table 5.2.6: Relationships Issues Results…………………...…...………………….41

Table 5.2.8: Other Issues Results……………………...…......……………………...42

xi

LIST OF FIGURES

Fig 2.1 Fagan Inspection Model ………………..……………….………………8

Fig 2.2 Example of Defect Classification Method…………….…....………….11

Fig 5.1 Use Case Diagram for the Administrator Duties……….….…...……....55

Fig 5.2 Use Case Diagram for the Reviewer Duties…………….…..………….55

Fig 5.3 Use Case Diagram For The Customer Duties………………….……....56

Fig 5.4 The Architecture for the System………....……….….…………………57

Fig 5.5 The Architecture of the System with an Illustration of the Methods

Available…………………………………………..……………………58

Fig 5.6 The Database Diagram…………...………….………………………....59

Fig 5.7 The Class Diagram For Dao…….……………...….……...……………61

Fig 5.8 The Class Diagram For Façade Class……….……..…………………..62

xii

Fig 5.9 The Detailed Class Diagram For Façade Class…….……..…………....62

Fig 5.10 The Class Diagram For Users of the System…….……….……………63

Fig 5.11 Detailed Class Diagram for Users Of The System…………….………64

Fig 5.12 User Interface for the Administrator……………....………..…………64

Fig 5.13 User Interface for the Task Form……………………….……………..64

Fig 5.14 User Interface for the Online Application……………………………..65

Fig 5.15 .Net Remoting Architecture.…………………………...………………66

Fig 5.16 Output from the Remote Server Application………..……....…………72

Fig 5.17 First Page for Login………..………..………………..…..……………73

Fig 5.18 Output from the Remote Server Application………………..…………74

Fig 5.19 Illustration of Components in the Web Service……...…..……………75

xiii

Fig 5.20 Methods Exposed Though A Web Service……….…………...………76

Fig 5.21 Xml Message Returned for the Projects……...………………………..77

Fig 5.22 Web Site Home Page…………………….………..………………….78

xiv

LIST OF APPENDICES

Appendix I Questionnaires ………………………………………………………143

xv

LIST OF ABBREVIATIONS

DAO Data Access Objects

DK Domain Knowledge

FTR Formal Technical Review

H.S.C. Hospitality Systems Consultancy

NL Natural Language

PC Process Conformance

PM Projects Management

SDE Software Development Experience

SDLC Software Development Lifecycle

1

ABSTRACT

Formal technical review (FTR) is an essential component of all software quality

assessment, assurance and improvement techniques. However, current FTR practice

leads to significant expense, clerical overhead, group process obstacles, and research

methodology problems. This research aimed at looking for ways and means of making

FTR more effective and less of a burden.

This research affirms that the background and experience variables of the reviewers

affect the defects a reviewer is able to uncover at different phases of software

development. It then presents the most important background and experience variables

for a reviewer to be able to uncover certain classes of defects.

Software products are largely different, this could be due to for example, the

environment of use, the effects of malfunctioning (it could be mild or fatal). This

research provides a framework in which quality knowledge (lessons learned in software

inspection) can be captured and reused during the inspection process. We pursue the

idea of the accumulation of knowledge during reviews and establish a framework and a

tool environment in which experience gained can be used by Project Managers when

preparing for Formal Technical Reviews.

2

CHAPTER ONE

1.1 INTRODUCTION

Quality of software products has become an important area in software quality

assurance, even with this importance the job of quality

Reviewing a software product is as old as programming itself. However, the first

structured, measurement-based review process was Michael Fagan's five-step

Inspection method (this method will be discussed in detail under literature review). The

following is the overview:-

� The author presents an overview of the scope and purpose of the work product.

� Preparation: reviewers analyze the work product with the goal of understanding

it thoroughly.

� Inspection meeting: the inspection team assembles and the reader paraphrases

the work product. Reviewers raise issues that are subsequently recorded by the

scribe.

� Rework: the author revises the work product, depending on the conclusion from

the reviewers.

� Follow up: The moderator verifies the quality of rework and decides if

reinspection is required [Fagan00].

The fundamental reason for measuring software and the software process is to obtain

data that helps us to better control the schedule, cost, and quality of software products.

It is important to be able to consistently count and measure basic entities that are

3

directly measurable, such as size, defects, effort, and time (schedule). Consistent

measurements provide data for doing the following:

• Quantitatively expressing requirements, goals, and acceptance criteria.

• Monitoring progress and anticipating problems.

• Quantifying tradeoffs used in allocating resources.

• Predicting the software attributes for schedule, cost, and quality.[Florac92]

Delaying corrections until testing and operational phases may lead to higher costs and it

may be too late to improve the system significantly. Formal Technical Review (FTR) is

a tool used for early prediction of fault-prone program to improve software quality.

Normally FTR is conducted during each of the following phases in the software

development lifecycle (SDLC).

i) Software Requirements Analysis

ii) Software Design phase

iii) Software Coding phase

iv) Software Testing phase

Formal Technical Review (FTR) is an essential component of all modern software

quality assessment, assurance, and improvement techniques, and is acknowledged to be

the most cost-effective form of quality improvement when practiced effectively.

However, Formal Technical Review methods such as inspection are very difficult to

adopt in organizations and a lot of work needs to be done to make the whole process

4

less of a burden: first of all they introduce substantial new up-front costs, training,

overhead, and group process obstacles. Sustained commitment from high-level

management along with substantial resources is often necessary for successful

technology transfer of FTR.

1.2 PROBLEM STATEMENT

This researcher believes that if the selection of reviewers can be made with a clear

objective of the kinds of defects that individuals with various background and

experience are able to uncover then the whole process of software review can be made

more effective. This information can then be captured in a software product tool which

will provide guidance to the project managers to perform an effective Formal Technical

Review.

Much of the research that has been carried out regarding the FTR, has focused on

improving the meeting and making it more effective. This line of research makes the

assumption that individual inspectors already know how to inspect software artifacts on

their own. Research has shown that providing inspectors with detailed techniques can

improve their performance over simple ad hoc reading [Shull98]. In either case, work

on the individual inspection either prior to the meeting, or in place of the meeting, has

not been studied as much as the inspection meeting has. Since research has shown

improvement for individuals when given a specified technique to use, there is a need for

5

aiding the inspector, either before the inspection meeting or in the absence of the

inspection meeting, to become better and more efficient at the job of detecting defects

in the software artifacts.

1.3 AIMS AND OBJECTIVES

i. Investigating a useful defect classification scheme for the software development

phases.

ii. Developing a list of Background and Experience variables for the reviewers.

iii. Investigating the predictive relationship between the defects uncovered and the

Background and Experience of the reviewers of a software product.

iv. Developing a support tool to help project managers in selection of a team of

reviewers to carry out the FTR.

This research thus, tries to answer the following question:

Do the background and Experience variables of the reviewers affect their

performance during a FTR and if this is so can this information be captured in a

software tool to be able to improve future reviewers.

6

1.4 DEFINATIONS

Software Defect can be defined as any flaw or imperfection in a software work product

or software process [Brad01].

Software work product - is any artifact created as part of the software process.

Software process - is a set of activities, methods, practices and transformations that

people use to develop and maintain software work products.

A defect is frequently referred to as a fault or bug.

7

CHAPTER TWO

2.1. METHODOLOGY

Defect classifications is subjective it is necessary to ensure that they are repeatable (i.e.,

that the classification is not dependent on the individual). An initial defect classification

scheme in the software development lifecycle will be created. This initial classification

will be delivered from literature materials and will be improved as new defect classes

are discovered.

The reviewers to be involved in the questioner will have their background and

experience captured as this is one of the variables that is being tested whether it affects

the outcome of a review meeting. An analysis of the data collected will be carried out

with the aim of trying to establish the existence of any relationship between the

reviewers’ background and experience and the kind of defects discovered. These results

will be used to come up with a support tool for the project managers to help him/her

select reviewers depending on the nature of the defects that the project manager wants

uncovered.

In case the background and experience of the reviewers affects the outcome of a review,

not only does the development organization have to worry about how the specific

techniques and methods will positively or negatively affect their software development

process, they also must have a way to evaluate the background and experience of each

8

of their team members. The way in which these evaluations are done and the results

reported by them must give the process manager some guidance on how to staff an

inspection, this will be the reason why a software tool will be created to capture this

details.

For this project the researcher will build a prototype to demonstrate desired

functionalities and achieve objectives as stated above. To do this a back end database

will be created using Microsoft SQL server 2008 with a connecting front end interface

built using ASP.NET 3.5 with C#. ASP.NET 3.5 is a Microsoft development tool that

allows the easy development of web applications with the incorporation of a

programming language such as C# or Visual Basic. ASP.NET 3.5 is a very rich

programming tool and has an in built security web control and a “membership” feature

which enables the creation of roles as well as user accounts. User account data is stored

in a predefined software generated database which defines the permissions of roles and

users created within the system. This feature is invaluable to this project and as such the

project will be exploiting the richness of this software development tool in during the

build.

The Formal Technical Review Tool (FTR) created will have to be distributed so that

users of the system can be able to access the software tool online. Due to this the .NET

environment will be used so as to provide the .NET Remoting functionalities it also has

the following advantages.

9

2.2. .NET FRAMEWORK ADVANTAGES

The .NET Framework offers a number of advantages to developers. Such as the

following:

Consistent Programming Model - Different programming languages have different

approaches for doing a task. For example, accessing data with a VB 6.0 application and

a VC++ application is totally different. When using different programming languages to

do a task, a disparity exists among the approach developers use to perform the task. The

difference in techniques comes from how different languages interact with the

underlying system that applications rely on.

With .NET, for example, accessing data with a VB .NET and a C# .NET looks very

similar apart from slight syntactical differences. Both the programs need to import the

System.Data namespace, both the programs establish a connection with the database

and both the programs run a query and display the data on a data grid. The VB 6.0 and

VC++ example mentioned in the above explains that there is more than one way to do a

particular task within the same language. The .NET example explains that there's a

unified means of accomplishing the same task by using the .NET Class Library, a key

component of the .NET Framework. The functionality that the .NET Class Library

provides is available to all .NET languages resulting in a consistent object model

regardless of the programming language the developer uses.

10

Direct Support for Security - Developing an application that resides on a local

machine and uses local resources is easy. In this scenario, security isn't an issue as all

the resources are available and accessed locally. Consider an application that accesses

data on a remote machine or has to perform a privileged task on behalf of a

nonprivileged user. In this scenario security is much more important as the application

is accessing data from a remote machine.

With .NET, the Framework enables the developer and the system administrator to

specify method level security. It uses industry-standard protocols such as TCP/IP,

XML, SOAP and HTTP to facilitate distributed application communications. This

makes distributed computing more secure because .NET developers cooperate with

network security devices instead of working around their security limitations.

Simplified Development Efforts - With classic ASP, when a developer needs to

present data from a database in a Web page, he is required to write the application logic

(code) and presentation logic (design) in the same file. He was required to mix the ASP

code with the HTML code to get the desired result.

ASP.NET and the .NET Framework simplify development by separating the application

logic and presentation logic making it easier to maintain the code. You write the design

code (presentation logic) and the actual code (application logic) separately eliminating

the need to mix HTML code with ASP code. ASP.NET can also handle the details of

11

maintaining the state of the controls, such as contents in a textbox, between calls to the

same ASP.NET page.

Another advantage of creating applications is debugging. Visual Studio .NET and other

third party providers provide several debugging tools that simplify application

development. The .NET Framework simplifies debugging with support for Runtime

diagnostics. Runtime diagnostics helps you to track down bugs and also helps the

developer to determine how well an application performs.

Easy Application Deployment and Maintenance - The .NET Framework makes it

easy to deploy applications. In the most common form, to install an application, all you

need to do is copy the application along with the components it requires into a directory

on the target computer. The .NET Framework handles the details of locating and

loading the components an application needs, even if several versions of the same

application exist on the target computer. The .NET Framework ensures that all the

components the application depends on are available on the computer before the

application begins to execute.

2.3. DEVELOPMENT APPROACH

To successfully complete this project a detailed development framework will be

followed. There are a number of industry standard development methods that spring to

12

mind. Dynamic Systems Development Method (DSDM), Rapid Application

Development (RAD), Structured Systems Analysis and Design Method (SSADM) are

examples of standard development methods and techniques employed in industry.

These development methods are quite large and elaborate and are more suitable for use

with large industry standard projects. SSADM is a more traditional and rigid approach

and does not allow for iteration. With this method it is assumed that requirements would

not change during the development of the project. The software product to be developed

here needs to be developed in such a way that the developer is given an option of going

back a step or two during the development and make necessary changes if needs be.

DSDM and RAD are more flexible methods as they both allow for iteration. These

methods are user centered and require a great deal of user involvement throughout the

project life cycle. DSDM stipulates that users should agree to a substantial and

sustained commitment to the development process. User feedback is vital for every

stage of the development cycle.

Bearing this in mind, the researcher has extracted vital bits from industry recognized

frameworks and designed a framework for the project build which appropriately defines

the way this software tool will be developed. The build and development of this project

will be iterative and incremental in nature. A breakdown of this framework is as

follows:

13

a) REQUIREMENTS ANALYSIS

An analysis of the needs the FTR tool should solve will be carried out. The objectives

of the proposed system will be clearly defined.

b) PRIORITISE REQUIREMENTS

Requirements would be prioritized at this stage sing MoSCoW analysis. Time boxing

will be employed as a time management technique.

c) REQUIREMENTS SPECIFICATION

A logical model of the system will be produced at this stage. Data models will be

produced to engineer requirements of the system.

d) DESIGN AND IMPLEMENTATION

A database structure will be designed and a system will be physically produced

outlining the precept of the requirements specification stage.

e) TESTING

A test plan is produced at this stage. The testing is iterative and is tested during the

design and implementation stages.

f) EVALUATION

The system is evaluated.

14

2.4. FRAMEWORK DIAGRAM

 Fig 3.1: Development Framework Diagram

15

CHAPTER THREE

LITERATURE REVIEW

3.1 INTRODUCTION

The FTR (Formal Technical Review) is a software quality assurance activity with the

objectives to uncover errors in function, logic or implementation for any representation

of the software; to verify that the software under review meets its requirements; to

ensure that the software has been represented according to predefined standards; to

achieve software that is developed in a uniform manner and to make projects more

manageable. FTR (Formal Technical Review) is also a learning ground for junior

developers to know more about different approaches to software analysis, design and

implementation. It also serves as a backup and continuity for the people who are not

exposed to the software development so far. This literature review places Formal

Technical Review in context as well as looking at some of reasons for carrying out

Formal Technical Review.

3.2 FORMAL TECHNICAL REVIEW/INSPECTIONS

The concept of inspections is not unique to software engineering. Many fields have

some type of inspection of their artifacts. The goals of these inspections can vary from

setting to setting, but a general goal is ensuring that the artifact is of sufficient quality to

be used by the customer(s) of that document. For example architects have their

16

drawings inspected for feasibility before passing them along to the construction team. In

the same way, software development teams have their software artifacts inspected

before passing them along (to the next phase of the lifecycle). Many variations of

inspections have emerged [Ackerman89].

The value of software review as a mechanism for software quality improvement has

been demonstrated repeatedly. Beginning with the landmark work of Michael Fagan at

IBM in 1976, structured review mechanisms such as inspection have been shown

repeatedly to be an extremely effective means to find work product defects early in the

software development process.

3.3 FAGAN INSPECTION MODEL

Fagan inspection refers to a structured process of trying to find defects in development

documents such as programming code, specifications, designs and others during various

phases of the software development process. It is named after Michael Fagan who is

credited with being the inventor of Formal Software Inspections.

Fagan Inspection is a group review method used to evaluate output of a given process. It

defines a process as a certain activity with a pre-specified entry and exit criteria. In

every activity or operation for which entry and exit criteria are specified Fagan

Inspections can be used to validate if the output of the process complies with the exit

criteria specified for the process.

3.4 USAGE OF THE FAGAN INSPECTION MODEL

17

The software development process is a typical application of Fagan Inspection; software

development process is a series of operations which will deliver a certain end product

and consists of operations like requirements definition, design, coding up to testing and

maintenance. As the costs to remedy a defect are up to 10-100 times less in the early

operations compared to fixing a defect in the maintenance phase, it is essential to find

defects as close to the point of insertion as possible [Brocklehurst92]. This is done by

inspecting the output of each operation and comparing that to the output requirements,

or exit-criteria of that operation.

3.5 CRITERIA

Entry criteria are the criteria or requirements which must be met to enter a specific

process [Fagan, 00]. For example for Fagan inspections the high- and low-level

documents must comply with specific entry-criteria before they can be used for a formal

inspection process.

Exit criteria are the criteria or requirements which must be met to complete a specific

process. For example for Fagan inspections the low-level document must comply with

specific exit-criteria (as specified in the high-level document) before the development

process can be taken to the next phase.

The exit-criteria are specified in a high-level document, which is then used as the

standard to compare the operation result (low-level document) to during the inspections.

Deviations of the low-level document from the requirements specified in the high-level

18

document are called defects and can be categorized. The following flowchart shows the

Fagan inspection stages [Eickelmann2003].

A represents the starting and ending sections

 B represents the output from a section

19

 Figure 3.1 Fagan inspection model

20

In a typical Fagan inspection the inspection process consists of the following operations

[Fagan86], [Eickelmann2003]:-

• Planning

o Preparation of materials

o Arranging of participants

o Arranging of meeting place

• Overview

o Group education of participants in the to be inspected materials

o Assignment of roles

• Preparation

o The participants prepare their roles

• Inspection meeting

o Actual finding of defect

• Rework

o Rework is the step in software inspection in which the defects found

during the inspection meeting are resolved by the author, designer or

programmer. On the basis of the list of defects the low-level document

is corrected until the requirements in the high-level document are met.

• Follow-up

o In the follow-up phase of software inspections all defect found in the

inspection meeting should be corrected (as they have been fixed in the

21

rework phase). The moderator is responsible for verifying that this is

indeed the case. He should verify if all defects are fixed and no new

defects are inserted while trying to fix the initial defects. It is trivial

that all defects are corrected as the costs of fixing them in a later phase

of the project will be 10 to 100 times higher compared to the current

costs

Fagan argues as follows:-

“In the process of software inspection the defects which are found are categorized in

two categories: major and minor defects (often many more categories are used). The

defects which are incorrect or even missing functionality or specifications can be

classified as major defects: the software will not function correctly when these defects

are not being solved”.

By using inspections the amount of errors in the final product can significantly

decrease, creating a higher quality product. In the future the team will even be able to

avoid errors as the inspection sessions give them insight in the most frequently made

errors. It is also possible for the team to improve on the classification of defects from

the experience gained and the defects that customers of the documents will uncovered.

By continuously improving the inspection process these insights can even further be

used [Fagan, 2000].

22

Benefits have been reported by companies which have adapted the Fagan inspections

model e.g. IBM indicating that 80-90% of defects can be found. A number of

researchers have suggested improvements to the model with some adjustments to the

original Fagan model [Doolan992].

The following example [Figure 2.2] shows the use of Fagan inspection model, in which

the defects have been classified as either major or minor.

A Major Defect - This are defects such as incorrect or even missing functionality or

specifications: the software will not function correctly when these defects are not

solved.

A Minor Defect - In contrast to major defects, minor defects do not threaten the correct

functioning of the software, but are mostly small errors like spelling mistakes in

documents or optical issues like incorrect positioning of controls in a program interface.

23

 Figure 2.2 Example of defect classification method

As can be seen in the high-level document for this project it is specified that in all

software code produced variables should be declared as ‘strong typed’. On the basis of

this requirement the low-level document is checked for defects. Unfortunately a defect

is found on line 1, as a variable is not declared ‘strong typed’. The defect found is then

reported in the list of defects found and categorized according to the categorizations

specified in the high-level document.

As the benefits of such structured review processes (typically referred to as “Formal

Technical Review" (FTR) became more visible, researchers and practitioners began to

devise variations on Fagan's original method. For example, Tom Gilb developed a

24

comprehensive inspection method with precisely defined phases, metrics, and suggested

process rates for optimum defect removal effectiveness. With few exceptions, these

variations never challenged a fundamental premise of Fagan's original method: that a

face-to-face meeting of the entire review team is essential to the review's success. While

researchers have proposed changing the manner in which reviewers prepared for the

meeting, or even the manner in which the meeting was conducted, the need for a

meeting was never questioned. Fagan, Gilb, and others have argued that meetings

enable a kind of synergy between participants, in which defects not found by reviewers

working individually suddenly come to light. They also argue that meetings educate the

participants, clarify requirements, and provide milestones that facilitate progress.

Unfortunately, meetings introduce substantial costs. They require the simultaneous

attendance of all participants. Their effectiveness depends on satisfying many

conditions, such as adequate preparation, readiness of the work product for review, high

quality moderation, and cooperative interpersonal relationships. Meeting-based review

appears to add 15-20% new overhead onto development costs, and simple scheduling

issues have been shown to lengthen the start-to finish interval for review by almost one

third [Philip03]. The costs of meeting-based review have stimulated more recent

research designed to investigate whether new review methods can be devised that

minimize or eliminate the cost of meetings while preserving the remaining benefits of

review (such as reduction in the cost of error corrections in a finished product). Such

research has ranged from the design of computer-supported cooperative work systems

25

that implement an asynchronous, non-meeting-based review procedure to alternative

manual methods that also shift the process away from reliance on meetings.

Prior to inspections was the idea of a walkthrough. The walkthrough could range

anywhere from a simple peer review all the way up to a formal inspection of the type

discussed here. One of the problems with using walkthroughs in a process that is going

to be improved is that normally very little data is collected because walkthroughs are

less formal and applied differently in each setting [Gilb93]. Because of this the

efficiency of defect detection is quite variable.

[Basili at el81] observes that all project environments and products are different in some

way. Because of these differences the application of techniques and methods on

different projects should be expected to vary. There are many dimensions upon which

software development organizations can differ. For example, the application domain

can vary. Another dimension of potential variation can be the level of risk inherent in

the project. For some applications, failure may mean only mild inconveniences, while

with other applications; it could mean loss of life. While there are some standard

methods and practices for performing inspections, in many cases the application of

those methods may need to be tailored in some way because of this variation.

The basic idea behind an inspection is that members of a software development

organization review a software artifact to ensure that it possesses some level or

26

characteristics of quality. An inspection consists of a series of steps. First, the author of

the artifact gives the reviewers an introduction and overview of the artifact. Next, the

individual inspectors review the software artifact to prepare for the technical reviewer

meeting (team meeting). After the individuals have inspected the document, they meet

together as a team to record the defects that are found. Finally, the document author is

given this list of defect so that he or she may repair them in the software artifact.

Many software engineering sample sizes are small and therefore difficult to show

statistical significance so qualitative data collection and analysis has to be employed in

order to supplement to the more common quantitative methods. Two popular methods

of qualitative data collection that have been transferred from other domains for use in

software engineering are protocol analysis [Singer96], and ethnography

[Shneiderman98]. These methods involve collecting data about how subjects perform

processes. The data collected includes information about what the subjects did as well

as what the subjects’ thought processes were as they solved problems. In order to

collect this type of data, researchers must employ two types of methods. The first type

of methods is retrospective. These methods involve data collection after the process is

complete, thorough post- mortems or questionnaires. This is the method that will be

adapted in this study and hence the sample will come from people who have an

experience in Formal Technical Review.

27

This method has a number of limitation one of them being that since the data is not

collected until the end, there is an issue with the reliability of the information. Subjects

have time to think about and formulate responses, so their response may not give a

totally accurate reflection of what went on [VanSomeren94].

 To be able to take care of this the Fleiss' kappa which is a statistical measure for

assessing the reliability of agreement between a fixed number of raters when assigning

categorical ratings to a number of items or classifying items will be used.

The second types of methods are observational and are used to collect data while the

process is executing. These methods normally involve observation by the researcher of

the subjects [Singer96]. The benefits of observational methods include more accurate

data because the data is collected while the process is executing rather than after it is

over. Also, there is no time for the subject to ‘clean up’ his answers before the

researcher collects the data. On the other hand, there is the potential that the observation

could cause the process to be altered. Some subjects might feel uncomfortable and act

differently than they would if they were not being observed. This phenomenon is known

as the Hawthorne Effect

[http://www.nwlink.com/~Donclark/hrd/history/hawthorne.html]. The observational

techniques are useful when the level of specificity of the data is at the level of

individual steps in the procedure, rather than global information. One of the main

techniques for observation is called thinking aloud,[VanSomeren94]. A researcher

28

instructs the subject to recite his thinking process out loud. Then the researcher can take

notes to understand what is going on.

This type of data does not lend itself to the same types of statistical analyses that can be

performed on the quantitative information mentioned earlier. In analyzing qualitative

data, researchers must examine the mostly textual data to look for patterns. One of the

important methods of doing the analysis is grounded theory, which I will discuss below.

3.6 GROUNDED THEORY

The phrase "grounded theory" refers to theory that is developed inductively from a

corpus of data. If done well, this means that the resulting theory at least fits one dataset

perfectly. This contrasts with theory derived deductively from grand theory, without the

help of data, and which could therefore turn out to fit no data at all.

Grounded theory takes a case rather than variable perspective, although the distinction

is nearly impossible to draw. This means in part that the researcher takes different cases

to be wholes, in which the variables interact as a unit to produce certain outcomes. A

case-oriented perspective tends to assume that variables interact in complex ways, and

is suspicious of simple additive models, such as ANOVA with main effects only.

Part and parcel of the case-orientation is a comparative orientation. Cases similar on

many variables but with different outcomes are compared to see where the key causal

differences may lie. This is based on John Stuart Mills' (1843, A system of logic:

29

Ratiocinative and Inductive) method of differences -- essentially the use of (natural)

experimental design [Borgatti90]. Similarly, cases that have the same outcome are

examined to see which conditions they all have in common, thereby revealing necessary

causes.

The grounded theory approach, particularly the way Strauss develops it, consists of a set

of steps whose careful execution is thought to "guarantee" a good theory as the

outcome. Strauss would say that the quality of a theory can be evaluated by the process

by which a theory is constructed. (This contrast with the scientific perspective that how

you generate a theory, whether through dreams, analogies or dumb luck, is irrelevant:

the quality of a theory is determined by its ability to explain new data.)

This approach to theory building is based largely on the data that has been collected in

observation of the phenomenon under study [Glaser67]. Instead of forming theories top-

down based on assumptions that the researcher has a priori, the theory is formed

bottom-up systematically from the data. This method comes from the field of Sociology,

and because this work is concerned with how project managers can have a way of

knowing which inspectors have an edge in uncovering of defects depending on their

background and experience, this technique will be useful, it is also important to note

that the tool to be developed will take care of the fact that software projects are diverse.

The main idea behind this method is that as the data is analyzed, the theories are

continually modified and updated to take into account each piece of data. First, after a

30

topic of investigation has been chosen, a literature search should be performed. After

this, the researcher should enter into the study with an open mind, willing to observe

things that may go against his or her preconceived notions. The first case should be

observed and described. Based on this information, one can begin to form theories and

hypotheses. After this observation, the literature should again be searched to see if there

is any other information on the specific findings from the first case that was not found

in the previous literature search. The next step is to observe a second case.

While doing this, the researcher will either confirm theories and hypotheses that were

discovered in the first case, or will have to modify the theories and hypothesis from the

first case so that they apply to both cases. This process of reviewing new cases and

modifying the hypotheses and theories to take them into account should continue until

some point of confidence. This confidence could come either when one runs out of

cases, or when each new case is causing very little or no change to the current theories

and hypotheses [Kathy06]. At this point, the theories and hypotheses are fairly solid.

This can be considered in the light of a project manager who is involved in several

projects and thus carries out FTR perhaps using same reviewers or with a slight change

and thus can have a database of which defects an individual with a certain kind of

defects is able to uncover and continue to improve the inspection process by involving

the “relevant” abilities.

31

Finally, [Day93] provides some rules for creating categories. This area of research

applies to the creation of defect classes in this work. Each one of those classes is, in

some sense, a category. So, the following rules are helpful to judge the defect classes.

� Become thoroughly familiar with the data.

� Always be sensitive to the context of the data.

� Be flexible – extend, modify and discard categories.

� Consider connections and avoid needless overlap.

� Record the criteria on which category decisions are based.

� Consider alternative ways of categorizing and interpreting the data.

These pointers will be used for evaluating and evolving both the list of experience

variables as well as the defect classification schemes. [Seaman97] discusses the use of

this approach when in the understanding of communication among members of a

software development organization. Better and new techniques for software engineering

are always developed by researchers. While these new techniques are often theoretically

beneficial, in many cases little empirical support is given. In addition, it is rare to find

researchers who investigate not only their new technique, but also the context in which

the technique is to be used. There are many reasons for the lack of the second type of

research, one being that it is very difficult to do it.

32

3.7 DEFECT CLASSIFICATION SCHEMES

In order to understand the types of defects that occur in software artifacts better,

researchers have developed defect classification schemes. Defect classification

schemes, if properly specified, can be useful for repeatability and comparisons across

studies and environments [Basili84]. These schemes attempt to group the defects that

occur in a particular environment into classes. Below is the discussion of work done in

the area of classifying defects. The scope and specificity of the classifications described

below varies greatly depending on the goals of the organization. After the related work

is discussed, my approach to defect classification will be described and an initial defect

classification model will be developed.

3.8 RELATED WORK IN DEFECT CLASSIFICATION

Defects classification is not a new idea. Any organization that wishes to measure their

process with the intent of improving must classify the defects that are found [Basili81].

This can range from a relatively simple classification of only 2 classes, major and minor

as discussed earlier, to something much more elaborate. The types of classification that

an organization uses will be based on its reason for classifying the defects. The

classification will also depend on the lifecycle phase in which the inspection is going to

occur.

33

Taking into account their local environments, researchers have proposed many different

defect classifications schemes. Some are said to be useful for documents produced

throughout the software lifecycle. Others are directed at documents from a specific

lifecycle phase. Below I will discuss already done classification of defects.

 3.9 CLASSIFICATION OF DEFECTS / BUGS

There are various ways in which we can classify software defects. Below are some of

the classifications:

Severity Wise:

• Major: A defect, which will cause an observable product failure or departure

from requirements.

• Minor: A defect that will not cause a failure in execution of the product.

• Fatal: A defect that will cause the system to crash or close abruptly or affect

other applications. [Robbins 08]

Work product wise:

• SSD: A defect from System Study document

• FSD: A defect from Functional Specification document

• ADS: A defect from Architectural Design Document

• DDS: A defect from Detailed Design document

34

• Source code: A defect from Source code

• Test Plan/ Test Cases: A defect from Test Plan/ Test Cases

• User Documentation: A defect from User manuals, Operating manuals

Type of Errors Wise:

• Comments: Inadequate/ incorrect/ misleading or missing comments in the

source code

• Computational Error: Improper computation of the formulae / improper

business validations in code.

• Data error: Incorrect data population / update in database

• Database Error: Error in the database schema/Design

• Missing Design: Design features/approach missed/not documented in the design

document and hence does not correspond to requirements

• Inadequate or sub optimal Design: Design features/approach needs additional

inputs for it to be complete Design features described does not provide the best

approach (optimal approach) towards the solution required

• In correct Design: Wrong or inaccurate Design

• Ambiguous Design: Design feature/approach is not clear to the reviewer. Also

includes ambiguous use of words or unclear design features.

• Boundary Conditions Neglected: Boundary conditions not addressed/incorrect

35

• Interface Error: Internal or external to application interfacing error, Incorrect

handling of passing parameters, Incorrect alignment, incorrect/misplaced

fields/objects, un friendly window/screen positions

• Logic Error: Missing or Inadequate or irrelevant or ambiguous functionality in

source code

• Message Error: Inadequate/ incorrect/ misleading or missing error messages in

source code

• Navigation Error: Navigation not coded correctly in source code

• Performance Error: An error related to performance/optimality of the code

• Missing Requirements: Implicit/Explicit requirements are missed/not

documented during requirement phase

• Inadequate Requirements: Requirement needs additional inputs for to be

complete

• Incorrect Requirements: Wrong or inaccurate requirements

• Ambiguous Requirements: Requirement is not clear to the reviewer. Also

includes ambiguous use of words – e.g. like, such as, may be, could be, might

etc.

• Sequencing / Timing Error: Error due to incorrect/missing consideration to

timeouts and improper/missing sequencing in source code.

• Standards: Standards not followed like improper exception handling, use of E

& D Formats and project related design/requirements/coding standards

• System Error: Hardware and Operating System related error, Memory leak

36

• Test Plan / Cases Error: Inadequate/ incorrect/ ambiguous or duplicate or

missing - Test Plan/ Test Cases & Test Scripts, Incorrect/Incomplete test setup

• Typographical Error: Spelling / Grammar mistake in documents/source code

• Variable Declaration Error: Improper declaration / usage of variables, Type

mismatch error in source code

Status Wise:

• Open

• Closed

• Deferred

• Cancelled

3.9.1 DEFECTS CLASSIFICATION SCHEMES FOR

REQUIREMENTS

In this case the defects are classified according to the phases. In [Basili81] the authors

describe a study of the evolution of a requirements document for the on-board

operational flight program for the A-7 aircraft. This is a complex, real-time program.

The defects are actual defects that were made in the evolution of the document. The

authors here defined a one level classification scheme with 7 categories. These classes

were used to make hypothesis about what kinds of defects that were the most common

to make [Carver03].

37

Clerical – relatively simple problems with the document like typos.

Ambiguity – something in the document has more than one meaning.

Omission – something has been left out of the document.

Inconsistency – two parts of the document are inconsistent with one another.

Incorrect Fact – something in the document is incorrect with respect to the domain.

Information Put in Wrong Section – information included in the document was

placed in the wrong section.

Implementation Fact not Included – information necessary for a proper

implementation was not given.

Other – defects that do not fall into other classes.

3.9.2 DEFECTS CLASSIFICATION SCHEMES FOR CODE

There have been many studies published in which a classification of code defects has

been provided. In a paper investigating testing vs. code reading [Basili87] provides two

defect classification schemes for defects that can be found in code. Four programs were

studied, each from a different domain. Two different languages were used for those

programs, FORTRAN and Simpl-T. The four programs were:-

i) A text processor

ii) A mathematical plotting routine

iii) A numeric abstract data type

38

iv) A database maintainer.

The following were the defects classes:

1) Omission – Result from the programmer forgetting to include something in a

segment of code.

2) Commission – Result from an incorrect segment of existing code.

And

1) Initialization – Improperly initializing a data structure.

2) Computation – Cause a calculation to evaluate the value for a variable incorrectly.

3) Control – Causes the wrong control path to be taken for some input.

4) Interface – Passing an incorrect or argument or assuming that an array passed as a

parameter was padded with blanks.

5) Data – Result from incorrect use of a data structure.

6) Cosmetic - Clerical mistakes when entering a program

Khaled in a research entitled, “The Repeatability of Code Defect Classifications”

[Khaled02], developed a defect classification scheme shown below

Defect Type Description and Examples of Questions

i) Documentation

o Comments, Messages

• Is the function described adequately at the top of the file?

• Are variables described when declared?

39

• Does the function documentation describe its behavior

properly?

ii) Build/Package

o Change management, library and version control

• Is there a version number defined for the file?

• Are the correct versions of functions included in the

build?

iii) Assignment

o Declaration, duplicate names, scope, limits

• Are variables initialized properly?

• Are all library variables that capture a characteristic or

state of the object defined?

• Are all return values that are special cases (e.g., an error

return) really invalid values (i.e., would never occur

unless there was an error)?

iv) Interface

o Procedure calls and references, I/O, user formats, declarations

• Does the library interface correctly divide the functions into

their different types?

• Do the functions follow the proper object access rules?

• Are the declared and expected interface signatures the same?

40

v) Checking

o Error messages, inadequate checks

• Are all possible error conditions covered?

• Are appropriate error messages given to the user?

• Does the function return the <error> value in case of errors?

• Is there checking or debugging code that is left in the function

that shouldn't be there?

• Does the function check for missing data before making a

computation?

• Are all checks for entry conditions of the function correct and

complete?

vi) Data

o Structure, content, declarations

• Are files opened with the right permissions?

• Are the correct data files accessed?

• Are there any missing variables for the object definition?

• Are variable definitions of the right size to hold the data?

vii) Function

o Logic, pointers, loops, recursion, computation

• Are all branches handled correctly?

• Are pointers declared and used as pointers?

• Are arithmetic expressions evaluated as specified?

41

viii) Memory

o Memory allocation, leaks

• Are objects instantiated before being used?

• Do all objects register their memory usage?

ix) Environment

o Design, compile, test, or other support system problems

� Are all test cases running properly?

� Are compile options set properly (e.g., after changing compiler

version)?

x) Naming Conventions

o Naming of files, functions, and variables

• Do the function and file names follow the naming conventions

for the project?

• Do the variable names follow the naming conventions for the

project?

xi) Understandability

o Hinder understandability

• Are there enough explanations of functionality or design

rationale?

• Are there any misleading variable names?

42

• Are the comments clear and correctly reflecting the code?

In a paper [Ackerman at al89] gives a classification scheme for defects found in

requirements documents. The authors point out that for an inspection to be effective, the

types of defects to be looked for must be specified. Therefore, their goal for classifying

the defects is to provide the inspections with a guide to keep them on task during the

inspection. While they state that inspections can be used on requirements, design, code,

test plans, and test specifications, they only provide the classification for requirements.

Because the goal of this work is different from the ones presented above, a new set of

defect classification schemes but which is informed by existing literature on defects

classification was created. Two goals exist to this work. One is to evaluate the

relationships between the defect classes and the background and experience variables.

The other goal is to improve the inspection process by providing a support tool to the

project managers.

3.10. DEFECTS CLASSIFICATION SCHEMES

3.10.1. DEFECTS CLASSIFICATION SCHEMES FOR REQUIREMENTS

(INITIAL CLASSIFICATION)

Document Formatting issues – These defects deal with problems in the placement of

requirements within the document.

43

Terminology – These defects occur when terminology is incorrectly or inconsistently

used in such a way as to confuse a later user of the document.

States – These defects deal with system, object or data states. While it is at the

requirements level, the concepts of states is still present.

Data – These defects deal with the actual data items that are to be maintained by the

system. This includes inconsistent data types, validation of new data, and access

restrictions to the data.

Interface and Access – These defects deal with the way that users or other systems

gain access to this system. They deal both with the mechanisms of access (the interface)

as well as the restrictions placed upon the access.

Other Inconsistencies – These defects deal with situations where the requirements

document says contradictory things in two different parts of the document.

3.10.2 DEFECTS CLASSIFICATION SCHEMES FOR DESIGN (INITIAL

CLASSIFICATION)

States – These defects occur when the states of the objects are misunderstood in some

way. This includes the addition or omission of an entire state, or incorrect transitions.

Messages – These defects deal with problems involving messages that appear in the

design.

Attributes – These defects deal with problems in the way that attributes have been

described in the design.

44

Actors – These defects deal with the misuse of the actors within the design.

Constraints – These defects occur when constraints are omitted or incorrectly used.

Relationships – These defects occur when classes are incorrectly related within the

design.

Class Hierarchy – These defects describe problems within the class inheritance

structure.

Other – Design defects that do not fit in other categories, but are not major enough to

create a new category.

3.11. CODE DEFECTS CLASSIFICATION (INITIAL CLASSIFI CATION)

i) Logic- insufficient/incorrect errors in algorithms used.

• Wrong conditions.

ii) Standards – problems with coding/documentation standards.

• Indentation, alignment, layout, modularity, comments, hard-coding,

and misspelling

iii) Redundant code – same piece of code used in many programs or in the

same program

iv) Performance – poor processing speed: System crash because of file size,

Memory problems

v) Reusability – inability to reuse the code

45

vi) Memory management defects – Defects such as core dump, array

overflow, illegal function call, system hands, or memory overflow

vii) Consistency – failure to updating or delete records in the same order

throughout the system

viii) Portability – code not independent of the platform.

3.12. TESTING DEFECTS CLASSIFICATION (INITIAL CLASS IFICATION)

Testing Tools and resources – Are the tools and resources identified and available.

Record keeping – has the record keeping mechanism being established.

Stress Testing Mechanisms – is the stress testing mechanism established?

Major identification of test phases – identification and sequencing of major test

phases and the sequencing.

Consistence of the test plan with the overall project plan

3.13. INITIAL LIST OF EXPERIENCE VARIABLES

It makes sense that the background and experiences of an inspector will have an effect

on the way he or she performs an inspection. This fact has been recognized by many

researches that have studied inspections and most researchers take this fact into account

when planning a study or experiment [Gilb93], [Sauer00]. Most of the time the

46

researchers do not specifically address this fact, but often their observations and

conclusions point to this background as a factor. The basis of this initial experience and

background variables is literature which provides a basis for the creation of initial list.

i) Domain Knowledge – This deals with the amount of knowledge about the

domain, such as banking or satellite control, which contains the problem

being solved by the software being developed.

ii) Software Development Experience – This contains experience in whatever

development phase the inspection is occurring, e.g. Requirements, Design,

Code, etc., as well as with specific technologies being used in the

development process, such as SCR or Object Oriented Design.

iii) Natural Language – This deals with how familiar an inspector is with the

language the document is written in.

iv) Experience in Project Management – This is management of software

projects.

v) Process Conformance – This deals with how closely the inspector follows

the process that they have been given to aid in the inspection e.g. a checklist.

47

CHAPTER FOUR

4.1 ANALYSIS OF RESULTS

The data obtained from the Questionnaire (presented in the list of appendix) was

analyzed. The objective of this section is to discuss different coefficients that can be

used for evaluating agreement in defect classification for inspectors.

 Data from a reliability study can be represented in a table such as Fig 5 with k

defect classes. Here an expert in Formal Technical Review will independently classify

the kind of background and experience that a reviewer with a certain background and

experience will uncover.

E
xp

er
t A

Expert B

 Class1 Class 2 … Class K

Class1 P11 P12 P1k P1+

Class2 P21 P22 P2k P2+

…

Classk Pk1 Pk2 Pkk Pk+

 P+1 P+2 P+k

Table 4.1 Example table for representing proportions of defect classifications made by

inspectors.

48

The method to be used to calculate the Agreement between the rates is Fleiss' kappa

which is a statistical measure for assessing the reliability of agreement between a fixed

numbers of raters when assigning categorical ratings to a number of items or classifying

items. The Fleiss’ kappa is an extension of the Cohen's kappa method which measures

the agreement between two raters who each classify N items into C mutually exclusive

categories. The first evidence of Cohen's Kappa in print can be attributed to Galton

1892 [Cohen60], [Bishop09].

The equation for κ is:

 Where

 Pr (a) is the relative observed agreement among raters

Pr (e) is the hypothetical probability of chance agreement, using the observed

data to calculate the probabilities of each observer randomly saying each

category.

If the raters are in complete agreement then κ = 1. If there is no agreement

among the raters (other than what would be expected by chance) then κ ≤ 0.

Example

Suppose that you were analyzing data related to people applying for a grant. Each grant

proposal was read by two people and each reader either said "Yes" or "No" to the

49

proposal. Suppose the data was as follows, where rows are reader A and columns are

reader B:

B

A

 Yes No

Yes 20 5

No 10 15

In the notation from above we can see that the observed percentage agreement is:-

 Pr (a) = (20+15)/50 = 0.70.

To calculate Pr (e) (the probability of random agreement) we note that:

• Reader A said "Yes" to 25 applicants and "No" to 25 applicants. Thus reader A

said "Yes" 50% of the time.

• Reader B said "Yes" to 30 applicants and "No" to 20 applicants. Thus reader B

said "Yes" 60% of the time.

Therefore the probability that both of them would say "Yes" randomly is

0.50*0.60=0.30 (Considering them to be independent) and the probability that both of

them would say "No" is 0.50*0.40=0.20. Thus the overall probability of random

agreement is Pr ("e") = 0.3+0.2 = 0.5.

So now applying our formula for Cohen's Kappa we get:

50

This is a fair agreement [Brennan81].

If the results were made by chance, neither reader showing judgment the value

would be zero. If the readers were in perfect agreement, the number of agreements

would equal the number of trials and Kappa would be 1.

From Table 2.1 above Pij is the proportion of ratings classified in cell (i,j), Pi+ is the

total proportion for row i, and P+j is the total proportion for column j:

 Pi+ = ∑j=1, k Pij

 P+j = ∑i=1, k Pij

The first straightforward approach to evaluating agreement is to consider the proportion

of ratings upon which the two experts agree:

 P0 = ∑i=1, k Pii

However, this value includes agreement that could have occurred by chance. For

example, if the two experts employed completely different criteria for classifying

defects, then a considerable amount of observed agreement would still be expected by

chance. There are different ways for evaluating extent of agreement that is expected by

chance. The first assumes that chance agreement is due to the experts assigning defects

uncovered by reviewers with different background and experience randomly at equal

rates. In such a case chance agreement would be:

51

 Pe= 1/k ……….………………………………………………..equation i

An alternative definition of chance agreement considers that the inspectors' tendency to

distribute their classifications in a certain way is a source of disagreement:

 Pe = ∑i=1, k Pi+P+i………………………………………………………………………equation ii

The marginal proportions in the above equation are maximum likelihood estimates of

the population proportions under a multinomial sampling model.

 If each of the inspectors makes classifications at random according to the

marginal proportions, then the above is chance agreement (derived using the

multiplication rule of probability and assuming independence between the two

inspectors). A general form for agreement coefficients is:

 Agreement = (P0 – Pe)/ (1-Pe)

When there is complete agreement between the two inspectors, P0 will take on the value

of 1. The observed agreement that is in excess of chance agreement is given by P0 – Pe

The maximum possible excess over chance agreement is 1 - Pe.

 Therefore, this type of agreement coefficient is the ratio of observed excess over

chance agreement to the maximum possible excess over chance agreement. If there is

complete agreement, then the agreement coefficient is 1. If observed agreement is

greater than chance, then the agreement coefficient is greater than zero. If observed

52

agreement is less than would be expected by chance, then the agreement coefficient is

less than zero.

An agreement coefficient that considers chance agreement as in Equation [i], Is Bennett

et al.'s S coefficient. An agreement coefficient that considers chance agreement as in

Equation (ii) is Cohen's Kappa (k). Kappa has been presented as a measure of

agreement in diagnosis reliability studies in many scientific fields.

 Extensive use in various disciplines means that guidelines have been developed

for interpreting a particular statistic. A review of the literature in various disciplines

provides guidelines for interpreting Kappa, as well as interpretation guidelines for using

Kappa in evaluating the reliability of software process assessments [Cohen87].

κ Interpretation

< 0 No agreement

0.0 — 0.20 Slight agreement

0.21 — 0.40 Fair agreement

0.41 — 0.60 Moderate agreement

 0.61 — 0.80 Substantial agreement

 0.81 — 1.00 Almost perfect agreement

 Table 4.2 Analysis of K value

 Fleiss' kappa which as stated above is an extension of the Cohen’s Kappa value

53

4.2 FLEISS' KAPPA

Fleiss' kappa is a generalization of Scott's pi statistic, a statistical measure of inter-rater

reliability. It is also related to Cohen's kappa statistic. Whereas Scott's pi and Cohen's

kappa work for only two raters, Fleiss' kappa works for any number of raters giving

categorical ratings, to a fixed number of items. It can be interpreted as expressing the

extent to which the observed amount of agreement among raters exceeds what would be

expected if all raters made their ratings completely randomly.

Agreement can be thought of as follows, if a fixed number of people assign numerical

ratings to a number of items then the kappa will give a measure for how consistent the

ratings are. The kappa,, can be defined as,

The factor gives the degree of agreement that is attainable above chance and

 gives the degree of agreement actually achieved above chance. If the raters are

in complete agreement then:-

. If there is no agreement among the raters (other than what would be expected

by chance) then, .

In this study the Fleiss' kappa was used to find the degree of agreement between the

Expect reviewers.

54

For each of the defects the analysis was done as follows below:

Let N be the total number of subjects (the background and experience variables), let n

be the number of raters per subject, and let k be the number of categories into which

assignments are made. The subjects are indexed by i = 1, 2... N and the categories are

indexed by j = 1, ... k. Let nij represent the number of raters who assigned the i-th

subject to the j-th category.

First calculate pj, the proportion of all assignments which were to the j-th category:

Now calculate , the extent to which raters agree for the i-th subject:

Now compute , the mean of the 's, and which go into the formula for :

55

Two variations of kappa are provided: Siegel and Castellan's (1988) fixed-marginal

multirater kappa and a multirater variation (Randolph, 2005). Brennan and Prediger

suggest using free-marginal kappa when raters are not forced to assign a certain number

of cases to each category and using fixed-marginal kappa when they are, thus in this

study the Free- marginal Kappa was used since the raters were not forced to assign a

certain number of cases to each category. The sample used was from a Hospitality

software development company called Hospitality Systems Consultancy (H.S.C.)

located in Nairobi, A sample of 10 experts in software development were used (Ten was

the number of experts who could be able to participate in the exercise).

 The mode of data collection was a combination of interview and questioner.

Data was collected for three days just immediately after a software product developed

by the company was released to the market and a number of reviews were carried out on

the product.

56

4.3 CALCULATION OF K VALUE FOR DIFFERENT PHASES

NOTATION

DK – Amount of knowledge about the domain containing the problem being solved.

SDE - Experience in whatever development phase the inspection is occurring at.

NL - Familiarity with the documents language.

PM – Experience in software projects management

PC- How closely the inspector uses the checklist or the process provided.

The background and experience variable with the highest value is picked.

4.3.1 REQUIREMENTS PHASE

n = 10 – Number of Expect raters

N = 5 – Background and Experience variables

k = 5 – Categories e.g. Agree, Strongly Agree etc

i) Document Formatting Issues

 Table 5.1.1 Document Formatting Issues Results

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 4 2 0 0 4

SDE 6 0 1 0 3

NL 2 8 0 0 0

PM 4 4 1 0 1

PC 9 0 1 0 0

57

Percent of overall agreement Po: 0.480000

 Fixed-marginal kappa: 0.190535

 Free-marginal kappa: 0.35000

A k value of 0.35 is Fair Agreement and thus the data is fairly reliable, hence

NL and PC are highly important for one to uncover Document formatting issues under

requirements.

ii) Terminology – These defects occur when terminology is incorrectly or

inconsistently

Table 5.1.2 Terminology Issues Results

Percent of overall agreement Po: 0.493333

 Fixed-marginal kappa: -0.0182215

 Free-marginal kappa: 0.366666

A k value of 0.366 is Fair Agreement and thus the data is fairly reliable, hence

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 7 1 0 2 0

SDE 5 4 0 0 1

NL 9 1 0 0 0

PM 6 2 1 0 1

PC 7 1 0 1 1

58

NL and SDE are the most important factors for one to be able to uncover Terminology

issues under requirements

iii) States – These defects deal with system, object or data states.

 Table 5.1.3 States Issues Results

Percent of overall agreement Po: 0.351111

 Fixed-marginal kappa: 0.0782827

 Free-marginal kappa: 0.188889

A k value of 0.188889 is Slight Agreement and thus the data is slightly reliable, hence

PM and SDE are the highly most important factors for Terminology issues.

iv) Data – These defects deal with the actual data items that are to be maintained by

the system. This includes inconsistent data types, validation of new data, and

access restrictions to the data.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 4 1 3 2 0

SDE 6 4 0 0 0

NL 2 1 0 1 6

PM 6 4 0 0 0

PC 5 1 2 1 1

59

Table 5.1.4 Data Issues Results

Percent of overall agreement Po: 0.368889

 Fixed-marginal kappa: 0.0963474

 Free-marginal kappa: 0.211111

A k value of 0.211 is a Fair Agreement and thus the data is fairly reliable, hence

PC and PM are the most important factors for one to be able to uncover data related

defects under requirements.

v) Interface and Access – These defects deal with the way that users or other

systems gain access to this system. They deal both with the mechanisms of

access (the interface) as well as the restrictions placed upon the access.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 1 4 2 1 2

SDE 4 2 0 0 4

NL 6 0 0 4 0

PM 4 4 1 1 0

PC 8 2 0 0 0

60

Table 5.1.5 Interface and Access Issues Results

Percent of overall agreement Po: 0.564444

 Fixed-marginal kappa: 0.0677312

 Free-marginal kappa: 0.455555

A k value of 0.4555 is a Moderate agreement and thus the data is moderately reliable,

hence PC, DK and SDE are the most important factors for one to be able to uncover

interface and access related defects under requirements.

vi) Other Inconsistencies – These defects deal with situations where the

requirements document says contradictory things in two different parts of the

document.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 8 2 0 0 0

SDE 9 1 0 0 0

NL 6 0 0 4 0

PM 4 4 1 1 0

PC 8 2 0 0 0

61

Table 5.1.6 Other Inconsistencies Issues Results

Percent of overall agreement Po: 0.182222

 Fixed-marginal kappa: -0.0335920

 Free-marginal kappa: -0.0222225

A k value of -0.022 shows no agreement and thus the data is not reliable.

4.3.2 DESIGN PHASE

i) States – These defects occur when the states of the objects are misunderstood in

some way. This includes the addition or omission of an entire state, or incorrect

transitions.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 0 0 3 2 5

SDE 2 2 1 2 3

NL 2 2 0 4 2

PM 2 2 3 2 1

PC 3 2 1 2 2

62

Table 5.2.1 Other Inconsistencies Issues Results

Percent of overall agreement Po: 0.444444

 Fixed-marginal kappa: 0.220600

 Free-marginal kappa: 0.305555

A k value of 0.30555 is a fair agreement and thus the data is fairly reliable, hence PC,

PM and SDE are the most important factors for one to be able to uncover state related

defects under design.

ii) Messages – These defects deal with problems involving messages that appear in

the design.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 1 1 6 0 2

SDE 7 3 0 0 0

NL 0 1 4 2 3

PM 5 3 0 0 2

PC 9 1 0 0 0

63

 Table 5.2.2 Messages Issues Results

Percent of overall agreement Po: 0.426666

 Fixed-marginal kappa: 0.207226

 Free-marginal kappa: 0.283333

A k value of 0.283333 is a fair agreement and thus the data is fairly reliable, hence PC,

PM and SDE are the most important factors for one to be able to uncover messages

defects under design phase.

iii) Attributes – These defects deal with problems in the way that attributes have

been described in the design

.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 1 1 2 5 1

SDE 7 2 1 0 0

NL 0 2 0 2 6

PM 8 0 1 0 1

PC 6 3 0 1 0

64

 Table 5.2.3 Attributes Issues Results

Percent of overall agreement Po: 0.386666

 Fixed-marginal kappa: 0.0763042

 Free-marginal kappa: 0.233333

A k value of 0.233333 is a fair agreement and thus the data is fairly reliable, hence PC,

PM and SDE are the most important factors for one to be able to uncover attributes

defects under design phase.

iv) Actors – These defects deal with the misuse of the actors within the design.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 3 2 3 0 2

SDE 9 0 0 0 1

NL 2 2 0 3 3

PM 5 3 0 1 1

PC 7 2 0 1 0

65

 Table 5.2.4 Actors Issues Results

Percent of overall agreement Po: 0.351111

 Fixed-marginal kappa: 0.0423716

 Free-marginal kappa: 0.188889

A k value of 0.188889 is a slight agreement and thus the data is slightly reliable, hence

PC, PM and SDE are the most important factors for one to be able to uncover actors

defects under design phase.

v) Constraints – These defects occur when constraints are omitted or incorrectly

used.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 3 2 3 0 2

SDE 8 2 0 0 0

NL 2 2 0 3 3

PM 5 3 0 1 1

PC 6 4 0 0 0

66

 Table 5.2.5 Constraints Issues Results

Percent of overall agreement Po: 0.408888

 Fixed-marginal kappa: 0.0611309

 Free-marginal kappa: 0.26111

A k value of 0.26111 is a fail agreement and thus the data is fairly reliable, hence DK,

PM and SDE are the most important factors for one to be able to uncover Constraints

defects under design phase.

vi) Relationships – These defects occur when classes are incorrectly related within

the design

.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 7 2 1 0 0

SDE 9 1 0 0 0

NL 2 2 0 3 3

PM 5 3 0 1 1

PC 4 4 0 2 0

67

 Table 5.2.6 Relationships Issues Results

Percent of overall agreement Po: 0.524444

 Fixed-marginal kappa: 0.0158195

 Free-marginal kappa: 0.405555

In this case the data is reliable since k=0.405555, but shows that the experts do

not know the which factors has influence on uncovering of relationships

defects under design phase (may be this class of defects was not well placed)

vii) Class Hierarchy – These defects describe problems within the class inheritance

structure.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 0 2 1 0 7

SDE 1 1 0 0 8

NL 2 1 0 3 4

PM 0 1 0 0 9

PC 2 0 0 1 7

68

 Table 5.2.7 Class Hierarchy Issues Results

Percent of overall agreement Po: 0.431111

 Fixed-marginal kappa: 0.181690

 Free-marginal kappa: 0.288889

A k value of 0.288889 is a fail agreement and thus the data is fairly reliable, hence PC

and SDE are the most important factors for one to be able to uncover Constraints

defects under design phase.

viii) Other – Design defects that do not fit in other categories, but are not major

enough to create a new category.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 2 2 0 0 6

SDE 7 3 0 0 0

NL 2 1 0 3 4

PM 2 4 0 3 1

PC 9 1 0 0 0

69

 Table 5.2.8 Other Issues Results

Percent of overall agreement Po: 0.822221

 Fixed-marginal kappa: 0.0421390

 Free-marginal kappa: 0.777776

A k value of 0.777776 is a Substantial agreement and thus the data is substantially

reliable.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 0 0 0 0 10

SDE 0 0 0 0 10

NL 0 2 0 1 7

PM 0 0 0 0 10

PC 1 1 0 0 8

70

4.3.3 CODING PHASE

i) Logic- insufficient/incorrect errors in algorithms used. Wrong conditions.

 Table 5.3.1 Logic Issues Results

Percent of overall agreement Po: 0.622222

 Fixed-marginal kappa: 0.437830

 Free-marginal kappa: 0.527778

A k value of 0.527778 is a Moderate agreement and thus the data is moderately reliable,

hence PC and SDE are the most important factors. All the experts do not know whether

the DK affects the Logic defects uncovering under coding phase.

ii) Standards – problems with coding/documentation standards. Indentation,

alignment, layout, modularity, comments, hard-coding, and misspelling

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 0 0 0 0 10

SDE 8 2 0 0 0

NL 0 2 0 1 7

PM 2 3 3 0 2

PC 9 0 0 0 1

71

 Table 5.3.2 Standards Issues Results

Percent of overall agreement Po: 0.453333

 Fixed-marginal kappa: 0.123931

 Free-marginal kappa: 0.316666

A k value of 0.316666 is a Fair agreement and thus the data is fairly reliable, hence

PC, NL and SDE are the most important factors for an expert reviewer to be able to

uncover standards defects in the coding phase.

iii) Redundant code – same piece of code used in many programs or in the same

program

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 4 0 2 0 4

SDE 8 2 0 0 0

NL 5 4 0 1 0

PM 2 3 3 0 2

PC 9 0 0 0 1

72

Table 5.3.3 Redundant code Issues Results

Percent of overall agreement Po: 0.524444

 Fixed-marginal kappa: 0.270620

 Free-marginal kappa: 0.405555

A k value of 0.405555 is a Moderate agreement and thus the data is moderately reliable,

hence SDE and PC are the most important factors for a reviewer to be able to uncover

redundant code defects under coding phase.

iv) Performance – poor processing speed: System crash because of file size,

Memory problems

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 4 0 2 0 4

SDE 10 0 0 0 0

NL 1 2 6 1 0

PM 2 3 3 0 2

PC 9 1 0 0 0

73

 Table 5.3.4 Performance Issues Results

Percent of overall agreement Po: 0.537777

 Fixed-marginal kappa: 0.219218

 Free-marginal kappa: 0.422221

A k value of 0.422221 is a Moderate agreement and thus the data is moderately reliable,

hence SDE, DK and PC are the most important factors for a reviewer to be able to

uncover redundant code defects under coding phase.

v) Reusability – inability to reuse the code

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 9 1 0 0 0

SDE 8 2 0 0 0

NL 1 1 6 2 0

PM 4 3 0 0 3

PC 8 1 0 0 1

74

 Table 5.3.5 Reusability Issues Results

 Percent of overall agreement Po: 0.546666

 Fixed-marginal kappa: 0.199622

 Free-marginal kappa: 0.433333

A k value of 0.43333 is a Moderate agreement and thus the data is moderately reliable,

hence SDE and PC are the most important factors for a reviewer to be able to uncover

Reusability defects under coding phase.

vi) Memory management defects – Defects such as core dump, array overflow,

illegal function call, system hands, or memory overflow

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 3 2 1 4 0

SDE 9 1 0 0 0

NL 5 0 4 0 1

PM 4 1 0 5 0

PC 10 0 0 0 0

75

 Table 5.3.6 Memory management defects Issues Results

Percent of overall agreement Po: 0.595555

 Fixed-marginal kappa: 0.226978

 Free-marginal kappa: 0.494444

A k value of 0.494444 is a Moderate agreement and thus the data is moderately reliable,

hence SDE, PM and PC are the most important factors for a reviewer to be able to

uncover Memory management defects under coding phase.

vii) Consistency – failure to updating or delete records in the same order throughout

the system

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 3 2 1 4 0

SDE 9 1 0 0 0

NL 2 3 1 3 1

PM 9 1 0 0 0

PC 10 0 0 0 0

76

 Table 5.3.7 Consistency Issues Results

 Percent of overall agreement Po: 0.582222

 Fixed-marginal kappa: 0.132521

 Free-marginal kappa: 0.477778

A k value of 0.477778 is a Moderate agreement and thus the data is moderately reliable,

hence SDE, PM and PC are the most important factors for a reviewer to be able to

uncover Consistency defects under coding phase.

viii) Portability – code not independent of the platform.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 3 2 2 3 0

SDE 10 0 0 0 0

NL 5 0 1 3 1

PM 9 1 0 0 0

PC 8 2 0 0 0

77

 Table 5.3.8 Portability Issues Results

 Percent of overall agreement Po: 0.377777

 Fixed-marginal kappa: 0.177824

 Free-marginal kappa: 0.222221

A k value of 0.222221 is a Fair agreement and thus the data is fairly reliable, hence

SDE is the most important factors for a reviewer to be able to uncover Portability

defects under coding phase.

4.3.4 TESTING PHASE

i) Testing Tools and resources – Are the tools and resources identified and

available.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 3 1 4 2 0

SDE 10 0 0 0 0

NL 0 2 1 3 4

PM 2 1 1 4 2

PC 4 3 0 0 3

78

 Table 5.4.1 Testing Tools and resources Issues Results

 Percent of overall agreement Po: 0.568888

 Fixed-marginal kappa: 0.254647

 Free-marginal kappa: 0.46111

A k value of 0.46111 is a moderate agreement and thus the data is moderately reliable,

hence DK, SDE and PC are the most important factors for a reviewer to be able to

uncover Testing Tools and resources defects under testing phase.

ii) Record keeping – has the record keeping mechanism being established.

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 9 1 0 0 0

SDE 10 0 0 0 0

NL 0 3 4 1 2

PM 4 4 0 0 2

PC 7 3 0 0 0

79

 Table 5.4.2 Record keeping Issues Results

Percent of overall agreement Po: 0.342222

 Fixed-marginal kappa: 0.0635279

 Free-marginal kappa: 0.177778

A k value of 0.177778 is a slight agreement and thus the data is slightly reliable, hence

DK, SDE, PM and PC are the most important factors for a reviewer to be able to

uncover Record keeping defects under testing phase.

iii) Stress Testing Mechanisms – is the stress testing mechanism established?

 Table 5.4.3 Stress Testing Mechanisms Issues Results

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 4 4 0 2 0

SDE 7 1 0 0 2

NL 0 2 1 2 5

PM 4 4 0 1 1

PC 6 3 0 0 1

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 1 8 0 0 1

SDE 10 0 0 0 0

NL 0 3 2 2 3

PM 10 0 0 0 0

PC 9 1 0 0 0

80

Percent of overall agreement Po: 0.719999

 Fixed-marginal kappa: 0.511171

 Free-marginal kappa: 0.649999

A k value of 0.649999 is a Substantial agreement and thus the data is substantially

reliable, hence DK, SDE, PM and PC are the most important factors for a reviewer to be

able to uncover Stress Testing Mechanisms defects under testing phase.

iv) Major identification of test phases – identification and sequencing of

major test phases and the sequencing.

 Table 5.4.4 Major identification of test phases Issues Results

 Percent of overall agreement Po: 0.764444

 Fixed-marginal kappa: 0.316833

 Free-marginal kappa: 0.705555

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 10 0 0 0 0

SDE 10 0 0 0 0

NL 2 3 2 0 3

PM 10 0 0 0 0

PC 8 2 0 0 0

81

A k value of 0.705555 is a Substantial agreement and thus the data is substantially

reliable, hence DK, SDE, PM and PC are the most important factors for a reviewer to be

able to uncover Major identification of test phases defects under testing phase.

v) Consistence of the test plan with the overall project plan

 Table 5.4.5 Consistence Issues Results

Percent of overall agreement Po: 0.737777

 Fixed-marginal kappa: 0.396356

 Free-marginal kappa: 0.672221

A k value of 0.737777 is a Substantial agreement and thus the data is substantially

reliable, hence DK, SDE, PM and PC are the most important factors for a reviewer

to be able to uncover Consistence defects under testing phase

 Strongly Agree Agree Disagree Strongly Disagree Do not Know

DK 9 1 0 0 0

SDE 10 0 0 0 0

NL 0 1 4 4 1

PM 10 0 0 0 0

PC 8 1 0 0 1

82

4.4 SUMMARY OF THE RESULTS

NOTATION

√ - Shows a very important Factors

a) Requirements Phase

 Table 5.5.1 Summary of Requirements Phase Results

Defects Background and Experience variables

DK SDE NL PM PC

Document Formatting Issues √ √

Terminology √ √

States √ √

Data √ √

Interface and Access √ √ √

Other Inconsistencies No Agreement

83

b) Design Phase

 Table 5.5.2 Summary of Design Phase Results

Defects Background and Experience variables

DK SDE NL PM PC

States √ √ √

Messages √ √ √

Attributes √ √ √

Actors √ √ √

Constraints √ √ √

Relationships No Agreement

Class Hierarchy √ √

Other No Agreement

84

c) Coding Phase

Table 5.5.3 Summary of Coding Phase Results

d) Testing Phase

 Table 5.5.3 Summary of Testing Phase Results

Defects Background and Experience variables

DK SDE NL PM PC

Logic √ √

Standards √ √ √

Redundant code √ √

Performance √ √ √

Reusability √ √

Memory management defects √ √ √

Consistency √ √ √

Portability √

Defects Background and Experience variables

DK SDE NL PM PC

Testing Tools and resources √ √ √

Record keeping √ √ √ √

Stress Testing Mechanisms √ √ √ √

Major identification of test phases √ √ √ √

Consistence √ √ √ √

85

CHAPTER FIVE

DETAILED SYSTEM DEVELOPMENT DOCUMENTATION

OF THE

FORMAL TECHNICAL REVIEW SUPPORT TOOL

5.1 REQUIREMENTS ANALYSIS

i) Users/ Roles

a) Administrator – This is a person who is the overall administrator of the

system

His/her responsibilities are:

- Setting up the projects

- Input personal identification details of the reviewer.

- Input experience and background details of the reviewer.

- The number of defects uncovered under each class.

- Get recommendations on who would help him uncovered certain

kinds/kind of defects depending on the phase of the lifecycle.

- Edit the above records.

86

b) Project Manager – This is the manager of a specific project, his/her

functions are

- He/she should be able to view the projects that he/she is assigned.

c) Reviewer – He/she is an individual with the ability to uncovered defects

in a software product.

- Based on his/her ability he can be able to view the projects that

he/she is assigned to depending on his/her ability to uncover defects.

d) Customer - This is the individual or company who initiated a project(s),

his duties includes

- Viewing project defects and other project-related information for

projects that he/she has initiated.

ii) Requirements Overview of the proposed system

- One system – serving a number of geographically dispersed users, this

introduces the concept of distributed system.

- Different types of users who require different functionality from the

system.

- The system needs to have some kind of data layer that is information

needs to be stored.

87

- The system proposed will be a distributed system and hence the

assumption that the system is network – based.

5.2 THE SUGGESTED SOLUTION

• The database to be built using Microsoft SQL Server 2008, including SQL

Server Management Studio

• The main system will be built using the .NET Framework and C#

programming language.

• The main system will also be implemented using asp.net to demonstrate its

online accessibility and also its functionality will be implemented using a

web service to demonstrate its distributed nature.

• For the UML diagrams argoUML tool will be used for design.

• To design the user interface Mockup screens will be used.

• The administrator interface will be tightly coupled to the system and will be

built using .NET Remoting

• A website will be built to help in remote accessibility of the system.

88

Use Case Diagram

Fig 5.1 Use Case diagram for the Administrator duties

 Fig 5.2 Use Case diagram for the reviewer duties

89

 Fig 5.3 Use Case diagram for the customer duties

5.3 NON-FUNCTIONAL REQUIREMENTS

� Testability

� Maintainability

� Extensibility

� Scalability

5.4 SYSTEM DESIGN

i) System Architecture

The main system will be developed using the .NET platform since it

provides a standardized set of services. “It’s just like Windows, except

distributed over the Internet. It exports a common interface so that its

programs can be run on any system that supports .NET” [Mark03]. The

.Net Framework provides a very good environment to develop networked

90

applications and Web Services programming API and unified language-

independent development framework [Simon08].

In N-Tier architectures there is a logical separation of presentation,

business and data into separate layers

• Data Tier – manages the data

• Presentation Tier – controls what a user sees and can do with the

system

• Business Tier (middle tier) – controls everything else (the business

logic)

The business tier contains the core functionality of the system

� Business rules

� Work flows

It provides controlled access to data and enables validation and

processing of data input, the business tier will be defined using classes.

The collection (library) of classes representing the business tier will be

deployed as a component i.e. DLL

The component developed will consist of a collection of classes

developed to fulfill certain specification

• It can be re-used

91

• It should encapsulate all its behavior

• It must provide an interface to allow it to be accessed by a client

The proposed system illustration is shown below.

 Fig 5.4: The Architecture for the System

92

Fig 5.5 The Architecture of the System with an illustration of the methods

available

5.5 THE DATABASE DESIGN

A database has been designed in order to support the Formal Technical

Review Support Tool; it provides the persistence tier for the system. The

following are the entities identified:

93

Manager

Administrator

Reviewer

ReviewerDetails

Customer

Project

Phases

Defect

ReviewAssignments.

The Database Design is as shown below:

94

 Fig 5.6: The database diagram

5.6 CLASS DIAGRAM

5.6.1 FTRLIBRARY STRUCTURE

As a business component, this project will not contain any graphical user

interface. It will be built as a Class Library. Three types of classes will be

developed for the FTRLibrary.

o Business Objects

o DAOs (Data Access Objects)

95

o Facade Objects

5.6.2 BUSINESS OBJECTS

These are abstract representations of entities from the business domain. They

represent concepts that are important to the business that the system is

modelling. In this system these are abstractions of Formal Technical Review

related concepts, such as project, reviewer, defects, phase etc. The business

objects in this component will be:

• Project

Represents a project

• Defect

Represents a defect.

• ReviewAssignments

Represents the assigning of a reviewer to a defect.

• User

Represents the general user of the system

• Manager

Represents a project manager

• Reviewer

Represents a reviewer.

• Customer

96

Represents a customer.

• ReviewerDetails

Represents the background and experience information of a reviewer.

 5.6.3 DATA ACCESS OBJECTS

Data Access Objects provide abstract interfaces to data sources, providing a

clear separation between the business and persistence logic. The aim is to come

up with a system that is highly robust and also has low coupling between our

business classes and the database. The DAOs will contain all the SQL code for

reading and writing to the database. There will be multiple DAOs, one DAO for

each different user of the system.

• SuperDAO (super class for all others)

• AdminDAO

• ManagerDAO

• ReviewerDAO

• CustomerDAO

97

 Fig 5.7: The Class Diagram for DAO

5.6.4 FACADE OBJECTS

The Facade classes will be used to provide a publicly available interface to the

business component. One facade class for each type of user who will access the

business component. This helps in that a user only sees what he/she needs to see.

This enhances security of a distributed system. The facade classes are:

• FTRSuperFacade

• FTRAdminFacade

• FTRManagerFacade

• FTRReviewerFacade

• FTRCustomerFacade

98

 Fig 5.8: The Class Diagram for Façade Class

99

Fig 5.9: The Detailed Class Diagram for Façade Class

 Fig 5.10: The Class Diagram for Users of the system

100

 Fig 5.11: Detailed Class Diagram for Users of the system

ii) User interface

The mock up® screen tool was used to design the user interface for the

system,

101

 Fig 5.12 User Interface for the administrator

 Fig 5.13 User Interface for the task Form

102

 Fig 5.14 User Interface for the online application

The business component built and the GUI implemented have to

communicate. This communication will be achieved using the .NET

remoting. A remote server application will be created and will be used to

distribute the admin tool and the FTRLibrary component. There are two

ways of building distributed systems in .NET, which provide means to

invoke an object on another computer via a local proxy [G.Coulouris05].

Web Services- works across platforms, so can be used to provide

services to clients that are not under your control and could be written in

any language.

103

 .NET Remoting- works only when client and server are written in .NET,

this can be used when both client and server are under your control.

 Fig 5.15: .NET Remoting Architecture

 Marshalling- Marshalling determines how an object is exposed to the client

application

Objects can be marshalled

• By value: a copy of the server object is sent and kept in the client

domain

• By reference: the client only holds a reference to the object

[G.Coulouris05]

104

In this application marshalling of the business objects will be by value.

The objects will then reside on the client and calls to them will be faster

than marshalling by reference.

“To do this, [Serializable] attribute is added to the class that is to be

marshalled” [G.Coulouris05]

The superDao Code extracts are show below:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

using System.Data.SqlClient;

namespace FTRLibrary.DAO

{

 public class SuperDAO

 {

 public List <Project > GetListOfProjects()

 {

 string sql;

 SqlConnection cn,cn2,cn3;

105

 SqlCommand cmd,cmd2,cmd3;

 SqlDataReader dr,dr2,dr3;

 List <Project > projects;

 projects = new List <Project >();

 sql = "SELECT * FROM Project" ;

 cn = new

SqlConnection (Properties. Settings .Default.FTRConnectionStrin

g);

 cmd = new SqlCommand(sql, cn);

 try {

 cn.Open();

 dr=cmd.ExecuteReader();

 while (dr.Read()){

 sql= "SELECT * FROM Customer WHERE

CustomerId=" +(int)dr["CustomerId"];

 cn2= new

SqlConnection (Properties. Settings .Default.FTRConnectionStrin

g);

 cmd2 = new SqlCommand(sql, cn2);

 cn2.Open();

 dr2 =

cmd2.ExecuteReader(CommandBehavior .SingleRow);

 dr2.Read();

 Customer cust = new

Customer (dr2["Name"].ToString(), (int)dr2["CustomerId"]);

106

 dr2.Close();

 //

 sql = "SELECT * FROM Manager WHERE

ManagerId=" + (int)dr["ManagerId"];

 cn3 = new

SqlConnection (Properties. Settings .Default.FTRConnectionStrin

g);

 cmd3 = new SqlCommand(sql, cn3);

 cn3.Open();

 dr3 =

cmd3.ExecuteReader(CommandBehavior .SingleRow);

 dr3.Read();

 Manager m = new

Manager (dr3["Name"].ToString(), (int)dr3["ManagerId"]);

 dr3.Close();

 Project p = new

Project ((Guid)dr["ProjectId"], dr["Name"].ToString(), m,

cust,(DateTime)dr["StartDate"],(DateTime)dr["EndDate"]);

 projects.Add(p);

107

 }

 dr.Close();

 }

 catch (SqlException ex)

 {

 throw new Exception ("Error getting tasks

list" , ex);

 }

 finally

 {

 cn.Close();

 }

 return projects;

 }

 public List <ReviewAssignments > GetListOfDefects(Guid

projectId)

 {

 string sql;

 SqlConnection cn, cn2;

 SqlCommand cmd, cmd2;

 SqlDataReader dr, dr2;

 List <ReviewAssignments > defects;

 defects = new List <ReviewAssignments >();

 sql = "SELECT * FROM DefectDetails WHERE

ProjectId='" +projectId+ "'" ;

108

 cn = new

SqlConnection (Properties. Settings .Default.FTRConnectionStrin

g);

 cmd = new SqlCommand(sql, cn);

 try

 {

 cn.Open();

 dr = cmd.ExecuteReader();

 while (dr.Read())

 {

 sql = "SELECT * FROM Defect WHERE

DefectId='" + dr["DefectId"]+ "'" ;

 cn2 = new

SqlConnection (Properties. Settings .Default.FTRConnectionStrin

g);

 cmd2 = new SqlCommand(sql, cn2);

 cn2.Open();

 dr2 =

cmd2.ExecuteReader(CommandBehavior .SingleRow);

 dr2.Read();

 Defect d = new

Defect (dr2["DefectId"].ToString(),dr2["Name"].ToString());

 dr2.Close();

109

 ReviewAssignments dd = new

ReviewAssignments (dr["DefectId"].ToString(),d,(Phase)dr["Pha

seId"]);

 defects.Add(dd);

 }

 dr.Close();

 }

 catch (SqlException ex)

 {

 throw new Exception ("Error getting tasks

list" , ex);

 }

 finally

 {

 cn.Close();

 }

 return defects;

 }

110

The remote server code extract:

namespace RemoteServerApplication

{

 class Program

 {

 static void Main(string [] args)

 {

 HttpChannel channel = new HttpChannel (50000);

 ChannelServices .RegisterChannel(channel, false);

RemotingConfiguration .RegisterWellKnownServiceType(typeof (FT

RLibrary. FTRAdminFacade), "FTRAdminFacade" ,

WellKnownObjectMode .Singleton);

 Console .WriteLine("Press the enter key to

terminate server");

 Console .ReadLine();

 }

 }

111

}

When the remote server application runs the following is the output

 Fig 5.16: Output from the remote server application

After making sure that the remote server is running, the admin tool is

started. The following is the output

112

 Fig 5.17: First Page for login

After entering the correct password and username the tool will allow the

admin to carry a number of functions as shown.

113

 Fig 5.18: Output from the remote server application

5.7 Web services

Web services are self-contained, self-describing, modular applications

that can be published, located, and invoked across the Web they can

perform functions from simple requests to complicated business

processes. Once a Web service is deployed, other applications (and

other Web services) can discover and invoke the deployed service [IBM

web service tutorial]

114

Web services are distributed computing model based on asynchronous

messaging (XML), and they:

• Support dynamic application integration over the Web

• Web Services connect computers and devices with each other

using the Internet to exchange data and access services

• On-the-fly software creation through the use of loosely coupled,

reusable software components

• Business services can be distributed over the Internet

5.7.1 Web Service Architecture

i) Components

a) Service providers

- publish available services and offer bindings for services

b) Service brokers

- allow service providers to publish their services

- provide mechanisms to locate services and their providers

c) Service requestor

- uses the service broker to find a service and then

- invokes (or binds) the service offered by a service provider

115

 Fig 5.19: Illustration of Components in the web service

ii) Visual Studio Development Server

Visual Studio .NET 2008 comes with an in-built ASP.NET

development server, this is the tool that will be used for development

as it is possible to test your web services and websites without having

to deploy to a web server

• The web server starts automatically when you run a web

service or website project

• The address is http://localhost:port - Where port is a port

number chosen by Visual Studio

 Below is the diagram show the web Service functions of the admin:

116

 Fig 5.20: Methods exposed though a web service

When a web method is invoked, the message is returned in XML

(SOAP) e.g.

117

 Fig 5.21: XML message returned for the Projects

iii) Building the Customer Website

The last thing is to build a website that will allow admin, Manager,

Reviewer and customers to log in and carry out some functions. The

website will be built as an ASP.NET Website project (still in the

FTRLibrary solution).

118

 Fig 5.22: Web site Home page

119

USER INTERACTION (PROJECT MANAGER) SYSTEM RESPONSIB ILITY

Register System adds login details of the project

manager as a registered user.

login System logins in the registered user

Inputs the personal details of a reviewer System stores those details in a database

Inputs the kinds of defects a certain reviewer has

been able to uncover

This details are stored in a database

Retrieves information when organizing for a review Details of which reviewer should help

him/her uncover this defects are shown

Updates Deletes or adds new information to the

database

Logins off Allows the user to log off.

 Table 5.1: Testing Results

120

Class Diagram

121

Sequence Diagrams:

122

Collaboration diagram:

123

Statechart Diagrams

124

5.8 TESTING

The following table shows test conditions and results for testing:-

S/N TEST EXPECTED RESULT ACHIEVED RESULT

1 Web server

User authentication

Web site to prompt user

name and password

Prompted the user name and

accepted the registered user

2 User authentication Web site to give error

message for non

registered users

An error message was give on

non registered users trying to

login

3 Display results for the

Hospitality Software

Company (HSC)

Four web pages to

display the case results

of the HSC which can

be edited

The results for the HSC

development cycles displayed.

4 Records storage Storage of personal and

defects uncovered

details in a database.

Capturing of details achieved

5 Giving

Recommendations

Able to give a reviewer

recommendations on

who best can help

him/her uncovered

defects

User is able to get

recommendations on who can

help him uncover certain class of

defects.

125

6 Editing of the stored

data

The system should

allow a user to modify

the initial background

and experience

variables as well as the

defects classes

The system allows modification

of the database by the registered

user.

6 Logs off The system should

allow the save details

and exit

PASS

126

CHAPTER SIX

6.1 RECOMMENDATIONS AND CONCLUSION

Software products are built using a software process, and errors get introduced during

the process for various reasons. The errors that are not detected and fixed during the

software process reach customers and are called ‘defects’. Defects are often costlier to

fix than errors and also damage the developer’s reputation. Therefore, it is necessary to

reduce the errors in the end products. In order to deliver products of good quality, we

need ‘quality filters’ that can be used to detect errors.

There are many review types under the broad category of FTRs. These vary in the

degree of formality – walkthroughs and inspections being the most formal and casual

meetings being the least formal. The more formal the review type, the more effective it

is in finding errors. While various review types differ in their ‘exact’ activities and roles

defined, there are some common steps and roles in a generic FTR. The common steps

are:

Step 1: Pre–review meeting

Step 2: Review meeting

Step 3: Post review meeting

One of the main function in an FTR process is staffing. The generic roles are:

127

Moderator - leads the inspection, schedules meetings, controls the meetings, reports

inspection results, and follows up on rework issues. Moderators should be trained in

how to conduct inspections, including how to keep participants with strong technical

skills but low social skills from killing each other.

Author - created or maintains the work product being inspected. The author may

answer questions asked about the product during the inspection, and he also looks for

defects. The author cannot serve as moderator, reader, or recorder.

Reader - describes the sections of the work product to the team as they proceed through

the inspection. The reader may paraphrase what is happening in the product, such as

describing what a section of code is supposed to do, but he does not usually read the

product verbatim.

Recorder - classifies and records defects and issues raised during the inspection. The

moderator might perform this role in a small inspection team. With the creation of the

Formal Technical Review Support Tool, the job of the recorder is highly improved.

Inspector - attempts to find errors in the product. All participants actually are acting as

inspectors, in addition to any other responsibilities.

This research had two main objectives, the first of which was to show that the reviewers

experience and background affects the kind of defects reviewers are able to uncover. A

typical FTR can benefit from the following activities:

128

• Planning for project reviews

• Training reviewers on how to participate in reviews

• Ensuring that the review meeting is effective

• Using review data to see how the review process can be further refined

It is a known fact that the above activities can add value to a Review meeting,

(Ackerman89) there are some essential parameters for the meeting such as there should

be an acceptable (between 3-5) number of persons conducting the meeting and that too

after each one of them has done his/her homework i.e. some preparation and the

meeting should not be carried out very long which may lead to wastage of time but

rather for duration just enough to churn out some constructive results. FTR (Formal

Technical Review) is effective when a small and specific part of the overall software is

under scrutiny. It is easier and more productive to review in small parts like each

module one by one rather than to review the whole thing in one go. The target of the

FTR (Formal Technical Review) is on a component of the project, a single module.

The individual or the team that has developed that specific module or product intimates

the product is complete and a review may take place. Then the project leader forwards

the request to the review leader who further informs the reviewers who undertake the

task.

It is as this stage that this study has found the importance of background and experience

of the reviewers very important. In chapter Four the researcher has provided important

129

summery of the background and experience variables and the kind of defects that those

individual have a potentiality to uncover in HSC company. This is not expected to be

uniform for all kinds of software products; this is so as software products are very

different in a number of ways.

As a company engages in FTR over a period of time important data is generated which

could provide set of heuristics or guideline with which the inspection manager can

choose inspectors for his or her team. Based on the organization’s historical profile of

defect types, he can suggest the background and experience that inspectors should have

that will give them the best chance of finding those important defects. This then creates

a very good case for keeping records.

The second objective of this study was to develop a tool for helping in keeping records.

6.2 KEEPING RECORDS

Record keeping is a major distinction between informal and formal review activities.

There are three aspects to this task: recording defects during the inspection meeting;

collecting data from multiple inspections; and analyzing the defect trends to assess

inspection effectiveness and identify ways of improving software development process

to prevent common types of defects.

Many books contain sample inspection recording forms; the FTR support tool can help

the project manager in the keeping of records. As inspectors raise issues during the

130

review meeting, the recorder enters them on the issues list from The management report

contains information about the material that was inspected and the disposition of the

product (accepted with minor changes, etc.), but no actual information about the defects

found is included. The purpose is to allow managers to know how the project is

progressing and to look for areas where improvements should be made. The moderator

usually is responsible for preparing these post-inspection reports. With the Formal

Technical Review Support Tool one is able to produce reports after inspections have

been carried out.

An effective, ongoing inspection process permits an organization to combine data from

multiple inspections to gain insight into the quality of both the review process and the

products being reviewed. The ultimate objective is to have a database of inspection data

so that quantitative conclusions can be drawn from defect trends and inspection process

information.

While results will vary from one organization to the next for many reasons, if you begin

recording and analyzing your inspection data, you will be able to determine which

methods work best for you and you can begin to assess the quality of your work

products.

Implementing software inspections is an important step along the path to a more mature

software development process. In the cycle of continual process improvement that leads

131

to concurrent improvements in both quality and productivity, inspections can play a

major role.

In conclusion the research proposes the following framework for carrying out Formal

Technical Review:

1. The producer indicated they are ready for a review

2. Having knowledge about the most important defects that the software

development house wants uncovered then the manager selects reviewers with

experience and background that can help the organization uncover those

important defects.

3. The reviewer(s) receive the artefacts to be reviewed

4. The reviewers spend 2 hours inspecting the artefacts

5. The review takes place

a) The producer walks through their product

b) The reviewer(s) ask questions on the walk through

c) The reviewers ask questions from their notes

d) This details are captured in the Formal Technical Review Support Tool

(FTR), that helps to automate the recording keeping process.

e) A set of recommendations is produced and given to the producer to enable

improvement

132

6.3 CONCLUSION

There is little or no doubt that formal technical reviews are one of the best methods for

detecting defects at the earliest possible stage of the software development life cycle.

This makes software inspections a major part of software quality as a whole, as the

ability to detect and remove defects is not only vital but also the earlier found the more

cost and time efficient for the development company.

This research has therefore shown that the software review meeting can be improved by

involving reviewers with background and experience that has a higher chance of

uncovering a certain kind of defect that the software development company considers

“important”. A software tool has also been developed to improve record keeping and

give suggestions on the most important background and experience for a certain kind of

defect.

133

REFERENCES

Ackerman, A., Buchwalk, L. and Lewski, F. (1989) ‘Software Inspections: An Effective

Verification Process.’ IEEE Software, May.

Basili, V. and Weiss, D. (1981) ‘Evaluation of a Software Requirements Document by

Analysis of Change Data.’ In Proceedings 5th Int’l Conference on Software

Engineering, IEEE CS Press, Mar.

Bassin, A., Kratschmer, T. and Santhanam P. (1998) ‘Evaluating Software

Development objectively.’ IEEE Software, vol. 15, no 6, pp. 66-74.

Birk, A. and Tauz, C. (1998) ‘Knowledge Management of Software Engineering

Lessons Learned.’ Proceedings of the Tenth Conference on Software Engineering and

Knowledge Engineering, Illinois, Skokie: Knowledge Systems Institute, pp. 24-31.

Brad, C. and Dave, Z. (2001) How Good is the Software: A review of Defect prediction

Techniques, Carnegie Mellon University, pp 9-10.

Brennan, R. and Prediger, D. (1981) Coefficient λ: Some Uses, Misuses, and

Alternatives, Educational and Psychological Measurement, pg 41, 687-699.

134

Brocklehurst and Littlewood (1992) ‘New Ways to Get Accurate Software Reliability

Modeling.’ IEEE Software, vol. 34, no. 42.

Bush, M. (1990) ‘Improving Software Quality: The Use of Formal Inspections at the Jet

Propulsion Laboratory.’ Proc. 12th Int’l Conf. Software Eng., IEEE CS Press, Los

Alamintos.

Byrt, T. Bishop J and Carlin JB (2009) ‘Bias, prevalence and kappa.’ Journal of Clinical

Epidemiology 46: 423.

Chillarege R., Bhandari I.S., Chaar, J.K., Halliday M.J., Moebus D.S., Ray B.K. and

Wong M. (1992) ‘Orthogonal Defect Classification: A Concept for In-Process

Measurements.’ IEEE Transactions on Software Engineering, vol 18, no 11, pp. 943-

956.

Cohen and Jacob, A. (1960) ‘A coefficient of agreement for nominal scales.’

Educational and Psychological Measurement’, Vol.20, No.1, pp.37-46.

Day I, (1993) ‘Qualitative data analysis.’ A user-friendly guide for social scientists,

New York: Routledge.

135

Doolan, E.P. (1992) ‘Experience with Fagan’s Inspection Method.’ Software—Practice

and Experience, vol. 22(2), February.

Eickelmann, Nancy S, Ruffolo, Francesca, Baik, Jongmoon and Anant (2003) ‘An

Empirical Study of Modifying the Fagan Inspection Process and the Resulting Main

Effects and Interaction Effects Among Defects Found, Effort Required, Rate of

Preparation and Inspection, Number of Team Members and Product 1st Pass Quality.’

Proceedings of the 27th Annual NASA Goddard, IEEE Software Engineering

Workshop.

F. Akiyama (1971) ‘An Example of Software System Debugging.’ Information

Processing, vol. 71, pp. 353-379.

Fagan, M. E. (2000) ‘Design and code inspections to reduce errors in program

development.’ IBM Systems Journal.

Fagan, M. E. (1986) ‘Advances in Software Inspections.’ IEEE Transactions on

Software Engineering.

Ferdinand, (1974) ‘A Theory of System Complexity.’ Int’l J. General Systems, vol. 1,

pp. 19-33.

136

Fredericks. (2006). Detecting Defects in Object-Oriented Designs. Using Reading

Techniques to Increase Software Quality (pp. 47-56). Denver: ACM Press.

Gilgun, J.F. (1992) Definitions, Methodologies, and Methods in Qualitative Family

Research Qualitative Methods in Family Research pp. 22-29.

Glaser, B. G., and Strauss, A.L. (1967) The Discovery of Grounded Theory: Strategies

for qualitative research, New York: Aldine de Gruyter.

Group, T. S. (2009). Standish Group report . Boston : CHOAS .

http://www1.standishgroup.com/newsroom/chaos_2009.php

http://databases.about.com Web portal containing links to a variety of database issues

http://www.nwlink.com/~Donclark/hrd/history/hawthorne.html [accessed on 3rd

February 2009 at 10.00 am]

Johnson, P.M. (1996) “Design For Instrumentation: High Quality Measurement Of

Formal Technical Review”. Software Quality Journal volume 5, number 1.

137

K. Koga (1992) ‘Software Reliability Design Method in Hitachi.’ Proc. Third European

Conf. Software Quality, Madrid.

K. Yasuda (1989) ‘Software Quality Assurance Activities in Japan.’ Japanese

Perspectives in Software Eng., pp. 187-205, Addison-Wesley.

Kathy Charmaz, (2006) ‘Constructing Grounded Theory: A Practical Guide through

Qualitative Analysis.’ Pine Forge Press.

M. Dyer (1992) The Clean room Approach to Quality Software Development. Wiley.

Mitchell Scott (2007), Examining ASP.NET 2.0’s Membership, Roles and

Profiles Part 8. Available at:

http://aspnet.4guysfromrolla.com/articles/010307-1.aspx [Accessed 08 March 2010].

Mitchell Scott (2007), Examining ASP.NET 2.0’s Membership, Roles and

Profiles Part 1. Available at:

http://aspnet.4guysfromrolla.com/articles/120705-1.aspx [Accessed 01 January 2011].

MSDN Library (2009), ASP.NET Developer centre, Shared Code Folders in

ASP.NET websites. Available at:

http://msdn.microsoft.com/enus/library/t990ks23 (VS.80).aspx [Accessed 03 March

2010]

138

http://www.mathworks.com/matlabcentral/fileexchange/15426 [Accessed 04 December

2009]

M. Halstead (1977) Elements of Software Science. New York Elsevier, North-Holland.

N.E. Fenton, S. Lawrence Pfleeger, and R. Glass (1994) ‘Science and Substance: A

Challenge to Software Engineers.’ IEEE Software, pp. 86-95, July.

N.E. Schneidewind and H. Hoffmann (1979) ‘An Experiment in Software Error Data

Collection and Analysis.’ IEEE Trans. Software Eng., vol. 5, no. 3, May.

Nakajo and Kume (1991) ‘A Case History Analysis of Software Error Cause-Effect

Relationships.’ IEEE Trans. Software Eng., vol. 17, no. 8, Aug.

Pankaj Jalote (2002) Software Project Management in Practice, Addison-Wesley, pg

119.

Philip M. Johnson (1988) ‘Supporting technology transfer of formal technical review

Potier, D., Albin, M., Ferreol, A. and Bilodeau (1982) ‘Experiments with Computer

Software Complexity and Reliability.’ Proc. Sixth Int’l Conf. Software Eng., pp. 94-

103.

139

Pressman, R., 2005. Software Engineering: A Practitioner's Approach. Singapore:

McGraw-Hill.

Royce, W.W., 1987. Managing the development of large software systems: concepts

and techniques. Los Alamitos: IEEE Computer Society Press.

Sfetsos, P., Angelis, L. & Stamelos, I., 2006. Investigating The Extreme Programming

System - An Empirical Study. Empirical Software Engineering, 11(2), pp.269-301.

R.D. Buck and J.H. Robbins (2008) ‘Application of Software Inspection Methodology

in Design and Code’, Software Validation, Northampton Square.

R. W. Selby and A. A. Porter, Learning from examples: Generation and evolution of

decision trees for software resource analysis.’ IEEE Trans. on Software Engineering,

vol. 14, December.

R.B. Grady (1992) ‘Practical Software Metrics for Project Management and Process

Improvement.’ Prentice Hall.

R.D. Buck and J.H. Robbins (2008) ‘Application of Software Inspection Methodology

in Design and Code’, Software Validation, Northampton Square.

140

Schneider, G.M., Martin, J., and Tsai, W.T. (1992) ‘An Experimental Study of Fault

Detection in User Requirements Documents.’ ACM Transactions on Software

Engineering and Methodology, Vol. 1, April

Shneiderman, B. (1998) Designing the User Interface: Strategies for Effective Human-

Computer Interaction: Addison-Wesley.

Sim, J. and Wright, C. C. (2005) ‘The Kappa Statistic in Reliability Studies.’ Use

Interpretation, and Sample Size Requirements in Physical Therapy, Vol. 85, pp. 257-

268.

Singer, J. and Lethbridge, T.C. (1996) ‘Methods for Studying Maintenance Activities.’

In Proceedings of the 1st International Workshop on Empirical Studies of Software

Maintenance, Monterey, CA.

Steve Borgatti (1990) Introduction to Grounded Theory: Grounded Theory Institute.

T. J. McCabe (1976) ‘A complexity measure.’ IEEE Trans. On Software Engineering,

vol. SE-2, no. 4.

Tauriainen (1999) Experience Capturing Process and Its Enactment: Master Thesis.

University of Oulu, Department of Information Processing Science.

141

Tom Gilb (1993) ‘Software Inspection.’ Addison-Wesley.

University of Greenwich (2008) Research Ethics Policy available from

http://www.gre.ac.uk/research/research_ethics_committee/policy [Accessed: 31st

October 2010].

University of Greenwich (2008) Study Skills – Referencing available from

http://www.gre.ac.uk/study_skills/referencing) [Accessed: 31st October 2010].

VanSomeren, M., Bernard, Y.F. and Sandberg (1994) ‘The Think Aloud Method: A

Practical Guide to Modeling Cognitive Processes.’ Academic Press.

Veevers, A. (1994) ‘A Relationship between Software Coverage Metrics and

Reliability.’ Software Testing Verification and Reliability, vol. 4, pp. 3-8.

Ward John & Peppard Joe (2002), Strategic Planning for Information Systems. 3rd

edition. England: John Wiley & Sons

Wiegers, K. E. (2008). Improving Quality Through Software Inspections. Chicago:

Adventure Works Press.

142

APPENDIX

143

AN INTRODUCTION LETTER

Lawrence Nderu

ICSIT, JKUAT

Dear Respondent,

I am a Post Graduate student (M.Sc. Software Engineering) at Jomo Kenyatta

University of Agriculture and Technology (JKUAT), carrying out a research study on,

“FORMAL TECHNICAL REVIEW IN SOFTWARE QUALITY ASSURAN CE”.

The questionnaire (attached) aims at establishing the effects of background and

experience of a reviewer on the defects uncovered during a Formal Technical Review

(FTR). The information on the questionnaire will be kept Confidential and no

individual names will be mentioned in the completion of the work. Your answers in this

study will go along way in assisting the researcher understand the relationship between

the background and experience of the reviewers and the defects uncovered during a

FTR.

Thanking you in advance.

Yours faithfully

Lawrence Nderu

Researcher

144

Questionnaire

Name __

Section A

General Background (tick the most appropriate)

1. My reading comprehension skills are:

o Low

o Medium

o High

2. My listening and speaking skills are:

o Low

o Medium

o High

3. What is your previous experience with software development in practice? (Check

the bottom- most item that applies.)

o I have never developed software.

o I have developed software on my own.

o I have developed software as a part of a team, as part of a course.

o I have developed software as a part of a team, in industry one time.

145

o I have worked on multiple projects in industry.

i) Please explain your answer. Include the number of semesters or

number of years of relevant experience. (E.g. “I worked for 10 years

as a programmer in industry”; “I worked on one large project in

industry”; “I developed software as part of class project”; etc…)

Software Development Experience

Please rate your experience in this section with respect to the following 5-point scale:

(Please include any relevant comments below each section)

 1 = No experience; 2 = learned in class or from book; 3 = used on a class

project;

 4 = used on one project in industry; 5 = used on multiple projects in industry

Experience with Lifecycle Models

4. Experience with the Waterfall Model 1 2 3 4

5

 Comment: ___

146

5. Experience with the Spiral Model 1 2 3 4 5

 Comment: ___

6. Experience with the Incremental Development Model 1 2 3 4

5

 Comment: ___

Experience with Requirements

���Experience writing requirements 1 2 3

4 5

���Experience interacting with users to write requirements 1 2 3

4 5

���Experience writing use cases 1 2 3

4 5

���Experience reviewing requirements 1 2 3

4 5

���Experience reviewing use cases 1 2 3

4 5

���Experience changing requirements for maintenance 1 2 3

4 5

Comments: ___

Experience in Design

147

���Experience in design of systems 1 2 3

4 5

���Experience in design of systems from requirements/use cases 1 2 3

4 5

���Experience with creating Object-Oriented (OO) designs 1 2 3

4 5

���Experience with creating Structured Designs 1 2 3

4 5

���Experience with reading OO designs 1 2 3

4 5

���Experience with the Unified Modeling Language (UML) 1 2 3

4 5

���Experience changing designs for maintenance 1 2 3

4 5

Comments: ___

Experience in Coding

���Experience in coding, based on requirements/use cases 1 2 3 4 5

���Experience in coding, based on design 1 2 3 4 5

���Experience in coding, based on OO design 1 2 3 4 5

���Experience in maintenance of code 1 2 3 4 5

Comments: __

148

Experience in Testing

���Experience in testing software 1 2 3 4 5

���Experience in testing, based on requirements/use cases 1 2 3 4 5

���Experience with Unit Testing 1 2 3 4 5

���Experience with Integration Testing 1 2 3 4 5

���Experience with System Testing 1 2 3 4 5

Other Experience

• Experience with software project management? 1 2 3 4 5

• Experience with software inspections? 1 2 3 4 5

Comment: ___

149

Section B

i) Please rate how much you think the background and experience (column) factor

affects the ability of the reviewer to uncover the defects categories (rows) in this

section with respect to the following 5-point scale: (Please include any relevant

comments)

 1 = Strongly Agree; 2 = Agree; 3 = Disagree; 4 = Strongly Disagree;

 5 = Do not Know

 NOTATION

DK – Amount of knowledge about the domain containing the problem being solved.

SDE - Experience in whatever development phase the inspection is occurring at.

NL - Familiarity with the documents language.

PM – Experience in software projects management

PC- How closely the inspector uses the checklist or the process provided.

150

a) Requirements Phase

Experience and background of the reviewer (Coded as above)

D
ef

ec
ts

 c
la

ss
es

 u
nd

er
 r

eq
ui

re
m

en
ts

 p
ha

se

 DK SDE NL PM PC

Document Formatting issues

Terminology – incorrect terminology

States- deals with system, object or data states

Data –inconsistence in data types, validation, access

and restrictions

Interface and Access- way of accessing the system

also interface

Other Inconsistencies – Contradictory things in two

parts of the documents

b) Design Phase

Experience and background of the reviewer (Coded as above)

D
ef

ec
ts

 c
la

ss
es

un
de

r
D

es
ig

n

 DK SDE NL PM PC

Messages – problems involving messages that appear

in the design.

Attributes – Description of attributes in the design.

151

Actors – Misuse of the actors within the design.

Constraints – Constraints are omitted or incorrect

Relationships –Incorrectly related classes.

Class Hierarchy –Problems within the class

inheritance structure.

Other –Defects that do not fit in other categories.

States- states of the objects unclear

c) Coding Phase

Experience and background of the reviewer (Coded as above)

D
ef

ec
ts

 c
la

ss
es

 u
nd

er
 C

od
in

g
ph

as
e

 DK SDE NL PM PC

Logic- insufficient/incorrect algorithms used.

Standards – problems with coding/documentation

standards.

Redundant code

Performance – poor processing speed: System crash

because of file size, Memory problems

Reusability – inability to reuse the code

Memory management defects – e.g. array overflow,

illegal function call, system hands, or memory

152

overflow

Consistency – Updating or deleting of records in the

same order throughout the system

Portability – code not independent of the platform

.

d) Testing Phase

Experience and background of the reviewer (Coded as above)

D
ef

ec
ts

 c
la

ss
es

 u
nd

er
 T

es
tin

g
ph

as
e

 DK SDE NL PM PC

Testing Tools and resources – Are the tools and

resources identified and available.

Record keeping – has the record keeping mechanism

being established.

Stress Testing Mechanisms – is the stress testing

mechanism established?

Major identification of test phases – identification

and sequencing of major test phases and the

sequencing.

153

SYSTEM HARDWARE AND SOFTWARE PACKAGES USED FOR THIS

PROJECT

• Desktop Computer – 2.8 GHZ, 40GB, 512 MB

• Windows Xp Service pack 3

• Visual Studio 2008

• Microsoft SQL server 2008

• Mockup Screen development Tool

• AgroUML

• Apache Ant

