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ABSTRACT
 

In this study, convective heat transfer in a magnetohydrodynamics flow over an 

immersed   axi-symmetrical body with curved surface is investigated. The study is 

aimed at determining the velocity distribution, temperature variation within the thermal 

boundary layer of hydromagnetic fluid and the effect of heat generated within the 

boundary of an immersed axi-symmetrical body with curved surface. The 

magnetohydrodynamic flow in consideration is unsteady and the fluid is assumed to be 

of constant density. Convective heat transfer is caused by different temperature profiles 

which bring about temperature gradient. The temperature difference is due to the 

frictional forces on and within the surface of the body when fluid flows over it.  The 

equations governing the flow over curved surfaces are highly non-linear and a suitable 

numerical method; finite difference method is used. This method is used because of its 

stability, convergence and consistency. A computer code is used to obtain results. The 

results are presented graphically and discussed. It was observed that when magnetic field 

parameter is increased there was a decrease in both velocity and temperature profiles. 

These results are applicable in designing devices requiring high maneuverability and low 

resistance to motion e.g. aerofoil and cooling fans.  

 

 



CHAPTER ONE  

 INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction  

 The theory of convective heat transfer is very important in analysis of thermodynamics of 

fluid. It involves the natural transfer of heat within the fluid. Depending on the conditions 

on which the fluid flow is occurring, different fluids have different rates of transfer of 

dissipated heat. This dissipation of heat is brought about by viscosity of the fluid, density 

gradients and the nature of the surface of the body in the fluid flow region.     

Magnetohydrodynamics is the study of motion of electrically conducting fluids in the 

presence of a magnetic field. When a conducting fluid or an ionized gas (plasma) flows in 

magnetic field, an electric field is generated, and electric current is induced at a right angle 

to the magnetic field. The interaction of the current with the magnetic field changes the 

motion of the fluid and produces an induced magnetic field. 

 

In this study, a laminar hydro-magnetic fluid is considered. The fluid is flowing over an 

axi-symmetrical body with curved surfaces. Studies have been done on fluid flows on 

curved surfaces with axi-symmetrical orientation for instance cylindrical bodies, cones, 

spheres whereby forces acting on these bodies are investigated. This study concentrates in 

the boundary layer region. 

1.01 Heat Transfer   

Heat transfer involves energy in transit as a result of temperature gradient in the medium. 

This temperature gradient may arise from various causes such as viscous effects, release of 

latent heat as fluid vapour condenses, and absorption of thermal radiation or radioactivity. 

Heat transfer takes place mainly in three modes; conduction, convection and radiation. 

This study is only concerned with convective heat transfer over an axi- symmetrical body 

with curved surfaces. 
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1.02 Convection 

Convection refers to the heat transfer by circulation or movement of the heated parts of a 

liquid or a gas. Convective heat transfer is due to the superposition of energy transport by 

random molecular motion (diffusion) and by advection (the bulk or macroscopic fluid 

motion). The contribution due to bulk fluid motion originate from the fact that boundary 

layer grows as the flow advances. Convection laws rely on the fundamental principles of 

both heat transfer and fluid flow which include law of conservation of mass, law of 

conservation of momentum and law of conservation of energy. 

 

Convective heat transfer depends on viscosity, thermal conductivity, specific heat and 

density. Viscosity influences the velocity profiles of the fluid flow. Convective heat 

transfer may be categorized as either natural convection or forced convection whereby in 

forced convection, flow is caused by some external force like the case of a fan, a pump or 

atmospheric winds while in natural convection the flow is induced by buoyancy forces 

resulting from density gradients as a result of temperature gradients in the fluid. The 

density of the fluid on the boundary layer changes on heating, causing the fluid to rise and 

be replaced by cooler fluid that also will heat and rise. This continues and is a phenomenon 

called natural convection. In free convection the driving force for the fluid motion is 

gravity field acting on the density difference. The density gradients are due to temperature 

and concentration gradients existing in the fluid while the body force is due to the 

gravitational field. When the body forces act on the fluid there results a buoyancy force 

that induces free convectional currents.  Forced and natural type of heat convection may 

occur together in a phenomenon called mixed convection. 

 

1.03 Fluid 

Fluid is a state of matter which under given thermodynamic conditions and in absence of 

external forces takes the shape of the container. Fluid motion may be constrained by 

geometrical boundaries to be predominantly parallel to the sides. When flow variables 

(pressure, velocity and temperature) at all successive cross sections are identical at any 

instant, the flow is uniform otherwise it is non-uniform. Fluid is considered incompressible 
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if the density is assumed to be invariant otherwise is compressible if its density is a 

variable. 

 

A fluid flow is steady if its velocity and the thermodynamic properties at each point in the 

flow region do not change and is independent of time; otherwise it will be unsteady if the 

flow is dependent of time. Fluid flow may be termed as laminar or turbulent. The term 

laminar refers to a fluid flow in which fluid particles downstream of the leading edge 

moves in an orderly manner in laminas or layers parallel to the solid boundary as opposed 

to turbulent whereby fluid velocity components have random turbulent fluctuations 

imposed upon their mean values. Turbulent fluid motion is an irregular condition of flow 

in which various quantities like velocity and pressure show random variation with time and 

space. Turbulent flow is also characterized by eddies that causes mixing of layers of fluid 

until the layers are no longer distinguishable. This mixing and collision of fluid particles 

produces heat and the greater the turbulence the larger the amount of heat transfer, as these 

increased collisions lead to increased dissipation of heat. A fluid can also be ideal or real, 

whereby if it is assumed that if there exists no frictional effect between the fluid layers and 

the boundary walls then it is regarded as ideal, otherwise real.  

1.04 Viscosity 

Viscosity is the resistance that occurs due to shear stresses within the fluid particles and the 

shear stresses between the fluid particles and the solid surface for a fluid flowing around a 

solid body. As fluid exerts a shear stress on the boundary, the boundary exerts an equal and 

opposite force on the fluid called shear resistance (frictional drag). Drag coefficient (Cd ) 

always depends on the Reynolds number (Re) and the shape of the body. The work done 

against the viscous effects usually causes fluid flow, and consequently the energy spent in 

doing so is converted to heat. At low values of Reynolds number, the fluid is highly 

viscous causing deformation drag, the fluid is deformed on a wide zone around the body 

which brings about pressure force and frictional force. At large values of Reynolds 

number, the fluid is less viscous, for example in water and air, and the viscous effects is 

limited to the boundary layer thickness. In this case deformation drag is exclusively 
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friction drag. The shear force exerted on the surface of the body due to the formation of 

boundary layer results into friction drag.  

1.05 Boundary Layer 

Boundary layer is a thin layer of fluid particles adjacent to the surface of a body or solid 

wall in which viscous forces exist. The fluid particles in contact with the solid body 

surface attain the velocity of the body. The region outside this layer is called freestream 

region where the flow is unaffected by viscous forces. Boundary layer thickness theory is 

important in analyzing flow problems involving convective heat transfer. The physical 

significance of the boundary layer is that it is the region that determines the magnitude of 

the surface friction and convective heat transfer in a fluid. 

1.06 Velocity Boundary Layer 

When fluid particles of a real fluid are in contact with a flat surface, their velocities are 

retarded gradually. These particles then act to retard the motion of the particles of the 

adjoining fluid layer which in turn acts to retard the motion of the particles in the next 

layer. The process continues until the effect is negligible. The velocity boundary thickness 

is defined as the distance away from the plate’s surface where the velocity reaches 99% 

that of free –stream velocity. 

1.07 Thermal Boundary Layer 

Thermal boundary layer develops if the temperature of the fluid at the surface of the 

immersed body and the free stream temperature differ. Fluid particles that come into 

contact with the solid body attain the same temperature as the temperature of the surface of 

the solid. In turn these particles exchange heat energy with those in the adjacent fluid 

layers and the temperature gradients develops in the fluid. The region in the fluid in which 

these temperature gradients exist is the thermal boundary layer.  

1.08 Lift and Drag 

The sum of all forces on a body that acts perpendicularly to the direction of the flow is 

referred to as lift. This force occurs when fluid flows over stationary solid body. On the 

other hand, drag is the force parallel and opposite to the direction of motion of an object 

immersed in a flowing fluid. Drag takes two forms; pressure drag which is dependent on 
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the shape of the object immersed in the flowing fluid and other form of skin friction which 

is dependent on the viscous friction between a surface of a solid body and flowing fluid. 

1.09 Joule Heating 

Joule heating is also known as ohmic or resistive heating. It is the process by which the 

passage of an electric current through a conductor releases heat. Joule heating was first 

studied by James Prescott Joule in 1841. When an electric current passes through an 

electrolyte, it causes joule heating. The increase in kinetic or vibrational energy of particles 

manifests itself as heat, and heat causes a rise in temperature of the fluid. The rise in 

temperature of the fluid translates to non-uniform properties of the fluid.  

1.10 Literature Review  

The concept of magnetohydrodynamics was first introduced by Hartman (1938) when he 

studied the effects of a conductor in an electrically conducting fluid. The important point is 

that the flow of electrically conducting fluid such as mercury under a magnetic field, in 

general, gives rise to an induced electric current. Much of the work in hydromagnetic was 

done by Alfven, H (1942) who established transverse waves in electrically conducting 

fluid and explained many astrophysical phenomena with it. 

Lundquist (1949) performed laboratory experiments that produced electromagnetic-

hydromagnetic waves in a magnetized mercury, with a velocity that approximated 

Alfven’s formula. The theory of convective heat transfer strongly emerged in 20
th

 century. 

By its nature convective energy transfer is closely related to fluid particles motion and 

therefore is a fundamental part of fluid mechanics study. Advancement in research in fluid 

mechanics have greatly influenced the theory of heat and mass transfer in moving media 

such as air ,water, and oil. The relationship between the intensities of turbulent momentum 

and heat transfer process is one of the problems of heat transfer theory. 

A German aero dynamist Prandtl (1904), established that a flow of large Reynolds number 

means that it has a low viscosity (low frictional forces associated during flow). If the 

viscosity of the fluid is low then the effects of friction will be confined to a very thin layer 

known as the boundary layer near the solid body while the region outside the boundary 

layer can be considered frictionless or ideal i.e. in this region the fluid is assumed to be in-
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viscid or non-viscous. For a flow with high Reynolds number, the viscous forces in region 

near the boundary layer will dominate over the inertia forces and the effects of the 

viscosity will be very important in the boundary region, and as a result shear forces will be 

very high due to the extremely high velocity gradients at and near the boundary layer. 

Barenblatt (2002), in their study on the model of the turbulent boundary layer with non- 

zero pressure gradient observed that the turbulent boundary layer at large Reynolds 

number consists of two separate layers upon which the structure of the vortex fields is 

different, although both exhibit similar characteristics. In the first layer, vertical structure is 

common to all developed bounded shear flows and the mean flows. The influence of 

viscosity is transmitted to the main body of flow via streaks separating the viscous sub 

layer. The second layer occupies the remaining part of the intermediate region of the 

boundary layer. The upper part of the boundary layer is covered with statistical regularity 

by large scale “humps” and the upper layer is influenced by the external flow via the 

pressure drag of these humps as well as by the shear stress. In their earlier studies, it is 

indicated that the mean velocity profile is affected by the intermittency of the turbulence 

and as the humps affects intermittency, the two seeking regions are visible. On the basis of 

these considerations, the effective Re, which determines the flow structure in the first layer 

(and is affected in turn by the viscous sub layer), was identified as one set of such 

parameters. The other parameters that influence the flow in the upper layer include 

pressure gradient xP; dynamic (friction) viscosity ; velocity u; fluid’s kinematic viscosity 

 and density . 

In recent past, many researchers have been attracted to solving the boundary layer 

equations. Smith (1963) in one of their papers presented a method for solving the complete 

incompressible laminar boundary layer equations; both for two dimensional and axi- 

symmetrical laminar flow, essentially full generality and with speed. In subsequent papers 

(1970, 1972), Smith discussed application potential flow and the boundary layer theory in 

the hydrodynamics, they also provided a solution technique of the laminar boundary layers 

by means of the differential difference method. 
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 Wehrle (1986) presented a paper on analytical shears for the determination of the 

separation point in the laminar boundary layer. Unlike conventional approaches the 

scheme does not require the full-filed solution of the governing partial difference 

equations, but rather the solution of a first order set of boundary layer equations defined in 

the neighborhood of the leading edge. Continuing interest in flows and heat transfer over 

flat plate, concave , convex surfaces stems from their possible effects in the turbine blades 

of jet engines, vehicle aerodynamics ,aircraft wings, submarines, spaceship, cooling plants 

power plants e.t.c. flow phenomenon are mainly subjected to pressure gradients ( favorable 

or adverse), surface curvature and a wide range of Reynolds number. 

There have been many previous investigation of flow and heat transfer on flat plate 

boundary layers with pressure gradients. Fukagata (2002) were concerned with transition 

to turbulent flow and the Reynolds stress distribution, while Umur and Karagoz (1999) 

dealt with augmentation of heat transfer with or without stream wise pressure gradients. 

Filippova, and Hanel (1998) developed a curved boundary treatment using Taylor’s series 

expansion in both space and time for single particle distribution near the wall. This 

boundary condition satisfies the no-slip condition to the second order in a space step and 

preserves the geometrical integrity of the wall boundary. 

Mei, ,Luo & Shyy (1999) and Bouzidi (2001) proposed some other boundary treatment 

methods. In all those methods, the boundary conditions were treated separately for some 

specific steps when some variations occurs in the specified steps while dealing with curved 

boundaries, and an abrupt change in the single particle mass distribution was caused. In the 

turbo machinery applications; a variations in the rate of heat transfer due to a small flow 

disturbance can lead to an increase in the thermal stress and decrease the effective working 

life span of such a component. On a highly curved wall, the change in heat transfer rate is 

mainly due to an increase or decrease of the turbulent mixing by effect of streamline 

curvature. It has been indicated in Karman’s (1934) stability argument that the convex wall 

has a stabilizing effect on the fluid particles, while concave wall has a de-stabilizing effect 

with reference to a flat plate. 
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The measurement and prediction of the rate of heat transfer for a two dimensional 

boundary layer on a concave surface were presented by Mayle (1979). It was indicated that 

the heat transfer on the convex surface was less than that of a flat surface having the same 

free stream, Re and turbulence. Concave surface heat transfer was augmented when 

compared to the flat surface. One area of practical interest to researchers is on the 

degradation of aerofoils .Aerofoils form a crucial part of aviation and air conditioning 

systems. 

Omboro(2009) in his study on the convection heat transfer in a fluid flow over a curved 

surface established that as fluid flows over an immersed curved surface, some work is done 

against viscous effects and energy spent is converted into heat and also vorticies formed in 

the boundary layer due to high velocity gradient is swept towards the edge. Mugambi 

(2008) in their research, an investigation of forces produced by fluid motion on a 

submerged finite curved plate, they established a relationship between geometrical shape 

of the curvature and the variation of drag force of specific velocities of the viscous fluid. 

Kioi(2011) studied convective heat transfer in homogenous fluid flow of Reynolds number 

of order less than 2000 over an immersed axi-symmetrical body with curved surface. In 

their study, it was noted that when Reynolds number is increased, the dissipation also 

increased. When the curvature of the surface was increased, the heat dissipation also 

increased. However they did not establish the effect of magnetism on velocity and 

temperature over immersed curved surface which will be investigated in this study. 

1.11 Statement of Problem  

This study is on the analysis of convective heat transfer in magnetohydrodynamics over an 

immersed axi-symmetrical body with curved surface. A stationary curved body is 

immersed in an ambient fluid with surface temperature which is the same as the 

surrounding fluid. The flow of an electrically conducting fluid is horizontal along x- axis. 

There is application of constant magnetic field along the y-axis. The hydrodynamic flow 

field is axi-symmetrical and the fluid possesses constant thermophysical property with the 

exceptional of those caused by density changes which generate the buoyancy forces. The 
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energy converted into heat within the boundary layer is transferred from this boundary 

layer through convection into the rest of the region 

A lot has been done with regard to heat transfer but less has been done in regard to how 

magnetism affects velocity and temperature profiles in the boundary layer of immersed 

bodies with curved surfaces. Convective heat transfer forms the basis of this research. 

 1.12 Justification 

In our everyday day life people encounter cost maintenance brought about by degradation 

of equipment and machines whose parts come into contact with a fluid and this has 

become a major concern. Heat produced due to viscosity on the body surfaces leads to the 

degradation of equipment and machines which has led to high cost of maintenance. 

Magnetohydrodynamic convection flow has many important applications in the design of 

power generators, heat exchangers, pumps and flow meters, in solving space vehicle 

propulsion, control and re-entry problems, in designing communications and radar 

systems. Heat injection or heat withdrawal on immersed curved surface enhance velocity 

variations in the hydrodynamic flow thereby improving the maneuverability of such bodies 

in the fluid as in the case of submarines in water, wings of flying planes, fan blades in the 

air conditioning system and in computer cooling appliances. 

1.13 Hypothesis  

There exist no relationship between convective heat transfer and the shape of an axi-

symmetrical body with curved surface. 

 1.14 Objective of the Study  

1.14.1. General Objective  

The general objective of this study is to determine the velocity regimes and temperature 

profiles that occur when hydromagnetic fluid flows past an immersed axi-symmetrical 

body with a curved surface.  
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1.14.2 Specific Objective  

1. To determine the velocity profiles of hydromagnetic fluid flow past an immersed 

axi-symmetrical body with curved surface. 

2. To determine the temperature profiles within the thermal boundary layer of the 

hydromagnetic fluid flow past the immersed axi-symmetrical body with curved 

surface due to velocity variation. 

3. To determine the effect of heat generated on boundary of an immersed axi-

symmetrical body with curved surfaces on drag and lift 
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CHAPTER TWO 

MATHEMATICAL ANALYSIS 

2.1 Introduction 

 In this chapter, equations governing the flow of an incompressible, Newtonian fluid over 

an axi symmetrical body with curved surface are discussed. The fundamental equations 

that are considered include; mass conservation equation, Maxwell equations and equation 

of energy. Also description of flow and dimensional analysis of equations that govern this 

fluid flow problem is done in this chapter. 

2.2 Assumptions and Approximations  

In order to describe the flow problem mathematically the following approximations and 

assumptions are made; 

1. All velocities are small compared with that of light <<1 

2. Flow is restricted to laminar domain, i.e., the region being considered is the laminar 

boundary layer. 

3. Fluid is incompressible (density  assumed constant) 

4. Fluid has constant thermal conductivity, constant electrical conductivity, and 

constant coefficient of viscosity. 

5. The fluid flow is unsteady  

6. Force ρeE due to electric field is negligible compared to the force JxB due to 

magnetic field. 

7. The velocity component u along the surface of the body is much larger than the 

velocity component v normal to the surface of the body. 

8. Radius of the curvature is greater than zero. 
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9. The length of the boundary layer is large compared to boundary layer thickness. 

2.3 Equation Governing the Fluid Flow 

The fundamental equations of fluid dynamics are based on the following universal laws of 

conservation. i.e. conservation of mass, momentum, and energy. 

2.3.1 Equation of Continuity 

 

The equation of continuity is a mathematical statement in any process where the rate at which mass 

enters a system is equal to the rate at which mass leaves the system. This equation combines the 

law of conservation of mass and that of transport theorem.  

             

(2.1) 

Where     and      are fluid density and fluid velocity vector respectively.        

 In Cartesian coordinate form, equation (2.1) is expressed as; 

                                                                      (2.2) 

For an incompressible two-dimensional fluid flow, w = 0 and   hence (2.2) reduces 

to; 

                                                                                                     (2.3) 

2.3.2 Equation of Conservation of Momentum 

The equation of conservation of momentum is derived from the Newton’s second law of 

motion, which states that the time rate change of momentum of a body matter is equal to 

the net external forces applied to the body. This external force is divided into two types of 

forces; surface forces (e.g. force due to static pressure and viscous stresses) and body 

forces (e.g. gravitational force, centrifugal force, magnetic force or electric fields) 
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The momentum along the x-axis  

 (2.4) 

The momentum equation along the y-axis become; 

     (2.5)    

The viscous stresses and shear stresses in two dimensions are defined by; 

                 (2.5a) 

                                                                                                   

                 (2.5b) 

       (2.5c) 

 

Substituting equations (2.5a,b,c) into equations (2.4) and (2.5) the following momentum 

equation along the x-axis and y-axis was obtained. 

Along x-axis; 

 

    (2.6a) 
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Along the y-axis; 

  

     (2.6b) 

Since;   equations (2.6a) and (2.6b) reduce to  

            (2.7a)                                

        (2.7b) 

 

 From the boundary layer approximations in this study, the distance under 

consideration is very small than the boundary thickness  to the extent that the 

velocity component in the direction along the surface is much larger than that 

normal to the surface. Hence the gradients normal to the surface were larger than 

those along the surface. i.e.  and . From this approximation 

(2.7a) and (2.7b) reduced to 

                                                                           (2.8a)   

  and 

                                                                                             (2.8b) 

 respectively. 

From the Bernoulli’s equation;  

                                                                                (2.9) 
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The curved surfaces provides both adverse and favourable pressure gradient (i.e 

this is where the pressure decreases in the direction of the flow the physical effect 

is to accelerate the flow, the boundary layer remains attached to the surface and 

tends to reduce in thickness and this is termed as favourable pressure gradient) 

whose tangential component of the velocity of the outer flow reveals a power law 

dependence on the streamwise x measured along the curved surface boundary as; 

                                                                                                         (2.10) 

where c is a positive velocity coefficient and m is an integer obtained from the 

angle of inclination. This integer m is given as  where  is the angle in 

radians of the inclination at a given point from the horizontal plane. Let  denote 

the angle. Then    differentiating partially equation (2.9) with respect to x, 

we obtained  

                                                                                            (2.11)    

this implied that 

                                                                                                (2.12)  

But for the power law dependence 

                                                                (2.13) 

Hence equation (2.8a) became 

                                         (2.14)  

where   

The body in consideration has a concave surface. The curvature effect on the fluid 

flow has to be taken in consideration. The concave surface brought about an 
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unstable effect which was determined by . The curved surface is a curve and 

was defined by a quadratic equation of the form  

                                                                                             (2.15) 

Where O<a<1 is set to ensure surface radius of the curvature is large enough and 

the end points are set at a specific co-ordinates values when solving for a particular 

case where length of the plate curvature is determined analytically. The concave 

wall exerts a destabilizing influence on the momentum exchange. Prandtl proposed 

to account for curvature effect by multiplying the length of the curved surface by a 

factor f which was a function of dimensionless curvature parameter, that is  

                                                                                                (2.16) 

The boundary layer equation on the curved surface is written as 

                                                                                                    (2.17) 

where  are curvature parameters which are defined as  

                                                                                               (2.18) 

                                                                                                 (2.19) 

where r(x) is the radius of the curved surface 

Equation (2.8b) is written as 

                                                                                                        (2.20) 

 A comparison is done between equations (2.17) and (2.20) which yields 

                                                                                            (2.21) 
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The body forces under consideration  and  are partly due to gravitational pull 

which is assumed to be a constant in both cases, hence an important assumption 

that 

                                                                                               (2.22) 

On comparing equations (2.21) and (2.22) it is resolved that 

                                                                                            (2.23) 

Equation (2.23) is substituted in the equation of conservation of momentum along 

the x-axis equation (2.14) results to a generalized equation of conservation of 

momentum for fluid flow over an axi-symmetrical body with curved surfaces, the 

equation become 

                                                                                  (2.24) 

but since  , then the term  is written in Taylor series as 

  

Since the flow along the x-axis,  and for a very small values of   

momentum equation (2.24) become 

                                                                     (2.25)  

In this study, there was application of a constant magnetic field along the y-axis. 

The equation of momentum along the y axis become;                                                         

                                                         (2.26)   

Where     is the Lorentz force.       

On taking  
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The term can be expressed as  

                                                                       (2.26a)  

But  therefore the Lorentz force term JxB is give as 

                                                             (2.26b)                                                   

                    

Upon Substituting the JxB, the equation of momentum (2.26) takes the form 

                                                                     (2.27) 

 

2.3.3 Equation of Conservation of Thermal Energy 

The equation of energy is derived from the first law of thermodynamics which state that 

the amount of heat added to the system, dQ is equal to the sum of the change in the internal 

energy, dE of the system and the external work done dW by the system. Mathematically 

the law is expressed as 

          dQ=dE+dW                                                                              (2.28)  

where    for a unit mass. Equation 2.28 yields 

                                                                             (2.29) 

The first law of thermodynamics for fluid flow with constant thermal conductivity K, zero 

internal generation and negligible compressibility effect the equation is given by;  

                                                                                    (2.30) 
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where   is the internal heating due to the viscous dissipation while for an incompressible 

two dimensional fluid flow the viscous dissipation function is; 

 

                                                            (2.31) 

By considering unsteady incompressible flow in a control volume, the standard thermal 

energy equation for the thermal boundary layer is given by  

  (2.32) 

where h is enthalpy and  is the rate of heat generation. 

The enthalpy h is given by 

                                                                                          (2.33) 

The first order derivative of enthalpy become 

                             (2.34) 

 

But    and for a unit mass and single species fluid, , 

therefore 

                                                                                        (2.35) 

Substituting equation (2.35), the equation (2.34) become  

                                                          (2.36) 



20 
 

Hence, 

                                                                                           (2.37) 

Assuming that the flow is fully developed,  and   are negligible and , then 

equation (2.32) reduces to 

                                     (2.38)                                      

 

For fluid flow over a body with curved surfaces the convective heat transfer due to the 

viscosity in the thermal boundary layer is modeled to the equation of conservation of 

energy. Increase in flow cross-sectional area increases the adverse pressure gradient that 

opposed the buoyancy induced acceleration. The convection equation is expressed as 

                                                                                                      (2.39) 

Where  is the temperature difference between the surface and the bulk fluid 

and is the area of the surface. In this case the area of the surface is the length of the curved 

surface. The effect of the curved surface is taken into account by multiplying area (A) by a 

dimensionless factor given by equation (2.39) which results to 

                                                                                                    (2.40) 

Where  is the heat transferred per unit time. On replacing f, with  equation 

(2.40) reduced to 

                                                                     (2.41) 

From Newton’s law of cooling the local heat flux is given by 

                           (2.42) 
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where h is the local convection coefficient. Since the flow conditions varies from one point 

to another on the curved surface both   and h also varies along the curved surface. At any 

distance x from the leading edge of the curved surface local heat flux is obtained by 

applying the Fourier law to the fluid at y=0 as  

                                                                                                       (2.43) 

The local convection heat transfer is then expressed as 

                                                                                                    (2.44) 

In the thermal boundary layer the rate of heat conduction along the y-direction is larger 

than that along the x-axis i.e . The equation of first law of thermodynamics (2.38) 

reduces to; 

                                 (2.45) 

from the above approximations the above equation (2.45) reduce to; 

                                                                      (2.46) 

but    is substituted as per above in order to take curvature effects the equation yields; 

                              (2.47)   

In this study, heat generated due to electrical resistance of the fluid to the flow of induced 

electric current is also considered. This is given by 

                      (2.48) 

 On substitution in equation (2.47) it yields, 
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              (2.49) 

 

2.4 Non-Dimesionalisation of Equations Governing the Flow 

 

The subject of dimensional analysis considers how to determine the required set of scales 

for any given problem. It is a process that starts with selecting a suitable scale against 

which all dimensions in a given physical model are based. Non-dimesionalisation is aimed 

at ensuring that the results are applicable to other geometrically similar configurations 

under a similar set of flow conditions. 

For this research, we let H, ,P, and T to be the characteristic length, velocity, pressure, 

and temperature respectively. The following transformations are used to non-

dimensionalise the equations governing the flow. 

,   ,  , ,  ,  (2.50) 

In order to transform the equations of continuity, momentum and energy into their non-

dimensional equation form, the following analysis was first carried out: 

                                                                           (2.51) 

                                                                            (2.52) 

               (2.53) 

                 (2.54) 

                 (2.55) 
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               (2.56) 

                   (2.57)  

              (2.58) 

Substituting equations (2.51) and (2.52) in the equation (2.3), the following was obtained                                                                                         

                                                                       (2.59)                                      

Or  

                                                                            (2.60) 

The equation of conservation of momentum for this study was given as (2.27), on 

substituting equations (2.53) and (2.54) the equation of momentum become                        

                                  (2.61) 

Dividing this equation throughout by 
  
 ,

 
the following equation was obtained 

                                       (2.62) 

Equation (2.62) gives the equation of momentum in non-dimensional form 

But  , hence the above equation  reduces to 

                                                     (2.63) 



24 
 

In the equation of conservation of energy (2.49), equations (2.55), (2.56) ,(2.57) and (2.58) 

are substituted and dividing all through by   the following equation is obtained;                                                                                                                                                   

  

                  (2.64)              

Dividing equation (2.64) throughout by  the following equation is obtained 

    

                    (2.65)                               

Multiplying the term  by in the numerator and the denominator, the 

following is obtained;  

                                                                                                                (2.66)  

The equation (2.66) is the equation of conservation of energy in non-dimensional form. 

But, , , , 

  and  
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Hence the equation for conservation of energy reduces to 

                      (2.67)                                                              

2.5 Non-Dimesional Numbers 

2.5.1 Reynolds number, Re 

This number was named after a scientist Osborne Reynolds; it is defined as the ratio of the 

inertia forces to the viscous forces. It is given by 

                                                                      

2.5.2 Eckert number, Ec 

This is the measure of kinetic energy of flow to the boundary layer enthalpy difference 

across thermal boundary, given by; 

                                                                                                    

2.5.3 The Prandtl number, Pr 

This number was named after Ludwig Prandtl (1904) a German aero dynamist who was 

closely associated with the conception of boundary layer theory. It is the parameter which 

relates the relative thickness of the hydrodynamic and thermal boundary layers. The 

Prandtl number provided the link between the velocity field and the temperature field. It is 

expressed as 

                                                                                                 

2.5.4 Peclet number,Pe 

This number is named after a French physicist Jean Claude Peclet, in context of transport 

of heat, the Peclet number is equivalent to the product of the Reynolds number and the 

Prandtl number and is given by; 
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2.6 Boundary and Initial Conditions 

The boundary conditions for hydromagnetic fluid flow over axi-symmetrical body with 

curved surface are stated below. Equation of conservation of momentum (2.63) is solved 

subject to the following boundary and initial conditions. 

                                                                                        (2.68) 

                                                                                    (2.69) 

                   (2.70) 

On non-dimensionalising the boundary and initial conditions 

                  (2.71) 

                   (2.72) 

                  (2.73) 

On simplifying the above boundary and initial conditions the following is obtained 

                   (2.74) 

                   (2.75)

                     (2.76) 

The equation of conservation of energy (2.67) is solved subject to the following boundary 

and initial conditions 

                     (2.77) 

                                                                                      (2.78) 

                                                                                       (2.79) 

On non-dimensionalising the boundary and initial conditions; 
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                                                    (2.80) 

                                                  (2.81) 

                                                         (2.82) 

On simplifying the conditions above 

                                                                                    (2.83) 

                  (2.84) 

                    (2.85) 

 

2.7 Method of Solution 

 

Explicit relation between the partial derivatives and the functional values at the adjacent 

nodal points are obtained using mesh system. The rectangular regions are subdivided into 

smaller and equal square elements whose length is   and width is  and the time 

variation along the horizontal axis is represented by . The mesh system can thus be 

described as shown in the the figure below. 
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Figure  2.1 finite difference mesh 

Considering a reference point (i,j)  where i and j represent t and y respectively. Using the 

notation (  for  and  for  the adjacent points to y and t are 

defined, the points that are i and j units from the reference point have the 

coordinates . In finite difference approximation, the derivatives are replaced with 

finite differences. If   and T=T (t,y), their first derivatives with respect to t are 

written in finite difference form as 

                                                                            (2.86) 

                   (2.87) 

The first order derivatives with respect to y are written in forward finite difference form as 

                               (2.88) 

                    (2.89) 
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The second order derivatives with respect to y by central difference method are as follows; 

                  (2.90) 

                  (2.91) 

Upon substitution in the equation of momentum (2.63), this is obtained 

            (2.92) 

On making    the subject we obtained; 

    (2.93) 

Using crank Nicolson approximation for increased accuracy and convergence, the first and 

second derivative becomes; 

                                                       (2.94) 

                            (2.95) 

The equation of momentum thus yields: 

    

(2.96) 

This equation is solved explicitly after making the term  the subject of the equation. 
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                                                           (2.97)    

 

The boundary conditions are given as follows: 

  

                          (2.98) 

  

The equation of energy (2.67) is written in finite difference form, the partial derivatives are 

written in forward for time and central for space; 

                      (2.99) 

  

                   (3.0) 

        (3.1) 

on substitution of the derivatives this is got  

                      (3.2) 

On implementing the crank Nicolson approximation, the above equation became; 
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   (3.3) 

 

Making the subject so that the equation can be solved explicitly 

 

     (3.4) 

The boundary conditions are as follows; 

 

  

                                                                                    (3.5) 

  

The values of velocity obtained in the momentum equation are used to compute for 

temperature values in energy equation, this is done iteratively and different values are 

obtained when various flow parameters are varied.  
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 CHAPTER THREE  

DATA REPRESENTATION AND DISCUSSION. 

3.0 Introduction 

In this chapter data representation is done using graphs obtained from a computer code. 

The various parameters that have been varied include M, Re, Kr, Ec, Pe and R. 

3.1 Data Representation and Discussion. 

The following data representation is obtained after solving the equations governing the 

fluid flow 
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 Figure 3.1: Velocity profiles for different values of magnetic number, Reynolds 

number and curvature. 
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From Figure 3.1 above it was observed that an increase in magnetic field parameter M 

causes a decrease in magnitude of velocity profiles. This implies that increase in M has a 

tendency to slow down the velocity of the fluid. Application of a transverse magnetic field 

to an electrically conducting fluid give rise to a resistive type of force called Lorentz force. 

This force has a tendency to slow down the motion of the fluid in the boundary layer. From 

the figure it was noted that an increase in Reynolds number causes a decrease in the 

magnitude of velocity profiles. This is because when Re is increased, inertia forces 

increases and these forces oppose the fluid from accelerating hence reduced velocities. 

From figure 3.1, when the radius of curvature Kr is increased the free stream velocity of 

the fluid particle also increases. This is because increase in curvature increases the velocity 

gradient.  Thus increasing the speed of the fluid flow. 
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Figure 3.2: temperature fields for different magnetic number, Reynolds 

number, curvature and joules heating parameter.  
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The temperature profiles decreases with increase in M as observed in Figure 3.2 above. 

The reduced velocity by the frictional drag due to the Lorenz force is responsible for 

reducing thermal viscous dissipation in the fluid leading to a thinner thermal boundary 

layer. Magnetic field therefore can be used to control the velocity and temperature 

boundary layer characteristics. 

From Figure 3.2, it was also observed that, an increase in Reynolds number causes a 

decrease in temperature profiles. When the value of Re is small it means that the viscous 

forces dominates over the inertia forces; these large viscous forces results to increased 

friction between the surface of the body and the fluid. This brings about the increased 

dissipation of heat within the boundary layer.  

When Kr is increased, the heat dissipated in the boundary layer also increases. This is 

because increase in curvature increases velocity gradient, this in turn leads to an increase in 

shear stresses. These shear stresses bring about friction between the fluid and the surface 

and as a result this friction force leads to heat dissipation within the boundary layer region, 

this leads to the increased temperature profiles. This is deduced from the formula  , 

which implies that when the velocity gradient is increased it leads to increased shear stress 

that lead to an increase in heat dissipation in the boundary layer.  

From the Figure 3.2 above, it was observed that increase in the joule heating parameter R 

leads to increased temperature profiles. Increase in joule heating parameter leads to the 

heating of the fluid thereby increasing the velocity of the convection currents on the 

surface of the sheet. 
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 Figure 3.3: Temperature profile for different values of Eckert and Peclet numbers 

From the Figure 3.3 above, it was observed that increase in Eckert number causes an 

increase in temperature profiles. The Eckert number expresses the relationship between 

kinetic energy in the flow and the enthalpy. It embodies the conversion of kinetic energy 

into internal energy by work done against viscous fluid stresses. Large Ec implies that 

kinetic energy is large and hence velocities are higher. When particles attain high velocity 

the vibration also increases leading to an increase in collision of particles. This leads to 

increased dissipation of heat in the boundary layer. A positive Eckert number implies 

cooling the surface of the body, implying heating the fluid. This causes a rise in 

temperature and the velocity of the fluid.  

In the Figure 3.3 above, increase in Pe lead to an increase in temperature profile and a 

decrease in Pe lead to a low temperature profile in the boundary layer region. This is 

attributed by the fact that large Pe lead to an increase in velocities. The increased velocity 
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of the fluid indicates an increase in fluid particles collisions which in turn causes an 

increase in amount of heat dissipated.  

The effect of convective heat transfer on drag and lift is also discussed. The ratio of the 

shear stress  to the quantity  is known as local coefficient of drag, or local skin 

friction, denoted as  . The ratio of total drag force to the quantity is called 

average coefficient of drag;   where  is the density of the fluid, A is the area of 

the surface of the body, U is the free stream velocity. From the above it is deduced that 

 is the formula for drag. The formula for lift is given by  

where L is lift and  is the coefficient of lift. For symmetrical bodies the drag coefficient 

is 0.04 and the lift coefficient is 0.2. The convective heat transfer affects the fluid flowing 

around the body by varying the velocity of this fluid and hence affects the lift and drag. 
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CHAPTER FOUR 

CONCLUSION AND RECOMMEDATION 

4.1 Conclusion 

The analysis of various parameters on unsteady hydromagnetic laminar boundary layer 

flow of an incompressible, electrical conducting fluid past an immersed axi-symmetrical 

body with curved surface was carried out. The direction of the applied magnetic field was 

considered to be normal to the direction of the flow. The equations governing the flow are 

highly non-linear and have been solved by finite difference method. The results obtained 

shows that convective heat transfer in electrical conducting fluid is influenced by magnetic 

field parameter, Reynolds number, Peclet number, curvature of the body, Eckert number 

and joule heating parameter. 

 This study reveals that introducing a transverse magnetic field to a flow slows down the 

velocity of the fluid. Decreasing the velocity of the fluid slows down the movement of the 

body thus decrease in frictional drag. Increase in Reynolds number causes a decrease in the 

magnitude of velocity and temperature profiles respectively. Re represent the ratio of 

inertial to viscosity forces. Increase in Re results into a larger inertia that in turn translate 

to lower velocities. When Re is large the inertia forces dominate over the viscous forces. 

This leads to reduced velocity in the boundary layer.  When Re is small it implies that the 

viscous forces are dominated and hence temperature dissipation in the boundary layer 

occurs due to increased friction, hence increased drag. Due to this dissipation in the 

boundary layer, this result to decreased density of the fluid hence reduced lift. 

When the radius of curvature Kr is increased the free stream velocity and temperature 

profiles of the fluid also increases. Body curvature was found to have a direct 

relationtionship with temperature and velocity profiles. It was also indicated that increase 

in the joule heating parameter R leads to increased temperature profiles. Increase in joule 

heating parameter lead to the heating of the fluid thereby boosting the velocity of the 

convection currents on the surface of the solid surface. 
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Increase in Pe leads to an increase in temperature profile and a decrease in Pe leads to a 

low temperature profile in the boundary layer region. It was observed that increase in 

Eckert number causes an increase in velocity profiles as well as temperature profiles. Thus 

increase in Ec number boosts both the velocity and the temperature of a fluid 

4.2 Recommendations  

This study has considered the analysis of convective heat transfer in electric- conducting 

fluid over an immersed axi-symmetry body with curved surface. The fluid is 

incompressible viscous and the flow is laminar. The present work can provide a basis for 

further research by including the following considerations. 

 Hydromagnetic flow over an immersed axi-symmetrical body with curved surface 

and heat transfer in a compressible fluid 

 Hydromagnetic fluid flow over an immersed axi-symmetrical body where the flow 

is turbulent. 

 Hydromagnetic fluid flow over an immersed axi-symetrical body of this nature 

where the magnetic field is varied. 

 Use of finite element method to solve magnetohydrodynamic flow over an 

immersed axi-symmetrical body. 

 Hydromagnetic flow over an immersed axi-symmetrical moving body in the fluid 
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APPENDICES 

APPENDIX 1 

The following computer program code in Matlab is used to solve the equations governing 

the fluid flow subject to the initial and boundary condition. 

Y=0.1; tmax =1;  Kr = 1.1; R=0.5; 

Pr = 0.71; Ec = 0.4; Re = 2.; Pe = 6; M = 2; H = 1.0; 

A=2.; R=8.; P=5.; Pt=1.; U_inf=1.; 

ny = 80; 

nt = 80; 

% --- Compute mesh spacing and time step 

delY= 0.2  ; 

delT =0.0125  ; 

  

%r = alpha*dt/dx^2; r2 = 1 - 2*r; 

% --- Create arrays to save data for export 

y = linspace(0,1,ny); 

t = linspace(0,1,nt); 

T= zeros(ny,nt); 

U= zeros(ny,nt); 

% --- Set IC and BC 

U(1,nt) = 0; T(1,nt) = 0;  %U(nt,ny) = 1.; T(nt,ny) = 

1.;   % initial and bound. conds/ 

  

SUFF1=1+delT/(Re*delY*delY); 

SUFF2=1+delT/(Pe*delY*delY); 

%for M= 1: 0.5:2 % Varying Magnetic parameter 

    % for Ec=0.4:0.2:0.6  % Varying Eckert Number 

        for J=2:nt-1 
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        for I=2:ny-1 

        %Den=(4*Pe/(2*delY))*(U(I+1,J+1)-

U(I+1,J)+U(I,J+1)-U(I,J)); 

  

        U(I+1, J) =(U(I, 

J)+(delT*H*P*Pt)/(U_inf*U_inf)+(delT/(Re*2*delY*delY))*(U(I+

1, J+1) +U(I+1, J-1)+U(I, J+1)-2*U(I, J)+U(I, J-1))+ ... 

                    +(delT*Kr*H*U(I, J)*U(I, J))-

delT*M*U(I, J))/SUFF1; 

  

        T(I+1, J) =(T(I, 

J)+(delT/(Pe*2*delY*delY))*(T(I+1, J-1) +T(I+1, J+1)+T(I, 

J+1)-2*T(I, J)+T(I, J-1)) + ... 

                    (delT*Ec/(Re*2*delY))*(U(I+1, J+1) 

-U(I+1, J)+U(I, J+1)-U(I, J))*(U(I+1, J+1) -U(I+1, J)+U(I, 

J+1)-U(I, J)) + ... 

                    (delT*H*H*A/Pe)-(Kr*U(I, 

J)*A*H*H*H*delT)/(4*Pe/(2*delY))*(U(I+1,J+1)-

U(I+1,J)+U(I,J+1)-U(I,J))+delT*R*U(I,J)*U_inf*H)/SUFF2; 

         end 

  

        end 

  

        figure(1) 

        grid off 

        plot(y,U(:,40),'-.'); 

        title('GRAPH OF VELOCITY vs DISTANCE FROM THE 

SURFACE'); 

        xlabel('DISTANCE'); 

        ylabel('VELOCITY U'); 

        hold on 
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        figure(2) 

        grid off 

        plot(t,T(:,40),'-.'); 

        title('GRAPH OF TEMPERATURE vs DISTANCE FROM THE SURFACE'); 

        xlabel('DISTANCE'); 

        ylabel('TEMPERATURE T'); 

        hold on 

    %end 

%end 
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APPENDIX II 

Publication 

A paper from this work has been accepted for publishing by IISTE (The International 

Institute of Science, Technology and Education.) 

TITLLE: Hydromagnetic Fluid Flow over an Immersed Axi-

Symmetrical      Body with Curved Surface in Presence of Heat Transfer 

 

 


