DEVELOPING A MODEL FOR ESTIMATING THE CONSTRUCTION PERIOD OF A ROAD PROJECT: A SURVEY OF ROAD CONSTRUCTION PROJECTS IN KENYA FROM YEAR 2002 TO YEAR 2011

CHARLES NGARUIYA MUORIA

MASTER OF CONSTRUCTION PROJECT MANAGEMENT

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

Developing a model for estimating the construction period of a road project: A survey of road construction projects in Kenya from year

2002 to year 2011

Charles Ngaruiya Muoria

A thesis submitted in partial fulfillment for the degree of Master of Construction Project Management in the Jomo Kenyatta University of Agriculture and Technology

DECLARATION

This	thesis	is	my	original	work	and	has	not	been	presented	for	a	degree	in	any	other
unive	ersity.															

Signature: Date:

Charles Ngaruiya Muoria

This thesis has been submitted for examination with our approval as University supervisors:

Signature:	Date:
------------	-------

Dr Titus Kivaa Peter

JKUAT, Kenya

Signature: Date:

Dr. Ahmad Alkizim

JKUAT, Kenya

DEDICATION

To my dear wife Thaara, daughter Wanjiru, sons Muoria and Mureithi for giving me home comfort and encouragement throughout the time of my study.

To my Lord God almighty be the glory and praise for making this seemingly impossible task humanly achievable.

ACKNOWLEDGEMENT

My gratitude goes to all staff of the Department of Construction Management, Jomo Kenyatta University of Agriculture and Technology (JKUAT) for giving me the necessary support during the entire period of my study.

Special thanks go to my two supervisors Dr Kivaa and Dr Alkizim. Without their guidance, this mission would have been akin to sailing in open sea without radar. The Director, Board of Post graduate studies, Professor Otoki Moirongo and the chairman of the Department of Construction Management Mr Saiva deserve special mention here for their continuous encouragement and support.

I am greatly indebted to the staff of the Ministry of Roads, Materials department of the same Ministry, Ministry of Nairobi Metropolitan, Kenya National Highways Authority (KenHA), Kenya Rural Roads Authority (KERRA) and Kenya Urban Roads Authority (KURRA) for their unwavering support in providing the data required in this research.

TABLE OF CONTENTS

DECLARATIONii
DEDICATIONiii
ACKNOWLEDGEMENTv
TABLE OF CONTENTSvii
LIST OFTABLESix
LIST OF FIGURES xii
LIST OF APPENDICESxiv
LIST OF ABBREVIATIONS xv
ABSTRACT xvi
CHAPTER ONE1
1.0 THE PROBLEM AND ITS SETTING1
1.1 Background of the problem1
1.2 Statement of the problem
1.3 Aim and objectives
1.4 Research hypothesis

1.5 Assumptions	
1.6 Justification	13
1.7 Scope	15
1.8 Limitations of the study	15
1.9 Definitions of terms	17
1.10 Outline of the research	18
CHAPTER TWO	19
2.0 LITERATURE REVIEW	19
2.1 Introduction	19
2.2 Construction period	19
2.3 Factors that influence construction period	23
2.4 Available methods of determining construction period	
2.5 Conclusion: Research gap	
CHAPTER THREE	41
3.0 METHODOLOGY	41
2.1 Introduction	/1

3.2 Research design	1
3.3 Area of study	2
3.4 Population, Sample and sampling42	2
3.5 Research instruments	5
3.6 Data collection	5
3.7 Variables of the study	6
3.8 Data analysis	8
CHAPTER FOUR	1
4.0 DATA ANALYSIS AND RESULTS6	51
4.1 Introduction	1
4.2 Statistical descriptives	3
4.3 Comparison of estimated and actual construction time7	6
4.4 Correlation analysis	8
4.5 Regression analysis83	3

CHAPTER FIVE	104
5.0 CONCLUSION AND RECOMMENDATION	
5.1 Introduction	104
5.2 Aim and objectives restated	
5.3 Conclusions on the aim and objectives	105
5.4 Model respecification	108
5.5 Conclusions on the research problem	111
5.6 Recommendations	113
5.7 Further study	
REFERENCES	116
APPENDICES	124

LIST OF TABLES

Table 1.1.1	Comparison of contract sums and contract periods	.8
Table 1.1.2	Actual construction periods for some highway projects	9
Table 2.1.1	Comparison of models developed in the past	36
Table 3.4.1	Recommended sample sizes for small population	14
Table 3.4.2	Results of stratified sample size allocation	45
Table 3.7.1	Variables of the study5	57
Table 4.2.1	Statistics of estimated construction period ϵ	54
Table 4.2.2	Statistics of actual construction period ϵ	55
Table 4.2.3	Statistics of actual construction cost	56
Table 4.2.4	Statistics of standard lane kilometers constructed	57
Table 4.2.5	Statistics of drainage cost per lane kilometer	58
Table 4.2.6	Statistics of actual construction cost per lane kilometer	59
Table 4.2.7	Statistics of availability of feasibility study	70
Table 4.2.8	Statistics of degree of design completion at tender stage	71
Table 4.2.9	Statistics of volume of traffic during construction7	12

Table 4.2.10	Statistics of length of utility services relocated per lane kilometer73
Table 4.2.11	Statistics of rainfall experienced in project area74
Table 4.2.12	Statistics of contractor classification75
Table 4.3.1	Statistics of the estimated and actual construction period76
Table 4.4.1	Summary of the results of correlation analysis80
Table 4.4.2	Significant independent variables83
Table 4.5.1	Regression coefficients of log actual period on log actual cost85
Table 4.5.2	Correlation results of construction rate and actual construction cost87
Table 4.5.3	Correlation of log construction rate and log actual construction cost88
Table 4.5.4	Regression coefficients of log construction rate on log actual cost89
Table 4.5.5	Correlation of construction rate and degree of design completion91
Table 4.5.6	Correlation of log construction rate and degree of design completion93
Table 4.5.7	Correlation coefficients of construction period and feasibility study94
Table 4.5.8	Correlation of construction rate and classification of contractor96
Table 4.5.9	Spearman's multiple correlation coefficients
Table 4.5.10	Regression coefficients of the Model

Table 4.5.11	Regression coefficients of the final model100
Table 4.5.12	Model summary100
Table 5.3.1	Regression of log construction period on the 4 sign. explanatory
	variables107
Table 5.4.1	Regression of log CR on the two significant explanatory variables109
Table 5.4.2	Comparison of R ² values111
Table 5.6.1	Findings and recommendations114

LIST OF FIGURES

Figure 1.1.1	Construction project success indicators	2
Figure 3.7.1	Typical dual carriageway cross section	49
Figure 4.2.1	Histogram of estimated construction period	63
Figure 4.2.2	Histogram of actual construction period	.64
Figure 4.2.3	Histogram of actual construction cost	65
Figure 4.2.4	Histogram of standard lane kilometers constructed	66
Figure 4.2.5	Histogram of cost of drainage works per lane kilometer	67
Figure 4.2.6	Histogram of actual cost per lane kilometer	.68
Figure 4.2.7	Histogram of availability of feasibility study	69
Figure 4.2.8	Histogram of degree of design completion at tender stage	70
Figure 4.2.9	Histogram of Volume of traffic during construction	.72
Figure 4.2.10	Histogram of length of utility services relocated per lane km	.73
Figure 4.2.11	Histogram of Rainfall experienced in project	74
Figure 4.2.12	Histogram of contractor classification	.75
Figure 4.5.13	Scatter plot of actual construction period on actual construction cost.	84

Figure 4.5.2	Scatter plot of log actual period on log actual cost
Figure 4.5.3	Scatter plot of construction rate on actual construction cost
Figure 4.5.4	Scatter plot of log construction rate on log actual construction cost88
Figure 4.5.5	Scatter plot of construction period on design completion90
Figure 4.5.6	Scatter plot of construction rate on design completion91
Figure 4.5.7	Scatter plot of log of construction rate on design completion92
Figure 4.5.8	Scatter plot construction period on feasibility study94
Figure 4.5.9	Scatter plot of construction period on classification of contractors95
Figure 4.5.10	Scatter plot of construction rate on classification of contractors96
Figure 4.5.11	Scatter plot model residuals on actual construction cost101
Figure 4.5.12	Scatter plot of model residuals on degree of design completion101

LIST OF APPENDICES

Appendix A	Road construction projects status report as at May 2009	124
Appendix B	Letter of introduction and letter of request for data	128
Appendix C	Research questionnaire	130
Appendix D	Summary of data collected	139
Appendix E	Cost indices and their summary	142
Appendix F	Correlation matrix	153

LIST OF ABBREVIATIONS

- KeNHA Kenya National Highways Authority
- **KERRA** Kenya Rural Roads Authority
- **KURA** Kenya Urban Roads Authority
- **KIPPRA** Kenya Institute of Public Policy and Research Analysis
- **MOR** Ministry of Roads
- MONM Ministry of Nairobi Metropolitan
- **FDOT** Florida Department of Transport
- **VDOT** Virginia Department of Transport
- **KNBS** Kenya National Bureau of Statistics
- **CDF** Constituency Development Fund

ABSTRACT

This study developed a model for estimating the construction period of a road project. The model was developed after a survey of road construction projects implemented in Kenya between the year 2002 and 2011.

The estimation of construction period of road projects in Kenya remains largely undeveloped. In practice, the estimation is based on an unclear combination of cost of project, history of implementation of similar projects and the intuition of the estimator who is normally the client's representative. This estimation process is subjective and inconsistent and is therefore likely to give spurious estimates because it does not adequately take account of many of the factors that may influence the construction speed of road projects. This error is likely to give contract periods that are unrealistic in that they may be too short or too long. Additionally, the error may lead to wrong assessments of project performance reflecting time overruns that are not real.

The objectives of this study were to identify the factors that influence construction period in road projects in Kenya and develop a statistical model for estimating this period. Quantitative data were collected using a survey questionnaire and analysis carried out using the Statistical Programme for Social Sciences (SPSS for Windows, version 16). The statistical procedures included descriptives (Measures of Central tendency, dispersion and distribution), correlation analysis and multiple linear regression. These procedures were chosen because they were considered most appropriate to test the research hypothesis identified and hence achieve the aim and objectives of the study.

The factors that were found to be significantly correlated to the construction period at 95% confidence level were the scope of the project, adequacy of client's preconstruction planning and the contractor's capacity each of which was represented by one or more surrogates. The surrogates of the significant factors are as follows:

- 1) Construction cost in Billions of Kenya shillings, at 2010 prices
- 2) Presence or absence of feasibility study, a dichotomous variable.
- 3) Degree of design completion at tender stage measured on a seven point scale
- Classifications of contractors in the ministry of roads register as indicated on a seven point scale.

An intervening variable, construction rate was defined. This intervening variable was regressed on all the four surrogates found to be significant. The four significant surrogates were entered into the regression model and by backward elimination method, the least significant ones were removed from the regression model which finally left only two of them in the equation as follows:

$$Log CR = 0.044 + 0.321Log C + 0.108D$$
 and $T = L$

Where;

CR is the construction rate in lane kilometers per month.

T is the construction period in months.

L is the length of standard lanes to be constructed in kilometres.

C is the estimated cost of the road works in Billions of Kenya shillings at 2010 prices.

D is the number of design documents completed at the time of tender out of a possible list of 7.

This model has a coefficient of determination (R^2) value of 0.753. This means that the model explains 75.3% of the variation of the construction period (T) of a road project in Kenya. Other unknown explanatory variables not considered in this research which need to be explored explain the remaining 24.7% of the variation in T.

It is recommended that the model be used to estimate construction periods to be included in the construction contract documents and also when evaluating applications for extension of time from contractors. The model should also be used in estimating the construction period when formulating time based road construction contracts where incentives are offered for early completion and penalties effected for late delivery.

Finally, further research needs to be conducted in order to (i) develop similar models for other types of road works not considered here (ii) establish other explanatory variables in order to increase the coefficient of determination from the achieved 0.753 and hence the percentage of the variation in T explained by the model from the 75.3% obtained here.