
INTEGRATION OF DISCOUNT USABILITY INTO SOFTWARE

ENGINEERING TO ENHANCE DEVELOPMENT OF

INTERACTIVE MOBILE PLATFORM BASED APPLICATIONS

DENISH OMONDI OTIENO

MASTER OF SCIENCE

(Software Engineering)

JOMO KENYATTA UNIVERSITY OF

AGRICULTURE AND TECHNOLOGY

2015

Integration of discount usability into software engineering to enhance

Development of Interactive mobile platform based applications

Denish Omondi Otieno

A thesis submitted in partial fulfillment for the degree of Master of

Science in Software Engineering in the Jomo Kenyatta University of

Agriculture and Technology

2015

ii

DECLARATION
This thesis is my original work and has not been presented for a degree in any other

University

Signature: ____________________ Date: _____________________

 Denish Omondi Otieno

This thesis has been submitted for examination with our approval as the university

supervisors

Signature: ____________________ Date: _____________________

 Dr. Wilson Cheruiyot

 JKUAT, Kenya

Signature: ____________________ Date: _____________________

 Dr. Michael Kimwele

 JKUAT, Kenya

iii

DEDICATION
This thesis is dedicated to my Parents, my loving mother Julian Atieno Ng’iela for the great

support, training and upbringing in my life to my Siblings Jacob Ochieng, Beryl Akoth, Nancy

Achieng and Sharon Anyango for their support throughout my education, not forgetting all my

friends and relatives who encouraged me all the time and above all to Almighty God.

iv

ACKNOWLEDGEMENTS
The undertaking and completion of this research work was made possible by a number of people,

to whom I am profoundly grateful. I’ am particularly indebted to my supervisors Dr Wilson

Cheruiyot and Dr Michael Kimwele for their guidance and encouragement in the course of the

research. I also want to express my deep gratitude to the Director School of Computing and

Information Technology Dr Stephen Kimani who introduced me to research. Appreciation goes

to the lecturers of the School of Computing and Information Technology main Campus Jomo

Kenyatta University of Agriculture and Technology (JKUAT), who faithfully imparted their

knowledge and skills throughout the course.

v

TABLE OF CONTENTS

DECLARATION... ii

DEDICATION.. iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS/ACRONYMS ... xi

ABSTRACT .. xiii

CHAPTER ONE ... 1

1.0 INTRODUCTION... 1

1.1 Preliminary Definitions ... 1

1.1.1 Software Engineering ... 1

1.1.2 Discount Usability .. 1

1.1.3 Mobile Devices ... 2

1.2 Research Background .. 3

1.3 Statement of the Problem .. 4

1.4 Justification ... 4

1.5 Objectives .. 5

1.5.1 Broad Objective .. 5

1.5.2 Specific objectives .. 5

1.6 Research Questions ... 6

1.7 Scope of Study .. 6

1.8 Thesis Structure ... 6

CHAPTER TWO .. 9

2.0 LITERATURE REVIEW .. 9

vi

2.1 The Need for Usability Engineering ... 9

2.1.1 Discount usability engineering methods... 9

2.1.2 Categories of mobile applications .. 11

2.1.3 What Makes Mobile Devices Different? .. 15

2.1.4 Mobile applications development ... 16

2.1.5 Unique development challenges for mobile devices software engineering 17

2.1.6 Usability Engineering in Software Engineering identifying the gaps in Industry

Practices ... 22

2.2 Agile Process Models .. 24

2.2.1 HCI Issues with Agile Processes .. 27

2.2.2 Agile development for mobile applications.. 30

2.2.3 Review of mobile applications development processes - using an agile approach 32

2.4 Chapter Summary .. 46

CHAPTER THREE .. 47

3.0 RESEARCH METHODOLOGY .. 47

3.1 Research Design .. 47

3.2 Target population .. 50

3.3 Sample and Sampling Technique .. 50

3.4 Data Collection Instruments .. 51

3.5 Data Processing and Analysis ... 52

3.6 Chapter Summary .. 52

CHAPTER FOUR ... 53

4.0 RESULTS AND DISCUSSIONS ... 53

4.1 A Framework for Integrating Usability Engineering Into Mobile Platform-Based Devices

Software Engineering .. 53

4.1.1 Planning .. 58

vii

4.1.1.1 Question 1 What is required? .. 59

4.1.1.2 Question 2 What will the system do? .. 63

4.1.2 Analysis .. 64

4.1.2.1 Question 3 Have we got the requirements right? .. 65

4.1.3 Design... 66

4.1.3.1 Question 4 Have we understood our targeted users? ... 66

4.1.3.2 Question 5 How should we respond? .. 67

4.1.3.3 Question 6 How are we doing?.. 69

4.1.4 Development and Implementation ... 70

4.1.4.1 Question 7 How should the design be achieved? .. 70

4.1.5 Testing .. 71

4.1.5.1 Question 8 How does it perform? .. 71

4.1.5.2 Question 9 Which areas need more work? .. 72

4.1.6 Maintenance ... 73

4.1.6.1 Question 10 How do we compensate for failures? .. 73

4.1.7 Nature of the framework .. 74

4.2 Integrating Discount Usability into Mobile Agile Process Model 75

4.2.1 Why integrate ... 75

4.2.2 Convergence points between agile and usability ... 77

4.2.2.1 Human-centered development ... 77

4.2.2.2 Cyclical development .. 77

4.2.2.3 Continuous testing ... 78

4.2.3 Divergence points between agile and usability .. 78

4.2.3.1 Working software vs design documentation ... 78

4.2.3.2 Phased vs incremental approaches .. 79

4.2.3.3 Test driven development vs usability evaluations ... 80

viii

4.2.3.4 Shared understanding vs distinct roles .. 81

4.2.3.5 Customer focus vs end user focus ... 81

4.2.4 Approach to Integration ... 82

4.2.5 The Extended Mobile-D Agile Process Model .. 83

4.2.5.1 Explore... 85

4.2.5.2 Initialize ... 86

4.2.5.3 Productionize and Stabilize ... 86

4.2.5.4 System Test & Fix ... 87

4.2.5.5 Extended Mobile-D with added Evolve phase .. 87

4.3 Evaluation of Effectiveness of Integration of Discount Usability into Software Engineering

 ... 91

4.3.1 Usability Factors for Software Engineering Methodology .. 91

4.3.2 Findings .. 93

4.3.2.1 Sample demographics .. 93

4.3.2.2 Summary of products development information ... 97

4.3.2.3 Summary of model survey ... 98

4.3.3 Principle-based analytic evaluation of Extended Mobile-D .. 111

4.3.3.1 Evaluating whether Extended mobile-D model is an agile process 111

4.4 Chapter Summary .. 114

CHAPTER FIVE .. 115

5.0 CONCLUSIONS AND FURTHER WORK ... 115

5.1 Findings and Contributions ... 115

5.2 Future work ... 119

REFERENCES .. 120

APPENDICES ... 128

ix

LIST OF TABLES
Table 2: 1 Mobile platform based agile methodologies ... 32

Table 2: 2 Three layer structure of RaPiD7 ... 38

Table 2: 3 Phases of Hybrid engineering methodology ... 39

Table 2: 4 Process assets of MASAM ... 41

Table 2: 5 Phases of MASAM process .. 42

Table 2: 6 DMAIC 5 Phases of SLeSS approach .. 45

Table 4: 1 Multi-Disciplinary Framework ... 54

Table 4: 2 Summary of general Information .. 95

Table 4: 3 Totals of respondents according to software development ... 97

Table 4: 4 Summary of Understandability ... 99

Table 4: 5 Summary of Learnability .. 101

Table 4: 6 Summary of Applicability .. 103

Table 4: 7 Summary of Usefulness .. 104

Table 4: 8 Summary of Satisfaction ... 106

Table 4: 9 Summary of steps against the scores .. 108

Table 4: 11 Agile Manifesto .. 111

x

LIST OF FIGURES
Figure 2:1 Categories of mobile applications, based on (Oinas – Kukkonen & Kurkela, 2003)

(Unhelkar & Murugesan, 2010) and (Kunz & Black, 1999) .. 14

Figure 2:2 Agile Process .. 25

Figure 2:3 Phases of Mobile-D software development process .. 33

Figure 2:4 Mobile-D phases and stages. Adapted from (VTT Electronics, 2006) 34

Figure 2:5 Mobile-D with added Evolve phase. Adapted from (VTT Electronics, 2006) 37

Figure 3:1 Baskerville approach .. 48

Figure 4:1 Framework's Cyclic Nature .. 75

Figure 4:2 Mobile-D associate stages .. 84

Figure 4:3 Extended Mobile-D with Evolve phase ... 88

Figure 4:4 Extended Mobile-D model in line with Multidisciplinary Framework...................... 90

Figure 4:5 X against Y in Sd ... 108

Figure 4:6 X against Y in d .. 109

Figure 4:7 X against Y in n .. 109

Figure 4:8 X against Y in a .. 110

Figure 4:9 X against Y in Sa .. 110

xi

LIST OF ABBREVIATIONS/ACRONYMS
AM Agile modeling

ASD Adaptive Software Development

ANSI C American National Standards Institute for the C programming language

APIs Application programming interface

BDUF Big Design Upfront

CSS Cascading Style Sheet

DSDM Dynamic Systems Development Method

DMAIC Define, Measure, Analyze, Improve and Control

GUI Graphical User Interface

GPS Global Positioning System

HCI Human Computer Interaction

JAD Joint Application Development

ICT Information Communication Technology

LSS Lean Six Sigma

LOC Line of Code

MASAM Mobile Application Software Agile Methodology

NPD New Product Development

PC Personal Computer

QFD Quality Function Deployment

RaPiD7 Rapid Production of Documentation with 7 Steps

RAD Rapid Application Development

RUP

SBD

Rational Unified Process

Scenario Based Design

SDKs Software Development Kits

SE Software Engineering

SPSS Statistical Package Software System

SPEM Software and Systems Process Engineering Meta Model

SRS software requirements specification

TDD Test-Driven Development

TRIZ Theory of Inventors Problem Solving

xii

UI User interface

UMM Usability Maturity Model

WAP Wireless Application Protocol

XP Extreme Programming

xiii

ABSTRACT

Reliability of an interactive mobile computing device or the lack of it is often reflected in user

satisfaction. The rapid proliferation and ubiquity of smart devices in the consumer market has

forced the Software Engineering (SE) community to quickly adapt development approaches

conscious of the novel capabilities of mobile applications. However, the growth of this new

computing platform has outpaced the software engineering work tailored to mobile applications

development. Designs in Human computer interaction (HCI) aim to create interactive products

that are easy and enjoyable to use. However, owing the major gaps between HCI and SE in

theory and practice, the multidisciplinary nature of HCI and the different value systems of

interface users from various backgrounds and experiences, it is highly challenging for designers

to create applications which are usable and affordable to such a heterogeneous set of users.

Nowadays, users complain about the bad interaction design of mobile applications. The question

is whether this problem is caused by the bad design of products or by the users’ ignorance of the

logics of HCI design. In this research we focus on integration of discount usability techniques

specific to mobile devices into the core values of SE process model without disrupting the same

values. We investigate current literature on software development and Usability engineering and

propose a process framework. In this framework we identify the essential discount usability

techniques, methods, deliverables, and skills relevant to mobile devices software engineering.

We further use this framework as a baseline for integrating the essential discount usability

techniques and propose an Extended Mobile-D process model. To demonstrate the validity of the

Extended integrated process model and framework we assume that it is possible to express

numerically the extent to which a team achieves its product goal by following a prescribed

process model to the extent X a project could achieve its goals to the extent Y, if we can

demonstrate that for every X2 that is greater than X1, Y2 is greater than Y1 in most cases, we

can conclude that the process model in question works.

1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Preliminary Definitions

1.1.1 Software Engineering

Software has become critical to advancement in almost all areas of human endeavors. The art of

programming only is no longer sufficient to construct large programs. There are serious

problems in the cost, timeliness, maintenance and quality of many software products. Software

engineering has the objective of solving these problems by producing good quality, maintainable

software, on time and within budget using processes, methods and tools. At the first conference

on software engineering in 1968, (Fritz, 1968) defined software engineering as the establishment

and use of sound engineering principles in order to obtain economically developed software that

is reliable and works efficiently on real machines. (Stephen, 1990) defined the same as a

discipline whose aim is the production of quality software, software that is delivered on time,

within budget, and that satisfies its requirements. Software engineering is the branch of systems

engineering concerned with the development of large and complex software intensive systems. It

focuses on,

 The real-world goals for, services provided by, and constraints on such systems.

 The precise specification of system structure and behavior, and the implementation of

these specifications.

 The activities required in order to develop an assurance that the specifications and real

world goals have been met.

 The evolution of such systems over time and across system families.

1.1.2 Discount Usability

The ISO 9241-11 defines usability as “The extent to which a product can be used by specified

users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified

context of use”. No one explicitly denies the benefits of conducting usability tests earlier to

2

releasing products, many afraid to adopt it due to the commonly seeming fact that it is expensive

and time consuming.

In attempt to correct this perception, (Nielsen, 1992) popularized the term “Discount Usability”.

He argues that significant value can be gained by introducing low-cost and easily accessible

usability testing methodologies over expensive test labs and sophisticated experimentation.

According to Nielsen, usability does not have to slow down your project or be complex or

expensive to be effective, in other words Nielson recommends that usability tests do not have to

be complex to be effective. Discount methods are deliberately informal and rely less on statistics

and more on interface engineer’s ability to observe users and interpret results. In order to find

inexpensively usability problems in a system, many lightweight, easy to learn and fast to conduct

usability-testing techniques have been proposed by usability experts.

The "discount usability engineering" testing methods are; Scenarios, Simplified thinking aloud,

Heuristic evaluation and Card sorting. Scenarios are kind of prototypes for getting quick and

frequent feedback from users. It can be implemented as lo-fidelity prototypes or Hi-fidelity

prototype. Simplified thinking aloud is an interview based technique where test users are asked

to perform a set of tasks using the product or a prototype and explain what they're thinking about

while working with the product's interface. If the user expresses that, the sequence of steps to

accomplish their task goal is different from what they expected then the interface is complex. A

heuristics is set of guidelines given to the evaluators to identify many usability problems. It is

best used early in the design phase because it is easier to fix many of the usability problems that

arise. Card sorting is helpful in knowing user mental model of an information space. There are

two types of card sorts: an open card sort and a closed card sort. In an open card sort, participants

are asked to organize the cards into groups that make sense to them and then name each group.

In a closed card sort, participants are asked to sort items into pre-defined categories.

1.1.3 Mobile Devices

Mobile applications development is a relatively new phenomenon that is increasing rapidly due

to the ubiquity and popularity of smart phones among end-users. Mobile devices can be defined

in different ways when they are looked at from different perspectives. They can be defined in

terms of the services they offer or based on the level of functionality connected with the devices.

According to (Sharpet, et al, 2007) they refer to the devices that are handheld and intended to be

3

used while on the move. Nowadays, mobile devices are being used by different people for

various purposes. A mobile device refers to a pocket-sized computing device, typically having a

small display screen, a small keypad with miniature buttons or a touch screen with stylus of input

and wireless capability to connect to the Internet.

1.2 Research Background

While applications development for mobile devices goes back at least 10 years. There has been

exponential growth in mobile applications development since the iPhone App Store opened in

July 2008, from then, device makers have created outlets for other mobile devices, including

Android, BlackBerry, Nokia Ovi, Windows Phone, and more. HCI emerged in the 1980s with a

focus on usability of computer applications and productivity of users. The spread of computing

promoted HCI research expanded interests to include areas such as social computing, ubiquitous

computing, creativity, accessibility, and entertainment, (Carroll, 2009). A Usability engineer

harmonizes form, content, and behavior of interactive artifacts; both software and hardware, to

deliver products that are useful, usable, and desirable. Usability engineers define the structure

and behaviors of interactive products and services and user interactions with those products and

services IXDA (2009). The practice of usability engineering is grounded in an understanding of

real users, their goals, tasks, experiences, needs, and wants, one view of SE is that it strives to

develop high-quality software. Usability is an important quality attribute that is strongly related

to HCI, are targeted users able to use the product? Do they need to be given a lot of training

before they can start using it? Does it take too long for users to complete tasks? Do users make

too many errors while doing tasks? The answers to these questions can determine the difference

between the success of a product and its failure. This is where the overlap of HCI with SE

becomes critical. In the early days, HCI issues were limited as software was deployed in few

domains, on limited platforms, clients’ requirements were clear, and the software product was

often used internally by a few operators. Usability issues did arise, but because the users were

internal, in a pinch they could always be trained to work around the problems. Only severest of

problems were escalated as enhancements or change requests. Computing has evolved widely

over the last decade with the rise of desktop computing in the 1980s, the Internet in the 1990s,

and mobile telephony in the 2000s, software products reached beyond the safe group of trained

users.

4

1.3 Statement of the Problem

Owing to the fast development in the digital technology, the operation of human-computer

interface is becoming more complicated. The un-usability of systems, products and services is a

tremendous problem for users and consumers all over the world, despite the efforts put in by

researchers, usability practitioners and designers.

Using a mobile device is different from working with a desktop or laptop computer. While

gestures, sensors, and location data may be used in game consoles and traditional computers,

they play a dominant role in many mobile applications. The smaller display and different styles

of user interaction also have a major impact on usability design for mobile applications, which in

turn has a strong influence on applications development. Therefore, usability still needs to be the

main focus of our activities. In practice, usability aspects are usually regarded very late (if at all)

in software development.

Software development does not stop with delivery, nor do usability issues. Systems and products

are modified and improved in a number of releases over a number of years. Most efforts

currently centered on usability matters stop after the initial development process. What do we do

after delivery? Furthermore, software development models, such as agile, waterfall, Spiral,

Rational Unified Process (RUP) and Dynamic Systems Development Method (DSDM) are

widely used in the software development industry but these models are basically not user-

centered and most of them provide limited support for usability activities. Thus, it is very

important to find ways of integrating usability aspects into such development models. In this

research we focus on the enhancement of the Mobile-D agile process model.

1.4 Justification

The relevance of usability as a quality factor is continually increasing for software engineering

organizations. Usability and user acceptance are about to become the ultimate measurement for

the quality of today’s, telematics applications, e-commerce web sites, mobile services and

tomorrow’s proactive assistance technology. Taking these circumstances into account, human-

computer interaction methods for developing interactive systems are changing from a last minute

add-on to a crucial part of the software engineering lifecycle.

5

It is well accepted both among software practitioners and in the human-computer interaction

research community that structured approaches are required to build interactive systems with

high usability. On the other hand specific knowledge about exactly how to most efficiently and

smoothly integrate Usability engineering methods into established software development

processes is still missing (Eduard, et al, 2004), while approaches such as the usability maturity

model (UMM) provide means to assess an organization’s capability to perform usability

development processes they lack guidance on how to actually implement process improvement

in HCI. It often remains unclear to users of Usability engineering methods why certain tools and

methods are better suited in a certain development context than others (Metzker & Reiterer,

2002). We need strategies and tools that support engineering organizations. Little research has

been done on integrating methods and tools of Usability engineering in to software engineering

development process for the enhancement of interactive mobile devices and on gathering

knowledge about HCI activities in a form that can capture relationships between mobile platform

development contexts, applicable methods, tools and their impact on the engineering process.

1.5 Objectives

1.5.1 Broad Objective

The broad objective is to propose an Extended Mobile-D agile process model. The approach is to

integrate the essential discount usability activities, methods, deliverables, and skills relevant to

mobile applications development at a point into the software engineering (SE) process.

1.5.2 Specific objectives

i. To review current trends and concepts of existing discount techniques and how they

can be integrated into software engineering to support the development of usable

interactive mobile applications.

ii. To identify the essential discount techniques that can be modeled into software

engineering practices to develop and improve the safety, utility, effectiveness and

usability of mobile applications.

iii. To develop/model a tighter fit between Usability engineering and software

engineering practices.

6

iv. To demonstrate the validity of our Extended Mobile-D agile process model and

framework.

 1.6 Research Questions

The following are the research questions this research seeks to address,

i. Which current concepts from discount usability techniques and Software Engineering can

be harmonized to support the development of usable interactive mobile applications?

ii. What are the essential characteristics of tool-support needed to support the development

of usable interactive mobile applications?

iii. How can discount usability techniques and software engineering methods be integrated to

support the development of usable interactive mobile applications?

iv. Is our model efficient?

 1.7 Scope of Study

HCI and SE have overlapping concerns, and have evolved side-by-side in the last three decades.

The two disciplines did not interact until recently. In this research, we focus on integration of

essential discount usability techniques relevant to mobile applications software engineering into

the well-established Mobile-D agile process model and our target population includes the mobile

applications developers. In doing so, we need to deal with two main problems. Firstly, the

usability activities described in literature, even the ones that have been established for a long

time, have not been integrated into the agile software engineering (SE) processes. Secondly, it is

not clear which activities and methods should be integrated. Many HCI methods are defined in

literature, but no particular list could be unanimously considered necessary and sufficient for

integration with the agile software engineering (SE) process models. The IFIP working group on

User Interface Engineering remarks that there are major gaps between HCI and SE in academics,

literature, and industrial practice, and the architectures, processes, methods, and vocabulary of

one community are often foreign to the other IFIP WG 2.7/13.4 on User Interface Engineering,

(2012).

1.8 Thesis Structure
This thesis is broken down into Five Chapters.

7

Chapter 2, Reviews the current state-of-the-art in the design of usable interactive mobile

applications. We dig into agile approaches for mobile applications development; present the

unique challenges for the applications development and the gaps in industry practice as we

consider the need for integrating discount usability engineering methods into agile process

models for better applications development methods

Chapter 3, Describes the methodology used for carrying out the research justifying this thesis.

We describe the Research design approach the target population, sample and sample techniques

and conclude this chapter by considering data collection instruments and analysis procedures.

Chapter 4, is divide into three Sub Sections 4.1, 4.2 and 4.3. 4.1 Presents a multidisciplinary

framework. The framework is proposed to be a flexible way of understanding and

communicating the work of Usability engineering practitioners in different contexts. We divide

the framework into phases. Each phase consists of one or more activities. Each activity is

associated with one or more techniques. Each method requires specific skills and could be

associated with a particular discipline to address a specific concern. Each activity results in

specific deliverables. We further identify usability engineering activities that, we propose, are

essential for integration with the six software engineering process steps. We organize these

activities in ten phases, which we describe in terms of ten questions.

Section 4.2 introduces a proposed extension to the select agile approach and building on the

framework described in section 4.1; it presents and describes the Extended Mobile-D agile

process model and finaly

Section 4.3 measures effectiveness of integration of discount usability into software engineering,

having established a process framework and used it as a baseline for integrating the essential

discount usability techniques into the Extended Mobile-D model a research question naturally

arises. How can one prove that our process model is any good? We propose a set of evaluations

to measure how well our contributions are, assume that it is possible to express numerically the

extent to which a process model is followed; further, assume that it is possible to express

numerically the extent to which a team achieves its product goal by following a prescribed

process model to the extent X a project could achieve its goals to the extent Y, if we can

demonstrate that for every X2 that is greater than X1, Y2 is greater than Y1 in most cases, we

can conclude that the process model in question works.

8

In Chapter 5, we review whether the research questions posed in Chapter One Section 1.6 have

been properly answered and conclude this chapter by proposing future work extending the

contributions made.

9

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 The Need for Usability Engineering

Human-Computer Interaction (HCI) discipline provides the foundations to develop usable

interactive applications. “Usability Engineering" is a science that studies how to understand and

systematically address the usability demand of a customer (C lee, et al, 2007). The ISO 9241-11

defines usability as "The extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified context of use".

Usability engineering deals with issues such as system learnability, efficiency, memorability,

applicability, errors and user satisfaction. Usability engineering is an approach to product

development that is based on customer data and feedback, on direct observation and interactions

with customers to provide more reliable data than self-reporting techniques.

Usability engineering begins in the conceptual phase with field studies and contextual inquiries

to understand the functionality and design requirements of the product. It is an iterative design

and evaluation to provide customer feedback on the usefulness and usability of a product's

functionality and design throughout the development cycle. This results in products that are

developed to meet the customers' needs. In our work we focus on the "discount usability

engineering" methods which are; Scenarios, Heuristic evaluation, Card sorting and simplified

Thinking aloud.

2.1.1 Discount usability engineering methods

 2.1.1.1 Scenarios

Scenarios are appropriate whenever you need to describe a system interaction from the user’s

perspective. A scenario describes a sequence of events when interacting with a system from the

users’ perspective and the scenario descriptions can be created before a system is built and its

impacts felt. ‘Scenarios’ are similar to ‘Use Cases’, which describe interactions at a technical

level. Agile models demonstrate strength in iterative software development, where requirements

may change as a system is incrementally put into use, the question of how to devise an initial

10

design is largely unanswered. In agile, user stories are used to capture requirements. Many of the

agile user stories describe legacy features and screens, and often fell short of improvement, such

user stories do not often fit into expressing usability requirements.

User stories are short narratives which describe interaction at a technical level while a scenario is

a description of a person’s interaction with a system where people who do not have any technical

background can understand it thus integrating scenarios into agile will make it a tighter fit.

Scenarios can be easily understood by anyone regardless of the level of their technical

knowledge. Scenarios are especially useful when you need to remove the focus from the

technology in order to consider other design possibilities. Scenarios focus in terms of tasks rather

than the technology used to support them.

2.1.1.2 Heuristic Evaluation

A heuristic evaluation is an expert evaluation method that uses a set of principles to assess if an

interface is user friendly. Heuristic evaluations are suitable at almost any time during a user-

centred design cycle. Thus the technique can be applied to prototypes or fully implemented

interfaces to retrieve valuable information regarding issues of usability. In agile programming,

the customer is to test that the overall system is functioning as specified by Acceptance Tests

(also known as Functional Tests). When all the acceptance tests pass for a given user story, that

story is considered complete.

A story can have one or many acceptance tests, whatever it takes to ensure the functionality

work. However, an acceptance test does not deal with non-functional requirement like usability.

Heuristic evaluation is an approach used by the developers to improve the usability of software

by applying a small collection of usability principles to the design and development of the

software before testable elements are presented to users.

Usability Evaluation solves the problem of ad-hoc input. The simplicity of heuristic evaluation is

beneficial as it provides some quick and relatively inexpensive feedback to designers. Usability

evaluation with users should be included as part of the acceptance testing process. (Sharp, et al,

2008) also suggest heuristic evaluation can be done in each of the iterations in the agile

development methods.

11

2.1.1.3 Card sorting

Card sorting is a method used to help design or evaluate the information architecture of a

software. Card sorting will help you understand your users' expectations. The planning game of

agile has two problems, one is that customer needs help to understand, verbalize, visualize and

organize their requirements and second that developers have little opportunity to consider how

exactly the interface will work, because the conversion of requirement to interface is implicitly

assumed to take place within the estimation process.

Card sorts are a well established technique for eliciting knowledge from people by which better

external quality can be obtained by involvement of actual end users. Card sorting technique with

the help of end users as a part of release planning in agile process can increase the chance for

successful usable software.

2.1.1.4 Thinking aloud

In a thinking aloud, you ask test participants to use the system while continuously thinking out

loud-that is, simply verbalizing their thoughts as they move through the user interface. The

method has a host of advantages. Most important, it serves as a window on the soul, letting you

discover what users really think about your design. In particular, you hear their misconceptions,

which usually turn into actionable redesign recommendations; when users misinterpret design

elements, you need to change them. Even better, you usually learn why users guess wrong about

some parts of the user interface and why they find others easy to use. User-interface design and

usability are largely overlooked by the agile methods.

Thinking aloud allows you to understand how the user approaches the interface and what

considerations the user keeps in mind when using the interface. This testing is preferred in

design, development and testing phases of the software development where the designer can get

the quick feedback about their designer work. Thinking aloud method can be applied too

effectively in “Small release” Productionizing phase in agile methods, where decision has to be

made if some changes occur.

2.1.2 Categories of mobile applications

There are many ways in which mobile applications can be categorized. Nevertheless, any

plausible partition can lead to better results in the development process, due to a higher focus on

http://www.usability.gov/what-and-why/information-architecture.html

12

issues that are specific to the respective application type. Depending on the experience of the

development team, different measures can be taken. For a seasoned team, identifying the

application type means experiences from developing similar applications in the past can be used.

Teams with less development experience can also benefit from categorization, by obtaining and

implementing a specific set of guidelines and principles for the specific type of application.

In (Varshney & Vetter, 2001) the authors identify twelve classes of mobile commerce

applications. Example classes include mobile financial applications (banking and micro-

payments), product location and shopping (locating and ordering items), and mobile

entertainment services (video-on-demand and similar services). However, these classes only

apply to mobile commerce applications (mobile applications that involve transactions of goods

and services) and do not help to provide guidelines to developing new applications. To this

purpose, the findings in (Oinas-Kukkonen & Kurkela, 2003) prove more useful. Citing a report

by Ramsay and Nielsen on WAP usability, the authors divide mobile applications into two

groups:

 Highly goal-driven and

 Entertainment-focused.

The definition of each group is quite simple: highly goal-driven applications aim to provide fast

responses to inquiries, while entertainment-focused applications help users pass the time. The

authors move on to provide seven guiding principles for the development of highly goal-driven

mobile services:

1. Mobility (provide information while on the move),

2. Usefulness,

3. Relevance (include only relevant information),

4. Ease of use,

5. Fluency of navigation (most important information should be easiest to locate),

6. User-centred (adapt to the users’ way of interaction and way of thinking), and

7. Personalization (adapt to users’ needs and capabilities).

A taxonomy of mobile applications from an enterprise point of view is established in (Unhelkar

& Murugesan, 2010). The authors state that this organization and representation of mobile

applications will make the demands placed on the applications more visible, and will help

developers focus on the most important aspects of design and implementation for each project.

13

The lowest level in the taxonomy (organized by application richness and complexity) is

represented by

 Mobile broadcast (M-broadcast) applications that are aimed at providing large-scale

broadcast of information to mobile platforms.

 Higher-level applications are Mobile information (M-information) applications, which

provide information required by mobile users, such as weather conditions.

 The third level of applications is Mobile transactions (M-transaction) facilitating e-

transactions and customer relationship management.

 The fourth level, Mobile operation or M-operation deals with operational aspects of the

business such as inventory management or supply-chain management.

 Finally, the top level of the taxonomy is represented by Mobile collaboration (M-

collaboration), a class of applications that support collaboration within and outside the

enterprise.

Even though the authors exclusively analyze mobile applications in an enterprise context,

recommendations are provided for each type of application; these can be applied in most similar

projects. In M-broadcast applications, content is broadcast to a large number of unregistered

users, while in M-information users request and receive information in an individual fashion.

Issues associated to this category of applications include usability and privacy, security not being

of high relevance. M-transaction applications enable mobile transactions, such as placing and

tracking orders and making electronic payments. This category of applications has higher

requirements in terms of security, responsiveness and reliability, and requires communication

between three parties: user, service provider and financial mediator (such as an online payment

gateway). M-operation applications are required to provide real-time information and also

integrate back-end systems and databases. The final group of applications, M-collaboration; have

associated coding and data-management challenges due to the required support for the

interaction between different software modules.

Six different categories of mobile applications are identified in (Kunz & Black, 1999)

 Standalone applications (games or utilities),

 personal productivity software (word processors and office applications),

 Internet applications (e-mail clients, browsers),

 vertically integrated business applications (security),

14

 location-aware applications (tour planners and interactive guides) and

 Ad-hoc network and groupware application (a group of users establish an ad-hoc network

to exchange documents).

The authors point out some important requirements associated to the identified groups of mobile

applications. For personal productivity software, synchronization between the mobile and

desktop versions of the software is indicated as an important requirement. For the third category,

Internet applications, the issue of client application performance and resource requirements is

emphasized. The authors state that a mobile client application cannot “borrow” from non-mobile

client applications, as these have completely different underlying assumptions in terms of

performance requirements and availability of resources. These issues also apply to vertically

integrated business applications, as the servers should remain unaware of the type of client they

are communicating with (mobile or non-mobile), in order to ease the deployment of mobile

applications.

The works described above serve as a basis for establishing a way to categorize mobile

applications as shown in Figure 2:1, and to integrate the categorization task into Mobile-software

engineering.

Figure 2:1 Categories of mobile applications, based on (Oinas – Kukkonen & Kurkela,

2003) (Unhelkar & Murugesan, 2010) and (Kunz & Black, 1999)

15

The categories are not exhaustive or exclusive and if the team identifies the category of

application they are developing, they can establish project goals that respect the specific

guidelines, and can shape the initial schedule according to data gathered from previous or similar

projects.

2.1.3 What Makes Mobile Devices Different?

In many respects, developing mobile applications is similar to traditional software engineering

for other embedded applications. Common issues include integration with device hardware, as

well as traditional issues of security, performance, reliability, and storage limitations. However,

mobile applications present some additional requirements that are less commonly found with

traditional software applications, including:

2.1.3.1 Sensor handling

Modern mobile devices, e.g., “smart phones”, include an accelerometer that responds to device

movement, a touch screen that responds to numerous gestures, along with real and/or virtual

keyboards, a global positioning system, a microphone usable by applications other than voice

calls, one or more cameras, and multiple networking protocols.

2.1.3.2 Native and hybrid (mobile web) applications

Mobile devices often include applications that invoke services over the telephone network or the

Internet via a web browser and affect data and displays on the device but embedded devices use

only software installed directly on the device.

2.1.3.3 Families of hardware and software platforms

Most embedded devices execute code that is custom-built for the properties of that device, but

mobile devices may have to support applications that were written for all of the varied devices

supporting the operating system, and also for different versions of the operating system.

16

2.1.3.4 Security

Currently embedded devices are “closed”, in the sense that there is no straight forward way to

attack the embedded software and affect its operation, but mobile platforms are open, allowing

the installation of new “malware” applications that can affect the overall operation of the device.

2.1.3.5 User interfaces

Using a custom-built embedded application, the developer can control all aspects of the user

experience, but a mobile application must share common elements of the user interface with

other applications and must adhere to externally developed user interface guidelines, many of

which are implemented in the software development kits (SDKs) that are part of the platform.

2.1.4 Mobile applications development

The mobile applications market is currently undergoing rapid expansion as mobile platforms

continue to improve in performance and as the users’ need for a wide variety of mobile

applications increases. The latest mobile platforms allow for extensive utilization of network

resources and thus offer a strong alternative to workstations and associated software. Software

development for mobile platforms comes with unique features and constraints that apply to most

of the lifecycle stages. The development environment and the technologies that support the

software are different compared to “traditional” settings. Traditional development and quality

frameworks offer comprehensive criteria for conducting general purpose software projects but

none of them has been developed considering the context of

 Mobile users

 Mobile execution environments and

 Mobile application markets

Mobile software development teams must face the challenge of a dynamic environment, with

frequent modifications in customer needs and expectations. Abrahamsson (2007) document that

technological constraints apply to mobile platform-based devices software engineering in the

form of limited physical resources and rapidly changing specifications. There is also a great

variety of devices, each with particular hardware characteristics, firmware and operating

17

systems. The unique technological constraints to mobile platform-based devices software

engineering are fully discussed below.

2.1.5 Unique development challenges for mobile devices software engineering

The creation of applications intended to execute on newer mobile devices such as smart phones

and tablets involves unique requirements and challenges. Containing global positioning sensors,

wireless connectivity, photo/video capabilities, built-in web browsers, voice recognition, among

other sensors, mobile devices have enabled the development of mobile applications that can

provide rich, highly-localized, context-aware content to users in handheld devices equipped with

similar computational power as a standard Personal Computer (PC) (Oulasvirta, et al, 2011). Yet,

these same novel features/sensors found in mobile devices present new challenges and

requirements to application developers that are not found in traditional software applications,

(Wassermann, 2010).

Traditional software engineering approaches may not directly apply in a mobile device context.

First, mobile device user interfaces (UI) provide a new paradigm for new human-computer

interaction sequences (e.g., multi-touch interfaces, QR code scanning, image recognition,

augmented reality, etc.) that have not been previously explored in research and of which no

established UI guidelines exist (Oulasvirta, et al, 2011).

Second, the divergent mobile platforms (e.g., iOS, Android, Windows 7, etc.), differing

hardware makers for platforms (e.g., Android versions found on HTC, Google, Samsung) and

mobile phone and tablet platforms (e.g., Apple’s iPhone and iPad) have necessitated developers

to make a series of the same application tailored for each type of device (Wassermann, 2010).

Third, the novelty of a truly mobile computing platform provides both unique opportunities and

challenges below we outline the fundamental, unique challenges to the state-of-practice in

mobile applications software engineering:

2.1.5.1 Form factors

The first and most obvious unique aspect of mobile applications is that the form factor for

display and user interaction is significantly different from prior forms of software. Smart phones

usually provide only a four-inch area in which to display the application content and offer lower

screen resolution pixel density compared to personal computer (PC) displays, which are trending

18

toward greater display sizes and number of screen pixels. Even tablet devices have generally

lower display sizes than PCs, especially when compared to the large flat-screen displays in use

for newer desktop PCs.

A smaller form factor means that the amount of data displayed to the end user, and layout of that

data, needs to be different for these applications than for applications expected to run on PC

devices. Significantly less data can be displayed at one time and therefore it must be exactly the

“right” data, most relevant to what the user needs at that point in the application.

2.1.5.2 Usability and user interaction design

Several factors motivate the need for more attention to usability and user interaction design for

mobile applications. One is the difference in form factors and user input methods. It is much

more difficult and time consuming to plan how to display only the data that is precisely

necessary than it is to simply display all possible data and let the end users visually sift through it

for what they want. The mobile application designer has to consider the screens real estate.

2.1.5.3 Creating Universal User Interfaces

There has been some preliminary research in creating a universal user interface for mobile

devices (Oulasvirta, et al, 2011), (Balagtas, et al, 2009). Each mobile platform has a unique

guide to address developer user interface requirements. The user interface guidelines have

several overlapping themes.

A significant consideration for mobile UI development relates to screen size and resolution. For

example, Apple devices are limited to two sizes based on the size of the iPhone and the iPad

whereas Windows 7, Android, and Blackberry provide screens of varying sizes and screen

resolutions.

As a result, UI design is difficult and mobile platform-based devices application developers must

anticipate the targeted device(s). Seffah et al. list a set of obstacles in integrating usability in

software engineering (SE) (Seffah, et al, 2005).

 One obstacle is the deep-rooted myth that usability is not a central topic of SE. Usability

activities are considered easily dispensable by a software project manager when the

project is short on budget or time.

19

 Another obstacle is the ambiguity associated with usability, the different meanings it

presents to different people. Claims about usability methods are hard to prove using

classical scientific techniques because of the difficulty in collecting statistically valid

empirical evidence.

2.1.5.4 User input technology

Another obvious physical difference for mobile applications is that the mechanisms for user

input are different. Mobile devices have pioneered the use of non-keyboard “gestures” as an

effective and popular method of user input. Touch, swipe, and pinch gestures must be planned

for and be supported in a satisfying mobile application user experience.

These tactile end user input mechanisms have proven to be so popular that they are now being

retrofitted into traditional desktop PC systems such as the Apple “Lion” OS X release and

Windows 8 “Metro” OS. In addition to tactile user input, mobile devices are a natural target for

voice-based user input. Besides input directly from the end user, mobile devices have the

capability to receive input from other sources, such as geo-location input from the GPS

component of the device and image information from the camera typically built into the device.

These unique forms of input must be considered during mobile applications design and

development. They offer new and valuable mechanisms to make mobile applications more

powerful and useful than applications with a more limited array of input possibilities.

2.1.5.5 Enabling Software Reuse across Mobile Platforms

Mobile applications currently span several different operating system platforms (e.g., iOS,

Android, Windows 7, etc.), different hardware makers (Apple, HTC, Samsung, Google, etc.),

delivery methods (i.e., native application, mobile web application) and computing platforms (i.e.,

Smartphone, tablet). Each of these options must be considered during mobile applications

development as they have a direct influence on the software requirements. Companies currently

need to make a business decision to target a single mobile device platform with rich features,

multiple platforms through a mobile website with less rich features or spend the resources

necessary to broadly target the gamut of mobile devices with rich, native applications.

20

2.1.5.6 Choice of implementation technology

There is a spectrum of implementation choices for mobile applications in the market. There is no

one perfect answer for the choice of implementation for a mobile application, and all of the

choices across the spectrum have their advantages and disadvantages. Therefore, the challenge

for mobile devices software development teams is to understand the trade-offs between the

technologies and make a choice based on the specific application requirements.

The choice of implementation technology for a mobile project will have an impact on other

decisions related to the application’s development. It may limit the choices for development

tools. The implementation choice will likely have an impact on the teams’ roles and structure. It

may have an impact on how the application is tested and verified, and how it is distributed and

delivered to the end user. So, the choice of implementation approach for a mobile application is a

crucial, early-stage decision to be made very carefully.

2.1.5.7 Designing Context-Aware Mobile Applications

Mobile devices represent a dramatic departure from traditional computing platforms as they no

longer represent a “static notion of context, where changes are absent, small or predictable”

(Roman, et al, 2000). Rather, mobile devices are highly personalized and must continuously

monitor its environment, thereby making mobile applications inherently context aware

(collectively time-aware, location-aware, device-aware, etc.) (Hofer, et al, 2003), (Dey, et al,

2008).

Mobile applications are now contextualizing proximity, location, weather, time, etc. To deliver

hyper-specialized, dynamic, rich content to users through context-aware applications. Previously,

web applications would often provide contextualized content based on time, detected location

and language.

However, the extent of context-awareness currently possible in mobile applications is beyond

what software engineering approaches have encountered outside of agent-oriented software

engineering. The consideration of context-awareness as a first-class feature in mobile

applications software engineering is needed so that the requisite attention is paid by developers

when analyzing these requirements resulting in better designed context-aware applications.

21

2.1.5.8 Behavioral Consistency versus Specific HCI Guidelines

Ideally, a given mobile application should provide the same functionality and behavior

regardless of the target platform it is running on. However, due to the internal differences in

various mobile devices and operating systems, “a generic design for all platforms does not exist”.

“An Android design cannot work all the way for the iPhone.” This is mainly due to the fact that

HCI guidelines are quite different across platforms, since no standards exist for the mobile

world, as they do for the Web for instance. On the other hand, developers would like their

applications to behave similarly across platforms, e.g., user interaction with a certain feature on

Blackberry should be the same as on iPhone and Android thus, creating a reusable basic design

that will translate easily to all platforms while preserving the behavioral consistency is

challenging.

2.1.5.9 Balancing Agility and Uncertainty in Requirements

While most mobile application developers utilize an agile approach or a nearly ad hoc approach,

the growing demand for context-aware applications, competition amongst mobile applications

and low tolerance by users for unstable and/or unresponsive mobile applications (even if free)

necessitates a more semi-formal approach. This should be integrated into agile process

engineering to specify and analyze mobile applications requirements.

2.1.5.10 Mobile applications build and delivery

Because of the strong business motivations to deliver mobile applications into the market

quickly, mobile development projects typically have extremely aggressive time lines. Inception-

to-delivery periods of a few months are common. The pressure to deliver mobile applications

quickly results in the adoption of agile development methods for most mobile projects.

An important element in agile development practices is continuous integration and builds.

Application changes delivered by developers need to be processed immediately for all of the

mobile operating systems on which the application is required to execute. If the mobile

application is a hybrid or native implementation, several different builds of the application need

to be triggered each time a change set for the application is delivered by a developer. The build

setup and configuration for each supported mobile environment will be different from the others,

22

and it is most likely that a small “farm” of build servers will need to be provisioned and available

to handle these builds of the mobile applications for multiple operating systems.

2.1.5.11 Testing of mobile applications

Another area where mobile applications development poses a huge challenge is testing. Testing

for mobile applications represents a quantum leap in complexity and cost over more traditional

applications. Unlike traditional PC and web applications, the range of potentially supported

mobile devices and release levels is staggering. It is quite common to see test matrices for mobile

projects that contain hundreds, and even thousands, of permutations of device, mobile OS level,

network carrier, locale, and device orientation combinations.

2.1.6 Usability Engineering in Software Engineering identifying the gaps in Industry

Practices

In a survey of 63 HCI and 33 software engineers by (Jerome &Kazman (2005)) to analyze the

gaps between SE and usability engineering practices; they found that the state of practice is not

very encouraging. They report that there is substantial lack of mutual understanding among

software engineers and HCI practitioners and the two disciplines hardly follow each other. They

also do not collaborate much in projects.

68% software engineers report that they made key software design decisions that affect the user

interface without consulting HCI practitioners. Even greater proportion of HCI practitioners

(91%) believe that software engineers were making key design decisions without consulting any

HCI practitioners. When collaboration does occur, it usually happens too late. Only 1 out of 21

software engineers and 2 out of 60 HCI practitioners reported that they collaborated during the

specifications phase below we explore the challenges

2.1.6.1 Usability engineering inputs are not taken during requirements specifications

HCI inputs are needed early in the process before requirements are finalized. Use cases in

requirements documents routinely over-specified the HCI design, including details such as the

sequence, the contents of dialog boxes in the applications, navigating and browsing for mobile

devices that generally have small screens etc. This over-specification happened possibly because

there is a physical and cultural distance between the developers and users, the development

23

teams are less familiar with the context of users, and the requirements specifiers want to have a

control on the user interface.

2.1.6.2 Porting projects get minimal HCI inputs

Every software project represents an opportunity to improve the user experience. Conversely,

every project also represents a risk of degrading the user experience. This applies even to porting

and migration projects. Less importance is normally given to requirements gathering in general

and usability requirements.

It is assumed that most requirements are well-understood and had to be “copied over” from

earlier version. However, projects often involve a change of delivery platform, a change of

context, or a change of users and coping over can have a big impact on HCI design and the

corresponding requirements.

2.1.6.3 Client representatives take design decisions

Client representative routinely drives many HCI design and usability considerations. Such a

person may have never been a user himself or may have moved out of that role a long time ago.

His / her sign-off may not imply that the product is usable. This can be revealed only by usability

evaluations with real users.

2.1.6.4 Usability engineering skills do not have process support

Software engineering (SE) projects have some involvement of HCI practitioners, though they

still ended with unresolved usability issues that they knew could be solved (Jerome & Kazman,

2005). A multi-disciplinary team needs to work together. The team needs to be armed with

appropriate user inputs and needs a common set of work products and a common process to

approach the product development holistically and add value. Role of each discipline needs to be

mutually understood and respected, first within the team and then across the organizations.

2.1.6.5 Too little and too late is not good enough

In projects, HCI practitioners are pulled in towards the end when too many obvious usability

problems surfaced (Jerome & Kazman, 2005). In these situations, HCI practitioners work under

severe constraints. They have no time to understand the scope of the project and no budget to do

24

usability activities they would have done earlier. Even if some HCI activities were done, most of

the recommendations they come up with to improve the User Interface seemed too impractical to

implement in the given situation. Few cosmetic changes would be made, mainly to satisfy the

client representative, and the project would be pushed through.

2.2 Agile Process Models

Agile process models have come to represent the iterative nature of software development as

shown in figure 2:2 below. Agile process methods are incremental (multiple releases),

cooperative (a strong cooperation between developer and client), straightforward (easy to

understand and modify) and adaptive (allowing for frequent changes). The ideas behind these

methods originate from the principles of Lean Manufacturing (in the 1940s) and Agile

Manufacturing (1990s), which emphasized the adaptability of enterprises to a dynamic

environment (Salo, 2006).

Agile methodologies have been developed in the last decade as a way to address constantly

changing requirements and other key problems including the increasing cost and complexity of

software development, communication breakdowns among stakeholders, and missed schedules

and budget overruns.

Agile methodologies purport to address these software development problems by focusing

heavily on quick delivery of working software, incremental releases, team communication,

collaboration and the ability to respond to change. Agile methods in one form or another have

become increasingly popular in practice. A significant majority of practitioners who have been

on agile teams indicate that they produce higher quality software, greater productivity and higher

stakeholder satisfaction, (Ambler, 2008).

Several process models have emerged and Pressman summarizes seven agile process models:

Extreme Programming, Adaptive Software Development, Dynamic Systems Development

Method, Scrum, Crystal, Feature Driven Development, and Agile Modeling Pressman (2005 pp.

103-124). These process models may vary in their details, but they have several common

elements best captured by the agile manifesto (2001).

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

25

 Responding to change over following a plan

Figure 2:2 Agile Process

The last point is particularly important. In agile processes, it is typical to solve a small part of the

problem to begin with and to grow the solution in iterations. Agile processes believe that changes

in software requirements will necessarily happen. Agile processes are designed to accommodate

changes even late in the process to harness change for the customer's competitive advantage

Agile Manifesto (2001).

Fowler lists many reasons why requirements change, and in fact why they ought to be

changeable, (Fowler, 2005). Firstly, customers cannot recognize what options they have while

specifying requirements. Even if they could, they cannot make an informed decision at this stage

primarily because the cost to each new requirement cannot be predicted right up front. Software

development is a design activity and thus hard to plan and cost. Further, the basic ingredients of

software keep changing rapidly. In addition, costs are dependent on the individuals involved and

their experience. Finally, software is intangible and yet malleable. Only when they use an early

version of some software do the customers really begin to understand which features are valuable

and which are not, (Fowler, 2005). Even if we could get an accurate and stable set of

requirements early, Fowler believes that you are still doomed.

26

The fundamental business forces in today’s economy are so dynamic that every six months, new

requirements are likely to emerge. In agile processes, the main measure of progress is working

software agile methods deliver working software in small pieces frequently and sometimes as

frequently as once a week. This length of time forms a heartbeat for the project and helps

maintain pace. Agile methods also insist that development needs to happen smoothly, without

the developers working overtime.

Each iteration of an agile process follows a mini-waterfall within itself. Sufficient requirements

are expressed, analyzed, the software architecture is re-factored if necessary, the code is written

or re-written, tested and released. If some requirements could not be completed in the current

iteration, they are carried over to the next iteration. Agile methods do not plan a timeline for the

whole project. Because new versions of the software are constantly being released, it makes it

easier for everyone (including the customer) to see momentum in the project. This makes it

easier to estimate the time needed to achieve the overall vision of the project and to make course

corrections.

While testing is important in all software process models, agile methods emphasize on testing.

Agile methods suggest not only testing the current version of the product, but setting up of

automated testing procedures so that testing is frequent and when changes happen, during

iterations the automated regression testing detects the breaks soon. Automated regression testing

is particularly important because it saves on time compared to manual testing. Agile methods

depend a lot on teamwork and internal communication. It is believed that best architectures,

requirements, and designs emerge from self organizing teams. Developers work alongside

customers during the development. There is usually little documentation, but there is a lot of

emphasis on face-to-face communication between team members. Pair-programming

(programming done by two developers together) and daily stand-up meetings (that last no more

than 15 minutes) help in maintaining communication going among team members.

HCI processes share several qualities with agile processes. HCI design is intrinsically an iterative

process consisting of analysis, design, and usability evaluation. The problems found during the

evaluation are fixed in the next iteration, such iterations continue until no problems are found

and user experience goals are met. Given this preference for iterations, agile methods seem a

good fit for integrating usability engineering activities within the agile processes. The emphasis

27

on people and deliverable products rather than documentation and planning are also common

qualities, just like agile programmers HCI designers are more of doers.

The informality of the agile methods gels well with the informal culture of design. Designers are

more at ease in face-to-face communication and visual presentation of ideas than with wading

through long documents. Most critiques agree that there is potential to integrate usability

engineering activities with agile development. Nielsen acknowledges that agile methods hold

promise for addressing the many ways in which traditional development methodologies erected

systematic barriers to good usability practice (Nielsen, 2008). However, despite the similarities,

several HCI issues still emerge with agile methods.

2.2.1 HCI Issues with Agile Processes

Design in the HCI world involves working with the user to understand the problem and come up

with a user interface – typically on paper - of the entire system before turning it over, in Big

Design Upfront (BDUF) manner, to the rest of the development team to build. Following our

surveys the following were found to be a challenge in the current agile development paradigm.

2.2.1.1 Software Engineers Are Asked to Design

The most important issue with agile process models is that they pay little attention to users,

usability, and HCI design. Agile methods do not acknowledge that HCI activities require a

different set of specialized and important skills. This is reflected in the team composition. Agile

teams primarily consist of software engineers, and working code is considered the primary

deliverable. Anyone who does not deliver code (e.g. a designer) does not easily fit in culturally.

Several critiques have reflected this view.

Blomkvist comments that though agile processes value people, skills, and teamwork in other

areas, they do not regard that usability and interaction design skills as important, (Blomkvist,

2005). Nielsen identifies threats of agile methods, (Nielsen, 2008). The biggest threat, according

to Nielsen, is that agile methodologies are developed by programmers to address the

implementation side of software development, overlooking HCI design. While Nielsen is not

against HCI design being performed by the same people who do the coding, he feels it must be

recognized as a separate activity rather than leaving it to happen as a “side effect of coding”.

28

Constantine concludes that agile methods seem to be at their best in applications that are not GUI

intensive, (Constantine, 2002).

2.2.1.2 Users Are Asked to Design

To help design a new system, agile methods put representative customers or users in the team.

This may give a feeling to the development team that the voice of users is being heard, this may

not be true critics. Bayer et al. argue that there is no such thing as representative users. At best,

they are a sub-set of users and often, they only represent themselves (Beyer, et al, 2004). Further,

even real users are unable to articulate what they do and how, particularly when they are not in

the context of that work, and certainly if they have not been doing the work for a while. Finally,

users are not able to make design decisions for a new system. Users may not have the appropriate

skills required to create visions of future systems.

Design of interactive systems requires a complex set of skills and it is inappropriate to assume

that all representative users would have it. User should be involved, but not for making the

design decisions. Skilled HCI practitioners can design good systems by observing users in their

contexts, by involving them in participatory design activities, or by asking them to try out

prototypes during usability tests.

2.2.1.3 Change is Managed Well, But Anticipated Poorly

Agile methods plan very little up front because it is assumed that the business needs and

requirements will change any way. However, as Allen Cooper puts it, this is a self fulfilling

prophecy. Requirements change because planning is avoided, (Cooper, 2008). Managing change

is one of the strengths of agile methods. As a result, agile methods shun Big-Design-Up-Front.

Agile methods do not seem to be differentiating between elaborate planning and deeply

understanding user needs, between software design and design for human beings, and between

intra- and extra-lifecycle changes. They tend to club these in to one basket and shun them

equally. We categorize changes to the HCI design into five types:

 Changes that arise because a new user need or user problem is discovered after

requirements are frozen.

 Changes that arise because someone thinks of a new idea after the requirements were

frozen.

29

 Changes that arise because something that was thought to be technically feasible turns

out not to be so and a workaround is required.

 Changes that arise because late usability evaluations of early releases throw up

unanticipated usability problems that were not captured on early prototypes and

 Finally, changes that could not have been anticipated.

Agile methods seem to give a license to do a poor job at anticipating and containing change.

Proponents of agile methods seem to do little introspection about the reasons for intra-lifecycle

changes, which are the most common type of changes in projects. HCI activities can help in

anticipating many of the intra-lifecycle changes that arise out of human needs and business

processes.

2.2.1.4 Agile User Stories Are Not Interaction Design Scenarios

Agile teams use user stories to define, manage, and test features of a product. It is tempting to

think of these as parallel to scenarios in interaction design and to think of stories as a direct link

between HCI and agile methods. However, a closer look at tells a different story. Agile user

stories are written by customers, focus on the user interface of one feature, and are supposed to

be about three sentences long, (Wells, 2009). The length of the story is determined by the time it

takes to implement it in code.

Scenarios in interaction design are lot richer than three-sentence-long user stories. They are

created by designers to envision new products. A scenario may involve more than one feature

and may involve one or more personas. Scenarios narratives are never only three sentences long,

are often accompanied by storyboards or videos, and only sometimes describe details of the user

interface. The main purpose of a scenario is to explain the high-level impact of the future product

on the life of the user in a particular situation (Cooper, et al, 2003). It is difficult to imagine how

a scenario can be chopped or merged just so that it can be developed in three weeks.

2.2.1.5 Short Iterations

An important HCI issue is that breaking down product development into small parts and constant

change can potentially undermine the totality of the user experience. While some HCI

researchers have no issues with this, a few have critiqued this of agile methods, (Constantine,

2002), (Nielsen, 2008). Piecemeal design could lead to lack of cohesiveness and allow

30

inconsistencies to creep in. Maintaining a comprehensible and consistent user interface as new

features are added becomes increasingly difficult. Short iterations cause further problems as the

usability team tries to maintain the project.

2.2.2 Agile development for mobile applications

Agile methods represent a relatively new approach to mobile software development. The use of

agile methods in mobile software development has received both supporting and opposing

arguments. The main argument against mobile agile methods is the asserted lack of scientific

validation for associated activities and practices, as well as the difficulty of integrating plan-

based practices with mobile agile ones. There is also some amount of uncertainty in

distinguishing mobile agile methods from ad-hoc programming. However, as stated in (Salo,

2006) agile methods do provide an organized development approach. When trying to compare

mobile applications characteristics to those of an agile method, (Dyba & Dingsoyr, 2009) noted

that difficulty comes partly from the fact that boundaries of agile methodologies are not clearly

established. Findings of their research indicate that the introduction of agile methods to software

projects yields benefits, especially if agile practices do not completely replace traditional ones,

but work in conjunction with them.

In (Abrahamsson, 2005) the author performs a direct comparison between agile method

characteristics and mobile applications features, focusing on environment volatility, amount of

documentation produced, amount of planning involved, size of the development team, scale of

the application in-development, customer identification, and object orientation. Except customer

identification, all other agile characteristics render the methods suitable for mobile applications

development. The customer may be identified as the software distributor. However, especially in

the case of mobile applications, the customer identification problem is much more complex.

2.2.2.1 Is agile – a natural fit for mobile application development?

The mobile telecommunications industry comprises a highly competitive, dynamic and uncertain

environment. Mobile applications should be developed quickly while keeping a low price in a

competitive market of millions of potential users and products.

The agile approach is seen as a natural fit for mobile applications development and studies

carried out on the application of the agile development approach to mobile applications

31

development indicates the need for software development processes tailored to suite the mobile

applications requirements, (Holler, 2011). It has been recommended that agile practices are the

best choice because they assure different phases of software development life cycle and work to

solve the mobile applications development issues more efficiently (Abrahamsson & Wartso,

2003). It is believed that agile innovations may offer a variety of solutions for mobile

applications and assist service developers in need of high quality development processes

(Wasserman, 2010).

(Abrahamsson, 2005) has demonstrated the traits and reasons why agile technologies best fits in

mobile devices software development. The various issues include, high environment volatility,

small development teams, identifiable customer, object oriented development environment, non-

safety critical software, application level software, small systems and short development cycles.

(Kannan, 2011) has also highlighted the suitability of agile software development in mobile

applications development linked to small teams, short deadlines, putting importance on usability,

fast delivery and less complexity. The authors have suggested seven methods in which Agile

development practices enhance the development of mobile applications that includes:

1. Experimentation and adaption nature of mobile applications;

2. Reliability that leads to continued use of applications;

3. Extension of Agile sprints into mobile application model,

4. Responsiveness to technology changes;

5. Rapidly accommodating customer feedback;

6. A more thoughtful user experience; and

7. Phased roll out of feature sets.

(Holler, 2011) suggested that agile software development offers tremendous opportunities and

value, for mobile applications development teams working into introducing a lightweight

development process or scale back bureaucratic processes.

The author has emphasized the progress in mobile computer technology and the rapid escalation

of wireless networks in quality and quantity that has brought in new applications and concerns in

this dynamic environment. He has also underlined the promptness with which the industry needs

to adapt and change itself from conventional systems development techniques fulfilling the

special needs of this field. Agile methods allow adapting processes and practices to the unsteady

needs of the mobile domain while providing flexibility.

32

2.2.3 Review of mobile applications development processes - using an agile approach

The following Agile methodologies in Table 2:1 have been proposed by various scientists and

they use combination of agile and non-agile techniques for the development of mobile

applications.

Table 2: 1 Mobile platform based agile methodologies

Mobile Process Mobile Development Process

Description

Techniques

Mobile D An Agile Approach for Mobile

Applications Development

XP, Crystal, RUP

RaPiD 7 Rapid Production of

Documentation - 7 steps

AM

Hybrid Methodology

Design

An Agile Methodology for

Mobile Software Development -

A Hybrid Engineering Method

Approach

ASD, NPD

MASAM Development Process of Mobile

Applications SW Based on

Agile Methodology

XP, RUP, SPEM

SleSS A Scrum and Lean Six Sigma

Integration Approach for the

Development of Software

Customization for Mobile

Phones

Scrum, Lean Six

Sigma

2.2.3.1 Mobile-D

One of the pioneering studies in agile approach is by (Abrahamsson, et al, 2004), where it was

assessed that agile development solutions provide a good fit for mobile applications development

environment and proposed a new approach called Mobile D.

33

Mobile-D comprises five phases: Explore, Initialize, Productionize, Stabilize, and System Test &

Fix.

Figure 2:3 Phases of Mobile-D software development process

Their research provides an overview on to the mobile applications software development

process. A diagrammatic representation of mobile D with it five phases is shown in Figure 2:3.

I. Mobile-D overview

Mobile-D approach is based on Rational Unified Process RUP (life-cycle coverage), EXtreme

Programming XP (development practices) and Crystal methodologies (scalability). According to

(Abrahamsson, et al, 2004), it is recommended to use Mobile-D by a small co-located team of at

most ten co-located developers, working in a short development cycle towards a product delivery

within 8 to 10 weeks of calendar time.

There are nine main elements involved in the different practices throughout the development

cycle:

34

1. Phasing and Placing

2. Architecture Line

3. Mobile Test-Driven Development

4. Continuous Integration

5. Pair Programming

6. Metrics

7. Agile Software Process Improvement

8. Off-Site Customer

9. User-Centred Focus

The Architecture Line in the methodology is a new addition to the already established agile

practices. An architecture line is used to capture an organization’s knowledge of architectural

solutions, from both internal and external sources, and to use these solutions when needed it aims

at producing an application framework, which guides the development of future mobile

applications.

The phases: Explore, Initialize, Productionize, Stabilize, and System Test & Fix. Each have a

number of associated stages, tasks and practices as shown in Figure 2:4.

Figure 2:4 Mobile-D phases and stages. Adapted from (VTT Electronics, 2006)

35

a) Explore

Explore means to setup initial characteristics version of the project requirements and establishing

the project plan. In Explore, the development team must generate a plan and establish project

characteristics. This is done in three stages: stakeholder establishment, scope definition and

project establishment. Tasks associated to this phase include customer establishment (those

customers that take active part in the development process), initial project planning and

requirements collection, and process establishment. The main purpose of explore phase is to

highlight the scopes and requirements within the project.

b) Initialize

In Initialize, the development team and all active stakeholders understand the product in

development and prepare the key resources necessary for production activities, such as physical,

technological, and communications resources. When the initial requirements and plans of the

project are well-organized and established, then, the Initialize phase begins. This phase is divided

into three stages: project set-up, initial planning and trial day. Identifying the resources within

the project technically and physically is one of the key points of this phase providing the

communication channel between the developer and stakeholders is another important point.

c) Productionize

The Productionize phase mainly means the implementation of functionalities that are collected

within the Explore and Initialize phases of the project. This phase is divided three stages

 Planning days,

 Working days, and

 Release days.

Planning days are aimed at enhancing the development process, analyze the gathered

requirements and prioritize them to identify the core functionalities within the project

(prioritizing and analyzing requirements), planning the iteration contents for implementation of

the application development process, and creating acceptance tests that will be run later in

release days.

In working days, the Test-Driven Development (TDD) practice is used to implement

functionalities, according to the pre-established plan for the current iteration. Using TDD along

36

with Continuous Integration, developers create unit tests, write code that passes the tests, and

integrate new code with the existing version of the product, addressing any errors that may arise

in the integration process.

Finally, in release days a working version of the system is produced and validated through

acceptance testing.

d) Stabilize

It means to collect and combine iterations together to finalize the product (product finalization).

To stabilize the application, one of the vital stages is to integrate all the parts and put them

together as a system.

e) System Test & Fix

System Test & Fix is the final phase of Mobile-D agile methodology which is based on the

application testing frequently and fixing errors while completing the documentation of the

application.

II. Mobile-D with added Evolve phase.

The new Evolve phase deals with continuously integrating end-user feedback on the delivered

product into future releases. Feedback can come from multiple sources, such as consumer and

peer reviews, or data generated by the application itself (usage statistics and crash reports). The

first task, Data analysis, as in figure 2:5 requires the team to obtain and analyze feedback data.

By analyzing usage statistics, conclusions can be drawn on whether a particular component of

the software is used enough to justify further maintenance and updates, while error and crash

reports trigger a sequence of stages, similar to those in the System Test & Fix phase. When a

defect is reported, the team locates and documents it. Then, a Fix iteration comprising a Planning

day, Working day and Release day is performed. In the Planning day, the developers attempt to

reproduce reported defects, in order to fix them and create a new release of the product.

Mobile-D is organized into a framework that conjoins the main processes (plan, design,

implement, test and release) with the support processes (project management, software

configuration management, software process improvement). Mobile-D has already been applied

in development projects, and some advantages have been observed, such as increased progress

visibility, earlier discovery and repair of technical issues, low defect density in the final product,

37

and a constant progress in development (Abrahamsson, et al, 2004). Other applications of the

method are presented in (Pikkarainen, et al, 2005) and (Hulkko & Abrahamsson, 2005).

Figure 2:5 Mobile-D with added Evolve phase. Adapted from (VTT Electronics, 2006)

The approach has also been successfully assessed against the CMMI level 2 certification.

Although this methodology being a pioneering study in the field seems very promising and plays

an important role in theory, it is important to mention that this approach is cursory and not

completely defined in order to be literally used in practice. Also, further improvements on it,

have been suggested by other authors and the model could further be improved using hybrid

agile techniques and user centered design approaches.

2.2.3.2. RaPiD7

Working software in software development has always been the focus over comprehensive

documentation; however the required documents should be identified and be documented too.

Dooms et al. has proposed a method called ‘RaPiD7’ (rapid production of documentation with 7

38

steps) that improves the documentation work without scarifying the quantity and quality of

documentation (Beck, 1999). RaPiD7 describes how human interaction is planned in software

projects and how documents are to be created in facilitated workshops. (Dooms & Roope, 2005)

state that RaPiD7 provides a three-layer structure: Project, Case and Workshop layers as shown

in Table 2:2.

Table 2: 2 Three layer structure of RaPiD7

Layers Description

Project Layer Describes how human interaction and joint

decision-making is planned for software projects.

Case Layer Describes how the selected cases such as

documents are to be created in consecutive

workshops.

Workshop Layer Describes how the actual work is carried out in

form of facilitated workshop, using seven steps of

method.

The seven steps of RaPiD7 Workshop Layer are

 Preparation phase

 Kick off phase

 Idea gathering phase

 Analyzing idea phase

 Detailed design phase

 Closing phase

RaPiD7 supports all software development projects, whether related or unrelated to mobile

applications development, this method was tested at Philips Digital Systems Laboratory and it

was developed within Nokia in the 2002-2003 timeframe.

The motivation is to make documents that match reality and create them with as little effort as

possible. RaPiD7 approach embraces two agile practices: Team work & Do the Simplest Thing

That Will Work. RaPiD7 improves the traditional approach for specification work by offering a

39

way to plan the human interaction in the early phases of software projects and by providing

means to make decisions and to document.

2.2.3.3 Hybrid Methodology Design

(Rahimian & Ramsin, 2008) present a different approach. They propose a hybrid Agile and risk-

based methodology that generates a method suitable for mobile applications development

designed from Methodology Engineering techniques.

Table 2: 3 Phases of Hybrid engineering methodology

Hybrid Engineering Methodology Phases

Idea Generation

Project Initiation Preliminary Analysis

Business Analysis

Analysis Detailed Analysis

Creation of Functional Prototype

Design Architectural Design

Detailed Design

Implementation

(Development

Engine)

Adaptive Cycle Planning

Concurrent Component Engineering

Updates to Component Library

Test Quality Review

Market Testing

Commercialization

It is concerned with creating methodologies suitable for different development scenarios,

motivated by the belief that no single process fits all situations. Hybrid Methodology Design is

40

built on a combination between agile methodologies, Adaptive Software Development (ASD)

and New Product Development (NPD).

The ideal mobile software development characteristics that the hybrid engineering methodology

is based on are: agility, market consciousness, software product line support, architecture-based

development, support for reusability, inclusion of review and learning sessions, early

specification of physical architecture as detailed in Table 2:3.

The Hybrid Methodology Design process has been developed as a top-down, iterative-

incremental process comprised of the following tasks:

 Prioritization of requirements,

 Selection of the design approaches to be used in the current iteration,

 Application of the selected design approaches,

 Revision,

 Refinement and restructuring of the methodology built so far,

 Defining the abstraction level for the next iteration, and

 Finally the revision and refinement of the requirements, prioritizing them for the next

iteration.

The proposed mobile development methodology was created in four iterations, starting from a

generic software development lifecycle. In the first iteration, the methodology was detailed by

adding practices commonly found in agile methods. Taking into account market considerations,

the second iteration included activities from New Product Development, a process concerned

with introducing a new product or service to the market. In the third iteration, Adaptive Software

Development (ASD) ideas were integrated into the methodology, while in the fourth & final

iteration, prototyping was added to mitigate likely technology-related risks.

Though HME is a mobile application development focused it is a high-level abstraction method

and does not provide its phases with the details needed to apply it to customized development for

mobile platform-based devices (phones). The published material on Hybrid Engineering

Methodology does not include any case study or shows that the methodology has been

empirically tested on developing an actual mobile software product.

41

2.2.3.4 MASAM

(Jeong, et al, 2008) proposed the Mobile Application Software Agile Methodology (MASAM)

that provides the process for developing the mobile applications swiftly using an agile approach.

Table 2: 4 Process assets of MASAM

Kind Description Name

Role It defines a set of related skills,

competencies and responsibilities

of an individual(s).

Planner, Manager, UI designer,

Developer, Development team,

Initial development team, Tester,

User

Task It is an assignable unit of work

assigned to a specific role. The

granularity of a task is generally

a few hours to a few days and

Usually affects one or only a

small number of work products.

Product Summary, Initial

Planning, User Definition, Initial

Analysis, Select Resource, Select

Process, Establish Environment,

Write Story Card, UI Design,

Define Architecture, Planning,

Iteration plan, Face-to-face

Meeting, Incremental Design,

TDD, Refactoring, Release Plan,

Feedback, Pattern Manage, Pair

Programming, Integration,

Acceptance Test, User Test

Figure

Work

Product

It is a general term for task inputs

and outputs. There are three

types of work product.

Product Summary, Project

Planner, UI Sample, UI Model,

UI pattern, Architecture Pattern,

Application Pattern, Story Card,

Task Card, Architecture Model,

Component Model, Test Case.

42

It is based on Extreme Programming (XP), Agile Unified Process, RUP and the Software and

Systems Process Engineering Meta model (SPEM). It is a GUI based architecture-centered that

uses Agile approaches for rapid development and utilizes domain knowledge.

MASAM shows a strong tie with the Mobile-D methodology and introduces slight variations,

such as project management and follow up tool coupled with Eclipse Process Framework.

MASAM is described according to Software and Systems Process Engineering Meta-model

(SPEM) by the following three kinds of process assets described by (Goldsbury, 2012) and

presented in Table 2:4.

MASAM proposes a mobile application development cycle comprised of four phase, Table 2:5.

1. The Preparation Phase defines a summary and a first notion of the product, and assigns

roles and responsibilities.

2. The Embodiment Phase focuses on understanding user’s needs and defining the

architecture of the software product.

3. Developing Phase, that benefits from traditional agile principles to furnish an iterative

Extreme Programming development sequence. The implementation of the software

product is carried out through Test-Driven Development, Pair Programming, Refactoring

and Continuous Integration, with a close relationship with iterative testing activities.

4. Finally, a Commercialization Phase concentrates on product launching and product

selling activities.

It is recommended to use MASAM methodology for small companies that are focused on the

development of mobile software applications. However the, authors have not presented a case

study of an actual implementation of this methodology in a real-world environment.

Table 2: 5 Phases of MASAM process

Phase Activity Task

Preparation Phase Grasping Product Product summary

Pre-planning

Product Concept Sharing User Definition

Initial product analysis

43

Project Set-up Development process

coordination

Project resource coordination

Pre study

Embodiment Phase User Need Understanding Story card workshop

UI design

Architecting Non-functional requirement

analysis

Architecture definition

Pattern management

Development Phase Implementation & Preparation Environment setup

Development Planning

Release Cycle Release Planning

Iteration Cycle

Release

Commercialization Phase System Test Acceptance Test

User Test

Product Selling Launching Test

Product Launching

2.2.3.5 SLeSS

(Cunha, et al, 2011) proposed SLeSS, an integration approach of Scrum and Lean Six Sigma

used in real projects for developing embedded software customized for mobile phones. SLeSS

enables the achievement of performance and quality targets, progressively improving the

development process and the outcome of projects. The approach uses two types of product

44

backlogs, Customization Product Backlog (for customizing development projects) and LSS

Product Backlog (for process improvements). The use of SLeSS assists in easy adaptation to

requirement changes in the later stages of the project and with less overall impact than the

traditional approach, helps in meeting deadlines, reduces overtime hours, and delivers more

rapidly versions while shortening the development cycle.

Besides this, the use of the approach enables the achievement of performance and quality targets

of real software development project, increases productivity, improves process quality, helps in

cost reduction, progressively improves the development process, management process and the

outcome of projects with fewer defects and failures.Scrum is an agile methodology for project

management and software development that adopts an empirical approach rather than

prescriptive one and therefore it may be used in complex projects. On the other hand, Lean Six

Sigma (LSS) is a methodology for defining and improving products, processes and services with

a focus on reduction of defects and failures, on variation and waste elimination, prioritizing, in a

planned and objective way, the achievement of quality and financial results.

1. Scrum in SLeSS

Scrum is widely used in software development, and it has been observed and documented in the

scope of mobile software development (Scharff & Verma, 2010). The execution of SLeSS

assumes an incremental approach by first implementing the Scrum alone and once the Scrum is

well settled in the organization, LSS should be implemented as a quality framework.

2. Lean Six Sigma in SLeSS

Once Scrum is well settled in the organization, Lean Six Sigma (LSS) is applied as a quality

framework that complements Scrum as a development methodology. The model is represented

by the 5-phase DMAIC phases Table 2:6 (Define, Measure, Analyze, Improve and Control).

The SLeSS approach has been used in real embedded software customization development

projects for mobile phones. The approach was experimented in P&D&I laboratory, with a mobile

phone manufacturer as a client with a team of 7-12 developers, in duration from 4-6 months,

with an average size of 529 LOC (Line of Code) developed in ANSI C programming language.

SLeSS results in obtaining higher outcomes, such as better adaptation to changes in

requirements, fulfillment of the deadlines, decrease in number of unplanned overtime and

delivering more versions rapidly with fewer defects or failures. It demonstrates increase in

45

productivity, improvement in process quality and reduction in cost. Besides this, the approach

has allowed improvement in development and management processes.

Table 2: 6 DMAIC 5 Phases of SLeSS approach

Phases Backlog Items

Definition Phase LSS Project Contract

Initial Analysis

Measurement Phase SIPOC Diagram (Supplier, Inputs, Process,

Outputs, Customers)

Process Map

Cause and Effect Diagram

Cause and Effect Matrix

Impact Effort Matrix

Initial Capability

Measurement and Inspection Systems

Analysis Phase FTA (Fault Tree Analysis)

Analysis of critical inputs of the processes

Improvement Phase Action Plan

SIPOC

Process Map

Piloted Solution

Final capability of the processes

Control Phase Control Plan

46

2.4 Chapter Summary
In this Chapter we discussed agile development for mobile applications a relatively new

approach to mobile platform-based devices applications development, presented a

comprehensive review of the current state-of-the-art in the design of usable mobile platform

based devices. Further we highlighted Usability engineering Issues with Agile Processes, the

unique development challenges for mobile platform based devices and the gaps in industry

practice leading us to consider the best way possible to address the challenges for a better mobile

platform based devices applications development environment.

47

CHAPTER THREE

3.0 RESEARCH METHODOLOGY

In this chapter, we elaborate the research design and specific approach that was adopted in this

study to put forward a process framework and used the framework later as a baseline for

proposing an Extended Mobile-D agile process model. The chapter focuses on data collection,

processing and analysis methods. Data collection instruments and procedures are also discussed

as well as the target population and study sample.

(Zikmund, et al, 2010) describe a research methodology as a part that must explain technical

procedures in a manner appropriate for the audience. It achieves this by addressing the research

and sample designs used for the study, the data collection and fieldwork conducted for the study

and the analysis done to the collected data. (Dawson, 2009) states that research methodology is

the philosophy or general principle which guides the research. (Kombo & Tromp, 2009) concur

with (Zikmund, et al, 2010) that research methodology deals with the description of the methods

applied in carrying out the research study.

3.1 Research Design

(Dawson, 2002) describes the purpose of this section as to set out a description of, and

justification for, the chosen methodology and research methods. (Polit & Beck, 2003) describe a

research design as the overall plan for obtaining answers to the questions being studied and for

handling some of the difficulties encountered during the research process. (Miller & Yang, 2008)

and (Kothari, 2004) describe a research design as the arrangement of conditions for collection

and analysis of data in a manner that aims to combine relevance to the research purpose with

economy in procedure. (Kombo & Tromp, 2009) describe a research design as the review of the

overall research aim, the literature and chosen research methods. (Kothari, 2004)) states that

research design facilitates the smooth sailing of the various research operations, thereby making

research as efficient as possible, yielding maximal information with minimal expenditure of

effort, time and money.

(Lavrakas, 2008) asserts that choosing an appropriate research design depends on;

a) The nature of the research questions and/or hypotheses

b) The variables

c) The sample of participants

48

d) The research settings

e) The data collection methods and

f) The data analysis methods.

Thus, a research design is the structure, or the blueprint, of research that guides the process of

research from the formulation of the research questions and/or hypotheses to reporting the

research findings.

In designing any research study, the researcher should be familiar with the basic steps of the

research process that guide all types of research designs. Also, the researcher should be familiar

with a wide range of research designs in order to choose the most appropriate design to answer

the research questions and/or hypotheses of interest.

This study used Action research design the term Action Research was coined by (Lewin, 1946)

who describes it as “comparative research on the conditions and effects of various forms of

social action, and research leading to social action.” As an interventionist approach, Action

Research is a self-reflective form of inquiry in that the researcher gleans knowledge about his or

her role in the action, as well as knowledge about how valid the action might be. Action

Research is an iterative research approach involving the planning of an intervention, carrying it

out, analyzing the results of the intervention, and reflecting on the lessons learned; these lessons

contribute to the re-design of the action and the planning of a new intervention. The Action

Research methodology used in this dissertation is based on that proposed by (Baskerville, 1999),

who breaks an intervention into the research cycle illustrated in figure 3:1

Figure 3:1 Baskerville approach

Diagnosing

Action
Planning

Action
Taking

Evaluating

Specifying
Learning

49

The Action Research intervention is situated within a specified and agreed Research

Environment and for our study the research environment happened to be mobile platform-based

devices computing solutions development organizations.

The Diagnosing phase involves identifying the problems motivating the intervention. The client

may stipulate their interpretation of these problems, but the researcher also needs to undertake

some form of empirical or conceptual investigation to develop his or her own assumptions. This

phase commanded us to identify crucial, essential and important discount usability activities that

must be integrated in software engineering (SE) processes through literature review, case studies

and empirical findings.

The Action Planning phase involves devising the nature of the intervention that will relieve or

improve the identified problems. This involves agreeing on the desired future state, and the

changes necessary to achieve this.

The planned intervention takes place during the Action Taking phase, according to some form of

intervention strategy. This strategy may involve the researcher being an active participant in the

intervention; alternatively, the researcher may provide explicit or implicit guidance to other

participants and observe the outcome.

Irrespective of the strategy, the researcher collects data about the intervention for subsequent

analysis. As Action planning phase involves devising the nature of the intervention that will

relieve or improve the identified problems and the identified issues in the diagnostic phase it

helped us to consider the best way to develop a framework which went on to work as a baseline

for integrating discount usability activities into software engineering (SE) and further propose an

Extended Mobile-D agile process model.

Once the intervention is complete, the researchers and practitioners evaluate the outcome as part

of the Evaluating phase; this involves questioning whether the intervention was the sole cause of

success (or failure) and the validation of our framework and model was necessary to ensure their

soundness. A questionnaire was administered to software and HCI practitioners as a means of

getting their industry view of our improvement in the software engineering community.

Cyclically the final phase, the Specifying Learning phase takes place on an on-going basis, and

involves re-applying lessons learned during the intervention. This may involve recommending

organizational changes, using the knowledge to inform the approach to take for future

interventions, and reporting any general insights to the scientific community.

50

3.2 Target population

(Lavrakas, 2008) defines a population as any finite or infinite collection of individual elements.

(Hyndman, 2008) describes a population as the entire collection of ‘things’ in which we are

interested. According to (Zikmund, et al, 2010) and (Kothari, 2004)), a population refers to all

items in any field of inquiry and is also known as the ‘universe’. (Polit & Beck, 2003) refer to

population as the aggregate or totality of those conforming to a set of specifications. The target

populations for this study were the mobile devices software developers from the industries and

research institution. The main reason for choosing the particular group of software developers

was because they are responsible for using the software development models to transform a

scanty idea into a mobile application.

3.3 Sample and Sampling Technique

(Lavrakas, 2008) describes a sample in a survey research context as a subset of elements drawn

from a larger population. (Kombo & Tromp, 2009) and (Kothari, 2004) also describe a sample as

a collection of units chosen from the universe to represent it, before collecting data, it is essential

to determine the sample size requirements of a study. (Polit & Beck, 2003), strongly recommend

that it is more practical and less costly to collect data from a sample than from an entire

population. The risk, however, is that the sample might not adequately reflect the population’s

behaviours, traits, symptoms, or beliefs. Various methods of obtaining samples are available.

These methods vary in cost, effort, and skills required, but their adequacy is assessed by the

same criterion of the representativeness of the selected sample.

The study used a purposive sampling procedure to identify the sample units. (Lavrakaz, 2008)

states that a purposive sample, also referred to as a judgmental or expert sample, is a type of non-

probability sample. The main objective of a purposive sample is to produce a sample that can be

logically assumed to be representative of the population. This is often accomplished by applying

expert knowledge of the population to select in a non-random manner a sample of elements that

represents a cross-section of the population.

(Miller & Yang, 2008) and (Kothari, 2004) define purposive sampling as involving deliberate

selection of particular units of the universe for constituting a sample which represents the

universe. Purposeful sampling method enables the researcher to select specific subjects who will

provide the most extensive information about the phenomenon being studied.

51

The sample units in this study were chosen due to ease of access to information and this study

used simple random sampling for distribution of the questionnaires.

3.4 Data Collection Instruments

The study used a combination of both open and closed questions questionnaires containing a

design likert scale that allowed us to assign numbers 1-5 to collect both qualitative and

quantitative data about the the proposed Extended Mobile-D model and framework. Likert scale

was chosen because of its straight forward nature and ease of analysis of data.

(Mugenda & Mugenda, 2003) and (Kothari, 2004) define a questionnaire as a document that

consists of a number of questions printed or typed in a definite order on a form or set of forms.

According to (Dawson, 2002), there are three basic types of questionnaires;

 Closed ended,

 Open-ended or a

 Combination of both.

Closed-ended questionnaires are used to generate statistics in quantitative research as these

questionnaires follow a set format, and as most can be scanned straight into a computer for ease

of analysis and greater numbers can be produced.

Open-ended questionnaires are used in qualitative research, although some researchers will

quantify the answers during the analysis stage. The questionnaire does not contain boxes to tick,

but instead leaves a blank section for the respondent to write in an answer. Whereas closed-

ended questionnaires might be used to find out how many people use a service, open-ended

questionnaires might be used to find out what people think about a service, as there are no

standard answers to these questions, data analysis is more complex. Also, as it is, opinions which

are sought rather than numbers, fewer questionnaires need to be distributed. However, many

researchers tend to use a combination of both open and closed questions. That way, it is possible

to find out how many people use a service and what they think about that service on the same

form.

(Mugenda & Mugenda, 2003) and (Kothari, 2004) agree that questionnaires have various merits,

like; there is low cost even when the universe is large and is widely spread geographically; it is

free from the bias of the interviewer; answers are in respondents’ own words; respondents have

adequate time to give well thought out answers; respondents who are not easily approachable can

52

also be reached conveniently; large samples can be made use of and thus the results can be made

more dependable and reliable.

They also concur that the main demerits of questionnaires are; low rate of return of the duly

filled in questionnaires; bias due to no-response is often indeterminate; it can be used only when

respondents are educated and cooperating; the control over questionnaire may be lost once it is

sent; there is inbuilt inflexibility because of the difficulty of amending the approach once

questionnaires have been dispatched; there is also the possibility of ambiguous replies or

omission of replies altogether to certain questions .In view of the advantages and the need to

gather more information, questionnaires were administered to mobile devices software

developers to solicit their views concerning our framework and the Extended Mobile-D model.

The steps followed to design and administer the questionnaires include:

a) Defining the objectives of the survey

b) Determining the sampling group

c) Writing the questionnaire

d) Administering the questionnaire and

e) Interpretation of the results

3.5 Data Processing and Analysis

Statistical analysis was carried out in this project. Statistical analyses cover a broad range of

techniques, from simple procedures that we all use regularly like computing an average to

complex and sophisticated methods. Although some methods are computationally formidable,

the underlying logic of statistical tests is relatively easy to grasp, and computers have eliminated

the need to get bogged down with detailed mathematical operations (Polit & Beck, 2003).The

data collected was analyzed using SPSS to get information about quality of the framework and

the Extended Mobile-D model, important factors about the two and their suitability to the current

mobile devices software development environments plus more findings were presented inform of

graphs and tables since they are visual and can be easily interpreted.

3.6 Chapter Summary
In this Chapter, we have reviewed the research approach discussed our target population, the

sample and sampling techniques and concluded this chapter by considering data collection

instruments and analysis procedure.

53

CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 A Framework for Integrating Usability Engineering Into Mobile

Platform-Based Devices Software Engineering

Our framework is proposed to be a flexible way of understanding and communicating the work

of Usability Engineers practitioners in different contexts. Our objective is not to come up with

another prescriptive “one-size-fits-all” Usability design process model, but rather to articulate the

typical Usability Engineering activities within which several activities, techniques and

deliverables can be assimilated.

A usability engineering project involves people guided by common goals and strategies working

with a collection of tools to produce documents and code. The tools include compilers,

debuggers, environments, change management, source control, project management, document

processors, and domain modeling tools.

The documents produced include requirements that define the problem, customer manuals, test

plans, scenarios, a design that defines the architecture, and implementation plans. The code may

deal with objects, data structures, algorithms, methods, modules, protocols, and interface

definitions.

The strategies are materialized through the collection of the architecture, methods, paradigms,

risk analyses, conventions, and a mission statement. The materialization of the strategies

addresses what is to be built, how it will be built, building it, and making it high quality. By

combining the essential characteristics of the various strategies we propose a multi-disciplinary

framework for integrating usability engineering design into mobile applications software

engineering. We divide our framework into phases as in Table 4:1.

Each phase consists of one or more activities. Each activity is associated with one or more

techniques. Each method requires specific skills and could be associated with a particular

discipline to address a specific concern in mobile applications development. Each activity results

in specific deliverables.

A deliverable may be an end in itself, or may be an input for another activity in the usability

engineering design process or the software development process. Not all activities or techniques

may be essential in each instance of the process.

54

Table 4: 1 Multi-Disciplinary Framework

Software

development

stage

Mobile

applications

and devices

concern

Phase Question Disciplines

Involved

Usability

Activities

Usability

Techniques

Impact

Planning Identify

Your business

needs

A problem to

be solved by

your

application

Application

target users

Mobile

platforms and

devices to be

supported

Requirements

elicitation and

analysis

1. What is

required?

Users,

Designers,

Ethnographers,

Business

analysts,

Client/business

stakeholders,

Domain

experts,

Usability

experts

User analysis

Task analysis

Market

analysis

Conversational

Observational

Analytic

Synthetic

Complete

coverage of

the current

problem

All relevant

requirements

are captured

Definition of

each problem

Requirements

specifications

2. What will

the system

do?

Domain

experts,

Ethnographers,

client/business

stakeholders,

Designers,

users, Business

analysts,

Usability

experts

Essential use

cases

Usability

specification

goals

Highlight any

inconsistence

and

conflicting

requirements

Analysis Validate

appropriate

needs in

accordance

with the

stakeholders

wants

Requirements

validation

3. Have we

got the

requirements

right?

Domain

experts,

Client/business

stakeholders,

Designers,

Ethnographers,

Usability

experts

user

modeling

Collaborative

inspections

Cognitive

walkthroughs

Usability

Establishes

confidence

that

requirements

are fit for

purpose

55

evaluation

(walkthroughs)

Design Understand

The UI design

Multi-touch

gestures for

touch enabled

devices

Pre-design 4. Have we

understood

our targeted

users

Usability

experts,

Designers,

Domain

experts, Users

Ideation

Specific

targeted user

analysis

Contextual

design

techniques

Heuristic

evaluations

QFD

TRIZ

Design ideas

Concrete set

of usability

goals

Consider

Approach to

develop the

application

(Native, Web

or Hybrid)

Platform

design

standards

Design 5. How

should we

respond

 Usability

experts,

Designers and

Domain

experts.

Formative

usability

evaluation

and

refinement

Heuristic

evaluations

Thinking aloud

Prototype to

gather

requirements

and usability

principles

Evaluate

Prototype

Post-design 6. How are

we doing?

 Usability

experts,

Designers and

Users

Prototype

usability

inspection

Impact analysis

Interviews and

surveys

Data on

prototype

performance

Development

and

Build Transformation 7. How

should the

Designers and

Usability

Design Interface Early version

of the

56

Implementation

Exactly what is

needed

Integrate

An appropriate

analytics tool

design be

achieved

experts

detailing development

Visual

development

Information

development

Navigation

design

product

becomes

visible

Designers and

Usability

experts

Development

support

Reviews during

development

A clear

picture of the

product

Testing Listen to

application

feedback and

integrate

relevant ones

Expert

Evaluation

8. How does

it perform?

Users,

Usability

experts and

Designers

Detailed

usability

evaluation

Field

observations

Attitude

questionnaires

User auctions

logging

Field trials

Heuristic

Evaluation

Collaborative

Usability

problems

57

inspections

Thinking aloud

Usability

Testing

9. Which

areas need

more work?

Users,

Usability

experts,

Designers and

Client/business

stakeholders,

Refinement Reviewing

development

and

implementation

step

Improvement

on stated

usability

problems

Maintenance Upgrade your

application

with

improvements

and new

features

Evolution

phase

10. How do

we

compensate

for failures

Usability

experts, users

and Designers.

Summative

usability

evaluation

Usability test

Heuristic

evaluations

Smooth

running of

the system

In our framework, we identify usability engineering activities that, we propose, are essential for

integration with the six core software engineering process activities , I e;

a. Planning

b. Analysis

c. Design

d. Development and Implementation

e. Testing

f. Maintenance

 We organize these activities in ten phases, which we describe in terms of ten questions.

1. What is required?

2. What will the system do?

3. Have we got the requirements right?

4. Have we understood our targeted users?

5. How should we respond?

6. How are we doing?

7. How should the design be achieved?

58

8. How does it perform?

9. Which areas need more work?

10. How do we compensate for failures?

The following sections describe the details of the software development stages the concerns to be

addressed, disciplines involved, usability activities including the techniques that could be used to

perform the usability engineering activities, and expected deliverables/impact or outcomes.

4.1.1 Planning
Understanding why your organization needs mobile applications, and what business processes

they will support, is key to a successful mobile application strategy. An effective mobile

application strategy involves knowing the reasons behind the mobile application drive. To create

a successful mobile application, the first things you need to keep in mind are:

 Identify a problem which can be resolved by your application

 Decide the features of your application

The application should provide customers with tangible benefits including reducing costs via

productivity enhancements, new revenue or improving the customers experience.

You need to take a deep dive into the goal of your mobile application and determine exactly

 What it is that the mobile application will do are you looking to serve your customers,

employees, vendors, channels, or all of the above?

 Will mobile applications enhance or replace current technologies? Think of the business

processes you want to enable with mobile applications.

You need to identify or be clear about:

 Application target users

An application should always be developed keeping in mind the target users of the application.

Having a clear vision regarding the target group enhances the success ratio of the application.

 Mobile platforms and devices to be supported

Mobile platforms and devices should be selected regarding the hardware performance, battery

life, ruggedness and required peripherals. Certain factors that needs to be considered while

selecting mobile platforms and devices includes coverage, device support, performance and

other features.

Question 1 and 2 successfully navigate us through the planning stage.

59

4.1.1.1 Question 1 What is required?

This is a broader question and asks the design team to look at the problem at hand as holistically

as possible. It is not only about what is “required” by someone. This question is answered

through divergent thinking, user analysis, task analysis and market analysis while looking

beyond what had been specified in the design brief, and trying to set the problem before solving

it the phase here is known as requirement elicitation.

Requirements elicitation is the practice of collecting the requirements of the application from

users, customers and other stakeholders its major goal is to avoid the confusions between

stakeholders and the design team. It is non-trivial because the team can never be sure to get all

requirements from the user and customer by just asking them what the application should do.

Before requirements can be analyzed, modeled, or specified they must be gathered through an

elicitation process. This phase involves intensive interaction between stakeholders and the team.

The usability techniques associated with this phase are

a. Conversational

b. Observational

c. Analytic and

d. Synthetic.

a. Conversational methods

The conversational method provides a means of verbal communication between stakeholders and

the team it’s an effective means of expressing needs and ideas, and the methods are used

massively to understand the problems and to elicit generic product requirements. The

Conversational Methods are also known as verbal methods, such as Interviews, Questionnaire,

and Brainstorming.

Conversation is one of the most prevalent yet invisible forms of social interaction. People are

usually happy to describe their work and difficulties they face. They verbally expressive

demands, needs and constraints

 Interviews:

An Interview is generally conducted by experienced analysts design teams, who have some

generic knowledge about the application domain as well. The team discusses the desired product

60

with different stakeholders and develops an understanding of their requirements. Our framework

advocates for closed and open Interviews.

Closed Interview: In this the team prepares some predefined questions and tries to get the

answers for these questions for the stakeholder. Open-ended Interview: here the team does not

need to prepare any predefined questions, and information is collected through open discussions.

 Questionnaire:

The team might also employ questionnaires it’s one of the methods of gathering requirements in

less cost and reach a large number of people, not only in less time but also in a lesser cost. The

framework suggests the general factor to consider in the usage of the questionnaire is that the

type of requirements that has to be gathered depends on the level of the respondent’s knowledge

and background.

 Brainstorming :

In brainstorming stakeholders gather together for a period but in this time period they develop a

large and broad list of ideas. Here “out -of-the-box” thinking approach is encouraged. The

brainstorming involves both usability idea generation and idea reduction.

b. bservational methods:

The observational method provides the team with a means to develop a better understanding

about the domain of application, the observer team must be accepted by the people being studied

and the people being studied should carry on with their normal activities as if the team is not

there.

The design team observes usability activities at environments where the application is expected

to be deployed. The observation methods come into play where verbal communication becomes

helpless for collecting tacit requirements.

Therefore, by the team observing how people carry out their routine work forms a means of

acquisition of information which are hard to verbalize. The observational methods are well suited

when stakeholders find it difficult to state their needs and when the team is looking for a better

understanding of the context in which the desired product is expected to be used.

Observational methods include Social analysis, Observation, Ethnographic study, and Protocol

analysis.

61

 Social analysis, Observation, Ethnographic study

The team or a member spends some time in a society or culture for making detailed observation

of all their practices. This practice gives the initial understanding of the applications, work flow

and organizational culture.

 Protocol analysis

In protocol analysis the team observes a stakeholder when s/he is engaged in some task, and

concurrently speaks out loud and explains his/her thought, with the protocol analysis it is easy to

identify interaction problems in existing applications and it gives better and closer understanding

of work context and work flow.

c. Analytic methods

The team uses conversational or observational methods to directly extract requirements from

people’s behavior and their verbalized thought but still there is a lot of knowledge that is not

directly expressed, for example expert’s knowledge, information about regulation and legacy

products are some examples of such sources. All the stated sources provide usability engineers

with rich information in relation to the product. Analytic methods provide the team ways to

explore the existing documentation or knowledge and acquire requirements from a series of

deductions. It includes requirements reuse, documentation studies, laddering, and repertory grid

 Requirement reuse

In this technique, the team uses glossaries and specification of legacy systems or systems within

the same product family to identify requirements of the desired application. It has been observed

that many requirements in a new system are more or less same as they were in a legacy system’s

requirement. So it is not a bad idea to reuse the details of requirements of an earlier system in a

new system.

 Documentation studies

Here the team read and study different available documents (e.g. organizational policies,

standards, legislation, market information, specification of legacy systems) to find the content

that can prove to be relevant and useful for the requirements elicitation tasks.

 Laddering

This technique can be divided in three parts: creation, reviewing and modification.

62

Laddering method is a form of structured interview that is widely used in the field of knowledge

elicitation activities to elicit stakeholder’s goals, aims and values.

The team uses laddering method to create, review and modify the hierarchical contents of

expert’s knowledge in the form of tree diagram. It was first introduced by the clinical

psychologists in 1960 to understand the people “score values and beliefs”. Its success in the

fields of psychology allows other researchers in the industries to adapt it in their fields.

Specifically software developers have adapted the laddering techniques to gather the complex

user tacit requirements.

 Repertory grid

The stakeholders are asked for attributes applicable to a set of entities and values for cells in

entity-attribute matrix. The analytic methods are a complementary way to improve the efficiency

and effectiveness of requirements elicitation, especially when the information from legacy or

related products is reusable.

d. Synthetic methods

It is apparent that no single method is sufficient enough to develop all the requirement of an

application. All these methods are good and very handy in some certain context and

circumstances. It is often a good idea to combine different elicitation methods for developing

requirement. The combination helps the usability engineering team to uncover the basic aspects

and gain a generic knowledge of the application domain.

The synthetic coherently combine conversation, observation, and analysis into single methods.

The team and stakeholder representatives communicate and coordinate in different ways to reach

a common understanding of the desired product.

Synthetic methods are also known as collaborative methods as they are collaboration of multiple

requirement elicitation methods. Synthetic techniques include scenarios, passive storyboards,

prototyping, interactive storyboards, JAD/RAD sessions, and contextual inquiry.

 Scenarios, passive storyboards

This is the teams’ interaction session. In this session a sequence of actions and events for

executing some generic task which the applications are intended to accomplish are described.

Here the team establishes clear requirements related to the procedure and how data flow can be

achieved.

63

 Prototyping, Interactive storyboards

In this technique, the team discusses a concrete but partial application with stakeholders. The full

version is expected to be delivered at the end of the project. The purpose of showing this

concrete but partial application to stakeholders is to elicit and validate functional requirements.

 JAD/RAD sessions

Joint Application Development/Rapid Application Development emphasizes user involvement

through group sessions with unbiased facilitator. JAD is conducted in the same manner as

brainstorming, except that the stakeholders and the users are also allowed to participate and

discuss on the design of the proposed application. The discussion with the stakeholders and the

users continues until the final requirements are gathered.

 Contextual inquiry

The team gets this technique as a combination of open-ended interview, workplace observation,

and prototyping. This method is preferred for interactive applications design where the user

interface design is critical. It is very essential for requirements engineers to study how people

perceive, understand, and express the problem domain, how they interact with the desired

product, and how the physical and cultural environments affect their actions.

Requirements elicitation is a multi-disciplinary phase where ethnographers, business analysts,

domain experts, client / business stakeholders, HCI practitioners, and potential users are

involved.

At the end of this phase, the team gets a good understanding of users’ needs, problems, goals,

and constraints. They also have a good understanding of the current situation to be improved.

The phase ends with identifying product goals including the usability goals.

4.1.1.2 Question 2 What will the system do?

The requirements specification focuses on what the application will do not how it will be

implemented. A requirements specification is a description of a software system to be developed,

laying out functional and non-functional requirements detailing the essential behavior of a

software product from a user's point of view.

The team must understand the objects the application will manipulate (information domain), the

services (functions) the application will perform, the constraints on the project (time, money and

http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Non-functional_requirements

64

technical) and the performance expected (timing). Essential use cases are of primary importance

in this phase. Their purpose is to document the usability process that the application must support

without bias to technology and implementation. The team is to express the narrative in the

essential use case in the language of the applications domain and of users’.

Essential use cases should help achieve the following goals:

 Serve as an effective communication tool between users and the team.

 Identify and document the applications logics and actions.

The requirement specification is used for verifying whether all the functional and non functional

requirements specified in the software requirements specification (SRS) are implemented in the

product. The complete description of the functions to be performed by the product specified in

the (SRS) will assist the potential users to determine if the product specified meets their needs or

how the product must be modified to meet their needs. The basic issues that the team must

address here include

 Functionality

 External interfaces

 Performance

 Attributes and

 Design constrains imposed on an implementation.

As the phase progresses the team might encounter inconsistence and conflicting requirements to

be addressed.

4.1.2 Analysis
In analysis the team validates the applications appropriate needs in accordance with the

stakeholders’ views, without approving that you have got the requirements right as described in

question 3 below and clearly understanding who your audience is/are and what they want, as

well as their preferred applications. Companies may end up building the greatest applications no

one ever uses.

Mobile devices have some key differentiators that set them apart as widely discussed in Chapter

Two.

 Mobile devices are more personal and mobile applications are often aimed at a particular

user and not the general mass market.

65

 Mobile development is much more complex and there is a huge number of various

mobile devices running on different platforms.

 People spend more time using mobile applications than even surfing the internet – more

than six times as much per month (based on recent analysis by Business Insider).

This means getting the applications requirements right and what business processes they will

support, is key to a successful mobile application development.

4.1.2.1 Question 3 Have we got the requirements right?

Validation works with a final draft of the requirements document with negotiated and agreed

requirements “Have we got the usability requirements right” is the key question to be answered

at this stage, these features called requirements, must be quantifiable, relevant and detailed.

Requirements verification includes a broader reviewer pool and occurs in stages. First, the

common product line requirements must be verified. Later, as each product comes on the scene

(or is updated), its product-specific requirements must be verified. But the product-line-wide

requirements must also be verified to make sure that they make sense for this product.

Cognitive walkthrough a usability activity we prefer in this phase is an expert based evaluation

technique that steps through a scenario/task by focusing on the users’ knowledge and goals

requirements.

The expert team evaluation first starts with descriptions of the applications requirements, the

task(s) from the users’ perspective while validating the correct types of requirements needed.

Then the team walks through the tasks reviewing the actions that are necessary and attempting to

predict how the users’ will behave just trying to make sure that only the right and most important

requirements sail through.

The team should ensure energy is directed towards ensuring that the final product conforms to

client usability needs rather than attempting to mold user expectations to fit the requirements.

Requirements validation is a team effort that demands a combination of hardware, software

and human factors engineering expertise as well as skills in dealing with people.

The teams objectives is to certifies that the requirements document is an acceptable description

of the system to be implemented and checks a requirements document for

 Completeness and consistency

 Conformance to standards

 Requirements conflicts

http://searchcio-midmarket.techtarget.com/definition/hardware
http://searchsoa.techtarget.com/definition/human-factors

66

 Technical errors

 Ambiguous requirements

4.1.3 Design
This stage represents the ``how'' stage. Here the architecture is established. This stage starts with

the requirements document delivered by the requirements phase and maps the requirements into

architecture. The architecture defines the components, their interfaces and behaviors.

Software design is both a process and a model. The design process is a sequence of steps that

enable the team to describe all aspects of the software to be built. Any design problems must be

tackled in three stages;

 Study and understand the problem

 Identify gross features of at least one possible solution

 Describe each abstraction used in the solution

The important phases of the software development lifecycle in which the usability activities will

be integrated are before, during and after product design and implementation. Nielsen

recommends these activities be applied in an iterative fashion similar to Boehm’s (1988) spiral

model. Software designers do not arrive at a finished design immediately. They develop design

iteratively through number of different versions. The starting point is

 Pre-design

 Design and lastly

 Post-design

4.1.3.1 Question 4 Have we understood our targeted users?

The purpose of activities in this pre-design phase would be to understand target users, their tasks

and their work environment. Designing your application is yet another significant factor

responsible for the success of the application in the market. An application developer should

concentrate on the UI design, multi-touch gestures for touch-enabled devices and consider

platform design standards as well. Today, emphasis is on the UI design of an application as it

plays a crucial role in the success of the application. Designing applications is becoming

increasingly popular as it creates an instant impact on the mind of the user while ensuring

usability of the application.

67

In pre-design the teams’ objective is to not rush into the design phase, until clear usability goals

have been set transforming the problem space so that one or a few solutions become evident. The

team begins with ideation using a range of ideation techniques such as brainstorming, synectics,

participatory design, quality function deployment (QFD), and theory of inventor's problem

solving (TRIZ) the team comes up with a range of design ideas that solve the problems and

realize the opportunities Buxton (2007). The ideas are typically wild and divergent to begin with,

and early on, the focus is on generating more ideas rather than evaluating them. Individual user

differences and variability in tasks are two factors that have a large impact on usability, thus

users’ must be observed in their natural work environment. By knowing the target demography

of the user population, personas can be developed that will allow the engineering team to

anticipate learning difficulties and other factors. This will allow the team to design the UI such

that it caters for these factors, with regards to the tasks that users perform, the overall goals of

users must be examined. Personas are a usability technique designed to direct the focus of the

development process towards the goals of the people who actually use the product.

Information flow and the sequence of events of normal tasks and exceptional tasks should be

studied. Apart from this, functional analysis must be performed to find out what is it that users’

are really trying to do. Contextual design techniques and its artifacts can be used to find and

model all this information. Competition or existing products that the software will replace must

be taken into account. These will influence factors such as the UI of the new software must not

conflict with skills users’ have already learnt. It is a good idea for the teams’ to perform heuristic

analysis of existing competition, and later use that information to create prototypes, which can be

used to further understand and refine requirements.

The end result of usability activities in this phase should be to come up with a concrete set of

usability goals. Usability goals should be based on the different defining parameters of usability

(understandability, applicability, efficiency etc.). These different parameters should be

prioritized and findings should be documented in a concrete way, this will allow teams’ to better

gauge the scope and required quality of the software.

4.1.3.2 Question 5 How should we respond?

This is a holistic question and the teams’ main goal at the design phase is to define an interaction

specification that is usable and implementable. This should be achieved by creating a prototype

68

based on the gathered requirements and usability principles and performing test iterations with

target users.

Selecting the right approach for developing the application is highly important. Ideally,

applications development approach must be in accordance with the time and budget. The

common development approaches are Native, Web and Hybrid

 Native:

Native applications enable delivery of the best user experience but require significant time and

skill to be developed. These applications are basically platform specific and require expertise

along with knowledge. Native applications are costly as well as time consuming to be

developed and deliver the highest user experience amongst all the approaches.

 Web:

Web applications are quick and the cheap ones to develop and can run on multiple platforms.

These applications are developed using HTML5, CSS and JavaScript code. These web

applications are less powerful than native applications.

 Hybrid:

Hybrid approach is the latest approach to develop any application.

This approach combines prebuilt native containers with on-the-fly web coding in order to

achieve the best of both worlds. In this approach, the developer augments the web code with

native language to create unique features and access native APIs which are not yet available

through JavaScript.

Experimental prototyping and heuristic evaluation should be done early on in the design phase so

that the design can be refined quickly.

Heuristic Evaluation is usually conducted in a series of four steps:

 Prepare: create a prototype to evaluate; select evaluators; prepare coding sheets to record

problems

 Determine approach: either set typical user tasks (probably the most useful approach)

allow evaluators to establish their own tasks or conduct an exhaustive inspection of entire

interface

 Conduct the evaluation: evaluators inspect interface individually to identify all violations

of heuristics (the usability problems); record the problem (feature and location), severity

(based on frequency, impact, criticality/cost) and heuristic violated

69

 Aggregate and analyze results: group similar problems; reassess severity; determine

possible fixes

In early stages, prototypes can be low fidelity paper based ones. As they are tested out with

users’ and refined, they could be implemented using software. Also, the advantage of heuristic

evaluation is that it can be applied without having a running system. This allows the design

teams’ to test their interfaces when they cannot be tested with users’.

Additionally, it is also important to have the technical tools in place to ensure a consistent and

high quality development of the applications. A centralized authority can be setup that will

coordinate different aspects of the interface design to ensure consistency. Other Software

frameworks, libraries and standards should be used to ensure a consistent look of the product. A

number of different empirical testing techniques can also be applied in this phase to verify the

designs, such as thinking aloud, attitude questionnaires, automatic logging of user actions and

usability testing. It is important to prioritize the problems found during design testing, because it

might not be possible to solve all of them.

It is important to perform tests in an iterative fashion, and be ready to change and retest (refine)

the interface when problems are uncovered. It is recommended that at this stage, elaborate tests

of single design ideas should be avoided. Instead, the team should focus on different design ideas

and be tested in small tests, so as not to wear out test users. It is also important to realize that if

your test users become too accustomed to the prototype being tested repeatedly, they stop being

the representative novices you should be performing tests with.

4.1.3.3 Question 6 How are we doing?

The teams main goal at post-design phase is to gather data for future versions of the software.

Follow-up field observations should be performed to gather data on how the application is

performing. Features (analytics tools) built into the application, such as automated collection of

usage information and allowing users to easily send feedback to vendors can be considered. The

teams’ simply performs an analysis of the application and surveys its performs so carefully.

(Dillon (2001)) emphasizes the importance of these activities because typical usability tests with

prototypes fail to capture how the relationship between the users’ and application evolves over

time, since it is not a holistic evaluation approach. Field observations allow teams’ to overcome

this shortcoming, and be prepared to anticipate changes in usability requirements.

70

4.1.4 Development and Implementation
Every mobile application platform has different characteristics and so developers must be

familiar with the specifics for their platform if they are going to begin developing applications.

Also, development of mobile applications typically requires applications to be initially developed

and run on an emulator before being tested on actual mobile devices.

Mobile and smartphone applications have very different threat models than their web-based

counterparts. Developers need to both understand the capabilities of their chosen development

platform(s) as well as understand how to design and build applications to securely take

advantage of mobile capabilities without exposing their organizations or application users to

unnecessary risks.Developers building mobile applications need to understand the threat model

for the system they are building as well as understanding that the mobile application itself is only

part of the system that attackers will attempt to compromise.

Input that crosses a trust boundary should be positively validated and should not be used to make

critical security decisions. Also, developers must be careful about what data is stored on the

device because devices may be stolen or otherwise fall into unauthorized hands. Access

permissions for local files and databases are also important because device owners might

unwittingly install other applications on the device that are malicious.

Secure architecture and design principles can be useful when beginning the development of a

new application so that possible concerns are known up-front. The recommendations drawn from

the design exercises in design stage above must then be implemented during development and

implementation as stated in Question 7.

4.1.4.1 Question 7 How should the design be achieved?

In the implementation phase, the team builds the components either from scratch or by

composition. Once a feasible product definition is agreed upon, the detailed user interface is

designed. Designers explore the details of the user interfaces such as labels, icons, and behavior

of widgets. Given the architecture document from the design phase and the requirement

document from the analysis phase, the team should build exactly what has been requested,

though there is still room for innovation and flexibility.

The code is written the process of writing source code often requires expertise in many different

subjects, including knowledge of the application domain, specialized algorithms and formal

71

logic. The phase deals with issues of quality, performance, baselines, libraries, and debugging.

The end deliverable is the product itself.

4.1.5 Testing
Testing involves listening to feedback and integrating the relevant ones. Identifying and using

beta-testers is a good idea in this stage. Beta testing is the first opportunity to get feedback

from the target customers. It is especially important as it enhances the teams’ visibility in the

application or system store. It not only reduces product risk but gets the team that initial push

in the application or system store. To identify beta testers is another important task to ensure

success of an application.

It is highly important to identify and clearly define the target audience. This will enable the

teams’ to identify the right testers during the beta tester recruiting. Early market research helps

in understanding market analysis which eases the process of beta testing, before beta testing

the application on different platforms the team needs to take into account majority of the

devices which eliminate device specific bugs. Alpha testing with a small number of users

enables to clear out maximum bugs. At the same time, device coverage plan is significant for

quality assurance of mobile applications.

Testing is the best opportunity to get real feedback from target customers. It provides a great

opportunity to further understand target market and their requirements as discussed in question

8 and 9 helping to reduce the product launch risk.

4.1.5.1 Question 8 How does it perform?

Simply stated, usability quality is very important. It is much easier to explain to a customer why

there is a missing feature than to explain to a customer why the product lacks quality. Testing

also identifies important defects, flaws, or errors in the applications code that must be fixed. The

programmer(s) who wrote the application must have a reduced role in the testing if possible. The

concern here is that they’re already so intimately involved with the product and “know” that it

works that they may not be able to take an unbiased look at the results of their labors.

Testers’ team must be cautious, curious, critical but non-judgmental, and good communicators.

One part of their job is to ask questions that the developers might find not be able to ask

themselves or are awkward, irritating, insulting or even threatening to the developers. After the

code is developed the team tests it against the requirements to make sure that the product is

72

actually solving the needs addressed and gathered during the requirements phase. During test

planning the team decide what an important defect is by reviewing the requirements and design

documents with an eye towards answering the question “Important to whom?”

Generally speaking, an important defect is one that from the customer’s perspective affects the

usability or functionality of the application. First, the team tests what’s important. Focusing on

the core functionality the parts that are critical or popular before looking at the ‘nice to have’

features. Concentrate on the applications capabilities in common usage situations before going

on to unlikely situations. In our framework Testing has three main purposes: verification,

validation, and defect finding.

 The verification process confirms that the application meets its technical specifications. A

“specification” is a description of a function in terms of a measurable output value given

a specific input value under specific preconditions.

 The validation process confirms that the application meets the business requirements.

 A defect is a variance between the expected and actual result. The defect’s ultimate

source may be traced to a fault introduced in the specification, design, or development

(coding) phases.

The team does unit testing, integration testing, system testing and acceptance testing and checks

 If the application meets the requirements that guided its design and development,

 Responds correctly to all kinds of inputs,

 Performs its functions within an acceptable time,

 Is sufficiently usable,

 Can be installed and run in its intended environments, and

 Achieves the general result its stakeholder’s desire.

A primary purpose of testing is to detect failures so that defects may be discovered and

corrected. Testing cannot establish that a product functions properly under all conditions but can

only establish that it does not function properly under specific conditions.

4.1.5.2 Question 9 Which areas need more work?

The main concern here is to understand which areas need more adjustments to make the

application better, after implementing question 8 it becomes important to identify and upgrade

the application with suggested improvements and innovative features before release.

http://en.wikipedia.org/wiki/Operating_environment

73

A mobile application without innovative features loses its usability in the long run. Upgrading

your application with innovative features enhances its visibility. Modification of the application

before release occurs to correct faults, to improve performance and other attributes issues

discovered during testing.

4.1.6 Maintenance

Software maintenance is a very broad activity that includes error correction, enhancements of

capabilities, deletion of obsolete capabilities, and optimization as further elaborated by question

10, just building your applications, dropping them in the public or private application or system

store and running won’t ensure rapid and long-term user adoption.

Analyzing and managing your mobile applications to suit the changing demands of your

applications users and their technologies will make a dramatic difference in the popularity,

usability and lifecycle (and revenue generation) of your applications. Change is inevitable,

mechanisms must be developed for evaluation, controlling and making modifications. The

applications change due to corrective and non-corrective software actions. The team performs

maintenance in order to:

 Correct faults

 Improve the design

 Implement enhancements

 Interface with other systems

 Adapt programs so that different hardware, software, system features, and

telecommunications facilities can be used

 Migrate legacy software

 Retire software

4.1.6.1 Question 10 How do we compensate for failures?

Evolution of systems was first addressed by Meir M. Lehman in 1969. Over a period of twenty

years, his research led to the formulation of Lehman's Laws, Lehman (1997). Key findings of his

research include that maintenance is really evolutionary development and that maintenance

decisions are aided by understanding what happens to systems (and software) over time. Lehman

demonstrated that systems continue to evolve over time. As they evolve, they grow more

http://en.wikipedia.org/wiki/Software_evolution
http://en.wikipedia.org/wiki/Meir_M._Lehman
http://en.wikipedia.org/wiki/Software_evolution%23Lehman.27s_Laws_of_Software_Evolution

74

complex unless some action such as code refactoring is taken to reduce the complexity and

preventing software performance from degrading to unacceptable levels.

It is impossible to produce applications of any size which do not need to be changed. Once the

applications are put into use, new requirements emerge and existing requirements change as the

business running those applications change.

Parts of the applications may have to be modified to correct errors that are found in operation,

improve its performance or other non-functional characteristics. All of this means that, after

delivery, applications always evolve in response to demand for change.

Software maintenance sustains the software product throughout its operational life cycle.

Evolution requests are logged and tracked by the team the impact of proposed changes is also

determined for action. Usability experts and the daily users provide critically and influential

information for this stage.

4.1.7 Nature of the framework
Our framework is a software development framework modeled around a gradual increase in

feature additions, a cyclical release and upgrade pattern. The most important advantages of this

are:

 Higher product quality and improved implementation of functionalities

 More realistic estimates of time and money,

 Project team is under less pressure,

 Higher quality.

We begin with the planning stage and continue through iterative development cycles involving

continuous user feedback and the incremental addition of features to maintenance stage. A cyclic

approach involves intensive collaboration between the customer, designers and programmers

(multidisciplinary).

If a deliverable does not turn out to be good in practice after a particular stage, it becomes

obvious during the loops, thereby allowing adjustment. This way of working also allows

customers to request adjustments affirming the flexibility of our framework. There are inner

loops as shown in Figure 4:1. Sometimes, it may be necessary to go through these inner loops

more than once to affirm feasibility of the product definition, and redesign to fix problems found,

but going through them once might be required for all projects.

http://en.wikipedia.org/wiki/Code_refactoring

75

Figure 4:1 Framework's Cyclic Nature

4.2 Integrating Discount Usability into Mobile Agile Process Model
The first question to consider is

 Why one should integrate Usability engineering in to mobile agile process model

software engineering and not integrate mobile agile process model software engineering

into Usability engineering?

 What are the convergence and divergence points in usability and agile process models?

 Do we really understand them in order to facilitate a smother integration?

4.2.1 Why integrate
In a survey that included people from both professions, Jerome and Kazman report that several

Usability engineering practitioners claimed that they collaborated with software engineers

frequently, but software engineers believed that they had little or no contact with Usability

76

engineering practitioners (Jerome & Kazman, 2005). Their interpretation is that software

engineers are reluctant to adopt Usability engineering processes, while Usability engineering

people try to fit in.

Another reason is that non-integration of Usability engineering with software engineering (SE) is

a problem that affects HCI community more than the SE community. As Seffah et al note,

Usability engineering is by no means considered a central topic in SE (Seffah, et al, 2005), but

SE is certainly a necessity for Usability engineering. A product cannot be built using Usability

engineering efforts only. SE efforts are essential part of building the design that the Usability

engineering effort creates. There are many examples where software engineers work on projects

without ever involving a Usability engineering practitioner. However, the converse is not true.

Usability engineering practitioners always work on projects, which (if not abandoned) will

eventually be implemented by software engineers. Usually, it is the Usability engineering

practitioner who is invited to join a SE project (often too late).

One shortcoming of agile development methodologies that became apparent as agile

practitioners began developing more interactive and UI-intensive applications is their

marginalization of usability issues (Amber, 2008). This is especially true of agile methodologies

such as XP as they were originally developed to focus on satisfying development and business

needs rather than on end user needs. Agile practitioners and researchers have acknowledged the

need to develop systems that meet usability requirements in addition to meeting functional and

market requirements and are exploring ways of incorporating usability into agile methods (Sillito

& Maurer, 2008).

Another, perhaps more reasonable, interpretation could be that there are lot more software

engineers, and very few Usability engineering practitioners. Nielsen surveyed 31 development

projects that had usability engineering activities to find how much usability effort was required

in projects (Nielsen, 1993). Of the total project effort in person-years, median-sized projects

reported using only 6.5% effort for usability. In an ideal situation, Usability engineering

practitioners asked for only 10% effort on an average and 21% in the top quartile. The ideal

desired usability effort was independent of the project size (r=0.12), i.e. smaller projects required

relatively more usability efforts, while larger projects did not require lot more efforts. Over the

years since Nielsen’s survey, project sizes have reduced and importance of usability may have

increased especially in mobile devices. On the other hand, there has also been an increase in

experience within the Usability engineering community. In an ideal case, perhaps it is

77

appropriate to expect 10% of the overall effort to be associated with usability and HCI related

activities. Usability engineering practitioners are outnumbered by a ratio 1:10 and It seems better

if Usability engineering activities are integrated into existing software engineering (SE)

processes rather than software engineering processes to be intergrated into Usability engineering.

It certainly seems to be a good strategy for organizations, where Usability engineering practices

are not yet well established.

4.2.2 Convergence points between agile and usability
Agile methods and usability engineering are built on some of the same principles. One of the key

similarities is that both acknowledge that system development is a highly complex and dynamic

endeavor that is subject to changing requirements and uncertainties that cannot be known in

advance. As a result, both agile methods and usability methods follow cyclical development

cycles, focus on early and continuous testing and are inherently human-centered as elaborated

below.

4.2.2.1 Human-centered development

Communication is one of the central pillars on which the agile processes are built; both agile

methods and usability methods are human-centered in that they both rely extensively on

communication and coordination between various project stakeholders. Instead of relying on

extensive documentation, teams are expected to communicate and coordinate effort on a daily

basis and be able to help each other address problems as they come up.

Processes like XP also have an onsite customer who works regularly with the team to define

requirements, answer questions and verify that the system functions as s/he requested (Beck,

2004). Similarly, Usability engineering processes rely on continuous communication and

coordination among subject matter experts, usability engineers and end users. Observations of

workplaces, usability testing with end users and participatory design techniques ensure that

usability engineers understand users, user tasks and the context in which the system will be used.

4.2.2.2 Cyclical development

Agile and Usability methods follow cyclical development processes. This is a way for the system

or UI design to be developed iteratively so the developers can verify that the system functions as

78

specified and can make course corrections as new requirements emerge. In Usability

engineering, this relates to the task-artifact cycle where tasks or requirements determine how the

artifact is designed. The artifact, in turn, can affect the task that it was originally designed to

support. This similarity makes it easier to integrate Usability into mobile agile methods than into

more traditional software development methods such as the waterfall development cycle.

4.2.2.3 Continuous testing

Agile methods and Usability engineering methods follow cyclical development processes; both

rely on testing to verify that the developed system is meeting the project requirements. Agile

methods like XP follow a test driven development cycle where code tests are developed before

the functionality itself (Beck, 2004).

In addition, acceptance testing is carried out by the customer representative to verify that the

system functions as he or she specified. Similarly, Usability engineering methods rely on a

variety of analytic and empirical testing methods both to evaluate and compare different designs

and to verify that the implemented system meets end user needs. Usability testing can be viewed

as an extension to acceptance testing that contributes to the overall quality of the product.

4.2.3 Divergence points between agile and usability
Given the philosophical similarities between agile methods and Usability engineering methods,

many of the difficulties of integrating the two approaches arise due to their different specific

practices and the fact that Usability engineering methods focus on end user needs rather than

customer needs. Some of the divergence points between the two areas are highlighted below

4.2.3.1 Working software vs design documentation

One of the foundations of the Agile Manifesto is that working software is valued over

comprehensive documentation. Past software development projects would often get bogged

down by large requirements and design specification documents that were difficult to maintain

and would quickly become out of date. In agile methods, high quality working software is valued

above all else since that is what is being delivered to customers (Cockburn, 2007). Agile

methods like XP strive to minimize documentation to only what is absolutely necessary through

practices like onsite customers and close collaboration between team members.

79

Usability engineering methods like scenario-based design (SBD) would appear to work against

this principle as they use a variety of different design artifacts to develop the UI interface before

any code is written. In SBD, a variety of different types of scenarios are developed to describe

current work practices and the system being developed (Rosson & Carroll, 2002).

In addition, a variety of low and high-fidelity prototyping techniques such as sketches,

storyboards and click-through mockups, are used to design and evaluate the interface before it is

implemented. These types of prototypes are typically used in formative usability evaluations to

get early feedback on designs from users and other stakeholders before implementation begins.

Usability engineering methods such as sketches and storyboards are a quick way to prototype

designs within an iteration, such practices are increasingly being used in agile usability teams

(Nodder & Nielsen, 2008). However more detailed artifacts and practices such as high fidelity

prototyping and user modeling are difficult to do within an incremental development cycle.

4.2.3.2 Phased vs incremental approaches

Although both agile methods and Usability engineering methods follow cyclical development

processes, they differ in what work goes into each of those cycles and how fast those cycles

generally go. Agile methods tend to use incremental development cycles where during each

iteration some piece of functionality is designed, implemented and tested. This allows customers

to give feedback on the system early and validate that it does what they want it to do.

Usability Engineering methods tend to follow a more ‘layered’ or iterative approach where the

requirements are first defined and the system is then completely defined at increasing levels of

fidelity. By better understanding the user and the context of use, designers can look at things

more broadly and deliver a more cohesive UI design. This divergence point directly relates to the

issues of whether the approach should be agile-centric or usability-centric.

Cooper argues that approaches like XP are too development-centric and that developers do not

naturally design code to meet end user needs (Cooper, 2004). Cooper and others argues for a

’usability-first’ approach where usability professionals first interact with customers to collect

data from end users and develop the UI design before working with developers to implement it

using a traditional agile approach (Obendorf & Finck, 2008). Beck counters that such an

approach represents ‘Big Up Front Design’ and runs counter to agile practice of continuous

development and feedback and would be a waste of resources as developers would have to wait

until the UI design was ready.

80

(Patton, 2002) has advocated a more agile-centric approach where existing agile teams learn

about and integrate Usability engineering practices into their day to day tasks. Patton as well as

(Meszaros & Aston, 2006) have reported on projects where developers have used some user-

centered techniques as they developed systems using an agile approach.

One potential problem with this approach is that effective UI design can be difficult for complex

systems with a heavy emphasis on usability. They may require a level of expertise and

knowledge that cannot be learned in a short period of time. User interface design and evaluation

is not a simple endeavor for systems with a large UI component. Moreover, certain usability

tasks are complex and time-consuming and may not be easily handled by developers who also

have to implement features.

4.2.3.3 Test driven development vs usability evaluations

Test driven development is one of the most common agile development practices. Agile

developers continuously create automated unit tests that define what the software is supposed to

do before writing the code itself (Beck, 2004). This practice allows developers to incrementally

develop the system while ensuring that the code base remains robust even as it is evolved and

refactored. It also allows developers to identify design flaws sooner, discover problems in the

requirements and diagnose and fix problems in the code more quickly. In addition, these test

suites can be run automatically on a daily basis.

Usability testing does not have the benefit of the level of automation that test driven

development supports as they require human intervention both in the sense that they rely on

feedback from actual users and they often depend on a usability expert to analyze and interpret

that feedback. As a result, usability processes tend to take a less nimble approach than agile

methods by focusing more on gathering up-front data beforehand and doing early lightweight

prototyping iterations before code development begins. For example, the agile concept of

refactoring does not have a clear analog in usability approaches since the impact of making small

changes to the user interface can often not be verified until after the next set of usability

evaluations are run with users.

Lightweight, or guerilla usability techniques, are commonly used in agile usability teams as a

way to get usability feedback within an agile framework (Nodder & Nielsen, 2008).These might

include analytic techniques such as cognitive walkthroughs or rapid iterative testing and

evaluation-where fixes are made as they are found in a study so that subsequent participants

81

work on continuously improving the system. These techniques allow usability engineers to get

feedback from users and provide guidance to the developers quickly which is essential in agile

teams. In fact, one potential benefit of this approach is that the system usability can improve

more than using a traditional approach since the team is getting feedback from users earlier and

more often. However, it is more difficult to run summative in depth usability evaluations within

an agile framework since development moves so quickly and since the UI in development is a

piecemeal fashion (Nodder & Nielsen, 2008).

4.2.3.4 Shared understanding vs distinct roles

Agile methods lean towards a generalist approach to software development where all of the

developers not only have a shared understanding of the design but are equally qualified to work

on any part of the system. Benefits of this approach include improved communication between

team members and increased flexibility in terms of what works is done by whom. However,

usability engineering is a distinct discipline that software developers are typically not trained to

do. Usability engineers are needed for projects where usability is a key quality attribute and the

user interface design is nontrivial.

Usability engineers are often not trained as skilled software developers (Sillito & Maurer, 2008).

The specialist approach allows each group to leverage their own areas of expertise in developing

the system; however it requires careful coordination between the different groups to prevent

problems such as drift between the UI design and the implementation. Both approaches highlight

a potential conflict of interest that can arise between UI design and software development. Given

a limited amount of time to complete a feature, the developer is more likely to sacrifice usability

to get the code implemented since functioning code is central to agile methods. In addition, it can

be difficult for usability engineers and agile developers to work together given their differing

focus areas, backgrounds and concerns.

4.2.3.5 Customer focus vs end user focus

Usability engineering methods and agile methods approaches are ‘human-centered’ in that they

value close collaboration with stakeholders. However, they differ in which stakeholders they

focus on most. One of the core concepts of agile development is continuous and close

collaboration with customers. In XP, there is an on-site customer who joins the team and works

82

with them throughout the development of the product to define requirements, do acceptance

testing and answer questions as they arise (Beck, 2004). In agile teams, the ultimate goal is to

efficiently develop a high quality product that meets the user’s needs. Usability engineering

methods are user-centered, meaning that the ultimate goal is to develop a high quality system

that meets the end users’ needs.

Usability engineers use a variety of user-focused techniques such as onsite observations,

interviews, participatory design and user testing to understand users and ensure that the system

meets their needs (Rosson & Carroll, 2002). For many development projects, the customer and

Client Company will not be the ultimate end users of the developed system. This can result in

conflict between the usability engineer and the agile developers because of their focus on

different stakeholders.

The differing focus points between agile and usability can lead to communication and

collaboration problems within agile usability teams. Agile developers and usability engineers can

come into conflict when their goals do not align. For example, although simplicity in the design

is a characteristic that is valued by both agile and usability practitioners, simplicity in the user

interface often does not align with simplicity in the implementation. In addition, usability and

agile professionals can have problems understanding or accepting each others’ practices and

worldviews. For example, usability engineers need to understand that business and technical

factors can impact the importance of usability as a quality factor in the system. In addition, agile

practitioners need to understand that working customers does not guarantee that the resulting

system will be usable for end users.

4.2.4 Approach to Integration
Literature on integration of Usability engineering with software engineering (SE) can be

classified as

 Process approaches and

 Non-process approaches.

The non-process-based approaches include work in the area of modifying software architecture

patterns to make it more responsive to usability concerns, extending SE artefacts to include

usability, creating other boundary objects or techniques between the two disciplines, identifying

patterns of integrating Usability engineering activities with SE processes, and activity mapping.

83

The process-based approaches are proposals that aim at integrating Usability engineering and SE

processes. These include new process model proposals, and proposals to integrate Usability

engineering activities into existing process models such as the waterfall, agile, and RUP. In our

case we deal with the process-based approach.

Our approach to integration is characterized by these five important guiding principles:

1. Integration should not disrupt the core values of the SE process model (for example, the

waterfall-ness of waterfall model and the agility of agile models.

2. A truly integrated process should integrate and optimise Usability engineering activities

and Usability engineering deliverables in the SE process. It should make Usability

engineering activities an explicit part of the SE processes, so that Usability engineering

design happens purposefully, and not by default.

3. The process should recognize and support the involvement of multi-disciplinary teams. It

should recognize that merely representing all professions in the team is not enough. The

process should be a script that tells everyone in the team what to do and when.

4. The process should encourage divergence and transformation of the problem space before

converging to a solution. The process should support the team to consider many

alternatives for the Usability engineering design before making decisions.

5. In addition to managing change, the process should help contain change by proactively

anticipating the reasons for change and then accounting for them through creative design

solutions.

4.2.5 The Extended Mobile-D Agile Process Model
In order to obtain a set of improvements to a given development methodology, one must first

analyze the key method characteristics that have yielded successful results in previous projects.

For mobile application development methods, key success characteristics are identified in

(Rahimian & Ramsin, 2008). These are agility of the approach, market consciousness, software

product line support, architecture-based development, support for reusability, inclusion of review

and learning sessions, and early specification of physical architecture. Some of these key features

can already be found in the Mobile-D method; however, the method could be improved if more

of usability engineering key features could be integrated into it.
Mobile-D comprises five phases:

1. Explore,

84

2. Initialize,

3. Productionize,

4. Stabilize, and

5. System Test & Fix

Each of these phases has a number of associated stages, tasks and practices as we found out in

Chapter Two.

 Explore phase employs different techniques which we can associate with user stories to

effectively capture requirements

 In initialize the release planning is notable the most critical event

 Productionize, involve coding and developing the software

 Stabilize insists on continuous integration of the developed objects in productionize

 System Test and Fix confirms if the outcome conforms to the acceptance test criteria

proposed

 The added Evolve relies on user feedback to better enhance the system.

A great summary of the above is depicted in Figure 4.2.

Figure 4:2 Mobile-D associate stages

85

By using the summarized mobile-D approach in Figure 4:2 and usability activities listed in our

framework as the base line. We propose an Extended Mobile-D process model.

We link each mobile-D activity to the 10 phases that we presented in our Framework and by

further using some lightweight discount usability practices we identified different possibilities to

make mobile devices software development interesting and designer friendly throughout the

development process.

The four adaptations we made are:

1. Use of Scenarios along with User stories in Exploration phase

2. Card Sorting as part of Release Planning in initialize phase

3. Usability Heuristic Evaluation during Productionize and Stabilize phase

4. Thinking aloud technique as part System test and fix phase.

4.2.5.1 Explore

Explore means to setup initial characteristics version of the project requirements and establishing

the project plan. The main purpose of explore phase is to highlight the scopes and requirements

within the project. In agile development user stories are used to capture requirements’ and

Mobile-D being built on agile processes still uses user stories to fully capture requirements.

Mobile-D demonstrates its strengths in iterative software development, where requirements may

change as a system is incrementally put into use, the question of how to devise an initial design

is largely unanswered. User stories do not fit into fully expressing usability requirements (Jokela

& Abrahamsson, 2004). The customer is allowed to refuse a user story, even though there is a

successful acceptance test for that story, for instance, if a feature is not usable.

User stories are short narratives which can serve as use cases, describing interaction at a

technical level while a scenario is a description of a person’s interaction with a system where

people who do not have any technical background can understand it. Stories serve to connect

even technical tasks to the use context, and worked together with non-programming tasks (e.g.

paper prototyping) can shift the general focus of the process away from programming to design.

Many user stories often fell short of improvement.

Scenarios are appropriate whenever you need to describe a system interaction from the user’s

perspective. Scenarios and user stories are a natural match; the enriched stories serve to connect

even technical tasks to the user context. Usability testing with scenarios does not require

functioning software. Low fidelity prototypes using paper can yield useful usability data very

86

inexpensively (Kane, 2003). Together combined, the scenario and story provide a complete

picture of the user at the explore stage.

4.2.5.2 Initialize

In Initialize, the development team and all active stakeholders understand the product in

development and prepare the key resources necessary for production activities, such as physical,

technological, and communications resources.

This phase is divided into three stages: project set-up, initial planning and trial day which are

better stated as release planning. Identifying the resources within the project technically and

physically is one of the key points of this phase providing the communication channel between

the developer and stakeholders is another important point. According to (Bankston, 2003), the

planning game in agile methods has two problems, one is that the customer needs help to

understand, verbalize, visualize and organize their requirements and second developers have

little opportunity to consider how exactly the interface will work because the conversion of

requirement to interface is implicitly assumed to take place within the estimation process .

The basic philosophy of release planning is that a project may be quantified by four variables;

scope, resources, time, and quality, (Well, 2009). Card sorts are a well established technique for

eliciting knowledge from people (Maiden, 2009) by which better external quality can be obtained

by involvement of actual end users.

According to (Patton, 2003), Usage centered design works well as a process framework to

facilitate requirement gathering, designing and planning sessions. It is valuable to involve users

when determining the features to be implemented for a piece of software using card-sorting

technique. Card sorting technique with the help of end users as a part of Planning game (Release

Planning) in agile process methods can increase the chance for successful usable software.

4.2.5.3 Productionize and Stabilize

The Productionize phase mainly means the implementation of functionalities that are collected

within the Explore and Initialize phases of the project.

Stabilize collects and combines iterations together to finalize the product (product finalization).

To stabilize the application, one of the vital stages is to integrate all the parts and put them

87

together as a system, coding and continuous integration of the product actively takes place within

this stages.

In Agile methods programming, the customer is to test that the overall system to see if it is

functioning as specified by acceptance tests (also known as Functional Tests). When all the

acceptance tests pass for a given user story, that story is considered complete. A story can have

one or many acceptance tests, whatever it takes to ensure the functionality works, (Well, 2009).

However, an acceptance test does not deal with non-functional requirement like usability.

Heuristic evaluation is an approach used by the developers to improve the usability of software

by applying a small collection of usability principles to the design and development of the

software before testable elements are presented to users (Kane, 2003). Usability Evaluation

solves the problem of ad-hoc input (Hussain, et al, 2008).

The simplicity of heuristic evaluation is beneficial to Productionize and Stabilize stages so that

improvements can be made as part of the iterative design process Heuristic 2014. It provides

some quick and relatively inexpensive feedback to designers. (Sharp, et al, 2008) further

suggests heuristic evaluation can be done in each of iterations in agile based programming

methodologies.

4.2.5.4 System Test & Fix

System Test & Fix is normally the final phase of Mobile-D agile methodology without the added

Evolve phase and it’s based on frequently testing the application while completing the

documentation of the application. (Kane, 2003) stated that unfortunately, user-interface design

and usability are largely overlooked by the agile processes.

Thinking aloud allows you to understand how the user approaches the interface and what

considerations the user keeps in mind when using the interface. This testing is essential and

preferred in System Test & Fix in Mobile-D agile process where the designer can get quick

feedback about their design work. Thinking aloud method can be applied effectively in “Small

release” where decision has to be made if some changes occur.

4.2.5.5 Extended Mobile-D with added Evolve phase

The added Evolve phase deals with continuously integrating end-user feedback on the delivered

product into future releases.

88

Feedback can come from multiple sources, such as consumer and peer reviews, or data generated

by the application itself (usage statistics and crash reports). The feedback plays an important role

in the improvement of future and current developments.

Figure 4:3 best summaries our Extended Mobile-D with evolve phase as shown below.

Figure 4:3 Extended Mobile-D with Evolve phase

To fully understand the Extended Mobile-D model within our framework we categorized each

activity in the mobile-D agile process in line with our framework and the evolve phase was

found to be a perfect match to the maintenance phase.

4.2.5.5.1 Planning

The Planning phase of our framework is set to enhance our Extended Mobile-D agile process to

be able to fully capture the user requirements.

 The planning stage establishes a bird's eye view of the intended software and product, and uses

this to establish the basic project structure, evaluate feasibility and risks associated with the

89

project, and describe appropriate management and technical approaches before designing even

the first bit of the user interface, the HCI activities of user, market and task analysis, product

definition, and usability evaluation must be performed after the user studies are done, usability

techniques implementation should be a multi-disciplinary activity where HCI and SE

practitioners, business stakeholders, and user representatives are involved. These activities of

Question 1 and 2 in our framework are aimed at providing a smoother and a perfect match to the

explore phase of the model.

4.2.5.5.2 Analysis

Analysis enhances the intialize stage by further ensuring the development team and all active

stakeholders understand the product in development. Question 3 in our framework improves this

phase making it include a broader reviewer pool, collaborative inspections, cognitive

walkthroughs and usability evaluations ensure product specific requirements are well understood

and verified.

4.2.5.5.3 Design

Design takes as its initial input the requirements identified in the explore and initialize phases,

for each requirement a set of one or more design elements will be produced as a result of

interviews and or workshops. Once a high-level product definition is in place the HCI team

should do the detailed design of the interface, create a prototype, and evaluate it with users as in

question 4, 5 and 6 of our framework. It is particularly important to do this carefully, as it could

set the direction for the rest of the project. Design elements describe the desired software

features in detail, and generally can include functional hierarchy diagrams, screen layout

diagrams, tables of business rules, business process diagrams, pseudocode, and a complete

entity-relationship diagram with a full data dictionary. These design elements are intended to

describe the software in sufficient detail that skilled programmers may develop the software with

minimal additional inputs.

4.2.5.5.4 Development and Implementation

In development and implementation question 7 of our framework comes in handy to enhance

productionoze and stabilize phase as the detailed product is developed to be implemented.

Designers explore the finer details of the product such as labels, icons, and behavior of widgets,

Design engineers play a major role here.

90

4.2.5.5.5 Testing

Since agile processes release early and release often, it is also possible for HCI teams to evaluate

early and evaluate often, at this point all test cases are run to verify the correctness and

completeness of the software. This is normally a summative evaluation as depicted by question 9

of our framework. It may also be possible to influence the development team to fix problems by

ongoing interaction. It may not be necessary to do a summative evaluation in every iteration, but

it would be very important to do them in the first few iterations as early versions of the products

becomes a reality. In longer projects, more evaluations may be needed. It may be a good idea to

outsource this evaluation occasionally to a third party. It will act as a checkpoint for the entire

team.

4.2.5.5.6 Maintenance

Maintenance is really evolutionary development and maintenance decisions are aided by

understanding what happens to systems (and software) over time.

Figure 4:4 Extended Mobile-D model in line with Multidisciplinary Framework

91

Question 10 tries to make this phase as simple as possible to perform. Figure 4:4 best indicates

the integration of the Extended Mobile-D model in line with our multidisciplinary framework.

4.3 Evaluation of Effectiveness of Integration of Discount Usability into

Software Engineering
Having proposed a process framework and used it as a baseline for integrating the essential

discount usability techniques into Mobile-D model the research question we were dealing with

was,

 Is our model efficient? “How can we prove that our process model is working and

consistently is leading to quality usable products?”

Usability evaluations of systems and systems design models are important part of the overall

development activity. Evaluation is concerned with gathering data about the usability of a design

or product by a specified group of users for a particular activity within a specified environment

or work context. The main activities involved in an evaluation include:

 Capture: collecting usability data, such as task completion time, errors, guideline

violations and subjective ratings;

 Analysis: interpreting usability data.

 Critique: suggest solutions or improvements to mitigate problems.

Usability evaluation is a demanding process

 First because software products vary a lot. They are targeted to different users, to be used

in different contexts, with different frequencies, and are deployed on different platforms.

 Secondly, design and development processes vary a lot.

Teams follow different software development processes and follow them to a different extent.

Further, skills, creativity, knowledge, and experience of the team members vary. All this affects

the outcomes of the project and makes it difficult to measure the quality of the process.

4.3.1 Usability Factors for Software Engineering Methodology
When end users i.e. project managers, software engineers, or organizational executives choose or

adopt a software engineering methodology, successful adoption process occurs in following steps

Zafar et al, (2014)

1. Understanding

92

2. Learning

3. Applying

4. Effectiveness/Usefulness for future projects

5. Satisfaction of End Users.

The first step is to understand the methodology to answer the question “what to do?”

Understanding involves the description and elaboration of concepts about methodology and its

elements i.e. process, product, people, method(s) etc so that the user can understand easily.

Understanding is required for the clarity of concepts and to know about the philosophy and

process of the methodology to solve the problems.

After understanding the next step is to learn the methods, techniques, modeling language,

implementation language, and tools to answer the question “how to do?”

Learning solves the problem of effort required to acquire technical skills by using the methods,

techniques, tools, utilities etc. Learning is required to develop the essential skills required to

complete the tasks and activities in order to achieve desired milestones.

After learning the next question is “how to apply?” the methodology on organizational small,

medium and large projects.

Applicability of methodology is concerned with acquiring required resources, establishing the

software development environment, and organizational culture. How much convenient it is to

establish development environment, organizational infrastructure, and to apply the methodology

on organizational projects.

After successfully applying the methodology the next question is “how useful?” the methodology

is to solve real problems and to develop future projects for the organization.

Effectiveness or Usefulness is the answer and can be evaluated by methodology completeness,

coverage of phases, strength capability and expressiveness of modeling language and

implementation technology, efficient utilization of resources i.e. time, people, money etc. How

much effective or useful the methodology is for the organization to develop current and future

projects.

The last thing that can be evaluated for the usability or usefulness of a methodology is End user

satisfaction like analysts, managers, software engineers etc. After understanding, learning, and

applying the methodology how much of the end user is satisfied during and after applying the

methodology is what is key here and is s/he willing to apply the methodology in future projects.

93

To empirically evaluate the value of a specific technique, it would be necessary to evaluate the

same project repeated under conditions employing the technique verses not employing the

technique, while controlling for skill, motivation, SE approach, and other possible differences

between the two teams. Further, this challenging experiment would have to be repeated with

different project teams, different software engineering frameworks, and on different projects in

order for the results to achieve statistical validity.

Assuming that n = 15 projects would give us the statistical validity required, and assuming that

each project would have 10 control conditions, and further assuming that on an average, it costs

100,000 to do the project once, the budget of such an experiment would be in excess of `

1,500,000 quite clearly well beyond the scope and budget of our research.

Then how can one tell whether a process model helps a team achieve its goals, and whether it

consistently leads to usable products? This brought us into the area of usability measurement

tools.

Assume that it is possible to express numerically the extent to which a process model is

followed; further, assume that it is possible to express numerically the extent to which a team

achieves its product goal by following a prescribed process model to the extent X a project could

achieve its goals to the extent Y.

 if we can demonstrate that for every X2 that is greater than X1on the X axis, Y2 is greater than

Y1 in most cases on the Y axis, we can conclude that the process model in question works.

4.3.2 Findings
Primary data was collected between September and November 2014 using a questionnaire. One

hundred and ten (110) questionnaires were issued to randomly selected Mobile applications

software engineers in Industry and institutions of higher learning. Eighty nine (89)

questionnaires were returned representing an 81% response rate.

The response rate is considered adequate given the recommendations by (Saunders, Lewis &

Thornhill, 2007) who suggest a 30-40% response, (Mugenda & Mugenda, 2003) advise on

response rates exceeding 50% and (Hager, Wilson, Pollack & Rooney, 2003) recommend 50%.

Based on these assertions, this implies that the response rate for this study was adequate.

4.3.2.1 Sample demographics

In analyzing the demographic characteristics of the respondents the following items were

considered; respondents’ gender, age, number of years they have in the software development

94

industry, position in the software development team, type of training they have on software

development and participation in software development projects.

4.3.2.1.1 General Information
This study was done with participants who had experience and formal background in

Information Communication Technology (ICT). Many participants had an aptitude for design

and most of them had formal ICT education.

Participants came from mixed educational backgrounds such as Computer Science 26.97%

Information Technology 53.93% Electrical and Electronics 12.36% and other related disciplines

6.74%. The software development industry is still a male dominated field. Out of the 89

questionnaires we analyzed 73 of the participants were of the male gender representing a

percentage of 82.02% with only 16 candidates being of the female gender standing for 17.98%.

Majority of the respondents were aged below 40 years with most 52.81% of them being in the

age group of between 18 to 28 years, 38.20% fell within the age of between 29 and 39 years.

6.74% were between 40 to 50 years and the rest of respondents 2.25% were over 50 years of age.

A significant majority of the respondents were in the youth bracket which is mainly between the

ages of 18 to 35 years.

This is in line with the common belief that youths are more in technology than any other age

group. Industry experience of participants varied between 1-7 years and above. 85.39% (n=76) of

the respondents had worked in the software development sector for four years and above,

14.61% had worked for three years and less. This finding suggests that majority 85.39%of the

respondents joined the sector after year 2010 which is in line with the growth experienced in the

past few years in the sector.

The results also indicate a stable and a sticky Information Communication and Technology job

environment which shows that more youths have employments in this field and that ICT has

created jobs in the country. Data show that majority of the respondents 57.30% worked as

programmers 20.23% were mainly software testers 13.48% were project managers and only

8.99% were within other related ICT disciplines.

This kind of distribution could have been influenced by the fact that programming or developing

code and testing it, are normally viewed as the key areas that champion innovations in the ICT

set up. Table 4:2 details a summary of the general information.

95

Table 4: 2 Summary of general Information

1)Total Respondents According To Gender

Gender Frequency Percent

Male 73 82.02

Female 16 17.98

TOTAL 89 100.00

2) Total of Respondents according to Age

Age Frequency Percent

Below 18 years 0 0.00

18-28 years 47 52.81

29-39 years 34 38.20

40-50 years 6 6.74

51 years and above 2 2.25

TOTAL 89 100.00

3) Total of Respondents according to number of years they have worked in the software

development industry

Levels Frequency Percent

Below 1 year 0 0.00

1-3 years 13 14.61

4-6 years 42 47.19

7 years and above 34 38.20

TOTAL 89 100.00

96

4) Total of Respondents according to position in the software development team

Position Frequency Percent

Programmer 51 57.30

Project manager 12 13.48

Software tester 18 20.23

Others 8 8.99

TOTAL 89 100.00

5) Total of Respondents according to formal training received in software development or

related disciple

Training type Frequency Percent

Formal 89 100.00

Non-Formal 0 00.00

TOTAL 89 100.00

6) Total of Respondents according to scientific field of formal training

Field Frequency Percent

Computer Science 24 26.97

Information Technology 48 53.93

Electrical and Electronics 11 12.36

Others 6 6.74

TOTAL 89 100.00

97

4.3.2.2 Summary of products development information

4.3.2.2.1 Products Development Information

Investments in software development have increased recently since software is capable of having

a positive impact on the economic development front. This in turn has lead to more demand for

more software hence the need for more projects to be development

The results in Table 4:3 shows the product development experience of (n=89). 50.56% had

succefully developed and delivered to the industry 5 projects and more out of this 15.73% had

more than 11 projects under their belt while 49.44% reported to have succefully built less than 5

projects. These figures are a reflection that Software offered an opportunity for industries to

improve their incomes and hence better return on assets. To date many organizations have

embraced the use of software.

Table 4: 3 Totals of respondents according to software development

1) Total of Respondents according to Software systems they have participated in

developing

Software systems Frequency Percent

None 0 0.00

1-5 44 49.44

5-10 31 34.83

11 and above 14 15.73

TOTAL 89 100.00

Our respondents recorded to have participated in the development of different products ranging

from mobile based applications, management information systems, security mitigation software

and others, on asking about the version on the best product they have ever developed (n=46)

51.69% said the first version of their best product was the best ever rated, 28.09% had to refine

their product into version two, 13.48% ticked version three and 6.74% talked about version four.

98

The developed software’s had different work environments and on querying about what is the

work place of the best product they had developed 73.03% said their best ever product was

working in a business critical environment, 15.73% had their best product in the life critical

environments, 7.87 % had theirs in the learning environments and only 3.37% reported their best

ever product to be in the gaming industries.

Only 8.99% involved HCI practitioners during their software development process, 91.01%

developed their software without any involvement of any HCI personnel this can be attributed to

the fact that some process models pay little attention to users, usability, and HCI design. In fact,

in agile process models agile teams primarily consist of software engineers, and working code is

considered the primary deliverable. Anyone who does not deliver code (e.g. a designer) does not

easily fit in culturally and hence there is no need to have them onboard.

4.3.2.3 Summary of model survey

4.3.2.3.1 Model Survey

A. Understandability

Software developers need to read and understand development models, platforms and other

software artifacts. The increase in size and complexity of software drastically affects several

quality attributes, especially understandability. False interpretation of development guide lines

often leads to ambiguities, misunderstanding and hence to faulty development results. Despite

the fact that development models understandability is vital and one of the most significant

components of the software development process, development models understandability is often

assumed to be clear to the developers in most cases.

IT industry schedules are often tightly restricted because of the consumer pressure and

misinterpretation of a process increases the potential for defects, leading to problems with the

software that include incomplete design, poor quality, high maintenance cost and also the risk of

loosing customer satisfaction.

Software needs to be modified necessarily, (Sommerville, 2011) this process of modification or

maintenance is usually carried out by programmers, whom may not have developed that software

and they need to read and understand the development process, source programs and other

relevant documents. Even for the developers of the system, after a gap of few years, it may not

99

be an easy task for them as they themselves might have forgotten the intricacies of the software.

False interpretations can lead to misunderstandings and to faulty development results, without an

understanding and the ability to articulate the processes in use it is likely that they will not be

effective. Therefore, understandability of the development process has a lot of influence on the

factors that directly or indirectly affect software quality.

75.28% agreed that our design objectives and steps are clearly stated in each section, out of this

22.47% strongly agreed this implies that most respondents found the objectives to be clear and

simple for the current software development industry Table 4:4.

Table 4: 4 Summary of Understandability

(Area rated (Understandability) % SD % D % N % A % SA mean

a. The design objective and steps are

clearly stated in each section 0.00 2.25 22.47 52.81 22.47 3.96

b. The structure keeps me focused on what

is to be designed 0.00 4.49 20.22 53.93 21.35 3.92

c. The ordering of steps and sequences is

logical 0.00 0.00 13.48 59.55 26.97 4.13

d. I found the various methods of the model

well intergraded 0.00 3.37 19.10 55.06 22.47 3.97

e. My interaction with it is clear and

understandable 2.25 10.11 15.73 49.44 23.60 3.85

Grand Mean 3.92

53.93% agreed that our structure keeps them focused on what is to be designed and when a team

is focused on a goal chances of deviating from the original plan are slim plus our model comes in

handy to ensure the focus is on the end product. 86.52% said the ordering of the steps and

sequences were logical and the high score is attributed to the fact we did not change the software

process we were enhancing but only integrated additional usability features into it, thus designers

found the steps and sequences familiar.

100

On integration a mean 3:97 was recorded implying most of our respondents found the usability

features integrated into software engineering a perfect match. The significance of

understandability is very obvious that can be perceived as ‘If we can't learn something, we won't

understand it. If we can't understand something, we can't use it - at least not well enough to avoid

creating a money pit. 73.04% reported to have found their interaction with our model to be clear

and understandable, thus understandability of the processes was not a major challenge.

Understandability of software documents is very important; we can not develop and make

changes to a system if we don not understand it development cycle.

Despite the fact that understandability is vital and highly significant to the software development

process, it is poorly managed, (Aggarwal, et al, 2003). Researchers and Practitioners advocated

that understandability aspect of software is highly desirable and significant for developing

quality software. Literature survey reveals that there are various aspects of software, including

understandability factor that either directly or indirectly influence testability of software,

(Jimenez, et al, 2005). Aforementioned facts reveal that understandability is a key factor to

testability.

Software systems tend to depart more and more from the principle of simplicity and become

increasingly complex. The increase in size and complexity of software drastically affects several

quality attributes, especially understandability and maintainability. Software developers and

maintainers need to read and understand several documents of software and keeping them as

simple as possible in this industry is the key to quality.

B. Learnability

The learnability of a process is based on comprehensibility if you can not understand it you can

not learn it and vice versa. When we talk about the learnability of a process, we are generally

discussing how hard it is for a user to learn how to use it. 21.35% strongly agreed that they can

learn to use our model quickly and this might be attributed to the simplicity of our model plus the

fact that most of the respondents had some background in computing if not fully engaged in the

software development industry Table 4:5.

Skills are desired in the computing industry and the good the skills the better the product,

52.81% agreed they would quickly become skillful with our model while 25.84% strongly

agreed that they could easily remember to use the model. Learn ability isn’t about teaching users

101

how to use your product. It’s about making them not have to think or at least doing your best to

prevent the amount of mental mind-work that they’re required to do. People don’t like to think

after all when using something that’s new. Thinking too much is what creates rejected systems

and if the above percentage says they can easily remember to use our model then the amount of

mental mind-work required to use the model is desirable.

Table 4: 5 Summary of Learnability

(Area rated (Learn ability) % SD % D % N % A % SA mean

a. I can learn to use it quickly
4.49 6.74 19.10 48.31 21.35 3.75

b. I can quickly become skillful with it
2.25 3.37 17.98 52.81 23.60 3.92

c. I can easily remember to use it
6.74 10.11 22.47 34.83 25.84 3.63

d. The data grouping is reasonable for easy

learning 0.00 2.25 11.24 55.06 31.46 4.16

e. Learning to use it is easy
0.00 5.62 15.73 52.81 25.84 3.99

f. I think that I would need the support of a

technical person to be able to use this

model

21.35 32.58 23.60 13.48 8.99 2.56

Grand Mean 3.67

86.52% concluded that the data grouping was reasonable and none complex, out of this 31.46%

strongly agreed this made the process of learning to use our model an easy as depicted by the

results of question e, which also recorded a mean of 3.99 in a scale of 0 - 5. 53.93% indicated

they would not need the services of a technical person in order to be using this model and this is

because of the multidisciplinary nature of the model where several experts work together to

achieve a common goal.

102

The learnability of modern devices is still very immature for this reason; it is easy to understand

that modern technology is not taken in use. Moreover, new technological devices very often

cause human beings to feel frustration, anger, panic, chaos and fatigue and consequently, their

resistance to using technological devices is understandable. Harmfully, people often experience

unpleasant emotions when they interact with a technological device for the first time. As a result,

they may never purchase the same product again or they may never return to using anything from

the same product family by gaining a deeper understanding of the phenomenon and process of

learnability, we can design products and services that are much better, (Mika, 2007).

C. Applicability

Applicability of a methodology is concerned with acquiring required resources, establishing the

software development environment, and to apply the methodology on organizational projects.

Lately the number of organizations adopting agile practices and concepts is increasing. This

increase consists not only of more small teams developing simple applications, but also of large

teams successfully developing complex systems, (Highsmith, 2002). This is a surprise, because

initially agile development was considered suitable only for small organizations producing

simple applications (Boehm, 2003). Empirical evidence has shown that embracing agile practices

yields many benefits, (Barnett, 2006), (Law & Charron, 2005), (Schatz & Abdelshafi, 2005),

(Barnett & Schwaber, 2004), (Kuppuswami, 2003), (Williams, 2000), including:

 Early return on investment, Short time to market, Improved quality, Enhanced client

relationships, Better team morale. Table 4:6 gives our findings on applicability of our

model

Our model was simple to use, designer friendly and flexible with all of the three key questions

recording a mean of above 3.50 from the respondents. 66.29% affirmed that the model provides

the clearest steps possible to accomplish what they would wish do with it confirming that the

steps were unambiguous.

The Extended mobile-D model can easily be used without written instructions as 61.8% agreed

with 19.10% out of the 61.8% strongly agreeing that they could easily use it without written

instructions and this is because it is not a completely new development but just a slight

improvement kept more simple and clear for enhancement of software products development.

103

Table 4: 6 Summary of Applicability

(Area rated (Applicability) % SD % D % N % A % SA mean

a. It is simple to use
1.12 2.25 21.35 55.06 20.22 3.91

b. It is designer friendly
0.00 1.12 22.47 51.69 17.98 3.66

c. It is flexible
2.25 5.62 19.10 50.56 22.47 3.85

d. It provides the clearest steps possible

to accomplish what I would wish do

with it

1.12 4.49 28.09 49.44 16.85 3.76

e. I can use it without written

instructions
8.99 12.36 16.85 42.70 19.10 3.51

f. I don't notice any inconsistencies
0.00 0.00 30.34 43.82 25.84 3.96

g. Using it I can recover from mistakes

quickly and easily
4.49 7.87 26.97 46.07 14.61 3.58

h. It is easy to apply it in designing of a

software system
0.00 0.00 10.11 60.67 29.21 4.19

Grand Mean 3.80

The respondents stated that they did not notice inconsistencies with the model with 69.66%

concluding that they don’t notice such this can be attributed to the fact that we did alter during

our improvement process the consistence of the parent model we were enhancing.

Mistakes are bound to happen in any development situation and how to handle them is normally

the critical issue, a mean of 3:58 computed implies that our model can assist the developers

recover easily from mistakes they have done in the design process and this was facilitated by the

104

fact that our steps are brief and clear. 60.67% agreed that our model is easily applicable to the

software development industry with 29.21% strongly agreeing to this.

D. Usefulness

Is it easy to use? As important as that question is, there's one that's more important: Is it useful?

Table 4: 7 Summary of Usefulness

(Area rated (Usefulness) % SD % D % N % A % SA Mean

a. It can help me be more effective
0.00 4.49 21.35 51.69 22.47 3.92

b. It can help me be more productive
0.00 6.74 24.72 47.19 21.35 3.82

c. It can makes the things I want to

accomplish easier to get done 0.00 5.62 30.33 48.31 15.73 3.74

d. Using it would save me time
0.00 3.37 23.60 43.82 29.21 3.99

e. It meets a designers needs
0.00 4.49 32.58 42.70 20.22 3.79

f. I find it useful in my job
1.12 3.37 31.46 41.57 22.47 3.81

g. It gives me a clear insight of specific

activities per stage 0.00 0.00 19.10 55.06 25.84 4.07

h. Using it would lead to better products
0.00 0.00 24.72 53.93 21.35 3.97

Grand Mean 3.89

First and foremost, a product, website, application or development model should solve a

problem, fill a need or offer something people find useful. In fact, people are willing to put up

with poor usability if a product delivers something of great perceived value. Consider how much

105

time you would spend learning to use software if you knew you'd have a guaranteed way to

double investments in the stock market? Conversely, it doesn't matter how easy to use a product

is if people don't find it useful. Usefulness is the holy-grail of product design, it's often even

more important than revenue. Table 4:7 summaries our finding on usefulness of our model.

When you are effective most likely you will be productive, 74.16% said our model would help

them be more effective and similarly 68.54% expected the model to enhance their productivity.

64.04% confirmed that the model makes the things they wish to accomplish easier to get done

and this would definitely reduces the development time of a product with other development

factors kept at normal levels and thus 73.03% reported that using the model would save them

time.

The cyclic nature of our model contributed to the high score (62.92%) on meetings designers

needs as the model provides continuous internal loops that allow for reinterpretations and

redesign of a product. This is a very useful component in a multidisciplinary development

context hence more designers found our model to useful in their jobs recording a mean 3.81

when asked if they found our model to be useful. 25.84% strongly agreed that the model gave

them a clear insight in to specific activities per stage with 55.06% agreeing to this. The

respondents summarized this section with 75.28% alluding to the fact that using this model

would lead to better products.

E. Satisfaction

When we have a great food experience at a new restaurant, we usually want to go back. Positive

evaluations result in greater customer satisfaction, which leads to customer loyalty and product

repurchase. Customer satisfaction is influenced by perceived quality of product and service

attribute. Question A to C focused on the simplicity of development brought by our model and

the respondents’ attitude towards the model was impressive as shown in table 4:8 below.

In questions D to J we focused on overall satisfaction measure (Emotional) this questions

reflected on the overall opinion of a consumer’s satisfaction experience with the model and

60.67% said using our model was quite fun, 91.01% felt they would wish to have the model,

86.52% would recommend it to a friend and 85.39% felt confident in using the model.

Satisfaction can influence other post-experience actions like communicating to others through

word of mouth and social networks.

106

Table 4: 8 Summary of Satisfaction

(Area rated (Satisfaction) % SD % D % N % A % SA Mean

a. Using it would improve my job

performance 0.00 2.25 19.10 53.93 24.72 4.01

b. Using it in my job would enable me to

accomplish tasks more quickly 0.00 4.49 20.22 49.44 25.84 3.97

c. Using it would make it easier to do my

job 0.00 3.37 23.60 50.56 22.47 3.92

d. Using it is fun
2.25 7.87 29.21 41.57 19.10 3.67

e. I feel I need to have it
0.00 0.00 8.99 60.67 30.34 4.21

f. I would recommend it to a friend
0.00 0.00 13.48 62.92 23.60 4.10

g. I feel very confident in using this model
0.00 0.00 14.61 56.18 29.21 4.15

h. I would have no difficulty using the

model 4.49 7.87 29.21 41.57 16.85 3.58

i. I think I would like to use this model

frequently 0.00 0.00 15.73 52.81 31.46 4.16

j. I am satisfied with it
0.00 0.00 26.97 51.69 21.35 3.94

Grand Mean 3.97

Additional post-experience actions might reflect heightened levels of product involvement that in

turn result in increased search for the product or information 58.42% would have no difficulty

107

using the model, 84.27% would like to use it frequently and 73.04% were generally satisfied

with it.

4.3.2.3.2 Extended Mobile-D and Task Performance

Assume that it is possible to express numerically the extent to which a process model is

followed; further, assume that it is possible to express numerically the extent to which a team

achieves its product goal by following a prescribed process model and with that assumption we

record that the confidence levels in using our model increased as we moved down the steps,

41.57% strongly disagreed that if they follow our model to step 1 only they would record better

results, 30.34% was recorded for step 2 and 23.60% was the data in step 3, Table 4:9 and we did

link this to the fact that steps 1 to 3 involved mostly the establishments and refinement of

requirements and since no product was visible at this point so the results.

There was a slight change from step 4 onwards, 37.08% would record better results by following

our model only up to this stage, 66.29% up to step 5, 67.42% up to step 6, 74.27% up to step 7,

78.65 up to step 8 and this is attributed to the fact that this steps involve the design, redesign and

expert evaluations, however there was a decrease from step 9 with a record of 61.79% and 61.8%

and we attributed this to poor follow up on maintenance and evolution of products after

development.

If the steps are on the X-axis and scores (sd, d, n, a, sa) represent the product on the Y-axis then

we comfortable conclude that by following our prescribed process model to the extent X your

project would achieve its goals to the extent Y, because we have seen that as you move down the

steps the confidence level in having a better product increases, that is people feel more better in

step 2 than 1, 3 than 2, 4 than 3,5 than 4,6 than 5, 7 than 6 and 8 than 7 and thus we concluded

that for X2 that is greater than X1, Y2 is greater than Y1 in most cases.

A diagrammatic illustration of each of the scores against the steps is as shown from Figure 4:5 to

4:9 the dotted red line depicts the normal.

108

Table 4: 9 Summary of steps against the scores

Steps %SD

%D

%N

%A

%SA

1 41.57 44.94 12.36 1.12 0.00

2 30.34 40.45 21.35 7.87 0.00

3 23.60 37.08 26.97 10.11 2.25

4 14.61 16.85 31.46 21.35 15.73

5 6.74 8.99 17.98 28.09 38.20

6 2.25 14.61 15.73 31.46 35.96

7 1.12 7.87 16.85 33.71 40.45

8 0.00 6.74 14.61 37.08 41.57

9 0.00 7.87 30.34 29.21 32.58

10 0.00 5.62 32.58 35.96 25.84

Figure 4:5 X against Y in Sd

109

Figure 4:6 X against Y in d

Figure 4:7 X against Y in n

110

Figure 4:8 X against Y in a

Figure 4:9 X against Y in Sa

111

4.3.3 Principle-based analytic evaluation of Extended Mobile-D
It would be great to ask people a few questions to see if they would both use and then purchase a

product. Asking people about a new product is notoriously unreliable. We can and should be

critical of data based on users' predictions of their future behavior from focus groups, surveys or

even the most complex statistical analysis.

In this section we include an analytic analysis of the Extended Mobile-D model with respect to

key agile and usability values/principles. We will show how the Extended mobile-D model

which takes the general approach of integrating usability practices into an agile processes is an

agile process by showing how it adheres to the core agile values detailed in the Agile Manifesto.

4.3.3.1 Evaluating whether Extended mobile-D model is an agile process

Agility is not defined by any one or set of specific practices. Certainly, practices such as

incremental development, on-site customer collaboration and test driven development are

common among practicing agile teams and specific methodologies. However, common ground

among agile methods was established through the Agile Manifesto which captures the core

values that underlie all agile methods. Thus, in determining whether Extended mobile-D model

can be said to be an agile process, one should evaluate whether it adheres to the core values as

stated in the manifesto.

The Agile Manifesto is reproduced below Table 4:11

Table 4: 11 Agile Manifesto

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

112

These values highlight the central importance of adaptiveness and responsiveness to change that

the agile practitioners felt were the most important features of agility, (Cockburn, 2007). A

common misconception among developers unfamiliar with agile is that in agile methods

practitioners do no planning and generate no documentation, (Ambler, 2007). However, agile

teams do have to do those things to work effectively with varying levels of intensity. It is also

important for agile methods to focus on the items on the left of each of the four values in order to

ensure that a product is efficiently developed that meets customer needs. The four subsections

6.3.1.1 to 6.3.1.4 will describe in detail how Extended mobile-D model is in alignment with each

of the core values.

4.3.3.1.1 Individuals and interactions over processes and tools

Agile methods stress the central importance of people in development process and how well they

communicate with each other. The abilities and dedication of the agile team members will

always trump any particular process or tool that is used. This is in contrast to many past software

development efforts where people are treated as resources that can be compared interchangeably

with time, (Brooks, 1995). For example, XP, one of more popular agile methods, has a number

of practices that depend on this principle. The customer is working with the developers through

the entire project and should be available at all times to answer questions, (Beck, 2004). In

addition, pair-programming is used as a way for developers to collectively become familiar with

the whole system and enhance team-wide communication.

The following practices from Extended mobile-D model illustrate how it adheres to the agile

principle of individuals and interactions over processes and tools.

 In Extended mobile-D model, there is a requirement not only for continuous contact with

the customer, but also continuous contact with users, (representative) and collaboration

among team members (see framework section disciplines involved Chapter Four section

4:1). The end user representative should be someone knowledgeable about the domain in

which the system being designed will be used and be familiar with the tasks it will

support. This person should be in continuous contact with the team especially usability

experts and designers to answer questions and to help coordinate site visits and

evaluations with end users.

 One focus of Extended mobile-D model is to increase collaborations and communications

with end users (see framework section usability techniques Chapter Four section 4:1).

Practices such as observations, interviews and usability evaluations, will help usability

113

experts and designers to better understand the users and the context in which the system

is to be used which in turn will help developers develop a more usable end product.

4.3.3.1.2 Working software over comprehensive documentation

Agile methods value working software over comprehensive documentation because the software

as the primary measure of process because the delivered system is the ultimate goal of the

development process, (Cockburn, 2007). Agile practitioners and other software developers have

noted that documentation can easily become difficult to understand, out of date and can take a

significant amount of time to maintain.

Although Extended mobile-D model requires documentation related to the design and evaluation

of the system, the focus is always on delivering a functioning, usable end product (see

framework section impact Chapter Four section 4:1)

• The primary goal of using Extended mobile-D model is to efficiently develop a usable software

system. Thus, for Extended mobile-D model team, the primary measure of progress is not just

working software, but working software that meets high-level project goals. The design

documentations are necessary too and are needed as they help the team to meet that primary

goal.

4.3.3.1.3 Customer collaboration over contract negotiation

Agile methods value customer collaboration over contract negotiation to stress the central

importance of customer involvement in the development project. Also implicit in this statement

is that simple negotiating a contract at the beginning of the project is insufficient. Within the

incremental agile development process, continuous collaboration is needed. Customers are

needed to define and refine requirements as they review developed functionality and answer

questions and concerns of developers as they come up.

The Extended mobile-D model adheres to and extends this value to include not only customer

collaboration but also end user involvement through things such as site visits, interviews and

usability evaluations throughout the process. Optimally, the customer representative will be from

the client company and will work onsite with the team throughout the development project (see

framework, section disciplines involved Chapter Four section 4:1). However, other people can

take this role if necessary.

114

4.3.3.1.4 Responding to change over following a plan

Agile methods accept the fact that requirements and project circumstances will continuously

change during the project. Rather than rely on precisely constructed plans and try to adhere to

them, agile methods focus on adaptability and the ability to respond to changing requirements

and circumstances, (Koch, 2004). This means using flexible, short plans and continuously

prioritizing and reviewing requirements and the system is developed. Much of the Extended

mobile-D model was developed with this value in mind and the Extended mobile-D model, like

all agile methods, is a cyclical process.

The system is incrementally designed and is validated by regularly running usability evaluations

to verify that the design is sound and is meeting the high-level design goals (See section 4.7)

4.4 Chapter Summary
In this Chapter sub section 4.1, we defined a multidisciplinary framework in which different

Software development disciplines, techniques and outcomes fit together. We further identified

Usability Engineering activities that could be considered essential to the framework and for

integration with SE process model.

In 4.2, we use the framework as the basis to integrate the Discount Usability Engineering

Techniques in to Mobile Agile process model. Look at why should we integrate, the approach to

integration and what are the convergence and divergence points between Agile based process

models and Usability engineering methods. Based on the details, we proposed extensions to the

current Mobile-D based Agile SE process model and presented an Extended Mobile-D model.

In sub section 4.3 we found out the effectiveness of integration of discount usability into

software engineering having established a process framework and used it as a baseline for

integrating all the essential discount usability techniques into the Extended Mobile-D model. We

further described the results of an analytic evaluation of the Extended Mobile-D model whose

purpose was to show how it adhered to key agile values.

115

CHAPTER FIVE

5.0 CONCLUSIONS AND FURTHER WORK

In this Chapter, we synthesize the results of this thesis, and summarize the important findings.

We then review and critically analyze the thesis to determine how successful it is at answering

the research questions posed in Chapter One, and whether the contributions arising from this

work answered the research questions. Finally, we briefly discuss future directions for extending

the research carried out in this thesis.

5.1 Findings and Contributions
Agile organizations have begun to develop more user-facing, UI-intensive systems; they have

identified the need to find ways to develop more usable systems without sacrificing key benefits

of agile methods.

The single greatest predictors of customer satisfaction are the customer experiences that result in

attributions of quality. Perceived quality is often measured in one of three contexts:

 Overall quality

 Perceived reliability and

 Extent of customer’s needs fulfilled

Our development of the Extende Mobile-D was motivated by the need to find ways to integrate

Usability engineering into SE to satisfy quality mobile platform based product development.

We focused on integration of discount usability techniques specific to mobile devices into the

core values of SE process model without disrupting the same values. In Chapter Two we

discussed agile development for mobile applications a relatively new approach to mobile

platform-based devices applications development, presented a lengthy review of the current

state-of-the-art in the design of usable mobile platform based devices. Saw Usability engineering

Issues with Agile Processes, the unique development challenges for mobile platform based

devices and the gaps in industry practice leading us to consider the best way possible to address

the challenges for a better mobile platform based devices applications development environment.

To address the challenges we first proposed a process framework in Chapter Four section 4:1 in

which different Software development disciplines, techniques and outcomes fit together. In this

framework we identified the essential discount usability techniques, methods, deliverables, and

116

skills relevant to mobile devices software engineering. We divide the framework into phases,

each phase consisting of one or more activities and each activity being associated with one or

more techniques.

Each method in the framework requires specific skills and could be associated with a particular

discipline to address a specific concern in the software development life cycle and each activity

undertaken results in specific deliverables. We further identified Usability engineering activities

that are essential for integration with the six traditional software engineering process steps and

organized these activities in ten phases, which we described in terms of ten questions.

Our framework proved to be a flexible way of understanding and communicating the work of

Usability engineers in different contexts, being modeled around a gradual increase in feature

additions, a cyclical release and upgrade pattern the framework presents the following important

advantages if implemented correctly:

 Higher product quality and improved implementation of functionalities,

 More realistic estimates of time and money,

 Project team works under less pressure,

 Higher quality of work being done.

The cyclic approach involves intensive collaboration between the customer, designers and

programmers (multidisciplinary).

In Chapter Four section 4: 2 we used this framework as a baseline for integrating the essential

discount usability techniques in to mobile agile process model and presented the Extended

Mobile-D process model.

The integration was made simple by the fact that both agile methods and Usability engineering

are built on some of the same principles. One of the key similarities is that both acknowledge

that system development is a highly complex and dynamic endeavor that is subject to changing

requirements and uncertainties that cannot be known in advance. As a result, both agile methods

and usability methods follow cyclical development cycles, focus on early and continuous testing

and are inherently human-centered.

Literature on integration of Usability engineering with software engineering (SE) is classified as

 Process approaches and

117

 Non-process approaches.

The non-process-based approaches include work in the area of modifying software architecture

patterns to make it more responsive to usability concerns, extending SE artefacts to include

usability, creating other boundary objects or techniques between the two disciplines, identifying

patterns of integrating Usability engineering activities with SE processes, and activity mapping.

The process-based approaches are proposals that aim at integrating Usability engineering and SE

processes. These include new process model proposals, and proposals to integrate Usability

engineering activities into existing process models such as the waterfall, agile, and RUP.

In our work we preferred the process-based approach and by using the summarized mobile-D in

Chapter Four section 4:2 plus our framework in Chapter Four section 4:1. We presented the

Extended Mobile-D process model in which we did link each mobile-D activity to the 10

Usability engineering activities that we identified in our Framework and further using some

lightweight discount usability practices we identified different possibilities to make mobile

devices software development interesting and designer friendly throughout the development

process, the four adaptations we made are:

1. Use of Scenarios along with User stories in Exploration phase

2. Card Sorting as part of Release Planning in initialize phase

3. Usability Heuristic Evaluation during Productionize and Stabilize phase

4. Thinking aloud technique as part System test and fix phase.

Our Extended mobile –D is characterized by these three important principles:

1. It is a model that has integrated Usability engineering into SE without disrupting the core

values of the SE process model. (The agility of agile model).

2. The process supports and recognizes the involvement of multi-disciplinary teams in the

development process.

3. It encourages divergence and transformation of the problem space before converging to a

solution allowing the team to consider many alternatives before making decisions.

Having proposed a process framework and used it as a baseline for integrating all the essential

discount usability techniques into Mobile-D model the final research question we were dealing

with was,

 Is our model efficacious? “How can we prove that our process model is working and

consistently is leading to quality usable products?”

118

To empirically evaluate the value of a specific technique, it would be necessary to evaluate the

same project repeated under conditions employing the technique verses not employing the

technique, while controlling for skill, motivation, SE approach, and other possible differences

between the two teams. Further, this challenging experiment would have to be repeated with

different project teams, different software engineering frameworks, and on different projects in

order for the results to achieve statistical validity. Assuming that n = 15 projects would give us

the statistical validity required, and assuming that each project would have 10 control conditions,

and further assuming that on an average, it costs 100,000 Kenyan shillings to do the project once,

the budget of such an experiment would be in excess of ` 1,500,000 Kenyan shillings quite

clearly well beyond the scope and budget of our research. Then how we tell whether our process

model helps a team achieve its goals, and whether it consistently leads to usable products? This

brought us into the area of usability measurement tools.

We did assume that it is possible to express numerically the extent to which a process model is

followed and furthered assumed that it is possible to express numerically the extent to which a

team achieves its product goal by following a prescribed process model to the extent X a project

could achieve its goals to the extent Y. Then if we could demonstrate that for every X2 that is

greater than X1 on the X axis, Y2 is greater than Y1 in most cases on the Y axis then we could

conclude that the process model in question works.

One hundred and ten (110) questionnaires were issued to randomly selected Mobile applications

software engineers in Industry and institutions of higher learning. Eighty nine (89)

questionnaires were returned representing an 81% response rate. The response rate was

considered adequate given the recommendations by (Saunders, Lewis & Thornhill, 2007) who

suggest a 30-40% response, (Mugenda & Mugenda, 2003) advise on response rates exceeding

50% and (Hager, Wilson, Pollack & Rooney, 2003) recommend 50%.

The participants had experience and formal background in Information Communication

Technology (ICT). Many having an aptitude for design and most of them had formal ICT

education. They came from mixed educational backgrounds such as Computer Science 26.97%

Information Technology 53.93% Electrical and Electronics 12.36% and other related disciplines

6.74%. Industry experience of participants varied between 1-7 years and above. 85.39% (n=76)

of the respondents had worked in the software development sector for four years and above,

14.61% had worked for three years and less. Majority of the respondents 57.30% worked as

programmers 20.23% were mainly software testers 13.48% were project managers and only

119

8.99% were within other related ICT disciplines. This kind of distribution could have been

influenced by the fact that programming or developing code and testing it, are normally viewed

as the key areas that champion innovations in the ICT set up, from further statistical analysis in

Chapter Four section 4:3 we found that by following our prescribed process model to the extent

X your project would possibly achieve its goals to the extent Y, and for every X2 that was

greater than X1, Y2 was greater than Y1 in most cases as detailed by data in figure 4:8 (X

against Y in a) and figure 4:9 (X against Y in Sa).

The research contributions arising from this thesis have worked towards achieving the specific

objectives of this work in line answering the sub-questions associated with them.

Research question 1 was largely answered by presenting the concepts in Chapter Two digging

deep into mobile platform based devices applications development Usability engineering Issues

with Software Engineering Processes, the unique development challenges and the gaps in

industry practice.

Research question 2 was addressed by stating the tool characteristics needed to support the

design of secure and usable systems in Chapter Two (agile manifesto 2001); these characteristics

were illustrated by developing a multidisplinary process framework in Chapter Four section 4:1.

Research question 3 was answered right from Chapter Four and by using the framework in

Chapter Four section 4:1 as a base line for integration we integrated the essential discount

usability techniques in to Mobile-D and presented an Extended Mobile-D process model in

Chapter Four section 4:2.

Research question 4 is our model efficacious? “How can we prove that our process model is

working and consistently is leading to quality usable products?”Was tackled by questionnaire

feedback and statistical analysis as delivered in Chapter Four section 4:3

5.2 Future work
In this section, we propose the possible areas for future research. The development and use of the

Extended Mobile-D represents an initial contribution to how usability can be integrated into an

agile organization which in itself is a complex and multifaceted problem. Future work could

include developing tools to support the use of Extended Mobile-D for example, a tool could be

developed to integrate it with existing project management tools and additional studies of the

Model are encouraged to further evaluate it.

120

REFERENCES

Abrahamsson, P. (2007). Agile Software Development of Mobile Information Systems. In

Advanced Information Systems (pp. 1-4). Berlin: Springer.

Abrahamsson, P. (2005). Mobile software development - the business opportunity of today.

Proceedings of the International Conference on Software Development, (pp. 20-23).

Reykjavik, Iceland.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J. and Korkala, M. (2004).

Mobile-D: an agile approach for mobile application development. Conference on Object

Oriented Programming Systems Languages and Application; Companion to the 19th

annual ACM SIGPLAN conference on Object-oriented programming systems, languages,

and applications (pp. 174-175). Vancouver: ACM.

Abrahamsson, P. Warsta, J. (2003). New directions on Agile methods: A comparative analysis,

International Conference on Software Engineering, (pp. 244 – 254).

Aggarwal, K. K. Singh, Y and Chhabra, J. K. (2003). A Fuzzy Model for Measurement of

Software Understandability, International Symposium on Performance Evaluation of

Computer & Telecommunication Systems, Montreal, Canada.

Ambler, S. W. (2008). Agile practices and Principles Survey Results: July 2008. Ambyoft, Inc.

Retrived from: http://www.ambysoft.com/surveys/practicesPrinciples2008.html.

Ambler, S. W. (2007). Introduction to Agile Usability: User Experience Activities on Agile

Development projects.

Balagtas-Fernandez . F, Forrai . J, and Hussmann . H. (2009). Evaluation of user interface design

and input methods for applications on mobile touch screen devices, Human-Computer

Interaction, (pp. 243–246).

Bankston. (2003). Usability and User Interface Design, In XP White Paper, [Online]. Retrived

from: http://www.ccpace.com/Resources/documents/UsabilityinXP.pdf.

Barnett, L. (2006). Agile Survey Results: Solid Experience And Real Results Agile Journal..

Barnett, L. and Schwaber, C. (2004). Adopting Agile Development Processes; Improve Time-To-

Benefits For Software Projects Forrester Research.

Baskerville Richard L. (1999). Investigating information systems with action research.

Communications of the Association for Information Systems, 2(article 19):1–32.

http://www.ambysoft.com/surveys/practicesPrinciples2008.html
http://www.ccpace.com/Resources/documents/UsabilityinXP.pdf

121

Beck, K. (2004). Extreme Programming Explained: embrace change (2nd Edition). Addison-

Wesley Longman Publishing Co., Inc., Boston, MA.

Beck, K. (1999). Extreme Programming Explained: Embrace Change, Boston, MA: Addison-

Wesley. ISBN 0-321- 27865-8.

Beyer H, Holtzblatt K, and Baker L (2004). An Agile Customer-Centered Method: Rapid

Contextual Design, XP / Agile Universe, Springer.

Blomkvist S. (2005). Towards a Model for Bridging Agile Development and User-Centred

Design, in Human Centred Software Engineering, Seffah A, Gulliksen J, and Desmarais

M (eds.), Springer.

Boehm B. W. and Turner R. (2003). Balancing Agility and Discipline, Addison-Wesley

Professional, Boston.

Boehm, B. W. (1988). A Spiral Model of Software Development and Enhancement. Vol. 21.

TRW Defense Syst. Group, Redondo Beach, CA, USA.

Brooks Jr., F. P. (1995). The Mythical Man-Month: Essays on Software Engineering (20th

Anniversary Edition), Addison-Wesley Professional, Boston, MA.

Buxton B. (2007). Sketching User Experiences, Morgan Kaufmann publishers.

Carroll J. (2009). Human Computer Interaction, Interaction-Design.org.

Christelle Scharff, Ravi Verma (2010). Scrum to support mobile application development

projects in a just-intime learning context, Proceedings of the 2010 Workshop on

Cooperative and Human Aspects of Software Engineering - CHASE 2010, pp. 25-31.

Constantine L (2002). Process Agility and Software Usability: Toward Lightweight Usage

Centered Design, Information Age.

Cockburn, A. (2007). Agile Software Development: The Cooperative Game (2nd Edition).

Pearson Education.

Cooper A Allen's (2008). Keynote at Agile Conference, Toronto Canada.

Cooper, A. (2004). The Inmates are Running the Asylum (2nd Edition). Pearson Higher

Education.

Cooper A and Reimann R (2003). About Face 2.0. The Essential of Interaction design, 2nd

Edition Wiley.

Da Cunha, T.F.V. Valeria L. L. Dantas, Rossana M. C. Andrade (2011) SLeSS: A Scrum and

Lean Six Sigma Integration Approach for the Development of Software Customization

for Mobile Phones, 25th Brazilian Symposium on Software Engineering, (pp. 283-292).

122

Dawson, C. (2009). Introduction to Research Methods: A practical guide for anyone undertaking

a research project. How To Books Ltd, 3 Newtec Place, United Kingdom.

Dawson, C. (2002). Practical Research Methods: A user friendly guide to research. How To

Books Ltd, 3 Newtec Place, United Kingdom.

Dey, J. Anind K. and Hakkila, (2008). Context-Awareness and Mobile Devices.

Dillon, Andrew. (2001) Beyond Usability: Process, Outcome and Affect in human computer

interaction. Toronto : s.n.

Dyba, T., and Dingsoyr, T. (2009). What Do We Know about Agile Software Development?

IEEE Software , 26, 6-9.

Eduard Metzker and Harald Reiterer. (2004). Integrating Usability Engineering Methods into

Existing Software Development Processes via Evidence-Based Usability Engineering

revue d'Interaction Homme-Machine, pp. (61-64)

Fowler, M. (2005). The New Methodology. Retrived from

http://www.martinfowler.com/articles/newMethodology.html

Fowler, M and Highsmith, J. (2001). The Agile Manifesto, Retrived from

http://agilemanifesto.org/.

Fox, D., Sillito, J., and Maurer, F. (2008). Agile Methods and User-Centered Design: How These

Two Methodologies Are Being Successfully Integrated In Industry. In Proc. Agile ’08,

63-72.

Fritz, Bauer, (1968). Software Engineering: A Report on a Conference Sponsored by NATO

Science Committee, NATO.

Goldsbury R. Christopher (2012). The Agile Management Fad, [Online] Retrived from

http://anagilestory.com/2012/08/21/theagile- management-fad/

Heuristics evaluations. (2014) [Online]. Retrived from:

http://usability.gov/methods/test_refine/heuristic.html

Highsmith, J. (2002). Agile Software Development Ecosystems, Pearson Education, Indianapolis,

USA.

Hofer, T. Schwinger, W. Pichler, M. Leonhartsberger, G. Altmann, J. and Retschitzegger, J.

(2003) Context-awareness on mobile devices - the hydrogen approach, in 36th Annual

Hawaii International Conference on System Sciences.

http://www.martinfowler.com/articles/newMethodology.html
http://agilemanifesto.org/
http://anagilestory.com/2012/08/21/theagile-%20management-fad/
http://usability.gov/methods/test_refine/heuristic.html

123

Holler, R. (2011) Mobile Application Development: A Natural Fit with Agile Methodologies

Version One, LLC. White paper. [Online]. Retrived from

www.versionone.com/pdf/mobiledevelopment.pdf.

Hulkko, H., and Abrahamsson, P. (2005). A Multiple Case Study on the Impact of Pair

Programming on Product Quality. Proceedings of the 27th international conference on

Software engineering, (pp. 495-504). St Louis.

Hussain, Z. Wolkerstorfer, P. Tscheligi, M. Lechner, M. Shahzad, S. Sefelin, R and Milchrahm,

H. (2008) Probing an Agile Usability Process, Proceeding of CHI 2008, (pp. 2151-

2157).

Hyndman, R. (2008). Quantitative Business Research Methods. Department of Econometrics and

Business Statistics, Monash University (Clayton campus).

IFIP WG 2.7/13.4 (2012). on user interface engineering Copenhagen, Denmark

ISO 9241-11:1998 Ergonomic requirements for office work with visual display terminals

(VDTs) -- Part 11: Guidance on usability.

IXDA (2009). About Interaction Design, Interaction Design Association.Retrived from

http://www.ixda.org/

Jerome, B. and Kazman, R. (2005). Surveying the Solitudes: An Invetigation into the

Relationships between HCI and SE in Practice, in Human Centred Software Engineering,

Springer.

Jimenez, G. Taj, S. and Weaver, J. (2005). Design for Testability, in the Proceedings of the 9th

Annual NCIIA Conference.

Jordan B. Barlow, Justin Scott Giboney, Mark Jeffery Keith, David W. Wilson, Ryan M.

Schuetzler, Paul Benjamin Lowry and Anthony Vance. (2011). Overview and Guidance

on Agile Development in Large Organizations, Communications of the Association for

Information Systems Vol. 29, Article 2, (pp.25–44)

Jokela, T. and Abrahamsson, P. (2004) Usability assessment of an extreme programming project:

Close co-operation with the customer does not equal to good usability, In 5th

International Conference, PROFES 2004, pp.393-407 Kansai Science City, Japan.

Kane D. (2003). Finding a Place for Discount Usability Engineering in Agile Development:

Throwing Down the Gauntlet, Proceedings of Agile Development Conference (ADC’03),

(pp. 1-7)

http://www.versionone.com/pdf/mobiledevelopment.pdf

124

Kannan N. (2011). Mobile development: Why using an agile methodology makes sense.

[Online]. Retrived from

http://searchsoftwarequality.techtarget.com/tip/Mobiledevelopment-Why-using-an-Agile-

methodologymakes-sense.

Koch, A. S. (2004). Agile Software Development: Evaluating The Methods For Your

Organization. Artech House Publishers, Boston, MA.

Ko Dooms and Roope Kylmäkoski, (2005). Comprehensive documentation made agile –

experiments with RaPiD7 in Philips, In Proceedings of the 6th International Conference

on Product Focused Software Process Improvement - PROFES, (pp 224-233).

Kombo, D.K., and Tromp, D.L.A. (2009). Proposal and Thesis Writing: An Introduction.

Paulines Publications Africa, Don Bosco Printing Press, Nairobi Kenya.

Kothari, C. (2004). Research Methodology: Methods & Techniques. 2nd edition. New age

International Publishers, New Delhi, India.

Kunz, T., and Black, J. (1999). An Architecture For Adaptive Mobile Applications. Proceedings

of Wireless 99, the 11th International Conference on Wireless Communications, (pp. 27-

38).

Kuppuswami, S. Vivekanandan, K. Ramaswamy, P. and Rodrigues, P. (2003). The effects of

individual XP practices on software development effort, SIGSOFT Softw. Eng. Notes, 28,

(pp. 6-6).

Kurt Lewin. (1946). Action research and minority problems. Journal of Social Issues, 2(4):34–

46.

Lavrakas, P. (2008). Encyclopedia of Survey Research Methods Vol. 1 & 2. Sage Publications,

Los Angeles, United States of America.

Law, A. and Charron, R. (2005). Effects of agile practices on social factors, Proceedings of the

2005 workshop on Human and social factors of software engineering, St. Louis,

Missouri: ACM Press.

Lee C. and D, S, McCrickard (2007). Towards extreme(ly) usable software: exploring tensions

between usability and agile software development, Proc, AGILE 2007 conference, (Agile

'07), IEEE Press, (pp, 59-71).

Lehman M.M. (1969). The Programming Process, IBM Research Report RC 2722, IBM

Research Centre, Yorktown Heights, NY.

http://searchsoftwarequality.techtarget.com/tip/Mobiledevelopment-Why-using-an-Agile-methodologymakes-sense
http://searchsoftwarequality.techtarget.com/tip/Mobiledevelopment-Why-using-an-Agile-methodologymakes-sense

125

Lehman M.M. (1997). Laws of Software Evolution Revisited, In Proceedings of EWSPT’96,

Nancy, LNCS 1149, SpringerVerlag, pp. 108-124.

Luis Corral, Alberto Sillitti and Giancarlo Succi. (2013). Software Development Processes for

Mobile Systems: Is Agile Really Taking Over the Business?, 1st International Workshop

on Mobile-Enabled Systems (MOBS 2013) in connection with ICSE 2013, (pp. 19-24).

IEEE.

Mark A. Hager, Sarah Wilson, Thomas H. Pollak and Patrick Michael Rooney. (2003). Response

Rates for Mail Surveys of Nonprofit Organizations: A Review and Empirical Test.

Nonprofit and Voluntary Sector Quarterly 32(2): 252-267.

Mika Laakkonen, (2007). Learnability Makes Things Click A grounded theory approach to the

software product evaluation, University of Lapland, Lapin Yliopisto.

Meszaros, G., and Aston, J. (2006). Adding Usability Testing to an Agile Project. In Proc. Agile

’06, 289-294.

Metzker, E. and Reiterer, H. (2002). Evidence-based Usability Engineering. in Computer-aided

Design of User Interfaces (CADUI2002). 2002. Valenciennes, France.

Miller, G. J., and Yang, K. (2008). Handbook of Research Methods in Public Administration.

Newyork: Auerbach Publications, Taylor & Francis GroupModell.

Mugenda, O.M. and Mugenda, A.G. (2003). Research Methods: Quantitative and Qualitative

Approaches. Nairobi: Acts Press.

Maiden. N, (2009). Card sort to acquire requirements, IEEE Software, (pp. 85 -86).

Nielsen, J. (2008). Agile Development Projects and Usability.

Nielsen, J. (1993) Usability Engineering, Morgan Kaufmann.

Nielson, (1992) Usability engineering Iifecycle, IEEE computer vol. 25, issue 3, (pp 12-22).

Nodder, C. and Nielsen, J. (2008). Agile usability: best practices for user experience on agile

development projects. Nielsen Norman Group, Fremont, CA.

Obendorf, H. and Finck, M. (2008). Scenario-based usability engineering techniques in agile

development, Acm.

Oinas-Kukkonen, H., and Kurkela, V. (2003). Developing Successful Mobile Applications.

Proceedings of the International Conference on Computer Science and Technology, (pp.

50-54). Cancun, Mexico.

126

Oulasvirta A, Wahlström M, and Anders Ericsson K. (2011). What does it mean to be good at

using a mobile device? An investigation of three levels of experience and skill,

International Journal of Human-Computer Studies, vol. 69, no. 3, (pp. 155-169).

Patton, J. (2003) Improving on Agility: Adding Usage-Centered Design to a Typical Agile

Software Development Environment, In: ForUse2003: Proceedings of the Second

International Conference on Usage-Centered Design.

Patton, J. (2002). Hitting the target: adding interaction design to agile software development. In

Proc. OOPSLA ’02, 1-ff.

Pikkarainen, M., Salo, O., and Still, J. (2005). Deploying Agile Practices in Organizations: A

Case Study. Springer Berlin / Heidelberg.

Polit, D., and Beck, C. (2003). Nursing Research: Principles & Methods, 7th Edition, USA

Lippincott, Williams and Wilkins.

Pressman, R. (2005) Software Engineering – a Practitioner’s Approach (6th Edition), McGraw

Hill.

Rahimian, V. and Ramsin, R. (2008) Designing an Agile Methodology for Mobile Software

Development: A Hybrid Method Engineering Approach, Second International

Conference on Research Challenges in Information Science, RCIS, (pp. 337-342).

Roman, G. C., Picco, G. P. and A. L. Murphy, A. L. (2000). Software engineering for mobility: a

roadmap, in Proc. of the Conf. on the Future of Software Engineering, pp. 241–258.

Rosson, M .B. and Carroll, J. M. (2002). Usability Engineering: Scenario-Based Development of

Human- Computer Interaction, New York, Morgan Kaufman.

Salo, O. (2006). Enabling Software Process Improvement in Agile Software Development Teams

and Organisations. Helsinki: VTT.

Saunders, Lewis and Thornhill (2007) Research Methods for Business Students Fourth edition,

Pearson Education Limited.

Schach, Stephen (1990) Software Engineering, Vanderbilt University, Aksen Association.

Schatz. B and Abdelshafi .I. (2005). Primavera gets agile: a successful transition to agile

development, Software, IEEE, 22 , (pp. 36-42).

Seffah A, Desmarais M, and Metzker E. (2005) HCI, Usability and SE Integration: Present and

Future, in Human Centred Software Engineering, Springer.

127

Sharp, H., Robinson, H. and Segal, J. (2008). Integrating user centered design and software

engineering: a role for extreme programming, [Online]. Retrived from:

http://www.ics.heacademy.ac.uk/events/presentations/376_hcie-arp2.pdf.

Sharp, H., Rogers, Y. and Preece, J. (2007) Interaction Design: Beyond Human-Computer

Interaction, 2nd Edition, Wiley.

Sommerville, I. (2011). Software Engineering, 9th Edition, Addison Wesley.

Spataru A. C. (2010). Agile Development Methods for Mobile Applications, Unpublished

Master of Science Thesis, United Kingdom: University of Edinburgh.

Unhelkar, B., and Murugesan, S. (2010). The Enterprise Mobile Applications Development

Framework. IT Professional , 12 (3), 33-39.

Varshney, U., and Vetter, R. (2001). A Framework for the Emerging Mobile Commerce

Applications. Proceedings of the 34th Annual Hawaii International Conference in System

Sciences, 9, (pp. 9014-9023).

VTT Electronics. (2006). Portal of Agile Software Development Methodologies. Retrieved from

Mobile-D Method: http://virtual.vtt.fi/virtual/agile/mobiled.html

Wasserman, A. I. (2010). Software engineering issues for mobile application development, in

Proceedings of the FSE/SDP workshop on Future of software engineering research -

FoSER ’10, 397-400.

Wells, D. (2009) User Stories, Extreme Programming. Retrived from

http://www.extremeprogramming.org/rules/userstories.html

Wells D. (2009). Extreme programming: a gentle introduction, [Online]. Retived from:

http://www.extremeprogramming.org.

Williams, L. Kessler, R. R. Cunningham, W. and Jeffries, R. (2000). Strengthening the case for

pair programming, Software, IEEE, 17 (pp. 19-25).

Yang-Jae Jeong, Ji-Hyeon Lee, Gyu-Sang Shin (2008) Development Process of Mobile

Application SW Based on Agile Methodology, 10th International Conference on

Advanced Communication Technology, ICACT 2008, vol.1, (pp. 362-366).

Zikmund, G.W., Babin, B.J., Carr,C.J. and Griffin, M.(2010). Business Research Methods 8th

ed. South-Western, Cengage Learning.

http://www.ics.heacademy.ac.uk/events/presentations/376_hcie-arp2.pdf
http://virtual.vtt.fi/virtual/agile/mobiled.html
http://www.extremeprogramming.org/rules/userstories.html

128

APPENDICES

Appendix I: Letter of Authorization

Date………………………………

To.....................................

...

...

Dear Sir/Madam,

RE: RESEARCH DATA ON “INTEGRATION OF DISCOUNT USABILITY INTO

SOFTWARE ENGINEERING TO ENHANCE DEVELOPMENT OF INTERACTIVE

MOBILE PLATFORM BASED DEVICES”.

I am a student pursuing a Masters Degree in Software Engineering at Jomo Kenyatta University

of Agriculture and Technology. I’ am required to undertake a research thesis as partial

fulfillment for the award of this degree. My research topic is stated above and kindly request for

your assistance in making my research a success.

This purpose of this letter is therefore to request you to grant permission to collect relevant data

from your organization from selected respondents among your staff. The information collected

will be treated with utmost confidentiality and will be used for the purposes on this research

only.

Yours Sincerely

Denish Omondi Otieno

129

Appendix II: QUESTIONNAIRE

Introduction

Hello,

I am a researcher from the School of Computer Science and Information Technology at Jomo

Kenyatta University of Agriculture and Technology (JKUAT) Nairobi, Kenya. Currently am

running a survey on the usability of the Extended mobile-D a software development process

model we am proposing.

I aim to collect as many different responses from as many different people as possible to validate

my results. All am asking for is about a few minute of your time to fill in the survey, I really

would appreciate it.

Your participation in this study is completely voluntary. There are no foreseeable risks

associated with this research. However, if you feel uncomfortable answering any question you

can withdraw from the survey at any point.

Your survey responses will be strictly confidential and data from this research will be reported

only in the aggregate.

Thank you very much for your time and support.

Please start the survey now

Directions: Tick the box that best corresponds to your answer

Section A; General Information about you

1. What’s your gender

Male Female

2. What’s your age

 Below 18 18-28 29-39 40-50 51 + years
 3. For how long have you been in the software development industry

 Below 1 year 1-3 years 4-6 years 7 and above

4. What’s your position in the software team

 Programmer Project manager Software tester Others

(specify)

__

130

5. Do you have any formal training in software development or any field related to

software development

 Yes No

6. If yes specify under which specification

 Computer science IT Electricals and Electronics

Section B; General Information on Products development

7. How many systems have you developed or participated in developing

 None 1-5 5-10 11 and above

8. A brief description of the best product you have ever developed?

__

__

__

__

__

9. What is the current version of the product?

1st 2nd 3rd 4th 5th 6thand above

10. What is the work place of the product?

Life critical

Business critical

Learning environment

Gaming

11. Do you carry out a feasibility study before starting a new software development

project?

 Yes No

12. Do you engage the counsel of a Human Computer Interaction Practitioners in the

development process?

 Yes No

13. If yes why do you normally incorporate them in the development process

131

Section C; Model survey

14. How elaborate and clear are the concepts of the process to solve development

problems?

Understandability

Statement Strongly

Disagree

Disagree Neither

Agree

nor

Disagree

Agree Strongly

Agree

a. The design objective and

steps are clearly stated in

each section

b. The structure keeps me

focused on what is to be

designed

c. The ordering of steps and

sequences is logical

d. I found the various

methods of the model well

intergraded

e. My interaction with it is

clear and understandable

132

15. How easy is it to learn to use the process?

Learn ability (Ease of Learning)

Statement Strongly

Disagree

Disagree Neither

Agree

nor

Disagree

Agree Strongly

Agree

a. I can learn to use it quickly

b. I can quickly become

skillful with it

c. I can easily remember to

use it

d. The data grouping is

reasonable for easy

learning

e. Learning to use it is easy?

f. I think that I would need

the support of a technical

person to be able to use this

model

16. How much convenient is to apply the methodology on organizational projects?

Applicability (Ease of Use)

133

Statement Strongly

Disagree

Disagree Neither

Agree

nor

Disagree

Agree Strongly

Agree

a. It is simple to use

b. It is designer friendly

c. It is flexible

d. It provides the clearest

steps possible to

accomplish what I would

wish do with it

e. I can use it without written

instructions

f. I don't notice any

inconsistencies

g. Using it I can recover from

mistakes quickly and easily

h. It is easy to apply it in

designing of a software

system

134

17. How much effective or useful is the methodology for current and future projects

development?

Usefulness

Statement Strongly

Disagree

Disagree Neither

Agree

nor

Disagree

Agree Strongly

Agree

a. It can help me be more

effective

b. It can help me be more

productive

c. It can makes the things I

want to accomplish easier

to get done

d. Using it would save me

time

e. It meets a designers needs

f. I find it useful in my job

g. It gives me a clear insight

of specific activities per

stage

h. Using it would lead to

better products

135

18. How much end user satisfaction does the model promise?

Satisfaction

Statement Strongly

Disagree

Disagree Neither

Agree

nor

Disagree

Agree Strongly

Agree

a. Using it would improve my

job performance

b. Using it in my job would

enable me to accomplish

tasks more quickly

c. Using it would make it

easier to do my job

d. Using it is fun

e. I feel I need to have it

f. I would recommend it to a

friend

g. I feel very confident in

using this model

136

h. I would have no difficulty

using the model

i. I think I would like to use

this model frequently

j. I am satisfied with it

Section D product development enhancement survey

19. In rating our model from section one to section ten at what point do you feel product

development is best be enhanced?

Statement Strongly

Disagree

Disagree Neither

Agree

nor

Disagree

Agree Strongly

Agree

a. Section 1

b. Section 2

c. Section 3

d. Section 4

e. Section 5

f. Section 6

137

g. Section 7

h. Section 8

i. Section 9

j. Section 10

20. In your own opinion will using the model lead to better product development and be of

benefit to the software development community?

 Yes No

21. If yes kindly explain why you think so.

__

__

__

__

__

Conclusion

We greatly appreciate your time and assistance with this questionnaire thank you.

	New Microsoft Office Word Document
	5 june 7-5 - 5..........7 - 11
	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS/ACRONYMS
	ABSTRACT
	CHAPTER ONE
	1.0 INTRODUCTION
	1.1 Preliminary Definitions
	1.1.1 Software Engineering
	1.1.2 Discount Usability
	1.1.3 Mobile Devices

	1.2 Research Background
	1.3 Statement of the Problem
	1.4 Justification
	1.5 Objectives
	1.5.1 Broad Objective
	1.5.2 Specific objectives

	1.6 Research Questions
	1.7 Scope of Study
	1.8 Thesis Structure

	CHAPTER TWO
	2.0 LITERATURE REVIEW
	2.1 The Need for Usability Engineering
	2.1.1 Discount usability engineering methods
	2.1.1.1 Scenarios
	2.1.1.2 Heuristic Evaluation
	2.1.1.3 Card sorting
	2.1.1.4 Thinking aloud

	2.1.2 Categories of mobile applications
	2.1.3 What Makes Mobile Devices Different?
	2.1.3.1 Sensor handling
	2.1.3.2 Native and hybrid (mobile web) applications
	2.1.3.3 Families of hardware and software platforms
	2.1.3.4 Security
	2.1.3.5 User interfaces

	2.1.4 Mobile applications development
	2.1.5 Unique development challenges for mobile devices software engineering
	2.1.5.1 Form factors
	2.1.5.2 Usability and user interaction design
	2.1.5.3 Creating Universal User Interfaces
	2.1.5.4 User input technology
	2.1.5.5 Enabling Software Reuse across Mobile Platforms
	2.1.5.6 Choice of implementation technology
	2.1.5.7 Designing Context-Aware Mobile Applications
	2.1.5.8 Behavioral Consistency versus Specific HCI Guidelines
	2.1.5.9 Balancing Agility and Uncertainty in Requirements
	2.1.5.10 Mobile applications build and delivery
	2.1.5.11 Testing of mobile applications

	2.1.6 Usability Engineering in Software Engineering identifying the gaps in Industry Practices
	2.1.6.1 Usability engineering inputs are not taken during requirements specifications
	2.1.6.2 Porting projects get minimal HCI inputs
	2.1.6.3 Client representatives take design decisions
	2.1.6.4 Usability engineering skills do not have process support
	2.1.6.5 Too little and too late is not good enough

	2.2 Agile Process Models
	2.2.1 HCI Issues with Agile Processes
	2.2.1.1 Software Engineers Are Asked to Design
	2.2.1.2 Users Are Asked to Design
	2.2.1.3 Change is Managed Well, But Anticipated Poorly
	2.2.1.4 Agile User Stories Are Not Interaction Design Scenarios
	2.2.1.5 Short Iterations

	2.2.2 Agile development for mobile applications
	2.2.2.1 Is agile – a natural fit for mobile application development?

	2.2.3 Review of mobile applications development processes - using an agile approach
	2.2.3.1 Mobile-D
	2.2.3.2. RaPiD7
	2.2.3.3 Hybrid Methodology Design
	2.2.3.4 MASAM
	2.2.3.5 SLeSS

	2.4 Chapter Summary

	CHAPTER THREE
	3.0 RESEARCH METHODOLOGY
	3.1 Research Design
	3.2 Target population
	3.3 Sample and Sampling Technique
	3.4 Data Collection Instruments
	3.5 Data Processing and Analysis
	3.6 Chapter Summary

	CHAPTER FOUR
	4.0 RESULTS AND DISCUSSIONS
	4.1 A Framework for Integrating Usability Engineering Into Mobile Platform-Based Devices Software Engineering
	4.1.1 Planning
	4.1.1.1 Question 1 What is required?
	4.1.1.2 Question 2 What will the system do?

	4.1.2 Analysis
	4.1.2.1 Question 3 Have we got the requirements right?

	4.1.3 Design
	4.1.3.1 Question 4 Have we understood our targeted users?
	4.1.3.2 Question 5 How should we respond?
	4.1.3.3 Question 6 How are we doing?

	4.1.4 Development and Implementation
	4.1.4.1 Question 7 How should the design be achieved?

	4.1.5 Testing
	4.1.5.1 Question 8 How does it perform?
	4.1.5.2 Question 9 Which areas need more work?

	4.1.6 Maintenance
	4.1.6.1 Question 10 How do we compensate for failures?

	4.1.7 Nature of the framework
	4.2 Integrating Discount Usability into Mobile Agile Process Model
	4.2.1 Why integrate
	4.2.2 Convergence points between agile and usability
	4.2.2.1 Human-centered development
	4.2.2.2 Cyclical development
	4.2.2.3 Continuous testing

	4.2.3 Divergence points between agile and usability
	4.2.3.1 Working software vs design documentation
	4.2.3.2 Phased vs incremental approaches
	4.2.3.3 Test driven development vs usability evaluations
	4.2.3.4 Shared understanding vs distinct roles
	4.2.3.5 Customer focus vs end user focus

	4.2.4 Approach to Integration
	4.2.5 The Extended Mobile-D Agile Process Model
	4.2.5.1 Explore
	4.2.5.2 Initialize
	4.2.5.3 Productionize and Stabilize
	4.2.5.4 System Test & Fix
	4.2.5.5 Extended Mobile-D with added Evolve phase
	4.2.5.5.1 Planning
	4.2.5.5.2 Analysis
	4.2.5.5.3 Design
	4.2.5.5.4 Development and Implementation
	4.2.5.5.5 Testing
	4.2.5.5.6 Maintenance

	4.3 Evaluation of Effectiveness of Integration of Discount Usability into Software Engineering
	4.3.1 Usability Factors for Software Engineering Methodology
	4.3.2 Findings
	4.3.2.1 Sample demographics
	4.3.2.1.1 General Information

	4.3.2.2 Summary of products development information
	4.3.2.2.1 Products Development Information

	4.3.2.3 Summary of model survey
	4.3.2.3.1 Model Survey
	4.3.2.3.2 Extended Mobile-D and Task Performance

	4.3.3 Principle-based analytic evaluation of Extended Mobile-D
	4.3.3.1 Evaluating whether Extended mobile-D model is an agile process
	4.3.3.1.1 Individuals and interactions over processes and tools
	4.3.3.1.2 Working software over comprehensive documentation
	4.3.3.1.3 Customer collaboration over contract negotiation
	4.3.3.1.4 Responding to change over following a plan

	4.4 Chapter Summary

	CHAPTER FIVE
	5.0 CONCLUSIONS AND FURTHER WORK
	5.1 Findings and Contributions
	5.2 Future work
	REFERENCES
	APPENDICES

