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ABSTRACT

A turbulent incompressible fluid flow past a semi-infinite vertical rotating plate has been
investigated, the flow considered isin the presence of a strong inclined constant magnetic field.
Aninduced electric current exists due to the presence of the constant magnetic field. The
velocity distribution of the fluid flow past a semi-infinite vertical plate and it's temperature
profiles have been determined. Finally, the effects of various parameters like non-dimensional
numbers and the angle of inclination of the magnetic field on the flow variables have been
determined. The equations governing this problem have been solved numerically using finite
difference method because these equations are non-linear and there exists no anal ytical method
of solving them. A sample result of the velocity profiles and temperature profiles have been
obtained followed by a graphical representation of the same. It is noted that an increasein the
Hall parameter, time and angle of inclination leads to an increase in the primary velocity while
an increase in the rotational parameter Er and Eckert number leadsto a decrease in the primary
velocity profiles. An increasein the rotational parameter and Hall parameter leads to an increase
in secondary velocity, Eckert number, time and angle of inclination leads to a decrease in
secondary velocity. Increase in Eckert number, time, Hall parameter and rotational parameter
leads to an increase in temperature profiles.
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CHAPTER ONE
INTRODUCTION
1.1 Introduction to the study

Magnetohydrodynamics (MHD) is the study of dynamics of electrically conducting
fluids. Examples of such fluids include plasmas, liquid metals, and salt water or
electrolytes. The fundamental concept behind MHD is that magnetic fields can induce
currents in a moving conductive fluid, which in turn changes the magnetic field itself
and generates forces on the fluid. The set of equations which describe MHD are a
combination of the Navier-Stokes equations of fluid dynamics and Maxwell's equations

of electromagnetism.

Free convection flows are of great interest in a number of industria applications such as
fiber and granular insulation and geothermal systems. MHD is attracting the attention of
many authors due to its applications in geophysics; it is applied to study the stellar and
solar structures, interstellar matter and radio propagation through the ionosphere. In
some engineering devices, like MHD pumps, gas, can be ionized and so becomes an
electrical conductor.

1.1.1 Definitions
In this study , several terms have been used and such terms are defined in this section.

1.1.2 Fluid

Fluid is a type of matter which undergoes continuous deformation when some external

forceis applied. Fluids are classified as liquids and gases.

1.1.3 Hydromagnetics



The term hydrodynamics is often applied to the science of incompressible fluids in
motion whereas electromagnetism is the study of the interaction between electric and
magnetic fields. Interaction of hydrodynamics and electromagnetism is known as
hydromagnetics or Magnetohydrodynamics (MHD) which is the study of the motion of

an electrically conducting fluid in presence of a magnetic field.

1.1.4 Unsteady Flow

When flow variables such as velocity and the thermodynamic properties at every point
in space vary with respect to time, the flow is considered to be unsteady. If none of the
fluid flow variables varies with respect to time the flow is steady. In the present study

we consider an unsteady flow.

1.1.5 MHD Free Convection Flow

MHD free convection flow is very important because of its many applications ranging
from engineering to the study of the universe. In free convection, fluid motion results
when body forces act on the fluid in which density gradients exists. The density
gradients may be due to temperature or concentration gradients existing in the fluid,
while the body force is due to gravitational force. In our study we consider free

convection flow due to temperature difference.

1.1.6 Turbulent flow

This is a flow regime characterized by chaotic and stochastic property changes. This
includes low momentum diffusion, high momentum convection, and rapid variation of
pressure and velocity in space and time. Turbulent flows are always unsteady i.e. it
varies continuously with time even though there is a steady downstream motion of the
fluid. Semi-infinite plate is whereby the plate is bound on one end and not bound on the
other end i.e. the boundary condition imposed on the equations will be defined at one
end and the other end tending to infinity.



1.1.7 Boundary layer

A boundary layer is athin fluid layer adjacent to the surface of the body or a solid wall
in which viscous forces affect the flow. Boundary layer theory isimportant in analyzing
flow problems involving convection transport. For fluid flows over any surface there
may exist three boundary layers namely velocity, thermal and concentration boundary
layer. When fluid particles comes in contact with the surface, they assume the velocity
of the solid surface. These particles retard the motion of the particles in the adjoining
fluid layer, which in turn retards the motion of particlesin the next layer and so on, until
at a certain distance from the surface where the effect becomes negligible. Thisregionin
which the velocity gradient is large is referred to as velocity boundary layer. If the fluid
particles come into contact with an isothermal plate, they achieve thermal equilibrium at
the plate’s surface. In turn these particles exchange energy with those of adjacent fluid
layers and a temperature gradient develops in the fluid. The region of the fluid in which
this gradient exists is the thermal boundary layer. Similarly if the concentration of the
species at the surface differ from that in the free stream, a concentration gradient exists.

In this study the velocity and thermal boundary layers have been considered.

1.1.8 Hall current

Hall current is the production of a voltage difference (the Hall voltage) across an
electrical conductor, transverse to an electric current in the conductor and a magnetic

field perpendicular to the current.

1.2 Literature Review

Considerable progress has been made recently in the general theory of MHD flows due
to its wide spread application on designing of cooling systems with liquid metals,

petroleum industry, purification of crude oil and separation of matter from fluids.

3



The various people who have studied MHD taking into account effects of Hall current,
include; Gupta (1975) discussed effect of Hall current and heat transfer on rotating fluid
on a second grade fluid through a porous medium. Pop.l and Soundalgekar(1974)
analyzed the Hall effect on the flow in rotating frame of reference. Katagiri (1969)
discussed the effects of Hall current on the MHD boundary layer flow past a semi-
infinite plate. Soundalgekar et al. (1979 ) studied free convection effects on MHD
Stokes problem for a vertical plate and they discovered that skin friction increased
owing to a greater heating of the plate. Chartuverdi (1996) studied the finite difference
of MHD Stokes problem for avertical infinite plate in a dissipative heat generating fluid
with Hall and lon-dlip current. Soundalgekar et al (1979) anayzed the Finite difference
analysis of free convection effects on Stokes problem for avertical plate in a dissipative
fluid with constant heat flux. Takhar and Soundalgekar, (1997) investigated the forced
and free convective flow past a semi-infinite vertical plate and also did a study on MHD
and heat transfer over a semi-infinite plate under a transverse magnetic field. Kinyanjui
and Uppa (1998) studied the MHD Stokes problem for a vertical infinite plate in a
dissipative rotating fluid with Hall current and they also investigated the effect of both
Hall and lon-dlip currents on the flow of heat generating rotating fluid system. They
observed that for an Eckert value of 0.02, there was a decrease in the primary velocity
profile with an increase in rotational parameter but in the case of secondary velocity
profiles, there was initially a decrease and as the distance from the plate increased, the
secondary velocity profile increased. They also observed that an increase in Hall
parameter has no effect on the temperature profile but an increase in time causes an
increase in the temperature profiles. Kinyanjui et al. (1999) studied the Finite difference
analysis of free convection effects on MHD problem for a vertical plate in a dissipative
rotating fluid system with constant heat flux and Hall current. Kinyanjui et al. (2001)
studied Magneto hydrodynamic free convection heat and mass transfer of a heat
generating fluid past an impulsively started infinite vertica porous plate with Hall

current and radiation absorption. MHD Stokes free convection flow past an infinite
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vertical porous plate subjected to constant heat flux with ion-dlip current and radiation
absorption was investigated by Kinyanjui, Kwanza and Uppal, (2003). Kinyanjui et al.
(1999) investigated the Finite difference analysis of MHD Stokes problem for a vertical
infinite plate in a dissipative fluid with constant heat and Hall current. Chamkha (2004)
analyzed the unsteady MHD convective heat and mass transfer past a semi-infinite
vertical permeable moving plate with heat absorption. The presence of heat absorption
(thermal sink) effects had the tendency to reduce the fluid temperature. Seth et al (2009)
investigated MHD couette flow in a rotating system in the presence of an inclined
magnetic field, they observed that there arises modified hydromagnetic Ekman boundary
layer for large values of Rotational parameter and modified Hartmann boundary layer
for large values of Hartman number near the moving plate and that the angle of
inclination accelerates primary and secondary flows whereas it reduces primary and
secondary induced magnetic fields. Rotation induces incipient reverse flow in primary
flow direction near the stationary plate. Kinygui et al (2012) analyzed the
hydromagnetic turbulent flow of arotating system past a semi-infinite vertical plate with
Hall current, they observed that the parameters in the governing equations affects the
velocity, temperature and concentration profiles. Consequently their effect alters the skin
friction and the rate of mass transfer. Unsteady hydromagnetic Hartmann or Couette
flow in a rotating system in the presence of an inclined magnetic field considering
different aspects of the problem was investigated by Ghosh (1991).Seth et al (2012)
presented their work on effects of Hall current and rotation on unsteady MHD Couette
flow in the presence of an inclined magnetic field. They found out that Hall current and
rotation tend to accelerate fluid velocity in both the primary and secondary flow
directions. Magnetic field has retarding influence on the fluid velocity in both the
primary and secondary flow directions. Angle of inclination of magnetic field has
accelerating influence on the fluid velocity in both the primary and secondary flow
directions. An investigation on Stokes problem of a convective flow past a vertical

infinite plate in a rotating system in presence of variable magnetic field was carried out
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by Mutua et al (2013), they observed that all of the parameters affect the primary
velocity, secondary velocity and temperature. Consequently their effect alters the rate of
heat transfer and skin friction along the x and y axes. MHD turbulent flow problems
with inclined magnetic field have received little attention and this was the motivation
behind this study. In this study aturbulent flow of an incompressible fluid past a rotating
semi-infinite plate with inclined magnetic field is considered.

1.3 Statement Of The Problem

In the studies cited above, turbulent flow problems with inclined magnetic field have not

been investigated. A hydromagnetic turbulent fluid flow past a rotating semi-infinite
plate is considered. A strong constant magnetic field H, is applied in a direction

inclined to the flow at an angle a as shown in the figure 1.1. In the presence of a strong
magnetic field Hall current significantly affect the flow. The induced magnetic field will
be assumed to be negligible. The assumption is justified because the magnetic Reynolds
number is very small. This research covers a study on the effects of non-dimensional
numbers and the angle of inclination on the flow variables. As the partial differential
equations governing this problem are non-linear they are solved numerically using finite

difference method A

y-axis

Up

X-axis




Figure 1.1 Geometry of the problem

1.4 Justification

Fluid mechanics has become an essential part of diverse fields such as Medicine,
Meteorology, Astronomy and oceanography as well as traditional engineering
disciplines. Many devices that use principles encountered in MHD do not have
mechanical parts and hence the devices can be sealed completely and be used in hostile
environments where human may not be able to operate for example in the presence of
strong radioactive material and places with too high or too low temperatures where there
IS no oxygen. MHD offers the prospects of improved power stations efficiency and
cheap light weight sources of power for space vehicles. The study of fluids past arotating
system has received considerable interest due to its application in practical situations
like meteorology, geophysics and fluid dynamics also strong magnetic fields are used to
confine rings or columns of hot plasma. Liquid metals are driven through a magnetic

field in order to generate electricity.

The early works on fluid dynamicsis mostly on laminar flows with little devotion on
turbulent flows but most flows of engineering importance are turbulent, for instance
when large objects such as ships, automobiles, aircrafts move through fluids and the
flow of the fluid past them is always turbulent. Turbulence also occurs when afluid

moves past enclosures such as fans, pumps, Ducts and pipes.

Similarly, a transverse variable magnetic field is taken into consideration. Less
emphasis has been given to the problem on turbulent fluid flow in presence of inclined
magnetic field, hence, the main objective of the present study aimed at investigating the
effects of non-dimensional numbers and the angle of inclination on the velocity profile

and temperature profile.



1.5 Null Hypothesis

Non-dimensional numbers and the angle of inclination have no effects on the primary

velocity profiles, secondary velocity profiles and temperature profiles .

1.6 Objectives
1.6.1 General objective

To determine the effects of various flow parameters on the flow variables of the

hydromagnetic turbulent fluid flow in presence of inclined magnetic field.

1.6.2 Specific objectives

i.  Todetermine the velocity distribution of the fluid flow past a semi-infinite
vertica plate
ii.  To determine the temperature profiles of the fluid flow past a semi-infinite
vertical plate due to velocity variations.
iii.  To investigate the effects of non-dimensional numbers and the angle of

inclination of the magnetic field on the flow variables.

In the next chapter the general equations governing the flow are discussed. The
assumptions for the flow are also outlined and the method of solving these governing

equations has been discussed.



CHAPTER TWO
GOVERNING EQUATIONS

2.1 Introduction

In this chapter, equations governing the MHD turbulent flow of an incompressible fluid
are discussed taking into account the assumptions made. The equations considered are

mMass conservation eguation, momentum conservation equation and energy equation.

2.1.1 Assumptions

In order to describe the phenomenon mathematically the following approximations and

assumptions are made.

2

1 The flow velocity is much smaller compared to that of light q_2 <<1
c
2. Flow isincompressible
3. Fluid is of constant thermal conductivity, constant electrical conductivity and

constant coefficient of viscosity.

4. There is no external applied electrical field that is E=0

5. Force r  E due to electric field is negligible compared with the force J x B due
to magnetic field.

6. There is no chemical reaction.
2.2 Equations gover ning the flow

The governing equations of MHD are obtained from the combination of two areas,

electromagnetic theory and fluid mechanics. The equations governing the fluid flows of
9



any kind are based on the general laws of conservation of mass, momentum and energy.
The flow is subjected to a constant magnetic field inclined at an angle a to the flow.
According to the configuration of the flow model, the physical variables governing the

flow are functions of x , y and t.

2.2.1 Conservation Equations

The turbulent flows are irregular and there are rapid fluctuations of velocity in the flow
variable with respect to time and location. Mean value provides a basis for studying the
spatia variation.

For ageneral flow say v of aturbulent fluid motion, can be given asv=Vv+V Where V

isthe mean valueand V' the fluctuating component.

The Reynolds rules of averaging about varying quantities have been used. If f and g

aretwo flow variableswhere f = f +f' and g=g+g with f and g asmean

values, f'and g’ turbulent fluctuations then

f-f, f+g=f+g, Cf=CT whereCisaconstant fg=fg |,
— = of of . .
fg=fg , —=— where Sis an independent variable.

0S 0S

Mean value of fluctuation isequal to zero,i.e. f'=g' =0

The Reynolds averaging rules have been used to transform equations governing laminar
flow to turbulent flows.

2.2.2 Equation of continuity

Generally the equation of continuity is derived from the process where the rate at which

mass enters a system is equal to the rate at which mass |eaves the system. The continuity

10



equation combines the law of conservation of mass and that of the transport theorem.
The continuity equation originates from the assumption that mass under normal

conditions is neither created nor destroyed and that the flow is continuous. Therefore the
Mass conservation equation is expressed as;;

or

—+V.(rd)=0
= (ra)

(2.1)

where r and U arethe density and the velocity of the fluid respectively.

which can be expressed in tensor form as

—+—(ru)=0 (2.2)

(23)

o oru oru
+ 2y
ot ox  OX

(24)

Applying Reynolds rule of averages

11



o oru oru
—+—+—=0
ot ox  0Ox
(2.5)
Thisyield
a + i(r u_l) =0
ot 0ox
(2.6)
For incompressible flow
ou : _
6—' =0 , sincethe density is aconstant
X
(2.7a)
For thiskind of flow the continuity equation is given as
NM_y
OX
(2.7b)

On integration Equation (2.7b) reduces to u = —u, which represents a constant injection

in the negative direction of the x-axis.

2.2.3 Equation of motion

The equation of conservation of momentum is derived from the Newton's second law of
motion, which states that the time rate of change of momentum of a body is equal to the
external force applied to the body. This externa force are surface forces (e.g. viscous

force) and body forces (e.g. gravitational, centrifugal and magnetic force). Surface
12



forces are due to interaction between the forces e.g. viscous forces and matter in contact
with it and the body forces on the other hand are forces which act on the body from a

distance.

The equation of motion in component form is given by;
| MR nvu +F,
ot o O,

(2.8)

The first term is the tempora acceleration while the second term is the convective
acceleration. On the right hand side, the first term the pressure gradient, second term is

the force due to viscosity and the third is the body force.

The equation (2.8) in terms of time average quantities yields;

r (é(q +U) + (T + U )i(q +ui’)J = —%(T)+ p')+nV? (T +u)+F

(2.9)

Or

r %+%+U.%+U.%+u'.%+uf% | R +nV?0 +nVau + F
ot ot lox  ox oxg ox ox  OX,

J J

(2.10)

Taking the time average on both sides

13



r (%+%+U Mg My By %]: (6ﬁ o ]+ V20 + mv U’ + Fi

ot ot lox  lox Tox o ox ox  Ox
(2.112)
Simplifying equation (2.11) yields,
r o —+T o +u’aui aﬁ+rr‘Vu+F
ot lox, ! ox OX,
(2.12)
From continuity equation for incompressible flow;
4 ou’ 6u
%:O Thus u—-=0 and u—=0
OX OX; OX;
.ol _ _ ,ou oup ouul
Adding U/ —- onleft sidesof (2.12) andusing uj—-+u/—=——Yyi€lds
X, OX; ox;  OX;
v} U ouu;, _
r (%+Uj%j:—@+wzq—r —+F
ot OX; OX 0%
(2.13)
Since the magnetic force has been considered, then equation (2.13) becomes,
U U uu.
r %+Uj% :—@erz_— —L4+F +(IxB)
ot OX; OX; oX
(2.14)

14



In free convectional fluid flow, the body force is given by F, =rg. The pressure

gradient (Z_r] in the y-direction results from the change in elevation up the plate thus
X

d __¢ g. The electromagnet force may be written as F, =1 ,E+J3x B in most

oy

flows problems the electrostatic force r E is negligibly small as compared to the

electromagnetic force J x B hence F.= JxB

ou .U LoV o’ o’ auu s
r —+Uy —+V — |=r_g-rg+ >+ =T — +(JxB)
ot OX oy ox’ oy’ OX i

(2.15)

=TI

Expressing the density difference terms M of the volume coefficient of expansion

r—r,

b b=—7?">—
, where ™ (77 _T7,)

therefore, the equation of momentum in component form is given by;

A

aaUT:i-i'H*j ZS—:: gb (T —T*w)+:—nz;l:_lj*2i —ai;iﬁ*iU*i +(‘J . B)
(2.16)
the y and z components are given by;
Ny _T*w)m[azv;* . azv;J_ O Vs (IxB),
ot oX oy ox oy oX r
(2.17)
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oW, oW . ow (azv_v* azw*J 0 — (IxB),
—Tu — =N + — 4 'z

—u'w
ax*z ay*Z ax r

(2.18)

Where(J x B) , (3xB) . arethey and z components for JxB

When the magnetic Reynolds number is small, induced magnetic field is negligible in
comparison with the applied magnetic field, so that

~ A

B,=H,cosa B, =H,sna andB, =0

(2.19)

If (j o J v J ,) are components of electric current density J, the equation of conservation
of electric charge vJ=0 gives,

A

J, =constant

(2.20)

Since the plate is éectrically non-conducting |, J =0 at the plate and hence zero

everywherein the flow. I_3>Z = 0 dueto the geometric nature of this flow.
For electrically conducting fluid at rest the current density is given by;
J=sE

(2.21)

In moving €electrically conducting fluids the magnetic field induces a voltage in the

conductor of magnitude U x B
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Ohms Law neglecting hall effect yields,

J=s(E+G(xB)
(2.22)

Neglecting polarization effect, the electric potential E becomes E =0

therefore equation (2.22) reducesto J =s ((ix B) and the components for J (the electric

current density), B (the magnetic induction) and u (velocity) are given as

J=(0,J,J,) B=(B,,B, 0 u=(0v,w)
(2.23)
Theterm ¢ x Bin Equation (2.22) yields
]k
(ixB=[0 v =wB, | - VB Kk
B, B, 0
(2.24)
Thus from equation (2.24)
J, =swB, J, =-sVB,
(2.25)
The Lorentz force becomes
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(2.26)
but L3>X =mH,sna

Therefore, substituting (J x B) ; (J xB) - inequations (2.17) and (2.18) yields;

—k . p— . % . . 2_* 2_* _ _ H . R
av* — 0, av* +V 8v* =gb(T =T »)+n 0 V2 2 V2 -~ a*uv + o Sna J,
ot OX oy ox oy oX r

(2.27)
W . OW oW o'W o'W | 0 —— mH,sna -

- U, —+V =n —+ > |——u - Jy

ot OX oy ox oy OX r

(2.28)

where g is the acceleration due to gravity, b™ is the volumetric coefficient of thermal

expansion T* T*_ are the temperature in the boundary layer and free- stream

A

respectively, r the fluid density, n is the kinematic viscosity, Jy and jz are the

current density componentsand v and w’ are the componentsin the Y and Z direction.

The Coriolis effect is the apparent deflection of moving objects from a straight path
when they are viewed from a rotating frame of reference. The Coriolis effect is caused
by the Coriolis force, which appears in the equation of motion in a rotating frame of
reference. Initially both the plates and the fluid are in a state of solid rotation with
constant angular velocity Q about the x-axis. The

18



vector formula for the magnitude and direction of the Coriolis acceleration is given by;
]

20 x0=|-2Q
uO

k
0| = 20w] — 20vk

< O —»

(2.29)

From equation (2.29) the equation of momentum should now appear as follows,

V' . OV L OV . x x ava ava = H,s
8\/* -0, 8\/* +V 8v* +20W =gb(T =T ) +n 0 V2 2 V2 -—u'v Mo Sna J,
at Y X2 oy r
(2.30)
— % W— W— 2_* 2_* -
aw* _g, aw* L7 aw* 20V =n 6W2 +6 W2 B 8* u*W*_meHosma 3,
ot oX oy X oy OX r
(2.31)

2.2.4 Energy Equation

The equation of conservation of energy is derived from the First Law of
Thermodynamics, which states that energy is conserved in any process involving a

thermodynamic system and its surroundings;

o .ort Ler) ot . ul(ev) (aw )
GC * _UO * +V " :k " +Q +— — + —
ot oy oy OX r|\ox oX

(2.32)
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In this study, all the variables with the superscript(*) star will represent the dimensional

guantities.

In the next chapter, a turbulent flow of an incompressible electricaly conducting fluid
past a semi-infinite plate which is subjected to a constant magnetic field applied at an
angle to the plate is considered. The mathematical analysis of the flow problem and the
corresponding initial and boundary conditions are given. The dimensional equations are
non-dimensionalised and then later solved by the finite difference method.
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CHAPTER THREE
MATHEMATICAL FORMULATION AND METHODOLOGY

3.1 Introduction

In this chapter, a turbulent flow of an incompressible electrically conducting fluid past a
semi-infinite plate which is subjected to a constant magnetic field applied at an angle to
the plate is considered. In addition the effect of Hall current is taken into account. The
mathematical analysis of the flow problem and the corresponding initia and boundary
conditions are given. The non-linear equations are solved by the finite difference
method. Expressions for the velocity and temperature at the plate have been obtained.
The choice of the coordinates is such that the y-axis is taken along the plate in the

vertical direction and the x-axis is taken normal to the plate.

Initially temperature of the fluid and the plate are assumed to be the same. At t>0 , the
velocity of the fluid is up. The fluid is turbulent therefore there is a large magnetic field
this implies Hall current affects the floyy. The fluid in the plate is in a state of rigid

rotation.

A
Up

v

X-axis

Z-axis

Figure 3.1 resolving the components of the inclined magnetic field
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The Maxwell's equations are given as:

Vi=0
(3.1)
V x ézmej
(3.2
VXE:—@
ot
(3.3
V.B=0
(3.4)
Ohm’s law for a moving conductor taking Hall current into account is given by
S WL, s oA P |
J+—=2JxH,=s|E+muUxH,+—V.
H, xHy ( muxH, eh. pe)
(3.5

where s, m,w,t.,eh,, p, are the electrical conductivity, the magnetic permeability,

the cyclotron frequency, the collision time, the electric charge, the number density of

electron, the electron pressure respectively.

For partialy ionized fluids the electron pressure gradient may be neglected. In this case,
a short circuit problem in which the applied electric field E=0 is considered. Thus
neglecting pressure equation (3.5) becomes ;
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H
(3.6)
] j Kk ) j k
P m . .
(i,.0.)+—+ o iy  l|=sm| o v
°H,sina H,cosa O H,sna H,cosa O
(3.7)
solving (3.7) and equating the y and z components yields;
j, +m(j,sina) =sm(wH,sina)
(3.8)
j, —m(],sina) =-sm(vH,sina)
(3.9)
calculating J?y+ and L we have;
=~ smHysina(w+mvsina)
Yo 1+ m’sin®a
(3.10)
=~ smH,sina(mwsina —-v)
i 1+ m’sin®a
(3.112)

where m=v { _isthe Hall current
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Replacing the values for equation (3.10) and (3.11) back to equation (2.30) and (2.31)

respectively yields;

N .V N AN A

= 7+v7+2m (T —T)+n| — +—

x "y [ax af}
ow' o*w

«2

. —uo*aw* +V 8w — 20V =n
ot OX oy OX

Energy equation for Turbulent flow

or oT o, oT) J?
rc|—+—|=—| k— |+—+f
Plat ox) ox| ox ) s

0w

2

oy

O .. snng (sima)? {(mvvsma v)}
UV +
oX r 1+nt(sina)?
(3.12)
_iu*w*_sanoz(sina)2 (W+mvsina)
X r 1+ m?(sina)
(3.13)
(3.14)

For incompressible flow the temperature and density fluctuations are negligible.

Theinitial and boundary conditions for this study take the form; ™~

t'<0 V(X,y,t)=0 w(x,y,t)=0 T (x,y,t)=0

t">0
vV (0y,t)=u,

V(oY 1) =0 W (0,y" ') =

w (0,y,t')=0

0

T* (0’ y* 7t*) :TW

> (3.15)

T (0,y',t')=0
_

In this study, all the variables with the superscript(*) will represent the dimensional

quantities.

3.2 Non-Dimensionalisation
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Dimensional analysis is a method by which the number of independent variablesn the
problem is reduced into dimensionless groups. It therefore describes a natural
phenomenon by a dimensionally correct equation with certain variables which affects
the phenomenon. The following fundamental primary dimensions namely mass (m),
length (1), time (t) and temperature (T) are used. The dimensions of al other physical
variables in this study can be obtained in terms of these basic dimensions.

In this study non- dimensionaisation is based on the following non- dimensional

quantities
t'u? x'U y'U zZU U, v W u’
n n n n ) U U U
q*V
=" G ugb( kuj E u” Ulial
—_— = 3 c = " =
k U cpiq u/ku) T, -T,
Qu
Er :F
(3.16)

where n isthe characteristic length and U the free stream velocity.

3.2.1 Equation of continuity

For this particular fluid flow the equation of continuity is given by

ou oV
—+
ox oy

(3.17)
Non-dimensionalising the continuity equation yields
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U o ouox _Uau o _ov vy Uy

X ouoxax n ox oy oavayay n oy (3.18)
U?dou U?ov

n oXx n oy

2 2
U—(@-Fﬂjzo ,U—=Otherefore (3.19)
n \ox oy n

(3:3)-
oxX oy

3.2.2 Equation of conservation of momentum

(3.20)

The equation of conservation of momentum in this type of flow aong the y-axis and the

z-axis respectively is given by;

N N N . n[azv* oA

*  * 2 Ay 2 .
- +6y*2]+93(T—T@) au:/ ,SmHy(simm) {(mv\ana—v)}

r 1+nT(sim)?

(3.22)
* * * 2. 2 * * 2 2 . 2 .
* * * H
6\/\1 _anN* Iy 6W 20V =n 8V\: +6 V\; _aqu _sSm'H,"(sina) (W+ergnag
ot ox o OX r 1+m°(sina)

(3.22)

Adopting the Boussinessque approximation

26



v
t =—rviv= A—

0z
Prandlt deduced that
_\2
rVviw =—r| 2(6—\/)
0z

Taking that | = kz where k is the von Karman constant so we have

—\2
rvw=—r kzzz(a—vj
0z

Hence

_—\2
W= —k*Z* (a—VJ
0z

Similarly we deduce

__\2
uv = —k2x? (@j
OX

—_\2
ow = —k?x? [a_wj
OX
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(3.24)

(3.25)

(3.26)

(3.27)

(3.28)



NN N N V), it o | ) |, sHy (s’ [ (mwsira —v)
o UOGX+V6y+2£M n{ax QJ +'(T Tw)+ax{kx2[axj } : Lriray

(3.29)

' ’ ’ 2w 20y 2/ 2 .
Wy MW W o0y on 0" W2 +6_W2 R kzxz[an _smSH, (sina)? | (w+ gnv_smaz
o ox oy’ oxt eyt ) o ox r 1+ m?(sna)

(3.30)
or

; * * 2 2 2 5
N Y v Y oow =n a_v2+a +go(T-T )+2k2>{@) P (@j+
ot Coax oy oy ox o \ ox

sm’H,’(sina)?| (mwsina — V)
r 1+nv(sina)’

(3.31)

W O [62\/\2 AW ] {awj z(zxz(an[aNj srngOZ(sira)T(WHm/;jmz}
ot X oy X oy’ o\ ox r 1+nf(sim)

(3.32)

Non-dimensionalising the momentum equation aong the y -axis
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* * 2 * 2 * 2 2
——u, 5'V* +V 8v* +2QW =n 0 Vz +a VZ +gb*(T—T+m)+ ZKZX(QJ +2k*x? 8_\2/ [
oX oy ox . oX OX
+srr)fHoz(sina)2 (mwsina —Vv)
r 1+ m*(sina)?
N _vava_ Ut _Uto LN g x| Ut
o ovatett atn n oot x0T ovaxox S n ox
(3.33)
* 3 *
v*ai*: NNy _ VN 20w =2QUw T-T) :qq—u
oy ov oy oy n oy kU
(3.34)
%V 0 (ovi)_ @ [ovi)ox _ov ovox UG av
ox? ox \ox ) ox \ox Jox ov oxox  n? ox?
(3.35)
v _ofo)_o( ey _ovavay _Utov
oy> oyloy | oyley Joy. ovoyoy n? oy?

replacing (3.33),(3.34) and (3.35) back to equation (3.31) yields

3 3 3 3 2, 2, 3
U—Q—UOU—@-FVU—@—ZQUW:nU—z a_\2/+6_\2/ +U— ZKZXLQ
n ot n ox n oy n°\ox® ox n OX
* 2 2 . 2 - _
gbq I, SM H,’(sina) [(mvvsma v)}

kU r

1+ m?(sina)?
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j + 2k2x2{

o0%v

Ox?

|

(3.36)

@
OX

)

o
OX

J



3

dividing (3.36) through byUn— yields

GG _V OV [ e[ vy ov . SHHy(sim)’ u
a Py rEW= 2 PP [Z”{ %(2( I j r | 1+nf(sira)?

Non-dimensionalising the momentum equation along the z-axis

iy

(3.37)

%*—u*—aw* +v*—aw* 207 =n azw 62 2k2>{awj + 2k2x 2[62 j{a\Nj_SﬂfHoz(sina)T(er mvsina)
0 * * -
oy o’ ay

d

ot OX ox* \ ox r 1+n?(sina)
oW _ow ow ot _  owU® _U®ow LW W awax _ UCow
ot ow ot at’ atn n ot x0T awaxox o n ax
(3.38)
* 3
W _ W ow oy |\ UTow 20V = 2QUv
oy oW oy oy n oy
(3.39)
O°W _ofow |_ofow | ox _ow ow ox UG o*w
ox?  ox\ox ) oxlox Jox  ow ox ox  n? ox?
(3.40)

0w a[awj a[ jay ow' ow dy u o%w
oy> oyloy ) oyloy Joy ow ox oy ® oy?

replacing(3.38), (3.39) and (3.40) back to the equation (3.32) yields
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3 3 3 3 2 2 3 2 2
Ul RO OO e [T ) U e Dy C )
n ot n ox n oy ox* oy n oX ox® )\ ox
_sm’H,(sna)’[ (w+ mvsina)

r 1+ m’(sina)?

(3.41)

3

dividing (3.41 )through byU— yields
n

w_ ow . ow aivv i , [ oW 2 WY oW\ snPHy'(sina)® u [ (w+nvsina)
a ox' oy e ZkX{ J ZKXZ[(}’)@J(&) r U3L+mz(sina)2}

(3.42)
Non-dimensionalising the energy equation
* 2 * 2
aT* oT" oq ot U (TW T;)ﬁ_q anT* u® (T T)aq
ot oq otot" u OX u OX
(3.43)
* 2 20 * 2
Yy Yy
u oy OX u OX
(3.44)

Substituting (3.43) and (3.44) in (3.14) yields
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u? oq  U? oq, VU _10q _U® k . .00
u (T T)at u (T T)&+VT(TW_T°°)§_u2GC(TW Tw)ax2

kU u u‘[(avjz (@wﬂ
+ +— +| —
u OX OX

(3.45)

2

Dividing through by UT(TW* ~T.) and Using non-dimensional quantities

8 6q oq 1(8%q &%) d oY (ow) (av) (ow)
—q—uo—q+v—q=— —(:2|+—C2I +—q+E, (—j +(—j +|— | +| —
ot ox oy Prlox’ oy?) Pr ox ox oy oy

Thefinal set of non-dimensional equations are;

@—u0@+va—v 2Ew_a—v a—v 2k2>{6vj +2k?x 2( j(a/j+6q+M2(sma) {(rmvsnav)}
ot oxX oy X

1+n7(sina)?
(3.47)
2 2 2 2
MW WMoy O +a—+2k2>{awj + 2k2x 2(6 WJ(a—N]—MZ(sna) {—(‘N* m"s'”a)}
ot oX oy ox> oy’ OX ox> \ ox 1+nf(sina)?
(3.48)
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sB,° n . : L
2 % is the magnetic parameter which is M2
r

The plate is impulsively started and therefore the velocity at x=0 changes from zero at t
<0tol

Theinitial and boundary conditions in non-dimensiona form become

at t<0 v(x,y,00=0 w(x,y,0=0 q(x,vy,00=0

(3.50)

a t>0 v(0,y,t)=1 w(0,y,t)=0 g (O,y,t)=1
V(o,y,t) =0 wW(o,y,t)=0 q(oo,Yy,t)=0 (351)

3.3 Non-dimensional numbers
The non-dimensionalised equations above contain the foll owing dimensionless numbers.

3.3.1 Prandtl Number (Pr)

The Prandit number (Pr) is the ratio of fluid properties controlling the velocity and the

temperature distributions. It isthe ratio of viscous force to thermal force.
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pr=
kK

_n
a
(3.52)

where mdynamic viscosity, n kinematic viscosity, a thermal diffusivity, k thermal

conductivity and c,, specific heat.

In heat transfer involving convection, warm and cool particles mix because of their
pressure difference, local heat conduction occurs. This mixing also involves momentum
transfer. Prandtl Number is a measure of the relative ability of the fluid to alow

momentum diffusion and thermal diffusion.

3.3.2 Grashof number (Gr)

This number usually occursin natural convection problems and is defined as

Gr =u gBTJ}

(3.53)

where g acceleration due to earth's gravity,b coefficient of therma expansion, T

surface temperature, T, bulk temperature, U vertical length and n kinematic viscosity.

This gives the relative important of buoyancy force to viscous force.
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3.3.3 Eckert Number (Ec)

It provides a measure of the kinetic energy of the flow relative to the enthal py difference
across the thermal boundary layer. It represents the conversion of kinetic energy into

internal energy by work that is done against the viscous fluid stresses.
2
e Y
c,(T-T,)

(3.54)

where U flow velocity, c, specific heat and T-T, difference between wall

temperature and local temperature.

3.3 Method of solution

Equations (3.47), (3.48) and (3.49) that govern the MHD flow are non-linear and there
exist no analytical method for solving them. Numerical solutions of the equations are
generated by using the finite difference method. The equations are solved subject to the
initial and boundary conditions.The derivatives are approximated with the implicit

forward difference scheme.
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3.3.1 Thefinite difference method

The stencil for the most common explicit method is shown in Figure 3.2.

7, n+1

[ O
J-1

,n Jah j+1,n

Figure 3.2 Stencil for the explicit method

The expressions for the averages are given as follows;

ot At X AX oy Ay
(3.55)
v _ Vi = 2%+ Vi 0% _ Vi -2 v
ox? ( AX)2 oy’ (Ay)z
(3.56)
(3.57)
82W: W|k++11, - 2v\/i'fjf1 + Wl':lj 52W: Wlkﬁl _ ZWiK,}J 4 Wilf T}l
ox? ( AX)2 o (Ay)Z
(3.58)

36



oT TNT-TS or TEI-TET O ar THL-THY

ovr i,] i,j+1 i,]
ot At OX AX oy Ay
(3.59)
o°T _ T -2+ T O°T _TA-2T+T 5%
ox? (Ax)® oy* (Ay)
(3.60)

The finite difference equations corresponding to the governing equations will be given
as,

Equation of momentum in the y direction:

k+1 k k+1 k+1 k+1 k+1
(VAN VA Vv v v =V

) , ) L ,

i i _uo( i+1,] ij J"‘Vlkj( ij+ ij J—ZEr\N,lfj:

At AX Ay
k+ K+ k+: K+ K+ k+: K+ K+
Ving — M MG, N Vi — 0 VG o2 Vi~V
2 2
(Ax) (ay) 2AX
k+1 k+1 k+1 k+1 k+1 .
Vi+'_2Vi'+Vi—' Vi = Vi . mvHsSIN
ok i ,12 1] 1) Vi 1Gq+MA(sna)? (W+ 25_' 2a)
(Ax) AX 1+n?H’sinfa

(3.61)

37



Equation of momentum in the z direction:
Wi - w (wk wk] {wkfl —w!
, 1y, : ,

At AX B R j_ZErVik,j

Ay

Vvil:,lj B 2""uk1+l + \Nik:i,lj Wukﬁl B 2""uk1+1 + Wik.ﬁl 2 "Vik++1,lj B V"ik—+1,lj
- ( AX)2 + ( A )2 +2K 2AX (3.62)
Wk+1- . 2Wk+1 + Wk+1~ Wk+l- N Wk+1 . _
1 2k?x2 i+1, |,12 i-1,] I+1, ] L _M Z(Sina)z (mwszng . V)
(Ax) AX 1+mfsin’a
The energy equation in finite difference form is;
qil,(j+l _qil,(j iy Qik;i,lj _Qil,(;rl T Qil,(ﬁl _qil,(j+l
At ° Ax " Ay
_ i qil-(&,lj - qukrl +qi'ill,- N Qil,(;ril - 2qlk,+1 +qi|,(j+—11 _iq
Pr (Ax)° (Ay)’ Pr
2 2 2 2
CE [V VT (e W) (V) [ Wi
¢ AX AX Ay Ay
(3.63)

3.4 Equation governing the flow in finite difference form

The governing equations describing the unsteady MHD turbulent flow of an
incompressible, electrically conducting and viscous Newtonian fluid past a rotating
semi-infinite plate in finite difference form were given subject to their initial and

boundary conditions as;

The equation of momentum aong the y-axisis
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k+1 k k+1 k+1 k+1 k+1
Vi Vi Ly, Vit — Vi K Vi~ Vi 2B -
At AX Ay
k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1
I+lJ 2V +V| 1, n |J+1 2V|J +\/IJ -1 2k2 i+Lj Vi
(AX)2 (ay) 2AX
k+1 k+1 k+1 k+1 k+1 .
=07V | Vi VL . W+ mvHsina
+2k2x2 |+ll . i-Lj i+1j 1) +Grq+|\/|2(S|na)2( — )
(Ax) AX 1+mPH?sin*a
(3.64)
maki ngv"+l in Equation (3.64) the subject of the formula:
Vik++1,lj N Vik-+1,lj Vikﬁl Vikﬁl k?x
(Ax)®  (ax)*  (ay)  (ay) (&%)
kil k1 2 2 (V<L )
VT ={ v+ ug At el — VAt e + 2E, WAt +At [(vikjfj )2 vV +(vik_*1,1j )2]+k_x3 ('*1") ,
AX Ay (AX) _(Vi{fj)
, (W + mv ,Sna)
+G q|J+M (sna)?
1+m sn‘a
AtvF.
1+Atu0_ YAt 22+At 22
AX Ay (&) (ay)
(3.65)

The equation of momentum along the z-axisis
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W () (e
—Up| —— = [V | e | = 2BV

At AX Ay
[Vvll:.,lj 2\Nik+l W|k+111 j (V\Ilk-;—‘:::l 2\le . \le}—ll] 2 Vvlk:ilj Wk—;lj J
. + : + 2k ————
(ax)° (ay)’ 2Ax
+ 2k2x2 Vvllj:rllj 2\N|k;r1 + \N|k—111 W.kal, \lejrl M2 (Sl na)2 (m\NS| na — V)
(Ax)° AX 1+m’sin‘a

(3.66)

making Wi‘flfl in Equation (3.66) the subject of the formula:

k+1 k+1 k+1 k+1 2
W|+1J +W| -1,j \Ni,j+1 \Ni,j4 k°x

(& (&) (ay? (ayF (%
Wi W o ¥ 2wz ot -
k?x

W =1 WU At

N vk AT 4 2B v AL AL

A MTTOA o Wi L) )
y (AX)3 (( I+lj) (‘NI—LJ) )

(mw;sina —v))

~M?(sina)?

1+m?sina

(3.67)
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Equation of Energy is

Qil,(;rl _qil,(j qilffj _qil,(;rl K Qii,(;;ll _qil,(j+l
—U, +V. [T
At AX ’ Ay
1 CIiI-(&,lj ~ 2q|k1+1 "‘Qiﬁ,lj qi',(jJ::rLl B 2q|kj+l +qii,(]'+—11 d
= 2 + 2 — 5.4
Pr (AX) (Ay) Pr
k+1 k+1 2 k+1 k+1 2 k+1 k+1 2 k+1 k+1 2
+E. Vi — Vi N Wiaj =W N Vi = Vi N W — W
AX AX Ay Ay

(3.68)

making q. in Equation (3.68) the  subject of the

g +iAt
’ Ay Pr

a9y aSh 9y
2 + 2 + 2 + 2
(Ax)*  (ax)*  (ay)*  (ay)

. d
qil,(jl = _H(At)qil,(j +

+1)\? +1\? 2 + 2
e | [ W V| (W W) (Ve | [
¢ AX AX Ay Ay

[ oAt ([ 11 D (A, (At)vik,,-j
1+ + + -
Pril(Ax)® (Ay)? AX Ay

(3.69)
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Subject to theinitial and boundary conditions
At x=0 Vv°(0,))=1w°(0,j)=0q°(0,j)=1

At y=0 Vv°(i,j)=0 w°(i,j)=0q°(@i,j)=0
> (3.70)

Atx=0 V(0.))=1w0j)=0q"(0j)=1

_

At y=0  Vv*(i,j)=0 w'(i,j)=0q"(,j)=0

The computations are performed using small values of At, in this research
At =0.000125and Ax =0.01Ay = 0.01. Fixing x=2.05 that is i = 41as corresponding
to i=w because v, w and q tend to zero at around Xx=2.0.The velocities
viit L wSt and g/" are computed from equation (3.65), (3.67) and (3.69). This
procedure is repeated until k=320 that is t=0.5. In the calculations the Prandit
number is taken as 0.71 which corresponds to air, magnetic parameter M?=50.0 which

signifies a strong magnetic field. Two cases are considered,

a) When the Grashof number, Gr > 0(5.0) corresponding to convective cooling of
the plate.

b) When the Grashof number, Gr > 0(—5.0) corresponding to convective heating of
the plate.
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3.5 Stability and conver gence

To ensure stability and convergence, a program is run using smaller values of At =
0.0001, 0.000125, 0.0003. It is observed that there were no significant changes in the
results, which ensures that the finite difference method used in the problem will

converge and is stable.

In the next chapter the results are obtained after solving equations (3.65), (3.67), (3.69)
using JAVA program. These results are then presented and discussed.



CHAPTER FOUR
RESULTSAND DISCUSSION

4.1 Introduction

A program was run for various values of velocities and temperature for the finite
difference equations. The velocities v and w at the end of each time step is computed
from equation (3.65 and 3.67) in terms of velocity and temperature at earlier time steps.

Similarly, thetais computed from equation (3.69).

In order to get physical insight into the problem under study, the velocity field and
temperature field are discussed by assigning numerical values to the parameters i.e. the
angle of inclination and non-dimensional numbers (Hall parameter, Eckert number,
Rotational parameter and heat parameter) encountered into the corresponding equations.
To be redlistic, the value of Eckert number is Ec=0.02. The velocities are classified as

primary (v) and secondary (w) along the y and z axes respectively.
4.2 Case 1: Cooling at the Plate

In this case, the Grashof number Gr > 0. Hence the plate is at higher temperature than
the surrounding and taking Gr = 5.0.

a) Primary Velocity



Figure4.1: Primary Velocity Profile (Cooling at the plate)

m |Er |Ec |d |T a
TEST | 10|10 |002|10|02 |0.79
I 20|10 |002|10|02 |079
m 10|20 |002|10|02 |079
IV 10|10 |050| 10|02 |079
V 10|10 |002|50|02 | 079
| VL |10[10 [002]10]0.25|0.79
25 3.0
DistanzeX VIl [10]10 |002]10 02 |087

From Figure 4.1 we note that:

Increase in the rotational parameter Er leads to a decrease in the primary velocity.

This is because the presence of the inclined magnetic field which creates aresistive

force similar to the drag force that acts in the opposite direction of the fluid; thus

causing the velocity of the fluid to decrease.

Increase in the Hall parameter m leads to an increase in the primary velocity. The

Hall parameter increases with the magnetic field strength. Physically, the trgjectories
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of electrons are curved by the Lorentz force. When the Hall parameter is low, their
motion between the two encounters with heavy particles (neutral or ion) is aimost
linear. But if it is high, the electron movements are highly curved. Also, because
effective conductivity decreases with an increase in Hall parameter which reduces

magnetic damping force hence the increase in velocity.

Increase in the heat parameter d leads to a decrease in the primary velocity. Thisis
due to an increase in the internal heat generation and because the plate is cooling, the

rate of energy transfer isincreased therefore the velocity of the fluid will reduce.

Increase in the Eckert number Ec leads to a decrease in the primary velocity.
Increase in Ec means the fluid absorbs more heat energy that is released from
internal viscous forces. This will in turn increase the velocity of the convection

current.

Increase in time t leads to an increase in the primary velocity. With time the flow
gets to the free stream and therefore its velocity increases.

Increaseintheangle a leadsto an increase in the primary velocity.

b) Secondary Velocity
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Figure4.2: Secondary Velocity Profile (Cooling at the plate)

Distance X

3.0
' TEST | 1010 0021002 |0.79

I 20|10 /0021002 |0.79
-0.14

[l 1.0/20 [002|10|02 |[0.79
0154 |

v 10|10 |050|10|02 |0.79
02~

Vv 10} 10 |002|50|02 |0.79
.25

VI 10|10 |002]10|025|0.79
0.3 -

VIl 10|10 |002]10|02 | 087

From figure 4.2 we note that:

Increase in the rotational parameter Er  leads to an increase in the secondary
velocity. This is because the presence of the inclined magnetic field creates a
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resistive force similar to the drag force that acts in the opposite direction of the fluid;
thus causing the velocity of the fluid to increase.

Increase in the Hall parameter m leads to an increase in the secondary velocity |,
because effective conductivity decreases with an increase in Hall parameter which

reduces magnetic damping force hence the increase in secondary velocity.

Increase in the heat parameter d leads to an increase in the secondary velocity. This
is due to an increase in the internal heat generation and because the plate is cooling,

the rate of energy transfer isincreased therefore the velocity of the fluid will reduce.

Increase in the Eckert number Ec leads to a decrease in the secondary velocity.
Increase in Ec means the fluid absorbs more heat energy that is released from
internal viscous forces. This will in turn increase the velocity of the convection

current.

Increase in timet leads to a decrease in the secondary velocity. With time the flow
in the free stream decreases.

Increasein the angle a leads to a decrease in the secondary velocity, increasing the
angle of the magnetic field causes an increase in the Magnetic strength which retards

the fluid motion by affecting the velocity .

b) Temperature profile
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Figure 4.3: Temperature Profile (Cooling at the plate)

1.2

= TEST | 1.0| 1.0 | 002|120/ 02 |0.79

I 20|10 |002/10(02 |0.79

[l 1.0/20 |002|1.0 02 |0.79

v 1010 |050 |10 02 |0.79

\Y, 10/10 |002 |50 02 |0.79

VI 1.0/10 |002|1.0 0.25|0.79
3.0

Distance X VIl 1.0/10 |002|1.0/02 |087

From figure 4.3 we note that:

Increase in the rotational parameter Er leads to an increase in the temperature

profile. Frequency of oscillation increase thus increasing the temperature of the fluid.

Increase in the Hall parameter m leads to a dight effect on the Temperature
profiles, it tends to increase the temperature profile. Thisis due to the increase in the

thermal boundary layer that is
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caused by an increase in Hall parameter. An increase in the thermal boundary layer
decreases the temperature gradient and hence increases the temperature in the fluid.

Increase in the heat parameter d leads to a decrease in the temperature profile. This
is due to an increase in the internal heat generation and because the plate is cooling,

the rate of energy transfer isincreased therefore .

Increase in the Eckert number Ec leads to an increase in the temperature profile.
Increase in EC means the fluid absorbs more heat energy that is released from

internal viscous forces. Thiswill in turn increase the temperature.

Increase in time t leads to an increase in the temperature profile. With time as the
flow gets to the free stream the velocity is increased hence there is increased rate of

energy transfer and therefore the temperature will increase.

Increase in the angle a leads to a decrease in the temperature profile, increasing the
angle of the magnetic field causes an increase in the Magnetic strength decreases the

temperature.

4.3 Case 2: Heating at the Plate

In this case, the Grashof number Gr < 0. Hence the plateis at alower temperature than
the surrounding and taking Gr = -5.0.

a) Primary Velocity
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Figure4.4 :Primary velocity(Heating at the plate)

TEST | 1.0/ 1.0 | 002 1.0 02 |0.79

I 20|10 (0021002 |0.79

[l 1.0/20 |002|1.0 02 |0.79

v 10/10 |050 |10 02 |0.79

\Y, 10/10 |002 |50 02 |0.79

VI 1.0/10 |002|1.0 0.25|0.79

Distance X VIl 10|10 |0.02|10|0.2 |0.87

From figure 4.4 we note that:

Increase in the rotational parameter Er leads to a decrease in the primary velocity.
This is because the presence of the inclined magnetic field which creates a resistive
force similar to the drag force that acts in the opposite direction of the fluid; thus

causing the velocity of the fluid to decrease.
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Increase in the Hall parameter m leads to an increase in the primary velocity. The
Hall parameter increases with the magnetic field strength. Physically, the trgjectories
of electrons are curved by the Lorentz force. When the Hall parameter is low, their

motion between the two encounters with heavy

particles (neutral or ion) isamost linear. But if it is high, the electron movements are
highly curved. Also, because effective conductivity decreases with an increase in
Hall parameter which reduces magnetic damping force hence the increase in

velocity.

Increase in the heat parameter d leads to an increase in the primary velocity. Thisis
due to an increase in the internal heat generation and because the plate is heating, the

rate of energy transfer is decreased therefore the velocity of the fluid will increase.

Increase in the Eckert number Ec leads to a decrease in the primary velocity.
Increase in Ec means the fluid absorbs more heat energy that is released from
internal viscous forces. This will in turn increase the velocity of the convection

current.

Increase in time t leads to an increase in the primary velocity. With time the flow

gets to the free stream and therefore its vel ocity increases.

Increase inthe angle a leads to an increase in the primary velocity. Thisisdueto a
decrease in Lorentz force which reduces the magnetic damping force hence causing
the increase in the primary velocity.

b) Secondary Velocity

52



Figure 4.5: Secondary velocity (Heating at the plate)

Distance X

30
| TEST [ 1.0/1.0 |0.02/1.0|02 |0.79

025+

-0.3

I 20/10 |002/10|02 |0.79

[l 1.0/20 |002|10 02 |0.79

v 10/10 |050 |10 02 |0.79

\Y, 10/10 |002 |50 02 |0.79

VI 1.0/10 |002|1.0|015|0.79

VIl 10/10 |002|1.0 02 |0.87

From figure 4.5 we note that:

Increase in the rotational parameter Er  leads to an increase in the secondary
velocity. This is because the presence of the inclined magnetic field creates a
resistive force similar to the drag force that acts in the opposite direction of the fluid;
thus causing the velocity of the fluid to decrease.
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Increase in the Hall parameter m leads to an increase in the secondary velocity |,
because effective conductivity decreases with an increase in Hall parameter which

reduces magnetic damping force hence the increase in secondary velocity.

Increase in the heat parameter d |eads to an increase in the secondary velocity. This
IS due to an increase in the internal heat generation and because the plate is heating,
the rate of energy transfer is decreased therefore the velocity of the fluid will

increase.

Increase in the Eckert number Ec leads to a decrease in the secondary velocity.
Increase in Ec means the fluid absorbs more heat energy that is released from
interna viscous forces. This will in turn increase the velocity of the convection

current.

Increase in time t leads to a decrease in the secondary velocity. With time the flow

in the free stream decreases.

Increase in the angle a leads to a decrease in the secondary velocity, increasing the
angle of the magnetic field causes an increase in the Magnetic strength which retards
the fluid motion by affecting the velocity .

c) Temperature profile



Figure 4.6: Temperature profile (Heating at the plate)

Theta

1.2+

1.1

m |Er |[Ec |d |t a
TEST | 1.0 1.0 |002| 10|02 |079
I 20100021002 |0.79
I |10/20 |002| 10|02 |0.79
IV |10/10 |050| 10|02 | 0.79
vV 10|10 |002|50|02 |079
— VI |10/10 |0.02|10|025 079
3.0
Digances VIl |10]10 |002|10|02 |087

From figure 4.6 we note that:

Increase in the rotational parameter Er leads to an increase in the temperature

profile. Frequency of oscillation increase thus increasing the temperature of the fluid.

Increase in the Hall parameter m leads to a dight effect on the Temperature

profiles, it tends to increase the temperature profile. Thisis due to the increase in the

thermal boundary layer that is caused by an increase in Hall parameter. An increase
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in the thermal boundary layer decreases the temperature gradient and hence increases
the temperature in the fluid.

Increase in the heat parameter d leads to a decrease in the temperature profile. This
is due to an increase in the internal heat generation and because the plate is heating,

the rate of energy transfer isincreased therefore the temperature decreases.

Increase in the Eckert number Ec leads to an increase in the temperature profile.
Increase in EC means the fluid absorbs more heat energy that is released from

internal viscous forces. Thiswill in turn increase the temperature.

Increase in time t leads to an increase in the temperature profile. With time as the
flow gets to the free stream the velocity is increased hence there is increased rate of

energy transfer and therefore the temperature will increase.

Increase in the angle a leads to a decrease in the temperature profile , increasing the
angle of the magnetic field causes an increase in the Magnetic strength decreases the

temperature.

The conclusions of this research have been done in the next chapter. Finaly,
recommendations have a so been outlined .
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CHAPTER FIVE
CONCLUSION AND RECOMMENDATIONS

This chapter presents conclusion of this research study and recommendation on areas

that require further research.

5.1 CONCLUSION

In all cases considered, the applied magnetic field was resolved into components and the
flow is considered turbulent. The equations governing the flows considered in our study
are non-linear therefore in order to obtain their solutions, an efficient finite difference
scheme has been developed. In order to validate the present results the angle of
inclination is considered to be in 90 degrees. The results are compared to those of

Kinyanjui et al and agree.

It was observed that an increasein mand a leads to an increase in the primary velocity
profiles for both free convection cooling and heating at the plate while an increase in Er,
Ec and t leads to a decrease in the primary velocity profiles for both free convection
cooling and heating at the plate. d leads to a decrease in the primary velocity profiles
for the cooling of the plate and an increase at the heating of the plate. Increasing Er, m
and t leads to an increase in the secondary velocity for both cooling and heating of the
plate while, Ec and a leads to a decrease in the secondary velocity profile leads to a
decrease in the secondary velocity profiles for the cooling of the plate and an increase at
the heating of the plate .

Increase in Er, Ec, t and m leads to an increase in the temperature profiles for both free
convection cooling and free convection heating. The effect of the magnetic field
inclined at an angle is to retard the fluid motion by affecting the velocity and

temperature profiles.
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From this results, it's clear that the parameters in the governing equations affect the

primary, secondary and temperature profile

52 RECOMMENDATIONS
It's recommended that this work be extended by considering the following:

e Variableinclined magnetic field.

e The effects of the parameters in the governing equations on skin friction and rate
of mass transfer.

e Compressiblefluid.

e Variableinjection.

e Variable viscosity and thermal conductivity.
5.3PUBLICATION

Rency, C.M, Kinyanjui, N.M & Kwanza, J.K. (2015). Mhd turbulent flow in presence of
inclined magnetic field past a rotating semi-infinite plate, International Journal

of Engineering Science and Innovation, 4(2),344-360.
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Appendix | Computer code

APPENDIX

Thefollowing isaJAVA program code that was used to obtain the graphs labeled 4.1-

4.6.

i nport java.awt . Col or;

/linmport javax.sw ng. JPanel ;

i mport
i mport
I nport
I nport
I nport

I nport

org.jfree

org.jfree.
org.jfree.
org.jfree.
org.jfree.

org.jfree.

/11 nport

.chart.

chart.

chart.

chart.

chart.

chart.

Chart Fact ory;
Char t Panel ;
JFreeChart;

axi s. Nunmber Axi s;
plot.PlotOrientation;

pl ot . XYPI ot ;

org.jfree.chart.renderer. xy. XYLi neAndShapeRender er;

I nport
I nport
I nport
I nport

I nport

org.jfree.
org.jfree.
org.jfree.
org.jfree.

org.jfree.

dat a. xy. XYDat aset ;

dat a. xy. XYSeri es;

dat a. xy. XYSeri esCol | ecti on;
ui . Appl i cati onFr ane;

ui . Rect angl el nset s;
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import org.jfree.ui.RefineryUilities;

public class Equations extends ApplicationFrane {
protected final double del X=0.01
protected final double del Y=0.01
protected final double del T=0.000125;
protected int K=320;
protected int j=41;
protected int i=41;
protected final int squareM:50;
protected final double U=0.5;
prot ect ed doubl e X=0. 00;
protected double Pr=0.71;
/I the user inputs
protected double mel. O;
prot ect ed doubl e Er=1.0;
protect ed doubl e Ec=0.01;

prot ected double G =5.0;
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prot ected doubl e sigma=1.5;

prot ect ed doubl e al pha=0. 2;

/I primaryVel ocity pv=new primaryVel ocity();

public Equations(String title) {

super(title);

XYDat aset dat aset = createDataset ();
JFreeChart chart = createChart(dataset);
Chart Panel chartPanel = new ChartPanel (chart);

chart Panel . set PreferredSi ze( new
j ava. awt . Di nensi on( 500, 800));

set Cont ent Pane( chart Panel ) ;
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private static XYDataset createDataset() {

XYSeries seriesl = new XYSeries("First");

/| * for (int i=-180; i<=180; i++){
doubl e j=Math.sin(i);
seriesl.add(i,j);

}*l

XYSeri esCol | ecti on dataset = new
XYSeriesCol | ection();

/| dataset.addSeries(seriesl);
/ | dat aset . addSeri es(series2);
dat aset . addSeri es(seriesl);

return dataset;

/**

* Creates a chart.

66



* @param dat aset the data for the chart.

* @eturn a chart.
*/

private static JFreeChart createChart (XYDat aset
dat aset) {

/] create the chart..
JFreeChart chart = ChartFactory. creat eXYLi neChart (

"Line Chart Deno 2", // chart title
"X', Il x axis |abel
"Y', /Il y axis |abel
dat aset, // data
Pl ot Ori entation. VERTI CAL,
true, // include | egend
true, // tooltips
false // urls
)

/1 NOW DO SOVE OPTI ONAL CUSTOM SATI ON OF THE CHART. .

chart. set Backgr oundPai nt ( Col or. white);
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/'l get a reference to the plot for further custom sation...
XYPl ot plot = (XYPlot) chart.getPlot();
pl ot . set Backgr oundPai nt (Col or. | i ght Gray);

pl ot . set Axi sOF f set (new Rect angl el nsets(5.0, 5.0,
5.0, 5.0));

pl ot . set Domai nGi dl i nePai nt (Col or. white);

pl ot . set RangeG i dl i nePai nt (Col or. white);

/ I XYLi neAndShapeRenderer renderer =
( XYLi neAndShapeRenderer) pl ot. get Renderer();

/I renderer. set ShapesVi si bl e(true);
/I renderer. set ShapesFill ed(true);

/'l change the auto tick unit selection to integer units

only. ..

Nunber Axi s rangeAxi s = (Nunber Axi s)
pl ot . get RangeAxi s();
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rangeAxi s. set St andar dTi ckUni t s( Nunber Axi s. creat el nt eger Ti ck
Units());

/1 OPTI ONAL CUSTOM SATI ON COMPLETED

return chart;

/**

* Starting point for the denonstration application.
* @aram args ignored.

*/

public static void main(String[] args) {

Equati ons denb = new Equati ons("Line Chart Denp
2');

deno. pack();
RefineryUilities.centerFrameOnScreen(deno);

deno. set Vi si bl e(true);
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public class primaryVel ocity extends Equations{

[/ public primaryVelocity(){

public primaryVelocity(String n) {
super(n);

/| TODO Aut o- generated constructor stub

/ I Equat i ons eq=new Equations();
secondaryVel ocity sv=new secondaryVel ocity(null);
Tenper at ure t EQ=new Tenperature();

public void equation (int i, int j,int k){

for(i=0; i<=41; i++){
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for(j=0; j<=41; j++){
for (k=0; k<=320; k++){

doubl e eqn=(((-U)*(rule(i+1, j,
kK)-2*rule(i-1, j, k))/(2*del X)) -

(rule(i, j, k)*(rule(i, j+1, k+1)-
rule(i, j-1, k)) / (2*delY)) +

(rule(i+1, j, k)-(2*rule(i, j,
K))+(rule(i-1, j, k))) / (Math. pow(del X, 2)) +

(2*Mat h. pow k,
2)*del X)*((rule(i+1, j, k) - (rule(i-21, j, k))) /
(2*del X)) *

((rule(i+l, j, k) - (rule(i-1, j,
K))) / (2*del X)) +

(2% k*k*
((i*del X)*(i*del X)) *(rule(i+1, j, k)-2*rule(i, j, k)+
rule(i-1, j, k))/ (del x*del X))*

((rule(i+1, j, k)-rule(i-1, j,
k))/ 2*del X) +
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2*Er*sv.rule(i, j, k) +G*rule(i,
i, K)-

squar eMr Mat h. si n(al pha) *Mat h. si n(al pha) *

( (sv.rule(i, j, k)+ ntrule(i,j,
k) *Mat h. si n(al pha) )/ (1+( Mt h. si n(al pha) *Mat h. si n(al pha)
)) ) )+t

rule(i, j, Kk);

}

//lets set the conditions

public int rule (int a,int b, int c){
i nt val ue=0;
if (a==0 && b!=0){
val ue=1;
} el sef

val ue=0;
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}

return val ue;

public class secondaryVel ocity extends Equati ons{
publ i c secondaryVelocity (String k){

super (k) ;

public static void main(String args[]){
secondaryVel ocity sV=new secondaryVel ocity(null);
sV. equation();

}

Equat i ons sEg=new Equations("");

primaryVel ocity pv=new primaryVel ocity("");

public void equation(){
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int 1=0, j=0, k=0;
for (i=0; i<=41; i++){
for (j=0; j<=41; j++){
for (k=0; k<=320; k++){
doubl e eqn;

egn=((-skq. U *(rule(i+1, j, Kk)-
rule(i-1, j, k))/(2*sEq. del X) -

(rule(i, j, kK)Y*(rule(i, j+1,
k+1)-rule(i, j-1, k))/(2*sEq.delY))+

(rule(i+1, j, k)-2*rule(i, j,
kK)+rule(i-1, j, Kk))/(sEqg.del X*sEg. del X) +

(2*k*k*i *sEq. del X) *(rul e(i +1
j, K)y-rule(i-1, j, k)/(2*sEq.del X))*(rule(i+1, j, k)-
rule(i-1, j, k)/(2*sEqg. del X)) +
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(2*(k*i *sEq. del X)*(k*i *sEq. del X)*(rule(i+1, j, k)-
2*rule(i, j, k)+rule(i-1, j, k))/(sEq.del X*sEq. del X)) *

(rule(i+1, j, k)-rule(i-1, j,
k))/ (2*sEq. del X) -

SEq. Er*pv.rule(i, j, k)-

sEqg. squar eMr ( Mat h. si n(sEq. al pha) ) *( Mat h. si n( sEqg. al pha)
)*

((sEq. nmrrule(i, j,
k) *Mat h. si n(sEq. al pha))-rule(i, j,
k))/ (1+sEq. ntsEq. nt ( Mat h. si n(sEq. al pha) ) *( Mat h. si n(sEq. al ph
a))))+

rule(i, j, Kk);

Systemout.println(" "+egn);

public int rule(int i, int j, int k){
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return O;

public class Tenperature extends Equations{

public Tenperature(String k){

super (k) ;
}
Equat i ons t Egq=new Equations("");
primaryVel ocity pV=new prinmaryVel ocity(null);
secondaryVel ocity sV=new secondaryVel ocity(null);
public int rule(int i, int j, int k){

int val ue=0;

if (i==0 && j!=0){

val ue=1;

} el sef
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val ue=0;

}

return val ue;

public void equations(){
int 1=0, j=0, k=0;

doubl e eq;

eq=((-tEq. U *(rule(i+1, j, k)-rule(i-1, j,
kK))/ (2*t Eq. del X) -

(rule(i, j, K)Y*(rule(i, j+1, k+1)-rule(i, j-
1, k))/(2*tEq.delY)) *

(1/tEq.Pr)*( (rule(i+1, j, k)-2*rule(i, j,
k) + rule(i-1, j, k))/(tEqg.del X*tEqg.del X) ) -

(tEq.sigma/tEQ. Pr)*rule(i, j, k) +
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tEq. Ec*(((pV.rule(i+1, j, k)-pV.rule(i-1,]j,
kK))/ (2*tEq. del X)) *((pV.rule(i+1, j, k)-pV.rule(i-1,]j,
k))/ (2*t Eq. del X)) +

((sV.rule(i+1, j, k)-sV.rule(i-1, j,
k))/ (2*tEq.del X))*((sV.rule(i+1, j, k)-sV.rule(i-1, j,
k))/ (2*tEq.del X)))) +

rule(i,j, k);

public class nmai nCl ass{
public static void main(String args[]){

Equat i ons eqn=new Equati ons(null);
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