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Symbol Meaning

B Magnetic flux density,Wb/m2

pC Specific heat, J/kg K
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ABSTRACT

A turbulent incompressible fluid flow past a semi-infinite vertical rotating plate has been
investigated, the flow considered is in the presence of a strong inclined constant magnetic field.
An induced electric current exists due to the presence of the constant magnetic field. The
velocity distribution of the fluid flow past a semi-infinite vertical plate and it's temperature
profiles have been determined. Finally, the effects of various parameters like non-dimensional
numbers and the angle of inclination of the magnetic field on the flow variables have been
determined. The equations governing this problem have been solved numerically using finite
difference method because these equations are non-linear and there exists no analytical method
of solving them. A sample result of the velocity profiles and temperature profiles have been
obtained followed by a graphical representation of the same. It is noted that an increase in the
Hall parameter, time and angle of inclination leads to an increase in the primary velocity while
an increase in the rotational parameter Er and Eckert number  leads to a decrease in the primary
velocity profiles. An increase in the rotational parameter and Hall parameter  leads to an increase
in secondary velocity, Eckert number, time and angle of inclination leads to a decrease in
secondary velocity. Increase in Eckert number, time, Hall parameter and rotational parameter
leads to an increase in temperature profiles.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction to the study

Magnetohydrodynamics (MHD) is the study of dynamics of electrically conducting

fluids. Examples of such fluids include plasmas, liquid metals, and salt water or

electrolytes. The fundamental concept behind MHD is that magnetic fields can induce

currents in a moving conductive fluid, which in turn changes the magnetic field itself

and generates forces on the fluid. The set of equations which describe MHD are a

combination of the Navier-Stokes equations of fluid dynamics and Maxwell's equations

of electromagnetism.

Free convection flows are of great interest in a number of industrial applications such as

fiber and granular insulation and geothermal systems. MHD is attracting the attention of

many authors due to its applications in geophysics; it is applied to study the stellar and

solar structures, interstellar matter and radio propagation through the ionosphere. In

some engineering devices, like MHD pumps, gas, can be ionized and so becomes an

electrical conductor.

1.1.1 Definitions

In this study , several terms have been used and such terms are defined in this section.

1.1.2 Fluid

Fluid is a type of matter which undergoes continuous deformation when some external

force is applied. Fluids are classified as liquids and gases.

1.1.3 Hydromagnetics
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The term hydrodynamics is often applied to the science of incompressible fluids in

motion whereas electromagnetism is the study of the interaction between electric and

magnetic fields. Interaction of hydrodynamics and electromagnetism is known as

hydromagnetics or Magnetohydrodynamics (MHD) which is the study of the motion of

an electrically conducting fluid in presence of a magnetic field.

1.1.4 Unsteady Flow

When flow variables such as velocity and the thermodynamic properties at every point

in space vary with respect to time, the flow is considered to be unsteady. If none of the

fluid flow variables varies with respect to time the flow is steady. In the present study

we consider an unsteady flow.

1.1.5 MHD Free Convection Flow

MHD free convection flow is very important because of its many applications ranging

from engineering to the study of the universe. In free convection, fluid motion results

when body forces act on the fluid in which density gradients exists. The density

gradients may be due to temperature or concentration gradients existing in the fluid,

while the body force is due to gravitational force. In our study we consider free

convection flow due to temperature difference.

1.1.6 Turbulent flow

This is a flow regime characterized by chaotic and stochastic property changes. This

includes low momentum diffusion, high momentum convection, and rapid variation of

pressure and velocity in space and time. Turbulent flows are always unsteady i.e. it

varies continuously with time even though there is a steady downstream motion of the

fluid. Semi-infinite plate is whereby the plate is bound on one end and not bound on the

other end  i.e. the boundary condition imposed on the equations will be defined at one

end and the other end tending to infinity.
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1.1.7 Boundary layer

A boundary layer is a thin fluid layer adjacent to the surface of the body or a solid wall

in which viscous forces affect the flow. Boundary layer theory is important in analyzing

flow problems involving convection transport. For fluid flows over any surface there

may exist three boundary layers namely velocity, thermal and concentration boundary

layer. When fluid particles comes in contact with the surface, they assume the velocity

of the solid surface. These particles retard the motion of the particles in the adjoining

fluid layer, which in turn retards the motion of particles in the next layer and so on, until

at a certain distance from the surface where the effect becomes negligible. This region in

which the velocity gradient is large is referred to as velocity boundary layer. If the fluid

particles come into contact with an isothermal plate, they achieve thermal equilibrium at

the plate’s surface. In turn these particles exchange energy with those of adjacent fluid

layers and a temperature gradient develops in the fluid. The region of the fluid in which

this gradient exists is the thermal boundary layer. Similarly if the concentration of the

species at the surface differ from that in the free stream, a concentration gradient exists.

In this study the velocity and thermal boundary layers have been considered.

1.1.8 Hall current

Hall current is the production of a voltage difference (the Hall voltage) across an

electrical conductor, transverse to an electric current in the conductor and a magnetic

field perpendicular to the current.

1.2 Literature Review

Considerable progress has been made recently in the general theory of MHD flows due

to its wide spread  application on designing of cooling systems with liquid metals,

petroleum industry, purification of crude oil and separation of matter from fluids.



4

The various people who have studied MHD taking into account effects of Hall current,

include; Gupta (1975) discussed effect of Hall current and heat transfer on rotating fluid

on a second grade fluid through a porous medium. Pop.I and Soundalgekar(1974)

analyzed the Hall effect on the flow in rotating frame of reference. Katagiri (1969)

discussed the effects of Hall current on the MHD boundary layer  flow past a semi-

infinite plate. Soundalgekar et al. (1979 ) studied free convection effects on MHD

Stokes problem for a vertical plate and they discovered that skin friction increased

owing to a greater heating of the plate. Chartuverdi (1996) studied the finite difference

of MHD Stokes problem for a vertical infinite plate in a dissipative heat generating fluid

with Hall and Ion-slip current. Soundalgekar et al (1979) analyzed the Finite difference

analysis of free convection effects on Stokes problem for a vertical plate in a dissipative

fluid with constant heat flux. Takhar and Soundalgekar, (1997) investigated the forced

and free convective flow past a semi-infinite vertical plate and also did a study on MHD

and heat transfer over a semi-infinite plate under a transverse magnetic field. Kinyanjui

and Uppal (1998) studied the MHD Stokes problem for a vertical infinite plate in a

dissipative rotating fluid with Hall current and they also investigated the effect of both

Hall and Ion-slip currents on the flow of heat generating rotating fluid system. They

observed that for an Eckert value of 0.02, there was a decrease in the primary velocity

profile with an increase in rotational parameter but in the case of secondary velocity

profiles, there was initially a decrease and as the distance from the plate increased, the

secondary velocity profile increased. They also observed that an increase in Hall

parameter has no effect on the temperature profile but an increase in time causes an

increase in the temperature profiles. Kinyanjui et al. (1999) studied the Finite difference

analysis of free convection effects on MHD problem for a vertical plate in a dissipative

rotating fluid system with constant heat flux and Hall current. Kinyanjui et al. (2001)

studied Magneto hydrodynamic free convection heat and mass transfer of a heat

generating fluid past an impulsively started infinite vertical porous plate with Hall

current and radiation absorption. MHD Stokes free convection flow past an infinite
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vertical porous plate subjected to constant heat flux with ion-slip current and radiation

absorption was investigated by Kinyanjui, Kwanza and Uppal, (2003). Kinyanjui et al.

(1999) investigated the Finite difference analysis of MHD Stokes problem for a vertical

infinite plate in a dissipative fluid with constant heat and Hall current. Chamkha (2004)

analyzed the unsteady MHD convective  heat and mass transfer past a semi-infinite

vertical permeable moving plate with heat absorption. The presence of heat absorption

(thermal sink) effects had the tendency to reduce the fluid temperature. Seth et al (2009)

investigated MHD couette flow in a rotating system in the presence of an inclined

magnetic field, they observed that there arises modified hydromagnetic Ekman boundary

layer for large values of Rotational parameter and modified Hartmann boundary layer

for large values of Hartman number near the moving plate and that the angle of

inclination accelerates primary and secondary flows whereas it reduces primary and

secondary induced magnetic fields. Rotation induces incipient reverse flow in primary

flow direction near the stationary plate. Kinyajui et al (2012) analyzed the

hydromagnetic turbulent flow of a rotating system past a semi-infinite vertical plate with

Hall current, they observed that the parameters in the governing equations affects the

velocity, temperature and concentration profiles. Consequently their effect alters the skin

friction and the rate of mass transfer. Unsteady hydromagnetic Hartmann or Couette

flow in a rotating system in the presence of an inclined magnetic field considering

different aspects of the problem was investigated by Ghosh (1991).Seth et al (2012)

presented their work on effects of Hall current and rotation on unsteady MHD Couette

flow in the presence of an inclined magnetic field. They found out that Hall current and

rotation tend to accelerate fluid velocity in both the primary and secondary flow

directions. Magnetic field has retarding influence on the fluid velocity in both the

primary and secondary flow directions. Angle of inclination of magnetic field has

accelerating influence on the fluid velocity in both the primary and secondary flow

directions. An investigation on Stokes problem of a convective flow past a vertical

infinite plate in a rotating system in presence of variable magnetic field was carried out
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by Mutua et al (2013), they observed that all of the parameters affect the primary

velocity, secondary velocity and temperature. Consequently their effect alters the rate of

heat transfer and skin friction along the x and y axes. MHD turbulent flow problems

with inclined magnetic field have received little attention and this was the motivation

behind this study. In this study a turbulent flow of an incompressible fluid past a rotating

semi-infinite plate with inclined magnetic field is considered.

1.3 Statement Of The Problem

In the studies cited above, turbulent flow problems with inclined magnetic field have not

been investigated. A hydromagnetic turbulent fluid flow past a rotating semi-infinite

plate is considered. A strong constant magnetic field 0H is applied in a direction

inclined to the flow at an angle  as shown in the figure 1.1. In the presence of a strong

magnetic field Hall current significantly affect the flow. The induced magnetic field will

be assumed to be negligible. The assumption is justified because the magnetic Reynolds

number is very small. This research covers a study on the effects of non-dimensional

numbers and the angle of inclination on the flow variables. As the partial differential

equations governing this problem are non-linear they are solved numerically using finite

difference method

y-axis

u0

α H0

x-axis

z-axis
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Figure 1.1 Geometry of the problem

1.4 Justification

Fluid mechanics has become an essential part of diverse fields such as Medicine,

Meteorology, Astronomy and oceanography as well as traditional engineering

disciplines. Many devices that use principles encountered in MHD do not have

mechanical parts and hence the devices can be sealed completely and be used in hostile

environments where human may not be able to operate for example in the presence of

strong radioactive material and places with too high or too low temperatures where there

is no oxygen. MHD offers the prospects of improved power stations efficiency and

cheap light weight sources of power for space vehicles.The study of fluids past a rotating

system has received considerable interest due to its application in practical situations

like meteorology, geophysics and fluid dynamics also strong magnetic fields are used to

confine rings or columns of hot plasma. Liquid metals are driven through a magnetic

field in order to generate electricity.

The early works on fluid dynamics is mostly on laminar flows with little devotion on

turbulent flows but most flows of engineering importance are turbulent, for instance

when large objects such as ships, automobiles, aircrafts move through fluids and the

flow of the fluid past them is always turbulent. Turbulence also occurs when a fluid

moves past enclosures such as fans, pumps, Ducts and pipes.

Similarly, a transverse variable magnetic field is taken into consideration. Less

emphasis has been given to the problem on turbulent fluid flow in presence of inclined

magnetic field, hence, the main objective of the present study aimed at investigating the

effects of non-dimensional numbers and the angle of inclination on the velocity profile

and temperature profile.
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1.5 Null Hypothesis

Non-dimensional numbers and the angle of inclination have no effects on the primary

velocity profiles, secondary velocity profiles and temperature profiles .

1.6 Objectives

1.6.1 General objective

To determine the effects of various flow parameters on the flow variables of the

hydromagnetic turbulent fluid flow in presence of inclined magnetic field.

1.6.2 Specific objectives

i. To determine the velocity distribution of the fluid flow past a semi-infinite

vertical plate

ii. To determine the temperature profiles of the fluid flow past a semi-infinite

vertical plate due to velocity variations.

iii. To investigate the effects of non-dimensional numbers and the angle of

inclination of the magnetic field on the flow variables.

In the next chapter the general equations governing the flow are discussed. The

assumptions for the flow are also outlined and the method of solving these governing

equations has been discussed.
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CHAPTER TWO

GOVERNING EQUATIONS

2.1 Introduction

In this chapter, equations governing the MHD turbulent flow of an incompressible fluid

are discussed taking into account the assumptions made. The equations considered are

mass conservation equation, momentum conservation equation and energy equation.

2.1.1 Assumptions

In order to describe the phenomenon mathematically the following approximations and

assumptions are made.

1. The flow velocity is much smaller compared to that of light 1
2

2


c

q

2. Flow is incompressible

3. Fluid is of constant thermal conductivity, constant electrical conductivity and

constant coefficient of viscosity.

4. There is no external applied electrical field that is E=0

5. Force e E due to electric field is negligible compared with the force J  B due

to magnetic field.

6. There is no chemical reaction.

2.2 Equations governing the flow

The governing equations of MHD are obtained from the combination of two areas,

electromagnetic theory and fluid mechanics. The equations governing the fluid flows of
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any kind are based on the general laws of conservation of mass, momentum and energy.

The flow is subjected to a constant magnetic field inclined at an angle α to the flow.

According to the configuration of the flow  model, the physical variables governing the

flow are functions of x , y and t.

2.2.1 Conservation Equations

The turbulent flows are irregular and there are rapid fluctuations of velocity in the flow

variable with respect to time and location. Mean value provides a basis for studying the

spatial variation.

For a general flow say v of a turbulent fluid motion, can be given as v v v  Where v

is the mean value and v the fluctuating component.

The Reynolds rules of averaging about varying quantities have been used. If f and g

are two flow variables where f f f   and g g g  with f and g as mean

values, f  and g  turbulent fluctuations then

f f , f g f g   , Cf C f where C is a constant f g f g ,

fg f g ,
f f

S S

 


 
where S is an independent variable.

Mean value of fluctuation is equal to zero, i.e. 0f g  

The Reynolds averaging rules have been used to transform equations governing laminar

flow to turbulent flows.

2.2.2 Equation of continuity

Generally the equation of continuity is derived from the process where the rate at which

mass enters a system is equal to the rate at which mass leaves the system. The continuity
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equation combines the law of conservation of mass and that of the transport theorem.

The continuity equation originates from the assumption that mass under normal

conditions is neither created nor destroyed and that the flow is continuous. Therefore the

mass conservation equation  is expressed as ;

(2.1)

where  and û are the  density and the velocity of the fluid respectively.

which can be expressed in tensor form as

  0







i
i

u
xt




(2.2)

Consider time average of equation (2.2)

  0
i

u u
t x




    
 

(2.3)

0
i i

u u

t x x

     
  

  

(2.4)

Applying Reynolds rule of averages

  0ˆ. 



u
t



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0
i i

u u

t x x

     
  

  

(2.5)

This yield

  0i
i

u
t x




 
 

 

(2.6)

For incompressible flow

0i

i

u

x





, since the density is a constant

(2.7a)

For this kind of flow the continuity equation is given as

0



x

u

(2.7b)

On integration Equation (2.7b) reduces to 0uu  which represents a constant injection

in the negative direction of the x-axis.

2.2.3 Equation of motion

The equation of conservation of momentum is derived from the Newton's second law of

motion, which states that the time rate of change of momentum of a body is equal to the

external force applied to the body. This external force are surface forces (e.g. viscous

force) and body forces (e.g. gravitational, centrifugal and magnetic force). Surface
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forces are due to interaction between the forces e.g. viscous forces and matter in contact

with it and the body forces on the other hand are forces which act on the body from a

distance.

The equation of motion in component form is given by;

2i i
j i i

j i

u u p
u u F

t x x
 
   

          

(2.8)

The first term is the temporal acceleration while the second term is the convective

acceleration. On the right hand side, the first term the pressure gradient, second term is

the force due to viscosity and the third is the body force.

The equation (2.8) in terms of time average quantities yields;

         2
i i j j i i i i i

j i

u u u u u u p p u u F
t x x

 
                      

(2.9)

Or

2 2i i i i i i
j j j j i i i

j j j j i i

u u u u u u p p
u u u u u u F

t t x x x x x x
  
                                        

(2.10)

Taking the time average on both sides
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2 2i i i i i i
iij j j j i

j j j j i i

u u u u u u p p
u u u u u u F

t t x x x x x x
  
                                        

(2.11)

Simplifying equation (2.11) yields;

2i i i
j j i i

j j i

u u u p
u u u F

t x x x
 
                

(2.12)

From continuity equation for incompressible flow;

0i

i

u

x





Thus 0j

i
j

u
u

x


 


and 0j
i

j

u
u

x


 


Adding j
i

j

u
u

x





on left sides of (2.12) and using j i ji
j i

j j j

u u uu
u u

x x x

     
  

yields

2 i ji i
j i i

j i i

u uu u p
u u F

t x x x
  
     

            

(2.13)

Since the magnetic force has been considered, then equation (2.13)  becomes,

 BJF
x

uu
u

x

p

x

u
u

t

u
i

i

ji
i

ij

i
j

i 
























 ''

2 

(2.14)
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In free convectional fluid flow, the body force is given  by gFig  . The pressure

gradient 









x


in the y-direction results from the change in elevation up the plate thus

g
y 





. The electromagnet force may be written as BJEF ee
ˆˆ   in most

flows problems the electrostatic force Ee is negligibly small as compared to the

electromagnetic force BJ ˆˆ  hence BJFe
ˆˆ 

)ˆˆ(
*

'*'*

2*

*2

2*

*2

*

*
*

*

*
*
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*
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x
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u
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
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
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





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
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











 

(2.15)

Expressing the density difference terms   of the volume coefficient of  expansion

 ,   where )( **








TT




therefore, the equation of momentum in component form is given by;

)
ˆˆ

()( **
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*

*
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
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
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





(2.16)

the y and z components are given by;



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

(2.17)
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
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
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


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
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

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

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(2.18)

Where *)ˆˆ(
y

BJ  *)ˆˆ(
z

BJ  are the y and z components for BJ ˆˆ 

When the magnetic Reynolds number is small, induced magnetic field is negligible in

comparison with the applied magnetic field, so that

cosˆ
0HBx  sinˆ

0HBy  and 0ˆ zB

(2.19)

If ( zyx JJJ ˆ,ˆ,ˆ ) are components of electric current density J, the equation of conservation

of electric charge 0ˆ.  J gives,

xĴ constant

(2.20)

Since the plate is electrically non-conducting , 0ˆ xJ at the plate and hence zero

everywhere in the flow. 0ˆ zB due to the geometric nature of this flow.

For electrically conducting fluid at rest the current density is given by;

EJ ˆˆ 

(2.21)

In moving electrically conducting fluids the magnetic field induces a voltage in the

conductor of magnitude Bu ˆˆ 



17

Ohms Law neglecting hall effect yields,

)ˆˆˆ(ˆ BuEJ  

(2.22)

Neglecting polarization effect, the electric potential Ê becomes 0ˆ E

therefore equation (2.22) reduces to )ˆˆ(ˆ BuJ   and the components for J (the electric

current density), B (the magnetic induction) and u (velocity) are given as

),,0()0,ˆ,ˆ(ˆ)ˆ,ˆ,0(ˆ wvuBBBJJJ yxzy 

(2.23)

The term Bq ˆˆ  in Equation (2.22) yields

kBvjBw

BB

wv

kji

Bu xx

yx

ˆˆˆˆ

0

0

ˆˆˆ
ˆˆ 

(2.24)

Thus from equation (2.24)

xzxy BvJBwJ ˆˆˆˆ  

(2.25)

The Lorentz force becomes
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kJBjJB

BB

JJ

kji

BJ yxzx

yx

zy
ˆˆ

0

0

ˆˆˆ
ˆˆ 

(2.26)

but  sinˆ
0HB ex 

Therefore, substituting *)ˆˆ(
y

BJ  *)ˆˆ(
z

BJ  in equations (2.17) and (2.18) yields;

z
e J
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*2

2*

*2
**

*

*
*

*

*
*

0*

*




 





































(2.27)
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(2.28)

where g is the acceleration due to gravity, * is the volumetric coefficient of thermal

expansion **,TT are the temperature in the boundary layer and free- stream

respectively,  the fluid density,  is the kinematic viscosity,
zy

JandJ ˆˆ are the

current density components and ** wandv are the components in the Y and Z direction.

The Coriolis effect is the apparent deflection of moving objects from a straight path

when they are viewed from a rotating frame of reference. The Coriolis effect is caused

by the Coriolis force, which appears in the equation of motion in a rotating frame of

reference. Initially both the plates and the fluid are in a state of solid rotation with

constant angular velocity Ω about the x-axis. The
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vector formula for the magnitude and direction of the Coriolis acceleration is given by;

kvjw

wvu

kji

u ˆ2ˆ2002

ˆˆˆ

ˆ2

0



(2.29)

From equation (2.29) the equation of momentum should now appear as follows;

z
e J
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v
TTgw
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t

v


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(2.30)
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(2.31)

2.2.4 Energy Equation

The equation of conservation of  energy is derived from the First Law of

Thermodynamics, which states that energy is conserved in any process involving a

thermodynamic system and its surroundings;
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In this study, all the variables with the superscript(*) star will represent the dimensional

quantities.

In the next chapter, a turbulent flow of an incompressible electrically conducting fluid

past a semi-infinite plate which is subjected to a constant magnetic field applied at an

angle to the plate is considered. The mathematical analysis of the flow problem and the

corresponding initial and boundary conditions are given. The dimensional equations are

non-dimensionalised and then later solved by the finite difference method.
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CHAPTER THREE

MATHEMATICAL FORMULATION AND METHODOLOGY

3.1 Introduction

In this chapter, a turbulent flow of an incompressible electrically conducting fluid past a

semi-infinite plate which is subjected to a constant magnetic field applied at an angle to

the plate is considered. In addition the effect of Hall current is taken into account. The

mathematical analysis of the flow problem and the corresponding initial and boundary

conditions are given. The non-linear equations are solved by the finite difference

method. Expressions for the velocity and  temperature at the plate have been obtained.

The choice of the coordinates is such that the y-axis is taken along the plate in the

vertical direction and the x-axis is taken normal to the plate.

Initially temperature of the fluid and the plate are assumed to be the same. At t>0 , the

velocity of the fluid is u0. The fluid is turbulent therefore there is a large magnetic field

this implies Hall current affects the flow. The fluid in the plate is in a state of rigid

rotation. sin0H

u0 cos0H 0H

α

x-axis

z-axis

Figure 3.1 resolving the components of the inclined magnetic field
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The Maxwell's equations are given as:

0ˆ.  u

(3.1)

JB e




(3.2)

t

B
E








(3.3)

0.  B


(3.4)

Ohm’s law for a moving conductor taking Hall current  into account is given by









 e

e
e

ee p
e

HuEHJ
H

J .
1ˆˆˆˆˆˆ

00
0 




(3.5)

where eeeee pe ,,,,,,  are  the electrical conductivity, the magnetic permeability,

the cyclotron frequency, the collision time,  the electric charge, the number density of

electron,  the electron pressure respectively.

For partially ionized fluids the electron pressure gradient may be neglected. In this case,

a short circuit problem in which the applied electric field E=0 is considered. Thus

neglecting pressure equation (3.5) becomes ;
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   00
ˆˆˆˆˆ HuHj

H
j e

ee  


(3.6)

 
0cossin
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ˆˆˆ
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ˆ,ˆ

0000
0 


 HH
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kji
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jj

kji

H

m
jj ezyzy 

(3.7)

solving (3.7) and equating  the y and z components yields;

)sin()sinˆ(ˆ
0  wHjmj ezy 

(3.8)

)sin()sinˆ(ˆ
0  vHjmj eyz 

(3.9)

calculating y
ĵ and z

ĵ we have;




22
0
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)sin(sinˆ
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y 




(3.10)




22
0

sin1

)sin(sinˆ
m

vmwH
j e

z 




(3.11)

where eem  is the Hall current
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Replacing the values for equation (3.10) and (3.11) back to equation (2.30) and (2.31)

respectively yields;
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Energy equation for Turbulent flow

2

p
i i i

T T T J
c k

t x x x
 


      
            

(3.14)

For incompressible flow the temperature and density fluctuations are negligible.

The initial and boundary conditions for this study take the form;

0* t 0),,(0),,(0),,( ************  tyxTtyxwtyxv

0* t (3.15)

wTtyTtywutyv  ),,0(0),,0(),,0( ******
0

***

0),,( ***  tyv 0),,( ***  tyw 0),,( ***  tyT

In this study, all the variables with the superscript(*) will represent the dimensional

quantities.

3.2 Non-Dimensionalisation
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Dimensional analysis is a method by which  the number of independent variablesn the

problem is reduced into dimensionless groups. It therefore describes a natural

phenomenon by a dimensionally correct equation with certain variables which affects

the phenomenon. The following fundamental primary dimensions namely mass (m),

length (l), time (t) and temperature (T) are used. The dimensions of all other physical

variables in this study can be obtained in terms of these basic dimensions.

In this study non- dimensionalisation is based on the following non- dimensional

quantities
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(3.16)

where  is the characteristic length and U the free stream velocity.

3.2.1 Equation of continuity

For this particular fluid flow the equation of continuity is given by

0
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(3.17)

Non-dimensionalising the continuity equation yields

2U
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3.2.2 Equation of conservation of momentum

The equation of conservation of momentum in this type of flow along the y-axis and the

z-axis respectively is given by;
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Adopting the Boussinessque approximation
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Taking that l kz where k is the von Karman constant so we have
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Non-dimensionalising the momentum equation along the y -axis
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replacing (3.33),(3.34) and (3.35) back to equation (3.31) yields
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Non-dimensionalising the momentum equation along the z-axis
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replacing(3.38), (3.39) and (3.40) back to the equation (3.32) yields
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dividing (3.41 )through by
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Non-dimensionalising the energy equation
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Substituting (3.43) and (3.44) in (3.14) yields
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The final set of non-dimensional equations are;
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3

2
0

U

B 



is the magnetic parameter which is M2.

The plate is impulsively started and therefore the velocity at x=0 changes from zero at t

< 0 to 1

The initial and boundary conditions in non-dimensional form become

at t≤0 0)0,,( yxv 0)0,,( yxw 0)0,,( yx

(3.50)

at t>0 1),,0( tyv 0),,0( tyw 1),,0( ty

0),,(  tyv 0),,(  tyw 0),,(  ty (3.51)

3.3 Non-dimensional numbers

The non-dimensionalised equations above contain the following dimensionless numbers.

3.3.1 Prandtl Number (Pr)

The Prandlt number (Pr) is the ratio of fluid properties controlling the velocity and the

temperature distributions. It is the ratio of viscous force to thermal force.
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Pr pc


 =




(3.52)

where  dynamic viscosity,  kinematic viscosity,  thermal diffusivity,  thermal

conductivity and pc specific heat.

In heat transfer involving convection, warm and cool particles mix because of their

pressure  difference, local heat conduction occurs. This mixing also involves momentum

transfer. Prandtl Number is a measure of the relative ability of the fluid to allow

momentum diffusion and thermal diffusion.

3.3.2 Grashof number (Gr)

This number usually occurs in natural convection problems and is defined as

3

T T
Gr gB

U
 

(3.53)

where g acceleration due to earth's gravity,  coefficient of thermal expansion, T

surface temperature, T bulk temperature, U vertical length and  kinematic viscosity.

This gives the relative important of buoyancy force to viscous force.
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3.3.3 Eckert Number (Ec)

It provides a measure of the kinetic energy of the flow relative to the enthalpy difference

across the thermal boundary layer. It represents the conversion of kinetic energy into

internal energy by work that is done against the viscous fluid stresses.

 
2

c
p

U
E

c T T




(3.54)

where U flow velocity, pc specific heat and TT difference between wall

temperature and local temperature.

3.3 Method of solution

Equations (3.47), (3.48) and (3.49) that govern the MHD flow are non-linear and there

exist no  analytical method for solving them. Numerical solutions of the equations are

generated by using the finite difference method. The equations are solved subject to the

initial and boundary conditions.The derivatives are approximated with the implicit

forward difference scheme.



36

3.3.1 The finite difference method

The stencil for the most common explicit method is shown in Figure 3.2.

Figure 3.2 Stencil for the explicit method

The expressions for the averages are given as follows;
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The finite difference equations corresponding to the governing equations will be given

as;

Equation of momentum in the y direction:
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Equation of momentum in the z direction:
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The energy equation in finite difference form is;
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3.4 Equation governing the flow in finite difference form

The governing equations describing the unsteady MHD turbulent flow of an

incompressible, electrically conducting and viscous Newtonian fluid past a rotating

semi-infinite plate in finite difference form were given subject to their initial and

boundary conditions as;

The equation of momentum along the y-axis is
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making 1
,
k
jiv in Equation (3.64) the subject of the formula:
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The equation of momentum along the z-axis is
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making 1
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Equation of Energy is
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making 1
,
k
ji in Equation (3.68) the subject of the

formula:
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Subject to the initial and boundary conditions

At 0x 1),0(0 jv 0),0(0 jw 1),0(0 j

At 0y 0),(0 jiv 0),(0 jiw 0),(0 ji

(3.70)

At x = 0 1),0( jv k 0),0( jwk 1),0( jk

At y=0 0),( jiv k 0),( jiwk 0),( jik

The computations are performed using small values of t , in this research

000125.0t and 01.001.0  yx . Fixing 05.2x that is 41i as corresponding

to i because v, w and  tend to zero at around 0.2x .The velocities

1
,

1
,

1
, ,  k

ji
k

ji
k

ji andwv  are computed from equation (3.65), (3.67) and (3.69). This

procedure is repeated until 320k that is 5.0t . In the calculations the Prandlt

number is taken as 0.71 which corresponds to air, magnetic parameter M2=50.0 which

signifies a strong magnetic field. Two cases are considered,

a) When the Grashof number, )0.5(0Gr corresponding to convective cooling of

the plate.

b) When the Grashof number, )0.5(0 Gr corresponding to convective heating of

the plate.
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3.5 Stability and convergence

To ensure stability and convergence, a program is run using smaller values of t =

0.0001, 0.000125, 0.0003. It is observed that there were no significant changes in the

results, which ensures that the finite difference method used in the problem will

converge and is stable.

In the next chapter the results are obtained after solving equations (3.65), (3.67), (3.69)

using JAVA program. These results are then presented and discussed.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

A program was run for various values of velocities and temperature for the finite

difference equations. The velocities v and w at the end of each time step is computed

from equation (3.65 and 3.67) in terms of velocity and temperature at earlier time steps.

Similarly, theta is computed from equation (3.69).

In order to get physical insight into the problem under study, the velocity field and

temperature field are discussed by assigning numerical values to the parameters i.e. the

angle of inclination and non-dimensional numbers (Hall parameter, Eckert number,

Rotational parameter and heat parameter) encountered into the corresponding equations.

To be realistic, the value of Eckert number is Ec=0.02.  The velocities are classified as

primary (v) and secondary (w) along the y and z axes respectively.

4.2 Case 1: Cooling at the Plate

In this case, the Grashof number Gr > 0. Hence the plate is at higher temperature than

the surrounding and taking Gr = 5.0.

a) Primary Velocity
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Figure 4.1: Primary Velocity Profile (Cooling at the plate )

From Figure 4.1 we note that:

Increase in the rotational parameter Er leads to a decrease in the primary velocity.

This is because the presence of the inclined magnetic field which creates a resistive

force similar to the drag force that acts in the opposite direction of the fluid; thus

causing the velocity of the fluid to decrease.

Increase in the Hall parameter m leads to an increase in the primary velocity. The

Hall parameter increases with the magnetic field strength. Physically, the trajectories

m Er Ec  T 

TEST 1.0 1.0 0.02 1.0 0.2 0.79

II 2.0 1.0` 0.02 1.0 0.2 0.79

III 1.0 2.0 0.02 1.0 0.2 0.79

IV 1.0 1.0 0.50 1.0 0.2 0.79

V 1.0 1.0 0.02 5.0 0.2 0.79

VI 1.0 1.0 0.02 1.0 0.25 0.79

VII 1.0 1.0 0.02 1.0 0.2 0.87
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of electrons are curved by the Lorentz force. When the Hall parameter is low, their

motion between the two encounters with heavy particles (neutral or ion) is almost

linear. But if it is high, the electron movements are highly curved. Also, because

effective conductivity decreases with an increase in Hall parameter which reduces

magnetic damping force hence the increase in velocity.

Increase in the heat parameter  leads to a decrease in the primary velocity. This is

due to an increase in the internal heat generation and because the plate is cooling, the

rate of energy transfer is increased therefore the velocity of the fluid will reduce.

Increase in the Eckert number Ec leads to a decrease in the primary velocity.

Increase in Ec means the fluid absorbs more heat energy that is released from

internal viscous forces. This will in turn increase the velocity of the convection

current.

Increase in time t leads to an increase in the primary velocity. With time the flow

gets to the free stream and therefore its velocity increases.

Increase in the angle  leads to an increase in the primary velocity.

b) Secondary Velocity
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Figure 4.2: Secondary Velocity Profile (Cooling at the plate )

From figure 4.2 we note that:

Increase in the rotational parameter Er leads to an increase in the secondary

velocity. This is because the presence of the inclined magnetic field creates a

m Er Ec  T 

TEST 1.0 1.0 0.02 1.0 0.2 0.79

II 2.0 1.0` 0.02 1.0 0.2 0.79

III 1.0 2.0 0.02 1.0 0.2 0.79

IV 1.0 1.0 0.50 1.0 0.2 0.79

V 1.0 1.0 0.02 5.0 0.2 0.79

VI 1.0 1.0 0.02 1.0 0.25 0.79

VII 1.0 1.0 0.02 1.0 0.2 0.87
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resistive force similar to the drag force that acts in the opposite direction of the fluid;

thus causing the velocity of the fluid to increase.

Increase in the Hall parameter m leads to an increase in the secondary velocity ,

because effective conductivity decreases with an increase in Hall parameter which

reduces magnetic damping force hence the increase in secondary velocity.

Increase in the heat parameter  leads to an increase in the secondary velocity. This

is due to an increase in the internal heat generation and because the plate is cooling,

the rate of energy transfer is increased therefore the velocity of the fluid will reduce.

Increase in the  Eckert number Ec leads to a decrease in the secondary velocity.

Increase in Ec means the fluid absorbs more heat energy that is released from

internal viscous forces. This will in turn increase the velocity of the convection

current.

Increase in time t leads to a decrease in the secondary velocity. With time the flow

in the free stream decreases.

Increase in the angle  leads to a decrease in the secondary velocity, increasing the

angle of the magnetic field causes an increase in the Magnetic strength which retards

the fluid motion by affecting the velocity .

b) Temperature profile
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Figure 4.3: Temperature Profile (Cooling at the plate )

From figure 4.3 we note that:

Increase in the rotational parameter Er leads to an increase in the temperature

profile. Frequency of oscillation increase thus increasing the temperature of the fluid.

Increase in the Hall parameter m leads to a slight effect on the Temperature

profiles, it tends to increase the temperature profile. This is due to the increase in the

thermal boundary layer that is

m Er Ec  t 

TEST 1.0 1.0 0.02 1.0 0.2 0.79

II 2.0 1.0` 0.02 1.0 0.2 0.79

III 1.0 2.0 0.02 1.0 0.2 0.79

IV 1.0 1.0 0.50 1.0 0.2 0.79

V 1.0 1.0 0.02 5.0 0.2 0.79

VI 1.0 1.0 0.02 1.0 0.25 0.79

VII 1.0 1.0 0.02 1.0 0.2 0.87
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caused by an increase in Hall parameter. An increase in the thermal boundary layer

decreases the temperature gradient and hence increases the temperature in the fluid.

Increase in the heat parameter  leads to a decrease in the temperature profile. This

is due to an increase in the internal heat generation and because the plate is cooling,

the rate of energy transfer is increased therefore .

Increase in the  Eckert number Ec leads to an increase in the temperature profile.

Increase in Ec means the fluid absorbs more heat energy that is released from

internal viscous forces. This will in turn increase the temperature.

Increase in time t leads to an increase in the temperature profile. With time as the

flow gets to the free stream the velocity is increased hence there is increased rate of

energy transfer and therefore the temperature will increase.

Increase in the angle  leads to a decrease in the temperature profile, increasing the

angle of the magnetic field causes an increase in the Magnetic strength decreases the

temperature.

4.3 Case 2: Heating at the Plate

In this case, the Grashof number Gr < 0. Hence the plate is at a lower temperature than

the surrounding and taking Gr = -5.0.

a) Primary Velocity
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Figure 4.4 :Primary velocity(Heating at the plate )

From figure 4.4 we note that:

Increase in the rotational parameter Er leads to a decrease in the primary velocity.

This is because the presence of the inclined magnetic field which creates a resistive

force similar to the drag force that acts in the opposite direction of the fluid; thus

causing the velocity of the fluid to decrease.

M Er Ec  t 

TEST 1.0 1.0 0.02 1.0 0.2 0.79

II 2.0 1.0` 0.02 1.0 0.2 0.79

III 1.0 2.0 0.02 1.0 0.2 0.79

IV 1.0 1.0 0.50 1.0 0.2 0.79

V 1.0 1.0 0.02 5.0 0.2 0.79

VI 1.0 1.0 0.02 1.0 0.25 0.79

VII 1.0 1.0 0.02 1.0 0.2 0.87
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Increase in the Hall parameter m leads to an increase in the primary velocity. The

Hall parameter increases with the magnetic field strength. Physically, the trajectories

of electrons are curved by the Lorentz force. When the Hall parameter is low, their

motion between the two encounters with heavy

particles (neutral or ion) is almost linear. But if it is high, the electron movements are

highly curved. Also, because effective conductivity decreases with an increase in

Hall parameter which reduces magnetic damping force hence the increase in

velocity.

Increase in the heat parameter  leads to an increase in the primary velocity. This is

due to an increase in the internal heat generation and because the plate is heating, the

rate of energy transfer is decreased therefore the velocity of the fluid will increase.

Increase in the  Eckert number Ec leads to a decrease in the primary velocity.

Increase in Ec means the fluid absorbs more heat energy that is released from

internal viscous forces. This will in turn increase the velocity of the convection

current.

Increase in time t leads to an increase in the primary velocity. With time the flow

gets to the free stream and therefore its velocity increases.

Increase in the angle  leads to an increase in the primary velocity. This is due to a

decrease in Lorentz force which reduces the magnetic damping force hence causing

the increase in the primary velocity.

b) Secondary Velocity
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Figure 4.5:Secondary velocity (Heating at the plate )

From figure 4.5 we note that:

Increase in the rotational parameter Er leads to an increase in the secondary

velocity. This is because the presence of the inclined magnetic field creates a

resistive force similar to the drag force that acts in the opposite direction of the fluid;

thus causing the velocity of the fluid to decrease.

m Er Ec  t 

TEST 1.0 1.0 0.02 1.0 0.2 0.79

II 2.0 1.0` 0.02 1.0 0.2 0.79

III 1.0 2.0 0.02 1.0 0.2 0.79

IV 1.0 1.0 0.50 1.0 0.2 0.79

V 1.0 1.0 0.02 5.0 0.2 0.79

VI 1.0 1.0 0.02 1.0 0.15 0.79

VII 1.0 1.0 0.02 1.0 0.2 0.87
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Increase in the Hall parameter m leads to an increase in the secondary velocity ,

because effective conductivity decreases with an increase in Hall parameter which

reduces magnetic damping force hence the increase in secondary velocity.

Increase in the heat parameter  leads to an increase in the secondary velocity. This

is due to an increase in the internal heat generation and because the plate is heating,

the rate of energy transfer is decreased therefore the velocity of the fluid will

increase.

Increase in the  Eckert number Ec leads to a decrease in the secondary velocity.

Increase in Ec means the fluid absorbs more heat energy that is released from

internal viscous forces. This will in turn increase the velocity of the convection

current.

Increase in time t leads to a decrease in the secondary velocity. With time the flow

in the free stream decreases.

Increase in the angle  leads to a decrease in the secondary velocity, increasing the

angle of the magnetic field causes an increase in the Magnetic strength which retards

the fluid motion by affecting the velocity .

c) Temperature profile
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Figure 4.6: Temperature profile (Heating at the plate )

From figure 4.6 we note that:

Increase in the rotational parameter Er leads to an increase in the temperature

profile. Frequency of oscillation increase thus increasing the temperature of the fluid.

Increase in the Hall parameter m leads to a slight effect on the Temperature

profiles, it tends to increase the temperature profile. This is due to the increase in the

thermal boundary layer that is caused by an increase in Hall parameter. An increase

m Er Ec  t 

TEST 1.0 1.0 0.02 1.0 0.2 0.79

II 2.0 1.0` 0.02 1.0 0.2 0.79

III 1.0 2.0 0.02 1.0 0.2 0.79

IV 1.0 1.0 0.50 1.0 0.2 0.79

V 1.0 1.0 0.02 5.0 0.2 0.79

VI 1.0 1.0 0.02 1.0 0.25 0.79

VII 1.0 1.0 0.02 1.0 0.2 0.87
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in the thermal boundary layer decreases the temperature gradient and hence increases

the temperature in the fluid.

Increase in the heat parameter  leads to a decrease in the temperature profile. This

is due to an increase in the internal heat generation and because the plate is heating,

the rate of energy transfer is increased therefore the temperature decreases.

Increase in the  Eckert number Ec leads to an increase in the temperature profile.

Increase in Ec means the fluid absorbs more heat energy that is released from

internal viscous forces. This will in turn increase the temperature.

Increase in time t leads to an increase in the temperature profile. With time as the

flow gets to the free stream the velocity is increased hence there is increased rate of

energy transfer and therefore the temperature will increase.

Increase in the angle  leads to a decrease in the temperature profile , increasing the

angle of the magnetic field causes an increase in the Magnetic strength decreases the

temperature.

The conclusions of this research have been done in the next chapter. Finally,
recommendations have also been outlined .
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

This chapter presents conclusion of this research study and recommendation on areas

that require further research.

5.1 CONCLUSION

In all cases considered, the applied magnetic field was resolved into components and the

flow is considered turbulent. The equations governing the flows considered in our study

are non-linear therefore in order to obtain their solutions, an efficient finite difference

scheme has been developed. In order to validate the present results the angle of

inclination is considered to be in 90 degrees. The results are compared to those of

Kinyanjui et al and agree.

It was observed that an increase in m and  leads to an increase in the primary velocity

profiles for both free convection cooling and heating at the plate while an increase in Er,

Ec and t leads to a decrease in the primary velocity profiles for both free convection

cooling and heating at the plate.  leads to a decrease in the primary velocity profiles

for the cooling of the plate and an increase at the heating of the plate. Increasing Er, m

and t leads to an increase in the secondary velocity for both cooling and heating of the

plate while, Ec and  leads to a decrease in the secondary velocity profile leads to a

decrease in the secondary velocity profiles for the cooling of the plate and an increase at

the heating of the plate .

Increase in Er, Ec, t and m leads to an increase in the  temperature profiles for both free

convection cooling and free convection heating. The effect of the  magnetic field

inclined at an angle is to retard the fluid motion by affecting the velocity and

temperature profiles.
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From this results, it's clear that the parameters in the governing equations affect the

primary, secondary and temperature profile

5.2 RECOMMENDATIONS

It's recommended that this work be extended by considering the following:

 Variable inclined magnetic field.

 The effects of the parameters in the governing equations  on skin friction and rate

of mass transfer.

 Compressible fluid.

 Variable injection.

 Variable viscosity and thermal conductivity.

5.3 PUBLICATION

Rency, C.M, Kinyanjui, N.M & Kwanza, J.K. (2015). Mhd turbulent flow in presence of

inclined magnetic field past a rotating semi-infinite plate, International Journal

of Engineering Science and Innovation, 4(2),344-360.
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APPENDIX
Appendix I Computer code

The following is a JAVA program code that was used to obtain the graphs labeled 4.1-

4.6.

import java.awt.Color;

//import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartPanel;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.axis.NumberAxis;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.chart.plot.XYPlot;

//import

org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;

import org.jfree.data.xy.XYDataset;

import org.jfree.data.xy.XYSeries;

import org.jfree.data.xy.XYSeriesCollection;

import org.jfree.ui.ApplicationFrame;

import org.jfree.ui.RectangleInsets;
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import org.jfree.ui.RefineryUtilities;

public class Equations extends ApplicationFrame {

protected final double delX=0.01;

protected final double delY=0.01;

protected final double delT=0.000125;

protected int K=320;

protected int j=41;

protected int i=41;

protected final int squareM=50;

protected final double U=0.5;

protected double X=0.00;

protected double Pr=0.71;

//the user inputs

protected double m=1.0;

protected double Er=1.0;

protected double Ec=0.01;

protected double Gr=5.0;
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protected double sigma=1.5;

protected double alpha=0.2;

//primaryVelocity pv=new primaryVelocity();

public Equations(String title) {

super(title);

XYDataset dataset = createDataset();

JFreeChart chart = createChart(dataset);

ChartPanel chartPanel = new ChartPanel(chart);

chartPanel.setPreferredSize(new

java.awt.Dimension(500,800));

setContentPane(chartPanel);

}
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private static XYDataset createDataset() {

XYSeries series1 = new XYSeries("First");

/*   for (int i=-180; i<=180; i++){

double j=Math.sin(i);

series1.add(i,j);

}*/

XYSeriesCollection dataset = new

XYSeriesCollection();

// dataset.addSeries(series1);

//dataset.addSeries(series2);

dataset.addSeries(series1);

return dataset;

}

/**

* Creates a chart.

*
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* @param dataset the data for the chart.

*

* @return a chart.

*/

private static JFreeChart createChart(XYDataset

dataset) {

// create the chart...

JFreeChart chart = ChartFactory.createXYLineChart(

"Line Chart Demo 2", // chart title

"X", // x axis label

"Y", // y axis label

dataset, // data

PlotOrientation.VERTICAL,

true, // include legend

true, // tooltips

false // urls

);

// NOW DO SOME OPTIONAL CUSTOMISATION OF THE CHART...

chart.setBackgroundPaint(Color.white);
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// get a reference to the plot for further customisation...

XYPlot plot = (XYPlot) chart.getPlot();

plot.setBackgroundPaint(Color.lightGray);

plot.setAxisOffset(new RectangleInsets(5.0, 5.0,

5.0, 5.0));

plot.setDomainGridlinePaint(Color.white);

plot.setRangeGridlinePaint(Color.white);

//XYLineAndShapeRenderer renderer =

(XYLineAndShapeRenderer) plot.getRenderer();

//renderer.setShapesVisible(true);

//renderer.setShapesFilled(true);

// change the auto tick unit selection to integer units

only...

NumberAxis rangeAxis = (NumberAxis)

plot.getRangeAxis();
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rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTick

Units());

// OPTIONAL CUSTOMISATION COMPLETED.

return chart;

}

/**

* Starting point for the demonstration application.

*

* @param args ignored.

*/

public static void main(String[] args) {

Equations demo = new Equations("Line Chart Demo

2");

demo.pack();

RefineryUtilities.centerFrameOnScreen(demo);

demo.setVisible(true);

}
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}

public class primaryVelocity extends Equations{

//public primaryVelocity(){

public primaryVelocity(String n) {

super(n);

// TODO Auto-generated constructor stub

}

//Equations eq=new Equations();

secondaryVelocity sv=new secondaryVelocity(null);

Temperature tEq=new Temperature();

public void equation (int i, int j,int k){

for(i=0; i<=41; i++){
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for(j=0; j<=41; j++){

for (k=0; k<=320; k++){

double eqn=(((-U)*(rule(i+1, j,

k)-2*rule(i-1, j, k))/(2*delX)) -

(rule(i, j, k)*(rule(i, j+1, k+1)-

rule(i, j-1, k)) / (2*delY)) +

(rule(i+1, j, k)-(2*rule(i, j,

k))+(rule(i-1, j, k))) / (Math.pow(delX, 2)) +

(2*Math.pow(k,

2)*delX)*((rule(i+1, j, k) - (rule(i-1, j, k))) /

(2*delX))*

((rule(i+1, j, k) - (rule(i-1, j,

k))) / (2*delX)) +

(2*k*k*

((i*delX)*(i*delX))*(rule(i+1, j, k)-2*rule(i, j, k)+

rule(i-1, j, k))/ (delX*delX))*

((rule(i+1, j, k)-rule(i-1, j,

k))/2*delX)+
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2*Er*sv.rule(i, j, k) +Gr*rule(i,

j, k)-

squareM*Math.sin(alpha)*Math.sin(alpha)*

( (sv.rule(i, j, k)+ m*rule(i,j,

k)*Math.sin(alpha))/(1+(m*m*Math.sin(alpha)*Math.sin(alpha)

)) )  )+

rule(i, j, k);

}

}

}

}

//lets set the conditions

public int rule (int a,int b, int c){

int value=0;

if (a==0 && b!=0){

value=1;

}else{

value=0;
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}

return value;

}

}

public class secondaryVelocity extends Equations{

public secondaryVelocity (String k){

super(k);

}

public static void main(String args[]){

secondaryVelocity sV=new secondaryVelocity(null);

sV.equation();

}

Equations sEq=new Equations("");

primaryVelocity pv=new primaryVelocity("");

public void equation(){
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int i=0, j=0, k=0;

for (i=0; i<=41; i++){

for (j=0; j<=41; j++){

for (k=0; k<=320; k++){

double eqn;

eqn=((-sEq.U)*(rule(i+1, j, k)-

rule(i-1, j, k))/(2*sEq.delX)-

(rule(i, j, k)*(rule(i, j+1,

k+1)-rule(i, j-1, k))/(2*sEq.delY))+

(rule(i+1, j, k)-2*rule(i, j,

k)+rule(i-1, j, k))/(sEq.delX*sEq.delX)+

(2*k*k*i*sEq.delX)*(rule(i+1,

j, k)-rule(i-1, j, k)/(2*sEq.delX))*(rule(i+1, j, k)-

rule(i-1, j, k)/(2*sEq.delX))+
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(2*(k*i*sEq.delX)*(k*i*sEq.delX)*(rule(i+1, j, k)-

2*rule(i, j, k)+rule(i-1, j, k))/(sEq.delX*sEq.delX)) *

(rule(i+1, j, k)-rule(i-1, j,

k))/(2*sEq.delX)-

sEq.Er*pv.rule(i, j, k)-

sEq.squareM*(Math.sin(sEq.alpha))*(Math.sin(sEq.alpha)

)*

((sEq.m*rule(i, j,

k)*Math.sin(sEq.alpha))-rule(i, j,

k))/(1+sEq.m*sEq.m*(Math.sin(sEq.alpha))*(Math.sin(sEq.alph

a))))+

rule(i, j, k);

System.out.println(" "+eqn);

}

}

}

}

public int rule(int i, int j, int k){
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return 0;

}

}

public class Temperature extends Equations{

public Temperature(String k){

super(k);

}

Equations tEq=new Equations("");

primaryVelocity pV=new primaryVelocity(null);

secondaryVelocity sV=new secondaryVelocity(null);

public int rule(int i, int j, int k){

int value=0;

if (i==0 && j!=0){

value=1;

}else{
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value=0;

}

return value;

}

public void equations(){

int i=0, j=0, k=0;

double eq;

eq=((-tEq.U)*(rule(i+1, j, k)-rule(i-1, j,

k))/(2*tEq.delX)-

(rule(i, j, k)*(rule(i, j+1, k+1)-rule(i, j-

1, k))/(2*tEq.delY)) *

(1/tEq.Pr)*( (rule(i+1, j, k)-2*rule(i, j,

k) + rule(i-1, j, k))/(tEq.delX*tEq.delX) ) -

(tEq.sigma/tEq.Pr)*rule(i, j, k) +
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tEq.Ec*(((pV.rule(i+1, j, k)-pV.rule(i-1,j,

k))/(2*tEq.delX))*((pV.rule(i+1, j, k)-pV.rule(i-1,j,

k))/(2*tEq.delX)) +

((sV.rule(i+1, j, k)-sV.rule(i-1, j,

k))/(2*tEq.delX))*((sV.rule(i+1, j, k)-sV.rule(i-1, j,

k))/(2*tEq.delX))))+

rule(i,j, k);

}

}

public class mainClass{

public static void main(String args[]){

Equations eqn=new Equations(null);

}

}
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