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ABSTRACT

Statistically, change point is the location or the time point such that observations

follow one distribution up to the point and then another afterwards. Change point

problems are encountered in our daily life and in disciplines such as economics,

finance, medicine, geology, literature among others. Change-point analysis is a

powerful tool for determining whether a change has taken place. In this study,

change point in binomial random variables whose mean is dependent on explana-

tory variables is investigated. It is assumed that there was only a single change

point in the data. Artificial neural networks are used to estimate the condi-

tional means. Compared with the generalized linear methods the artificial neural

network gave better probability estimates. The consistency and the asymptotic

distribution of the change point estimator is also investigated, and is found to

be asymptotically normally distributed. The limiting distribution of the network

based likelihood ratio statistic when change exists is derived and critical regions

obtained. Simulated data is used to investigate the power of the test. The test is

found to be more powerful when the change is near the center of the data than

when it in the edges. The power of the test was found to be affected by the

magnitude of the change. The higher the size of the change the higher the chance

of detecting it. The power of the test is also found to increase as the size of the

sample. In the analysis of real data the change point was found to correspond

with the LD50.

xiii



CHAPTER ONE

INTRODUCTION

1.1 Background Information

Changes occur in everyday life and people need to be aware of them so as to avoid

unnecessary losses and to harness transactions. The following examples give a

better insight into changes that occur in day to day experiences.

Stock prices fluctuate daily. Though according to economists these changes are

normal there are some shifts that are abnormal. Hence a question arises. For

instance, “did the post elections violence of 2007 cause a statistically significant

change in the stock prices in Kenya?”

In quality control, the quality of a production line is expected to be stable. How-

ever due to some reasons the process may fail, and one might be interested in

determining the point at which this happened.

In 2003, the then transport minister in Kenya introduced rules in the Matatu(

passengers service vehicles) transport sector which were flouted a few years later.

One would be interested in the investigation of whether statistically these rules

had any significant change in the traffic accidents rate.

In mining, analysis is done on the ore samples obtained from different sites. If

there is a significant change in the analysed results of the of ore, then the geolo-

gist might be interested in the site in which the change took place.

The statistical problem comes in as one requires to determine whether there is

a significant change. If there is a significant change then one needs to obtain

the point at which the change occurs and estimate the parameters at this point

of change. This change may be unique, that is it occurs at only one point or

it occurs at several points. Hence the change point analysis problem is twofold.
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The first problem being whether significant change exists. This is a hypothesis

testing problem. Change occurs when observations follow one distribution up a

certain point and then another after that.

Let X1, X2, X3, . . . , Xn be independent observations from a density f(x; θ). These

observations follow the density f(x; θ), where θ is the parameter under consider-

ation under normal conditions but when these normal conditions change at some

point the observation follow another density f(x; θ′), θ 6= θ′. To set up a change

point problem the acceptance region, where θ resides under normal conditions is

first defined. Then the change point analysis problem is equivalent to testing the

hypothesis.

Ho : θ1 = θ2 = . . . = θn = θ0

Against

Ha : θ1 = θ2 = . . . = θk 6= θk+1 = . . . = θn = θ′ (1.1)

where 1 < k < n and, k is the unknown change position which has to be estimated

if H0 is not true. If the null hypothesis is not rejected then a change does not

exist and therefore the problem stop here. Otherwise one proceeds to the second

problem, the estimation of the change point k. Though k may take more than

one position in this work situations where only a single change point exists is

considered.

1.2 Literature Review

A survey of the studies done on change point analysis problems shows that most

of earlier work is concentrated on single change point in the random sequence.

Vostrikova (1978) proposed the binary segmentation method and proved its con-

sistency for testing multiple change points. This procedure has three major steps.

2



1. Test for a single change point. If there is no change then stop. If a change

point exists, then obtain the change point location k1.

2. Test for change in the two subsequences before and after k1 separately as

in step 1.

3. Repeat the process until no further subsequences have change points

The collection of change point locations is say {k1, k2 . . . , kq} and there are q

change points. His method has the advantage of detecting the number of change

points and their positions simultaneously hence saving a lot of computation time.

1.2.1 Ways of obtaining data

Depending on the way the data is obtained, a change point analysis problem may

be classified as either off-line or on-line.

Off-line problems deal with fixed data samples which are first observed and the

change detection is done later . Page (1954) introduced this type of change point

problem in which a single change point was assumed. This study considers an

off-line change point analysis problem with a single change point.

A change point analysis problem is said to be on-line if the independent observa-

tions considered initially have the same distribution and the process is said to be

in control but at an unknown point the distribution of the observations changes.

Then the process is said to be out of control. The setback of on-line change

point analysis problems is that the entire data is not taken into account at once.

Applications are mainly in quality control in production lines.

1.2.2 Categorization of data

The data obtained may either be discrete or continuous. This makes it possible

to categorize change point analysis problems as either discrete or continuous. In

3



this work discrete data is considered.

The following is a review of work done by various authors on each of these types

of change point problem.

1.2.3 Continuous change point problems

The first study on change point was conducted by Page (1954, 1955, 1957) in

which he considered continuous inspection schemes and tested the change in a

parameter running at an unknown point. Girshick and Rubin (1952) considered a

Baye’s approach to the quality control method. The two were considering indus-

trial quality control, but it was Kolmogrov et al. (1988) who precisely formulated

in a mathematical way of the change point problem.

The following is a review of the work done on specific probabilistic models by

various authors. In a one dimensional Gaussian model with a known variance,

the problem would be to determine whether the mean of the distribution changes

at some point. This problem was first studied by Page (1955, 1957). Chernoff

and Zacks (1964), Bhattacharya and Johnson (1973), Gardener (1969), Sen and

Srivastava (1975a,b), Gupta and Chen (1996) and Chen and Gupta (1997) have

made contributions to the study of this problem. Their interest was to test the

hypothesis of the stability of the mean under the assumption that the variance

is not changing. The testing procedure depends on whether the nuisance param-

eter, the variance of the distribution is known or unknown.

In Gaussian models where the variance is not stable inference about changes in

variance while the mean remains constant has been studied by Wichern et al.

(1976), Hsu (1977), Inclán (1993) and Chen and Gupta (1999). Brown et al.

(1975) also studied the situation where both the mean and the variance of a uni-

variate normal distribution change.

In a multi-dimensional Gaussian model, Sen and Srivastava (1973) studied the

4



problem of a single mean vector change for a sequence of independent normal

variables using a Bayesian test statistic. Srivastava and Worsley (1986) used

the likelihood ratio test to detect the change in the mean vectors. Zhao et al.

(1986a,b) studied the problem of detecting the number of signals in the presence

of white noise when the noise covariance matrix is arbitrary. Krishnaiah et al.

(1990) used the likelihood method to estimate the change point. James et al.

(1992) obtained the asymptotic approximation for the likelihood test and the

confidence region for the change in a multivariate normal.

In regression models, many authors have studied the change point problem.

Quandt (1958, 1960) derived the likelihood ratio based test for testing and esti-

mating linear models obeying separate regimes. Ferreira (1980) studied a switch-

ing regression model from the Bayesian point of view, assuming known numbers

of regimes. Brown et al. (1975) brought in the method of recursive residuals to

test change points in multiple regression models. Kim (1994) considered a test

for change point in a linear regression using the likelihood ratio statistic and

studied its asymptotic behavior. Chim Choy and Broemeling (1980) used the

Bayesian approach to study a switching linear model. Hobert (1982) also used

the Bayesian approach to study simple linear model and multiple regressions.

Other continuous models that have been studied include the exponential models

where Kander and Zacks (1966) posted a change point problem for the model.

Hsu (1979) adopted their results and assumptions and studied the change point

problem in a gamma model. Worsley (1986) used the likelihood ratio test to ob-

tain the change in a sequence of independent exponentially distributed random

variables. Haccou et al. (1988) used the likelihood ratio test and obtained the

asymptotic null distribution of the test statistic while later Haccou and Meelis

(1988) gave a procedure for obtaining the number of change points in a sequence

of independent exponentially distributed random variables based on partitioning

5



of the likelihood according to the hierarchy of the sub-hypothesis. Gupta and

Ramanayake (1998) studied the epidemic change using the likelihood ratio test.

Chen and Gupta (2000) in their monograph have used the informational approach

to test for change in exponential random variables.

1.2.4 Discrete change point problems

More work has been done in continuous models than in discrete models. Among

the few authors who have contributed in the study of change point problems

in discrete models include Hinkley and Hinkley (1970) who studied the change

point for a binomial model using the maximum likelihood ratio test. However

the mean of the distribution was assumed to be unconditional, that is, the mean

was not dependent on some explanatory variables. We wish to study situations

where the mean is dependent on the explanatory variables. Smith (1975) con-

sidered the same model from a Bayesian approach while Pettitt (1954)used the

cumulative sum approach for the same model. Worsley (1983) studied the power

of the likelihood ratio and cumulative sum tests for the binomial model. Fu and

Curnow (1990) derived the null and non-null distribution of the log likelihood

ratio statistic for locating the change point in the binomial model. Chen and

Gupta (2000) in their monograph have used both the likelihood ratio and the

informational approach to detect the change point in the binomial distribution

though again the mean was assumed to be unconditional. They also analyzed

data in Hanify et al. (1981) using the informational approach.

The most commonly used tests for testing for change are the maximum likeli-

hood ratio test, the Bayesian test, the cumulative sum test and the informational

approach test. The last method introduced by Akaike (1974) is a useful tool in

model selection. A model is considered appropriate if it minimizes AIC. How-

ever this estimator is not asymptotically consistent. Schwarz (1978) proposed an

6



asymptotically consistent estimator. Most of the work on change point analysis

involves prior assumed distributions.

Waititu (2008) considered bernoulli random variables where the probability of

success was depend on a set of explanatory variables and used the ANN to

estimate the conditional means of the variables. This work focuses on a non-

parametric method of estimating the conditional means where ANN are used to

estimate these unknown conditional means of binomial random variables which

are dependent on a set of given explanatory variables.

1.3 Statement of the Problem

In this study a sequence of binomial random variables is considered. The proba-

bility of success is known to depend on some explanatory variables. To estimate

these probabilities a non-parametric method(ANN)is used and the test for change

conducted in the sequence. If change exists, the point at which it occurs is de-

termined. The properties of the neural network estimator is investigated and to

obtain the critical regions the distribution of the test statistic under the hypoth-

esis of no change has to be determined.

1.4 Significance of the Study

The applications to this include credit scoring in financial institutions, dose-

response in biometry and epidemiology. Of interest will be the probabilities of

success which will depend on various explanatory variables.

In a random process where change exists, the change may be gradual or abrupt.

In abrupt change there is a sudden break in the model parameters. Gradual

changes occur when parameters change slowly in the process. These gradual

changes have applications in engineering and ecology. This study considers abrupt

7



change cases with a single change point. To test for change critical regions have

to be defined by obtaining the distribution of the test statistic under the null

hypothesis. The critical values obtained can be used to construct confidence

interval for the change estimates.

1.5 Objectives of the study

1.5.1 General Objectives

The general objective of this study is to detect a change and estimate the position

at which the change occurs in a sequence of random binomial observations.

1.5.2 Specific Objectives

Specifically our objectives will be to:-

1. Estimate the conditional binomial probabilities using ANN.

2. Derive the asymptotic distribution of change point likelihood ratio statistic

under the hypothesis of no change.

3. Determine the power of the likelihood ratio test for binomial random vari-

ables with a change.

4. Derive the asymptotic distribution of the ANN estimator and check its

consistency.

5. Validate the model using simulated data.

6. Test and estimate change in real data.
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CHAPTER TWO

NEURAL NETWORKS AND LOGISTIC

REGRESSION

2.1 Introduction

In this section the theory behind the use of neural networks to approximate pa-

rameters of a function. Also modeling of binomial data using logistic regression is

looked at. Other parameters approximation methods of available in the literature

are:-

2.2 Power polynomials

This is a commonly used method. From the Weierstrass theorem, a polynomial

expansion around a set of inputs x with a progressively large power is capable

of approximating to a given degree of precision any unknown but continuous

function, see Miller et al. (1990). For instance a second-degree polynomial ap-

proximation in two variables [x1, x2] and it is known that y = f(x) then the

approximation formulae becomes

f(x) = β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2 (2.1)

The major drawback of this method is that it cannot be used for discrete func-

tions. Also as the degree of the polynomial increases the number of parameters

to be estimated also increases. This decreases the degrees of freedom for the

underlying statistical estimates. This is called the curse of dimensionality.
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2.3 Orthogonal polynomials

This method is due to Judd (1998) and is based on the sine, the cosine, or the

alternative exponential transformations of the variable. The method has been

proved to be more efficient than the power polynomials discussed earlier. Before

using this method the variables [y, x] have to be transformed into the interval

(1,1). The variable x is transformed as

x′ =
2x−max(x)−min(x)

max(x)−min(x)
(2.2)

The polynomial approximations are can be represented in recursive manner. Four

recursive representation are available in the literature. They are:-

(i) The Chebeychev’s polynomial expansion.

The recursive formula is

R0(x′) = 1

R1(x′) = x′

Ri+1(x′) = 2xRi(x
′)−Ri−1(x′) (2.3)

(ii) The Hermite’s polynomial expansion.

The recursive formula is

R0(x′) = 1

R1(x′) = 2x′

Ri+1(x′) = 2x′Ri(x
′)− 2Ri−1(x′) (2.4)

(iii) The Legendre’s polynomial expansion.

The recursive formula is

R0(x′) = 1

R1(x′) = 1− x′

Ri+1(x′) =
2i+ 1

i+ 1
Ri(x

′)− i

i+ 1
Ri−1(x′) (2.5)
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(iv) The Laguerre’s polynomial expansion.

The recursive formula is

R0(x′) = 1

R1(x′) = 1− x′

Ri+1(x′) =
2i+ 1− x′

i+ 1
Ri(x

′)− i

i+ 1
Ri−1(x′) (2.6)

Once the polynomial expansion for a given variable x′ is obtained, then a linear

regression is used to approximate y′. For two variables x1, x2 with a second-degree

expansion is

y′ =
2∑
i=1

2∑
j=1

βijRi(x1)Rj(x2) (2.7)

where Ri and Rj are the recursive representation of the polynomial expansion.

To transform the variable y′ back to the interval (min(y),max(y)) the following

expression is used.

y =
(y′ + 1)[max(y)−min(y)]

2
+ min(y) (2.8)

For more literature on this method see McNelis (2005a).

2.4 Neural networks

A neural network represents the way in which the human brain processes input

sensory data received as input neurons into recognition as output neurons. A

neural network is used in forecasting a given target (output) from the information

on a set of observed input variable. It uses one or more of the hidden layers in

which the input is transformed by a special function called the activation function.

In this study a feed-forward networks with D + 1 input nodes and a single layer

of H hidden nodes is considered. The input nodes and the hidden layer nodes

are connected by the weights wh,d, h ∈ {1, 2, . . . , H} and d ∈ {1, 2, . . . , D}. For
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an input vector x′ = (x1, . . . , xD) the following equation describes this input to

the hth hidden node.

nh(x; θ) = wh,0 +
D∑
d=1

wh,dxd (2.9)

The output of the hth hidden node is

ψ(nh(x; θ)) (2.10)

where ψ(.) is the activation function. This forms an input to the output node of

the form

ζ(x; θ) = α0 +
H∑
h=1

αhψ(nh(x; θ)) (2.11)

The final output of the network is

ϕ(x; θ) = α0 +
H∑
h=1

αhψ(nh(x; θ)) (2.12)

where

θ = (wh0, wh1, . . . , wHD, α0, α1, . . . , αH) (2.13)

denote the set of the parameters of the network.

A neural network is diagrammatically represented in Figure (2.1). Thus one may

think of the network as a mathematical model that consists of

1. The synapses or connecting links that provide weights, wh,d, to the input

values, xi,d for d = 1, . . . , D.

2. An adder that sums the weighted input values to compute an input to the

hth node of the hidden layer, nh = wh,0 +
D∑
d=1

wh,dxd, where wh,0 is called the

bias (not to be confused with statistical bias in prediction or estimation) is

a numerical value associated with the neuron. It is convenient to take the

bias as the weight for an input x0 whose value is always equal to one, so

that nh =
D∑
d=0

wh,dxd.
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Figure 2.1: Neural network with one hidden layer of H neurons and D+1 input

nodes

3. An activation function ψ(.) also called a squashing function that maps nh to

ψ(nh) the output value of the neuron. This function is monotone. The func-

tion transforms its input into the required form. It performs a mathematical

operation on the signal output. For instance in this work the interest is to

obtain the conditional probabilities and thus one would require a function

that has output in the range[0,1].

The number of parameters in a network depends on H, the number of hidden

nodes. The total number of parameters in the network in Figure 2.1 is given by

H(D + 2) + 1.

Thus the neuron processes the input data by first forming a linear combination

of the inputs with their weights. This forms the input to the hidden layer. This

in is turn squashed by the activation function to form the output. It represents

a very efficient way to model non-linear statistical processes.

The following are some forms of squasher functions commonly used.
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Figure 2.2: The logistic curve

2.4.1 The logistic squasher function

This function is of the form

ψ(x) =
1

1 + e−x
(2.14)

Note that

ψ(x) → 0 as x→ −∞

ψ(x) → 1 as x→∞

ψ(x) + ψ(−x) = 1 (2.15)

implying that the function is symmetric sigmoidal an important property of ac-

tivation functions used for predictive purposes. The function is also differen-

tiable(smooth), an important property as the learning of the neural network

depends on the gradient of the error which is in terms of the weights and the

activation function. The activation function is also referred to as the unipolar

function. The logistic curve is presented in Figure (2.2). When used as an acti-
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vation function in the network defined in equation (2.11) one obtains

ψ(ζ(x; θ)) =
1

1 + e−ζ(x;θ)
= ϕ(x; θ) (2.16)

One advantage of this function is that the output is in the range [0,1] making

it appropriate for the estimation of probabilities. Another importance of this

function arises from its threshold behavior, which characterizes many types of

responses, for example economic responses to changes in fundamental variables.

It also reflects the learning behavior. Kauna and Halbert (1994) describes this

feature as the tendency of certain types of neurons to be quiescent of modest

levels of input activity and only become active after the input activity passes

a certain threshold while beyond this, increases in the input activity have little

effect. This activation function in our work to estimate the binomial probabilities.

Figure 2.2 shows the shape of the logistic function.

2.4.2 The hyperbolic tangent function

Also known as the tansig or tanh, it squashes the linear combinations of the

inputs to outputs in the range [-1,1]. Its functional form is

ψ(x) = tanh x =
ex − e−x

ex + e−x
(2.17)

When used as an activation function in the network defined in equation(2.11),

one obtains

tanh(ζ(x; θ)) = ϕ(x; θ) (2.18)
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Figure 2.3: The tan-hyperbolic curve

Equation (2.17) may be expressed as

tanhx =
sinhx

coshx

=
(ex − e−x)/2
(ex + e−x)/2

=
ex(1− e−2x)

ex(1 + e−2x)

= 2{ 1

1 + e−2x
} − 1 (2.19)

Note that

ψ(x) → −1 as x→ −∞

ψ(x) → 1 as x→∞

ψ(x) + ψ(−x) = 0 (2.20)

Figure 2.3 shows the shape of the tan-hyperbolic function.

This activation function is also refereed to as the bipolar and has the same prop-

erties as discussed earlier for the unipolar except that its output range is [-1,1].

Hence if used to estimate probabilities it may give inappropriate estimates.
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Figure 2.4: The standard normal curve

2.4.3 The Gaussian function

The function is also referred to as the standard normal. Though its slope is much

steeper than the logistic function in the intervals [-2,0] and [0,2] but it has little

or no response below -2 and above 2. Thus it has a narrow range of x. When used

as an activation function in the network defined in equation (2.11), the following

is obtain

φ(nh(x; θ)) =

∫ ζ(x;θ)

−∞

√
1

2π
e−

ζ(x;θ)2

2 dx (2.21)

Figure 2.4 shows the shape of the standard normal function

One disadvantage of using this function as an activation is that its output values

are in the range [0,0.4]. Thus when using it to estimate probabilities one has to

be sure that the required values do not exceed 0.4.

In this study the aim is to estimate the conditional probabilities and thus the

logistic function is the most suitable for this purpose.
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2.5 Training of the networks

To obtain the required parameter estimates from the network its weights have

to be adjusted until the desired goal is achieved. This is called training of the

network. The network is said to be learning. Two main methods of training the

network are available in the literature; the supervised and non-supervised train-

ing.

In unsupervised learning, the weights and biases are modified in response to

network input only. The target outputs are not available. At first this seems

impractical. How can one train a network if it is not known what it is supposed

to do? Most of the algorithms for this type of learning perform some kind of

a clustering operation. They learn to categorize the input patterns into a finite

number of classes. This is useful in such applications such as vector quantization.

Since the desired response is not known the explicit error information cannot be

used to improve network’s behavior. Thus learning must somehow be accom-

plished based on observations of responses to inputs that one has have marginal

or no knowledge about.

In this mode of learning, a network must discover for itself any possibly existing

patterns, regularities, separating properties and any other structural features of

the input data. It is while discovering these structural features that the network

undergoes change in its parameters. The summary of the rules for this mode of

training as follows:-

1. A sample of input vectors. The expected output is not presented to the

network.

2. The system learns on its own by discovering and adapting on its own to the

structural features of the input data.

3. A stopping rule.
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The supervised training is also referred to as the error based training since it

is based on the comparison between the network’s computed output and the

expected output. The error generated is used to change the network’s parameters

that result to improved performance.

The training starts with the selection of initial guess or conditions. The aim

is to obtain the a set of parameters that minimize the differences between the

model predictions ŷ and the actual values y. This guess may be anywhere in the

parameter space. As the network is trained one may be stuck at a point where the

derivative of the curve is zero. This may be a global minimum, a local minimum

or an inflexion. Too large an adjustment may bring one near the global minimum

or in an inflexion (saddle) point. But a small adjustment may keep one trapped

in an inflexion during the training.

Clear-cut solutions for escaping from this kind of a situation are not available but

strategies are there in the literature on how to re-estimate the parameters so as

to obtain the weights that minimize the loss(error) function given by:-

b∑
i=1

(ŷi − yi)2 =
b∑
i=1

(ϕ(x; θ)− yi)2

= η(θ) (2.22)

where ϕ(x; θ) is as defined in equation (2.12). The loss function is minimized this

with respect to θ, that is one obtains min η(θ), which is a non-linear function of

θ.

Starting with an initial guess θ0, one trains the network until the best possible

solution is obtained within a reasonable amount of training.

The following is a summary of the steps to be followed in the supervised method.

1. A sample of input vectors and an associated output vectors.

2. The selection of initial weights set.
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3. A repetitive method that updates the current weights so that the input-

output map is optimized.

4. A stopping rule.

In this study the supervised learning method is used since the form the expected

outcome is known. Three methods of obtaining min η(θ) are discussed below.

2.5.1 The local gradient based search(gradient descent)

method

This method is based on the minimization of the errors which are defined in

terms of weights and the activation function of the network. Thus the activation

function must be differentiable as the updates of the weights depend on the gradi-

ent of the error. The aim will be to minimize the nonlinear error function. After

the random selection of θ0, iteratations on θ are carried until the loss function is

minimized by using the first and second order derivatives of the error function

with respect to the parameters. This searches for the optimum in the neighbor-

hood of the initial guess. The usual way to iterate is through the quasi- Newton

algorithm. To obtain η(θ1), a second order Taylor expansion is used to give

η(θ1) = η(θ0) +∇0(θ1 − θ0) + 0.5(θ1 − θ0)′M0(θ1 − θ0) (2.23)

where ∇0 is the gradient of the error function with respect to the parameters and

M0 is the Hessian of the error function. If θ0 = (θ0,1, θ0,2, . . . , θ0,H) is the set of
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initial guess parameters then

∇0 =



η(θ0,1+v1,...,θ0,H)−(η(θ0,1,...,θ0,H))

v1

...

η(θ0,1,...,θ0,i+vi,...,θ0,H)−(η(θ0,1,...,θ0,H))

vi

...

η(θ0,1,...,θ0,H+vH)−(η(θ0,1,...,θ0,H))

vH


(2.24)

The denominator vi is set as max(ε, εθ0,i) with ε = 10−6

The matrix M0 is a matrix whose elements are second order derivatives of η(θ0)

with respect to elements of θ0 and its off-diagonal elements are given by

∂2η

∂θ0,i∂θ0,j

=
1

vivj
{η(θ0,1, . . . , θ0,i + vi, θ0,j + vj, . . . , θ0,H)

− η(θ0,1, . . . , θ0,j + vj, . . . , θ0,H)η(θ0,1, . . . , θ0,i + vi, . . . , θ0,H)

+ η(θ0,1, . . . , θ0,H)} (2.25)

and the diagonal elements are

∂2η(θ0)

∂θ2
i,i

=
1

v2
i

{η(θ0,1, . . . , θ0,i + vi, . . . , θ0,H)− 2η(θ0,1, . . . , θ0,H)

+η(θ0,1, . . . , θ0,i − vi, . . . , θ0,H)}
(2.26)

The direction of iteration 0 to iteration 1 is obtained by minimizing the loss

function with respect to (θ1 − θ0) and the evolution of the parameter set θ is

θ1 − θ0 = M−1
0 ∇0 (2.27)

The process continues until the training is stopped by either a set tolerance

criterion or there is no further change in the error function below the tolerance

value or after a specified number of iterations. The drawbacks of this method

are:-

(i) It is possible to obtain an inflexion or a local solution rather than the global

solution which minimizes the error function. To overcome this, one may
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start with a random vector and iterate until a convergence is reached and

repeat the process with another random vector and then compare the two

results. Also the iterations may be repeated several times until a potential

minimum solution over the set of minimum values.

(ii) As the iterations progress, the Hessian matrix may become singular so that

it is impossible to obtain its inverse for that particular iteration. This

problem is solved by the use of algorithms that approximate the inverse on

the basis of the change in gradient relative to the change in parameter.

The following are two examples of algorithms that are gradient based.

2.5.1.1 The Backpropagation Algorithm

Introduced by Werbos (1994). Here the inverse of the Hessian matrix, −M−1
0

is replaced by an identity matrix whose dimension is equal to the number of

coefficients in the network multiplied by a learning parameter ρ is used. The

following equation gives the relationship between the learning parameter and the

Hessian matrix.

θ1 − θ0 = −M−1
0 ∇0

= −ρ∇0 (2.28)

This learning parameter is specified at the beginning of the process and is usually

small values in the interval [0.05,0.5]. It may also be endogenous taking different

values as the process converges. As in the quasi-Newton algorithm, one may

obtain a local rather than a global solution at the point of convergence. The

process may be prolonged to convergency by selection of low values of the learning

parameter. This is solved by adding a momentum term after n training periods

given as

θn − θn−1 = −ρ∇n−1 + µ(θn−1 − θn−2) (2.29)
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The adding of the momentum term, with µ usually set at 0.9 enables the param-

eter to move fast over the error surface.

The limitation of this algorithm is that it suffers from the trap of local rather

than a global minimal. Also low values of the learning parameters may needlessly

prolong the convergency process so that convergency may not be guaranteed. For

more details see McNelis (2005a) page 69 to 70.

2.5.1.2 The Broyden Fletcher Goldfarb Shanno algorithm

The algorithm was independently developed by the authors Broyden (1970),

Fletcher (1970), Goldfarb (1970) and Shanno (1970). From an initial guess θ0

and an approximate Hessian matrix M0 the following steps are repeated until

η(θ) converges to the solution.

1. Obtain the direction dj at the jth stage. This is given by the solution to

the equation Mjdj −∇η(θj) = 0.

2. Perform a line search to find an acceptable step-size αj in the direction

found in the first step, then update θj+1 = θj + αjdj.

3. Set sj = αjdj.

4. Let yj = ∇η(θj+1)−∇η(θj).

5. Mj+1 = Mj +
yjy

T
j

yTj
sk −

Mjsjs
T
j Mj

sTj Mjsj
.

Practically, M0 can be initialized with M0 = I, the identity matrix of the same

dimension so that the first step will be equivalent to a gradient descent, but

further steps are more and more refined by Mj+1, the approximation to the

Hessian.

The first step of the algorithm is carried out using the inverse of the matrix Mj,
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which is usually obtained efficiently by applying Sherman Morrison’s formula to

the fifth step of the algorithm, giving

M−1
j+1 =

(
I−

sjy
T
j

yTj sj

)
M−1

j

(
I− yks

T
k y

T
k sk

yTj sj

)
+
sjs

T
j

yTj sk
.

This can be computed efficiently without temporary matrices, since M−1
j is sym-

metric, and that yT
kM

−1
k yk and sT

k yk are scalar, using an expansion such as

M−1
k+1 = M−1

k +
(sT
k yk + yT

kM
−1
k yk)(sks

T
k )

(sT
k yk)2

− M−1
k yks

T
k + sky

T
kM

−1
k

sT
k yk

.

In statistical estimation problems (such as maximum likelihood or Bayesian in-

ference), confidence intervals for the solution can be estimated from the inverse

of the final Hessian matrix. This algorithm to train the network in this work.

2.5.2 Simulated Annealing Search

The method was originally due to Metropolis et al. (1953) and later developed

by Kirkpatrick et al. (1983). The idea originates from the theory of statistical

mechanics and draws analogy between the annealing of solids and optimization.

It differs from the other methods in that it neither uses the derivatives nor the

Hessian matrix. The following steps are followed:-

i) With an initial guess θ0 determine η(θ0).

ii) Compute the jth iteration temperature as T (j) = T̄
1+ln(j)

where T̄ is the

temperature and cooling schedule parameter.

iii) Randomly perturbate the solution vector to obtain the jth solution vector

θ̂j and hence compute η(θ̂j).

iv) Generate from the uniform distribution the probability P (j) .

v) Compute the Metropolis ratio, Mj = exp(
η(θ̂j)−η(θj−1)

T (j)
).
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vi) If θ̂j − θ̂j−1 < 0,then θj = θ̂j otherwise if P (j) ≤Mj then θj = θ̂j.

vii) Repeat (ii) through (vi) until j = T̄ where j = 1, 2, . . . , T̄ .

The major drawback of procedure is that it is extremely slow for practical use

and the asymptotic convergence is not guaranteed and thus one is not sure of

finding the global optimum.

2.5.3 Evolutionary Stochastic Search

This method helps come up with a better initial guess. It reduces the likelihood

of one getting trapped in a local minimum.The genetic algorithm which has the

following steps is considered below:-

i) Population creation, where N ( an even number) random vectors of order

H × 1 are created.

ii) At random two pairs of the random vectors are selected with replacement.

In pairwise combinations the vectors are evaluated according to the sum of

squared error function. The pair with the least sum of squares is taken as

the one with a better fitness value. The winning vectors (i, j) are retained

for breeding purposes. This is called the selection step.

iii) In this step, called the crossover, for each pair the algorithm uses any of the

following three different ways with each of them having the same chance of

1
3

being used. The methods are:-

a) The Shuffle crossover, where brandom draws are made from a binomial

distribution and if the bth draw is a success the parameters θi,H and

θj,H are swapped otherwise no change is made.

b) The Arithmetic crossover, where a random number a is chosen in the

interval (0,1). This number is then used to generate a new pair of
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the parameter vector that is a linear combination of the original pair

vector is formed as aθi,H + (1− a)θj,H ; (1− aθi,H + a)θj,H .

c) The Single point change, where an integer t is randomly selected from

the set [1,k-1]. The vectors are then split at integer t and the coef-

ficients to the right of the split point θi,t+1, θj,t+1 are swapped. After

the crossover operation, each point of the original vector is associated

with two offsprings C1(i) and C2(j).

d) Mutation. With a small probability, p, which decreases with time each

of the elements of the parameter vectors C1(i) and C2(j) are subjected

to a mutation. This small probability is given by p = .15 + .33
g

for

g = 1, 2, . . . , g′ is called the generation number. Michalewicz (1996)

proposed the following non-uniform algorithm to be used on an element

of a vector if it has to undergo a mutation

θ̃i,H =

 θi,H + s[1− r2
(1− g

g′ )
b

] if r1 >
1
2

θi,H − s[1− r2
(1− g

g′ )
b

] if r1 ≤ 1
2

(2.30)

where b usually set at 2 is the parameter that governs the non-uniformity

of the mutation, r1 r2 are two real numbers generated randomly in the

interval [0,1] and s is a random number generated from the standard

normal.

e) After the mutation the four ’family’ members are subjected to a fitness

tournament and the pair with the best fitness moving to the next

generation while that with the worst fitness are extinguished. The

process is repeated with parent i and j returning to the population

pool for possible reselection until the next generation is populated by

H vectors. This is called the election tournament stage.

f) This is an optional process called elitism where members of the new
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and old generation are compared using the fitness criterion. If the best

member of the old generation is dominated by a best member of the

new generation then this member displaces the worst member of the

new generation making the member eligible for selection in the coming

generation.

g) Convergence. The process continues for g′ generations and since con-

vergence is measured by the fitness value of the best member of each

generation g′ should be large enough so that there are no changes in

the fitness values of the best of several generations. The main disad-

vantage of this method is that it is slow. The various combinations

and permutations of the elements of θ that the method finds optimal

at various generations may become very large. Again one has a case

of the dimensionality curse.

2.5.4 The stopping Rule

When training a network one has to be sure of when to stop. Hence one requires

rules that would govern the stoppage of the training. The following are some of

the rules commonly used.

(i) ‖θ̂j+1 − θ̂j‖ < ε, for ε > 0.

Here if the difference between the magnitude of the network’s parameters

vector at the (j + 1)th and the jth iterations is less than a preset small

positive number then the training is stopped.

(ii) |η(θ̂j+1)− η(θ̂j)| < ε, for ε > 0 but small.

The difference in the training error at the (j + 1)th and the jth iterations is

obtained. If the absolute value of this difference is less than a preset small

positive number then the training is stopped.
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(iii) η(θ̂j) < εmin.

The training is stopped if the training error is less than a pre-assigned lower

bound.

(iv) j > Imax. The training is stopped after a pre-assigned number of iterations.

(v) This rule combines any of the above four rules.

In this study rule(i) where ε was set at 10−4 and rule(iv) where a maximum of

500 iterations are used.

2.6 Models for Binomial Data

One way of analyzing data is seeking to establish a relationship between the ob-

served response and the explanatory variables. For instance in credit scoring one

might be interested in establishing the relationship between the rate of default

with the age and the marital status of a client. This is called modeling of the

data.

The objective is to come up with a mathematical relationship between the re-

sponse variable and the explanatory variables together with a measure of uncer-

tainty of the relationship. The model can be expressed as

response variable = systematic component+ residual component (2.31)

where the systematic component summarizes how the variability in the response is

explained for by values of the explanatory variables while the residual component

takes care of any other unexplained variation. The linear model is considered

below.
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2.6.1 Linear Models

Let y1, . . . , yn be n observations of a random variable Y that linearly depend on

a set of explanatory variables X1, . . . , Xd then

yi = β0 + β1x1i + . . .+ βdxdi + εi (2.32)

where x1i, . . . , xdi = X t
i are the explanatory variables for the ith observation

which are assumed to be known and without any error while β0, β1, . . . , βd are

the unknown parameters in the relationship between yi and Xi. The last term

εi is the unobservable random variable that represents the residue component

assumed to have a mean of zero and a constant variance σ2. It is also necessary

for significance testing to assume that εi ∼ N(0, σ2).

The implication from the above is that each of the random variables Yi has a

mean that depends on the d explanatory variables. Thus one may denote this

as E(Yi|Xi) where Xi is a vector of the explanatory variables. This makes the

systematic component of the model which can be represented as

β0 + β1x1i + . . .+ βdxdi = β0 +
d∑
d=1

βdxdi (2.33)

2.6.2 Fitting Binomial Data into Linear Model

In binomial data the observed response for the ith group is mi, i = 1, . . . , b the

number of successes in the group. The proportion
mi

ni
= p̃i is the approximate

probability of success in the ith group. The distribution of the observed response

in the of the ith group is b(ni, pi) where ni and pi are the size and the probability

of success of the ith group respectively. Thus the observed response has a mean

of nipi and a variance of nipi(1− pi).

It is rather natural to find out how the probability of success of the ith group

pi = E

[
mi

ni

]
can be explained in terms of the explanatory variables. This can be
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done by considering the model

pi = β0 + β1x1i + . . .+ βdxdi (2.34)

and using the least square method to obtain the values of β̂0, . . . , β̂d for which

b∑
i=1

(
mi

ni
− pi

)2

=
b∑
i=1

(
mi

ni
− β0 − β1x1i − . . .− βdxdi

)2

(2.35)

is minimized. This approach makes the assumption that the variance of p̃i =

pi(1− pi)
ni

is a constant. But this is not necessarily so since the variance depends

on the true unknown values of pi even if the ni are equal. Normality of the

variables is also assumed, though this is not a severe restriction since binomial

distribution tends to normal as the sample size becomes large. The main draw-

back of this approach is that of the fitted values p̂i. The values of the unknown

parameters β̂0, β̂1, . . . , β̂d are totally unrestricted and can take any value in the

interval (−∞,∞) and thus the linear combinations

p̂i = β̂0 + β̂1x1i + . . .+ β̂dxdi (2.36)

have no guarantee of being in the interval [0,1]. This technicality suggests that

the linear models fitted using the least square method may be inappropriate.

Hence the need to look into other models which are appropriate for binomial

probabilities.

2.7 Models for Binomial Response Data

These models ensure that the fitted probabilities are in the range (0,1) by trans-

forming the response variable so that equation (2.36) predicts the transformed

response. Three such transformations are discussed .
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2.7.1 The Logit Transformation

The logit of the success probability p is defined as

logit(p) = log

(
p

1− p

)
(2.37)

It is noted that the function logit(p) is log-sigmoidal and is symmetric at the point

p = 0.5. The function is essentially linear between the points p = 0.2 and p = 0.8

but outside this range it becomes non-linear, see Figure 2.5. This method has the

advantage of having a direct interpretation in terms of the logarithm of the odds

of a success which has an application in analysis of epidemiological data. It is also

appropriate in analysis of data which has been collected retrogressively. When

used to transform binomial responses then the responses can be summarized

in terms of sufficient statistics.(see Collett (2002), page 58). In this work this

transformation in the modeling our data.

2.7.2 The Probit Transformation

The probit of a probability p is defined to be the value % for which

1√
2π

∫ %

−∞
exp(−1

2
z2)dz = p. (2.38)

This is the standard normal so that p = P (z ≤ %) and % = φ−1(p). This

transformation is similar to the logit as it can be seen from Figure 2.5 but not as

convenient in the computational point of view.

2.7.3 The Complementary Log-log Transformation

This transforms a probability of success p into log(− log[1 − p]) . The function

is not symmetric about p = 0.5. The method is most appropriate in situations

where the probabilities of success are dealt with in an asymmetric manner. From

Figure 2.5, for small values of p the transformation is similar to the logit.
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Figure 2.5: The logit, probit and the complementary log− log transformations of

p

2.8 The Logistic Regression Model

The mathematical concept underlying this model is the logit function which is

defined as the natural logarithm of the odds ratio. For binomial observations, the

probability of an outcome mi given that the explanatory variable X = xi has the

odds ratio given by

P (mi|X = xi)

1− P (mi|X = xi)
(2.39)

where mi are the number of successes in the ith trial group. Hence the logit of

the odds ratio is

log

[
P (mi|X = xi)

1− P (Xi|X = xi)

]
(2.40)

As in Chao-Ying and Gary (2002),

P (mi|X = xi) =
exp(β0 + β1x1i + . . .+ βdxdi)

1 + exp(β0 + β1x1i + . . .+ βdxdi)

=
1

1 + exp−(β0 + β1x1i + . . .+ βdxdi)

=
1

1 + exp−(β0 +
∑d

j=1 βjxji)
(2.41)
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This is called the logistic regression model which can be linearized using the logit

transformation to obtain

logit(P (mi|X = xi)) = log

[
P (mi|X = xi)

1− P (mi|X = xi)

]

= log

 1

1+exp−(β0+
∑d
j=1 βjxji)

1− 1

1+exp(β0+
∑d
j=1 βjxji)


= log

 1

1+exp−(β0+
∑d
j=1 βjxji)

1+exp−(β0+
∑d
j=1 βjxji)−1

1+exp−(β0+
∑d
j=1 βjxji)


= log

[
1

exp−(β0 +
∑d

j=1 βjxji)

]

= log(exp(β0 +
d∑
j=1

βjxji))

= β0 +
d∑
j=1

βjxji (2.42)

Thus to estimate P (mi|X = xi) is equivalent to estimating the function

g(X, β) = β0 +
d∑
j=1

βjxji. This may be done using either a parametric or a non-

parametric method. In the parametric method one may use the m.l.e. to estimate

the parameters. In this work a non-parametric approach where the conditional

probability P (mi|X = xi) is estimated using the output of a feedforward ANN,

with the logistic function as its activation function is considered. Hence

P (mi|X = xi) =
exp(nh(x; θ))

1 + exp(nh(x; θ))

=
1

1 + exp−(nh(x; θ))

= ϕ(x; θ) (2.43)

as defined in equation(2.16).
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2.9 Change point detection in binomial variables

In econometrics, testing for possible structural changes is of importance since a

change in the generating process induces an instability in the original model. To

detect change, one tests the null hypothesis Ho , which postulates that the model

distribution does not change versus the alternative Ha that the model changes

at an unknown point k. For the random variables mi i = 1, 2, . . . , b such that

mi ∼ b(ni, pi) and where mi are number of successes in the ith group of the sample

then the model with a change at point k, 2 ≤ k ≤ b− 1 will be of the following

form.

f(mi, pi, p
′
i) =



 ni

mi

 pmii (1− pi)ni−mi i = 1, 2, . . . , k

 ni

mi

 p′i
mi(1− p′i)ni−mi i = k + 1, . . . , b

(2.44)

Then our hypotheses will be

Ho : p1 = p2 = . . . = pb

Against

Ha : p1 = p2 = . . . = pk 6= p′k+1 = . . . = p′b (2.45)

Several testing procedures exist in the literature. Three such procedures are

discussed.

2.9.1 The likelihood Procedure

Assuming that the distributional form of the mi is known upto the point k and

that this form remains the same after point k then the likelihood ratio is given
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by:-

Λk =

k∏
i=1

f(mi, pi)
b∏

i=k+1

f(mi, p
′
i)

b∏
i=1

f(mi, pi)

(2.46)

As in Gombay and Horvath (1994), Ho will be rejected for large values of

Qb = − max
2≤k≤b−1

2 log Λk (2.47)

To obtain the maximum likelihood ratio Λk, let

Mk =
k∑
i=1

mi

Nk =
k∑
i=1

ni

M =
b∑
i=1

mi

N =
b∑
i=1

ni

M ′
k = M −Mk

N ′k = N −Nk (2.48)

When H0 is true, the likelihood function is

Lo(pi) =
b∏
i=1

 ni

mi

 pmii (1− pi)ni−mi (2.49)

Thus the m.l.e. of p is
M

N
.

Similarly when Ha is true, the likelihood function is

La(p, p
′, k) =

k∏
i=1

 ni

mi

 pmii (1−pi)ni−mi
b∏

i=k+1

 ni

mi

 p′i
mi(1−p′i)ni−mi (2.50)
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and the m.l.e. of p′ is
M ′

k

N ′k
.

The log-likelihood ratio Λk is obtained as

Λk = log

[
La(p̂, p̂′)

L0(p̂)

]

= −
b∑
i=1

[
mi log

M

N
+ (ni −mi) log

(
1− M

N

)]

+
k∑
i=1

[
mi log

Mk

Nk

+ (ni −mi) log

(
1− Mk

Nk

)]

+
b∑

i=k+1

[
mi log

M ′
k

N ′k
+ (ni −mi) log

(
1− M ′

k

N ′k

)]
= −M log

M

N
− (N −M) log

N −M
N

+ Mklog
Mk

Nk

+ (Nk −Mk) log
Nk −Mk

Nk

+ (M −Mk) log
M ′

k

N ′k
+ [N −M − (Nk −Mk)] log

N ′k −M ′
k

N ′k

= −M logM − (N −M) log(N −M) +N logN

+ Mk logMk + (Nk −Mk) log(Nk −Mk)−Nk logNk

+ M ′
k logM ′

k + (N ′k −M ′
k) log(N ′k −M ′

k)−N ′k logN ′k (2.51)

Now Ho will be rejected if Qb = max
2≤k≤b−1

−2 log Λk is large, that is Qb > C where

C is a constant determined by the null distribution of Qb, the sample size and α,

the level of the test. This method is used in this work. Later in chapter 3 the

asymptotic null distribution of Qb will be given and thus C, the critical values

obtained. If the null hypothesis is rejected then the maximum likelihood estimate

of the change point position k̂ is estimated as k̂ = arg max
2≤k≤b−1

La(p, p
′, k).

2.9.2 The Cumulative Sum (CUSUM) Procedure

The CUSUM statistic Qk at time k is the cumulative sum Mk of the successes

upto time k, less the proportion rkM where rk = Nk
N

divided by the sample
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standard deviation. Thus

Qk =
Mk − rkM√
Npo(1− po)

(2.52)

It is noted that po is the m.l.e. of p under the null hypothesis.

Let S2
k = rk(1 − rk), then

Q2
k

S2
k

has the usual Pearson χ2 statistic. Now Ho will

be rejected if Qk = max
2≤k≤b−1

Qk is large, that is Qk > C where C is a constant

determined by the null distribution of Qk, the sample size and α, the level of the

test.

2.9.3 Informational Procedure

The information criterion is an excellent tool in model selection. If the hypothesis

testing problem in equation( 2.45)is taken as a model selection problem then one

may use this procedure to test for change.

If Ho is true then the likelihood is as in equation(2.49) and SIC(b) is defined as

SIC(b) = −2 logLo(po) + log b

= −2
b∑
i=1

log

 ni

mi

− 2M log(
M

N
)

− 2(N −M) log(
N −M
N

) + log b (2.53)

Under Ha the likelihood is as in equation(2.50) and

SIC(k) = −2 logLa(p, p
′, k) + log b

= −2
b∑
i=1

log

 ni

mi

− 2Mk log(
Mk

Nk

)− 2(Nk −Mk) log(
Nk −Mk

Nk

)

− 2M ′
k log(

M ′
k

N ′k
)− 2(N ′k −M ′

k) log(
N ′k −M ′

k

N ′k
) + 2 log b (2.54)

The null hypothesis will be rejected if

SIC(b) > min
2≤k≤b−1

SIC(k) (2.55)
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or reject Ho if

min
2≤k≤b−1

SIC(k)∆(k) < 0 (2.56)

where

∆(k) = M logM + (N −M) log(N −M)−N logN

− Mk logMk − (Nk −Mk) log(Nk −Mk)

+ Nk logNk −M ′
k logM ′

k − (N ′k −M ′
k) log(N ′k −M ′

k)

+ N ′k logN ′k −
1

2
log

1

b
(2.57)

For more details on this method see Gichuhi et al. (2012).
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CHAPTER THREE

CHANGE POINT DETECTION AND

ESTIMATION

3.1 Introduction

In this section the assumption is that b independent groups of size ni ≥ 2 i =

1, 2, . . . , b are observed. The observations are of the form (mi, Xi), 1 ≤ i ≤ b

where Xi = [x1i, . . . , xdi]
T ∈ <d are the explanatory variables. The number of

successes mi are independent binomial random variables whose mean depends

upon these explanatory variables.

For a standard change point problem the assumption that the observed data

(mi, Xi) are independent and the conditional distribution ofmi|Xi = x is binomial

with parameters ni, pi(x). The hypotheses are

H0 : pi(x) = p0(x), 1 ≤ i ≤ b

against

Ha : pi(x) = p0(x), for some i ≤ k, and for some i ≥ k + 1, pi(x) = p′(x)

where 2 ≤ k ≤ b − 1 is the unknown change point and p0(x) 6= p′(x) are the

probabilities before and after the change point respectively.

Thus the general likelihood will be of the form

L(mi, x, p) =
b∏
i=1

 ni

mi

 [pi(x)]mi [1− pi(x)]ni−mi (3.1)

Since pi(x) is not known but is known to depend on the explanatory variables

then one may use ϕ(x; θ) the output of a neural network in equation (2.12) to

estimate it.
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3.2 Model Definition

The observations (mi, Xi) are independent binomial random variables whose

probability density may be expressed as

f(mi, Xi, pi) =

 ni

mi

 [pi(x)]mi [1− pi(x)]ni−mi (3.2)

Since the functional form of pi(x) is not known one may approximate it in the

model by replacing it with an output of the neural network defined in equation

(2.12)

ϕ(x; θ) = ψ(nh(x; θ))

= α0 +
H∑
h=1

αh{wh0 +
D∑
d=1

whdxd} (3.3)

where θ ∈ Ω is as in equation (2.13). Assuming that the model is not misspecified,

and as in Gombay and Horvath (1996), then (mi, Xi) has a density function of

the form

f(m,x; θ) =

 ni

mi

ϕ(x; θ)mi [1− ϕ(x; θ)]ni−mi (3.4)

3.3 Estimation of the Parameters

The parameters are estimated using the artificial neural network (ANN). A feed-

forward network with a unipolar activation function, ψ as defined in equation

(2.14)is used.

Now, using equations (3.2) and (3.3),

f(x; θ) =

 ni

mi

ϕ(x; θ)mi [1− ϕ(x; θ)]ni−mi (3.5)
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so that the log-likelihood is

l(x; θ) =
b∑
i=1

ln

 ni

mi

+ lnϕ(x; θ) + (ni −mi) ln(1− ϕ(x; θ))


(3.6)

The maximum likelihood estimator for θ will be

θ̂ = arg max
θ∈Ω

l(x; θ) (3.7)

A solution to equation (3.7) is guaranteed if the following conditions are satisfied.

(a) Ω the parameter space for θ is compact, which is common assumption when

dealing with ANN.

(b) The activation function ψ chosen is continuous.

(c) The output of the network is such that 0 < ϕ(x; θ) < 1 for all x and θ.

Since l(x; θ) is continuous in θ for all mi and attains its maximum on compact

sets then the solution is guaranteed.

3.4 Testing for change points

In this section it is assumed that the data (mi, Xi) are independent and the

conditional distribution of mi|Xi = x is binomial with parameters ni and pi.

Hence the change point problem will be stated as

H0 : pi(x) = p0(x), 1 ≤ i ≤ b

against

Ha : pi(x) = p0(x), for some i ≤ k, and for some i ≥ k + 1, pi(x) = p′(x)

where 2 ≤ k ≤ b− 1 where k is the unknown change point and p0(x) 6= p′(x).

The general likelihood function will be of the form

L(m,x, p) =
b∏
i=1

 ni

mi

 [pi(x)]mi [1− pi(x)]ni−mi (3.8)
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The maximum likelihood ratio statistic will be given by

Λk =
L0(θ̂0)

La(θ̂k, θ̂′k)
(3.9)

so that one has

log Λk = logL0(θ̂0)− logLa(θ̂k, θ̂′k) (3.10)

As in Gombay and Horvath (1996), H0 will be rejected if and only if

Qb = max
2≤k≤b−1

−2 log Λk ≥ C (3.11)

The limiting distribution of Qb is derived and the critical values given in a later

section.

3.5 Model Irreducibility

A neural network with a fixed number of parameters is reducible if there exists

another network with fewer neurons that has exactly the same input-output map.

(see Hwang and Ding (1997)).

In this work an ANN model with the logistic function as the activation function

is considered. For one to discuss the irreducibility of this model one needs to

consider the hyperbolic tangent as it is a symmetric sigmoidal function. From

equation(2.19) it is noted that there is a relation between the unipolar and the

bipolar functions. If the logistic (unipolar) function is denoted by ψ1(x) and the

hyperbolic tangent (bipolar) by ψ2(x) then as in equation (2.19),

ψ2(x) = 2{ψ1(x)} − 1 (3.12)
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From equations (2.9), (2.10), (2.11) and (2.12) the output of the hyperbolic tan-

gent is

ϕ1(x; θ1) = α′0 +
H∑
h=1

α′h2{ψ1(x)} − 1

= (α′0 −
H∑
h=1

α′h) +
H∑
h=1

2α′hψ1(x)

= ϕ(x; θ) (3.13)

with

α0 = α′0 −
H∑
h=1

α′h

αh = 2α′h h = 1, . . . , H

Therefore it is possible to relate the parameter θ in the logistic function with θ1 in

the hyperbolic tangent if the weights whd remain the same. Hence irreducibility

in θ1 implies the same in θ.

A network is said to be reducible if at least one of following conditions is satisfied.

.

(a) αh = 0 for some h = 1, . . . , H.

(b) One of the functions nh(x; θ) is a constant; or

(c) There exist two indices i, j ∈ (h = 1, . . . , H) such that ni(x; θ) = ±nj(x; θ).

Note that a reducible θ, with a symmetric sigmoidal activation function leads to

a redundant network since it has an input-output map that can be represented

by another network by deletion of the hth neuron.

If a network is redundant because of (a) above, then it obvious that the hth neuron

makes no contribution in the output and hence it can be deleted without affecting

the input-output map.

If a network is redundant because of (b), then nh(x; θ) = c one may delete the
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hth neuron and replace α0 with α0 + αhψ(c). This arises if for a fixed value of h,

whd = 0 for all d = 1, . . . , D. In this situation then nh = wh0.

If a network is redundant because of (c), then ni = κnj where κ = 1 or -1 and

the combined contribution of these two neurons is

αiψ(ni(x; θ)) + αjψ(nj(x; θ)) = αiψ(κnj(x; θ)) + αjψ(nj(x; θ))

= καiψ(nj(x; θ)) + αjψ(nj(x; θ))

= (καi + αj)ψ(nj(x; θ))

This is due to the fact that the hyperbolic function is an odd function and there-

fore ψ(κx) = κψ(x). It is possible to delete the ith neuron and replace αj by

καi + αj

To control irrelevant neurons that bring about conditions (a) and (b), one can

use the SIC for model selection as in Swanson and White (1995). For a model

with h hidden neurons then

SIC(h) = ln σ̂2 + (h(2 +D) + 1)
ln(n)

n
(3.14)

The first term measures the goodness-of-fit while the second term is the complex-

ity penalty. Using the SIC criterion, one starts with a single hidden neuron and

determine SIC(1). Then a second hidden neuron is added and SIC(2) determined.

The process is continued until when an extra hidden neuron does not improve the

SIC. One therefore estimate h+ 1 models in order to choose a model with h neu-

rons. This procedure ensures that αh 6= 0 for all h . Thus one assumes that there

exist no two different indexes i, j ∈ h = 1, 2, . . . , H such that the functions αi and

αj are sign equivalent. This assumption solves the irreducibility caused by condi-

tion (c) above and thus ensuring that θ is irreducible hence non-redundant. The

result translates immediately to the case of a unipolar activation. However even

though θ is now irreducible, it is still unidentifiable as discussed in the following

section.
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3.6 Model Identifiability

Lets represent the weights of our network as α0 and βh for h = 1, . . . , H where

βh = (αh, wh) and wh = wh,0, wh,1, . . . , wh,d.

A theoretical problem of an ANN is the un-identifiability of the parameters. That

is, there are two sets of parameters that the corresponding distributions of (m,X)

are identical. The problem of un-identifiability has been looked into by Hwang

and Ding (1997) who also noted that every ANN is un-identifiable. Lets consider

the following two transformation

1. The permutations of βh which is equivalent to interchanging any two hidden

nodes hp and hq where p and q are the node positions and consequently their

corresponding weights are also interchanged.

2. The negation of weights of pth hidden node.

These two transformations do not alter the input-output map since

1. The interchange of the labels p and q will obviously not change the output

function ϕ(x; θ). These permutations will give H! different models with the

same input-output map.

2. The activation function in equation(2.14) is symmetric i.e. ϕ(x) = ϕ(−x)

and hence (α0, β1, . . . , βh, . . . , βH) and (α0, β1, . . . ,−βh, . . . , βH) have the

same input-output map. These transformations will give 2H different mod-

els with the same input-output map.

The transformations described above can be said to generate a family, τ , which

has 2HH! models. In this family ϕ(x; θ) = ϕτ (x; θ) and each transformation can

be characterised as being a composite function of τ1, . . . , τH , where

τ1(α0, β1, . . . , βh, . . . , βH) = (α0 + α1,−β1, . . . , βh, . . . , βH) (3.15)

45



and

τi(α0, β1, . . . , βh, . . . , βH) = (α0, βh, β2, . . . , βh−1, β1, βh+1, . . . , βH)

for h = 2, . . . , H (3.16)

Waititu (2008) has shown in his work that if it is assumed that the model in

equation (2.20), that is the bipolar activation function which is a continuous

function, then condition A of Hwang and Ding (1997) is satisfied. Thus if θ is

irreducible then, it is identifiable up to the family of transformations generated

by equation(3.16). This implies that if there exist another θ̆ such that ϕ(x; θ) =

ϕ(x; θ̆) then a transformation exists in equation (3.16) that transforms θ̆ to θ.

3.7 Consistency and Asymptotic Normality of Network

Parameter Estimates

In this section the assumption made is that (mi, Xi) are independent binomial

random variables with parameters ni, pi(x) i = 1, . . . , b. A neural network out-

put ϕ(x; θ) is fitted to pi(x) by minimising the negative of the loglikelihood divided

by b. That is the equation

l(θ) = −1

b

b∑
i=1

ln

 ni

mi

+mi lnϕ(x; θ) + (ni −mi)(1− lnϕ(x; θ))

 (3.17)
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is minimized.

The expected value of this target function E(l(θ)) which is denoted by l0(θ) is

l0(θ) = −E

1

b

b∑
i=1

ln

 ni

mi

+mi lnϕ(x; θ) + (ni −mi)(1− lnϕ(x; θ))




= −E

ln

 n1

m1

+m1 lnϕ(x; θ) + (n1 −m1)(1− lnϕ(x; θ))


= −E

ln

 n1

n1p(X1)

+ n1p(X1) lnϕ(X1; θ) + (n1 − n1p(X1)(1− lnϕ(X1; θ))


(3.18)

Assuming that l0(θ) has a unique minimum if θ is in the compact set Ω, then this

minimum is characterised by

∇l0(θ) = −n1E

{
p(X1)

ϕ(X1; θ)
− 1− p(X1)

1− ϕ(X1; θ)

}
∇ϕ(X1; θ)

= 0 (3.19)

Here the fact that the neural network output functions are continuous in x and

θ and continuously differentiable in θ so that it is possible to interchange expec-

tation and differentiation is used.

In a correctly specified situation where p(x) = ϕ(x; θ
′
) for some θ

′ ∈ Ω then equa-

tion (3.19) is solved but in a general situation where there is no true parameter

value, θ
′

is defined as

θ
′
= arg min

θ∈Ω
l0(θ) (3.20)

For an estimator θ̂ for θ
′

obtained by minimising equation (3.17), its consistency

implies that θ̂ → θ
′

as b→∞.

The model may expressed as

mi = nip(Xi) + εi i = 1, . . . , b (3.21)
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where the residuals are

εi = mi − nip(Xi) i = 1, . . . , b (3.22)

Since the observations (mi, Xi) are independent and P (mi|Xi) = 1
ni
E(mi|Xi)

then E(εi) = 0 and

V ar(εi) = E[(mi − nip(Xi))
2]

= E{E[(mi − nip(Xi))
2]|Xi}

= E{E[m2
i − 2minip(Xi) + (nip(Xi))

2]|Xi}

= E{ni(ni − 1)p(Xi) + nip(Xi)− (nip(Xi))
2}

= E{nip(Xi)(1− p(Xi))}

= σ2
ε <∞ (3.23)

Also it is noted that V ar(εi) is independent of θ and V ar(εi|Xi) = nip(Xi)(1 −

p(Xi)).

The following Uniform Law of Large Numbers will be used in the proof of the

consistency of θ̂ Let U1, U2, . . . be independent random vectors in <D, Ω ⊆ <M

compact, Υ : <D × Ω→ < measurable such that

1. E|Υ(U1; θ)| <∞ ∀θ ∈ Ω

2. Υ(u; θ) is Lipschitz continuous in θ that is for some L(u) > 0

3. E(L(U1)) <∞

Then

sup
θ∈Ω

∣∣∣∣∣1b
b∑
i=1

Υ(Ui; θ)− E[Υ(U1; θ)]

∣∣∣∣∣→ 0 in probability. The proof to this theorem

is found in Andrews (1992)

Franke and Neumann (2000) in their work discussed nonlinear least square esti-

mates for neural network parameters in which they made some assumptions. The
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residuals in equation (3.22) are independent and also bounded in absolute value

by mi. Thus to follow their argument one may reduce these assumptions to

(i) The activation function ψ is bounded and twice continuously differentiable

and E(mi|Xi = x) is also bounded.

This assumption is usually satisfied if the activation function is either unipo-

lar or bipolar .

(ii) l0(θ) has a unique global minimum at θ′ in the interior of Ω and ∇2l0(θ
′) =

A(θ′), which gives the Hessian matrix is positive definite.

This is a standard assumption in regression analysis.

(iii) Ω is chosen such that for some δ > 0, δ ≤ ϕ(x; θ) ≤ 1− δ

for all x ∈ <d, θ ∈ Ω.

This is a standard assumption.

(iv) X1, X2, . . . are independent random vectors with some density υ(x) and

var(X1) <∞.

This is a standard assumption since the observed values of X1 will have to

be finite.

(v) p(x) is continuous and for some ν > 0, 0 < ν ≤ p(x) ≤ 1− ν < 1.

This assumption ensures that the experiments do not become degenerate.

i.e. Not all the events in the experiment occur with probability of one or

zero.

To derive the asymptotic normality of θ̂− θ′ the two asymptotically independent

components of θ̂ − θ̃ and θ̃ − θ′ are separately considered where θ̃ = arg min
θ∈Ω

l̃(θ)
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is generated by replacing mi by E(mi|Xi = x) in equation (3.17) to obtain

l̃(θ) = −1

b

b∑
i=1

ln

 ni

nipi(x)

+ nipi(x) lnϕ(x; θ) + (ni(1− pi(x)))(1− lnϕ(x; θ))


(3.24)

The following theorem which is similar to theorem 1 of Franke and Neumann

(2000) is used Suppose assumptions (i)-(v) are satisfied. Let (mi|Xi = x) ∼

B(ni, pi(x)). Then as b→∞, with θ, θ′ as defined above

√
b

 θ̂ − θ̃

θ̃ − θ′

→ d N

0,

 Σ1 0

0 Σ2




that is
√
b(θ̂− θ̃) and

√
b(θ̃− θ′) are asymptotically independent normal random

vectors with covariance matrices Σ1 and Σ2 respectively, where

Σ1 = A−1(θ′)B1(θ′)A−1(θ′)

Σ2 = A−1(θ′)B2(θ′)A−1(θ′)

with

B1(θ′) = E
[

(n1p(X1))(1−p(X1))
ϕ2(X1;θ′)(1−ϕ(X1;θ′))2

]
∇ϕ(X1; θ′)∇tϕ(X1; θ′)

B2(θ′) = E
[

(n1p(X1)−ϕ(X1;θ′))2

ϕ2(X1;θ′)(1−ϕ(X1;θ′))2

]
∇ϕ(X1; θ′)∇tϕ(X1; θ′)

An immediate consequence of this theorem is that
√
b(θ̂ − θ′) is asymptotically

normal with mean 0 and covariance matrix Σ1+Σ2. In a correctly specified model

Σ2 = 0 since there is essentially no effect due to the randomness of X ′is implying

that the difference θ̂ − θ′ is asymptotically of order smaller than b−0.5 while in

a misspecified case this difference is of order b−0.5. It is also noted that B1(θ′)

contains the variance of m1 indicating its randomness while B2(θ′) contains the

modeling bias and hence it would be zero if the model were correctly specified.

proof

The proof is done in four parts.
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Part I

Using theorem (3.7), and taking Ui = Xi then

Υ(Xi; θ) = −

ln

 ni

nip(Xi)

+ nip(Xi) lnϕ(Xi; θ) + (ni − nip(Xi))(1− lnϕ(Xi; θ))


(3.25)

Thus

sup
θ∈Ω
|l(θ̃)− l0(θ)| = sup

θ∈Ω

∣∣∣∣∣1b
n∑
i=1

Υ(Xi; θ)− E(Υ(X1; θ))

∣∣∣∣∣ = op(1) (3.26)

Similarly

l(θ)− l̃(θ) =
1

b

b∑
i=1

ln

 ni

nip(x)


 ni

mi


− (mi − nip(x)) ln

ϕ(Xi; θ)

1− ϕ(Xi; θ)

l(θ) and l̃(θ) as defined in equations (3.17) and (3.24).

Taking Ui = (mi, Xi) one obtains

Υ(mi, x; θ) = ln

 ni

nip(x)


 ni

mi


− (mi − nip(x)) ln

ϕ(Xi; θ)

1− ϕ(Xi; θ)

then

sup
θ∈Ω
|l(θ)− l̃(θ)| = sup

θ∈Ω

∣∣∣∣∣1b
n∑
i=1

Υ(mi, Xi; θ)

∣∣∣∣∣ = op(1) (3.27)

as E(Υ(m1, X1; θ)) = 0

One has to confirm whether the three conditions of the theorem (3.7) are satisfied

in both cases. The activation function ψ is twice continuously differentiable and

is bounded and so is ϕ(x; θ). This is considered in detail in a later section of this
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chapter. As the derivative of ϕ(x; θ) is bounded then for some constant ω so that

for all x ∈ <D, θ ∈ Ω∣∣∣∣ ∂∂θjϕ(x; θj)

∣∣∣∣ ≤ ω if α0, . . . , αh w10, . . . , wh0∣∣∣∣ ∂∂θjϕ(x; θj)

∣∣∣∣ ≤ ω|xi| if w1i, . . . , whi i = 1, . . . , D. (3.28)

Hence it follows that for a suitable constant ω
′

‖ ∇ϕ(x; θ) ‖≤ ω
′ ‖ x ‖

In a corresponding manner, for some constant ω
′′
> 0

‖ ∇ lnϕ(x; θ) ‖= ‖ ϕ(x; θ) ‖
ϕ(x; θ)

ω
′′ ‖ x ‖

and

‖ ∇ ln(1− ϕ(x; θ)) ‖= ‖ ϕ(x; θ) ‖
1− ϕ(x; θ)

ω
′′ ‖ x ‖

Hence for Υ(x; θ) in equation (3.25)

|Υ(u; θ)−Υ(u; θ′)| ≤ sup
θ∈Ω
‖ ∇Υ(u; θ) ‖‖ θ − θ′ ‖

≤ {nip(x) + (ni − nip(x))}ω′′ ‖ x ‖‖ θ − θ′ ‖

= ω
′′ ‖ x ‖‖ θ − θ′ ‖ (3.29)

The assumption that (mi, Xi) are independent with finite variance makes condi-

tions (ii) and (iii) of theorem (3.7) to be satisfied with L(u) = ω
′′ ‖ u ‖.

Also from the third assumption made after the statement of the ULLN the-

orem and that 0 ≤ p(x) ≤ 1 one has that Υ(u; θ) is uniformly bounded in
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x ∈ <D, θ ∈ Ω.

Since mi are bounded binomial random variables then a similar argument to the

above is used for Υ(x; θ) in equation (3.27) and therefore from equations (3.26)

and (3.27)

|θ̂ − θ̃| = op(1) and |θ̃ − θ′| = op(1)

Hence it follows by assumption (ii) and with increasing probability that θ̃, θ̂ are

interior points in Ω. In particular

∇l(θ̂) = ∇l(θ̃) = ∇l0(θ′) = 0

with probability close to 1 as b→∞
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Part II

With probability close to 1,

0 = ∇l̃(θ̃)−∇l̃(θ′) +∇l̃(θ′)

= (θ̃ − θ′)∇2l0(θ′)− 1

b

b∑
i=1

{
nip(Xi)

ϕ(Xi; θ′)
− (ni −mi)(1− p(Xi))

1− ϕ(Xi; θ′)

}
∇ϕ(Xi; θ

′) + F1

(3.30)

where

F1 = ∇l̃(θ̃)−∇l̃(θ′)− (θ̃ − θ′)−∇2l̃0(θ′)

+ (θ̃ − θ′)(∇2l̃0(θ′)−∇2l0(θ′)

= op(‖ (θ̃ − θ′) ‖) (3.31)

But

0 = ∇l0(θ0)

= n1E

{
p(X1)

ϕ(X1; θ′)
− 1− p(X1)

1− ϕ(X1; θ′)

}
∇ϕ(X1; θ′) (3.32)

and by the central limit theorem the middle term of equation (3.30) is of the

order b−0.5. Since it is possible to interchange expectations and differentiation

and ϕ(X1; θ′) is bounded and bounded away from zero uniformly in x ∈ <D,

θ ∈ Ω then the logarithms in functions l(θ), l̃(θ), l0(θ) will all be defined.

Hence equation (3.30) becomes

∇2l0(θ′)(θ̃ − θ′) + op(‖ θ̃ − θ′ ‖) = O(b−0.5) (3.33)

and since ∇2l0(θ′) the Hessian is positive definite by assumption (ii) one has that

‖ θ̃ − θ′ ‖= O(b−0.5) (3.34)

Replacing ∇2l0(θ′) with A(θ′) then equation (3.30) becomes

√
b(θ̃−θ′) = A(θ′)−1 1√

b

b∑
i=1

{
nip(Xi)

ϕ(Xi; θ′)
− (ni −mi)(1− p(Xi))

1− ϕ(Xi; θ′)

}
∇ϕ(Xi; θ

′)+op(1)

(3.35)
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and hence for a suitable function s1 satisfying E[s1(Xi)] = 0 one obtains

√
b(θ̃ − θ′) = b−.5

b∑
i=1

s1(Xi) + op(1) (3.36)

Part III

From equations (3.21), (3.27) and that E(εi|Xi) = 0, then with probability going

to 1,

Υ(mi, x; θ) = ln

 ni

nip(x)


 ni

mi


− (εi) ln

ϕ(Xi; θ)

1− ϕ(Xi; θ)
(3.37)

and

0 = ∇l(θ̂) = ∇l̃(θ̂) +∇{l(θ̂)− l̃(θ̂)}

= ∇l(θ̃) +
1√
b

b∑
i=1

Υ(mi, x; θ̂)

= ∇l(θ̃)− 1√
b

b∑
i=1

(εi)
∇ϕ(Xi; θ̂)

ϕ(Xi; θ̂){1− ϕ(Xi; θ̂)}
(3.38)

As in part II of the proof,

√
b(θ̂ − θ̃) = A−1(θ′)b−.5

b∑
i=1

{
∇ϕ(Xi; θ

′)

ϕ(Xi; θ′)(1− ϕ(Xi; θ′))
εi

}
+ op(1) (3.39)

and hence for a suitable function s2 satisfying Es2(Xi) = 0 one obtains

√
b(θ̂ − θ̃) = b−.5

b∑
i=1

s2(Xi)εi + op(1) (3.40)

Hence for some constants ω1, ω2 and for all x ∈ <D

‖ s1(x) ‖≤ ω1 ‖ x ‖, ‖ s2(x) ‖≤ ω2 ‖ x ‖
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since ∇ ‖ ϕ(x; θ) ‖ is bounded. As E ‖ Xi ‖ is finite , εi bounded and (Xi, εi) are

i.i.d. one obtains

√
b

 θ̂ − θ̃

θ̃ − θ′

 d→ N

0,

 Σ1 0

0 Σ2


 (3.41)

as for all f, g

bCov(θ̃f − θ′f , θ̂g − θ̃g) = b−1

b∑
i,j=1

E(s1f (Xis2g(Xjεj) + op(1)

= b−1

b∑
i 6=j

E(s1f (Xis2g(Xjεj)

+ b−1
∑
i=1

E(s1f (Xis2g(Xiεi) + op(1)

= op(1) (3.42)

as E(εi|Xi = 0)

Part IV

The form now of Σ1 and Σ2 is now required.

Σ1 = E[s1(X1)st1(X1)]

= A−1(θ′)B1(θ′)A−1(θ′) (3.43)

since s1(Xi) i = 1, 2, . . . , b are i.i.d. and E[s1(Xi)] = 0 where

B1(θ′) = E

{[
n1p(X1)
ϕ(X1;θ′)

− (n1−m1)(1−p(X1))
1−ϕ(X1;θ′)

]2

∇ϕ(X1; θ′)∇tϕ(X1; θ′)

}
Similarly as E[ε2i |X1] = σ2

εi
as in equation (3.23) we have

Σ2 = E[s2(X1)st2(X1)ε2i ]

= E[s2(X1)st2(X1)(nip(X1)(1− p(X1)))]

= A−1(θ′)B2(θ′)A−1(θ′) (3.44)

where
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B2(θ′) = E
{

n1p(X1)(1−p(X1))
ϕ2(X1;θ′)(1−ϕ(X1;θ′))2

∇ϕ(X1; θ′)∇tϕ(X1; θ′)
}

Thus the theorem is proved. The limiting distribution of the change point statistic

in equation (3.11) when the null hypothesis is true so as to perform the test of

the hypotheses in equation (2.45)is now considered.

3.8 The Limit Distribution of the Change Point Statistic

In their work Gombay and Horvath (1996) gave conditions C1− C8 which have

to be satisfied by the probability distribution under consideration. Their enu-

meration is followed to show that the probability distribution mi|Xi = x, the

binomial distribution satisfies these conditions. This probability distribution is

of the form

f(mi, x, θ) =

 ni

mi

 [ϕ(x; θ)]mi [1− ϕ(x; θ)]ni−mi (3.45)

For simplicity purpose the subscript i on n and m is dropped from this point

onwards in this section.

C1. f(m,x, θ) generates distinct measures in Ω0×Ω1 i.e. the densities f(m,x, θ0)

and f(m,x, θ′) do not coincide.

proof

Now θ is identifiable from the function f(m,x, θ) if it is identifiable from

ϕ(x; θ). Conditions for the identifiability are discussed in section 3.6. It is

sufficient to assume that

θ = (wh,0, w1,0, . . . , wH,D, α0, α1, . . . , αH) satisfies

c1 αh > 0, h = 1, . . . , H

c2 wh > 0, h = 1, . . . , H

c3 (wh, wh,0) 6= (wh́, wh́,0) for some h 6= h́
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The following notations are made to enable us state and prove other con-

ditions

g(m,x; θ) = log f(m,x; θ)

gi(m,x; θ) =
∂

∂θi
g(m,x; θ)

gij(m,x; θ) =
∂

∂θi∂θj
g(m,x; θ)

gijk(m,x; θ) =
∂

∂θi∂θj∂θk
g(m,x; θ) (3.46)

C2. For each k = 1, 2, 3, . . . , b, it is possible to find unique values θ̂k and θ̂′k such

that ∑
1≤j≤k

gi(mj, xj; θ) = 0 i = 1, 2, . . . , D (3.47)

∑
k≤j≤b

gi(mj, xj; θ
′) = 0 i = 1, 2, . . . , D (3.48)

and

∑
1≤j≤k

gi(mj, xj; θ) +
∑
k≤j≤b

gi(mj, xj; θ
′) = 0 (3.49)

Note that θ̂k and θ̂′k are the values that maximize the loglikelihood function.

proof

In the estimation of parameters of neural network the assumption made is

that the parameter set is chosen so that there are unique θ̂k and θ̂′k .

It should be noted that if k = 1 = b, then there is no change point.

C3. There is an open set Ω ⊆ <D containing θ0 such that gi(m,x; θ), gij(m,x; θ)

and gijk(m,x; θ), 1 ≤ i, j, k ≤ D exist and are continuous in θ for all

m,x ∈ < and θ ∈ Ω .

proof

This condition is satisfied by the fact that gi(m,x; θ),gij(m,x; θ) and gijk(m,x; θ)
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depend on θ only through ϕ(x; θ) which is continuously differentiable with

respect to θ.

C4. There are functions M1(x) and M2(x) such that |gi(m,x; θ)| ≤ M1(x),

|gij(m,x; θ)| ≤ M2(x) and |gijk(m,x; θ)| ≤ M2(x) for all x ∈ < and θ ∈ Ω,

where M1, M2 satisfy

n∑
m=0

∫
M1(x)dv(x) <∞

and

Eθ0M2(X1) =
n∑

m=0

∫
(M2(x)

 n

m

 [ϕ(x; θ0)]mdv(x)[1−ϕ(x; θ0)]n−m)dv(x) <∞

(3.50)

since 0 ≤ ϕ(x; θ) ≤ 1, the latter is satisfied if

n∑
m=0

∫
M2(x)dv(x) <∞

proof

The proof will be given in three sections

section I

Obtaining the derivative of equation (3.45),

gi(m,x; θ) =
∂

∂θi
log f(m,x; θ)

= m
ϕi(x; θ)

ϕ(x; θ)
+ [n−m]

ϕi(x; θ)

1− ϕ(x; θ)
(3.51)

But ϕ(x; θ) = ψ(ζ(x; θ)), implying that

ϕi(x; θ) =
∂

∂θi
ψ(ζ(x; θ))

= ψ′ζ(x; θ)
∂

∂θi
ζ(x; θ) (3.52)
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Hence

ψ(a) =
1

1 + e−a

ψ′(a) =
e−a

(1 + e−a)2

=
(1 + ea)e−a

(1 + ea)(1 + e−a)2

=
1 + e−a

(1 + ea)(1 + e−a)2
(3.53)

and

|ψ′(a)|
ψ(a)

=
1

1 + ea
∈ [0, 1] (3.54)

also

|ψ′(a)|
1− ψ(a)

=
1

1 + e−a
∈ [0, 1] (3.55)

Now

|gi(m,x; θ)| = m
|ϕi(x; θ)|
ϕ(x; θ)

+ [n−m]
|ϕi(x; θ)|

1− ϕ(x; θ)

= m
|ψ′(ζ(x; θ))|
ψ(ζ(x; θ))

∣∣∣∣ ∂∂θi ζ(x; θ)

∣∣∣∣
+ [n−m]

|ψ′(ζ(x; θ))|
1− ψ(ζ(x; θ))

∣∣∣∣ ∂∂θi ζ(x; θ)

∣∣∣∣
≤ [n]| ∂

∂θi
ζ(x; θ)| using equations (3.54) and (3.55)

(3.56)

Now one requires to determine the bound of
∂

∂θi
ζ(x; θ)

Now using equation (3.52) and the possible values of the parameter θi, one

has

For θi = α0 ∣∣∣∣ ∂∂α0

ζ(x; θ)

∣∣∣∣ = 1 (3.57)

For θi = αi, i = 1, 2, . . . , H∣∣∣∣ ∂∂αi ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ψ(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣ ≤ 1 (3.58)
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For θi = wh0∣∣∣∣ ∂

∂wh0

ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂wh0

{
α0 +

H∑
h=1

αhψ(wh0 +
D∑
d=1

whdxd)

}∣∣∣∣∣
=

∣∣∣∣∣αhψ′(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
αhψ(wh0 +

D∑
d=1

whdxd)

1 + exp((wh0 +
D∑
d=1

whdxd))

∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣αhψ(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣ , since |1− ψ(a)| ≤ 1

≤ |αh|, since |ψ(a)| ≤ 1 (3.59)

For θi = whr for some r∣∣∣∣ ∂

∂whr
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂whm

{
α0 +

H∑
h=1

αhψ(wh0 +
D∑
r=1

whrxr)

}∣∣∣∣∣
=

∣∣∣∣∣αhxrψ′(wh0 +
D∑
d=1

whrxr)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
αhxrψ(wh0 +

D∑
m=1

whrxr)

1 + exp((wh0 +
D∑
r=1

whrxr))

∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣αhxrψ(wh0 +
D∑
r=1

whrxr)

∣∣∣∣∣ , since |1− ψ(a)| ≤ 1

≤ |αh||xr|, since |ψ(a)| ≤ 1 (3.60)

Hence to obtain C4 the function

M1(x) = max(n, ξ
D∑
r=1

|xr|) (3.61)

may be used after making the following two assumptions

1. |αh| ≤ ξ, h = 1, . . . , H for all θ ∈ Ω and ξ a constant.
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2. E|Xr1| <∞, r = 1, . . . , D i.e. E‖X1‖ <∞

section II

gij(m,x; θ) the second derivative of gi(m,x; θ) is now required.

gij(m,x; θ) =
∂

∂θj
gi(m,x; θ) (3.62)

Now

gij(m,x; θ) =
∂

∂θj

{
m
ϕi(x; θ)

ϕ(x; θ)
+ [n−m]

ϕi(x; θ)

1− ϕ(x; θ)

}
= m

{
ϕij(x; θ)

ϕ(x; θ)
− ϕi(x; θ)ϕj(x; θ)

[ϕ(x; θ)]2

}
+ [n−m]

{
ϕij(x; θ)

1− ϕ(x; θ)
+
ϕi(x; θ)ϕj(x; θ)

[1− ϕ(x; θ)]2

}
(3.63)

But

ϕij(x; θ) =
∂

∂θj
ϕi(x; θ)

=
∂

∂θj

{
ψ′(ζ(x; θ))

∂

∂θi
ζ(x; θ)

}
= ψ′′(ζ(x; θ))

∂

∂θi
ζ(x; θ)

∂

∂θj
ζ(x; θ)

+ ψ′(ζ(x; θ))
∂2

∂θi∂θj
ζ(x; θ) (3.64)

Also

ψ′′(a) =
e−a

(1 + e−a)2(1 + ea)
− ea

(1 + ea)2(1 + e−a)

=
e−a − ea

(1 + e−a)2(1 + ea)2

=
(1 + e−a) + (1 + ea)

(1 + e−a)2(1 + ea)2

=
1

(1 + e−a)(1 + ea)2
− 1

(1 + ea)(1 + e−a)2
(3.65)

And hence the deduction is that

ψ′′(a)

ψ(a)
=

1

(1 + ea)2
− 1

(1 + ea)(1 + e−a)2

= (1− ψ(a))2 − ψ′(a)

ψ(a)
∈ [−1, 1] (3.66)
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and

ψ′′(a)

1− ψ(a)
=

1

(1 + ea)(1 + e−a)2
− 1

(1 + ea)2

=
ψ′(a)

ψ(a)
− (1− ψ(a))2 ∈ [−1, 1] (3.67)

The bound of gij(m,x; θ) is obtained as follows,

|gij(m,x; θ)| = m

{
|ψ′′(ζ(x; θ))|
ϕ(x; θ)

∣∣∣∣ ∂∂θi ζ(x; θ)

∣∣∣∣ ∣∣∣∣ ∂∂θj ζ(x; θ)

∣∣∣∣}
+ m

{
|ψ′(ζ(x; θ))|
ψ(ζ(x; θ))

∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣}
+ m

{[
|ψ′(ζ(x; θ))|
ψ(ζ(x; θ))

]2 ∣∣∣∣ ∂∂θi ζ(x; θ)

∣∣∣∣ ∣∣∣∣ ∂∂θj ζ(x; θ)

∣∣∣∣
}

+ [n−m]

{
|ψ′′(ζ(x; θ))|

1− ψ(ζ(x; θ))

∣∣∣∣ ∂∂θi ζ(x; θ)

∣∣∣∣ ∣∣∣∣ ∂∂θj ζ(x; θ)

∣∣∣∣}
+ [n−m]

{
|ψ′(ζ(x; θ))|

1− ψ(ζ(x; θ))

∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣}
+ [n−m]

{[
|ψ′(ζ(x; θ))|

1− ψ(ζ(x; θ))

]2 ∣∣∣∣ ∂∂θi ζ(x; θ)

∣∣∣∣ ∣∣∣∣ ∂∂θj ζ(x; θ)

∣∣∣∣
}

(3.68)

This implies that

|gij(m,x; θ)| ≤ n

∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣+ 2n

∣∣∣∣ ∂∂θi ζ(x; θ)

∣∣∣∣ ∣∣∣∣ ∂∂θj ζ(x; θ)

∣∣∣∣ (3.69)

using equations (3.66) and (3.67)

But from section I of the proof,

|gi(m,x; θ)||gj(m,x; θ)| ≤


constant.|xi||xj| θi = whi, θj = whj; i, j ≥ 1

constant θi = αi, θj = whj

constant θi = αi, θj = αj

(3.70)

and by equation (3.61) one has∣∣∣∣ ∂∂θi ζ(x; θ)

∣∣∣∣ ∣∣∣∣ ∂∂θj ζ(x; θ)

∣∣∣∣ ≤M2
1 (x) (3.71)
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Hence for E[M2, X1] < ∞ to hold one must have at least have E[X2
1l] <

∞ l = 1, . . . , d or E||X1||2 <∞

Next the bound of

∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ is required

For θi = αi, θj = αj then ∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ = 0 (3.72)

Forθi = αi, θj = whr, h 6= i then∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ = 0 (3.73)

For θi = αh, θj = wh0 then∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂wh0

ψ(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣
=

∣∣∣∣∣ψ′(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣ ≤ 1 by equation (3.54)

(3.74)

For θi = αh, θj = whr, r > 0 then∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂whr
ψ(wh0 +

D∑
r=1

whrxr)

∣∣∣∣∣
=

∣∣∣∣∣ψ′(wh0 +
D∑
r=1

whrxr)

∣∣∣∣∣ |xr| ≤ |xr| (3.75)

since |ψ′(a)| ≤ 1 by equation

For θi = αhr, θj = wh∗r∗ , h 6= h∗ then∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂wh∗r∗
αhψ(wh0 +

D∑
r=1

whrxr)

∣∣∣∣∣ (3.76)

For θi = αh, θj = wh0 then∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂wh0

αhψ
′(wh0 +

D∑
d=1

whdxd)

∣∣∣∣∣
=

∣∣∣∣∣αhψ′′(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣
≤ |αh| (3.77)

64



since |ψ′′(a)| ≤ 1

For θi = wh0, θj = whd then∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂whd
αhψ

′(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣
=

∣∣∣∣∣αhψ′′(wh0 +
D∑

m=1

whdxd)xd

∣∣∣∣∣
≤ |αh||xd| (3.78)

For θi = whd, θj = whr then∣∣∣∣ ∂2

∂θi∂θj
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂whd
αhψ

′(wh0 +
D∑
d=1

whdxd)xd

∣∣∣∣∣
=

∣∣∣∣∣αhψ′′(wh0 +
D∑
r=1

whrxr)xdxr

∣∣∣∣∣
≤ |αh||xd||xr| (3.79)

Hence to have an appropriate bound one requires that |α1|, . . . , |αH | be

bounded and E[|xd||xr|] ≤ ∞ i.e. E‖Xi‖2 ≤ ∞

section III

In this section gijk(m,x; θ) =
∂

∂θk
gij(m,x; θ) is determined.

gijk(m,x; θ) = m
∂

∂θk

{
ϕij(x; θ)

ϕ(x; θ)
− ϕi(x; θ)ϕj(x; θ)

[ϕ(x; θ)]2

}
= [m]

ϕijk(x; θ)

ϕ(x; θ)

− [m]
ϕi(x; θ)ϕjk(x; θ) + ϕj(x; θ)ϕik(x; θ) + ϕk(x; θ)ϕij(x; θ)

[ϕ(x; θ)]2

+ [2m]
ϕi(x; θ)ϕj(x; θ)ϕk(x; θ)

[ϕ(x; θ)]3

+ [n−m]
ϕijk(x; θ)

[1− ϕ(x; θ)]2

+ [n−m]
ϕi(x; θ)ϕjk(x; θ)− ϕj(x; θ)ϕik(x; θ)− ϕk(x; θ)ϕij(x; θ)

[1− ϕ(x; θ)]2

− 2[n−m]
ϕi(x; θ)ϕj(x; θ)ϕk(x; θ)

[1− ϕ(x; θ)]3
(3.80)
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Hence the bound is

|gijk(m,x; θ)| ≤ [m]
|ϕijk(x; θ)|
ϕ(x; θ)

+ [m]
|ϕi(x; θ)ϕjk(x; θ) + ϕj(x; θ)ϕik(x; θ) + ϕk(x; θ)ϕij(x; θ)|

[ϕ(x; θ)]2

+ [2m]
|ϕi(x; θ)ϕj(x; θ)ϕk(x; θ)|

[ϕ(x; θ)]3

+ [n−m]
ϕijk(x; θ)

[1− ϕ(x; θ)]2

+ [n−m]
|ϕi(x; θ)ϕjk(x; θ) + ϕj(x; θ)ϕik(x; θ) + ϕk(x; θ)ϕij(x; θ)|

[1− ϕ(x; θ)]2

+ 2[n−m]
|ϕi(x; θ)ϕj(x; θ)ϕk(x; θ)|

[1− ϕ(x; θ)]3
(3.81)

Each of the last four terms in equation above is bounded by constant+constant|xqxrxs|

for an appropriate choice of subscripts as in section II of this proof.

ϕijk(x; θ) is now worked out

ϕijk(x; θ) =
∂

∂θk
ϕij(x; θ)

=
∂

∂θk

{
ψ′′(ζ(x; θ))

∂

∂θi
(ζ(x; θ))

∂

∂θj
(ζ(x; θ)) + ψ′(ζ(x; θ))

∂2

∂θi∂θj
ϕ(x; θ)

}
= ψ′′′(ζ(x; θ))

∂

∂θi
ζ(x; θ)

∂

∂θj
ϕ(x; θ)

∂

∂θk
ϕ(x; θ)

+ ψ′′(ζ(x; θ))
∂2

∂θi∂θk
ζ(x; θ)

∂

∂θj
ϕ(x; θ)

+ ψ′′(ζ(x; θ))
∂2

∂θj∂θk
ζ(x; θ)

∂

∂θi
ϕ(x; θ)

+ ψ′′(ζ(x; θ))
∂2

∂θi∂θj
ζ(x; θ)

∂

∂θk
ϕ(x; θ)

+ ψ′(ζ(x; θ))
∂3

∂θi∂θj∂θk
ζ(x; θ) (3.82)
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Now

ψ′′′(a) =
d

da

{
1

(1 + e−a)(1 + ea)2
+

d

da
− 1

(1 + ea)(1 + e−a)2

}
= 2

{
1

(1 + ea)(1 + e−a)2
− 1

(1 + ea)(1 + e−a)3
− 1

(1 + e−a)(1 + ea)3

}
= 2{ψ(a)ψ′(a)− ψ2(a)ψ′(a)− (1− ψ(a))2ψ′(a)}2ψ′(a)−2ψ2(a) + 3ψ(a)− 1

∈ [−2, 2] (3.83)

Using this equation ,

ψ′′′(a)

ψ(a)
= 2

ψ′(a)

ψ(a)
{−2ψ2 + 3ψ(a)− 1} ∈ [−2, 2] (3.84)

and

ψ′′′(a)

1− ψ(a)
= 2

ψ′(a)

1− ψ(a)
{−2ψ2 + 3ψ(a)− 1} ∈ [−2, 2] (3.85)

For

|ϕijk(x; θ)|
ϕ(x; θ)

≤ constant+ constant|xqxrxs|+ n

∣∣∣∣ ∂3

∂θi∂θj∂θk
ϕ(x; θ)

∣∣∣∣ (3.86)

using section II of the proof and therefore

|gijk(x; θ)| ≤ constant+ constant|xqxrxs|+ n

∣∣∣∣ ∂3

∂θi∂θj∂θk
ζ(x; θ)

∣∣∣∣ (3.87)

The next task will be to look for the bound of the derivative in (3.86)

For θi = αi, θj = αj, θk = αk∣∣∣∣ ∂3

∂αi∂αj∂αk
ζ(x; θ)

∣∣∣∣ = 0 (3.88)

For θi = αi, θj = whd, θk = whd, h 6= d∣∣∣∣ ∂3

∂αi∂whd∂whd
ζ(x; θ)

∣∣∣∣ = 0 (3.89)

For θi = αh, θj = wh0, θk = wh0∣∣∣∣ ∂3

∂αh∂wh0∂wh0

ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂wh0

ψ′(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣
= |ψ′(wh0 +

D∑
d=1

whdxd)|

≤ 1 (3.90)
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For θi = αh, θj = wh0, θk = whd d > 0∣∣∣∣ ∂3

∂αh∂wh0∂whd
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂whd
ψ′(wh0 +

D∑
d=1

whdxd)

∣∣∣∣∣
= |xdψ′′(wh0 +

D∑
d=1

xd)|

≤ |xd| (3.91)

For θi = αh, θj = whd, θk = whd∣∣∣∣ ∂3

∂αh∂whd∂whd
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂whd
ψ′(wh0 +

D∑
d=1

whdxd)

∣∣∣∣∣
= |xdxdψ′′(wh0 +

D∑
d=1

xd)|

≤ |xdxd| (3.92)

For θi = wh0, θj = wh0, θk = wh0∣∣∣∣ ∂3

∂wh0∂wh0∂wh0

ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂wh0

ψ′′αh(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣
= |αhψ′′′(wh0 +

D∑
d=1

xd)|

≤ 2|αh| (3.93)

since |ψ′′′(a)| ≤ 2 from equation (3.83)

For θi = wh0, θj = wh0, θk = whd∣∣∣∣ ∂3

∂wh0∂wh0∂whd
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂wh0

ψ′′αh(wh0 +
D∑
d=1

whdxd)

∣∣∣∣∣
= |αhxdψ′′′(wh0 +

D∑
d=1

xd)|

≤ 2|αh||xd| (3.94)
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Finally for θi = whr, θj = whs, θk = whtfor r, s, t ≥ 1∣∣∣∣ ∂3

∂whr∂whs∂wht
ζ(x; θ)

∣∣∣∣ =

∣∣∣∣∣ ∂

∂whr
ψ′′αh(wh0 +

D∑
d=1

whdxd)

∣∣∣∣∣
=

∣∣∣∣∣ ∂

∂whr
ψ′′′αh(wh0 +

D∑
d=1

whdxd)xrxsxt

∣∣∣∣∣
≤ |αh||xrxsxt| (3.95)

Hence the function

M2(x) = C1 + ξ1

D∑
r,s,t

|xrxsxt| (3.96)

may be used for us to have C4 for large enough values of the constants

C1 and ξ1. Since |α1|, . . . , |αH | are bounded uniformly in θ ∈ Ω by the

compactness of Ω, then for the integrability of M1 and M2 one needs to

assume that M2 is integrable with respect to the distribution of Xt. This

is implied by E‖X1‖ <∞

To enable one to state and proof a later condition one also assumes that

E‖X1‖4 <∞ (3.97)

C5. Eθ[gi(m,X1; θ)] = 0 for all θ ∈ Ω and i.

proof

Before proceeding with the proof it is worthwhile to note that m being

a binomial random variable represents the number of successes in the n

independent trials, so that m =
n∑
i=1

Yi where

Yi =

 1 if the outcome is a success

0 otherwise

Now Yi i = 1, . . . , n are independent Bernoulli random variables with

E(Yi) = ϕ(x; θ) so that E(m) =
n∑
i=1

E(Yi). Waititu (2008) in his work
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proved that the Bernoulli form of p.d.f. follows conditions C1 to C8. There-

fore to obtain C5,

E[gi(m,X1; θ)] = E {E[gi(m,X1; θ)|X1]}

= E

{
n∑
j=1

E[λi(Yj, X1; θ)|X1]

}
= 0

where λi(Y,X1; θ) is as in Waititu (2008)

C6. Eθ[gi(m,X1; θ)gj(m,X1; θ)] = −Eθ[gij(m,X1; θ)] = Iij(θ) for all θ ∈ Ω,

I−1
ij (θ) exist. Both I−1

ij (θ) and Iij(θ) are continuous in θ ∈ Ω, where Iij(θ)

is the information matrix.

proof

E[gi(m,X1; θ)gj(m,X1; θ)] = E[E[gi(m,X1; θ)|X1gj(m,X1; θ)|X1]]

= E

{
n∑
k=1

E[λi(Yk, X1; θ)|X1λj(Yk, X1; θ)|X1]

}
where λi(Y,X1; θ) is as in Waititu (2008)

= n

[
ϕi(X1; θ)ϕj(X1; θ)

ϕ(X1; θ)
+
ϕi(X1; θ)ϕj(X1; θ)

1− ϕ(X1; θ)

]
(3.98)

Similarly

E[gij(m,X1; θ) = E[E[gi(m,X1; θ)|X1]

= E

{
n∑
k=1

E[λij(Yk, X1; θ)|X1]

}

= −n
[
ϕi(X1; θ)ϕj(X1; θ)

ϕ(X1; θ)
+
ϕi(X1; θ)ϕj(X1; θ)

1− ϕ(X1; θ)

]
(3.99)

Hence with the assumption of the invertibility of Iij(θ), one obtains C6

With the above assumption, then for a true parameter θ ∈ Ω0, I−1
ij (θ) exists.
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C7. V ar[gij(m,X1; θ)] <∞ for all i, j.

proof

To prove this condition it is sufficient to show that

E[(gij(m,X1; θ))2] <∞. From C4 |gij(m,X1; θ)| ≤M2(X1) and from equa-

tion (3.96) depending on i, j and from the assumption (3.97) one has that

V ar[gij(m,X1; θ)] <∞

C8. E|(gi(m,X1; θ))|q <∞ for all i for some q > 2.

proof

Now using equation (3.61) and the second assumption in (3.8), C8 is ob-

tained with the assumption that E‖X1‖1+q <∞

If conditions C1−C8 hold then under Ho, the test statistic Qb = max
1<k≤b−1

−2 log Λk

is such that

P (a(log b)Q
1
2
b ≤ x + f(log b)) = exp(−2 exp(−x)) for all x ∈ < where a(s) =

(2 log s)
1
2 , f(s) = 2 log s + d

2
log(log s) − log(Γ(d

2
)) and d is the dimension of θ.

This theorem is similar to Theorem 2.1 of Gombay and Horvath (1996). For

some level α and sample sizes the asymptotic critical values from theorem(3.8)

are presented as C1 in Table 3.1. It is noted that exp(−2 exp(−x)) is the square

of Gumbel distribution, which is an extreme value distribution and the rate of

to these type of distributions convergency is usually slow. Hence theorem (3.8)

gives conservative rejection regions when the sample sizes are moderate or small

and only works well for large sample sizes. For small sample sizes Gombay and

Horvath (1996) derived a further approximation of Q
1
2
b If conditions C1−C8 hold

then under Ho,∣∣∣∣∣∣Q 1
2
b − sup

1
b
≤t≤1− 1

b

(
B

(d)
b (t)

t(1− t)

) 1
2

∣∣∣∣∣∣ = Op(exp(− log b)1−ε)

71



for all 0 < ε < 1 where B
(d)
b is a sequence of stochastic process distributed as

B
(d)
b =

∑
1≤i≤d

B2
i (t), 0 ≤ t ≤ 1 and Bi(t) are independent Brownian bridges.

For 0 ≤ α ≤ 1 define

qk ≈ qk(1− α) = sup(x : P (Q
1
2
b ≤ x) ≤ 1− α)

and

v(r, s) = v(r, s; 1− α)

= sup
r≤t≤1−s

x : P

(
B

(d)
b (t)

t(1− t)

) 1
2

≤ x

 = 1− α (3.100)

It is then shown that v(r, s) is an asymptotically correct critical value of size α

Let conditions C1− C8 and Ho hold.

If r(b), s(b) ≥ 1
b

and lim
b→∞

sup(b(r(b) + s(b)exp(−(log b)1−ε)) <∞ where 0 ≤ ε ≤ 1

then one has that lim
b→∞

P
(
Q

1
2
b > v(r(b), s(b))

)
= α and |qk − v(r(b), s(b))| =

o((log log b)
1
2 ) As in Gombay and Horvath (1996) put

r(b) = s(b) = (log b)
3
2

b

which makes v(r, s) ≈ qk . But there is no known simple formula for the distri-

bution function of sup
r≤t≤1−s

(
B

(d)
b (t)

t(1− t)

) 1
2

and its inverted Laplace transform

P

 sup
r≤t≤1−s

(
B

(d)
b (t)

t(1− t)

) 1
2

≥ x

 =
xd exp(−x2/2)

2d/2Γ(d/2)

{
T − d

x2
T +

4

x2
+O(

1

x4
)

}
(3.101)

where T = log (1−r)(1−s)
rs

is used.

The asymptotic critical values from theorem (3.8)are presented as C2 in Table

3.1.
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Sample size α C1 C2

0.01 5.154013 4.787015

50 0.05 4.167178 4.306045

0.1 3.3731367 4.063449

0.01 5.219244 4.854494

100 0.05 4.286601 4.385838

0.1 3.874723 4.151836

0.01 5.249661 4.887406

150 0.05 4.341763 4.42462

0.1 3.940813 4.194628

0.01 5.268792 4.908558

200 0.05 4.467199 4.449472

0.1 3.982043 4.22199

0.01 5.310178 4.73092

481 0.05 4.456003 4.274104

0.1 4.078778 4.049254

0.01 5.319912 4.966611

500 0.05 4.167178 4.517474

0.1 4.09062 4.296645

Table 3.1: Critical values
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3.9 Power of the test

In this section the assumption made is that the model is correctly specified. The

test statistic is Qb = max
1<k≤b−1

−2 log Λk where Λk = L(Ω̂o)

L(Ω̂a)
and Ω̂o contains θ̂o the

m.l.e. of θ under the null hypothesis while Ω̂a contains θ̂k, θ̂k+1 the m.l.e. of θ

under the alternative hypothesis before and after the change point respectively.

Now the test statistic Qb is an increasing function of max
1<k≤b−1

−2 log Λk and there-

fore the null hypothesis is rejected if Qb is large, i.e. reject Ho if Qb ≥ C where

C is some bound that depends on the size α of the test and b the sample size. If

Pθ(mi|Xi) is the conditional probability of mi = m given that Xi = x provided

that θ is the true parameter then,

Λk =
k∏
i=1

Pθ̂0(mi|Xi)

Pθ̂k(mi|Xi)

b∏
i=k+1

Pθ̂0(mi|Xi)

Pθ̂∗k
(mi|Xi)

(3.102)

where θ̂0 ∈ Ω̂o and θ̂k, θ̂
∗
k ∈ Ω̂a

From theorem (3.8), one notes that C grows asymptotically as b and for a given

x depending on the size of the test then,

Qb =
(x+ f(log b))2

a2(log b)

≈ 2 log b (3.103)

The argument is that the test is consistent in the sense that for a given size α its

power converges to 1.

Under the alternative change occurs after a certain fraction of the data. That

is there is a change point k, 2 ≤ k ≤ b − 1 such that as b → ∞, then one has

k, b− k →∞, k
b

= ι ∈ (0, 1).

Let θι, θ
∗
ι be the parameter values before and after the change point respectively

and θ0 denote the parameter value under the null hypothesis.

For consistency one has that as b→∞

θ̂0 → θ0 ,θ̂k → θι θ̂∗k → θ∗ι
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So that by the law of large numbers

1

b
log Λk ∼ ιEθι log

Pθ̂0(mi|Xi)

Pθ̂ι(mi|Xi)
+ (1− ι)Eθ∗ι log

Pθ̂0(mi|Xi)

Pθ̂∗ι (mi|Xi)
(3.104)

Under the alternative θι 6= θ∗ι and θ0 6= θ∗ι , θ0 6= θι by the definition of θ0. If

the model is correctly specified and the identifiability assumptions hold then,

Pθ0 6= Pθι , Pθ0 6= Pθι∗ . From Jensen’s inequality and the fact the logarithm as a

function is strictly concave one has that

Eθι log
Pθ0(mi|Xi)

Pθι(mi|Xi)
= logEθι

Pθ0(mi|Xi)

Pθι(mi|Xi)

= log

∫ ∫
Pθ0(m|X)

Pθι(m|X)
Pθι(m|X)dν(x)dµ(x)

= log

∫ ∫
Pθ0(m|X)dν(x)dµ(x)

= 0

similar results are obtained for the last term of equation (3.104). Hence for some

constant γ > 0, 1
b

log Λk ≈ −γ. Thus log(Λk)
−1 ≈ bγ. The size of type II error

which depends on the power of the test under the alternative vanishes since

P ( max
2≤k≤b−1

(Λk)
−1 ≤ C|Ha) ≤ P ((Λk)

−1 ≤ C|Ha)→ 0 as b→∞ (3.105)

as (Λk)
−1 changes as ebγ and C changes only as b. Thus the asymptotic power of

the test is unity.

3.10 Testing for change in misspecified model

Suppose the form of pi(x) is not as that of the output of the neural network

ϕ(x; θ). This implies that the model is not correctly specified. Since one still

wishes to apply the test, we check how this misspecification affects the Gombay

and Horvath (1996) conditions C1− C8 stated earlier.
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When the null hypothesis, that is there is no change, the true pi(x) = po(x) and

if θo is the parameter value for which ϕ(x; θ) best approximates po(x) then

θo = arg max
θ∈Ω

E

{
1

b
l(θ)

}

= arg max
θ∈Ω

E

ln

 n1

m1

+m1 lnϕ(x; θ) + (n1 −m1)(1− lnϕ(x; θ))


= arg max

θ∈Ω
E

E
ln

 n1

m1

+m1 lnϕ(x; θ) + (n1 −m1)(1− lnϕ(x; θ))

 |X1


= arg max

θ∈Ω
E

ln

 n1

n1p(X1)

+ n1po(X1) lnϕ(X1; θ)

+ (n1 − n1po(X1))(1− lnϕ(X1; θ))

(3.107)

Since in a misspecified model the density of (mi, Xi) is still

f(mi, Xi; θ) = ln

 ni

mi

+mi lnϕ(x; θ) + (ni −mi)(1− lnϕ(x; θ)) (3.108)

then θo may also be expressed as

θo = arg max
θ∈Ω

∫ ∫
ln f(mi, Xi; θ)fo(mi, Xi)dv(m)du(x)

= arg min
θ∈Ω

{
−E ln

f(mi, Xi; θ)

fo(mi, Xi)

}
(3.109)

so that θo minimizes the Kullback-Leibler distance between the true density

fo(mi, Xi) and the approximating density f(mi, Xi; θ).

The conditions of Gombay and Horvath (1996) under a misspecification situation

are now considered.
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(C1) Let θo, θ∗o ∈ Ω. If θo 6= θ∗o then ϕ(x; θo 6= ϕ(x; θ∗o). Further if θo, θ∗o are

the solution to equation 3.106 for fo(m,x) and f ∗o (m,x) respectively then

θo 6= θ∗o implies that ϕ(x; θo 6= ϕ(x; θ∗o) and therefore fo(m,x) 6= f ∗o (m,x).

Thus there are no different parameter values corresponding to the same

distribution. To obtain the estimates of θ the approximating parametric

model is

f(mi, Xi; θ) = ln

 ni

mi

+mi lnϕ(x; θ)+(ni−mi)(1− lnϕ(x; θ)) (3.110)

Using this condition one has that

θo = arg max
θ∈Ω

E{f(m,x; θ)} (3.111)

(C2) This condition is satisfied if the loglikelihood of the approximating para-

metric model has an unique maxima. This condition is equivalent to the

identifiability condition on Ω.

(C3) This is a regularity condition on f(m,x; θ) which continues to hold.

(C4) This is another regularity condition on f(m,x; θ) which continues to hold

but one must take into consideration the E(M2(m1, X1)) which is with re-

spect to the distribution fo(m,x; θ) but

Eθ0M2(X1) =
n∑

m=0

∫
(M2(x)

 n

m

 [ϕ(x; θ0)]mdv(x)[1− ϕ(x; θ0)]n−m)dv(x)

< ∞

if E‖X‖3 <∞

(C5) Using the regularity of f(m,x; θ) and the definition of θ0 one has that

∇E(f(m1, X1; θo)) = E∇(f(m1, X1; θo)) = 0
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Thus condition (C5) is satisfied.

(C6) It is the equivalent of the Fisher’s information matrix in a correctly specified

model. In a misspecified model one needs to assume that I−1(θ) exists for

θ = θo.

(C7 and C8) Continue to hold for f(m,x; θ).

3.10.1 The general testing for change points in a misspec-

ified model

In this section we will digress from the binomial random variable and consider

a general situation. Consider the random vectors X1,X2 . . . ,Xb with respective

densities f1(x), f2(x), . . . , fb(x). The test is

H0 : f1(x) = f2(x) = . . . = fb(x)

against

Ha : f1(x) = f2(x) = . . . = fk(x) 6= fk+1(x) (3.112)

for some 2 ≤ k ≤ b− 1

The form of fj(x) is not known but one may approximate it by some parametric

density f(x, θj) and use maximum likelihood ratio test in the parametric hypothe-

ses

H0 : θ1 = θ2 = . . . = θb

against

Ha : θ1 = θ2 = . . . = θk 6= θk+1 (3.113)

for some 2 ≤ k ≤ b− 1

Though θj is the parameter of the distribution of Xj it does not completely specify

the density fj(x) as in Gombay and Horvath (1996). If the following identifiability
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assumption is imposed then it is possible to test the original change-point problem

in a parametric setup.

(a) For θ, θ′ ∈ Ω and θ 6= θ′ the densities f(x, θ) and f(x, θ′) do not coincide.

Thus if the null hypothesis in equation(3.112) is rejected so is the null hypothesis

in equation(3.113).

The aim here is to construct a parametric likelihood ratio test by adopting the

misspecified parametric model that X1,X2 . . . ,Xb are independent with densities

f(x, θj) , j = 1, 2, . . . , b. The asymptotic behavior of the likelihood ratio statistic

in this misspecified case is considered.

The choice of θj is made so as to minimize the Kullback-Leibler distance between

f(x, θj) and fj(x). that is

θj = arg min
θ∈Ω
−
{∫

fj(x) log
f(x, θ)

fj(x)
dx

}
= arg max

θ∈Ω

∫
fj(x) log f(x, θ)dx

= E log f(x, θ) (3.114)

since the denominator of the logarithmic term is independent of θ. Under the

null hypothesis in equation(3.113) one can assume that θ1 = θ2 = . . . = θb = θ0.

Further to follow the argument of Gombay and Horvath (1996) similar notations

are used to enable one state the other assumptions. Let

g(m,x; θ) = log f(m,x; θ)

gi(m,x; θ) =
∂

∂θi
g(m,x; θ)

gij(m,x; θ) =
∂2

∂θi∂θj
g(m,x; θ)

gijl(m,x; θ) =
∂3

∂θi∂θj∂θl
g(m,x; θ) (3.115)

(b) For k = 1, 2, . . . , b there are unique solutions to the quasi likelihood equations,

that is there are unique θ̂k, θ̂′b−k such that
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k∑
j=1

gi(m,x; θ̂k)=
b∑

j=k+1

gi(m,x; θ̂′b−k) = 0 that is, there are unique quasi m.l.e. for

θ and θ′. Thus the quasi-likelihood ratio statistic for testing for change in an

approximate parametric model at a given value of k is

Λk =

sup
θ∈Ω

b∏
j=1

f(Xj; θ)

sup
θ,θ′∈Ω

k∏
j=1

f(Xj; θ)
b∏

j=k+1

f(Xj; θ
′)

=

b∏
j=1

f(Xj; θ̂)

k∏
j=1

f(Xj; θ̂)
b∏

j=k+1

f(Xj; θ̂′)

(3.116)

Thus Qb = max
1<k<b

−2 log Λk as the test statistic is considered. Further one requires

to put smoothness and moments conditions. Let Ω0 ⊆ Ω be a suitably chosen

compact set so that θ0 is in the interior of Ω0 and E0 is the expectation under

the null hypothesis that fj(x) = f0(x) j = 1, 2, . . . , b.

(c) The derivatives of g(m,x; θ) = log f(m,x; θ) with respect to θ in equation

(3.115) exist and are continuous in θ for all θ ∈ Ω0, i, j, k = 1, 2, . . . , D

(d) There are functionsM1(x) andM2(x) such that
∫
M1(x)dx <∞ and E0M2(x) <

∞ so that

|gi(m,x; θ)| ≤ M1(x)

|gij(m,x; θ)| ≤ M2(x)

|gijl(m,x; θ)| ≤ M2(x) (3.117)

(e) θ0 is the unique solution to E0∇g(X1; θ) = 0 in Ω0

(f) A(θ) = E0∇2g(X1; θ) and A−1(θ) exist and are continuous in θ ∈ Ω0 and

A0(θ) is positive definite. B(θ) = E0∇g(X1; θ)∇Tg(X1; θ) and B−1(θ) exist and

are continuous in θ ∈ Ω0
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(g) Var(gij(X1; θ)) <∞

(h) E0|g(X1; θ)|δ <∞ with some δ > 2

To derive the asymptotic distribution of Qb under the null hypothesis in (3.113)

the argument of Gombay and Horvath (1994, 1996) is followed and digress only

when there is a significant difference between the correctly and incorrectly spec-

ified cases. Some preliminary lemmas are given below and use the following

abbreviations.

Zk =
k∑
j=1

∇g(Xj; θ0)

Z ′b−k =
b∑

j=k+1

∇g(Xj; θ0)) (3.118)

max
1<k<b

k

log log k

∣∣∣∣θ̂k − θ0 −
1

k
A−1(θ0)Zk

∣∣∣∣ = Op(1)

max
1<k<b

k

log log k

∣∣∣∣θ̂′b−k − θ0 −
1

b− k
A−1(θ0)Z ′b−k

∣∣∣∣ = Op(1)

The proof to to this lemma is similar to lemma 2.1 of Gombay and Horvath

(1994). As in the correctly specified case one has in the misspecified case that

lim
k→∞

θ̂k = θ0 since θ̂k is an M-estimate of θ0. If (3.113) and assumptions (a)-(g)

hold then as b→∞

max
1<k<b

k.5

(log log k)1.5

∣∣∣∣L(θ̂k)− L(θ0)− k

2
(θ̂k − θ0)TA(θ0)(θ̂k − θ0)

∣∣∣∣
= Op(1)

max
1<k<b

(b− k).5

(log log(b− k))1.5

∣∣∣∣L′b−k(θ̂′b−k)− L′b−k(θ0)− b− k
2

(θ̂′b−k − θ0)TA(θ0)(θ̂′b−k − θ0)

∣∣∣∣
= Op(1)

where L(.) and L′(.) are the quasi loglikelihood function before and after k Proof

of this theorem is similar to lemma 2.2 of Gombay and Horvath (1994). Lemma
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3.10.1 and 3.10.1 both imply the following lemma

max
1<k<b

k.5

(log log k)1.5

∣∣∣∣L(θ̂k)− L(θ0)− 1

2k
(Zk)

TA−1(θ0)(Zk)

∣∣∣∣ = Op(1)

max
1<k<b

(b− k).5

(log log(b− k))1.5

∣∣∣∣L′b−k(θ̂′b−k)− L′b−k(θ0)− b− k
2

(Z ′n−k)
TA−1(θ0)(Z ′n−k)

∣∣∣∣ = Op(1)

Let Θl = (Θl1, . . . ,Θld)
T , l = 1, 2, . . . be a sequence of identically and inde-

pendently distributed random vectors with E(Θ) = 0 and covariance matrix

E(ΘlΘl
T ) = Id and max

1<l<d
E|Θ1l|2+µ <∞ for some µ > 0. Then for all x ∈ <

lim
b→∞

P

a(log b) max
1<k<b

1

b

d∑
i=1

(
k∑
j=1

Θji

)2
 1

2

≤ x+ f(log b)

 = exp(−2 exp(−x))

where a(s) = (2 log s)
1
2 , f(s) = 2 log s + d

2
log(log s) − log(Γ(d

2
)) and d is the

dimension of θ This theorem is similar to theorem 3.8 and the derivation of

the asymptotic distribution of Zb in a misspecified case is different only in the

situation where, with Θ = A
1
2 (θ0)∇g(Xj; θ). Now

1

2k
ZT
k A−1(θ0)Zk =

1

2k

(
k∑
j=1

Θj

)T ( k∑
j=1

Θj

)

=
1

2k

(
k∑

i,j=1

ΘT
j Θi

)

=
1

2k

(
k∑

i,j=1

D∑
l=1

ΘT
jlΘil

)

=
1

2k

 D∑
l=1

(
k∑
j=1

ΘT
jlΘjl

)2
 (3.119)

Using theorem 3.10.1 one can derive the asymptotic distribution of

max
1<k<b

(
1

2k
ZT
k A−1(θ0)Zk

).5
which by Lemma 3.10.1 gives the asymptotic distribution of

max
1<k<b

(
L(θ̂k)− L(θ0)

).5
Similarly one obtains the asymptotic distribution of
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max
1<k<b

(
L′b−k(θ̂b−k)− L(θ̂)

).5
which by the argument of Gombay and Horvath (1994) gives the asymptotic

distribution of Z .5
b .

In the misspecified case A(θ0) and B(θ0) are not usually equal and the test

statistic needs to be transformed. Considering a one-dimensional case where

d = 1, θ ∈ < so that A(θ0) and B(θ0) are scalars then by lemma 3.10.1 and

conditions therein one has

max
1<k<b

k.5

(log log k)1.5

∣∣∣∣A(θ0)

B(θ0)

(
L(θ̂k)− L(θ0)

)
− 1

2k

Z2
k

B(θ0)

∣∣∣∣ = Op(1)

max
1<k<b

(b− k).5

(log log(b− k))1.5

∣∣∣∣A(θ0)

B(θ0)

(
L′b−k(θ̂

′
b−k)− L′b−k(θ0)

)
− 1

2k

(Z ′n−k)
2

B(θ0)

∣∣∣∣ = Op(1)

. To apply theorem 3.10.1 replace A(θ0) by B(θ0), so that

(Zk)
2

2kB(θ0)
=

1

2k

(
k∑
j=1

(Θj)
2

)

where Θj = B−.5(θ0)∇f(Xj; θ0) are iid with mean of zero and variance 1 by

the definition of B(θ0). From theorem 3.10.1 and lemma 3.10.1 and replac-

ing −2 log Λk in the proof of theorem 2.1 in Gombay and Horvath (1994) by

−2
(

A(θ0)
B(θ0)

log Λk

)
, then one has the following theorem If the null hypothesis in

equation(3.113)is true and assumptions (a)-(g) hold and d=1, the for all x ∈ <.

Thus

lim
b→∞

P

(
a(log b)

[
A(θ0)

B(θ0)
Zb

]0.5

≤ x+ f(log b)

)
= exp(−2 exp(−x))

where a(s) = (2 log s)
1
2 , f(s) = 2 log s + d

2
log(log s) − log(Γ(1

2
)) and d is the di-

mension of θ Since A(θ0) and B(θ0) are unknown, consider replacing θ0 with its

quasi maximum likelihood estimate θ̂b and the expectation are replaced by the
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sample means. That is

Â(θ̂b) = −1

b

b∑
i=1

∂2

∂θ2
g(Xi; θ̂b)

B̂(θ̂b) =
1

b

b∑
i=1

(
∂

∂θ
g(Xi; θ̂b)

)2

If the null hypothesis in equation(3.113)is true and assumptions (a)-(g) hold and

d=1, the for all x. Thus

lim
b→∞

P

a(log b)

[
Â(θ̂b)

B̂(θ̂b)
Zb

]0.5

≤ x+ f(log b)

 = exp(−2 exp(−x)) Proof

Let α = a(log b), β = f(log b), F0 = A(θ0)
B(θ0)

and Fb = Â(θ̂b)

B̂(θ̂b)

Then

α(ZbFb)
.5 − β = {α(ZbF0).5 − β}+ α(Zb)

.5(F .5
b − F .5

0 )

{α(ZbF0).5 − β} has its asymptotic distribution given by theorem 3.10.1 so that

one needs to show that α(Zb)
.5(F .5

b − F .5
0 ) is op(1) as b approaches ∞.

Now β ≈ 2 log log b as b → ∞, α(ZbFb)
.5 = O(log log b), so that there is need to

show that F .5
b − F .5

0 is op(
1

log log b
). Under the null hypothesis in equation(3.113)

and theorem 3.10.1 θ̂b
p→ θ̂0 and using the law of large numbers,

F .5
b

p→ F .5
0 6= 0 b→∞

so that

F .5
b + F .5

0

p→ 2F .5
0

hence

F .5
b − F .5

0 =
Fb − F0

F .5
b + F .5

0

Thus F .5
b − F .5

0 is of the same order as Fb − F0.

Using the law of large numbers it is enough to show that A(θ̂b) − A(θ0) =

op(
1

log log b
).
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Using first order Taylor’s expansion for the first derivative of g(x) and the fact

that the second derivative of g(x) is bounded then

A(θ̂b)−A(θ0) =

∣∣∣∣∣1b
b∑
i=1

∂2θ

∂θ2
g(Xi; θ̂b)− E0

∂2θ

∂θ2
g(Xi; θ0)

∣∣∣∣∣
≤ 1

b

b∑
i=1

∣∣∣∣∂2θ

∂θ2
g(Xi; θ̂b)−

∂2θ

∂θ2
g(Xi; θ0)

∣∣∣∣
+

∣∣∣∣∣1b
b∑
i=1

∂2θ

∂θ2
g(Xi; θ̂0)− E0

∂2θ

∂θ2
g(X1; θ0)

∣∣∣∣∣
≤ 1

b

b∑
i=1

M2(Xj)|θ̂b − θ0|

+

∣∣∣∣∣1b
b∑
i=1

∂2θ

∂θ2
g(Xi; θ̂0)− E0

∂2θ

∂θ2
g(X1; θ0)

∣∣∣∣∣ (3.120)

The term

∣∣∣∣∣1b
b∑
i=1

∂2θ

∂θ2
g(Xi; θ̂b)− E0

∂2θ

∂θ2
g(Xi; θ0)

∣∣∣∣∣ asymptotically coincide withE0M2(Xj)|θ̂b−

θ0| by law of large numbers and by theorem 3.7 the term θ̂b − θ0 is Op(
1√
b
). The

term∣∣∣∣∣1b
b∑
i=1

∂2θ

∂θ2
g(Xi; θ̂0)− E0

∂2θ

∂θ2
g(X1; θ0)

∣∣∣∣∣ is Op(
1√
b
) by the central limit theorem.

Hence

A(θ̂b)−A(θ0) = Op(
1√
b
)

= Op(
1

log log b
) (3.121)

Thus the theorem is proved and hence for a one dimensional parameter under

misspecification the test statistic will be Q̂b = max
1<k<b

(−2 log Λk)
A(θ̂b)

B(θ̂b)
.

3.11 Change point estimation

In this section the estimation of the change point is considered once it has been

established that change exists, that is the alternative hypothesis is true. The

maximum likelihood method is used. This method is discussed in the following
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section and later simulation studies and analysis of the Bliss (1935) beetles data

are conducted.

Several authors have considered this method. Ruhkin and Gary (1995) estab-

lished the minimum error probability of the change-point maximum likelihood

estimates for fixed binomial probabilities. Hinkley and Hinkley (1970) used the

same method to estimate the change point when both the probabilities of success

before and after the change-point are known. They also consider the situation

where these probabilities are unknown and they replace them with their m.l.e.

For known probabilities, po and p′ the likelihood is given by equation(2.46). The

m.l.e. k̂ is the value of k that maximizes La(p0, p
′, k) and may be written as

k̂ = arg max
1<k≤b−1


k∑
i=1

ln

 ni

mi

+mi ln p0 + (ni −mi) ln(1− p0)

+
b∑

i=k+1

ln

 ni

mi

+mi ln p
′ + (ni −mi) ln(1− p′)

 (3.122)

k = 2, 3, . . . , b− 1

If the values of po and p′ are unknown, they are replaced by their maximum

likelihood estimates M
N

and
M ′k
N ′k

respectively as defined in equation (2.51).

However our interest is on the conditional probabilities given by

P (mi|Xi = x) =

 po(x; θ) i = 1, 2, . . . , k

p′(x; θ) i = k + 1, . . . , b
(3.123)

These probabilities depend on the explanatory variables Xi. The regression pa-

rameters in p(x; θ) cannot be estimated using the usual linear regression as dis-

cussed in section 2.6.2. In this work the neural networks and the logistic regression

are used to estimate p(x; θ).
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Now using equation(3.123) the maximum likelihood estimate for k

k̂ = arg max
1<k≤b−1


k∑
i=1

ln

 ni

mi

+mi ln p(x; θ) + (ni −mi) ln(1− p(x; θ))

+
b∑

i=k+1

ln

 ni

mi

+mi ln p
′(x; θ) + (ni −mi) ln(1− p′(x; θ))


k = 2, 3, . . . , b− 1

where p(x; θ) and p′(x; θ) are estimated from (mi, Xi)
k
i=1 and (mi, Xi)

b
i=k+1 re-

spectively.

Since these conditional probabilities are in the interval(0,1), the logistic function

discussed in section 2.4.1 is a suitable choice as an activation function in the

network.

3.12 Confidence Interval For The Change Point Estimate

The standard procedure for computing a confidence interval for a parameter in

a generalized linear model is by the use of the formula estimate ± percentile ×

SE(estimate), where SE is the standard error. The percentile is selected accord-

ing to a desired confidence level and a reference distribution. This procedure is

commonly referred to as a Wald-type confidence interval. It may work poorly

if the distribution of the parameter estimator is markedly skewed or if the stan-

dard error is a poor estimate of the standard deviation of the estimator. Various

methods for constructing the confidence interval for the change point estimate

exist in literature.Two such methods are discussed.

3.12.1 Profile likelihood method

Consider a model with parameters θ and k where k is the parameter of interest and

θ is the additional parameter(s) in the model. Denote by L(θ; k) the likelihood
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function. Then the profile likelihood function for k is

L1(θ; k) = max
θ
L(θ; k) (3.124)

For each value of k , L1(θ; k) is the maximum of the likelihood function over θ.

Thus, the profile likelihood function is not a likelihood function but each point on

the profile likelihood function is the maximum value of a likelihood function. The

idea of a profile likelihood confidence interval is to invert a likelihood-ratio test

statistic to obtain a CI for the parameter in question. A 100(1− α)% confidence

interval for k is the set of all values k0 such that a two-sided test of the null

hypothesis H0 : k = k0 would not be rejected at the α level of significance. The

likelihood ratio test statistic of the hypothesis H0 : k = k0 (where k0 is a fixed

value) equals the difference between twice the loglikelihood for the full model and

twice the loglikelihood for the reduced model which has k fixed at k0. i.e.

2[logL(θ̂; k̂)− logL(θ̂0; k0)] = 2[logL(θ̂; k̂)− logL1(θ0; k0)] (3.125)

where k̂ and θ̂ are the maximum likelihood estimates for the full model and θ̂0 is

the maximum likelihood estimates of θ for the reduced model with k = k0. Based

on the asymptotic chi-square distribution of the likelihood ratio test statistic, if

the null hypothesis is true, then the test will not reject H0 : k = k0 at the α level

of significance if and only if

2[logL(θ̂; k̂)− logL1(θ0; k0)] ≤ χ2
1−α(ν) (3.126)

where ν the degrees of freedom of the test statistic, is the difference between

dimension of θ under the full model and that under the reduced model. In this

work ν = 1. Thus the null hypothesis is accepted if and only if

logL1(θ0) ≥ logL(θ̂; k̂) +
χ2

1−α(1)

2
(3.127)

where χ2
1−α(1) is the 1−α quantile of a χ2 distribution with 1 d.f. Since logL(θ̂; k̂)

is fixed, one way plot the profile log-likelihood function, logL1(θ0) and simply look
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at the interval for which it exceeds logL(θ̂; k̂) +
χ2
1−α(1)

2
. This is the 100(1−α)%

confidence interval for k.

3.12.2 Percentile Bootstrap Confidence Interval

The idea behind bootstrap is to use the data of a sample study at hand as

a population, for the purpose of approximating the sampling distribution of a

statistic. Re-sample (with replacement) from the sample data at hand and create

a large number of samples known as bootstrap samples. The most elementary

application of bootstrapping is to produce a large number of copies of a sample

statistic, computed from the bootstrap samples. Then, a small percentage, say

100(α/2)% , is trimmed off from the lower as well as from the upper end of

these numbers. The range of remaining 100(1 − α)% values is declared as the

confidence limits of the corresponding unknown population summary number of

interest, with level of confidence 100(1 − α)%. This is referred to as bootstrap

percentile method. In this work a sample (mi, Xi), i = 1, 2, . . . , b is considered

and the following is the procedure of obtaining the bootstrap percentile confidence

interval.

1. From the original sample estimate the maximum likelihood estimate k̂.

2. From the original covariate vector Xi, i = 1, 2, . . . , b obtain a bootstrap

sample X(i) by drawing with replacement the integers 1, 2, . . . , b.

3. Calculate m(i) corresponding to the bootstrap sample.

4. Using the bootstrap sample (m(i), X(i)) estimate the change point k̂(i)

5. Repeat steps 2 to 4 B times .

6. Arrange the B change point estimates k̂(i) in ascending order.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Introduction

In this section both simulated and real data are used in the test for a change

point in a sequence of binomial random variables and if the change exists the

point at which it occurs is also estimated. In both cases the likelihood method

discussed earlier is used. The power of the likelihood test if change exists is first

considered.

4.2 Power of the test

The power of a change point test for finite sample size for a specific alternative

of one change point was investigated.

The null hypothesis was rejected if the test statistic was large i.e. Q0.5
b > C where

C is the asymptotic critical value which depends on the size of the test α and

the size b of the sample is obtained using either Theorem 3.8 or 3.8.

For a given level α the power of the test for a specific alternative is the probability

of accepting this alternative correctly which is given by:-

κ(α) = P (Q0.5
b > C|Ha) (4.1)

Since the distribution of Q0.5
b under Ha is not known simulations were used to

estimate the power of the test as follows:-

For a sample size b, B replicates were made and in each replicate Q0.5
b was esti-

mated. Then the power at α was estimated as:-

κ̂(α) =
1 + no(Q0.5

b > Cb(α))

1 +B
(4.2)
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where no(Q0.5
b > Cb(α)) is the number of times Q0.5

b > Cb(α). Cb(α) is the critical

value of the test given in table 3.1

The model was assumed to be of the form p(mi|Xi = x) = β0 + β1x1i + β2x2i and

using the logistic regression as in equation (2.40) one has that

P (mi|Xi = x) =
1

1 + exp−(β0 + β1x1i + β2x2i)
(4.3)

For simulation purposes, it is assumed that Ha is true and used the following

model

P (mi|Xi = x) =

 (1 + exp(−(−1.5 + x1i + x2i)))
−1, 1 ≤ i ≤ k

(1 + exp(−(−1.5 + 2x1i + 1.8x2i)))
−1, k + 1 ≤ i ≤ b

(4.4)

where the values of β0, β1 are arbitrarily picked and β2 as -1.5, 1 and 1 for

1 ≤ i ≤ k. Similarly β0,β1 and β2 as -1.5, 2 and 1.8 for k + 1 ≤ i ≤ b.

For a sample of size b=200, x1i and x2i were generated as uniform[0, 1]. ni, the

size of the ith group was generated as the whole part of uniform[2, b].

4.2.1 Change of the power with change point location

The relationship between the power of the test and the location of the change

point in the data is investigated.

The location of the change point k was placed at 20,40,50,100,150,160 and 180.

Then the binomial random variable mi was generated in line with equation (4.4).

500 simulations were done at each of the change point location. The value of

the test statistic Q0.5
b in each of the 500 simulations was computed first using

estimates of parameters from a generalized link function and then using a neural

network. The critical values C1 and C2, which were generated using Theorem

3.8 and 3.8 respectively and presented in Table 3.1 were used. The power of the

test was estimated using equation (4.2). The results are presented in Tables 4.1
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and 4.2 respectively.

κ̂(α)

α Change points location

20 40 50 100 150 160 180

0.01 0.003992 0.4411 0.9142 1 0.9800 0.7625 0.02994

0.01∗ 0.0099 0.5941 0.9901 1 0.9901 0.8705 0.03237

0.05 0.8323 1 1 1 1 1 0.9661

0.10 1 1 1 1 1 1 1

Table 4.1: Power of the likelihood ratio test from a sample size b= 200 using

critical values C1.

κ̂(α)

α Change points location

20 40 50 100 150 160 180

0.01 0.05389 0.9980 1 1 1 1 0.3094

0.01∗ 0.0791 1 1 1 1 1 0.5049

0.05 0.8762 1 1 1 1 1 0.9741

0.10 1 1 1 1 1 1 1

Table 4.2: Power of the likelihood ratio test from a sample of 200 using critical

values C2.
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A plot of the power of the test against the location of change point at α = 0.01

is presented in Figure 4.1.

Figure 4.1: A plot of the power of the test against the location of change point.

Results in Table 4.1 and Table 4.2 show that the power of the test is less when

the change point is located near the edges of the data. Two method are used

to compute the conditional probabilities. Each value of the power of the test at

α = 0.01 was computed when the parameters were estimated using a parametric

method while at α = 0.01∗ the parameters were estimated using a neural network.

The power of the test is higher when a neural network is used to estimate the

parameters. The differences in the power as indicated in Figure 4.1 could be due

to the fact that the critical values, C1 are in a squared Gumbel distribution, an

extreme value distribution with a slow rate of convergence as noted in Gombay

and Horvath (1996). The values in the Figure 4.1(b) were estimated using a

parametric method while the values in the Figure 4.1(a) were estimated using a

neural network.

When the change point is located in the upper edges, the test has more power

compared with the power at the lower edges. This is due to the comparison of an
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estimate calculated using a relatively smaller number of observations, in the first

k observations and an estimate calculated using a large number of observations,

in the last b-k observations.

The test has more power when the change location is near the centre of the data.

Thus the test will most probably detect a change when the change point is near

the centre. This is due to the comparison of an estimate calculated using an

almost equal number of observations before and after the change point. This is

as noted by Jaruskova (1997).

4.2.2 Change of the power with sample size

Here the effect of the size of the sample on the power of the test is investigated.

The change point k was then put at b
4

, b
2

and 3b
4

for the samples sizes 50,100,150,200

and 500. For each sample, the power of the test at each change point location

was evaluated. 500 simulations were done to determine each estimate and critical

values C1 were used. The results are presented in Tables 4.3, 4.4 and 4.5.

κ̂(α)

α Sample size

50 100 150 200 500

0.01 0.005988024 0.001996008 0.005988024 0.9121756 1

0.01∗ 0.008594 0.009102 0.015620 1 1

0.05 0.001996008 0.02794411 0.998004 1 1

0.10 0.01596806 0.7325349 1 1 1

Table 4.3: Power of the likelihood ratio test when the change point is at b
4

.

Table 4.3, Table 4.4 and Table 4.5 indicate that an increase in the sample size

increases the power of the test, as expected. As in Table 4.1 and Table 4.2 the
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κ̂(α)

α Sample size

50 100 150 200 500

0.01 0.003992016 0.001996008 0.0259481 0.9780439 1

0.01∗ 0.0023297 0.026902 0.039186 1 1

0.05 0.003992016 0.0998004 1 1 1

0.10 0.02794411 0.8742515 1 1 1

Table 4.4: Power of the likelihood ratio test when the change point is at b
2

.

κ̂(α)

α Sample size

50 100 150 200 500

0.01 0.001996008 0.001996008 0.003992016 0.1836327 1

0.01∗ 0.002583 0.0027153 0.039142 1 1

0.05 0.001996008 0.3812375 1 1 1

0.10 0.06586826 0.998004 1 1 1

Table 4.5: Power of the likelihood ratio test when the change point is at 3b
4

.
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parameter in α = 0.01 were estimated using a parametric method while those in

α = 0.01∗ were estimated using a neural network.

A plot of the power of the test against the size of the sample at α = 0.01 is

presented in Figure 4.2.

Figure 4.2: A plot of the power of the test against the size of the sample at

α = 0.01.

As Figure 4.2 shows the loss of power is more due to the size of the sample rather

than the location of the change point. This is of importance since it would be

desirable to detect a change once it occurs. The values in Figure 4.2(a) were

evaluated when the conditional probabilities were estimated using a parametric

method while those in Figure 4.2(b) the probabilities were estimated using a

neural network.

96



4.2.3 Change of the power with size of the change

500 further simulations were carried out to investigate the power of the test for

a sample size of 200 in relation to the size of the change, denoted as 4 where,

42 =‖ θ − θ∗ ‖2 (4.5)

θ and θ∗ are the parameter values before and after the change point respectively.

To compute the power of the test the the critical values, C1 are used. The results

are presented in the Table 4.6.

A plot of the power of the test against the location of the change point at α = 0.01

for the changes of size 1.2, 1.5 and 1.8 is presented in Figure 4.3.

Figure 4.3 shows that as the size of the change increases the more the chance

Figure 4.3: A plot of the power of the test against the location of the change

point at α = 0.01 for the changes of size 1.2, 1.5 and 1.8 .

of detecting it. The values in Figure 4.3(a) were evaluated when the conditional

probabilities were estimated using a parametric method while those in Figure

4.3(b) the probabilities were estimated using a neural. It is noted that in all the

instances the neural network performs better than the parametric method.
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κ̂(α) under C1
size of change

k α 4 = 1.2 4 = 1.5 4 = 1.8
0.01 0.003992016 0.001996008 0.003992
0.01∗ 0.00487432 0.00219754 0.00538710

20 0.05 0.06387226 0.4530938 0.8323
0.1 0.8023952 1 1
0.01 0.003992016 0.05588822 0.4411
0.01∗ 0.00473981 0.06429013 0.53961

40 0.05 0.8163673 1 1
0.1 1 1 1
0.01 0.007984032 0.2315369 0.9142
0.01∗ 0.00842108 0.3154287 0.99412764

50 0.05 0.9520958 1 1
0.1 1 1 1
0.01 0.1197605 0.9121756 1
0.01∗ 0.251964 0.9458210 1

100 0.05 1 1 1
0.1 1 1 1
0.01 0.01796407 0.3313373 0.9800
0.01∗ 0.027210945 0.59430631 1

150 0.05 0.9820359 1 1
0.1 1 1 1
0.01 0.003992016 0.1157685 0.7625
0.01∗ 0.00492373 0.3154287 0.8764

160 0.05 0.8582834 1 1
0.1 1 1 1
0.01 0.001996008 0.003992016 0.02994
0.01∗ 0.00284714 0.00572859 0.0529173

180 0.05 0.1077844 0.499002 0.9661
0.1 0.8622754 0.998004 1

Table 4.6: Power of the likelihood ratio test for different sizes of change and
change point locations k.
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4.2.4 Application to real data

To demonstrate the use of artificial neural networks in the estimation of the

conditional means the Bliss (1935) beetles data is used, where batches of adult

beetles were exposed to gaseous carbon disulphide for five hours. This data has

been extensively used by statisticians in studies of generalized link functions e.g.,

Prentice and Ross (1976), Stukel (1988) and is used by Spiegelhalter et al. (1996)

to demonstrate how BUGS handles generalized linear models for binomial data.

The data is given in the Table 4.7

Dosage Beetles Killed

(CS2mg/litre)

49.057 59 6

52.991 60 13

56.911 62 18

60.842 56 28

64.759 63 52

68.691 59 53

72.611 62 61

76.542 60 60

Table 4.7: Beetles Data

Here the assumption is that pi(x) = β0 + β1X1i where pi(x) is the probability of

death due to the ith dose and X1i is the respective dose. Then as in equation

(2.43) , the values of P (mi|X1) may be estimated.

The dosage at which 50% of the beetles are killed is called the LD50. One may

be interested in the determination of this dosage since it indicates a significant

change in the structure of the probability of death. From the data the fourth

dosage of 60.842 CS2mg/litre kills 50% of the beetles. This shows that there
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might be a change in the functional structure of probability at the fourth dosage.

A comparision of the estimates of conditional means obtained through the para-

metric method using a generalized linear fit with logit as the link function and

those obtained using the neural network is also done. The results are presented

in Table 4.8.

Actual probabilities=mi
ni

Estimates fitted using glm Estimates fitted using nnet

0.1016949 0.07011985 0.1189710

0.216667 0.16732799 0.1801028

0.2903226 0.34796279 0.3027226

0.500000 0.58696004 0.5230217

0.8253968 0.79040075 0.7834121

0.8983051 0.90945597 0.9394865

0.9838710 0.96386496 0.987661

1.00000 0.98611696 0.9977424

Table 4.8: Estimated probabilities of death

A graph of the estimated probabilities against the dose is given in Figure 4.4. It

is evident from this graph that the estimates obtained using neural networks are

nearer the actual values than those obtained through the generalized link func-

tion.

The probability of death LD50 is 0.5. A horizontal line through this point in-

dicates that the fourth dosage is the LD50 and that the neural network method

estimate is nearer the actual dosage than the generalized link function method

estimate.

Taking the estimated probabilities from the data as the actual probabilities the

mean square error was computed. The generalized link function method had

an m.s.e. of 0.002032222 while the neural network estimates had an m.s.e. of
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Figure 4.4: A plot of the estimated probabilities of death against dosage

0.0007246531. Thus in terms of m.s.e. the neural network estimates are better

than the generalized link function method estimates.

4.3 Change Point Estimation

If change exists then the next problem will be to locate the point at which this

change occurs. Hence the assumption in this section is that Ho is rejected and

Ha is true . Thus a change exists at a certain point in the data.

For simulation purposes under Ha, the following model was used

P (mi|Xi = x) =

 (1 + exp(−(−1.5 + x1i + x2i)))
−1 1 ≤ i ≤ k

(1 + exp(−(−1.5 + 2 ∗ x1i + 1.8 ∗ x2i)))
−1 k + 1 ≤ i ≤ b

(4.6)

The change point k was at fixed half way through the data i.e. at
b

2
for a sample

of size b = 200 . x1i and x2i were generated as uniform [0,1]. ni were generated
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as the integer part of uniform [2, b]. Then the binomial random variable mi

was generated in line with equation (4.6). A simulation was done when change

point was fixed half way through the data with the aim of testing whether change

existed. A plot of the test statistic is presented in figure 4.5.

Figure 4.5: hypothesis testing graph when the alternative is true

Using critical values in Table 3.1 with a sample size of 200, it is noted that the

hypothesis of change is accepted at 5%.

A further simulation is carried out to test for a change when it was actually not

present. Thus one had the same parameters in equation (4.6). A plot of the test

statistic is represented in Figure 4.6.

It is evident that the null hypothesis is not rejected at all the three levels of

significance. Thus no change is detected.

A further 1000 simulations were carried out with the change point fixed half way

through the data. The aim is to estimate the location of the change point as in

equation(3.124). A plot of the loglikelihood against the estimated change point

for one of the simulations is given in Figure 4.7.

From this graph the maximum of the loglikelihood is near the actual change point
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Figure 4.6: hypothesis testing graph when the alternative is false

Figure 4.7: loglikelihood graph
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of the data, halfway through the data. A histogram of the likelihood estimates

of the change points presented in Figure 4.8.

Figure 4.8: Histogram of likelihood estimates of change point

It is evident that most of the change point estimates are near the actual change

point. The distribution of these estimates is not symmetric about the change

point with more estimates being more to the left of the change point. Thus the

unknown distribution of the change point estimates may be positively skewed.

When there is no change in the parameters, the histogram of estimates is pre-

sented in Figure 4.9.

The figure shows that the estimates are not concentrated around any point. The

estimates seem to be uniformly distributed in the interval [0,200].

The asymptotic properties of the change point estimator are considered. Through

simulation the estimate’s asymptotic biasedness of the estimates is investigated.

Figure 4.10 shows the histogram of the biases of the change point estimate.

The biases have an approximate mean of 0. Thus the change point estimates are
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Figure 4.9: Histogram of likelihood estimates of change point when there is no

change

Figure 4.10: histogram of the biases of the change point estimates
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asmptotically unbiased as expected since mle are asymptotically unbiased.

To evaluate the goodness of a fit of the normal curve those mean and variance

are those of the biases on the same axes with the histogram of the change point

estimates is drawn. This is presented in Figure 4.11

Figure 4.11: normal curve and histogram together

The figure suggests asymptotic normality of the change point estimator. This is

in line with the central limit theorem and the law of large numbers.

Further a quantile-quantile plot in Figure 4.12 confirms the normality of the

change point estimates.

The Kolmogorov-Smirnov test is performed on the biases of the change point.

The test gave a p-value of 0.01121. Thus the null hypothesis of normality is

accepted at 1%. For samples of sizes 300 and 500, the p-values of the same test

are 0.01489 and 0.2106 respectively. This shows that the bias of the estimator is

asymptotically normally distributed with a mean of zero.
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Figure 4.12: qqplot of the change-point estimates

4.3.1 Real Data Analysis

To demonstrate the use of non-parametric methods in this context, the Bliss

(1935) beetles data is used, where batches of adult beetles were exposed to gaseous

carbon disulphide for five hours. The data is given Table 4.7. Here it is assumed

that probability of death pi(mi|X1) = β0+β1X1i where mi is the number of deaths

due to the ith dose and X1i is the respective dose. One may wish to determine the

point at which the functional form of probability of death of the beetles changes

significantly. Using Theorems 3.8 or 3.8, the the critical values for a sample size as

481 were generated and are presented table 3.1. The computed the test statistic

as in equation (3.124). The graph of the test statistic is presented in Figure 4.13.

The maximum value of this test statistic of 15.44364 which leads to the rejection

the null hypothesis of no change. Figure 4.14 gives the plot of the loglikelihood

against the dosage.

The maximum of the curve corresponds to the third change point location the
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Figure 4.13: hypothesis testing graph for the bliss data

Figure 4.14: loglikelihood graph for the bliss data
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fourth dosage. From the data the fourth dosage of 60.842 CS2mg/litre kills 50%

of the beetles, which is the LD50.

4.3.2 Confidence Interval of Change Point Estimates

The sample size was fixed at 100 and the change point midway through the

data. Following the procedure of the bootstrap percentile confidence interval 1000

samples are replicated of which the change point was estimated. For simulation

purposes the following model considered.

P (mi|Xi = x) =

 (1 + exp(−(−1.5 + x1i + x2i)))
−1 1 ≤ i ≤ k

(1 + exp(−(−1.5 + 2 ∗ x1i + 1.8 ∗ x2i)))
−1 k + 1 ≤ i ≤ b

(4.7)

A histogram of the bootstrap change point is represented in Figure 4.15

Figure 4.15: A histogram of 1000 bootstrap replicates of change point
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4.3.2.1 Coverage Performance

In this section the 1 − α confidence interval (L̂CL, ÛCL) which is expected to

have a probability α of miss-coverage of the true value of k from below or above

is considered. This may be presented as

P (k < L̂CL) = P (k > ÛCL) =
α

2
(4.8)

A good confidence interval is the one which approximately matches the above

equation. The confidence interval and the coverage performance of the above

simulation is presented Table 4.9 It is noted again that the distribution of the

Confidence Level(%) Confidence Interval %miss-left %miss-right

90 46-52 4 4.6

95 44-53 1.6 2.2

99 36-59 0.4 0.4

Table 4.9: Confidence Interval results for 1000 bootstrap samples

change point estimates is not symetrical.
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CHAPTER FIVE

SUMMARY AND RECOMMENDATIONS

5.1 Summary of findings

This work sought to test for a change in binomial random variable and thereafter

estimate the location of the change.

The problem at hand was as follows:-

There b groups and the size ith is ni. The probabilty of mi sucesses in the ith

group was dependent on some covariates Xi = (xi, . . . , xD)t. Thus the conditional

probabilities pi(mi|Xi) were related to these coariates. Using logistic regression

and a feed-forward single layer network the estimated probabilities in both the

simulated and real data are computed. In the real data analysis it is found that

the estimates from the neural network were better estimates in terms of m.s.e.

than the estimates obtained using generalised linear model.

To test for change the likelihood ratio procedure is used. The null distribution

of this statistic is derived the using an approach similar to Gombay and Horvath

(1996). The critical values of the test then computed using this distribution.

The power of this test was investigated. The test was found to be powerful when

the change was located near the center of the data and losses power when the

change point is at the edges of the data. The asypmtotic power of this test was

found to be unity implying that the test is consistent. The test was also found

to be dependent on the size of the change with the power increasing as the size

of the change. As one would expect the power of the test increases as the sample

size increases.

The asymptotic properties of the change point estimator was also investigated.

Using the approach of Franke and Neumann (2000) the estimator was found to
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be asymptotically normally distributed. The change point estimator was also

asymptotically consistent. This was further confirmed by the analysis of the

simulated data.

Using the Bliss (1935) beetles data, change is tested for and found that change

does exist. We estimated the change point and it corresponded with the dosage

that killed 50% of the bettles.

5.2 Recommendations for Further Research

This work is a stepping stone for future research in this area. The work considered

a sequence of binomial random variables with a single chage point. Of interest

would be a situation where multiple change points exists. One would need to test

for these changes and estimate the location of these changes. Random variables

with other distributional forms may also be considered.
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