

A METRICS-BASED FRAMEWORK FOR

MEASURING THE REUSABILITY OF OBJECT-

ORIENTED SOFTWARE COMPONENTS

SAMMY OLIVE NYASENTE

MASTER OF SCIENCE

 (Computer Systems)

JOMO KENYATTA UNIVERSITY OF

AGRICULTURE AND TECHNOLOGY

2015

A Metrics-based Framework for Measuring the Reusability of

Object-oriented Software Components

Sammy Olive Nyasente

A thesis submitted in partial fulfillment for the degree of Master

of Science in Computer Systems in the Jomo Kenyatta University

of Agriculture and Technology

2015

ii

DECLARATION

This thesis is my original work and has not been presented for a degree in any other university.

Signature _________________________ Date ________________________

Sammy Olive Nyasente

This thesis has been submitted for examination with my approval as a university

supervisor.

Supervisors

Signature _______________________ Date ________________________

Prof. Waweru Mwangi

JKUAT, Kenya

Signature ______________________ Date ________________________

Dr. Stephen Kimani

JKUAT, Kenya

iii

DEDICATION

To my family—with love and gratitude.

iv

ACKNOWLEDGEMENTS

I am thankful to God for the gift of life; sound mind, hope, and the strength I needed to

complete this research work.

I am greatly indebted to my supervisors; Prof. Waweru Mwangi and Dr. Stephen Kimani

for their constructive criticisms and valuable guidance throughout the study. I am also

thankful to the lecturers who taught me during my coursework at JKUAT.

I have been lucky to have unremitting support and encouragement from my family and

friends throughout this research work. This journey has been long, but through their

prayers and support, I got the strength to carry on.

Last, I would like to show gratitude to the respondents who participated in a survey that

was conducted in the course of this research.

v

Table of Contents

DECLARATION.. ii

DEDICATION... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... x

LIST OF FIGURES ... xii

LIST OF APPENDICES .. xiii

ABSTRACT ... xiv

CHAPTER ONE .. 1

INTRODUCTION .. 1

1.1. Background Information .. 1

1.2. Statement of the Problem ... 3

1.3. Justification of the Study.. 4

1.4. Research Questions .. 5

1.5. Objectives of the Study .. 5

1.5.1. Broad Objective ... 5

1.5.2. Specific Objectives .. 5

1.6. Scope of the Study ... 6

1.7. Thesis Outline .. 6

CHAPTER TWO ... 8

LITERATURE REVIEW ... 8

2.1. Introduction .. 8

2.2. Classification of Software Metrics ... 9

2.3. Measuring Software Size and Size Metrics ... 10

2.3.1. The LOC Metric ... 10

2.3.2. Function Points (FP) Metrics ... 11

2.4. Measuring Software Complexity and Complexity Metrics.. 11

2.4.1. McCabe’s Cyclomatic Complexity (CC) Metrics .. 13

2.4.2. Halstead’s Software Science .. 13

2.4.3. Information Flow Metrics (Henry and Kafura’s Metrics) 14

2.5. Measuring Quality of Object-Oriented (OO) Software ... 16

2.6. Software Reuse and Reusability .. 16

vi

2.7. Measuring Software Reusability .. 17

2.8. Related Work in Reusability Measurement ... 17

2.8.1. The Basic Reusability Attributes Model .. 17

2.8.2. Black-box Component Reusability Model ... 19

2.8.3. The Reusability Framework for Ad-Hoc Reuse ... 20

2.8.4. The Reusable Software Components Framework .. 22

2.8.5. Summary of the Reviewed Reusability Assessment Frameworks 24

2.9. Unresolved Issues in OO Reusability Assessment ... 26

2.10. Proposed Solution .. 26

2.11. Summary .. 27

CHAPTER THREE ... 28

RESEARCH METHODOLOGY ... 28

3.1. Introduction .. 28

3.2. Methodology for Establishing the Current Status regarding Reuse and Reusability ... 29

3.2.1. Research Design ... 29

3.2.2. Target Population and the Sampled Population ... 29

3.2.3. Sampling design ... 29

3.2.4. Sample Selection .. 30

3.2.5. Instrumentation .. 31

3.2.6. Data Analysis ... 31

3.3. Methodology for Framework Development and validation ... 31

3.4. Methodology for Framework Implementation ... 32

3.4.1. System Design ... 32

3.4.2. System Architecture ... 32

3.5. Summary .. 33

CHAPTER FOUR .. 35

DATA ANALYSIS AND DISCUSSIONS .. 35

4.1. Introduction .. 35

4.2. Programmers’ General Background ... 35

4.2.1. Respondents’ Software Development Related Skills ... 36

4.3. Reuse and reusability Related Issues within the Software Development Cycle 37

4.3.1. Reuse within the Development Cycle .. 37

vii

4.3.2. Reusability Related Challenges ... 38

4.3.3. Procedures and Practices that Influence Reusability ... 39

4.3.4. Use of Technology in Software Development vs. Reusability 44

4.4. The Reuse Practice in Organizations ... 47

4.4.1. Organizations’ Reuse Policies and Traditions ... 47

4.4.2. Perceptions towards Reuse and Reusability ... 47

4.4.3. Payoff from Reuse ... 49

4.5. Software Reusability Assessment .. 50

4.5.1. Reusability Attributes and Reusability Factors .. 51

4.5.2. Existing Methods for Reusability Assessment ... 51

4.6. Software Metrics and Reusability Assessment .. 52

4.6.1. Software Measurement Programs/Policies in the Organizations 52

4.6.2. Respondent’s Experience with Software Metrics .. 53

4.6.3. Use of Metrics in Reusability Assessment ... 54

4.6.4. Impediments to Reusability Measurement ... 54

4.7. Conclusion ... 55

CHAPTER FIVE ... 56

FRAMEWORK DEVELOPMENT AND IMPLEMENTATION ... 56

5.1. Introduction .. 56

5.2. Framework Development ... 56

5.3. Major Reusability Characteristics for Software Components 57

5.3.1. Generality ... 58

5.3.2. Understandability ... 59

5.3.3. Portability ... 60

5.3.4. Maintainability ... 60

5.3.5. Documentation ... 61

5.4. Relating Reusability Attributes with Reusability Factors and OO Structures 62

5.4.1. Factors Influencing Maintainability vs. OO Structures 63

5.4.2. Factors Influencing Portability vs. OO Structures ... 64

5.4.3. Factors Influencing Generality vs. OO Structures ... 64

5.4.4. Factors Influencing Understandability vs. OO Structures 64

5.5. Candidate Metrics for the Framework ... 65

viii

5.5.1. Measuring Maintainability ... 65

5.5.2. Measuring Understandability ... 66

5.5.3. Measuring Portability and Generality .. 66

5.5.4. Measuring Documentation ... 66

5.6. Equation for Calculating the Reusability of OO Components 67

5.7. Experimentation of the Framework ... 69

5.7.1. Measuring OO Features of the Sample Component .. 73

5.7.2. Definition of Metrics .. 73

5.7.3. Obtained Values for the CBO, NOC, LCOM, and GC Metrics 74

5.7.4. Metrics Values Obtained from Measuring Documentation 77

5.7.5. Aggregating Metrics Values into the Reusability Equation 78

5.7.6. Interpretation of the Reusability Value (Rc) ... 78

5.8. Framework Implementation ... 79

5.9. System Design and Development .. 79

5.9.1. Requirements Analysis .. 79

5.9.2. System Users and Their Roles ... 79

5.9.3. System Requirements ... 80

5.9.4. Use Cases for the Reusability Assessment System .. 82

5.9.5. Database Design ... 84

5.9.6. Class Design ... 84

5.10. System/Program Flow .. 88

5.11. Major User Interfaces for the Reusability Assessment System 89

5.11.1. The Login Module ... 89

5.11.2. The System’s Main Interface ... 90

5.11.3. Interface for Managing Users .. 91

5.11.4. Interface for Managing Metrics ... 92

5.12. System Test Conditions and Results .. 93

5.13. Demonstration of Reusability Measurement Using the System 94

5.14. Comparison of the Developed Framework with Other Frameworks 99

5.14.1. The New Framework vs. the Basic Reusability Attributes Model 99

5.14.2. The New Framework vs. the Black-box Component Reusability Model 100

5.14.3. The New Framework vs. the Reusability Framework for Ad-Hoc Reuse 100

ix

5.14.4. The New Framework vs. the Reusable Software Components Framework 101

5.14.5. The New Framework vs. Industry Reusability Assessment Methods 101

5.15. Conclusion ... 102

CHAPTER SIX .. 103

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS .. 103

6.1. Summary .. 103

6.2. Achievements ... 103

6.3. Conclusion ... 104

6.4. Recommendations .. 106

6.4.1. Recommendations for Software Development Organizations 106

6.4.2. Recommendations for OO practitioners ... 106

6.4.3. Recommendations for Improving this Study ... 107

6.4.4. Recommendations for Future Research ... 107

REFERENCES ... 109

APPENDICES .. 113

x

 LIST OF TABLES

Table 2.1: Summary of the reusability assessment frameworks ... 24

Table 4.1: Software development related skills possessed by respondents 36

Table 4.2: Statistics on components reuse ... 37

Table 4.3: Statistics on software testability and maintainability challenges 39

Table 4.4: Proportion of developers following OO design guidelines/criteria 40

Table 4.5: Cohesion and coupling criteria vs. software testability vs. maintainability challenges

 ... 40

Table 4.6: Controlling of inheritance hierarchies vs. software testing and maintenance

challenges ... 41

Table 4.7: Correlation between the number of developers who follow design guidelines and

those facing testability and maintainability challenges .. 42

Table 4.8: Partial correlation between the number of developers who control inheritance

hierarchies and those who face testability and maintainability challenges 43

Table 4.9: Statistics on technology use in software development ... 44

Table 4.10: Satisfaction levels regarding software quality vs. use of CASE tools in requirements

modeling .. 45

Table 4.11: Satisfaction regarding time and effort in testing and modifying software vs. use of

computerized support in class design ... 46

Table 4.12: Satisfaction levels regarding software quality vs. use of code generators 46

Table 4.13: Organizations software reuse policies and the reuse practice 47

Table 4.14: Respondents' perceptions on software reuse .. 48

Table 4.15: Respondents' views on the payoff from reuse .. 49

Table 4.16: Statistics on Reusability assessment .. 50

Table 4.17: Statistics on developers with formal reusability assessment methodologies 52

Table 4.18: Statistics on organizations with software measurement programs/policies 53

Table 4.19: Respondents' experience with metrics ... 53

Table 4.20: Statistics on reusability measurement .. 54

Table 5.1: Instance variables for the Employee class ... 71

Table 5.2: Instance variables for the SalariedEmployee subclass ... 71

Table 5.3: Instance variables for the HourlyEmployee subclass .. 71

Table 5.4: Instance variables for the CommissionEmployee subclass .. 72

xi

Table 5.5: Instance variables for the BasePlusCommissionEmployee subclass 72

Table 5.6: Obtained values for NOC, CBO and GC for the sample component 74

Table 5.7: Summary of the LCOM measure for the samplel component 76

Table 5.8: Criteria for measuring documentation quality for the sample component 77

Table 5.9: Criteria for measuring completeness of documentation for the sample component .. 77

Table 5.10: Functional requirements of the reusability assessment system 81

Table 5.11: Nonfunctional requirements of the reusability assessment system 82

Table 5.12: System test conditions and test results ... 94

Table 5.13: CBO information for the sample component ... 96

Table 5.14: NOC information for the sample component ... 96

Table 5.15: GC information for the sample component .. 97

Table 5.16: LCOM information for the sample component .. 97

Table 5.17: Documentation information for the sample component ... 97

xii

LIST OF FIGURES

Figure 2.1: Pictorial description of software metrics .. 9

Figure 2.2: Basic reusability attributes model .. 18

Figure 2.3: Black-box component reusability model .. 19

Figure2.4: Reusability model for ad-hoc reuse ... 21

Figure2.5: Reusable software components model .. 22

Figure 3.1: The n-tier Architecture for System Development .. 33

Figure 5.1: Hierarchy of key elements for the OO reusability assessment framework 57

Figure 5.2: Reusability factors for OO components ... 62

Figure 5.3: Reusability attributes model for OO components .. 68

Figure 5.4: Class hierarchy for a sample OO component .. 70

Figure 5.5: System level use-case diagram for the reusability assessment system 83

Figure 5.6: Database design for the reusability assessment system .. 84

Figure 5.7. Data layer classes for the reusability assessment system.. 85

Figure 5.8: The business tier classes for the reusability assessment system 86

Figure 5.9: Presentation layer classes for the reusability assessment system 87

Figure 5.10: Activity diagram for the task of managing metrics and components 88

Figure 5.11: Activity diagram for the task of managing users and user groups 89

Figure 5.12: The login interface for the reusability assessment system 90

Figure 5.13: Main user interface for the reusability assessment system 91

Figure 5.14: The reusability assessment system’s interface for managing users 92

Figure 5.15: The reusability assessment system’s interface for managing metrics 93

Figure 5.16: Form for adding a new component to the reusability assessment system 95

Figure 5.17: Data grid for displaying components’ metrics values .. 98

Figure 5.18: Sample form displaying a component’s reusability summary 99

file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315091
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315092
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315094
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315095
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315097
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315118
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315119
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315120
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315121
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315133
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315134
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315135
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315136
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315137
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315138
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315139
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315140
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315141
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315142
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315143
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315145
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315151
file:///C:/Users/mary.wachira/Desktop/Nyasente,%20Sammy%20Olive-%20MSc%20Computer%20Systems-%202015.docx%23_Toc422315152

xiii

LIST OF APPENDICES

Appendix A: Journal Publications .. 113

Appendix B: Letter of Introduction .. 114

Appendix C: Data Collection Schedule .. 115

xiv

ABSTRACT

Software reuse is a popular way of addressing software development issues—such as high

cost of development, low productivity and poor quality. However, organizations are yet

to realize maximum payoff from reuse due to reusability related issues. Reusability can

only be improved through measurement, because measurement is the only sure way of

monitoring and improving software quality. The goal of this study was to present a reliable

metrics-based framework for measuring the reusability of object-oriented (OO) software

components. A survey involving OO developers was conducted, where methods that they

currently use in assessing reusability were examined. The methods in question include

checking of source code, reading documentation, intuition, and checking of comments.

These methods were found to be largely subjective, hence not reliable. In addition, four

reusability assessment frameworks—found in literature were examined, and found to have

various challenges: all of the frameworks lack predictive power, hence they cannot be

applied at early stages of software development; three of the frameworks include

traditional metrics, which cannot be used to measure OO software components; and lastly,

one of the frameworks was platform dependent. The conclusions about the inefficiencies

of the reviewed reusability assessment methods and frameworks were arrived at,

following a comprehensive literature analysis, through which a criterion for evaluating the

efficiency of reusability assessment frameworks for OO software was defined. Literature

analysis revealed that an effective reusability assessment framework for OO software

should include the following key elements: major reusability attributes, factors that

influence the reusability attributes (reusability factors), measurable OO design constructs

that influence the reusability factors, and OO metrics for measuring the OO constructs.

This research culminated into the development and implementation of a framework that

conforms to this criterion. The developed framework was validated for superiority over

the existing reusability assessment methods and frameworks through a comparative

analysis.

1

CHAPTER ONE

INTRODUCTION

1.1. Background Information

Software is increasingly becoming an important factor in the advancement of the modern

economy. It is not only a basic infrastructure to economic advancement, but also delivers

information, which is the most important product of our time (Pressman, 2010). According

to Budhija, Singh, and Ahuja (2013) software has become critical to advancement in

almost all areas of human endeavors. In fact, it is impossible for the modern world to run

without software (Sommerville, 2011).

The criticality of the role played by software in socioeconomic advancement has seen a

rapid growth in demand for software on one hand, with software developers being unable

to meet this demand on the other. According to Sommerville (2011), this is due to the

increasing demand for large and more complex systems that need to be delivered more

quickly, and the failure of software development companies to use software engineering

methods in their everyday work.

According to Budhija et al. (2013), the art of programming alone is not sufficient to

construct complex software that are of good quality, maintainable, and that are delivered

on time and within budget. One of the ways often pursued to achieve this purpose is

software reuse (Frakes & Kang, 2005). Babu and Srivatsa (2009) define reuse as the

process of creating software systems from existing software assets rather than building

them from scratch.

In Object technology, it is possible for developers to build much of the software by

combining existing classes; therefore, each time a new class is created it has the potential

of becoming a reusable software asset (Deitel P. J. & Deitel H. M., 2006). According to

2

Deitel P. and Deitel H., (2011), reusable classes are crucial to the software revolution that

has been spurred by object technology—just as the notion of interchangeable parts was

crucial to the industrial revolution.

Even though the software industry has developed massively in last decades, component

reuse is still facing numerous issues, and lacking adoption from software developers

(Hristov, Hummel, Huq, & Janjic, 2012). Hristov et al. point out the difficulty of

determining which artifacts are best suited to solve a particular problem in a certain

context, and the ease with which they can be reused—as one of the impediments that

prevent efficient and effective reuse. The authors claim that, this is due to lack of a

comprehensive framework describing reusability of software and structuring appropriate

metrics in a way that is easy to use. Such a framework—according to them is crucial in

facilitating the adoption of reuse in software development.

According to Frakes and Kang (2005), reusability is a quality factor that indicates the

probability of reuse of any software artifact. Reusability of components is important, and

should be measured, in order to realize effective reuse (Washizaki, Yamamoto, &

Fukazawa, 2003). In object oriented software development (OOSD), reusability metrics

can be used to predict the extent to which classes can be reused. That is, reusability metrics

try to find out the ease with which classes can be reused (Gill & Sikka, 2011).

The term metric is defined by the IEEE standard glossary of software engineering

terminology (IEEE, 1990) as a quantitative measure of the degree to which a system,

component, or process possesses a given attribute. According to Chawla and Nath (2013),

metrics are helpful in evaluating the status of an attribute of software, and finding

opportunities of improvement.

There have been tremendous efforts towards achieving effective reuse in OOSD in recent

decades, and several metrics that can be used in measuring the reusability of object

3

oriented (OO) software have been presented in various literatures (e.g. (Chidamber &

Kemerer, 1991, 1994; Cho, M. S. Kim, & S. D. Kim, 2001; Gill & Sikka, 2011)).

According to Cho et al. (2001), OO metrics measure principal structures that if improperly

designed, negatively affects design and code quality attributes. This implies that, to

measure reusability of OO components, there is need for a good understanding on the

attributes that influence reusability, how OO principal structures are related with the

reusability attributes—as well as OO metrics that can be used to measure the OO

structures.

According to Hristov et al. (2012), the major challenge in reusability measurement is,

determining the attributes that should be used to assess reusability because a common

agreement is yet to be reached in the research community as to which software

characteristics provide a sufficient basis for determining software reusability, and which

metrics should be used to measure these characteristics. This challenge is compounded by

a general disagreement within the research community regarding software measurement

(Pressman, 2010). Pressman observes that, there is no agreement as to which attributes

should be used in assessing software quality. Therefore, the software community still has

a long way to go in achieving effective reuse through OO technology, since there is no

effective framework for describing and measuring reusability of classes.

1.2. Statement of the Problem

The demand for new software is currently increasing at an exponential rate, as well as the

cost and effort to develop them (Sandhu, Kaur, & Singh, 2009).This has led to a large

backlog of software that need to be written—a situation described as the software crisis

(Sommerville, 2011). Software professionals have over the years recognized reuse as a

powerful means of potentially overcoming this crisis (Frakes & Kang, 2005).

4

To achieve the objectives of reuse, there is need to focus on the concept of reusability in

a disciplined manner (Budhija et al., 2013). Thus, in addition to adopting OO design and

development—which is a popular method for improving software reusability, productivity

and flexibility (Dubey & Rana, 2010), there is also need to ensure that the classes being

developed or reused have the required degree of reusability (Nyasente, Mwangi, &

Kimani, 2014a). Research has shown that this objective can be achieved by use of OO

software metrics (Chawla & Nath, 2013).

Measurement has been an active area of reuse research for more than two decades (Frakes

& Kang, 2005), and a number of metrics and frameworks for reusability assessment have

been presented in literature. However, the software community is yet to agree on

characteristics that should be used in assessing reusability, and which metrics are

sufficient in measuring these characteristics (Hristov et al., 2012). Therefore, there is lack

of clear and efficient methods of measuring reusability—posing a major setback in

achieving successful reuse. To achieve the maximum benefits from reuse in OO software

development, a clear framework that describes reusability and structures OO metrics in a

way that is easy to use is required. Such a framework could not be found in literature.

1.3. Justification of the Study

Although several OO metrics—such as the “CK” metrics (Chidamber & Kemerer, 1991,

1994) exist in literature; a framework that describes, and that can be used to measure the

reusability of OO components (i.e. a framework that relates major OO design constructs,

with key reusability attributes and groups metrics for quantifying reusability on one

system), could not be found. This research work presents a novel metrics-based

framework that fulfills this purpose. The framework is critical in facilitating reusability

measurement, since OO metrics—according to Dubey and Rana (2010) require a thorough

understanding of OO concepts. In addition, no single metric can be used to measure all

characteristics of OO software.

5

This research does not only culminates to an easy to use framework that developers can

use to measure the reusability of OO components, but also seeks to foster the

understanding of software developers on what OO reusability is; how it can be measured,

and how it can be improved. This research will also form a basis for further research in

the area of OO reusability assessment. This will go a long way in accelerating successful

reuse of OO component—with an objective of resolving the software crisis in the long

run.

1.4. Research Questions

1. What are the methodologies employed by OO developers in assessing the

reusability of components?

2. What are the shortcomings of the reusability assessment strategies that are in

place?

3. What are the attributes that influence the reusability of OO components?

4. How can we use the reusability attributes to objectively determine the reusability

of OO components?

1.5. Objectives of the Study

1.5.1. Broad Objective

The broad objective of the study is to establish an easy to use metrics-based framework

for measuring the reusability of OO components. The framework will contain key

reusability attributes that will be measured using software metrics that exist in literature.

1.5.2. Specific Objectives

1. Identify and examine the strategies and methods used by OO developers in

assessing the reusability of classes.

6

2. Identify the shortcomings of the reusability assessment strategies that are currently

used.

3. Determine the major attributes that influence reusability, hence design and

implement a framework based on metrics—that can be used to measure the

reusability of OO components.

4. Test the working of the framework and validate its superiority over the existing

methods of measuring reusability.

1.6. Scope of the Study

According to Hristov et al. (2012), there are several factors, which influence component

reuse, and reusability is just one of them. This research only focuses on reusability

measurement as a way of improving the reusability of OO components—which will

improve reuse in return. The research does not come up with new reusability metrics: it

presents a framework that structures OO metrics that exist in literature, in a way that is

easy to use. A survey is also conducted to find out methods that OO developers use in

measuring reusability; shortcomings of these methods, as well as challenges encountered

in measuring reusability. This information is crucial in establishing the reusability

assessment framework, and provides empirical evidence on the theoretical literature that

this research is based on.

1.7. Thesis Outline

This thesis is organized into six chapters. Chapters one presents the background

information for the study, the research problem, as well as the significance of the study.

In addition, the research questions, objectives, and the scope of the study are presented.

Chapter two presents a detailed literature review—where both theoretical and empirical

literature is reviewed and some unresolved issues (research gaps) with regards to OO

reusability assessment are highlighted. Finally, a concept that guides the study is

presented. Chapter three analyzes the research methodology used in this study. It describes

7

the methodologies used for data collection and analysis, framework design, framework

validation, and framework implementation (system design). Chapter four on the other

hand, discusses the findings of data analysis. Chapter five describes the framework

developed in this thesis, and ends with its implementation (system development). Finally,

chapter six gives conclusions and recommendations.

8

CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

Measurement is a key element in any engineering process, as it enables engineers to better

understand attributes of models that they create, and to assess quality of engineered

products (Pressman, 2010). Measurement is required in software engineering to assess

quality and improvements in performance of software products, in order to meet the ever-

increasing demands of users (Chawla & Nath, 2013). Pressman (2010) underscores the

importance of measuring the process of software engineering and software products by

stating that; “if you do not measure, there is no real way of determining whether you are

improving. And if you are not improving, you are lost”.

According to Sommerville (2011), software measurement is concerned with deriving a

numeric value or profile for an attribute of a software component, system or process. The

quality of software products, effectiveness of processes, tools, and methods, can be

assessed by comparing the derived values for the attributes (Sommerville, 2011).

Measurement of software products as well as the process of software production is

achieved through metrics (Rawat, Mittal, & Dubey, 2012; Sharma & Dubey, 2012)

Nirpal and Kale (2011) describe software metrics, as measurement based techniques that

are applied to processes, products and services, to supply engineering and management

information—which they can work on to improve processes, products and services, if

required. This description is depicted in figure 2.1.

9

According to Chawla and Nath (2013), metrics help software engineers and developers to

find opportunities of improving software products and software production processes, by

providing information regarding the status of certain attributes of the software product or

process. In other words, metrics can be used to assess quality of software (Sandhu et al.,

2009).

2.2. Classification of Software Metrics

Software metrics can be classified into different categories; however, they are often

categorized in a much broader sense as: (i) process metrics, and (ii) product metrics

(Farooq, Quadri, & Ahmad, 2011). According to Pressman (2010), process metrics are

used to measure the efficacy of software development processes. They provide a set of

process indicators by measuring specific attributes of the software development process.

Product metrics on the other hand are used to assess the quality of software products

during development (Pressman, 2010). Product metrics are also known as quality metrics

and they measure properties of the software (Singh G., Singh D., & Singh V., 2011).

Product metrics provide indicators of the efficacy of the requirements, design and code

Measurement

Based Techniques
Applied

To

Processes,

products &

services

To

supply

To

improv

e

Engineering &

Management

Information

Figure 2.1: Pictorial description of software metrics (Nirpal & Kale, 2011)

10

models; the effectiveness of test cases; and the overall quality of software to be build.

These indicators provide insights that enable software developers to adjust the product to

make things better (Pressman, 2010).

2.3. Measuring Software Size and Size Metrics

 Software size is one of the most elementary attributes which can be used to estimate the

complexity of a software system, because complexity is basically the quality of

“interconnectedness” of parts, and size can be thought as the sheer numbers of basic

“parts” (Laird & Brennan, 2006). According to Hristov et al. (2012) excessive complexity

limits the chances of a software component of being reused. Therefore, it should be

managed through measurement (Nyasente et al., 2014b).

2.3.1. The LOC Metric

The number of lines of code (LOC) is the simplest measure for software size, which

measures the physical length of software (Laird & Brennan, 2006). The LOC measure can

be used to normalize metrics and compare different projects; however, its reliability is

dependent on rules that apply when counting source lines of code. Different organizations

and studies use different rules, with the most popular one being NKLOC (non-commented

thousands lines of code) and LLOC (logical lines of code) (Laird & Brennan, 2006).

The LOC metric can be easily counted for any software, and other simple size-oriented

metrics such as errors per thousand lines of code (Errors per KLOC), defects per thousand

lines of code (defects per KLOC) , cost per thousand lines of code ($ per KLOC), etc; can

be derived from this metric. Other important measures that can be computed from LOC

include; Errors per person-month, KLOC per person-month, and, $ per page of

documentation (Pressman, 2010). However, the LOC metric is programming language

dependent and its usefulness fizzles out for non-procedural languages (Laird & Brennan,

2006; Pressman, 2010).

11

2.3.2. Function Points (FP) Metrics

Physical software size measurement such LOC was largely relevant until early 1990s,

since most code was text. However, with the advent of visual languages such as visual

basic, the size of text became irrelevant, as "selections" and "clicks" become the "code".

For these types of languages and for generated languages, functional size measurements

are typically used (Laird & Brennan, 2006).

Function point is an approach for sizing a system, based on the functions delivered by the

system rather than how it does it internally (Laird & Brennan, 2006). The FP measure was

presented by Albrecht (1983) and can be determined early in the software development

life cycle (as cited in Sharma & Dubey, 2012). It measures project size by functionality

indicated in the customer’s or tender requirement specification (Galin, 2004). Unlike the

LOC measure, FP is independent of the programming language used to develop software

(Sommerville, 2011).

The number of function points in a system is computed by measuring or estimating

external inputs and outputs, user interactions, external interfaces, and files or database

tables used by the system (Sommerville, 2011). The FP of a system is the weighted total

of the number of external inputs (e.g., transaction types); number of external outputs (e.g.,

report types); number of logical internal files (files as the user might conceive them, not

physical files); number of external interface files (files accessed by the application but not

maintained by it); and number of external inquiries (types of online inquiries supported)

(Kan, 2002).

2.4. Measuring Software Complexity and Complexity Metrics

Any software system or module has some inherent complexity, based on the problem it

needs to solve. However, unnecessary complexity introduces a number of problems—

12

such as additional defects and lower productivity. The hypothesis in this case is that, the

more complex the software, the more difficult it is to understand—hence the more difficult

to debug and maintain it (Laird & Brennan, 2006). According to Ghezzi, Jazayeri, and

Mandrioli (2003) and Nyasente et al. (2014a), reusable components should be easy to

understand, debug and maintain. This means that, complex modules are hard to reuse as

compared to simple ones.

The objective of measuring complexity is to identify factors that cause software

complexity, so that it can be managed (Laird & Brennan, 2006). According to Laird and

Brennan, complexity metrics can be used in identifying designs and code that should be

considered for simplification, or modules that should be subjected to additional testing.

According to Laird and Brennan (2006), system complexity can be viewed and measured

from three different aspects: structural, conceptual and computational. Structural

complexity concerns the design and structure of the software itself. This type of

complexity can be determined by structural complexity metrics such as LOC, function

point, cyclomatic complexity etc. Conceptual complexity on the other hand refers to the

difficulty in understanding a software system. There are no specific metrics that are known

to measure this type of complexity. One possible explanation to this is that, conceptual

complexity is more of psychological, and is dependent on the mental capacity of the

programmer—making it difficult to quantify.

Lastly, computational complexity refers to the complexity of the computation being

performed by a system. Computational complexity is measured by determining the

amount of time and space required by the system for calculations. Computational

complexity is useful in evaluating and comparing implementations and designs for

efficiency, and in ensuring that the complexity of the solution does not exceed the inherent

complexity of the problem being solved.

13

2.4.1. McCabe’s Cyclomatic Complexity (CC) Metrics

McCabe’s Cyclomatic Complexity is the most famous complexity metric, which is a

measure of the number of control flows within a module (Laird & Brennan, 2006). The

metric’s original goal was to measure the testability and understandability of the software

module (Sharma & Dubey, 2012; Laird & Brennan, 2006). Cyclomatic complexity is

based on graph theory, and is calculated according to the program characteristics as

captured by its program flow graph (Galin, 2004). Cyclomatic complexity denoted by

V(G) can be computed using any of the three equations (Galin, 2004):

 𝑉(𝐺) = 𝑅 (2.1)

 𝑉(𝐺) = 𝑒 − 𝑛 + 2 (2.2)

 𝑉(𝐺) = 𝑃 + 1 (2.3)

Where:

R≡ is the number of regions in the program flow graph (i.e. any enclosed

area in the program flow graph. In addition, the area around the graph not

enclosed by it is counted as one additional region.)

N≡ is the number of nodes in the program flow graph.

P≡ is the number of decisions contained in the graph, represented by nodes

having more than one leaving edge.

High Cyclomatic complexity of a program module indicates higher complexity (Laird &

Brennan, 2006), making the module difficult to reuse (Nyasente et al., 2014c).

2.4.2. Halstead’s Software Science

Halstead (1977) proposed the first "laws" for computer software (as cited in Pressman,

2010). He developed metrics based on the number of distinct operands (n1), and the

number of distinct operators (n2) in a computer program (Laird & Brennan, 2006).

Halstead considers a program to be constructed by manipulating unique operators (n1) and

14

unique operands (n2); i.e. a computer program composed of N1 operators and N2 operands

is constructed by selecting n1 distinct operators and n2 distinct operands (Singh et al.,

2011). Based on this model, Halstead developed equations for, program length, volume,

program level (which is a measure of program complexity), language level, and other

features such as development effort, development time, and projected faults in a software

(Pressman, 2010). Halstead’s Metrics are defined as (Laird & Brennan, 2006):

Length: 𝑁 = 𝑁1 + 𝑁2 (2.4)

Vocabulary: 𝑛 = 𝑛1 + 𝑛2 (2.5)

Volume: 𝑉 = 𝑁(𝑙𝑜𝑔2(𝑛) (2.6)

Difficulty: 𝐷 = (𝑛1/2) ∗ (𝑁2/𝑛2) (2.7)

Effort: 𝐸 = 𝐷 ∗ 𝑉 (2.8)

Where:

n1= number of distinct operators

n2= number of distinct operands

N1= total number of operators

N2= total number of operands

Although Halstead metrics do not tend to be practical in usage, they were extremely useful

in setting up the stage for discussions on code structure metrics. One of the limitations of,

Halstead metrics is that, they have no predictive power for development effort, since they

are calculated after code is written. Although Halstead metrics can be used as a predictor

of maintenance effort, they have not been shown to be better than LOC, which is simpler

(Laird & Brennan, 2006).

2.4.3. Information Flow Metrics (Henry and Kafura’s Metrics)

In 1981, Henry and Kafura proposed information flow metrics, which are sometimes

referred to as Henry and Kafura's metrics (as cited in Singh et al., 2011). Information flow

15

metrics can be used to determine the complexity of a system by measuring the flow of

information among system modules (Laird & Brennan, 2006; Sharma & Dubey, 2012;

Singh et al., 2011). The underlying principle behind this is that, high information flow

among system modules indicates lack of cohesion (i.e. a low degree of relationship

between methods of a module), which causes higher complexity (Laird & Brennan, 2006).

Information flow metrics use some combination of the number of local flows into a

module (fan-in), the number of local flows out of a module (fan-out), and the length to

compute a complexity number for a procedure. Fan-in, fan-out, and length are defined in

a number of ways by different variations of the metric (Laird & Brennan, 2006). Initially

Henry and Kafura (1981) defined the Information Flow Complexity (IFC) of a module as

(as cited in Laird & Brennan, 2006):

 𝐼𝐹𝐶 = 𝐿𝑒𝑛𝑔𝑡ℎ ∗ (𝑓𝑎𝑛𝑖𝑛 ∗ 𝑓𝑎𝑛𝑜𝑢𝑡)2 (2.9)

Where:

Fanin ≡ is the number of local flows into a module plus the number of data

structures that are used as input.

Fanout ≡ is the number of local flows out of a module plus the number of

data structures that are used as output.

Length≡ is the length of a procedure in LOC.

Henry and Kafura’s metrics later evolved into the IEEE Standard 982.2, and they are

defined as follows (Laird & Brennan, 2006):

 𝐼𝐹𝐶 = (𝑓𝑎𝑛𝑖𝑛 ∗ 𝑓𝑎𝑛𝑜𝑢𝑡)2 (2.10)

 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝐹𝐶 = 𝐿𝑒𝑛𝑔𝑡ℎ ∗ (𝑓𝑎𝑛𝑖𝑛 ∗ 𝑓𝑎𝑛𝑜𝑢𝑡)2 (2.11)

Where:

16

Fanin ≡ local flows into a procedure plus number of data structures from which

the procedure retrieves data

Fanout≡ local flows from a procedure plus number of data structures that the

procedure updates

Length≡ number of source statements in a procedure (excluding comments in a

procedure)

2.5. Measuring Quality of Object-Oriented (OO) Software

The quality of OO software is dependent on various quality concepts like complexity,

usability, reliability, testability, understandability etc. These concepts are closely related

to OO features such as coupling, inheritance, and cohesion, which can be measured using

various OO metrics (Dubey & Rana, 2010). Therefore, quality of OO software can be

determined by measuring OO design features—using OO metrics. Examples of metrics

that can be used in assessing different OO software quality aspects include, the Chidamber

and Kemerer’s metrics—commonly known as the CK metrics suite (Chidamber &

Kemerer, 1991, 1994), and, the Gill and Sikka Metrics (Gill & Sikka, 2011).

2.6. Software Reuse and Reusability

Software reuse is the use of existing software components to create new software, whilst

reusability is the degree to which a given component can be reused (Gill & Sikka, 2011).

This means that reusability is the property that determines a component’s reuse. Therefore,

if a component’s reusability is low, then its potential for reuse becomes low as well

(Nyasente et al., 2014a).

According to Budhija et al. (2013), the maximum benefits of software reuse can only be

attained if we focus on the concept of reusability in a disciplined manner. A similar view

is expressed by Washizaki et al. (2003) when they state that, among the several quality

17

characteristics, reusability is particularly important when reusing components, and it

should be measured in order to reuse them effectively.

2.7. Measuring Software Reusability

 Issues related to software development such as; quality, productivity, cost of development

etc, can be addressed by focusing and improving component reusability (AL-Badareen,

Selamat, Jabar, Din, & Turaev, 2010; Ilyas & Abbas, 2013; Mishra, Kushwaha, & Misra,

2009). According to Pressman (2010), there is only one sure way of improving software

quality, and that is through measurement. Therefore, developers must measure reusability

of components if they need to improve it.

Component reusability is determined by certain attributes that can be measured using

metrics, and the task involved in reusability measurement is to relate reusability attributes

with appropriate metrics, and find out how these metrics collectively determine the

reusability of components (Sandhu et al., 2009). In other words, a model that relates

reusability attributes with reusability factors that can be measured using metrics is

required in order to assess the reusability of components.

2.8. Related Work in Reusability Measurement

Software reusability has been an active area of research in Software Engineering for more

than two decades, and a number of frameworks for quantifying reusability have been

presented. Some of the research works that were identified in literature are reviewed in

this section.

2.8.1. The Basic Reusability Attributes Model

Caldiera and Basili (1991) present a basic reusability attributes model (shown in figure

2.2) for identifying and qualifying reusable software components. The model attempts to

characterize reusability attributes directly through measures of an attribute, or indirectly

18

through measures of evidence of an attribute’s existence. The model consists of three

attributes that are believed to influence the reusability of components, namely; reuse costs,

functional usefulness, and quality of components. These attributes are determined by

factors, which are directly or indirectly measured by McCabe’s Cyclomatic Complexity

metrics, Halstead's Volume metrics, Regularity, and Reuse Frequency.

2.8.1.1. Strengths and Limitations of the Basic Reusability Attributes Model

Although the basic model is elementary, it captures important characteristics affecting

software component reusability (Caldiera & Basili, 1991). The authors outline a criterion

for objectively determining the reusability of components, using the reusability

characteristics. The major strength of the model lies in the fact that, it can be used to

objectively assess component reusability—owing to the fact that the authors propose

objective metrics for measuring the reusability characteristics.

Figure 2.2: Basic reusability attributes model (Caldiera & Basili, 1991)

19

Notwithstanding its strengths, the basic reusability model only focuses on developing a

catalog of reusable components from already existing components. That is, it only

addresses the problem of how to analyze existing components and identifying the ones

that are suitable for reuse (Caldiera & Basili, 1991). The framework lacks predictive

power, and therefore, it cannot be useful in predicting reusability of components when

they are being developed.

2.8.2. Black-box Component Reusability Model

Washizaki et al. (2003) present a framework for measuring the reusability of OO black-

box components. The authors consider understandability, adaptability and portability—as

attributes that determine reusability. They also proposed a suite of five metrics for

measuring reusability: existence of meta-Information (EMI), rate of component

observability (RCO), rate of component customizability (RCC), self-completeness of

component’s return value (SCCr), and self-completeness of component’s parameter

(SCCp). These metrics target the JavaBeans architecture, and are defined according to the

model shown in figure 2.3.

Figure 2.3: Black-box component reusability model (Washizaki et al., 2003)

Component

Reusability

Adaptability

Portability

Characteristic Quality factor Criteria Metric

 SCCp

RC

RCC

EMI

SCCr

Understandability

External

Dependency

Observability

Existence of

Meta-

Information

Customizability

20

2.8.2.1. Strengths and Limitations of the Black-Box Component Reusability Model

The major strength of the black-box component reusability framework is its ability of

measuring reusability of components based on limited information that can be obtained

from the outside of the component without any source code. This makes the framework

suitable for assessing reusability when the source code of components cannot be obtained

(Washizaki et al., 2003). Another strength of the framework is that, it includes a suite of

objective metrics that were defined based on an empirical study—with confidence

intervals that were set by statistical analysis of a number of JavaBeans components

(Washizaki et al., 2003). Therefore, the measures of reusability obtained from using the

framework can be relied on.

On the other hand, the framework has some limitations. The most visible limitation is that,

it includes metrics that are useful in measuring the reusability of black-box components

for the activity of development with reuse, and only targets the JavaBeans architecture

(Washizaki et al., 2003). That is, the framework is architecture dependent and does not

address the problem of how to measure reusability of white-box components, and how to

predict reusability when components are being developed.

2.8.3. The Reusability Framework for Ad-Hoc Reuse

Hristov et al. (2012) present a reusability assessment framework (shown in figure 2.4) for

ad-hoc software reuse. Their framework structures existing reusability metrics for

component-based software development. They proposed eight attributes that should be

considered in assessing the reusability of components in ad-hoc reuse scenarios. These

attributes include; availability, documentation, complexity, quality, maintainability,

adaptability, reuse, and price. These attributes are determined by various factors, which

can be directly or indirectly measured using various metrics that the authors propose.

21

Hristov et al. (2012) further defined a reusability calculation model shown in equation

2.12, where metrics values resulting from measuring every part of the reusability model

are aggregated, in order to get a component's reusability (Rcc).

Rcc=w1.avail + w2.Doc + w3.Compl + w4.Qual +

w5.Maint +w6.Price + w7.Adapt + w8.Reuse (2.12)

Where:

w1 - w8 are weights and the rest are composite metrics for the reusability

attributes (shown in figure 2.4, above).

2.8.3.1. Strengths and Limitations of the Reusability Framework for Ad-hoc Reuse

The Major strength of the reusability framework for ad-hoc reuse is in its

comprehensiveness and ease of use (Hristov et al., 2012). The framework clearly relates

major reusability attributes with measurable factors and includes objective metrics for

Figure2.4: Reusability model for ad-hoc reuse (Hristov et al., 2012)

22

measuring these factors. The authors also define a reusability equation that outputs a single

reusability value, which is easy to interpret.

However, the framework by Hristov et al. (2012) is suitable for assessing the reusability

of software components in ad-hoc reuse scenarios only. Although, the framework gives

insights into reusability assessment in planned reuse scenarios, it cannot be relied on in

assessing reusability in such reuse scenarios. This is because some attributes (e.g. reuse

and price) can only be assessed if the component has already been reused before.

2.8.4. The Reusable Software Components Framework

AL-Badareen et al. (2010) present a reusable software component framework for

systematic reuse (see figure 2.5). They categorize reusability characteristics into two main

categories: (i) characteristics to assess components before they are stored in the reuse

library, and (ii) characteristics to assess components in order to build a new system. The

first category considers the general characteristics that are required by any system, and

they include; software coexistence, adaptability/interoperability, generality and

compliance.

Reusabilit

y

Coexistence

Compliance

Interoperability/

adaptability

Generality

Modularity

Communication

communality

Data commonality

Sw/Sys

Independence

Machine

Independence

Figure2.5: Reusable software components model (AL-Badareen et al., 2010)

23

AL-Badareen et al. (2010) define software coexistence as the ability of the system or the

sub-system to work in different environments. Software coexistence includes software

system independence and hardware independence. The former represents the degree to

which the program is independent of nonstandard programming language features,

operating system characteristics and other environment constraints. Whilst the latter is the

degree, to which the software is de-coupled (independent) from its operating hardware.

On the other hand, adaptability/interoperability of the software is the ability of the

software to communicate with other systems. It includes modularity, communication

communality, and data communality. System modularity represents the degree to which a

system or computer program is composed of separate and independent components such

that a change to one component has minimal impact on other components.

Communication commonality represents the degree to which standard interfaces,

protocols and bandwidth are used. Data commonality is explicit use of standard data

structures and types throughout the program (AL-Badareen et al., 2010).

According to AL-Badareen et al. (2010), software generality is the degree to which a

system or computer program is composed of distinct components such that a change to

one component has minimal impact on other components. This enables components of a

system to be used in different contexts with ease. Compliance verifies whether the

software follows any standard or international certificates in order to build reusable

software.

The second category of characteristics defined by AL-Badareen et al. (2010) comprise of

specific characteristics that help in the system development. These characteristics are

component suitability, documentation and modifiability. The suitability of the component

24

is measured in order to see whether the component is able to perform the intended function

properly. The documentation of the component simplifies the job of the software

developer to understand it. While component modifiability is required to change the

components as it is required in the new system.

2.8.4.1. Strengths and Limitations of the Reusable Software Components Framework

A noticeable strength of the framework by AL-Badareen et al. (2010) is its simplicity. The

framework provides a structured criterion for evaluating reusable components when

adopting them for reuse. The framework describes reusability assessment in a

straightforward manner. The authors relate major reusability attributes with measurable

factors that influence them, and then they outline a criterion for assessing the reusability

characteristics.

Although the reusable software components framework by AL-Badareen et al. (2010)

provides a basis for understanding reusability in systematic reuse, the authors do not give

an objective way of measuring reusability attributes. That is, they do not specify metrics

for measuring the reusability attributes. They instead propose that the characteristics be

evaluated through tests. This is a limitation because, tests for evaluating some of the

reusability characteristics—(e.g. coexistence), can only be conducted if the component is

in existence. For example, system and hardware independence, are determined by running

the software in different software and hardware environments respectively. This limits the

suitability of the framework to the process of extraction, evaluation, processing, adoption,

and storage of reusable software components (AL-Badareen et al., 2010).

2.8.5. Summary of the Reviewed Reusability Assessment Frameworks

Table 2.1 gives a summary of the reviewed reusability assessment frameworks. It outlines

the suitability and limitations of the said frameworks.

Table 2.1: Summary of the reusability assessment frameworks

25

Framework Source Suitability Limitations

Basic

Reusability

Attributes

Model

Caldiera

and Basili

(1991)

-Suitable for assessing

the reusability of

existing components,

so as to come up with a

catalog of reusable

components.

-It cannot predict reusability of

components during

development for reuse.

Black-box

component

reusability

model

Washizaki

et al.

(2003)

-Suitable for

measuring reusability

of JavaBeans

components when

developing with reuse.

-It cannot measure reusability

of white-box components

-It only gives insights but it

cannot assess reusability of

non-JavaBeans components.

Reusability

Framework

for Ad-hoc

Reuse

Hristov et

al. (2012)

-Suitable for assessing

the reusability of

components in ad-hoc

reuse scenarios.

-It only gives insights, but

cannot predict reusability of

components in planned reuse.

The Reusable

Software

Components

Framework

AL-

Badareen

et al.

(2010)

-Suitable for the

process of extraction,

evaluation, processing,

adoption, and store

reusable software

components.

-It does not specify metrics to

measure the reusability

attributes.

- The reusability attributes are

evaluated by conducting tests

on components, thus it cannot

be used to predict reusability

when developing for reuse.

26

2.9 . Unresolved Issues in OO Reusability Assessment

The existence of reusability assessment frameworks in literature reveals efforts by

researchers in trying to improve software reusability. However, these research works have

been conducted against a backdrop of uncertainty as to which attributes should be used to

measure reusability (Hristov et al., 2012). In addition, OO metrics measure principal

structures whose design affects quality attributes (Cho et al., 2001). Therefore, it can be

concluded that, an effective OO reusability assessment framework should:

(i) Clearly define the attributes that influence the reusability of components;

(ii) define factors that influence each of the reusability attributes (reusability

factors);

(iii) relate the reusability factors with OO design structures that influence them;

(iv) relate various metrics with the OO structures that they measure; and,

(v) establish how these metrics collectively determine reusability (Nyasente et al.,

2014a).

A review of literature reveals that no framework of the nature described above exists.

Therefore, in spite of the existence of reusability assessment frameworks, and various OO

metrics, the issue of effective reusability assessment in OO technology remains

unresolved.

2.10. Proposed Solution

This research will attempt to resolve the issues—highlighted in section 2.9 above, by

developing an easy to use metrics-based framework that can be used in measuring the

reusability of OO components. To achieve this objective, the following will be

undertaken:

i. a survey involving OO developers will be conducted in order to have an in-depth

understanding on reusability, as well as understand the manner in which reuse is

conducted;

27

ii. literature will be analyzed in order to determine major reusability attributes, factors

that influence these attributes, and measurable OO structures that influence these

factors;

iii. a model that relates the reusability attributes, with reusability factors, and OO

constructs will be developed;

iv. A reusability equation will be defined; and,

v. a reusability calculation tool/system, which is be an automation of the reusability

equation shall be developed.

2.11. Summary

This chapter has explained the concept of measurement, its importance to software

engineering, and how it can be achieved through software metrics. The broad categories

of metrics have been explored, and the usefulness of each is highlighted. Some traditional

software metrics are also discussed and their relationship with reusability assessment is

highlighted. This chapter has also explained what software reuse is, its benefits to software

development, and the difference between reuse and reusability. The reason why

reusability measurement is important—with regards to software reuse is also explained;

and some reusability assessment frameworks that exist in literature have been examined.

The suitability of these frameworks, as well as their limitations has been brought to the

fore. Lastly, the ideal features of an effective framework for assessing OO reusability—

(as derived from literature) are highlighted. This brought forth a number of unresolved

issues in OO reusability assessment. This informed the need for a survey involving OO

developers—that aimed at establishing the status of reuse, the methods used in assessing

reusability, and the efficiency of these methods. This information was crucial in providing

a basis for developing the reusability assessment framework that this research culminates

to.

28

CHAPTER THREE

RESEARCH METHODOLOGY

3.1. Introduction

To attain the purpose of this study, which is to present and implement a metrics-based

framework for measuring the reusability of OO components; an inquiry into the current

industry practice regarding reuse and reusability assessment was conducted. The inquiry

played an important role in attaining the objectives of this study because, it provided an

in-depth understanding of reuse and reusability—which was core in the development of

the reusability assessment framework.

According to Sommerville (2011), stakeholders' involvement is crucial for the success of

software engineering projects. Based on this, a survey involving OO software developers

was conducted in order to establish the status of reuse and reusability. The survey was

able to established challenges in reusability assessment and shortcomings of the

methods—used in reusability assessment. The survey findings validated published claims

that; reuse is lacking adoption by software developers due to lack of proper methods of

assessing reusability (Hristov et al., 2012); hence most of the software components being

developed lack adequate reusability (Nyasente et al., 2014a).

This study can be divided into three major components: (i) the survey involving OO

software developers, (ii) framework development and validation, and (iii) Implementation

of the framework. The rest of this chapter presents the methodologies used in attaining the

goals of each of these components.

29

3.2. Methodology for Establishing the Current Status regarding Reuse and

Reusability

3.2.1. Research Design

A descriptive research methodology was adopted in order to establish the current status of

reuse and reusability assessment. A survey was administered in order collect primary data

from a selected sample of OO software developers. According to Kombo and Tromp

(2006), if a study requires the collection of information by interviews, questionnaires

etc—with the aim of ascertaining the state of affairs of a phenomenon, then the survey

research design would be appropriate for such a study. This study adopted the survey

research design—since information was to be collected from OO developers, with the aim

of ascertaining the state of affairs with regards to reuse and reusability assessment.

3.2.2. Target Population and the Sampled Population

This study targeted all OO software developers in the republic of Kenya. The size of the

population in question could not be established; because no published sources concerning

this population could be found. This made it difficult to even estimate the population size,

because there is no credible basis for such an estimate. Considering the fact that, it is not

practical to draw a sample from a target population (Daniel & Cross, 2013); respondents

were selected from software development companies and other organizations that had

software development departments—within Nairobi. Nairobi was selected as a study area

for reasons of practicability, efficiency, and ease of access.

3.2.3. Sampling design

Non-probability sampling was adopted in selecting sample items for the study. The researcher

purposely targeted OO software developers because; the study revolved around reuse and

reusability assessment in OO software, and the researcher believed that OO developers

had sufficient knowledge on the subject matter—hence reliable for the study. According

to Kothari (2004) non-probability sampling (also known as deliberate sampling, purposive

30

sampling and judgment sampling), is a type of sampling where items for the sample are

selected deliberately by the researcher; and his choice concerning the items remains

supreme. One of the limitations of purposive sampling is that the researcher never knows

if the sample is representative of the population (Kombo & Tromp, 2006).

Also with purposive sampling, sampling error cannot be estimated and the element of bias,

great or small is always there (Kothari, 2004). However, the power of purposive sampling lies

in selecting information rich cases for in-depth analysis related to the central issue being

studied (Kombo & Tromp, 2006). This type of sampling design is often adopted for small

inquiries and researches by individuals, because of the relative advantage of time and

money inherent in this method of sampling (Kothari, 2004).

3.2.4. Sample Selection

The researcher deployed homogeneous sampling technique to draw a sample of fifty-four

(54) respondents from 21 organizations situated in Nairobi Kenya. The organizations were

either software development companies, or organizations that had an active department

for software development. Homogeneous sampling technique was chosen since the study

targeted only OO software developers. According to Kombo and Tromp (2006),

homogeneous sampling technique is a type of purposive sampling that picks up a small

sample with similar characteristics to describe some particular subgroup in depth.

The organizations from which the sample was drawn from include; Higher Education's

loans board, University of Nairobi, Ihub, Kenya Methodist University, Asta, Integral soft

limited, Next technologies, Technobrain, Craft silicon, E-mobilis, Amband limited,

International livestock research institute (ILRI), Innovation IT solutions, Institute of

Software Engineering, Jafftek, Naisoft, Symphony, EgalaxyKenya, fabtech, TouIT and

Movetech solutions

31

3.2.5. Instrumentation

The study largely employed quantitative methods to collect primary data from

respondents, using schedules—consisting of mostly closed ended questions. Schedules

were preferred because the researcher believed that the subject on software measurement

is somewhat complex, and some respondents required further explanations regarding the

survey. Qualitative methodology was also used to gain an in-depth understanding of other

complex issues influencing OO reuse and reusability assessment, which would not have

been understood, if only quantitative methodology was adopted.

3.2.6. Data Analysis

Statistical package for social sciences (SPSS) version 21.0, was religiously used for the

statistical analyses. Coding of variables in quantitative research is very critical for better

interpretation of results. The questions and responses from the schedules were coded and

entered into the computer using Microsoft Excel 2007 software. This data was later

imported into SPSS and analyzed. Appropriate statistical methods were applied on the

data to get the results which were analyzed.

3.3. Methodology for Framework Development and validation

The major contribution of this study is to develop an effective metrics-based framework

for assessing the reusability of OO components. This objective was achieved by

conducting literature analysis. According to Berndtsson, Hansson, Olsson, and Lundell

(2008), literature analysis is a systematic examination of a problem, by means of an

analysis of published sources, undertaken with a specific purpose in mind. In the context

of this study, literature analysis was conducted with the two objectives in mind: (i) to

develop the reusability assessment framework for OO components, and (ii) to validate the

developed framework for superiority.

32

To achieve objective (i), literature analysis was conducted in order to identify the key

elements of a reusability assessment framework for OO software and determine how these

elements can be collectively used in measuring reusability. On the other hand, objective

(ii) was achieved by performing comprehensive literature analysis for the purpose of

establishing a benchmark for evaluating the superiority of the developed framework.

3.4. Methodology for Framework Implementation

The third component of this study is the implementation and testing of the developed

reusability assessment framework. This objective was accomplished by developing a

reusability assessment system. This section outlines the methodology used to develop the

system.

3.4.1. System Design

The system that has both a front-end and back-end applications was built. The front-end

application was implemented using the .NET framework and Visual basic programming

language. The Microsoft Visual studio 2010 professional, integrated development

environment was used in the development of the application. The system's database on

the other hand, was implemented using Microsoft SQL server 2008 Database management

system. The system database was designed using Toad data modeler; a database design

tool that allows users to visually create, maintain, and document new and existing database

systems.

3.4.2. System Architecture

The system was implemented using the n-tier application architecture, in which the system

is composed of independent components that work in multiple 'tiers' or layers. Writing of

multi-tier applications is a common practice in writing independent components that may

be stored and run in different machines (Bradley & Millspaugh, 2009). Bradley and

Millpaugh contend that the three-tier application model (shown in figure 3.1), is the most

33

widely used multi-tier approach. The tiers of the model are: Presentation, Business, and

the Data tier.

The presentation tier is also called the client layer and it comprises of components that are

dedicated to presenting the data to the user (the user Interface). The user interface for the

reusability assessment system consists of windows application forms that comprise of

graphical icons. The business tier on the other hand, encapsulates the business rules or the

business logic of the application. This tier deals with business rules for data manipulation

and transformation into information, and it is also responsible for processing the data

retrieved and sent to the presentation layer. Lastly, the data layer comprises of the

Database Components such as database Files, Tables, and Views.

3.5. Summary

This chapter has analyzed the research methodology used in this study. It describes the

methodologies used for data collection and analysis, framework design, framework

validation, and framework implementation (system design). The chapter starts by

highlighting the need for an inquiry into the current industry practice on reuse and

User Interface

(Presentation Layer)
First Tier

Second Tier or

Middle Tier

Database
Third tier or

(Data Layer)

Application Logic

(Business Layer)

Figure 3.1: The n-tier Architecture for System Development

34

reusability assessment in OO software. Next, the research design used for the inquiry and

the motivation for the choice is discussed. The population, sampling design, the sample

size, and instruments for data collection and analysis are subsequently described. Finally,

the methodologies used to develop, validate and implement the reusability assessment

framework are described.

35

CHAPTER FOUR

DATA ANALYSIS AND DISCUSSIONS

4.1. Introduction

One of the major components of this research is to establishing the current industry status

regarding OO software reuse and reusability assessment. The objective in this case was to

examine how reusability assessment is being conducted and determine whether the

methodologies used in reusability assessment are effective. To achieve this objective, a

survey was administered in order collect primary data from a selected sample of OO

software developers.

Data collection was done through schedules that had the same structure and questions—

in order to provide consistent results, as well as enable statistical comparisons of different

cases. The schedules had five major sections namely; programmer’s general background,

reuse and reusability issues within the software development cycle, the reuse practice in

the organizations, software reusability assessment and, software metrics and reusability

assessment. The survey findings on each of these sections are discussed below.

4.2. Programmer’s General Background

This section captured three aspects: years the respondent had worked as a programmer,

programming languages known by the respondent and other software development related

skills that the respondents had—besides programming. The latter aspects was of interest,

because the researcher believes that the practice of reuse and reusability assessment may

be influenced by other software development related skills—such as Software engineering

(SE), object-oriented analysis and design (OOAD), system analysis and design (SAD),

software project management (SPM) etc.

36

4.2.1. Respondents’ Software Development Related Skills

Statistics about other software development related skills possessed by the respondents

are presented in table 4.1.

Table 4.1: Software development related skills possessed by respondents

A closer look at the results in table 4.1 reveals that, majority—32 (59.3%) of the

respondents, had software engineering and software project management skills. Therefore

it can be concluded that, at least 59.3% of the respondents had at least some theoretical

knowledge on software metrics. This is based on the fact that, software measurements is

a core area in software engineering and software project management (Pressman, 2005).

Knowledge No. Percent (%)

OOAD, SAD 13 24.1

OOAD, SE 1 1.9

OOAD, SE, SAD 22 40.7

OOAD, SE, SAD, CASE 1 1.9

OOAD, SE, SAD, Mobile software Development 1 1.9

OOAD, SE, SAD, Project Management 1 1.9

OOAD, SE, SAD, Project Scheduling 1 1.9

OOAD, SE, SAD, SPM 1 1.9

OOAD, SAD 1 1.9

SAD 6 11.1

SAD, Database Programming 1 1.9

SAD, Project Management 1 1.9

SE 1 1.9

SE, SAD 3 5.6

Total 54 100.0

37

4.3. Reuse and reusability Related Issues within the development cycle

This section of the schedule was intended to examine some key aspects of software reuse

within the stages of software development. Most importantly, it explored reuse within the

development cycle, reusability related issues that hamper effective reuse, as well as

software development procedures and practices that influence reusability.

4.3.1. Reuse within the Development Cycle

The notion of reuse is an old idea that has been around since human beings became

involved in problem solving (Prieto-Díaz, 1993). This also applies to software engineering

(Caldiera & Basili, 1991)—where programmers reuse existing components to build new

software. This phenomenon was also explored through the survey. The nature of reuse

was explored by asking respondents to indicate whether they reused requirements

documents, design, and code; when developing new software. An analysis of gathered

responses shows that majority of respondents reuse different existing components in

developing new software. Statistics regarding this aspect are shown in the table 4.2.

Table 4.2: Statistics on components reuse

Component Reused No. of Respondents Reusing the

Component

Total Number of

Respondents

Requirements Documents 41 (75.9%) 54 (100%)

Design 40 (74.1%) 54 (100%)

Code 54 (100%) 54 (100%)

38

4.3.2. Reusability Related Challenges

Although software reuse is an old concept; it is faced with challenges, and has not acquired

real momentum in software engineering (Caldiera & Basili, 1991). The survey also sought

to ascertain challenges that impede successful reuse. In particular, challenges that are

associated with code reuse, testability, and maintainability were explored.

4.3.2.1. Challenges in Code Reuse

As it can be seen from table 4.2 above, code reuse has the most interesting statistics, where

54 (100%) of the respondents indicated that they often reused code from existing software

to build new software. Therefore, it was of interest to know the most significant challenges

that respondents face when reusing code. To achieve this, respondents were asked to state

the most significant challenges that they faced when reusing code. The most prominent

responses to this include: code understandability; integration of existing code into the new

system code; debugging errors associated with the reused code; difficulty in finding code

that perfectly fits into the new system code; and insufficient in-text documentation

(comments).

4.3.2.2. Challenges in Software Testing and Maintenance

According to Ghezzi et al. (2003), maintenance is inevitable when reusing software

components. In other words, reusability of a software component is influenced by the ease

or difficulty with which that component can be maintained (Nyasente et al. 2014a).

Therefore, any challenges that are associated with maintenance are directly related to

reusability. In light of this, the researcher sought to know whether or not respondents faced

any challenges regarding software testing and maintenance. Majority of the respondents,

36 (66.7%) indicated that they faced challenges when testing and maintaining software.

This information is shown in table 4.3.

39

Table 4.3: Statistics on software testability and maintainability challenges

Statement Response Number of respondents

 Do you experience challenge when

testing and maintaining software?

Yes 36 (66.7%)

No
18 (33.3%)

Total 54 (100%)

The most prominent testability and maintainability challenges—as stated by the

respondents include; difficulty in modifying existing components, time constraints,

difficulty in debugging, difficulty in testing and maintaining software that is developed

elsewhere, generating sufficient test cases and test data, lack of experience in testing, poor

documentation, lack of testing tools, and lack of a clear testing criteria.

Software complexity is one possible cause for most of the challenges that developers face

when reusing code and when testing and maintaining software. According to Laird and

Brennan (2006), unnecessary complexity brings about problems such as additional

defects, difficulty in understanding code, difficulty in debugging, and maintainability

issues.

4.3.3. Procedures and Practices that Influence Reusability

According to Ghezzi et al. (2003), software developers can follow some guidelines in

order to produce less complex software. In effect, this will improve other reusability

related aspects such as understandability, maintainability and portability (Nyasente et al.,

2014a). To explore this aspect, respondents were asked to indicate whether they followed

guidelines relating to coupling, cohesion, and inheritance, when designing software. Table

4.4 shows statistics for the given responses.

40

Table 4.4: Proportion of developers following OO design guidelines/criteria

OO design guideline/criteria No. of respondents

who follow the

guideline/criteria

No. of respondents

who do not follow

the guideline/criteria

Total No. of

Respondents

coupling and Cohesion 32 (59.3%) 22 (40.7%) 54 (100%)

Control inheritance hierarchy 41 (75.9%) 13 (24.1%) 54 (100%)

A comparison of the statistics in table 4.4, above with those in the previous table, (table

4.3) reveals that some of the respondents who follow design guidelines—that are intended

to produce software that are easy to test and maintain, also experience significant

challenges in software testing and maintenance. The true picture of this phenomenon is

revealed by creating contingency tables (tables 4.5 and 4.6).

Table 4.5: Cohesion and coupling criteria vs. software testability vs. maintainability challenges

 Experience significant challenges when

testing and maintaining software?

Total

Yes No

Follow cohesion and coupling

criteria in class design?

Yes 20 (62.5%) 12 (37.5%) 32 (100%)

No 16 (72.7%) 6 (27.3%) 22 (100%)

As it can be observed from table 4.5, majority 20 (62.5%) of the respondents who follow

cohesion and coupling criteria in class design experience significant challenges when

testing and maintaining software; however, this percentage is higher by 10.2%, for the

respondents who do not follow the said criteria. This situation also holds when it comes

to the aspect of controlling inheritance hierarchies during class design. As it can be seen

from table 4.6 below, the percentage of respondents who experience significant challenge

when testing and maintaining software is lesser for respondents who control inheritance

hierarchies during class design, as compared to the percentage of respondents who do not.

41

Table 4.6: Controlling of inheritance hierarchies vs. software testing and maintenance challenges

 Experience Challenge When testing

and maintaining software?

Total

Yes No

Control inheritance hierarchy

during class design?

Yes 24 (58.5%) 17 (41.5%) 41

No 12 (92.3%) 1 (7.7%) 13

By observing the above contingency tables, it can be concluded that, some challenges that

are related to software testing and maintenance can be resolved if developers follow

design guidelines relating to cohesion, coupling and inheritance.

A closer look at the marginal totals in tables 4.5 and 4.6 above, reveal that a significantly

high number of respondents who follow the specified design guidelines still face

testability and maintainability challenges. This prompted an investigation into the effect

that the said guidelines have on software testing and maintenance. This is achieved

through studying the linear correlation between the number of respondents who follow the

design guidelines, and the number of respondents who face software testability and

maintainability challenges. The linear correlation analysis results are shown in the table

below.

42

Table 4.7: Correlation between the number of developers who follow design guidelines and those

facing testability and maintainability challenges

 Experience

Challenge When

testing and

maintaining

software

Follow

Cohesion and

Coupling

Criteria in Class

design

Control

inheritance

hierarchy during

class design

Experience Challenge

When testing and

maintaining software

Pearson

Correlation

1 -.107 -.306*

Sig. (2-tailed) .443 .024

N 54 54 54

Follow Cohesion and

Coupling Criteria in Class

design

Pearson

Correlation

-.107 1 .415**

Sig. (2-tailed) .443 .002

N 54 54 54

Control inheritance

hierarchy during class

design

Pearson

Correlation

-.306* .415** 1

Sig. (2-tailed) .024 .002

N 54 54 54

**. Correlation is significant at the 0.01 level (2-ailed).

*. Correlation is significant at the 0.05 level (2-tailed).

As it can be observed from the above table, there is a negative correlation (of −0.306 with

a p value of .024) between the number of respondents who control inheritance hierarchies

during class design, and the number of respondents who experience challenges when

testing and maintaining software. During data collection respondents replied in the

affirmative or otherwise, whether or not they control inheritance hierarchies during class

design, and whether on not they experience challenges when testing and maintaining

software. During the coding of variables, 1 represented YES, whilst 2 represented NO—

43

for the two cases. The negative correlation between the variables is an indication that,

when the average value for one variable tends to 1 (YES), the average value for the other

will tend to 2 (NO). This means that, the more the number of respondents who control

inheritance hierarchies during class design, the lesser the respondents who face testability

and maintainability challenges.

The fact that table 4.7, does not show any correlation between the number of respondents

who follow coupling and cohesion criteria during class design, and the number of

respondents who face testability and maintainability challenges; does not necessarily

mean that there is no relationship between the two. To study whether a relationship exists

or not, partial correlation between the number of respondents who control inheritance

hierarchies during class design, and the number of those who experience testability and

maintainability challenges is studied—where the effect of following cohesion and

coupling criteria in class design is controlled on the two variables. The results of the partial

correlation are shown in table 4.8.

Table 4.8: Partial correlation between the number of developers who control inheritance hierarchies

and those who face testability and maintainability challenges

Control Variables

Control

inheritance

hierarchy during

class design

Experience

Challenge When

testing and

maintaining

software

Follow Cohesion

and Coupling

Criteria in Class

design

Control inheritance

hierarchy during class

design

Correlation 1.000 -.290

Significance

(2-tailed)

.

.035

df

0

51

44

As it can be observed from table 4.8, the partial correlation (-.290) is smaller than the

simple correlation (-.306). This suggests that following cohesion and coupling criteria in

class design partly contributed to the liner correlation between the number of respondents

who control inheritance hierarchies during class design, and the number of those who

experience testability and maintainability challenges. This means that following cohesion

and coupling criteria eliminates some of the challenges associated with software testing

and maintenance.

Notwithstanding the fact that following the said guidelines resolves some testability and

maintainability problems, a significantly high number of respondents who follow the

guidelines still face testability and maintainability challenges—(as shown in tables 4.5

and 4.6). One possible explanation to this is that; developers hardly follow the guidelines

to the latter—or rather, an objective way of assessing how well they follow the guidelines

is lacking.

4.3.4. Use of Technology in Software Development vs. Reusability

Another aspect that was explored is the use of technology at different stages of software

development, and its effect on reusability. From the data collected, 34 (63%) of the

respondents indicated that they often use computer-aided software engineering (CASE)

tools in requirements modelling and analysis, 29 (53.7%) indicated that they used

computerized support in class design, whilst 30 (55.6%) of them indicated that they often

use code generators to translate design into code. This information is given in table 4.9.

Table 4.9: Statistics on technology use in software development

Tool/Technology No. of Respondents Using

Technology

Total No. of

respondents

CASE tools in Requirement modeling 34 (63%) 54 (100%)

Computer support for Class design 29 (53.7%) 54 (100%)

Use of Code Generators 30 (55.6%) 54 (100%)

45

According to Mahapatra, Das, and Pradhan (2012), CASE tools are often used in various

stages of systems development life cycle to improve software quality and productivity.

This perspective is explored by creating contingency tables (tables 4.10, 4.11, and 4.12),

where the levels of satisfaction with respect to the benefits of reuse, (i.e. software quality,

productivity, and effort), are compared for respondents who use technology to aid certain

software development activities and those who do not use technology.

Table 4.10, shows the levels of satisfaction regarding quality of software between

respondents who use CASE tools in requirements modeling and those who do not.

Table 4.10: Satisfaction levels regarding software quality vs. use of CASE tools in requirements

modeling

 Satisfied with quality of developed software Total

Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Use of CASE tools in

requirement modeling

and analysis

Yes 0 (0%) 1 (2.9%) 7 (20.6%) 13 (38.2%) 13 (38.2%) 34 (100%)

No

1 (5%)

1 (5%)

5 (25%)

10 (50%)

3 (15%)

20 (100%)

Total 1 (1.9%) 2 (3.7%) 12 (22.2%) 23 (42.6%) 16 (29.6%) 54 (100%)

The marginal totals of the above contingency table show that, respondents who use CASE

tools in requirement modeling are highly satisfied with quality of software that they

develop than those who do not use CASE tools. The same situation replays when the levels

of satisfaction—with respect to time and effort needed to test and modify software—for

those using computerized support in class design, are compared with the levels of

satisfaction of those who do not use computerized support in class design. The cross

tabulation analysis results are displayed in table 4.11.

46

Table 4.11: Satisfaction regarding time and effort in testing and modifying software vs. use of

computerized support in class design

 Satisfied with time & effort required to test, deliver &

modify delivered software

Total

Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Use Computerized

support in class

design

Yes 1 (3.4%) 4 (13.8%) 8 (27.6%) 11 (37.9%) 5 (17.2%) 29 (100%)

No
2 (8%) 10 (40%) 4 (16%) 3 (12%) 6 (24%) 25 (100%)

Total 3 (5.6%) 14 (25.9%) 12 (22.2%) 14 (25.9%) 11 (20.4%) 54 (100%)

It is evident from the above table that respondents who use computerized support in class

design are highly satisfied with the time and effort required to; test, deliver, and modify

software, as compared to respondents who do not use computerized support. Interestingly,

the levels of satisfaction with respect to software quality are not significantly different for

respondents who use code generators and those who do not. This is shown in table 4.12.

Table 4.12: Satisfaction levels regarding software quality vs. use of code generators

 Satisfied with quality of developed software Total

Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Use of Code

generators

Yes 1 (3.3%) 1 (3.3%) 6 (20%) 16 (53.3%) 6 (20.0%) 30 (100%)

No 0 (0.0%) 1 (4.2%) 6 (25%) 7 (29.2%) 10 (41.7%) 24 (100%)

Total 1 (1.9%) 2 (3.7%) 12 (22.2%) 23 (42.6%) 16 (29.6%) 54 (100%)

One important conclusion that can be drawn from table 4.12 is that, software quality is

not largely dependent on code quality: other factors such as quality of design, and how

well the software meets requirements, are very important when it comes to software

quality.

47

4.4. The Reuse Practice in Organizations

The success of any reuse program is largely dependent on how reuse itself is practiced.

Prieto-Díaz (1993) contends that, the problem in software engineering is not lack of reuse,

but lack of wide spread systematic reuse. This aspect was explored—with a keen interest

on policies and traditions that govern reuse, as well as perceptions towards reuse within

the organizations.

4.4.1. Organizations’ Reuse Policies and Traditions

From the data collected, only 13 (24.1%) of the respondents indicated that their

organizations have a software reuse program/policy. On the other hand, 54 (100%) of the

respondents indicated that they often reuse parts of existing software in new software

developments. This information is given in table 4.13.

Table 4.13: Organizations’ software reuse policies and the reuse practice

Aspect inquired about No. of responses

in the affirmative

Total No. of

respondents

Reuse policy in place within the organization 13 (24.1%) 54

Reuse parts of existing software in new

software development

54 (100%) 54

4.4.2. Perceptions towards Reuse and Reusability

Successful reuse demands for a new way of thinking, and a new way of thinking requires

change—which in turn disturbs status-quo, costs money, and requires commitment at all

levels (Prieto-Díaz, 1993). To examine the perception of respondents towards reuse,

respondents were to indicate the extent to which they agreed or disagreed to some

statements that are related to the software reuse practice within their organizations. The

respondents were given five options to choose from: Strongly Disagree (1), Disagree

48

(2), Neutral (3), Agree (4), strongly Agree (5). Table 4.14 gives a summary of the

responses.

Table 4.14: Respondents' perceptions on software reuse

Statement N. Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

-Cases of developing software

from scratch have significantly

diminished over time

54

4

(7.4%)

6

(11.1%)

2

(3.7%)

21

(38.9%)

21

(38.9%)

-The time and effort required to

modify available classes within

the organization to fit new reuse

contexts is often insignificant as

compared to creating new

classes

54

1

(1.9%)

3

(5.6%)

10

(18.5%)

24

(44.4%)

16

(29.6%)

-The cost and effort for

developing software has

significantly diminished over

time.

54

2

(3.7%)

7

(13.0%)

15

(27.8%)

13(24.1%)

17

(31.5%)

-I prefer developing classes

from scratch than reuse classes

that are developed by my

colleagues

54

5

(9.3%)

3

(5.6%)

18

(33.3%)

16

(29.6%)

12

(22.2%)

From the table above, the total number of respondents who agreed and those who strongly

agreed with the first three statements were 42 (77.8%), 40 (74%) and 30 (55.6%)

respectively. However, the fourth statement: I prefer developing classes from scratch than

reuse classes that are developed by my colleagues—(a contradiction of the first three

statements), got interesting responses. Most of the respondents (51.8%) indicated that they

prefer developing classes from scratch rather than reuse classes that are developed by

49

others, while only 14.9% of respondents disagreed with this view. This may be as a result

of two factors: (i) the not-invented-here syndrome—a situation where developers feel

hindered in their creativity and independence if they reuse someone else's software

(Sametinger, 1997), and (ii) some of the existing components have inadequate reusability.

These two issues can be resolved by; developers changing their perceptions towards reuse,

and organizations setting up reuse programs—as well as motivate their software

developers to reuse.

4.4.3. Payoff from Reuse

As it can be observed from table 4.13, 54(100%) of the respondents reuse existing

components in developing new software. The extent to which organizations benefit from

this reuse was examined—by asking respondents to indicate the extent to which they

agreed or disagreed with four statements that are related to software reuse benefits. Table

4.15 gives a summary of the responses for each of the statements.

Table 4.15: Respondents' views on the payoff from reuse

Statement N. Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

I am satisfied with the time

and effort that is always

required to, test, deliver and

maintain new software to our

clients.

54

3

(5.6%)

14

(25.9%)

12
(22.2%)

14
(25.9%)

11

(20.4%)

I am satisfied with budget and

cost aspects for developing

new software applications and

their maintenance.

54

8

(14.8%)

10

(18.5%)

21
(38.9%)

12
(22.2%)

3

(5.6%)

I am satisfied with the quality

of new software applications

we develop as an

organization.

54

1

(1.9%)

2(3.7%)

12
(22.2%)

23
(42.6%)

16

(29.6%)

I am satisfied with the overall

productivity of developers in

the organization.

54

1

(1.9%)

9

(16.7%)

16
(29.6%)

15
(27.8%)

13

(24.1%)

50

Table 4.15, shows that the respondents who agreed, and those who strongly agreed with

the first two statements were less than 50%, (i.e. 46.3% and 27.8%) respectively. This is

in spite of the fact that all 54 (100%) of the respondents indicated that they reuse parts of

existing software when developing new software. This means that, organizations are not

gaining maximum payoff from reuse. It is also a consequence of the informal nature of

reuse across the organizations. This can be seen from table 4.13, where only 24.1% of

respondents indicated that their organizations had a reuse program/policy. This

explanation is consistent with the assertion by Prieto-Díaz (1993) that, substantial pay-off

from reuse is only achieved if conducted systematically and formally.

Although 39 (72.2%) of the respondents indicated that they were satisfied with the quality

of new software applications that they developed, majority were not satisfied with the

effort and time it took to develop these software. This means that it takes a lot of effort

and time to achieve the desired quality.

4.5. Software Reusability Assessment

The survey also sought to explore reusability assessment within the organizations, as well

as the attributes used to assess reusability. Respondents were required to respond in the

affirmative or otherwise, whether they assessed reusability when developing for reuse or

with reuse. Only 21 (38.9%) of the respondents responded in the affirmative, whereas

majority 33 (61.1%) of the respondents responded otherwise. This information is given in

table 4.16.

Table 4.16: Statistics on Reusability assessment

Statement N. Yes No

Do you always ascertain if classes are reusable

when developing or reusing them?

54 21 (38.9%)

33 (61.1%)

51

4.5.1. Reusability Attributes and Reusability Factors

One of the objectives of this study was to establish the characteristics that should be used

in assessing reusability of OO components. This information that was crucial in the

development of a reusability assessment framework, which is the overriding purpose for

this research. This information was sought by asking respondents who indicated that they

assessed reusability when developing components for or with reuse, to state the

characteristics that they used in assessing reusability. The characteristics that were stated

include; ability of a component to perform required functionality, ease of testing,

portability across different platforms, proper use of abstraction and inheritance, easy to

understand and adapt, class independence, proper documentation, have public accessor

methods and be part of a hierarchy with an interface, consistency in naming methods,

classes should be as generic as possible, well commented and documented, tested and used

before (Reuse history). Most of these characteristics are consistent with those listed in

various literatures (e.g. (Caldiera & Basili, 1991; Ghezzi et al., 2003; ; Nyasente et al.,

2014a Washizaki et al., 2003)).

4.5.2. Existing Methods for Reusability Assessment

The methods used by respondents to assess reusability were also explored by asking

respondents in the category that assessed reusability to state whether or not they had formal

methods for assessing reusability. Out of 21 respondents only 4 (19%), indicated that they

had formal methods, whilst 17 (81%) indicated otherwise. This information is shown in

table 4.17.

52

Table 4.17: Statistics on developers with formal reusability assessment methodologies

 Have formal methods for assessing

whether classes have reusability

characteristics or not

Total

Yes No

Ascertain if classes are reusable

when developing for or with reuse

Yes 4 (19%) 17 (81%) 21

Respondents who had formal methods for assessing reusability were further required to

state methods that they used. The methods that were stated by the respondents include—

observing/checking source code, reading documentation, intuition, and checking inline

comments. These methods are not reliable in reusability assessment, as they are largely

subjective, and they provide no means of ascertaining the extent to which a given

reusability attributes is present in a component (Nyasente et al., 2014a).

4.6. Software Metrics and Reusability Assessment

The survey also sought to explore the use of software metrics within the software

development industry. Aspects that were explored with this regards include;

organizations’ software measurement policies, respondent’s experience with software

metrics, and use of metrics in reusability assessment.

4.6.1. Software Measurement Programs/Policies in the Organizations

From the data collected, only 12 (22.2%) of the respondents indicated their organizations

had software measurement programs/policies, whereas 42 (77.8%) of the respondents

indicated otherwise. This information is shown in table 4.18.

53

Table 4.18: Statistics on organizations with software measurement programs/policies

Statement Response No. of respondents

Does your organization have a software

measurement program/policy?

Yes 12 (22.2%)

No 42 (77.8%)

Total 54 (100%)

The small number of organizations with software measurement programs/policies shows

that organizations are not keen in embracing software measurement as a way of improving

software quality. This may be as a consequence of the lack of an agreement within the

software engineering industry on how to measure software quality. That is, there is no

common agreement as to which attributes form a sufficient basis for assessing software

quality (Pressman, 2010).

4.6.2. Respondent’s Experience with Software Metrics

To explore the experience of respondents regarding software metrics, five statements were

put forward, and respondents were required to choose one. The summary of responses for

each of the statements is shown in table 4.19.

Table 4.19: Respondents' experience with metrics

 Responses No. of Respondents

Never heard about them 6 (11.1%)

Heard about them but never used them 11 (20.4%)

I have knowledge on Metrics but never used them 24 (44.4%)

I have used Metrics before but stopped using them 1 (1.9%)

I always use software Metrics 12 (22.2%)

Total 54 (100%)

54

4.6.3. Use of metrics in reusability assessment

Although table 47.19 shows that, 12 (22.2%) of the respondents always use software

metrics, none of them responded in the affirmative when asked whether or not they used

metrics to measure reusability. This is shown in table 4.20. Further explanation was

sought, and it was established that those who use metrics, used software parametric

models and estimation tools to estimate projects’ duration, effort, and cost of developing

software.

Table 4.20: Statistics on reusability measurement

Statement Response Number of

Respondents.

Total Number of

Respondents

Do you measure the reusability of classes when

developing for or with reuse?

No 54 (100%) 54 (100%)

4.6.4. Impediments to Reusability Measurement

In the quest of exploring the impediments to reusability measurement, respondents were

asked why they did not measure reusability. This question elicited the following

responses: as a programmer the only concern is to develop and deliver working software

within time; I do not know how to measure reusability; I do not know how reusability

measurement is helpful; I have limited knowledge on the subject; I have never considered

measuring software to be useful; it is hard to apply metrics in practice; I lack practical

knowledge on how to measure reusability; there is lack of reusability measurement tools;

our measurement policy does not cover product quality; as a developer, I have tight

deadlines hence I focus on delivering software on time by all means…

The above reasons can be attributed to: lack of sufficient knowledge on software metrics

and software quality measurement, organizations’ measurement policies fail to cover

some quality aspects such as reusability, lack of parametric tools for measuring

reusability, and time constraints.

55

4.7. Conclusion

This chapter has presented findings of a survey involving OO developers—regarding

reuse and reusability assessment. The developers general background was explored, where

majority of developers were found to have knowledge on software measurement and

metrics. The survey also explored the various aspects within the software development

cycle, with a keen interest on reuse. Evidence showing that use of technology has a

positive impact on reusability was gathered. It was also established that reusability does

not only rely on quality of source code alone, but also on other factors—such as quality

of design. The survey was also able to establish that developers face some significant

challenges when reusing software. This is attributed to reusability related issues (i.e. most

of the components lack reusability). It was also of importance to explore the root cause of

this, and it was found out that reuse was largely being practiced in an opportunistic

manner; since none of the organizations—where the developers worked, had reuse

programs or policies. Most importantly, the survey established that, majority of developers

did not assess reusability, and the few who did, had no objective methods of doing so. The

survey established that the reusability assessment methods used by developers are

inefficient, since they provide no way of ascertaining the level to which a given component

possesses certain reusability attributes. This necessitates the development of an efficient

method for assessing reusability.

56

CHAPTER FIVE

FRAMEWORK DEVELOPMENT AND IMPLEMENTATION

5.1. Introduction

The importance of reusability assessment with regards to software reuse was made evident

through literature review. This notwithstanding, literature also pointed out to the lack of

an effective framework for measuring the reusability of OO software components as a

major unresolved issue. This formed the basis for conducting a survey, in order to

determine if literature was consistent with industry practice. The findings of the survey

were consistent with published literature, as it was established that the methods used by

practitioners in reusability assessment were not effective—as they were largely subjective.

Consequently, a metrics-based framework for assessing the reusability of OO software

components is presented in this section.

5.2. Framework Development

A thorough understanding of reusability as well as adequate and easy to use metrics is

requisite in reusability assessment. Thus, a framework describing reusability of software

components as well as structuring appropriate metrics for quantifying reusability is

required (Hristov et al., 2012). This research presents a novel framework that; relates

major reusability attributes with factors that are determined by measurable OO principal

constructs, and structures metrics for measuring the OO constructs in a way that is easy to

use.

The reusability assessment framework is presented in the subsequent subsections as

follows: first the major reusability attributes are presented; then factors that influence the

reusability attributes are related with different OO design structures, thereafter candidate

metrics for measuring the OO structures are given, and lastly an equation for calculating

57

the reusability of OO components is defined. The hierarchy of the key elements of the

reusability assessment framework is shown in figure 5.1 below.

5.3. Major Reusability Characteristics for Software Components

A review of literature, revels that there are many characteristics that are believed to

influence reusability of software components. Such characteristics have been presented in

various research works (AL-Badareen et al., 2010; Caldiera & Basili, 1991; Hristov et al.,

2012; Nyasente et al., 2014c; Washizaki et al., 2003). This view is also consistent with

the survey findings—where respondents listed various attributes, which they believe

influence reusability.

Major Reusability Attributes

Attribute1 Attribute 2 Attribute … n

Factor 1 Factor 2

Object Oriented Design Constructs

Factor … n

Metric 1

Construct 2 Construct 1 Construct … n

Metric 2 Metric 3 Metric … n

……

……

……

Reusability Equation

Figure 5.1: Hierarchy of key elements for the OO reusability assessment framework

58

One of the problems in reusability assessment—according to Hristov et al. (2012) is in

determining which attributes are sufficient in assessing reusability. Westfall (2005) has

commented in this context by stating that software entities possess many attributes that

are measurable, and if all of these attributes are considered, then there are just too many

measures, and it would be easy to drown an organization in the enormity of the task of

trying to measure everything. According to Nyasente et al. (2014a), an effective

reusability assessment framework should have as few attributes as possible, but at the

same time sufficient in assessing all aspects of reusability. That is, overlapping and trivial

attributes should be excluded from such a framework.

The survey findings presented in the previous chapter—as well as published literature

were analyzed and the major attributes that should be used to assess the reusability of

software components were identified. These attributes are presented below.

5.3.1. Generality

Generality is defined by the IEEE Standard 610.12, as the degree to which a system or

component performs a broad range of functions. AL-Badareen et al. (2010) as well as

Caldiera and Basili (1991) consider generality as one of the reusability attributes in their

reusability assessment frameworks—with Caldiera and Basili using the term functional

usefulness (usefulness) to mean generality.

Generality is a major reusability attribute because; it increases reusability of a component

(Gill & Sikka, 2011; Sommerville, 2011). This means that, if generality of a component

increases, its probability to be reused increases, and if it decreases its probability to be

reused decreases as well. In other words, if a software component does not possess the

generality property, it cannot be reused.

59

According to Návrat and Filkorn (2005), generality is an inevitable characteristic of

reusable assets, and things get reusable only if they are general and allow turning to

specific in a clear and straightforward manner. This explanation is consistent with the

survey findings—as class generality and adaptability were cited as characteristics that

influence reusability.

5.3.2. Understandability

According to Hristov et al. (2012), a software component is more usable if it is can be

easily understood. More often than not, a developer will decide to reuse a component

based on how well the component meets new requirements. Therefore, the starting point

for reusing a component is to understand its functionality, which requires high

understandability (Washizaki et al., 2003). According to Washizaki et al.,

understandability is defined based on the estimated effort needed by a user to recognize

the concept behind a component and its applicability.

Intuitively, the effort needed by the user to understand a component in order to recognize

the concept behind it and its applicability, is determined by how easy and straightforward

the design and implementation of that component is. Thus, understandability is

synonymous with simplicity—which is defined by IEEE std 610.12 as; the degree to

which a system or component has a design and implementation that is straightforward and

easy to understand.

The ease with which a component can be adapted and tested, are among the major

reusability attributes stated by respondents in the survey conducted by the researcher.

According to Ghezzi et al. (2003) these two qualities and many other require a high level

of understandability. Therefore, understandability should be considered as a major

reusability attribute.

60

5.3.3. Portability

Portability is also among the reusability attributes listed by respondents who took part in

the survey. According to the IEEE Std 610.12, portability is the ease with which a system

or component can be transferred from one hardware or software environment to another.

Portability is a major determinant of reusability because; if a module can easily work in

different environments, the more it is likely to be reused. For example: consider two

modules (say m1 and m2) that are equal in terms of functionality, and it happens that m1

is not compatible with certain software or hardware environments, but m2 is compatible

with "all" environments, then; the probability of m2 being reused over m1 is increased.

That is, m1's reuse will be limited to the extent of its incompatibility.

According to Ghezzi et al. (2003), portability is economically important because it helps

amortize the investment in the software system across different environments and

different generations of the same environment. This means, the payoff from reuse is higher

for components that are environment independent. That is, the ability of a component to

run in different environments will save the cost of developing a new component for new

environments.

5.3.4. Maintainability

IEEE Std 610.12 (1990) defines Maintainability as: the ease with which a software system

or component can be modified to correct faults, improve performance or other attributes,

or adapt to a changed environment. Ghezzi et al. (2003), distinguish three categories of

maintenance, that is; corrective, adaptive, and perfective.

Corrective maintenance deals with the removal of residual errors that are present in the

product when delivered, as well as errors introduced into the software during its

maintenance. Perfective maintenance on the other hand, involves changing the software

to improve some of its qualities. Here changes are due to the need to modify the functions

61

offered by the application, add new functions, improve the performance of the application,

make it easier to use etc. Lastly, adaptive maintenance, involves adjusting the applications

to changes in the environment.

Although adaptive maintenance was the only aspect captured in the responses gathered

from the survey; all the three aspects of maintenance are important when a component is

reused in a new context. When reusing a component, developers want to reuse a

component that is easy to: modify in order to fit its reuse context; modify the functions

offered by the component, add new functions, improve the performance of the component,

make it easier to use etc; and, remove residual errors that are present in the component

when delivered—as well as errors introduced into the component during its maintenance.

Ghezzi et al. (2003) emphasize on the importance of the maintainability characteristic by

stating that, there is evidence that maintenance costs exceed 60 percent of the total costs

of software, with corrective and adaptive maintenance accounting for about 20 percent

each, whilst perfective maintenance absorbs over 50 percent.

5.3.5. Documentation

Documentation is also among the reusability attributes listed by respondents in the survey.

It is of utmost importance because, it is intended to make software components easier to

understand (AL-Badareenet al., 2010; Hristov et al., 2012). According to Ghezzi et al.

(2003), understandability is a factor in product usability. van Vliet (2000), comments on

the importance of documentation by stating that software which is not sufficiently

documented is bound to incur high costs later on. For example, maintenance is hampered

by lack of proper documentation (Ghezzi et al, 2003; van Vliet, 2000). Although

documentation is largely subordinate to understandability, it should be considered as a

major reusability attribute (Nyasente et al., 2014a), due to the fact that it gets the worst

attention (van Vliet, 2000), which results to effects that counteract the objectives of reuse.

62

5.4. Relating Reusability Attributes with Reusability Factors and OO Structures

In this section, factors that influence maintainability, portability, understandability, and

generality are related with OO design structures that influence them—so as to facilitate

their quantification by measuring the OO structures using appropriate metrics that exists

in literature. Documentation on the other hand is not related to any OO design structure,

but it can be determined as suggested by (Hristov et al., 2012)—that is by use of four

attributes: amount, quality, completeness, and, availability of legal terms and conditions.

Figure 5.2., shows the relationship between the major reusability attributes that are

discussed above, and the measurable factors that determine them. A discussion on the

factors that influence the reusability attributes follows.

Availability of

legal terms &

conditions

Level of

Generalization

Generality Understandability

Ease of Modification

& Debugging

Inheritance

Maintainability

 Coupling

Reusability

Component

cohesiveness Component

Independence

Coupling

Component

Independence

Completeness

Quality

Amount

Coupling

Documentation Portability

Cohesion

Inheritance

Component

Independence

Figure 5.2: Reusability factors for OO components

63

5.4.1. Factors Influencing Maintainability vs. OO Structures

5.4.1.1. Ease of Modification and Debugging

According to Ghezzi et al. (2003), maintainability involves two aspects; that is reparability

and evolvability. The former deals with correction of defects (debugging), whilst the latter

involves modifying the software to satisfy new requirements. Software is said to be

maintainable if these two aspects can be achieved with a reasonable amount of work

(Nyasente et al., 2014 a).

According to Laird and Brennan (2006), the difficulty of maintaining software is brought

about by increased software complexity. In OO design, complexity of software is

increased if inheritance is not used in proper range, i.e. if inheritance is overused or

misused (Chawla & Nath, 2013). This means that, ease of debugging and modification,

can be achieved by measuring inheritance, to determine if it has been used in proper ranges

and if not, the design should be reviewed and improved.

5.4.1.2. Component Independence

Coupling characterizes a module's relationship to other modules. It determines the

interdependence of modules, where modules that are dependent on each other heavily are

said to have high coupling (Ghezzi et al., 2003). When classes of a system are highly

dependent on each other, it is more likely that changing one class will affect other classes

of the system (Sommerville, 2011). This means that, high interdependence between

classes makes evolvability (software modification) difficult to perform. For instance, if

one class of a given component is modified—say; to fit a new reuse context, other classes

of that component to which the class is dependent on may require modification as well.

Therefore, reusable classes should exhibit a high degree of independence (i.e. low

coupling). This means that component independence can be improved by measuring

coupling—in order to determine components with designs that should be reviewed.

64

5.4.2. Factors Influencing Portability vs. OO Structures

According to Ghezzi et al. (2003), low coupling enables a module to be reused separately.

That is, components with low coupling are easy to reuse in new software environments.

Sametinger (1997) contends that low coupling is important with respect to component

portability, as a component is also indirectly dependent on platforms of components with

which it interacts.

Washizaki et al. (2003) consider external dependency as one of the factors that affect

portability. According to the authors, external dependency indicates the component's

degree of independence from the rest of the software which originally used it. In other

words external dependency characterizes a component's relationship to other components.

Thus, external dependency and coupling are semantically equal in this context.

5.4.3. Factors Influencing Generality vs. OO Structures

Generality of OO software is achieved through generalization, i.e. by factoring out what

is common to different components in one class (known as the parent class), and then

single out the variations in heir classes (subclasses). More often than not, all features that

are likely to be sufficiently general to be reused are factored out in the parent class (Ghezzi

et al., 2003). Generalization is implemented using inheritance mechanisms built into the

OO languages, where heir classes—that are derived from the parent classes absorb all

reusable features that are factored out in the parent class (Sommerville, 2011). According

to Gill and Sikka (2011), the level of generalization of a class is determined by its relative

abstraction level.

5.4.4. Factors Influencing Understandability vs. OO Structures

5.4.4.1. Component Cohesiveness and Component Independence

According to Ghezzi et al. (2003), a component should have high cohesion and low

coupling for it to be understandable. Ghezzi et al. state that, different elements of a module

65

cooperate to perform the functionality of that module; thus, these elements are grouped

together for logical reasons and not by sheer chance. A module is said to be highly

cohesive when all its elements are strongly related (Ghezzi et al., 2003).

According to Cho et al. (2001), lack of cohesion or low cohesion increases software

complexity, whilst high cohesion increases understandability. According to Ghezzi et al.

(2003), a high level of component independence enables components to be analyzed and

understood separately. That is, if a component is highly dependent on other components,

reference to the components to which it is dependent on is required in order to understand

it. This cross-reference is minimized if the degree of component independence is high;

hence, understanding that component becomes easier (Nyasente et al., 2014a).

5.5. Candidate Metrics for the Framework

Upon a survey of literature, insights on the actual metrics that can be used to measure the

reusability attributes discussed above were gained. The preliminary suggestions of the

metrics are given below:

5.5.1. Measuring Maintainability

The two maintainability factors: component independence and, ease of maintenance and

debugging are determined by coupling and inheritance respectively. Thus, coupling

metrics such as the coupling between object classes (CBO) metric can be used to

determine component independence (Chidamber & Kemerer, 1991, 1994), with low

values for CBO indicating high degree of independence. The number of children (NOC)

Metric on the other hand, can be used to determine the ease of debugging and

modification. NOC is an inheritance-based metric defined by (Chidamber & Kemerer,

1991, 1994). Low values for NOC indicate a low degree of Component’s complexity,

hence easy to modify and debug it.

66

5.5.2. Measuring Understandability

The factors that influence understandability: component independence and component

cohesiveness; are related to coupling and cohesion respectively. The CBO metric can be

used to determine component independence—with Low CBO values being desirable.

Cohesiveness on the other hand, can be measured using cohesion metrics such as the lack

of cohesion in methods (LCOM) metric (Chidamber & Kemerer, 1991, 1994), where low

values of LCOM are desirable.

5.5.3. Measuring Portability and Generality

Component portability is determined by component independence. Thus, the CBO metric

can be used to determine portability. Generality of a component on the other hand, is

determined by a component’s level of generalization, which is determined by its relative

abstraction level (Gill & Sikka, 2011). This concept is related to inheritance; therefore,

inheritance-hierarchy-based metrics—such as the generality of class (GC) metric, can be

used to measure the generality of classes (Gill & Sikka, 2011)—where high values of GC

indicate a high degree of generality.

5.5.4. Measuring Documentation

There are four factors used to determine documentation: amount of documentation;

quality; completeness; and, availability of legal terms and conditions. The amount of

documentation can be measured through size, e.g. in kilobytes (kB) etc, whereas the

existence of legal terms and conditions is a Boolean metric: either this information is

provided or not (Hristov et al., 2012).

Hristov et al. (2012) state that, quality and completeness are subjective measures that

should be measured on an ordinal scale based on advice of an expert. However, quality

can be determined by evaluating certain features for producing quality documentation,

whereas completeness of the documentation can be determined by evaluating whether or

not all of its components are available (Nyasente et al., 2014a).

67

According to Sommerville (2001), documentation quality can be determined by

considering document structure, documentation standards and writing style. Document

structure is the way in which the material in the document is organized. This has a major

impact on readability and usability and it is important to design this carefully when

creating documentation. Good structure allows each part of documentation to be read as a

single item, and reduces problems of cross-referencing when changes have to be made.

Documentation Standards on the other hand, ensure that produced documentation has a

consistent appearance (Sommerville, 2001). According to Sommerville, documentation

standards are dependent on the nature of the project; therefore, it is important that

appropriate standards that suit each project are chosen. In addition to structure and

standards, good documentation is fundamentally dependent on the writing style (i.e. the

writer’s ability to construct clear and concise technical prose). That is; good

documentation requires good writing.

Lastly, Sommerville (2001) gives a suggestion of seven parts that documentation for large

systems that are developed to a customer’s specification should include, and three parts

that documentation for small systems that are developed as software products should have.

Reusable components fall into the latter category (Nyasente et al., 2014a), and

documentation for such systems should include at least the following parts: specification

of the system, an architectural design document, and, the program source code

(Sommerville, 2001).

5.6. Equation for Calculating the Reusability of OO Components

To facilitate the measurement of OO components’ reusability, it is necessary to define a

reusability equation. The equation is based on the four elements, discussed above i.e. the

major reusability attributes, factors that influence the reusability attributes, OO constructs

68

that influence each factor, and the metrics for measuring these constructs. These elements

are shown in figure 5.3.

Theoretically, the reusability of a software component (denote by Rc), can be calculated

by adding up values obtained from measuring the five reusability attributes using

appropriate metrics—(as indicated in figure 5.3). Therefore, reusability can be calculated

using the relationship:

RC=Maintainability+Portability+Documentation+Generality

 +Understandability (5.1)

The five reusability attributes are considered to be of equal importance; hence, weighting

values are assigned to them, because some attributes are influenced by more factors than

others. Therefore, the reusability of an OO software component can be calculated using

the expression:

GC

NOC

Maintainability

Availability of

legal terms &

conditions

Documentation

Level of

Generalization

Ease of Modification

& Debugging

Component

cohesiveness Component

Independence

Component

Independence

Coupling

Component

Independence

Completenes

s
Quality

Amount

Coupling

Reusability

Understandability

Portability

Generality

Cohesion

 Coupling

Inheritance

Inheritance

CBO CBO

CBO
LCOM

CBO: Coupling between object classes| NOC: Number of children|

LCOM: Lack of cohesion in methods | GC: Generality of a class |

Figure 5.3: Reusability attributes model for OO components

69

 𝑅𝑐 = 𝑤1. 𝑀𝑎𝑖 + 𝑤2. 𝑃𝑜𝑟𝑡 + 𝑤3. 𝐷𝑜𝑐 + 𝑤4. 𝐺𝑒𝑛 + 𝑤5. 𝑈𝑛𝑑 (5.2)

Where:

w1 to w5 are weighting values, and Mai, Port, Doc, Gen, and Und; are

composite metrics for maintainability, portability, documentation,

generality, and understandability.

The composite metrics values for the reusability attributes should be adjusted to a common

scale to facilitate comparison of reusability of different components in the same context

(Hristov et al., 2012). Hristov et al. contend that normalizing these values to the range of

(0...1), is common in software metrics. The values of the weights; w1, w2, w3, w4 and w5

are 0.2, 0.1, 0.4, 0.1, and 0.2 respectively. This is based on the fact that each reusability

attribute is determined by a varying number of factors, and there are a total of ten factors

in the reusability attributes model. The weighting value for a given attribute is obtained

by dividing the number of factors that influence it, by the total number of factors in the

model (10).

To obtain the reusability of a software component (Rc), metrics values for each of the

reusability attributes should be obtained by using appropriate metrics to measure the

factors that influence that attribute—(with metric values for attributes that are determined

by multiple factors being normalized to the range of (0...1)), then these composite metrics

values should be aggregated into the expression shown in equation 5.2.

5.7. Experimentation of the Framework

To demonstrate how the new framework can be used to assess reusability, it is used to

measure the reusability of a sample java component—obtained from (Deitel P. & Deitel

H., 2011). The UML block diagram of the component is shown in figure 5.4. The class

70

diagram was modified to make class Employee a subclass of Java.lang.Object because;

all java classes inherit from class Object (Deitel P. & Deitel H., 2011).

The methods as well as instance variables in each of the classes are listed in tables 5.1 to

5.5.

Java.lang.Object [1]

Employee [2]

SalariedEmployee [3] CommissionEmployee [4] HourlyEmployee [5]

BasePlusCommissionEmployee [6]

Figure 5.4: Class hierarchy for a sample OO component (adapted from (Deitel P. & Deitel H., 2011))

71

Table 5.1: Instance variables for the Employee class

Method Instance Variables

<<Constructor>> Employee firstName, lastName, socialSecurityNumber

setFirstName firstName

getFirstName firstName

setLastName lastName

getLastName lastName

setSocialSecurityNumber socialSecurityNumber

getSocialSecurityNumber socialSecurityNumber

toString firstName, lastName, socialSecurityNumber

earnings ABSTRACT

Table 5.2: Instance variables for the SalariedEmployee subclass

Method Instance Variables

SalariedEmployee firstName, lastName, socialSecurityNumber, weeklySalary

setWeeklySalary weeklySalary

getWeeklySalary weeklySalary

earnings weeklySalary

toString firstName, lastName, socialSecurityNumber, weeklySalary

Table 5.3: Instance variables for the HourlyEmployee subclass

Method Instance Variables

HourlyEmployee firstName, lastName, socialSecurityNumber, wage, hours

setWage wage

getWage wage

setHours hours

getHours hours

72

earnings wage, hours

toString firstName, lastName, socialSecurityNumber, wage, hours

Table 5.4: Instance variables for the CommissionEmployee subclass

Method Instance Variables

CommissionEmployee firstName, lastName, socialSecurityNumber, grossSales,

commissionRate

setCommissionRate commissionRate

getCommissionRate commissionRate

setGrossSales grossSales

getGrossSales grossSales

earnings commissionRate, grossSales

toString firstName, lastName, socialSecurityNumber, grossSales,

commissionRate

Table 5.5: Instance variables for the BasePlusCommissionEmployee subclass

Method Instance Variables

BasePlusCommission-

Employee

firstName, lastName, socialSecurityNumber, grossSales,

commissionRate, baseSalary

setBaseSalary baseSalary

getBaseSalary baseSalary

earnings baseSalary, commissionRate, grossSales

toString firstName, lastName, socialSecurityNumber, grossSales,

commissionRate, baseSalary

73

5.7.1. Measuring OO Features of the Sample Component

5.7.2. Definition of the Metrics

The metrics that were suggested in section 5.5, are defined in this section, and thereafter

used to measure different OO features of the sample component shown in figure 5.4 above.

5.7.2.1. Coupling Between Object Classes (CBO) Metric

Singh et al. (2011) define coupling as, the measure of strength of association established

by a connection from one entity to another. The CBO metric is used to measure how much

coupling exists between classes (Sommerville, 2011). The CBO of a class is obtained by

counting the number of other classes to which that class is coupled with (Chidamber &

Kemerer, 1994). CBO relates to the notion that an object is coupled to another object if

methods of one object uses methods or instance variables of another (Chidamber &

Kemerer, 1994). According to Chidamber and Kemerer (1991), any evidence of a method

of one object using methods or instance variables of another object constitutes coupling.

5.7.2.2. Number of Children (NOC) and Generality of Class (GC) Metrics

The NOC of a class is the number of immediate subclasses subordinated to it in the class

hierarchy (Chidamber & Kemerer, 1991, 1994). Generality of Class (GC) on the other

hand is the measure of its relative abstraction level, and it is obtained by dividing the

abstraction level of the class by the number of abstraction levels in the class hierarchy

(Gill & Sikka, 2011).

5.7.2.3. Lack of Cohesion in Methods (LCOM) Metric

Cohesion can be defined as, the degree to which methods of a class are related to one

another and work together to provide well bounded behavior (Singh et al., 2011). The

LCOM metric is used to measure the cohesiveness of a class, by using instance variables

to measure the degree of similarity of methods of a class, and it is defined as (Chidamber

& Kemerer, 1994):

74

Consider a class C1 with n methods, M1, M2, ...,Mn.

Let {Ij} = set of instance variables used by method Mi. There are n such sets {I1},

... , {In}.

Let P = {(Ii, Ij) | Ii ∩ Ij =Ø} and Q = {(Ii, Ij) | Ii ∩ Ij ≠ Ø}. If all n sets {I1}, ... , {In}

are Ø then let P = Ø.

 𝐿𝐶𝑂𝑀 = |𝑃| − |𝑄|, 𝑖𝑓 |𝑃| > |𝑄|

 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example (Chidamber & Kemerer, 1994): Consider a class C with three methods M1,

M2and M3. Let {I1} = {a, b, c, d, e} and {I2} = {a, b, e} and {I3} = {x, y, z}. {I1} ∩ {I2} is

nonempty, (i.e. {I1} ∩ {I2} ≠ Ø), but {I1} ∩ {I3} and {I2} ∩ {I3} are null sets. LCOM is

(the number of null intersections – number of nonempty intersections), which in this case

is 1. According to Chidamber and Kemerer (1994), the LCOM value provides a measure

of relative desperate nature of methods of a class.

5.7.3. Obtained Values for the CBO, NOC, LCOM, and GC Metrics

The values for CBO, NOC, LCOM and GC metrics that were obtained after measuring

different OO structures of the sample component using the criteria outlined above are

summarized in tables 5.6 and 5.7, then the interpretations of these values follow.

Table 5.6: Obtained values for NOC, CBO and GC for the sample component

Metric Values Classes

1 2 3 4 5 6 Total

NOC

Computed 0.2 0.6 0 0.2 0 0 1

Maximum 1 1 1 1 1 1 6

CBO

Computed 0.2 0.8 0.2 0.4 0.2 0.2 2

Maximum 1 1 1 1 1 1 6

GC

Computed 1 0.75 0.5 0.5 0.5 0.25 3.5

Maximum 1 1 1 1 1 1 6

(5.3)

75

NOC: table 5.6, shows that the computed value of NOC for the sample component is 1.

This gives a normalized NOC value of 0.17. This value is obtained by dividing 1 by the

maximum NOC value (i.e. 6). The lesser the value computed for NOC the lesser is the

component’s complexity, hence easy to debug and modify. The, the NOC value can be

viewed as the difficulty of debugging and modification (Nyasente et al., 2014a) Therefore

ease of debugging and modification can then be obtained by subtracting the “difficulty of

debugging and modification” from 1, since the highest possible value for ease of

debugging and modification is 1. Thus, the value for ease of debugging and modification

for the sample component is 0.83.

CBO: from table 5.6, the computed value for CBO is 2, compared to the maximum value

of 6. When we normalize this value we obtain 0.33. Since the CBO value shows the,

degree of interdependence between classes, then the degree of independence can be

obtained by subtracting the degree of interdependence from 1; where 1 is the highest

possible (normalized) value for the degree of independence. Therefore, the degree of

independence for the sample component is 0.67. Although literature suggests that, CBO

should be measured by counting the number of distinct non-inheritance related class

hierarchies on which a class depends (Cho et al., 2001; Sharma & Dubey, 2012); couplings

due to inheritance are considered in the computation of CBO like in the case of (Chawla

& Nath, 2013).

GC: table 5.6 shows that the computed value for GC is 3.5, compared to the maximum

value of 6. Normalizing this value we get 0.58. Therefore, the level of generalization for

the sample component is 0.58. This is based on the fact that, the GC metric indicates the

level of generalization for a component (Gill & Sikka, 2011).

76

LCOM: The number of non-null intersections of instance variable pairs of methods (|Q|),

for each of the classes of the sample component is greater than the number of null

intersections (|P|), (i.e. |P| < |Q|); therefore, the LCOM value for all classes of the sample

component is 0. This is based on the definition of LCOM (as presented in section 5.7.2.3,

above). To find the cohesiveness of a class, its LCOM value is subtracted from 1—as the

LCOM value measures the relative desperateness of a class, and the highest possible

(normalized) value for cohesion is 1. Therefore, average cohesiveness for the component

is 1. The computed LCOM and cohesion values for each class of the component are

summarized in table 5.7.

Table 5.7: Summary of the LCOM measure for the samplel component

Class No. of

Methods

Highest possible

LCOM Value

Computed (Normalized)

LCOM value

Cohesiveness

1

2 8 28 0 1

3 5 10 0 1

4 7 21 0 1

5 7 21 0 1

6 5 10 0 1

The computed LCOM values are normalized with respect to the highest possible LCOM

value, which is the total number of paired instance variables of methods in a class. That is

to say that, a class has the highest value for LCOM if none of its paired methods have

similar instance variables (i.e. when |Q| = 0).

77

5.7.4. Metrics Values Obtained from Measuring Documentation

5.7.4.1. Obtained Value for Quality

The computed value for documentation quality is 15 out of a possible value of 15.

Therefore, the normalized value for quality is 1. The criteria used in calculating the value

for quality is given in table 5.8.

Table 5.8: Criteria for measuring documentation quality for the sample component

Factor Criterion Comment Value on a

scale of 1-5

Max

value

Quality Document

structure

-Well structured.

5 5

Document

standards

-Good programming practice adopted (e.g.

Excellent use of comments).

-Standard notation used (e.g. use of UML for

class diagrams)

5 5

Writing

style

-Clear and concise technical prose used. 5 5

TOTAL 15 15

5.7.4.2. Obtained Value for Completeness

Two out of the three documentation components are given, thus documentation can be

said to be 67% complete. In other words, the degree of completeness of the documentation

is 0.67. The criterion used in assessing completeness is given in table 5.9.

Table 5.9: Criteria for measuring completeness of documentation for the sample component

Documentation Component Provided Not Provided

System Specification

An architectural design document

The program source code

78

5.7.4.3. Obtained Value for Availability of Legal terms and Conditions, and amount of

documentation

The legal terms and conditions for use of the entire text (book) are available; therefore a

value is 1 assigned. On the other hand, the amount of documentation can assume three

possible categorical values: very bulky, bulky, and compact. These values are given ranks:

1, 2, and 3 respectively. Prima-facially the amount of documentation provided for the

component’s documentation is small (i.e. compact); therefore, the value for amount of

documentation is 3. Since 3 is the highest possible value for the amount of documentation,

the obtained value (3) is normalized to give a value 1.

5.7.5. Aggregating Metrics Values into the Reusability Equation

To calculate the reusability of the sample component, the composite metrics for the five

attributes are first calculated, and then aggregated into the reusability equation (equation

5.2). The obtained values from measuring the component are as below:

Mai = 0.5 (Component independence + Ease of modification and debugging)

=> 0.5(0.67 + 0.83) = 0.75

Port = Component independence => 0.67

Doc = 0.25(0.67 + 1 + 1 + 1) = 0.92

Gen = Level of generalization => 0.58

Und = 0.5 (Component independence + Cohesiveness) => 0.5(0.67 + 1) =0.84

Therefore:

 Rc = 0.2 (0.75) + 0.1(0.67) + 0.4(0.92) + 0.1(0.58) + 0.2(0.84) = 0.811

5.7.6. Interpretation of the Reusability Value (Rc)

Since the composite metrics values for the five attributes are normalized to the range of

(0...1), the value for Rc will always be between 0 and 1. Rc shows the reusability level of

a component—where high Rc values (values close to 1) indicate high reusability. Low

values for Rc indicate low reusability—which is an indication of possible flaws in the

79

system design. Therefore, components with low Rc values should be subjected to further

review. For the case of the sample component, the obtained Rc value: 0.811, is relatively

high (compared to the maximum value of 1). Therefore it can be concluded that reusability

for the component is high (i.e. 81%).

5.8. Framework Implementation

One of the objectives of this study was to build a prototype of a reusability assessment

system—based on the reusability framework that is presented in the preceding subsections

of this chapter. This section presents the design and development process of the initial

version of the system.

5.9. System Design and Development

5.9.1. Requirements Analysis

This section begins by describing the different users of the system and their roles, and

subsequently presents system requirements—(both functional and non-functional), based

on user needs and roles.

5.9.2. System Users and Their Roles

a) Administrator: This is a user who has administrative rights of the system. The

roles of the administrator include:

 Creating user accounts. This includes setting system privileges to users.

 Managing user accounts (editing and deleting user accounts).

b) Software Quality manager: This is a user who is responsible for monitoring the

software engineering processes and methods used to ensure quality. The specific

functions of the software quality assurance manager include:

 Coordinating the daily activities of the quality assurance staff.

80

 Developing, reviewing, and publishing standards, policies and procedures

for all functions involved with or related to the quality and testing of

software products.

 Inspecting completed quality control checklists, forms and other

documents for conformance to prescribed standards.

 Reviewing and resolving of software quality control problems related to

production of software services or products.

c) Object Oriented Software Developer: This is a user who designs, installs, tests,

and maintains Object-Oriented software systems. The specific functions of the

Object-oriented software developer include:

 Reviewing current systems and presenting ideas for system improvements,

including cost proposals.

 Working closely with analysts, designers and the Software quality

assurance manager.

 Writing and testing code, and then refining and writing as necessary.

 Testing the software products in controlled situations before going live, as

well as maintaining of software systems.

5.9.3. System Requirements

The functional and the nonfunctional requirements for the reusability assessment system

are summarized in tables 5.10 and 5.11 respectively.

81

a) Functional requirements

Table 5.10: Functional requirements of the reusability assessment system

ID Requirement

FR-1 Take the number of couplings for each component’s class as input, and

compute the CBO metric for the component.

FR-2 Take the number of immediate subclasses for every class as input, and compute

the NOC metric for the component.

FR-3 Take the number of abstraction levels of the component’s class hierarchy, and

the abstraction levels of each class in the hierarchy—as input, and compute the

GC metric for the component.

FR-4 Take the number of disjoint and non-disjoint method pair of each component’s

class as input, and compute the LCOM measure of the component.

FR-5

Take the values for document structure, document standards, writing style,

availability of legal terms & conditions, and completeness of documentation

as input, hence compute the component’s documentations ‘quality index’.

FR-6 Store the results of requirement FR-1 – FR-5 in a database.

FR-7. Compute/derive the Reusability of a component (RC), from the results of

requirement FR-1 – FR-5.

FR-8. Generate reusability reports of components.

FR-9 Capture user account details and store them in a Database.

FR-10 Provide for different user views, based on the user type.

82

b) Nonfunctional requirements

Table 5.11: Nonfunctional requirements of the reusability assessment system

ID Requirement

NFR-1

The system should guard against accidental deletion and erroneous update of

stored data.

NFR-2 The system should provide for user authentication.

NFR-3 The system should check and verify that entered data is in the appropriate

format

NFR-4 The system should have adequate understandability, testability,

maintainability and reusability.

5.9.4. Use Cases for the Reusability Assessment System

The reusability assessment system is to be used by both OO developers and Software

quality assurance managers (SQA managers). Developers will use the system in

measuring the reusability of software components, whilst the Software Quality assurance

managers will use the system in monitoring the reusability of developed components. The

system will have a system administrator, who will have the overall administrative rights

of the system. The roles of the three system users are depicted in the system-level use-

case diagram shown in figure 5.5.

83

SQA

Manager

Developer

<<includes>>

<<includes>>

Compute

Reusability

Capture component’s

reusability details

Search

component’s
<<includes>>

<<includes>>

Print

Report

<<includes>>

<<includes>>
Store

Components'

<<includes>> Update

Details

<<includes>>

Generate

Reusability

System

Admin

Save User

Account Details
<<includes>>

Edit Account

details

Delete

Account

<<includes>

<<includes>>

<<includes>>

Manage User

Accounts

Create user

Accounts

Save

report

Edit reusability

details

Delete Component’s

reusability details

Figure 5.5: System level use-case diagram for the reusability assessment system

84

5.9.5. Database Design

A database for storing the reusability details of components as well as user accounts was

built using Microsoft SQL server 2008—which is a relational database management

system. The identified entities and attributes for the database are shown in figure 5.6.

5.9.6. Class Design

5.9.6.1. The Data Tier Class Design

The data layer for the application is comprised of four public classes, i.e. Cypher,

MyControls, Validation, and Layer1. The inheritance hierarchy for the data layer classes

is shown in figure 5.7.

Figure 5.6: Database design for the reusability assessment system

85

i) Public Class Cypher: this class comprises of methods for encrypting and decrypting

passwords that are stored in the database.

ii) Public Class MyControls: comprises of methods for presenting controls as required

by the user.

iii) Public Class Validation: comprises of methods that ensures that all user input is

provided as required. That is, it validates if all required fields are provided.

iv) Public Class Layer1: comprises of fields and methods for writing, reading, and

manipulating the database. That is, it contains the SQL for reading and writing to the

database. The class Layer1 has one subclass: Layer2.

Figure 5.7. Data layer classes for the reusability assessment system

86

5.9.6.2. The Business Tier Class Design

The Business layer (Layer 2) for the application encapsulates business logic for data

manipulation and transformation of the data into information. It is also responsible for

processing the data retrieved from the database and sends it to the presentation layer. The

business Layer for the system has one class, namely Layer2, which inherits from class,

Layer1. The business layer class and its members are shown in the figure below.

5.9.6.3. The presentation Tier Class Design

This layer comprises of components that are responsible for presenting system data to the

user/user interface. It also presents user input to the business layer. The major Layer 3

classes for system are:

i) Class frmUser: This Layer 3 component handles the creation and management of user

accounts. It includes methods for displaying user account information that exists in

Figure 5.8: The business tier classes

for the reusability assessment

system

87

the system database, as well as methods that enable the user to crete new user

accounts.

ii) Class frmSystem: This Class consists of methods that display computed metrics

information for OO components that exist in the system database, as well as methods

that enables a user to enter/supply metrics values for new components.

iii) Class frmComponents: This class includes methods that enables a user to add new

OO components (i.e. general description of the components) into the system.

iv) Class frmDocumentation: This class includes methods that enables the user to supply

metrics information about the documentation of a given component.

The class diagram for the above Layer 3 classes is shown in figure 5.9.

 Figure 5.9: Presentation layer classes for the reusability assessment system

88

5.10. System/Program Flow

The tasks performed by the system can be grouped into two major categories: (i) managing

OO components/metrics, and (ii) managing of system users. The stepwise activities and

actions undertaken to achieve these tasks are depicted in in figures 5.10 and 5.11

respectively.

Figure 5.10: Activity diagram for the task of managing metrics and components

89

5.11. Major User Interfaces for the Reusability Assessment System

5.11.1. The Login Module

This module enables users to gain access to the system. For a user to gain access to the

system, he must supply the correct user name and password. The user name and password

are then matched with the account details (user information) stored in the system’s

Figure 5.11: Activity diagram for the task of managing users and user groups

90

database. The user gains access to the system if there is a match—otherwise, the user is

notified that the supplied information is invalid. The screenshot for the login interface is

displayed below.

5.11.2. The System’s Main Interface

After a user has successfully logged into the system, the main system user interface is

displayed. This interface, displays three major tasks that the user can perform: manage

users, manage metrics and view metric reports. The choice of a particular task displays

the relevant corresponding sub-interface. The main user interface for system is displayed

in figure 5.13.

Figure 5.12: The login interface for the reusability

assessment system

91

5.11.3. Interface for Managing Users

When the user who is logged in as an administrator chooses the ‘manage users task’ from

the main interface, an interface for managing users (shown in figure 5.14), is displayed.

From this interface, the user can view and edit existing user accounts and user groups, as

well as create new user accounts or user groups.

Figure 5.13: Main user interface for the reusability assessment system

92

5.11.4. Interface for Managing Metrics

The major tasks that can be performed from this interface include; viewing of reusability

details for components that exists in the system’s database, editing of components’

reusability details, capturing information for a new component’s reusability factors, and

deleting of records that exist in the system’s database. Figure 5.15, shows the screenshot

of the said interface.

Figure 5.14: The reusability assessment system’s interface for managing users

93

Figure 5.15: The reusability assessment system’s interface for managing metrics

94

5.12. System Test Conditions and Results

Table 5.12 shows test conditions and results for system testing:-

Table 5.12: System test conditions and test results

S/no Test Anticipated Results Achieved Results

1 User

Authentication

The system to display an

error message in case of

wrong authentication

details

The system displayed an error

message when a username that

does not exist in the system

was entered, as well as for

wrong passwords.

2 Storing software

component

reusability details

Storage of component

reusability details in a

database.

The captured components’

reusability details were

successfully stored in a

database.

3 Storing of user

authentication

details

Storage of system user

profiles in a database

The system successfully saved

the captured user details into a

database.

4 Editing of stored

records

The system should allow a

logged on user to modify

components’ details, as

well as allow the

administrator to modify

user details

Modification of the database

by a logged on user was done

successfully, and changes

written back to the database.

5 Deriving

reusability

summary

The system should produce

a reusability summary for a

component based on the

provided component’s

reusability details

The system displays values

for maintainability,

portability, documentation,

generality, understandability

as well as the reusability (Rc)

for a component

6 System Log off The system should allow

details to be saved and exit

PASS

5.13. Demonstration of Reusability Measurement Using the System

To demonstrate how the system can be used to calculate the reusability of components,

information for the factors that influence the reusability of the sample component (shown

95

in figure 5.4, in section 5.7) is entered into the system. These details are entered by first

clicking on the “add Component” button on the user interface for “managing metrics”,

shown in figure 5.15, above. When this button is clicked, the form shown in figure 5.16

is displayed, where the user is required to enter the component’s name, number of classes

for the component, and a brief description of the component. The user is required to click

on the ‘save’ button after these values have been entered.

The following details are entered for the sample component:

Name of Component: Payroll

Number of classes: 6

Description: Payroll Module

When these values have been entered, they are saved in the system’s database by clicking

on the “save button”, thereafter they are automatically displayed on the form’s data Grid.

The user is then required to enter information that is required to calculate the CBO, NOC,

Figure 5.16: Form for adding a new component to the reusability assessment system

96

GC, LCOM, and documentation quality, by clicking the corresponding menu items that

are displayed above the data grid. Tables 5.13 through 5.17 give a summary of information

that need to be entered into the system in order to calculate each of the metrics for the

sample component.

Table 5.13: CBO information for the sample component

Class Number of couples for the class

Java.lang.Object (1) 1

Employee (2) 4

SalariedEmployee (3) 1

CommissionEmployee (4) 2

HourlyEmployee (5) 1

BasePlusCommissionEmployee (6) 1

Table 5.14: NOC information for the sample component

Class No. of immediate subclasses subordinated to the

class

Java.lang.Object (1) 1

Employee (2) 3

SalariedEmployee (3) 0

CommissionEmployee (4) 1

HourlyEmployee (5) 0

BasePlusCommissionEmployee

(6)

0

97

Table 5.15: GC information for the sample component

Class Abstraction level

Java.lang.Object (1) 4

Employee (2) 3

SalariedEmployee (3) 2

CommissionEmployee (4) 2

HourlyEmployee (5) 2

BasePlusCommissionEmployee (6) 1

**Number of Abstraction levels for the Component’s class Hierarchy: 4

Table 5.16: LCOM information for the sample component

Class No. of Disjoint Method

pairs

No. of non-disjoint

method pairs

Java.lang.Object (1) - -

Employee (2) 12 16

SalariedEmployee (3) 0 10

CommissionEmployee (4) 4 17

HourlyEmployee (5) 4 17

BasePlusCommissionEmployee

(6)

0 10

98

Table 5.17: Documentation information for the sample component

Factor Value

Document structure 5

Document standards 5

Writing style 5

 Provided Not Provided

System Specification

An architectural design document

The program source code

 Available Not Available

Availability of Legal terms and conditions

When each of the required values have been entered, the metrics are calculated and saved

into the system’s database, and thereafter displayed on the form’s data grid. A screenshot

for the system data grid is displayed below.

Figure 5.17: Data grid for displaying components’ metrics values

99

A summary on the reusability of a component can then be viewed by first selecting that

component (by clicking on the component’s ID) on the data grid, and then clicking on the

‘Reusability Summary’ menu. Figure 5.18 displays a sample form displaying the

reusability summary for the sample component.

5.14. Comparison of the Developed Framework with Other Frameworks

In this section, the developed framework (referred to as the new framework) is compared

with other existing frameworks—with the aim of validating its superiority over them.

5.14.1. The New Framework vs. the Basic Reusability Attributes Model

The basic reusability attributes model by (Caldiera & Basili, 1991) consists of three

reusability attributes: reuse costs, functional usefulness, and quality of components. These

attributes are indirectly measured by measuring factors that influence them using four

traditional metrics. According to Caldiera and Basili (1991) The three reusability

attributes, can only be assessed if the component already exists. Therefore, the model lacks

predictive power and cannot be used to assess reusability when developing components

for reuse. Secondly, the framework consists of traditional metrics, which cannot be

applied to OO software, thus it is not suitable for assessing the reusability of OO software.

Figure 5.18: Sample form displaying a component’s reusability summary

100

In contrast, the reusability attributes in the new framework can be assessed at early stages

of software development, thus the framework has predictive power, and can be used to

assess reusability when developing components for reuse. Secondly the new framework

consists of metrics that measure OO principal structures, making it suitable for measuring

reusability of OO components—what the basic reusability attributes model cannot do.

5.14.2. The New Framework vs. the Black-box Component Reusability Model

The black-box component reusability model by (Washizaki et al., 2003), consists of three

reusability attributes, namely; understandability, adaptability and portability. The authors

relate these attributes with four factors that can be directly measured using five objective

metrics. One of the strength of this framework is that, it can be used to assess reusability

in scenarios where source code is not provided (Washizaki et al., 2003). However, the

framework consists of metrics that can only be applied to JavaBeans components. That is,

it is tailored to the JavaBeans architecture. Secondly, the framework lack predictive power

as it is used to assess reusability when developing with reuse (Washizaki et al., 2003). The

new framework on the other hand uses metrics that are not tailored to any platform—

hence it is platform independent. In addition, the framework has predictive power and can

also be used at any stage of development—unlike the black-box component reusability

model.

5.14.3. The New Framework vs. the Reusability Framework for Ad-Hoc Reuse

The reusability framework for ad-hoc reuse by Hristov et al. (2012) consists of eight

attributes that should be considered when assessing reusability of components in ad-hoc

reuse scenarios only. That is, it cannot be used to assess reusability when developing

components in planned reuse scenarios. In addition, the factors that influence the

reusability attributes are measured using traditional metrics, which cannot be applied to

OO software. In contrast, the new framework can be used at any stage of OO software

101

development, making it capable of assessing reusability in both planned and ad-hoc reuse

scenarios.

5.14.4. The New Framework vs. the Reusable Software Components Framework

The reusable component framework by AL-Badareen et al. (2010) provides a structured

criterion for evaluating reusable components when adopting them for reuse. The

framework consists of four reusability attributes—with some attributes having factors that

influence them. Notably, the framework does not include metrics for measuring the

reusability attributes. Instead, the authors provide a criteria for determining if an attribute

is present in a component—through conducting tests on the component. This points out to

two fundamental weaknesses of the framework. First, the framework has no predictive

power, because any test on a component requires that the component be in existence.

Secondly, the authors do not provide a way of determining the degree to which a certain

attribute is present in a component. In contrast, the new framework uses objective metrics

in assessing the reusability attributes, and the degree to which a given attribute is present

in a component can be determined, providing an opportunity for improvement.

5.14.5. The New Framework vs. Industry Reusability Assessment Methods

One of the objectives of this research was to determine the methodologies used in industry

to assess reusability. This objective was attained through a survey that involved OO

software developers. Analysis of the collected data revealed that OO developers do not

use metrics in assessing components’ reusability. The respondents indicated that they use

the following methods in assessing reusability: observing/checking source code, reading

documentation, intuition, and checking inline comments. According to Nyasente et al.

(2014c), such methods are subjective and cannot be relied on in assessing reusability—as

there is no real way of ascertaining the degree of reusability in a given component if they

are used. In contrast, the new framework provides for an objective way of assessing

102

reusability, as it uses objective metrics in assessing reusability, thus the degree of

reusability can be ascertained.

5.15. Conclusion

This chapter has presented a novel metrics-based framework for assessing the reusability

of OO components, as well as its implementation. Literature was analyzed and the key

elements for the framework were identified. The elements include; major reusability

attributes; reusability factors, OO design constructs and OO metrics. The relationship

between these elements is described, and, a reusability attributes model is presented. The

last step in developing the framework was to define a reusability equation (equation 5.2)—

which the developed system automates. A demonstration of how the framework can be

used to assess reusability is also presented and the interpretation of the obtained reusability

value is subsequently given. Finally, a comparison between the new framework and;

existing frameworks and other reusability assessment methods is presented—in order to

validate the superiority of the new framework.

103

CHAPTER SIX

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1. Summary

This research investigated and attempted to address reusability assessment challenges that

impede OO developers from effectively reusing existing components in creating new

applications. The overriding goal of the research was to identify shortcomings of existing

methods of reusability assessment—hence develop and implement an effective framework

for OO reusability assessment. To achieve this goal, empirical and theoretical literature

analysis was conducted, as well as a survey that involved OO software developers.

Literature analysis was conducted in order to identify the characteristics and key elements

of an effective reusability assessment framework. This information played a key role in

identifying limitations of the reusability assessment frameworks that were found in

literature, as well as in the development of a novel framework that had the identified

characteristic. The survey on the other hand, was conducted in order to gain an in-depth

understanding on reuse and reusability, establish the state of affairs concerning the reuse

practice, and to identify methods used in reusability assessment, and the shortcomings of

these methods.

6.2. Achievements

This section outlines the achievements attained in relation to the objectives of the study.

Generally, the study was aimed at improving reusability of OO software components by

addressing issues associated reusability measurement. The first objective of the study was

to identify and examine the strategies and methods that software developers use in

assessing the reusability of OO components. By conducting a survey, a number of

methods were identified. The methods include observing/checking source code, reading

documentation, intuition, and checking inline comments.

104

The second objective was focused on indentifying the shortcomings of the reusability

assessment strategies/methods that are currently used. This objective was achieved by

comparing methods that exist in industry with what literature describes as ideal reusability

measurement techniques. It was established that the methods used in industry were highly

subjective; hence unreliable in assessing reusability.

The third specific objective was to determine major attributes that influence reusability;

hence develop and implement a framework for assessing reusability of OO components—

based on these attributes. The study achieved this objective through literature analysis,

and insights gained through a survey. Literature analysis was used to identify major

reusability attributes, and other elements that are related to the reusability attributes, which

formed part of the framework. The framework was developed by relating the identified

reusability elements, and a reusability equation was subsequently defined. The framework

implementation was actually an automation of the reusability equation.

The last objective was to test the working of the framework and show that it is superior to

the existing methods of measuring reusability. This objective was achieved through

experimentation—where the framework was used to measure the reusability of a sample

OO component. Lastly, a comparison between the new framework and the ones existing

in literature and in industry was conducted for the purpose of validating the superiority of

the new framework.

6.3. Conclusion

Literature shows that software reuse is a popular way of improving software quality, cost

of software development, and productivity of programmers. However, reuse is lacking

adoption by practitioners. This claim was validated by findings of a survey that involved

OO software developers. A review of literature indicated that this was due to reusability

related issues—that can only be addressed through measurement. Therefore, the lack of

105

adoption of reuse by practitioners can be attributed to lack of proper methods for

measuring reusability. This informed the formulation of the first and second research

questions, which sought to find out methods that are currently used by OO software

developers to assess reusability—as well as their shortcoming. This study determined that,

the methods used by practitioners were unreliable in assessing reusability—because of

their subjectivity.

The third research question sought to find out the attributes that influence reusability

because; reusability measurement is achieved by measuring the degree to which some

quality attributes, are present in a software component. Five major reusability attributes

were identified through comprehensive literature analysis—coupled with some insights

gained through the survey findings.

The last research question sought to determine how the reusability attributes can be used

to measure the reusability of OO components. This question was addressed through

evaluation of how three measurable OO design constructs, namely; inheritance, cohesion

and coupling influence the reusability attributes. Literature analysis played a key role in

establishing this relationship. In addition, metrics that can be used to measure the

reusability attributes were identified from literature. Lastly, a reusability equation for

calculating the reusability of OO components was defined and automated.

In general, it can be concluded from this study that reusability assessment can significantly

improve the reusability of OO software components—which can subsequently maximize

the payoff from OO software reuse.

106

6.4. Recommendations

As seen from this study, measuring reusability is the only sure way of improving software

reuse. However, software measurement is an obscure notion that continues to spur

controversy within the software engineering community. This means that, successful

software measurement requires commitment from all software engineering stakeholders.

This section gives recommendations to different stakeholders, as well as

recommendations for improving this study.

6.4.1. Recommendations for Software Development Organizations

The initial costs of establishing a successful reuse program are high, and it requires

commitment at all levels. To realize successful reuse Organizations should establish

measurement-centric reuse programs, as measurement is the only real way of determining

progress in software Engineering. In light of this, organizations should:

 Establish comprehensive software measurement programs that include reusability,

as well as establish clear measurement policies.

 Continually encourage and support their staff in embracing measurement as a way

of improving different software quality aspects such as reusability.

 Nature the culture of software quality measurement by continually offering

training on software metrics and measurement to their staff.

6.4.2. Recommendations for OO practitioners

The following recommendations are given to the OO practitioners in relation to reuse and

reusability assessment:

 Adopt the framework that is presented in this study, as it will improve on the

reusability of components, which will in turn improve component reuse.

 Adopt Other Software Engineering best design practices that may not have been

captured in the framework.

107

 Integrate other Software development and design tools to aid their software

development, as the reusability assessment framework presented in this research

does not take the place of such tools.

6.4.3. Recommendations for Improving this Study

This study, has presented a novel reusability measurement framework for OO software

that considers three measurable features: inheritance, coupling and cohesion—as the

determinants for OO component reusability. The following recommendations on how this

research work can be improved are given:

 There is need to study and identify other OO design structures that influence

reusability, and include them in the reusability attributes model presented in this

research, because; reusability of OO software is not only dependent coupling,

cohesion and inheritance—but also on other design features like, polymorphism,

information hiding, data abstraction etc.

 The impact of each OO design structure on component reusability should be

studied, and then the weights assigned to the reusability attributes should be

derived from the impact factor of the design structures that influence them.

 The framework presented in this research should be subjected to rigorous

empirical validation, in order to ascertain its efficacy. The outcome of the

empirical validation should form a basis for its improvement.

6.4.4. Recommendations for Future Research

The following recommendations are given regarding future research in the field of OO

software reuse and reusability assessment:

 More research is required in order to put forward a framework that organizations

can adopt in establishing successful measurement programs.

108

 Researchers should study human/non-technical factors that impede successful

reuse and give recommendations on the best ways of overcome them.

 Researchers should work towards an integrated framework for measuring all

aspects of OO software quality. In principle, this can achieved by developing a

model that relates the key attributes of software quality with measurable OO

design constructs, and metrics that can be used to measure these constructs. The

possibility and practicability of such a model requires significant amount of

research work.

109

REFERENCES

AL-Badareen, A. B., Selamat, H. M., Jabar, M. A., Din, J., & Turaev, S. (2010). Reusable Software

Components Framework. European Conference of Computer Science (ECCS '10), (pp.

126-130). Puerto De La Cruz, Tenerife.

Babu, G. S., & Srivatsa, S. K. (2009). Analysis and Measures of Software Reusability.

International Journal of Reviews in Computing, 1, 41-46.

Berndtsson, M., Hansson, J., Olsson, B., & Lundell, B. (2008). Thesis Projects: Aguide for

Students in Computer Science and Information Systems (2nd ed.). London: Springer-

Verlag London.

Bradley, J. C., & Millspaugh, A. C. (2009). Programming in Visual Basic 2008 (7th Edition ed.).

New York: McGraw-Hill.

Budhija, N., Singh, B., & Ahuja, P. S. (2013, January). Detection of Reusable Components in

object Oriented Programming Using Quality Metrics. International Journal of Advanced

Research in Computer Science and Software Engineering, 3(1), 351-353.

Caldiera, G., & Basili, V. R. (1991, February). Identifying and Qualifying Reusable Software

Components. IEEE Computer, 24(2), 61-70.

Chawla, S., & Nath, R. (2013). Evaluating Inheritance and Coupling Metrics. International

Journal of Engineering Trends and Technology (IJETT), 4(7), 2903-2908.

Chidamber, S. R., & Kemerer, C. F. (1991). Towards a Metrics Suite for Object Oriented Design.

ACM Conference. OOPSLA (pp. 197-211). Phoenix: ACM.

Chidamber, S. R., & Kemerer, C. F. (1994, June). A Metrics Suite for Object Oriented Design.

IEEE Transactions on Software Engineering, 20(6), 476-493.

Cho, S. E., Kim, M. S., & Kim, D. S. (2001). Component Metrics to Measure Component Quality.

Asia-Pacific Software Engineering Conference (APSEC’01). Eighth. IEEE.

Daniel, W. W., & Cross, C. L. (2013). Biostatistics A Foundation for Analysis in the Health

Sciences (10th ed.). New Jersey: John Wiley & Sons.

Deitel, H. M., & Deitel, P. J. (2006). Java: How to Program (7th Edition ed.). New Jersey: Prentice

Hall.

Deitel, P., & Deitel, H. (2011). Java: How to Program (9th Edition ed.). New Jersey: Prentice

Hall.

110

Dubey, S. K., & Rana, A. (2010). A Comprehensive Assessment of Object-Oriented Software

Systems Using Metrics Approach. International Journal on Computer Science and

Engineering (IJCSE), 2(8), 2726-2730.

Farooq, S. U., Quadri, S. M., & Ahmad, N. (2011, January). Software Measurements and Metrics:

Role in Effective Software Testing. International Journal of Engineering Science and

Technology (IJEST), 3(1), 671-680.

Frakes, W. B., & Kang, K. (2005, July). Software Reuse Research: Status and Future. IEEE

Transactions on Software Engineering, 31(7), 529-536.

Galin, D. (2004). Software Quality Assurance: From theory to implementation. Harlow: Pearson

Education Limited.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2003). Fundamentals of Software Engineering (2nd

Edition ed.). New Jersey: Prentice-Hall.

Gill, N. S., & Sikka, S. (2011, June). Inheritance Hierarchy Based Reuse & Reusability Metrics

in OOSD. International Journal on Computer Science and Engineering (IJCSE), 3(6),

2300-2309.

Hristov, D., Hummel, O., Huq, M., & Janjic, W. (2012). Structuring Software Reusability Metrics.

The Seventh International Conference on Software Engineering Advances (pp. 422-429).

IARIA.

Ilyas, M., & Abbas, M. (2013, August). Role of Formalism in Software Reusability’s

Effectiveness. International Journal of Database Theory and Application, 6(4), 119-130.

Kan, S. H. (2002). Metrics and Models in Software Quality Engineering (2nd Edition ed.). Boston:

Addison Wesley.

Kombo, D. K., & Tromp, D. L. (2006). Proposal and Thesis Writing: An introduction. Nairobi:

Paulines Publications Africa.

Kothari, C. R. (2004). Research Methodology: Methods and techniques (2nd Edition ed.). New

Delhi: New Age International.

Laird, L. M., & Brennan, M. C. (2006). Software Measurement and Estimation A Practical

Approach. New Jersey: John Wiley & Sons.

111

Mahapatra, D. K., Das, T. K., & Pradhan, G. (2012, December). An Integration of JSD, GSS and

CASE Tools towards the Improvement of Software Quality. International Journal of

Engineering and Advanced Technology (IJEAT), 2(2), 306-312.

Mishra, S. K., Kushwaha, D. S., & Misra, A. K. (2009). Creating Reusable Software Component

from Object-Oriented Legacy System through Reverse Engineering. Journal of Object

Technology, 8(5), 133-152.

Návrat, P., & Filkorn, R. (2005). A Note on the Role of Abstraction and Generality in Software

Development. Journal of Computer Science, 1(1), 98-102.

Nirpal, P. B., & Kale, K. V. (2011, January). A Brief Overview Of Software Testing Metrics.

International Journal on Computer Science and Engineering (IJCSE), 3(1), 204-211.

Nyasente, S. O., Mwangi, W., & Kimani, S. (2014). A Metrics-based Framework for Measuring

the Reusability of Object-Oriented Software Components. Journal of Information

Engineering and Applications, 4(4), 71-84.

Nyasente, S. O., Mwangi, W., & Kimani, S. (2014). A Note on Complexity and Understandability

as Attributes for Assessing the Reusability of Software Components. IJISET -

International Journal of Innovative Science, Engineering & Technology,, 1(6), 128-131.

Nyasente, S. O., Mwangi, W., & Kimani, S. (2014c). The status of Object-oriented Software Reuse

and Reusability Assessment in the Kenyan Software Engineering Industry. Journal of

Information Engineering and Applications, 4(9), 119-133.

Pressman, R. S. (2005). Software Engineering: A practitioner's Approach (6th ed.). New York:

McGraw-Hill.

Pressman, R. S. (2010). Software Engineering: Apractitioner's Approach (7th ed.). New York:

McGraw-Hill.

Prieto-Díaz, R. (1993). Software Reuse: Issues and Experiences. American Programmer, 6(8), 10-

18.

Rawat, M. S., Mittal, A., & Dubey, S. K. (2012). Survey on Impact of Software Metrics on

Software Quality. International Journal of Advanced Computer Science and Applications

(IJACSA), 3(1), 137-141.

Sametinger, J. (1997). Software Engineering with Reusable Components. New York: Springer-

Verlag.

112

Sandhu, P. S., Kaur, H., & Singh, A. (2009). Modeling of Reusability of Object Oriented Software

System. World Academy of Science, Engineering and Technology, 3(8), 162-165.

Sharma, A., & Dubey, S. K. (2012, June). Comparison of Software Quality Metrics for Object-

Oriented System. International Journal of Computer Science & Management Studies

(IJCSMS), 12(Special Issue), 12-24.

Singh, G., Singh, D., & Singh, V. (2011, January). A Study of Software Metrics. International

Journal of Computational Engineering & Management (IJCEM), 11, 22-27.

Sommerville, I. (2011). Software Engineering (9th Edition ed.). Boston: Addison-Wesley.

van Vliet, H. (2000). Software Engineering Principles and Practice (2nd Editions ed.). New York:

Wiley and Sons.

Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2003). A Metrics Suite for Measuring Reusability

of Software Components. International Software Metrics Symposium, (pp. 211-223).

Westfall, L. (2005). 12 Steps to Useful Software Metrics. The Westfall team.

113

APPENDICES

Appendix A: Journal Publications

The following three publications that are related to different aspects of this thesis were

made:

i. Nyasente, S. O., Mwangi, W., & Kimani, S. (2014). A Metrics-based Framework

for Measuring the Reusability of Object-Oriented Software Components. Journal

of Information Engineering and Applications, 4 (4), 71-84.

ii. Nyasente, S., Mwangi, W., & Kimani, S. (2014). A Note on Complexity and

Understandability as Attributes for Assessing the Reusability of Software

Components. IJISET - International Journal of Innovative Science, Engineering

& Technology, 1 (6), 128-131.

iii. Nyasente, S. O., Mwangi, W., & Kimani, S. (2014). The status of Object-oriented

Software Reuse and Reusability Assessment in the Kenyan Software Engineering

Industry. Journal of Information Engineering and Applications, 4 (9), 119-133.

114

Appendix B: Letter of Introduction

Nyasente Sammy Olive

SCIT, JKUAT

Dear Respondent,

I am a student, at Jomo Kenyatta University of Agriculture and Technology; pursuing a

Master of Science Degree (Computer Systems). As a requirement for my Degree program;

I am conducting a study on software reusability assessment in Object-Oriented (OO)

software, which will culminate in developing of a metrics-based framework for measuring

the reusability of OO components.

The interview schedule (attached) aims at collecting information on the current reuse

status, reusability assessment, and the challenges to reusability assessment in OO

software. The information on the schedule will be kept confidential: names of respondents

and institutions they work for will be concealed when compiling the report.

The collected information will go a long way in establishing the challenges facing

software reuse and the shortcomings of the current methods employed in reusability

assessment. This will form the basis for presenting a more effective way of assessing the

reusability of OO software components, with a sole aim of improving software reuse.

Your participation will be highly appreciated.

Yours faithfully

Nyasente Sammy Olive.

Researcher

115

Appendix C: Data Collection Schedule

PART I

A. Programmer’s General Background

1. How many years have you worked as a programmer?

 1 and under

 2 - 5

 6 - 10

 11 - 15

 16+

2. Which Object Oriented Programming languages are you conversant with?

 Java

 C++

 C#

 VB dot Net

 Delphi

 Python

 Others

 (Please specify...)

2. Other than being a programmer, which other software development related skills do

you have?

 OO Analysis and Design

 Software Engineering

 System Analysis and Design

 Others

116

 (Please

specify...)

PART II

A. Reuse and Reusability Issues within the Development Cycle

i: Requirements Modeling and Software Design

1. Do you always reuse requirements documents of existing software when modeling

requirements of new related software?

 Yes

 No

2. Do you always reuse design of existing software when developing new software?

 Yes

 No

3. Do you use CASE tools during requirements modeling and analysis?

 Yes

 No

4. Do you often use computerized support in system and component (class) design?

 Yes

 No

5. Do you always follow any Cohesion and Coupling criteria when conducting system/

class design?

 Yes

 No

6. Do you always control the inheritance hierarchy during class design?

 Yes

 No

ii: Coding, Testing, and Maintenance

117

1. Do you often use code generators to translate design into code?

 Yes

 No

2. Do you often reuse code from existing software as part of new software code?

 Yes

 No

3. If your answer in (2) is Yes, what are the most significant challenges that you

experience when reusing code? ……………………………………………………

...

..

……………………………………………………………………………………

….

4. Do you often experience any challenges when testing and maintaining software?

 Yes

 No

5. If your answer in (4) is Yes, what are the most significant challenges that you

experience when testing and maintaining software? …………………………..

 ...

……………………………………………………………………………………

118

PART III

A. Reuse Practice in the Organization(s)

1. Does your organization have software Reuse Policy?

 Yes

 No

2. Do you and your colleagues ever reuse parts of existing software to build new

software?

 Yes

 No

3. With respect to software development in your organization, please indicate the extent

to which you agree or disagree with the following statements:

SD = Strongly Disagree

 D = Disagree

 N = Neutral

 A = Agree

SA = Strongly Agree

Cases of developing software from scratch have

significantly diminished over time.
SD D N A SA

The time and effort required to modify available

classes within the organization to fit new reuse

contexts is often insignificant as compared to creating

new classes

SD D N A SA

The cost and effort for developing software has

significantly diminished over time.
SD D N A SA

119

I prefer developing classes from scratch than reuse

classes that are developed by my colleagues
SD D N A SA

B. Payoff from Reuse

1. With respect to cost, effort and productivity of software development in your

organization; please indicate the extent to which you agree or disagree with the

following statements:

SD = Strongly Disagree

 D = Disagree

 N = Neutral

 A = Agree

SA = Strongly Agree

I am satisfied with the time and effort that is

always required to, test, deliver and maintain

new software to our clients.

SD D N A SA

I am satisfied with budget and cost aspects for

developing new software applications and

their maintenance.

SD D N A SA

I am satisfied with the quality of new software

applications we develop as an organization.
SD D N A SA

I am satisfied with the overall productivity of

developers in the organization.
SD D N A SA

120

PART IV

A. Reusability Assessment

1. Do you always ascertain if classes are reusable when developing or reusing them?

 Yes

 No

2. If your answer in (1) is yes, what are the major characteristics that classes should

always have before you consider reusing them? ……………………………………..

 ..

 ……………………………………………………………………………………..

3. Do you know how various Object Oriented design features influence the

characteristics you listed in (2) above?

 Yes

 No

4. Do you have a way of assessing whether the classes you develop or reuse possess the

characteristics you listed in (2) above?

 Yes

 No

5. If your answer in (4) is yes, state the methodologies you often use. ………………....

………………………………………………………………………………………...

121

PART V

A. Software Metrics and Reusability Assessment

1. Does your organization have a software measurement program/policy?

 Yes

 No

2. With respect to your occupation, what is your experience with software metrics?

 Never heard about them

 Heard about them but never interested

 I have knowledge on metrics but never used them

 I have used metrics before but stopped using them

 I always use Software metrics

Please explain your answer (where applicable) …………………………………...

..

3. Do you use metrics to measure the reusability of classes when developing for or with

reuse?

 Yes

 No

If your answer is no, please explain why …………………………………………………

..

..

