
Error Detection and Correction in the International

Standard Book Number

Peter Waweru Kamaku

A thesis submitted in fulfillment for the Degree of Doctor

of Philosophy in Pure Mathematics in the Jomo Kenyatta

University of Agriculture and Technology

2013

DECLARATION

This thesis is my original work and has not been presented for a degree in any

University.

Signature: . Date: .

Peter Waweru Kamaku

This thesis has been submitted for examination with our approval as University

supervisors:

Signature: . Date: .

Dr. Bernard Kivunge

KU, Kenya

Signature: . Date: .

Dr. Jotham Raymond Akanga

JKUAT, Kenya

ii

DEDICATION

To my lovely queen Fridah and the fruit of our love, Daniella and others to come.

iii

ACKNOWLEDGEMENT

I acknowledge the most high GOD for designing me to be who I am.

I acknowledge my loving parents, Washington Kamaku and Martha Wanjira; their

unending love I can’t live without.

I acknowledge the love of my life, my wife Fridah Mumo and our daughter Daniella

Wanjira for choosing to spend their lives with me.

I also acknowledge my supervisors , Dr. Bernard Kivunge (Department of Math-

ematics, K.U.), Dr. Jotham Raymond Akanga (Department of Pure and Applied

Mathematics, JKUAT) and the late Prof. C. Mwathi for their great guidance.

I thank my colleagues C. Wamuti, S. G. Maina , V. Mwai and P. Wangai for their

assistance and moral support.

Special acknowledgement to my class 1-3 primary school teacher Miss Wacheng’e

and all sunday school teachers at Muringa ACK church for their love and tireless

efforts to build a responsible boy in me.

Special thanks to my siblings, friends, colleagues and those who participated in

building the Pure Mathematician in me.

iv

TABLE OF CONTENTS

DECLARATION . ii

DEDICATION . iii

ACKNOWLEDGEMENT . iv

TABLE OF CONTENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF APPENDICES . ix

LIST OF SYMBOLS, NOTATIONS AND ABBREVIATIONS xi

ABSTRACT . xii

CHAPTER 1: INTRODUCTION . 1

1.1 Background Information . 1

1.1.1 The ISBN-10 Code . 5

1.1.2 Limitations in the ISBN-10 7

1.1.3 The Cyclic ISBN-10 . 8

1.1.4 Limitations in the Cyclic ISBN-10 8

1.1.5 The ISBN-13 Code . 9

1.1.6 Limitations in the ISBN-13 code 11

1.2 Statement of the Problem . 12

1.3 Objectives of the Study . 12

1.3.1 General Objective . 12

1.3.2 Specific Objectives . 12

1.4 Justification of Study . 13

1.5 Null Hypothesis . 14

CHAPTER 2: LITERATURE REVIEW 15

2.1 Introduction . 15

v

2.1.1 Types of errors in an ISBN code 18

2.2 ISBN-10 Code . 20

2.2.1 Error Detection in ISBN-10 code 20

2.2.2 Number of code words in ISBN-10 Code 20

2.2.3 Error Correction in ISBN-10 code 21

2.3 Cyclic ISBN-10 Code . 23

2.3.1 Calculation of the inverses in (Z∗11,×,+) 23

2.3.2 Calculation of the check digit in Cyclic ISBN-10 code . . . 24

2.3.3 Error Detection in Cyclic ISBN-10 25

2.3.4 Single Error Correction in Cyclic ISBN-10 25

2.3.5 Double Error Correction in Cyclic ISBN-10 26

2.3.6 Number of code words in Cyclic ISBN-10 27

2.4 ISBN-13 Code . 28

2.4.1 Error Detection in ISBN-13 code 28

2.4.2 Number of code words in ISBN-13 code 28

CHAPTER 3: ISBN CODE PROPERTIES 30

3.1 Properties of ISBN-10, ISBN-13 and Cyclic ISBN-10 codes 30

3.1.1 Number of code words in ISBN-10, ISBN-13 and Cyclic

ISBN-10 codes . 30

3.1.2 Error detection and (or) correction capability in ISBN-10,

ISBN-13 and Cyclic ISBN-10 codes 32

3.1.3 Number of Code words versus Error Detection and Correction 44

CHAPTER 4: THE ISBN-16 CODE 51

4.1 Development and Generation of ISBN-16 Code 51

4.1.1 Generation of an ISBN-16 Code word 52

4.1.2 Calculation of inverses in ISBN-16 Code 53

vi

4.1.3 Calculation of the check digit in ISBN-16 Code 54

4.2 Error Detection in ISBN-16 Code 55

4.3 Error Correction in ISBN-16 Code 56

4.3.1 Errors Correction on first block of bit strings 56

4.3.2 Check digit Error Correction 57

4.3.3 Single Error correction . 57

4.3.4 Double error correction 59

4.3.5 Triple Error Correction 60

4.3.6 Other Multiple Errors Correction 62

4.4 Number of code words in the ISBN-16 Code 64

4.4.1 Error Detection and Correction in the ISBN-16 Code . . . 65

4.5 Conversion Tool from ISBN-13 to ISBN-16 73

4.5.1 Guidelines towards designing a conversion tool 73

4.5.2 The Conversion tool . 74

4.5.3 The ISBN-16 generator . 76

4.6 Weaknesses in the ISBN-16 Code 80

CHAPTER 5: SUMMARY, CONCLUSION AND RECOMEN-

DATION . 82

5.1 Summary . 82

5.2 Conclusion . 82

5.3 Recommendations for future research 83

REFERENCES . 84

APPENDICES . 87

vii

LIST OF TABLES

Table 2.1: Inverses under addidtion for cyclic ISBN-10 23

Table 2.2: Inverses under multiplication for cyclic ISBN-10 24

Table 3.1: Double transposition error in ISBN-13 42

Table 4.1: ISBN-16 letter representation 51

Table 4.2: ISBN-16 Inverse under addition 54

Table 4.3: ISBN-16 Inverse under multiplication 54

Table 4.4: Triple error correction . 61

Table 4.5: Other mutiple error corrections 63

Table 4.6: Single transposition error detection in ISBN-16 68

Table 4.8: Double transposition error detection in ISBN-16 70

Table 4.10: Converted codeword ISBN-13 to ISBN-16 code 76

viii

LIST OF FIGURES

Figure 2.1: Communication Channel 15

Figure 4.1: Main Window . 77

Figure 4.2: Automatic Generation 78

Figure 4.3: Manual Generation . 78

Figure 4.4: Error Handling . 79

Figure 4.5: History . 80

ix

LIST OF APPENDICES

Appendix A: ISBN-16 Generator Code 87

x

LIST OF SYMBOLS, NOTATIONS AND

ABBREVIATIONS

a|b a divides b

a - b a does not divide b

iff if and only if∑
Summation

n! Factorial

nPr n elements are to be chosen r at a time,

that is, n choose r

(Fq)
n set of all ordered n-tuples, a = a1a2. . . an

where each aiεFq

C Code

u or v Codeword

(k,m) gcd of k and m

Zn Set of integers modulo n

(Zn,×,+) A field of integers modulo n under

operations × and +

xi

ABSTRACT

The International Standard Book Number (ISBN) is a code that uniquely identi-

fies all books published internationally. Currently ISBN-13 has been in use since

the year 2007 as an improvement to ISBN-10. In this research the error detection

and correction capabilities of both ISBN-10 and ISBN-13 codes against the total

number of codewords that can be generated is analysed. It is shown that both

codes have major weaknesses as far as these properties are concerned. The ISBN

-16 code then is designed and analysed as an improvement to the existing code.

Comparison to the existing code is done and a conversion tool for the existing

ISBN -13 to ISBN -16 developed. It is shown that the ISBN -16 code surpases

the existing code in error detection and correction capabilities and the overall

dictionary.

xii

CHAPTER ONE

INTRODUCTION

1.1 Background Information

A positive integer greater than one is said to be prime if it has no positive integer

divisors other than 1 and itself; otherwise it is referred to as a composite, that

is if m is a composite, then integer factors n and k can be found such that

m = nk, n > 1, k > 1. A set is a collection of related objects. For example the

collection {orange, pineapple, mango} is a set of fruits whereby orange, pineapple

and mango are the elements. The set A is said to be closed under a binary

operation ∗ if whenever a, b ∈ A then a ∗ b ∈ A.

Communication involves the sending and receiving of information from the sender

to the receiver. The information may be converted into a code which is familiar

to both parties. The process of converting the information to the code is referred

to as encoding whereas decoding is the process of converting the received code

back into information which the receiver understands.

The elements in the code are referred to as the code words whereas the length of

a code is the number of digits in each codeword.

For example, if u = 10101,where u is a code word in C, then u is of length 5.

Let u and v be code words. The hamming distance of u and v is the number of

places in which u and v differ or not agree, Irving and Chen (1999). It is denoted

by d(u, v). In other words, it is a count of the minimum number of bits that must

be changed to convert one code word to another, Houghton et al. (2001).

For example, if u = 10101 and v = 11101 they only differ in the second bit string,

so the distance between them is 1.

Hamming distance is a distance function since it satisfies the axioms of metric or

distance functions for all x, y, z ∈ (Fq)
n

1

M1 : d(x, y) ≥ 0 and d(x, y) = 0 iff x = y

M2 : d(x, y) = d(y, x)

M3 : d(x, y) ≤ d(x, z) + d(z, y)

Let C be a code. The minimum distance of the code denoted d(C), is the smallest

distance between distinct code words in the code C,Todd (2005).

In other words, d(C) = min {d(u, v)|u, v ∈ C, u 6=v}

Theorem 1.1.1. A code C can detect up to s errors in any code word if d(C) ≥

s+ 1, Raymond (1986).

Corollary 1.1.1. If a code C has a minimum distance d(C), then C can be used

either to detect up to d(C)− 1 errors, or to correct upto d(C)–1
2

errors in any code

word, Raymond (1986).

In any code, there is need for one to know the number of code words that it

generates. In this research, the term dictionary is used to refer to the total number

of code words that can be generated by a code. In a code C, symbols or digits

(redundancy) may be added in order to achieve some degree of uniqeness. These

symbols, referred to as the check digits help to ensure that the code satisfies

a certain condition, Jacobus (1973). Suppose a sender intends to send a code

word to a receiver. If u and v are the sent and received code word respectively,

situations may occur such that u 6= v, this simply means that error(s) occurred.

The ability to detect the existence of an error(s) in a code word is called error

detection whereas error correction is the ability to correct the existing error(s) in

a code word or to reconstruct the sent code word, Raymond (1986).

A code C is said to be linear in (Fq)
n if whenever x0x1...xn ∈ C , y0y1...yn ∈ C

and λ ∈ Fq then [(x0x1...xn) + (y0y1...yn)] ∈ C and λ(x0x1...xn) ∈ C

A linear code C is said to be a cyclic code if any cyclic shift of a code word in C

is also a code word, Van (1998).

2

That is, if C is cyclic and x0x1...xn−2xn−1xn ∈ C then xnx0x1...xn−2xn−1 ∈ C.

This means that cyclic code words can easily be generated by performing right

or left cyclic shifts on a code word and continuing until the original code word is

obtained, Raymond (1986). For example, suppose abcd is a code word in a cyclic

code then performing cyclic shifts yields the code words bcda, cdab, dabc.

Let k,m, q, n be integers. k is said to be congruent to m modulo n written

k ≡ m(modn) if n|(k −m). That is, n “divides” the difference (k −m). In other

words, an integer q is found such that (k −m) = nq , Kenneth (1993).

Modulo Arithmetic therefore involves working with the remainders generated by

division. For example, if 64 is divided by 9, it yields 7 and the remainder is 1.

Using modular arithmetic notation, this can be written as 64 ≡ 1(mod 9) read as

“64 is congruent to 1 modulo 9”. The following theorems on modulo operations

will be of great importance to this research.

Theorem 1.1.2. If k,m, r and n are integers, then k ≡ m(mod n) if and only if

there is an integer q such that k = m+ nq, Kenneth (1993).

Let n be a positive integer. Congruences modulo n is an equivalence relation.

That is:

If k is an integer, then k ≡ k(mod n), the reflexive property.

If k and m are integers such that k ≡ m(mod n), then m ≡ k (mod n), the

symmetric property.

If k,m and r are integers with k ≡ m (mod n) and m ≡ r (mod n), then k ≡ r

(mod n), the transitive property, Kenneth (1993).

If k and m are integers with k 6= 0, then k divides m(or k is a divisor or a factor

of m) if there is an integer r such that m = kr, denoted as k|m, otherwise k - m.

The greatest common divisor of two non zero integers k and m, denoted (k,m)

is the largest integer that divides both k and m. Integers k and m are said to be

relatively prime if (k,m) = 1, Kenneth (1993).

3

An algorithm is a finite set of precise instructions for performing a computation

or for solving a problem, Kenneth (1993).

Theorem 1.1.3. The Division algorithm

If k and m are integers such that m > 0, then there are unique integers q and

r (called the quotient and remainder respectively) such that k = mq + r with

0 ≤ r < m, Kenneth (1993).

Theorem 1.1.4. Euclidean algorithm

Let r0 = k and r1 = m be integers such that k ≥ m. If the division algorithm

is successively applied to obtain rj = rj+1 · qj+1 + rj+2 with 0 < rj+2 < rj+1 for

j = 0, 1, 2, ..., n − 2 and rn+1 = 0, then (k,m) = rn the last non zero remainder,

Kenneth (1993).

Example 1.1.1. To find (252, 198) using Euclidean algorithm, we find

252 = 1(198) + 54

198 = 3(54) + 36

54 = 1(36) + 18

36 = 2(18) + 0

Therefore
(252, 198) = 18

ADiophantine equation is an equation whose solutions come from a set of integers.

A linear Diophantine equation in two variables is an equation of the form kx +

my = r where k,m and r are integers, Kenneth (2003).

Theorem 1.1.5. Let k and m be integers with n = (k,m). The equation kx +

my = p has no integer solutions if n - p. If n|p, then there are infinitely many

integral solutions,Kenneth (1993).

4

Example 1.1.2. There are no integral solutions of the Diophantine equation

15x+ 6y = 7 since (15, 6) = 3 but 3 - 7, Kenneth (1993).

There are infinitely many solutions of the Diophantine equation 21x + 14y = 70

since (21, 14) = 7 and 7|70.

By Euclidean algorithm,

1× 21 + (−1)× 14 = 7

so that
10× 21 + (−10)× 14 = 70

Hence x0 = 10, y0 = −10 is a particular solution. All solutions are given by

x = 10 + 2n, y = −10− 3n where n is an integer, Kenneth (1993).

A permutation is an arrangement of different objects in a specified order. If a

number of independent choices were to be made with n possibilities for first choice,

n for the second choice and so on the total number of choices is n1 × n2 × . . . nk.

There are n! ways to arrange n objects in a specified order. For example, eleven

books can be arranged on a shelf in 11!= 39916800 ways.

The number of ways of selecting r objects from n available objects is given as

nCr = n!
(n−r!)r! , Uppal and Humphreys (2008).

1.1.1 The ISBN-10 Code

In the late 1960’s, book publishers realized that they needed a uniform way to

identify all the different books that were being published throughout the world.

In 1966, Gordon Foster and others came up with the International Standard

Book Number system (ISBN) which was later published by the international

organization for standardization in 1970, ISO 2108. Every book, including new

editions of older books, were to be given a special number, called an ISBN, which

is not given to any other book,Viklund (2007) . According to Eric (2010a), the

ISBN-10 code consist of ten digits code words made up of any of the 10-digit

5

decimal numbers namely 0, 1, 2, . . . 9 and X for 10. Suppose u = a1a2a3...a10 is

an ISBN-10 code word, it must satisfy the condition

(1.1)
10∑
i =1

iai ≡ 0(mod11)

This equation is called a parity-check equation. An ISBN is broken into groups

written with hyphens within it. For example in a code word
a1a2 − a3a4a5 − a6a7a8a9 − a10

the first block of digit, “a1a2” , represents the language or the country of the book,

the second block of digits represents the publishing company, the third block of

digits is the number assigned to the book by the publishing company and the last

digit is known as the check digit. For example, the book “A first course in coding

theory” by Raymond Hill, has an ISBN-10: 01-985-3803-0, Raymond (1986). The

ISBN parts may be of different lengths, and usually are separated with hyphens

or spaces,Viklund (2007) .

In the event that the check digit is 10, the symbol X is used in the final posi-

tion. The summation
∑10

i=1 iai is called the weighted check sum of the code word

a1a2. . . .a10. If the condition is satisfied then a1a2. . . a10 is an ISBN-10, Egghe

(1985).

For example, consider the ISBN-10: 0198538030 given above. The sum

10∑
i=1

iai = 0 + 2 + 27 + 32 + 25 + 18 + 56 + 0 + 27 + 0

= 33 ≡ 0 (mod 11)

Thus the code word is an ISBN-10 code word.

The code uses calculation modulo 11 since 11 is a prime number and since it has

no factors, all the multiples of 11 would yield to 0 modulo 11.

If u = a1a2. . . a10 and v = b1b2. . . b10 are the sent and received code word re-

spectively, error(s) may occur to yield u 6= v. The ISBN-10 code is designed to

6

detect a single and a double-error which can be caused by the transposition of

two digits. To detect an error(s) on a received vector b1b2. . . b10 the weighted

check sum B =
∑10

i=1 ibi is computed. If B 6= 0(mod11), then an error(s) exists.

The ISBN-10 code cannot be used to correct an error unless the digit in error is

found. This is the basis of the parity check equation, Raymond (1986).

1.1.2 Limitations in the ISBN-10

1. Silent errors can go unnoticed.

2. To detect an error in ISBN-10 code word, one has to work out the parity

check equation which makes the process tedious unless the error is an omis-

sion or insertion error which obviously can be detected by just counting the

number of digits to confirm if they are less or more than required.

3. ISBN-10 can only correct single errors and transpose errors and for the

transpose errors there has to be prior knowledge of the existence of the

transpose error. The process of correcting the errors as stated in limitation

2 above may end up being tedious and only applicable to code words which

meet some criteria as shown in equation (2.5) later on.

4. The conditions given for detection of at least two errors only tell if one can

detect the double error and do not show how to correct it, see section 2.2.3.

5. Multiple (more than two) errors cannot be corrected.

6. ISBN-10 has a relatively small dictionary.

The great demands for a bigger dictionary lead to the design of ISBN-13 code

which is now in use since year 2007. There is need to show if the improved ISBN-

13 code dictionary size affected the error detection and correction capability.

7

1.1.3 The Cyclic ISBN-10

The Cyclic International Standard Book Number was designed by Nyaga and

others to improve the conventional ISBN-10. It consists of ten digit codewords

made up of any of the 10-digit decimal numbers 0, 1, 2, . . . , 9 and X for 10 with

the check digit being chosen such that the parity check equation holds just as in

ISBN-10. To come up with a code word, digits are arranged in an increasing or

decreasing order of flow. Zero is not allowed to be the first digit. Repetition of

digits is allowed; change of order of flow of digits (from increasing to decreasing

and vice versa) is done by putting a zero (0) and then starts the new flow which

may be either increasing or decreasing. The check digit does not necessarily have

to obey the flow of the digits, Nyaga and Cecilia (2008).

1.1.4 Limitations in the Cyclic ISBN-10

1. This code is not a cyclic code since any left or right cyclic shift does not

necessarily yield another codeword. By counter example, consider the code

word 7765442112. Taking a right cyclic shift yields to 7654421127 which

is not a cyclic ISBN-10 code word since it does not meet the parity check

equation. There is thus the need to clearly redefine the term cyclic to fit

the exact intended meaning when the code was generated.

2. The dictionary size is smaller than even the ISBN-10 code. As shown later

in Proposition 2.3.1, the total number of code words is less than 9 × 108.

There is thus need to establish the upper limits and the lower limits for

maximum and minimum total number of code words that this code can

generate. This forms a major foundation for any other code that would be

developed using Nyaga’s approach.

8

3. Correction of multiple errors may end up having very many choices of possi-

ble digits to replace the ones in error thus making the process a bit tedious

and inacurate.

1.1.5 The ISBN-13 Code

The ISBN-13 code is a 13 digit code whose use started in January 2007. According

to Viklund (2007), the code is generated such that the calculation of its check

digit begins with the first 12 digits, thus excluding the check digit itself. If

u = x1x2x3...x12x13 is a code word, then

(1.2)x13 = 10–(x1 + 3x2 + x3 + 3x4 + x5 + 3x6 + x7 + 3x8 + x9 + 3x10 + x11
+ 3x12)(mod10)

(1.3)i.e, x13 = 10–(x1 + x3 + x5 + x7 + x9 + x11)
− 3(x2 + x4 + x6 + x8 + x10 + x12)(mod10)

To convert an ISBN-10 codeword to ISBN-13, the last character is dropped (left

out) and the numbers “978” or “979” are put at the beginning of the code and a

new check digit is computed to form the 13th digit as per equation 1.2.

For example, the book “A first course in coding theory” by Raymond Hill has an

ISBN-10 of 0198538030. To convert to ISBN-13, the last digit (check digit) 0 is

dropped, 978 added to the beginning to yield 978019853803a13, the check digit

is computed as follows:

9 + (7× 3) + 8 + (0× 3) + 1 + (9× 3) + 8 + (5× 3) + 3 + (8× 3) + 0 + (3× 3)

= 125 ≡ 5 (mod 10)

Thus, x13 = 5 yielding to 9780198538035.

9

The prefix 978 or 979 is used in ISBN-13 to ensure the code is integrated into the

European article number which is adopted for all products retailed internationally.

This check digit computation system does not detect all errors of adjacent digit

transposition. Specifically, if the difference between two adjacent digits is 5,

the check digit will not catch their transposition,Viklund (2007). For instance,

suppose we have a code word having bit strings 6 followed by a 1 at consecutive

digit positions. If 6 is in an even digit position, the order contributes (3 × 6) +

(1 × 1) = 19 to the sum; while, if the digits are transposed (1 followed by a 6),

the contribution of those two digits will be (3×1)+(1×6) = 9. However, 19 and

9 are congruent modulo 10, and so produce the same, final result: both ISBNs

will have a check digit of 7.

Additionally, Eric (2010a) researched on the ISBN-13 code and found out that, if

one triples the sum of the 2nd, 4th, 6th, 8th, 10th and 12th digits and then add them

to the remaining digits (1st, 3rd, 5th, etc.), the total will always be divisible by 10.

Eric noted that the ISBN-10 formula uses the prime modulus 11 which avoids

this blind spot, but requires more than the digits 0-9 to express the check digit,

Eric (2010a). Contrary to the ISBN-10 which gives a general equation that the

code must obey 1.1, the ISBN-13 incoporates a formula for finding the check digit

and does necessarily generalize the condition for the code to obey. There is thus

a need to generalize this by finding an equation that the code has to obey.

Proposition 1.1.1. The ISBN-13 code must satisfy the condition;

(1.4)
6∑

i =0

x2n+1 + 3
6∑

i =1

x2n ≡ 0(mod10)

Proof. From equation 1.2 above,

(1.5)x13 = 10–(x1 + 3x2 + x3 + 3x4 + x5 + 3x6 + x7 + 3x8 + x9 + 3x10 + x11
+ 3x12)(mod10)

or simply

10

x13 + (x1 + 3x2 + x3 + 3x4 + x5 + 3x6 + x7 + 3x8 + x9

+3x10 + x11 + 3x12)(mod10) = 10 ≡ 0(mod10)

Thus,

(x1 + 3x2 + x3 + 3x4 + x5 + 3x6 + x7 + 3x8 + x9 + 3x10
+ x11 + 3x12 + x13)(mod10) = 10
≡ 0(mod10)

Thus,

(x1 + x3 + x5 + x7 + x9 + x11 + x13)(mod10)
+ (3x2 + 3x4 + 3x6 + 3x8 + 3x10 + 3x12)(mod10) ≡ 0(mod10)

or simply,
6∑

i =0

x2i+1 + 3
6∑

i =1

x2i ≡ 0(mod10)

1.1.6 Limitations in the ISBN-13 code

1. The ISBN-13 code cannot indicate the exact bit string which is in error

2. The ISBN-13 code cannot detect some transposition errors as shown later

in section 3.1.3

3. ISBN-13 cannot detect some double or multiple errors. For example, sup-

pose that u = 9780198538035 is the sent code word but due to errors the

receiver receives the code word v = 8780298538035.

For the sent code word u,

x13 = 5 = 10–(9+ (3× 7)+ 8+ (3× 0)+ 1+ (3× 9)+ 8+ (3× 5)+ 3+ (3×

8) + 0 + (3× 3))(mod10)

11

For the received code word v,

x13 = 5 = 10–(8+ (3× 7)+ 8+ (3× 0)+ 2+ (3× 9)+ 8+ (3× 5)+ 3+ (3×

8) + 0 + (3× 3))(mod10)

Thus v will erroneously be received as the intended code word but it is not!

This is an example of a double error.

4. ISBN-13 cannot correct the double, multiple or transposition errors. This

is proven later on in theorem 3.1.1.

1.2 Statement of the Problem

The ISBN-10, ISBN-13 and Cyclic ISBN-10 all lack a full combination of the

ability to detect and correct multiple errors and at the same time generate a big

dictionary.

1.3 Objectives of the Study

1.3.1 General Objective

The main objective of this research is to determine and compare the effect on the

dictionary size brought about by varying conditions applied to each of the code

and to design a code that improves error detection and correction yet maintaining

and possibly increasing the dictionary size compared to the other three codes.

1.3.2 Specific Objectives

1. Determine the size of the dictionaries in the ISBN-10 and ISBN-13 codes

against the error detection and correction capabilities.

12

2. Determine the efficiency of the Cyclic ISBN-10 code in error detection and

correction against the size of the dictionary.

3. Develop a new code that improves the ISBN-10, ISBN-13 and Cyclic ISBN-

10 codes in error detection and correction capabilities against the dictionary

size.

4. Design and develop a computer program that generates the new code

5. Generate a conversion tool for the already existing codes to the new devel-

oped code.

1.4 Justification of Study

Different codes are used to identify cars, magazines, books, journals among others.

In Kenya, seven (7) digits are used to code registered vehicles. The need for an

extra digit arose from the once nationally recognized six (6) digit method which

speedily ran out of codes. This means that the authorities involved realized the

danger and need for the change and provided a viable solution which has so far

worked well. The ISBN code uniquely identifies a book title.

This means that no two or more different books titles in the universe should share

an ISBN. Libraries, companies and even individuals may therefore use the ISBN

of a book to order for supplies from publishers or distributors. Libraries may use

the ISBN in catalogueing books on their shelves for easy identification.

Without loss of generality, suppose in a day ten thousand (10,000) different books

are published in the world. In a span of a millennium, ten billion (10,000,000,000)

code words shall be required to cater for these books. This means that the world

needs a code that can if possible generate unending number of code words to

cater for this major need for millions of years ahead of us. In any environment,

13

noise, electromagnetic radiations and any other forms of disturbances affect com-

munication leading to errors in the received messages or even to an extent of the

message not being received at all. It is due to this reason that importance is thus

attached to finding means of detecting and correcting any error that occur. Thus

the need for a code that fully guarantees security in the sense that whenever two

or more persons send or receive this code then data integrity and authentication

are guaranteed. Occurrence of errors during communication involving a buyer to

and from a seller may lead to the buyer receiving the wrong book, delaying the

process or even missing his intended book completely incase the received ISBN

does not exist. Faulty codes generation and consecutive printouts by publishers

may lead to two or more books sharing the same ISBN which may cause great

confusion and losses in the hands of buyers and the publishers.

This code will successfully improve the cyclic ISBN-10 code as far as multiple

error detection and correction and increase the dictionary. It will also challenge

the existing ISBN-13 code in multiple error detection and correction. The scope

of this research could allow enquiry for calculation of actual number of code words

(the dictionary) that this code can provide. A computer program to do this and

also to aid in faster error detection and correction remains an interesting problem

to be tackled in the near future.

1.5 Null Hypothesis

• The designed ISBN-16 code cannot detect or correct multiple errors and

does not have sufficient dictionary.

14

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In 1986, Raymond researched and wrote on ISBN-10 code to show that it was

designed to detect a single error and a double-error which can be caused by the

transposition of two digits. Raymond gave some conditions as discussed earlier

in section 2.2.1 that must be satisfied for error correction. He noted also that

ISBN-10 code cannot be used to correct an error unless one knows the digit in

error, this is the basis of the parity check equation.

In 1993, Kenneth researched on the ISBN-10 code and showed the check digit was

a remainder upon division by 11 of a weighted sum of the first nine digits. He

also showed that a single error or a transposition of two digits could be detected

using the check digit and that it is possible to detect and correct errors, Kenneth

(1993). In 1993, Henk described a communication channel and noted that it is

made up of the sender, encoder, channel, decoder and receiver as shown in figure

2.1 below;

Figure 2.1: Communication Channel

In 1998, Tervo researched on the secrets of ISBN-10 and stated that “Error control

codes are often designed for known applications where certain types of errors are

15

expected to occur. In this case, the most common errors expected would be those

which humans would typically make when writing or typing a book order. These

errors would normally be either "write a single digit incorrectly", or "switch two

adjacent digits". Of course, the ability to detect errors also allows identification

of invalid numbers which might be encountered (for example, if someone were

to forge a credit card number). Forgery is not expected to be a real concern for

book numbers, but error detection is very important”. Tervo (1998) goes ahead

to note that “A systematic approach to error detection can lead to better codes”

.

Doumen (2003), researched on the aims of cryptography in providing secure trans-

mission of messages in the sense that two or more persons can communicate in a

way that guarantees confidentiality, data integrity and authentication.

Sebastia (2003) studied on the Block error correcting codes. He found that the

minimum distance decoder maximizes the likelihood of correcting errors if all the

transmission symbols have the same probability of being altered by the channel

noise. He also noted that if a code has a minimum distance d, then d(C) − 1 is

the highest integer with the property that the code detects d(C)− 1 errors.

Todd (2005), studied on the Error control coding. He showed that if a commu-

nication channel introduces fewer than the minimum distance errors, d(C), then

these can be detected and that if d(C)−1 errors are introduced, then error detec-

tion is guaranteed. He also noted that the probability of error detection depends

only on the error introduced by the communication channel and that the decoder

will make an error if more than half of the received bit strings are in error.

Egghe (2005), studied the Coding of the ISBN. He concluded that the minimum

requirement for a useful code was that all single errors as well as all permutations

of two symbols must be detectable. They also discussed the strength of alternative

codes, in particular with respect to the detection of double errors. They gave a

16

complete description of the method based on division by 11, described the power

of the method with respect to the detection of three or four errors.

Egghe and Ronald (2005), studied the Detection of Double Errors in ISBN and

ISSN-like codes and showed that, using division by 11, all coding methods detect

the same percentage of errors. It was also shown using numerical experiments

that in case larger prime numbers are used as a divisor, different methods have

different detection capabilities for double errors.

Egghe (1999), also studied the Detection and Correction of Multiple Errors in

General Block Codes and found the necessary condition for systems to be able

to detect all 1, 2, ..., (k − 1) errors (k ∈ N) and showed that the results have

applications in ISBN. He also showed that if the system detects all 1, 2, ..., k

errors (k ∈ N), then it corrects all 1, 2, ..., k errors.

Egghe and Ronald (2005), noted that a minimum requirement for a useful code is

that all single errors as well as all permutations of two symbols must be detectable.

They then left an open unsolved problem challenging the readers to Formulate a

new algorithm, with one check digit (or letter), such that all single and double

errors are detected (or prove that this is not possible).

In 2009, Nyaga and others studied the Cyclic ISBN-10 to improve the conventional

ISBN-10. They designed a code that would detect and correct multiple errors

without many conditions attached for error correction and found out that the

code could correct as many errors as the code could detect. The method involves

trial and error calculation and thus it needs to be improved on and simplified to

speed up the process.

Eric (2010a), studied the ISBN-10 code and showed that it consist of ten digits

code words made up of any of all 10-digit decimal numbers 0, 1, 2, . . . 9 and X for

10 such that if u = a1a2a3. a10 is an ISBN-10 code word, it must satisfy the

parity check equation
∑10

i=1 iai ≡ 0(mod11).

17

2.1.1 Types of errors in an ISBN code

The strength of a code may be measured by its ability to detect and correct errors.

To achieve this goal, the encoding and decoding process should be as error free

as possible. A code that does not guarantee this or has many weaknesses may

end up being unreliable no matter how big the dictionary is. The following are

errors that may exist in an ISBN code; the definitions are made in reference to

ISBN-10;

1. Single error: A single error may occur as a result of incorrect typing of one

digit in an ISBN code word or as a result of a smudge. The parity check

equation does not hold in this case. For example writing 1 in place of 7 is

a common typing single error, Raymond (1986).

2. Double error: A double error occurs when two digits in a code word are

incorrect. The parity check equation may not hold in this case, Raymond

(1986).

3. Silent error: A silent error occurs when the parity check equation holds

despite the sent and received code words differing in some bitstrings. This

means that the received code word may be an ISBN code word since it will

obey the parity check equation but it will not be code word that the sender

intended the receiver to receive. For example, let u = 0198538030 be the

sent code word and let v = 0194538230 be the received code word. Working

out for parity check equation;

for u, (1× 0) + (2× 1) + (3× 9) + (4× 8) + (5× 5) + (6× 3) + (7× 8) +

(8× 0) + (9×3) + (10×0) ≡ 0(mod11)

for v, (1× 0) + (2× 1) + (3× 9) + (4× 4) + (5× 5) + (6× 3) + (7× 8) +

(8× 2) + (9× 3) + (10× 0) ≡ 0(mod11)

18

Despite that v differs from u, the parity check equation is met in both cases.

This means that both u and v are ISBN code words but the receiver did

not receive the desired message that the sender intended. The mistyping

was an error but since the receiver received a message which the decoding

process could only identify as valid, v will be erroneously received as the

sent code word leading to a silent error.

4. Transpose error: A transpose error may occur due to interchanging of digits

in a code word, Raymond (1986). For example writing 69 in place of 96 is

a transpose error. Since computation is done modulo 11 which is a prime

number, the error will be noticed. If operations were done modulo n, where

m is composite, then it would be possible for transpose error be silent. This

would happen when the digits interchanged also yield the same result when

multiplied by their respective multipliers modulo n.

5. Omission or insertion of a digit(s) error: These are errors that occur when a

digit(s) are omitted or extra digit(s) are added. Clearly the code will have

less (or more) than the required digits. The parity check equation does not

hold in this case. For example consider u = 01945382310. Clearly, u has 11

digits instead of 10 digits. One may assume that the last two digits, 1 and

0 are representing the number 10 in which case the parity check equation

is computed and if it holds, then X should be used in place of 10 and u

would be a code word. Otherwise, u is not an ISBN-10 code word since an

ISBN-10 code word has 10 digits and must satisfy the parity check equation.

19

2.2 ISBN-10 Code

2.2.1 Error Detection in ISBN-10 code

According to Raymond (1986), the ISBN code is designed to detect single error

and also double error which comes as a result of transposition of two digits.

For a received vector v = b1b2. . . b10 its weighted check sum B = (
∑10

i=1 ibi) is

computed. If B 6= 0(mod11), then error(s) have been detected.

Suppose u = a1a2...a10 is the code word and suppose u is similar to v except that

digit aj is received as aj + t with t 6= 0 .

Then,

B = (
10∑
i=1

iai) + jt = jt 6= 0(mod11) (2.1)

This is because j and t are non-zero digits less than11. The ISBN code cannot

be used to correct an error unless it is known that just one given digit is an error.

This is the basis of the parity check.

2.2.2 Number of code words in ISBN-10 Code

To calculate the total number of code words, it is first established how many bit

strings can permute. For an ISBN-10 code, the check digit is not just chosen. It

is computed such that the parity check equation holds. There is need to show

that there is no chance for the check digit to permute freely meaning that it is

only chosen for the specific code word. This is discussed later in section 3.1.2.

Since the check digit does not permute, the code has 10 bit strings, only the first

9 bit strings can be allowed to permute (9 bit strings are chosen from 10 digits

namely 0 to 9) and then the check digit computed for each code word generated.

Since the digit repetition for the first nine positions is allowed, there are 109

20

permutations. Thus if no other conditions are attached to the code (for example

error detection and correction), it has a dictionary of 109 = 1, 000, 000, 000 code

words. If digit repetition was not allowed, there would have been 10P9 permuta-

tions which yield to 3, 628, 800 code words. Considering the conditions discussed

above that must be met for a code to detect and correct errors the following

proposition is of importance.

Proposition 2.2.1. Let u be an ISBN-10 code word. Then u does not necessarily

satisfy all the conditions given in equations (2.4) and (2.5)

Proof. (By counter example): Consider the code word u = 0198538030

10∑
i =1

iai ≡ 0(mod11)

Therefore u = 0198538030 is an ISBN-10 code word.

But,

10∑
i=1

ai ≡ 4(mod11) 6= 0(mod11)

Since one of the conditions is not satisfied, then u does not necessarily satisfy all

the conditions.

This result shows that not every ISBN-10 code word will satisfy all the conditions.

Thus if the conditions are imposed so that the code can correct errors, then some

code words will be excluded. There is thus a need to show how each of these

conditions affect the dictionary size and by how much.

2.2.3 Error Correction in ISBN-10 code

Raymond (1986) describes syndrome-decoding scheme that corrects any single

error and which simultaneously detect any double error arising from the trans-

21

position of two digits of a code word. Suppose u and v are the sent and received

code words respectively,

The system (A,B) = (
∑10

i=1 yi,
∑10

i=1 iyi) is calculated modulo11.

Suppose a single error has occurred, so that for some non-zero integers j and k,

for the received vector v,

A =
10∑
i=1

yi =
10∑
i=1

yi + k ≡ k(mod11) (2.2)

B =
10∑
i=1

iyi =
10∑
i=1

iyi + jk ≡ jk(mod11) (2.3)

The error magnitude k is given by A and the error position j is given by the

value of B|A which is calculated as BA−1. Hence the decoding scheme is, after

calculating (A,B) from v, as follows:

1. If(A,B) = (0, 0), then v is a code word and it is assumed that there are no

errors.

2. If A 6= 0 and B 6= 0, then it is assumed that there is a single error which is

corrected by subtracting A from the(B/A)th entry of v.

3. If A = 0 or B = 0 but not both, then at least two errors have been detected.

Case (3) always arises if two digits of a code word have been transposed,

for then A = 0 and (as for the ISBN code)B 6= 0.

For example, supposev = 0610271355. Computation yields A = 8 and B = 6.

Hence, B/A = 6 × 8−1 = 6 × 7 = 42 = 9 and so the 9th bit string should have

22

been 5–8 = −3 = 8. Raymond showed that, to correct a single error the sent

code word, has to satisfy the following condition:

10∑
i=1

ai =
10∑
i=1

iai ≡ 0(mod11) (2.4)

Similarly, to correct a transpose error the sent code word has to satisfy the fol-

lowing:

10∑
i=1

ai ≡
10∑
i=1

iai ≡
10∑
i=1

i2ai ≡
10∑
i=1

i3ai ≡ 0(mod11) (2.5)

2.3 Cyclic ISBN-10 Code

2.3.1 Calculation of the inverses in (Z∗11,×,+)

Under the operation addition

According to Nyaga and Cecilia (2008), if u and v are elements in the field Z11, u

is said to be the additive inverse of v (denoted by –v) if v+ u ≡ 0(mod11). Since

0 is the additive identity, the following result hold.

Table 2.1: Inverses under addidtion for cyclic ISBN-10
v 1 2 3 4 5 6 7 8 9 10
−v 10 9 8 7 6 5 4 3 2 1

23

Under operation multiplication

According to Nyaga and Cecilia (2008), if u and v are non zero elements in

the field Z, u is said to be the multiplicative inverse of v (denoted by v−1) if

u×v ≡ 1(mod11). Since 1 is the multiplicative identity, the following result hold.

Table 2.2: Inverses under multiplication for cyclic ISBN-10
v 1 2 3 4 5 6 7 8 9 10
v−1 1 6 4 3 9 2 8 7 5 10

2.3.2 Calculation of the check digit in Cyclic ISBN-10 code

Let u=a1a2...a10 be a code word. To calculate the check digit a10, calculate

P =
∑9

i=1 iai, for i = 1, 2, . . . , 9

Thus P + 10a10 ≡ 0(mod11) or simply 10a10 ≡ −P (mod11). Hence, a10 =

(10−1)(−P)(mod11) ≡ 10(−P)(mod11) ≡ −10P (mod11)

But since −10 ≡ 1mod11,
(2.6)a10 ≡P (mod11)

Nyaga and Cecilia (2008).

Example 2.3.1. Calculate the check digit, a10, for the code word 764302478a10

Solution:

P =
∑9

i=1 iai ≡ 2(mod11). From equation 2.6 above, a10 = P thus a10 = 2

Other examples of Cyclic ISBN-10 code words include:

1234556782, 0112344569, 0123456789, 7765442112, 6542211098

24

2.3.3 Error Detection in Cyclic ISBN-10

To detect whether or not a code word has an error, the flow of the digits in the

code word is checked and if any digit breaks the flow then error(s) exist. The

parity check equation is then evaluated and if the result is not zero modulo eleven

then there are error(s) even if the flow of the digits may be correct. To correct

this error, a digit is chosen such that it satisfies the conditions of being a cyclic

ISBN-10 code, Nyaga and Cecilia (2008).

2.3.4 Single Error Correction in Cyclic ISBN-10

To correct an error, the procedure starts by detecting the error position as ex-

plained earlier. If the error is at position i = k, for 1 ≤ k ≤ 10, and suppose

the correct digit is m, then according to Nyaga and Cecilia (2008), the following

results follows,

(2.7)mk +
10∑

i =1,i 6=k

iai ≡ 0(mod11)

Thus,

mk = −
10∑

i=1,i 6=k

iai(mod11)

which yields to

(2.8)m = (k−1)× (−
10∑

i=1,i 6=k

iai(mod11))

.

For example, suppose a code word is received as y = 9876354209. Nyaga and

Cecilia (2008), observed that the digits are written in a decreasing order except

the 5th position where the sequence starts increasing and all over sudden at 6th

position it starts decreasing again. There is thus an error in 5th position. The

correct digit can be computed as

25

(2.9)m = (5−1)× (−
10∑

i=1,i 6=5

iai(mod11))

But

10∑
i=1,i 6=5

iai(mod11) = 234 = 3(mod11) (2.10)

Since 5−1 = 9, and −3 ≡ 8(mod11), we have m = 9× 8 = 72 ≡ 6(mod11) .

Replacing with 6 yields 9876654209 whose weighted sum is 264 ≡ 0(mod11) hence

is a Cyclic ISBN-10 code word.

Alternatively using the trial and error method to correct this error, Nyaga and

Cecilia (2008) observed that the only digits that would replace 3 in this position

without breaking the order of flow were only 5 or 6. Replacing with 5 yields

the code word 9876554209, whose weighted sum is 269 6= 0(mod11) which does

not satisfy the parity check equation, hence not a Cyclic ISBN-10 code word.

Replacing with 6 yields 9876654209 whose weighted sum is 264 ≡ 0(mod11)

hence is a Cyclic ISBN-10 code word, Nyaga and Cecilia (2008).

2.3.5 Double Error Correction in Cyclic ISBN-10

To correct a double error, suppose the error is at position a and b, for 1 ≤ a ≤ 10

and 1 ≤ b ≤ 10 and suppose the correct digit is m and n at positions a and b

respectively, then the following results follows,

(2.11)am+ bn+
10∑

i =1,i 6=a,i 6=b

iai ≡ 0(mod11)

Through trial and error, m and n are chosen such that the correct order of flow

of digits is obeyed and the parity check equation is satisfied, Nyaga and Cecilia

(2008).

26

Example 2.3.2. If y = 7165042112 the digits at the 2nd and 5th position break

the order of flow and that the weighted sum yields to 122 6= 0(mod11).

Only 7 or 6 can restore the order of flow at the 2nd position whereas only 5 or 4

can restore the order of flow at the 5th position. Using trial and error method,

replace 7 or 6 to the 2th position then replace 5 or 4 to the 5th position and

then the weighted sum is computed to check if it is congruent to zero modulo

eleven. This gives 4 options namely 7 and 5 or 7 and 4 or 6 and 5 or 6 and 4.

Working out yields 7 and 4 as the correct digits when replaced in the 2nd and 5th

positions respectively. Thus the code word is 7765442112, whose weighted sum

is
∑10

i = 1
iai = 264 ≡ 0(mod11)

The Cyclic ISBN-10 therefore can correct the double errors in the received code

word.

2.3.6 Number of code words in Cyclic ISBN-10

To calculate the total number of code words, we first establish how many bit

strings can permute. Just as in ISBN-10 and ISBN-13, the check digit does

not permute. It is chosen to satisfy the parity check equation. According to

Nyaga and Cecilia (2008), this code limits 0 from being the first digit so that this

position can only be filled in 9 ways. The remaining 8 bit strings can be occupied

by any of the 10 digits 0, 1, 2, . . . , 9 thus 108 permutations. Thus in total there are

9 × 108 = 900, 000, 000 code words, Nyaga and Cecilia (2008). This calculation

however faces some oversight as shown in the proposition 2.3.1 below.

Proposition 2.3.1. The cyclic ISBN-10 generates less than 9× 108 code words.

Proof. (By counter example): Suppose the first bit string is “2” and the second

bit string is “3”. To generate the third bit string, it must be chosen such that

the flow of the bit strings is not broken. Hence it can neither be “1” nor “2”.

27

Therefore this position can only be occupied by 0, or 3, or 4, or . . . or 9. These

are only eight choices not ten choices.

Similarly, if one has a code word with 543... as the first three bit strings, the

fourth bit string cannot be 4, 5, 6, 7, 8 or 9. Otherwise it will alter the flow of the

bit string. Thus for this position, only 0, 1, 2 or 3 can be chosen yielding to four

choices not ten choices. Thus the total code words do not necessarily add up to

9× 108 code words.

2.4 ISBN-13 Code

2.4.1 Error Detection in ISBN-13 code

Suppose v is the received code word. To detect an error, computation is done

to check if the parity check equation 1.2 holds, if not then error(s) exist in the

received code word v. The error could have been as a result of the sources of

errors discussed earlier. Contrary to ISBN-10, the ISBN-13 does not indicate the

exact bit string which is in error. It only identifies the existence of an error in a

code word but does not correct it thus one must request for retransmission if an

error is detected.

2.4.2 Number of code words in ISBN-13 code

To calculate the total number of code words, it is first established how many bit

strings can permute. For an ISBN-13 code, the check digit is not just chosen; it is

computed such that Equation 1.2 holds. Just as in ISBN-10, there is thus need to

show that there is no chance for the check digit to permute freely meaning that

it is only chosen for the specific code word. This is discussed later in Proposition

3.1.4. This result emphasizes that though the code has 13 bit strings, only the

first 12 bit strings permute (12 bit strings are chosen from 10 digits namely 0 to 9)

28

with the 13th bit string, the check digit, computed for each code word generated.

Since digit repetition for these permuting positions is allowed, there are 1210

permutations. Thus if no other conditions are attached to the code (for example

error detection and correction), it has a dictionary of 1210 = 61, 917, 364, 224 code

words. This clearly shows that the ISBN-13 code surpasses the dictionary size in

ISBN-10 code. If digit repetition was not allowed, there would have been 12P10

permutations which would yield to 239, 500, 800 code words. The repetition of

digits is thus very important and inevitable due to the great demand for a big

dictionary that the repetition offers.

Remark. As discussed earlier in section 1.1.1, book publishers saw the need for a

uniform way to identify all the different books that were being published through-

out the world assigning each book a unique code word. If a reader is interested

in purchasing a book coded u, he/she sends this code word to a seller. Suppose

in the process due to errors the seller receives the code word v which is also a

valid code word but different from u. The reader will end up purchasing the

wrong book thus to avoid this, both parties may need to reconfirm if the sent and

received code words are the same. This makes the process long and expensive. A

code should thus not only guarantee the uniqueness of a book for cataloguing but

also ensure it avoids this blind spot. ISBN-13 was designed as an improvement

to the earlier code, ISBN-10 but as discussed earlier in section 1.1.6, this was not

fully achieved. There is also a need to discuss the error detection and correction

capabilities of the ISBN-10 and show how the number of codewords generated is

affected. This is done in chapter 2. There is therefore great need to generate a

code that improves and if possible completely resolves the weakness in the ISBN

code as far as error detection, error correction and dictionary size are concerned.

It is due to this great demand that this research is undertaken.

29

CHAPTER THREE

ISBN CODE PROPERTIES

This chapter sets the methodology of the research by discussing the properties of

the ISBN-10, ISBN-13 and the Cyclic ISBN-10 codes and using the research gaps

established to form the basis of the research results. It then eventually introduces

the development and generation of the resulting ISBN-16 code

3.1 Properties of ISBN-10, ISBN-13 and Cyclic ISBN-10

codes

3.1.1 Number of code words in ISBN-10, ISBN-13 and

Cyclic ISBN-10 codes

In this section, the total number of code words for each of the three codes is

determined and when not possible, the upper bound is determined.

Proposition 3.1.1. The ISBN-10 code has a dictionary with an upper limit of

109 code words.

Proof. The proof was shown earlier in section 2.2.2.

Proposition 3.1.2. The cyclic ISBN-10 code has a dictionary with an upper

limit of 9× 108 code words.

Proof. As seen earlier in section 2.3.6, the first bit string can only be filled in

nine ways. The next eight bit strings can be occupied by any of the 10 digits

0, 1, 2, . . . , 9 thus 108 choices. In total the maximum number of code words that

can be generated is 9 × 108 code words. This is the dictionary’s upper limit for

the code.

30

Proposition 3.1.3. The ISBN-13 code has a dictionary of 1210 = 61, 917, 364, 224

code words.

Proof. The proof was discussed earlier in section 2.4.2 ,

Proposition 3.1.4. In an ISBN-10 code, the check bit string does not permute.

Proof. Computation for the check digit is done modulo 11. Let u and v be two

ISBN-10 code words given by u = a1a2. . . a9a10

and v = a1a2. . . a9b10 (similar in the first nine bit strings and suppose the check

digit can permute). Since u and v are code words then,

(
∑9

i=1 iai) + 10a10 ≡ 0(mod11) and (
∑9

i=1 ibi) + 10b10 ≡ 0(mod11)

But u and v are similar in the first 9 bit strings. Thus, 10a10 = 10b10mod11. By

cancellation law for fields or integral domains, a10 = b10. Hence the check bit

string does not permute.

Proposition 3.1.5. In an ISBN-13 code, the check bit string does not permute.

Proof. Let u and v be two ISBN-13 code words given

by u = a1a2a11. . . a12a13 and v = a1a2. . . a11a12b13 (similar in the first twelve bit

strings and suppose the check digit can permute), then

a13 = 10–(a1+3a2+a3+3a4+a5+3a6+a7+3a8+a9+3a10+a11+3a12)(mod10)

and

b13 = 10–(a1+3a2+a3+3a4+a5+3a6+a7+3a8+a9+3a10+a11+3a12)(mod10)

But since u and v are similar in the first 12 bit strings then a13 = b13. Hence the

check bit string does not permute.

31

3.1.2 Error detection and (or) correction capability in ISBN-

10, ISBN-13 and Cyclic ISBN-10 codes

In this section, the ability to detect or (and) correct error(s) is determined and

analyzed

Proposition 3.1.6. In an ISBN-13 code, any transposition of adjacent bit strings

on a sent code word that yields same weighted sum modulo 10 cannot be detected

nor corrected.

Proof. Let ai and ai+1 be adjacent bit strings in a code word. Suppose during

transmission, the bit strings are transposed and are such that they yield the same

weighted sum modulo 10, that is; Suppose ai is an even bit string and ai+1 is an

odd bits string.

Then, 3ai + ai+1 = b(mod10) and ai + 3ai+1 = b(mod10), 1≤i≤12

Adding up the two equations yields 4ai + 4ai+1 = 2b(mod10). Thus there exists

an integer n such that 4ai + 4ai+1 − 2b = 10n, nεZ

Similarly, if ai is an odd bit string and ai+1 is an even bits string, the same result

will hold. Any transposition of such adjacent bit strings will go undetected.

Proposition 3.1.7. In an ISBN-13 code, any single transposition (two bit strings

transposed) of bit strings on a sent code word of the same parity (even or odd)

cannot be detected nor corrected.

Proof. For this proof to be complete, it must be shown that it holds for both even

and odd positions.

Without loss of generality, let ai and aj where i = 2n, 1 ≤ n ≤ 6 and j = 2m, 1 ≤

m ≤ 6 be the two bit strings in the sent code word a which are transposed to

yield to code word b. Upon computation of the check digit, each bit string at an

even position is multiplied by 3.

32

Clearly, 3ai + 3aj = 3aj + 3ai for all i and j since addition of integers is commu-

tative. Thus upon computation of the check digit, both a and b yield the same

result.

Similarly, without loss of generality suppose al and ah , where l = 2n+1, 1 ≤ n ≤ 6

and j = 2m+1, 1 ≤ m ≤ 6 are the two bit strings in the sent code word a which

are transposed to yield to code word b. Upon computation of the check digit,

each bit string at an odd digit position is multiplied by 1.

Clearly, al + ah = ah + al for all l and h. Thus upon computation of the check

digit, both a and b yield the same result. In both cases, the error is not detected

hence cannot be corrected.

Example 3.1.1. Consider the sent code word 9780198538035 and 9087198538035

as the received code word. As shown earlier in section 1.1.5, 9780198538035 is a

valid code word. Consequently, 9087198538035 will yield the same results since

it is just a transposition of the second and fourth bit strings which are even bit

strings. The following two propositions generalize the conditions for a double

error on odd positions to be undetected.

Proposition 3.1.8. In an ISBN-13 code, any double silent errors on odd positions

of a sent code word that yields same weighted sum modulo 10 with the ones on

the received code word cannot be detected nor corrected.

Proof. For an error to be corrected, it must be first detected. Thus it is only

needed to prove that the errors cannot be detected and consequently cannot be

corrected. Suppose two silent errors occur on two odd positions of the code word

u = a1a2.a11a12a13 namely ai and aj where 1 ≤ i ≤ 11, 1 ≤ j ≤ 11, ai 6= aj to

yield to a code word v = a1a2.a11a12a13 which differ with u in only the two

odd positions such that ai is replaced by bi and aj is replaced by bj.

Without loss of generality suppose i = 1 and j = 3. This choice can generalize

33

the other odd positions since upon calculation of the check digit, the bit stings at

the odd positions are each multiplied by 1 thus the digit position does not matter

provided it is in an odd position.

a13 = 10–(a1+3a2+a3+3a4+a5+3a6+a7+3a8+a9+3a10+a11+3a12)(mod10)

and similarly

a13 = 10–(b1+3a2+ b3+3a4+a5+3a6+a7+3a8+a9+3a10+a11+3a12)(mod10)

Suppose a1 + a3 ≡ b(mod10) and b1 + b3 ≡ b(mod10), 1 ≤ b ≤ 9

Then we have that,

(a1 + a3)− (b1 + b3) ≡ (b− b)(mod10)

or
(a1 + a3) ≡ (b1 + b3)(mod10)

This means that any such error on bit strings satisfying this equation will go

undetected and hence uncorrected.

Corollary 3.1.1. The lower limit of the number of bit strings that can be in

error in an ISBN-13 codeword to yield to a silent error is 2.

Proof. Since the number of bit strings cannot be negative, then we only need to

show that it cannot be zero or one. Suppose no bit string is in error in a valid

code word. Thus the code word remains the same and similarly no silent error.

If one bit string is in error, the check digit evaluation method would detect the

error thus no silent error. Hence the lower limit on the number of bit strings that

can be in error to yield to a silent error is 2.

This proof leads to the need of determining the upper limit on the maximum

number of errors on a code word that can occur to yield to a silent error. This is

established later in corollary 3.1.4

34

Corollary 3.1.2. In an ISBN-13 codeword, if the following values on bit strings

are replaced with the ones indicated with an “or”, then a silent double error occurs

where 1 ≤ i ≤ 12, 1 ≤ j ≤ 12.

ai = 1, aj = 9 or ai = 2 , aj = 8 or ai = 3 , aj = 7 or ai = 4 , aj = 6 or ai = 5 ,

aj = 5

ai = 2, aj = 9 or ai = 3, aj = 8 or ai = 4, aj = 7 or ai = 5, aj = 6

ai = 3, aj = 9 or ai = 4, aj = 8 or ai = 5, aj = 7 or ai = 6, aj = 6

ai = 4, aj = 9 or ai = 5, aj = 8 or ai = 6, aj = 7

ai = 5, aj = 9or ai = 6, aj = 8 or ai = 7, aj = 7

ai = 6, aj = 9 or ai = 7, aj = 8

ai = 8, aj = 8 or ai = 9, aj = 7

Proof. This is as a consequence of the proposition 3.1.10 above since they leave

the same weighted sum modulo ten.

Proposition 3.1.9. In an ISBN-13 code, any double silent errors on even posi-

tions on a sent code word that yields same weighted sum modulo 10 cannot be

detected nor corrected.

Proof. Suppose two silent errors occur on two even positions of the code word

u = a1a2. . . a11a12a13 namely ai and aj, where 2 ≤ i ≤ 12, 2 ≤ j ≤ 12, ai 6= aj,

to yield to a code word v = a1a2. . . a11a12a13 which differ with u in only the two

even positions such that ai is replaced by bj and aj is replaced by bj.

Without loss of generality, suppose i = 2 and j = 4. This choice can generalize

for the other even positions since upon calculation of the check digit; the bit

stings at the even positions are each multiplied by 3 thus the digit position does

not matter provided it is in an even position.

a13 = 10–(a1+3a2+a3+3a4+a5+3a6+a7+3a8+a9+3a10+a11+3a12)(mod10)

a13 = 10–(a1+3b2+a3+3b4+a5+3a6+a7+3a8+a9+3a10+a11+3a12)(mod10)

35

Suppose, 3a2 + 3a4 ≡ b(mod10) and 3b2 + 3b4 ≡ b(mod10), 1 ≤ b ≤ 9 that then

yields the same sum modulo ten.

Then (3a2 +3a4)–b = 10k1, where k1 ∈ Z and (3b2 +3b4)–b = 10k2 where k2 ∈ Z

Subtracting yields 3(a2 + a4)–3(b2 + b4) = 10(k1–k2), (k1–k2) ∈ Z or

3(a2 + a4) ≡ 3(b2 + b4)(mod10)

Hence,
(a2 + a4) ≡ (b2 + b4)(mod10)

Any interchange of ai with aj satisfying this equation will be an error which would

go undetected.

Proposition 3.1.10. In an ISBN-13 code, any multiple silent errors on even

positions of a sent code word that yields same weighted sum modulo 10 cannot

be detected nor corrected.

Proof. Suppose there are n silent errors on n even positions of the code word

u = a1a2. . . a11a12a13 to yield to a code word v = b1b2. . . b11b12b13 which differ with

u in n bit strings such that each even position ai is replaced by bi for 1 ≤ 2i ≤ 12.

Upon calculation of the check digit, the even positions are each multiplied by

3. Suppose 3
∑12

i a2i ≡ c(mod10) for 1 ≤ i ≤ 6 and 3
∑12

2i bi ≡ c(mod10) for

1 ≤ i ≤ 6 (that is, they yield the same weighted sum modulo ten).

Then (3
∑12

i a2i)− c = 10k1, k1 ∈ Z and (3
∑12

i b2i)− c = 10k2, k2 ∈ Z.

Subtracting yields

3
12∑
i

a2i − 3
12∑
i

b2i = 10(k1 − k2)

thus

3
12∑
i

a2i ≡ 3
12∑
i

b2i(mod10)

Any interchange of ai with bi, for 1 ≤ i ≤ 6, satisfying this equation will be an

error which would go undetected.

36

Example 3.1.2. Suppose the code word a = 9780198538035 is sent and suppose

three errors occur on the second, fourth and sixth bit strings to yield a code word

received as b = 9881178538035. As discussed earlier in 1.1.5, 9780198538035 is a

valid ISBN-13 code. Considering 9881178538035

s = 9× 1 + 8× 3 + 8× 1 + 1× 3 + 1× 1 + 7× 3

+8× 1 + 5× 3 + 3× 1 + 8× 3 + 0× 1 + 3× 3

= 9 + 24 + 8 + 3 + 1 + 21 + 8 + 15 + 3 + 24 + 0 + 9

= 125 ≡ 5(mod10)

But 10–5 = 5 ≡ 5(mod10) thus our check digit is 5. Hence 9881178538035 is

also a valid code word. This means that even though errors occurred during

transmission, the system will not detect the error made!

Corollary 3.1.3. In an ISBN-13 code, any multiple silent errors on odd positions

on a sent code word that yields same weighted sum modulo 10 cannot be detected

nor corrected.

Proof. Suppose there are n silent errors on n odd positions of the code word

C1 = a1a2. . . a11a12a13 to yield to a code word C2 = a1a2. . . a11a12a13which differ

with C1 in n bit strings such that each odd positions, ai, in error is replaced by

bi for 1 ≤ 2i+ 1 ≤ 11

Upon calculation of the check digit, the odd positions are each multiplied by 1.

Suppose
∑11

i a2i+1 ≡ c(mod10) and
∑11

i b2i+1 ≡ c(mod10) where 0 ≤ i ≤ 5, that

is,

they yield the same sum modulo ten.

Then (
∑11

i a2i+1)− c = 10k1, k1 ∈ Z and (
∑11

i b2i+1)− c = 10k2, k2 ∈ Z.

37

Subtracting yields

11∑
i

a2i+1 −
11∑
i

b2i+1 = 10(k1 − k2)

Thus
11∑
i

a2i+1 ≡
11∑
i

b2i+1(mod10)

Any interchange of ai with bi, for 0 ≤ i ≤ 5 satisfying this equation will be an

error which would go undetected.

Example 3.1.3. Consider the sent code word 9780198538035, received code word

9740598538035.

As discussed earlier in section 1.1.5, 9780198538035 is a valid ISBN-13 code.

Considering 9740598538035

s = 9× 1 + 7× 3 + 4× 1 + 0× 3 + 5× 1 + 9× 3

+8×1 + 5×3 + 3×1 + 8×3 + 0×1 + 3×3

≡ 5(mod10)

But 10–5 = 5 ≡ 5(mod10) Thus our check digit is 5. Hence 9740598538035 is

also a valid code word. This means that even though errors occurred during

transmission, the system will not detect the errors!

Corollary 3.1.4. The upper limit on the maximum number of errors on a code

word that can occur to yield to a silent error in ISBN-13 code is twelve.

Proof. Since the check digit is computed from the other digits and any multiple

silent errors on a sent code word that yields the same weighted sum modulo 10

cannot be detected as in corollary 3.1.3, the upper limit is thus twelve.

38

Proposition 3.1.11. The ISBN-13 detects any single error on any even digit

position.

Proof. By contradiction, suppose it cannot. This means that there exists a code-

word u and a received codeword v such that they differ on one even digit position

say i where ai and bi are the ith digit position respectively which shows a single

error.

Since i is even, then i = 2n, n ∈ Z, 1 ≤ n ≤ 6. The check digit is not an even

position thus it is not in error and hence the check digits for the codewords are

similar.

a13 = 10–(a1 + 3a2 + ...+ 3ai + ai+1 + ...+ 3a12)(mod10), 2 ≤ i ≤ 12

and

a13 = 10–(a1 + 3a2 + ...+ 3bi + ai+1 + ...+ 3a12)(mod10), 2 ≤ i ≤ 12

Suppose 3ai ≡ k(mod10) and 3bi ≡ w(mod10)

Then a13 = 10–(a1 + 3a2 + ...+ k + ai+1 + ...+ 3a12)(mod10), 2 ≤ i ≤ 12

and a13 = 10–(a1 + 3a2 + ...+ w + ai+1 + ...+ 3a12)(mod10), 2 ≤ i ≤ 12

In Z10, k = w, since the code word is only made of digits between 0-9, there cannot

be two different numbers between 0 and 9 which yield the same remainder modulo

ten. Thus, any single error on an even digit position will be detected.

Proposition 3.1.12. The ISBN-13 code detects any single error on any odd digit

position.

Proof. By contradiction, suppose it cannot.

This means that there exists two code words x and y which differ on one odd

digit position say i. This position cannot be the check digit since the check digit

is unique to a codeword.

Since i is odd, then i = 2n+ 1, n ∈ Z, 0 ≤ n ≤ 6

39

Let ai and bi be bit strings on u and v respectively which differ.

a13 = 10–(a1 + 3a2 + ...+ ai + 3ai+1 + ...+ 3a12)(mod10), 1 ≤ i ≤ 12

and

a13 = 10–(a1 + 3a2 + ...+ bi + 3ai+1 + ...+ 3a12)(mod10), 1 ≤ i ≤ 12

In Z10, ai = bi, since the code word is only made of digits between 0 and 9, there

cannot be two different numbers between 0 and 9 which yield the same remainder

modulo ten. Thus, any single error on an odd digit position will be detected.

Corollary 3.1.5. The ISBN-13 code can correct any single error on any digit

position (even or odd).

Proof. Suppose an error has been detected on any digit position, ai. To correct

it, a digit is chosen such that the parity check equation holds. Since computation

is done modulo 10 and the code words are only made of bit strings between 0

and 9, there cannot be two digits between 0 and 9 satisfying the above equation.

Thus the error detected is corrected.

Theorem 3.1.1. The ISBN-13 code does not detect transposition errors on even

bit strings.

Proof. In ISBN-13 as computation of the check digit is done such that the parity

check equation holds. That is,

a13 = 10–(a1+3a2+a3+3a4+a5+3a6+a7+3a8+a9+3a10+a11+3a12)(mod10)

Since even bit strings are each multiplied by 3 then summed up modulo ten, if a

single transposition error occurs such that an even bit string is transposed with

another even bit string in the same code word, the summation will not change

and so the computation of the check digit will not be affected.

40

Corollary 3.1.6. The ISBN-13 code does not detect any transposition error on

odd bit strings.

Proof. The proof is as a consequence of Theorem 3.1.1 above.

Theorem 3.1.2. The ISBN-13 code does not detect all double transposition

errors.

Proof. Suppose a double transposition error occurs on a code word u to yield a

code word v such that for any two bit strings at distinct digit positions ax and

ay, the bit string at digit position ax is transposed with the one at aw whereas

the bit string at digit position ay is transposed with the one at ap, in the same

code word, where x 6= w and y 6= p and that 1 ≤ x, y, w, p ≤ 12. If x = w,

then there is no transposition! If y = p, then there is no transposition! Since

the transposition occurs on the same code word, the received code word differs

with the sent code word in four bit strings. Therefore the minimum distance

d(u, v) = 4. Upon computation of the check digit for u and v, the working is

based on the parity of each of the bit string transposed so the check digit for v

will differ with that of u if the transposed digit positions differ in their parity

respectively. Otherwise if the digits transposed are of the same parity, the error

will go undetected as shown in theorem 3.1.1 and Corollary 3.1.6 above.

The choices can be found by drawing a tree diagram involving the two parities

to occupy the four positions. This yields to 24 options.

41

Table 3.1: Double transposition error in ISBN-13
axtransposed to aw aytransposed to ap

cases ax aw ay ap
1 Odd Even Even Even
2 Odd Even Even Odd
3 Odd Even Odd Even
4 Odd Even Odd Odd
5 Odd Odd Even Even
6 Odd Odd Even Odd
7 Odd Odd Odd Even
8 Odd Odd Odd Odd
9 Even Even Odd Even
10 Even Even Even Odd
11 Even Even Odd Odd
12 Even Even Even Even
13 Even Odd Even Even
14 Even Odd Even Odd
15 Even Odd Odd Even
16 Even Odd Odd Odd

As far as parity of the transposed bit strings is concerned, Cases 5, 8, 11 and 12

represent multiple transpositions of bit strings with same parity and as discussed

earlier Theorem 3.1.1 and Corollary 3.1.6, these errors cannot be detected.

In Cases 1, 4, 6, 7, 9, 10, 13 and 16, only one parity position is transposed. This

represents a single transposition of bit strings with different parity. The error will

not be detected if at these positions, the two weighted sums in the two codes are

the same modulo 10 as discussed earlier in corollary 3.1.2. If not, then the error

will be detected as follows:

Considering Case 1: ax (odd) transposed to aw (even) whereas ay (even) trans-

posed to ap (even)

For the sent code word: ax + 3aw + 3ay + 3ap ≡ k(mod10), k∈ Z

Received code word: 3ax + aw + 3ay + 3ap ≡ n(mod10), n ∈ Z

Since ay and ap have the same parity, they are both multiplied by 3 thus the

overall sum is the same irrespective of the transposition.

42

The difference in the two sums (sent and received code word) is therefore between

ax + 3aw and 3ax + aw

Suppose ax + 3aw ≡ h(mod10) and 3ax + aw ≡ y(mod10)

This is the same as (ax + 3aw) − h = 10c and (3ax + aw) − y = 10d for some

c, d ∈ Z

Subtracting yields

(2ax–2aw)− (y − h) = 10(d− c)

and
(2ax–2aw) ≡ (y − h)(mod10)

Suppose y = h, then y–h = 0 thus, 2ax–2aw ≡ 0(mod10), since computation is

done in Z10 this can only happen when ai = aw contradicting the fact that a

transposition took place, hence y 6= h . Thus, ax + 3aw 6= 3ax + aw and therefore

k 6= n so the errors are detected.

This shows that since the parity of ax differs with that of aw, if u and v have the

same check digit, then an error(s) must have occurred.

Cases 4, 6, 7, 9, 10, 13 and 16 follow a similar argument since in each, one of the

transpositions occurs on digit positions with the same parity.

Cases 2, 3, 14, and 15 represent a double transposition of bit strings with different

parity of the digit position.

The error will not be detected if at these positions, the two weighted sums in the

two codes are the same modulo ten as discussed earlier in corollary 3.1.2.

Otherwise, the error will be detected as follows: Consider case 14. ax (even) is

transposed to aw(odd) whereas ay(even) is transposed to ap(odd).

Sent code word: 3ax + aw + 3ay + ap ≡ k(mod10), k ∈ Z

Received code word: ax + 3aw + ay + 3ap ≡ n(mod10), n ∈ Z

If k = n, then it means the bit strings from the sent and received code words at

these digit positions yield the same weighted sum modulo ten. This error cannot

43

be detected as in corollary 3.1.2 above. If k 6= n, the errors are obviously detected.

Cases 2, 3 and 15 follow a similar argument since they are double transposition

of bit strings with different parity of the digit position.

3.1.3 Number of Code words versus Error Detection and

Correction

In this section, the effect of the capability to detect or correct error(s) on the

dictionary size is discussed and analyzed.

Proposition 3.1.13. The ability to detect an error(s) in the ISBN-10 code does

not affect (increase or reduce) its dictionary size.

Proof. As discussed earlier in section 2.2.1, the ISBN-10 code can detect single

errors and double errors which come as a result of transposition of two digits. To

detect the error(s), the parity check equation is computed. This condition is the

general condition for a code word to be an ISBN-10 code word. Thus to detect

an error(s), there is no extra condition imposed. With this initial condition, the

code will still generate the expected code words which satisfy the condition. Any

arbitrary code word which does not satisfy this condition will not be an ISBN-10

code word thus does not increase or reduce the code’s intended dictionary. If a

silent error occurs, it yields a different code word which is also a member of the

code and similarly does not increase or reduce the dictionary.

Proposition 3.1.14. The conditions for error correction given by equations 2.4

and 2.5 in section 2.2.3 above reduces the size of the dictionary of the ISBN-10.

Proof. By counter example, Consider the code word u = 0198538030

(
10∑
i=1

iai) = 187≡0(mod11)

44

Therefore u is an ISBN-10 code word.

But

(
10∑
i=1

ai) = 37≡4(mod11)6=0(mod11)

Then u does not necessarily satisfy the equation 2.4 above. Thus if the code is to

correct errors, v will not be contained in it since it does not satisfy the required

conditions. This in turn reduces the number of code words in the code.

Proposition 3.1.15. The ability to detect an error(s) in the ISBN-13 code does

not affect (increase or reduce) its dictionary size.

Proof. As earlier discussed in section 1.1.5 , to detect the existence of error(s) in

an ISBN-13 code word, the equation below is evaluated

x13 = 10–(x1+3x2+x3+3x4+x5+3x6+x7+3x8+x9+3x10+x11+3x12)(mod10)

This equation is the general condition for a code word to be an ISBN-13 code

word. The code generates code words which satisfy the condition. An arbitrary

code word x which does not satisfy this condition will not be an ISBN-13 code

word thus its existence does not increase or reduce the dictionary. If a transposi-

tion or silent error occurs, it yields a different code word which is also a member

of the code and similarly does not increase or reduce the dictionary.

Proposition 3.1.16. The ability to correct a single error in the ISBN-10 code

does not affect (increase or reduce) its dictionary size.

Proof: As earlier discussed in section 2.2.3, to correct a single error in the sent

code word, a code word a1a2. . . a10 has to satisfy the following:∑10
i=1 ai ≡

∑10
i=1 iai ≡ 0(mod11) .

That is,

10∑
i =1

ai = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10≡0(mod11)

45

and
10∑
i =1

iai = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 + 9a9 + 10a10≡0(mod11)

Thus

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 (3.1)

+a9 + a10 = 11k, k ∈ Z

and

a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 (3.2)

+9a9 + 10a10 = 11r, r ∈ Z

Equation 3.2 −Equation 3.1 yields

a2 + 2a3 + 3a4 + 4a5 + 5a6 + 6a7 + 7a8 (3.3)

+8a9 + 9a10 = 11(r–k) where (r − k) ∈ Z

This means that

(3.4)a2 + 2a3 + 3a4 + 4a5 + 5a6 + 6a7 + 7a8 + 8a9 + 9a10 ≡ 0(mod11)

Equation 3.4 does not involve a1 and hence a1 can be chosen freely from digits 0

to 9. As discussed earlier, the check digit a10 does not permute; it is computed

to satisfy the parity check equation. The other bit strings a2, a3, . . . , a8 can be

chosen from 0 – 9 such that equation 3.4 holds.

46

Solving equation 3.3 requires that the GCD of 2, 3, 4, 5, 6, 7 and 8 divide 11(r−k).

The GCD is 1 which will always divide 11(r−k) and thus the equation has integer

solution. The bit strings a2, a3, . . . , a8 can be chosen from 0 to 9 yielding to 107

choices. In total we have 108 choices which show that the dictionary is not

affected.

Theorem 3.1.3. The ability to correct transpose errors in the ISBN-10 code

reduces its dictionary size.

Proof: As earlier discussed in section 2.2.3, Raymond showed that, to correct

double errors the sent code word a1, a2, . . . , a10, has to satisfy the following:∑10
i=1 ai ≡

∑10
i=1 iai ≡

∑10
i=1 i

2ai ≡
∑10

i=1 i
3ai ≡ 0(mod11)

But
10∑
i =1

ai = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10≡0(mod11)

whereas
10∑
i =1

iai = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 + 9a9 + 10a10≡0(mod11)

and
10∑
i =1

i2ai = a1 + 22a2 + 32a3 + 42a4 + 52a5 + 62a6

+ 72a7 + 82a8 + 92a9 + 102a10≡0(mod11)

and
10∑
i =1

i3ai = a1 + 23a2 + 33a3 + 43a4 + 53a5 + 63a6

+ 73a7 + 83a8 + 93a9 + 103a10≡0(mod11)

Thus

47

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 (3.5)

+a9 + a10 = 11r, r ∈ Z

a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 (3.6)

+9a9 + 10a10 = 11p, p ∈ Z

a1 + 4a2 + 9a3 + 16a4 + 25a5 + 36a6 + 49a7 + 64a8 (3.7)

+81a9 + 100a10 = 11q, q ∈ Z

a1 + 8a2 + 27a3 + 64a4 + 125a5 + 216a6 + 343a7 (3.8)

+572a8 + 729a9 + 1000a10 = 11k, k ∈ Z

Equation 3.6 - equation 3.5 yields

a2 + 2a3 + 3a4 + 4a5 + 5a6 + 6a7 + 7a8 + 8a9 (3.9)

+9a10 = 11(p–r) where (p− r)ε ∈ Z

Equation 3.8 - equation 3.7 yields

48

4a2 + 18a3 + 48a4 + 100a5 + 180a6 + 294a7 +508a8 +648a9 (3.10)

+900a10 = 11(k–q) where (k–q) ∈ Z

Then, equation 3.10 – [4 × (Equation 3.9)] yields

10a3 + 36a4 + 84a5 + 160a6 + 270a7 +480a8 +616a9 (3.11)

+864a10 = 11(k − 4p− q + 4r)

where (k − 4p− q + 4r) ∈ Z

This condition does not involve a1 and a2 hence a1 and a2 can be freely chosen

from 0 to 9.

These are 102 choices. The check digit a10 does not permute as shown earlier in

proposition 3.1.5.

The other bit strings a3, a4, . . . , a8 can be chosen from 0 – 9 such that equation

3.11 holds. The GCD of 10, 36, 84, 160, 270, 480, 616 is 2.

The equation therefore has integer solution if

2 | 11(k − 4p− q + 4r)

That is, if 11(k − 4p− q + 4r) is even.

If (k − 4p − q + 4r) is not even, it means that the equation cannot be solved so

a double error on any code word that does not satisfy this condition will not be

corrected.

But 11 = 2(5) + 1 which yield to:

(3.12)11(k − p− q + r) = (2(5) + 1)(k − 4p− q + 4r)
= (2(5)(k − 4p− q + 4r)) + (k − 4p− q + 4r)

49

which is even if (k−4p− q+4r) is even since 2(5)(k−4p− q+4r) is always even.

Thus bit strings a3, a4, . . . , a8 can be chosen from 0–9 such that (k− 4p− q+4r)

is even to ensure equation 3.11 above has integer solutions.

But k − 4p − q + 4r = k − q − 4(p − r) and 4(p − r) is always even since

4(p− r) = 2(2(p− r)), implying that ((k − q)− 4(p− r)) will be even if (k − q)

is even since the difference of any two even numbers is always even.

(k − q) cannot be odd otherwise k − q − 4(p− r) would end up being odd since

the difference of an odd integer and an even one is odd.

But generally, (k− q) is not always even. It may either be odd (when either k or

q is odd and the other is even) or even (when both are even or both odd). If it is

even, then the equation 3.11 will have integral solutions and hence the error can

be corrected thus the dictionary is not affected.

If (k − q) is odd, the equation 3.11 would not have an integral solution and so

the double error won’t be corrected.

This affects the choice of a3, a4, . . . , a8 to freely permute up to 106 choices since

as seen, not all the choices will satisfy the equation. This in turn reduces the

dictionary size as far as the double error correction is concerned.

There is thus need to generate a code that combines the strength of the ISBN-10,

ISBN-13 and cyclic ISBN-10 codes and at the same time attempt to resolve their

limitations. The code should have a big dictionary and at the same time improve

on error detection and error correction capabilities.

50

CHAPTER FOUR

THE ISBN-16 CODE

This chapter discusses the results extensively by discussing the development and

generation of ISBN-16 and analysing its properties. The strength and weaknesses

of the code are also analyzed with respect to the dictionary, error detection and

correction capabilities.

4.1 Development and Generation of ISBN-16 Code

In this section the development and generation of the designed ISBN-16 code;

an improvement to the conventional ISBN and the Cyclic ISBN-10 codes are

discussed. The ISBN-16 code is aimed at using the strengths in the ISBN-10,

ISBN-13 and the Cyclic ISBN-10 codes to create an improved code as far as the

following properties are concerned:

• Error detection

• Error correction

• Dictionary size

The ISBN-16 code is made up of all code words; length sixteen (16) bit strings,

consisting of any of the numbers 0, 1, 2, . . . , 9, A,B,C,D,E, F,G whereA,B,C,D,E, F,G

represent the values indicated in the table 4.1.

Table 4.1: ISBN-16 letter representation
Letter A B C D E F G
Value 10 11 12 13 14 15 16

51

The choice of the letters is done to avoid confusion that may occur when the

two digit numbers namely 10, 11, 12, 13, 14, 15 and 16 are used. For example,

if...121. . . represent some digits in a code word, it is not easy to know if the

digits are . . . 1 followed by 2 then 1. . . or it is . . . 12 followed by a 1. . . The use

of the letters therefore avoids this confusion.

Suppose u = a1a2a3. . . a15a16 is an ISBN-16 code word; it must satisfy the condi-

tion

(4.1)
16∑
i =1

iai ≡ 0(mod17) for i = 1, 2, ..., 16

Equation 4.1 is called a parity-check equation. All the code words in the code

are of the form:

a1a2 − a3a4a5a6a7a8a9a10a11a12a13a14a15 − a16

4.1.1 Generation of an ISBN-16 Code word

1. The first block of bit strings (made up of two bit strings) is chosen randomly

and represent the country where the book is published. It is estimated that

there are about 196 countries in the world, Atlas-World (2012). Since two

bit strings permute (out of 16 choices), there are 162 = 256 possible per-

mutations. This means that all the estimated countries will be represented.

For example, 01 to represent Kenya.

2. The second block of digits (made up of thirteen bit strings) written in an

increasing or decreasing order or constant flow; it represents the number as-

signed to the book by the publishing company. The flow depends on the or-

der of flow of the first block of bit strings. For example 01-3456789ABCDE-

3. The check bit strings is chosen such that Equation 4.1 above is satisfied.

For example 01-3456789ABCDE-G

52

4. Repetition of numbers is allowed.

5. The digits do not have to follow one another consecutively. That is, if you

start with a 1 for an increasing order then 2 is not necessarily the next

digit; it can be any of the other numbers including 1 itself since repetition

is allowed.

6. Changing the order of flow of bit strings from increasing to decreasing and

vice versa is done by inserting a zero (0). The new flow may start with zero

or any other digit. Zero (0) does not have to necessarily change the order of

flow it may be used as a part of the code word itself. That is, a zero may be

used and the order of flow does not change. Here the zero acts as a neutral

element. This means that the order of flow of digits does not necessarily

change once a zero is put. It is at the discretion of the code word developer

to decide whether to change the order or not.

7. The check digit does not necessarily have to obey the order of flow of the

bit strings. As seen earlier in equation 4.1, the check digit obeys the given

condition. It is therefore computed, not chosen randomly.

8. (Z∗17,×,+) is a field.

4.1.2 Calculation of inverses in ISBN-16 Code

Under operation +

If k and m are elements in the field Z17, k is said to be the additive inverse of

m (denoted by –m) if m + k ≡ 0(mod17). Since 0 is the additive identity, the

following result hold.

53

Table 4.2: ISBN-16 Inverse under addition
k 1 2 3 4 5 6 7 8 9 A B C D E F G
−k G F E D C B A 9 8 7 6 5 4 3 2 1

Under operation ×

If k and m are non zero elements in the field Z17, k is said to be the multiplicative

inverse of m (denoted by m−1) if k×m ≡ 1(mod17). Since 1 is the multiplicative

identity the following result hold.

Table 4.3: ISBN-16 Inverse under multiplication
k 1 2 3 4 5 6 7 8 9 A B C D E F G
k−1 1 9 6 D 7 3 5 F 2 C E A 4 B 8 G

4.1.3 Calculation of the check digit in ISBN-16 Code

Let u = a1a2. . . .a16 be a code word. To calculate the check digit, a16;

Evaluate P =
∑15

i=1 iai ≡ 0(mod17) for i = 1, 2, . . . , 15

This yield to P + 16a16 ≡ 0(mod17) or 16a16 ≡ (−P)(mod17)

Therefore

(4.2)a16 ≡ 16−1(−P)(mod17)

Thus, 17|a16 − (16−1)(−P) but since 16−1 is 16 in Z17, then 17|a16 + 16P . Con-

sidering P ∈ Z17, a16 = P to yield 17|17P .

Example 4.1.1. Find the check digit denoted by ∗ in the code word 11111111111111∗

54

P =
∑15

i=1 iai = 120 ≡ 1(mod17)

But a16 = 16−1(−P)(mod17)

This yield to

a16 = 16−1(−1)(mod17) = 16×16(mod17) ≡ 1(mod17)

The check digit is therefore 1 and the code word is 1111111111111111.

Other examples of ISBN-16 code words

0123456789ABCDEG AAAAAABBBBBCCCCA 810567889990000G

6890D7422220111D 10D0707610508003 5555566666777775

987654321012345D 15689A0B5321023B 102030405060708F

4.2 Error Detection in ISBN-16 Code

Let u = a1a2. . . .a16 be a code word and suppose an error(s) exist in the code

word.

To detect the error(s) the following steps are followed.

1. Count the number of bit strings in the code word; they must be 16. If not,

an error(s) exists

2. Check if the first block of bit strings indicates the correct country where

the book was published. If not then we have error(s). Since the countries

are many, it is very tedious to keep checking to the respective code for each

country hence unless one is sure of the code this step may be avoided. In

this research, the assignment of codes to each country has not been done.

3. Check the consistency flow of the bit strings in the code word. The flow may

be either increasing or decreasing or constant. If any bit string(s) breaks

the flow then we have error(s).

55

4. Work out for Equation 4.1. Even if steps 1, 2 and 3 are correct, step 4 must

be computed. It is the basis of the parity check.

5. If the steps 1, 2, 3 and 4 are correct, then the code word is a valid ISBN-16

code word. If any of the steps is not correct, then error(s) exist.

Consider the code word 810567889290000G. In this code word the flow of bit

strings is inconsistent at tenth bit string. By observation, only 9 or 0 can occupy

this bit string without breaking the order of flow. Replacing with 9 in this position

we find 810567889990000G. Working out the parity check equation yields to

16∑
i =1

iai ≡ 0(mod17)

It can be shown easily that 0 cannot occupy this position since the parity check

equation will not hold.

Hence 810567889990000G is the correct code word.

4.3 Error Correction in ISBN-16 Code

To correct an error(s), it must first be detected. This means that the bit string(s)

in the error have been identified and (or) Equation 4.1 does not hold.

4.3.1 Errors Correction on first block of bit strings

If an error exists on the first block, that is, the first block of bit strings differs

from the country of publication (upon assigning each country with a specific

code), then to correct the error correction is done as follows:

1. Identification of the correct country code where the book was published is

done.

2. Replacement of the faulty digit with the correct one is done.

56

3. Identification of any other error(s) is done by using the other error(s) de-

tection steps listed in section 4.2.

4.3.2 Check digit Error Correction

Suppose an error occurs on the check digit. To correct it, computation is done as

in section 4.1.3 thus

16a16 +
15∑
i =1

iai = 0(mod17)

Example 4.3.1. Consider the code word 5555566666777778.

The order of flow is correct. But,

16∑
i =1

iai ≡ 14(mod17)

Hence the code word is in error.

Working out the correct check digit, a16 ≡ 16−1(−P)(mod17)

But

P =
∑15

i=1 iai ≡ 5(mod17)

So

a16 ≡ 16−1(−5) = 16(12) ≡ 5(mod17)

Or simply a16 = P = 5

The correct code word is thus 5555566666777775

4.3.3 Single Error correction

A single error occurs mainly due to typing mistakes or due to smudge. Suppose

the order of flow is incorrect at one bit string, then a single error is said to exist if

upon correcting the faulty bit string, the parity check equation holds, otherwise

multiple errors exist.

57

Once the error has been detected and error position noted, error correction is

done as follows.

1. The order of flow of bit strings (increasing, decreasing or constant) just

before and after the faulty bit string is checked.

2. A number that obeys the order flow is chosen (they may be many).

3. Equation 4.1 is computed for each of the possible codewords. Once a correct

one is found, replacement is done with the faulty one.

Example 4.3.2. Consider the code word 235AA053710GDBBD .

We have an increasing flow of digits up to the 5th bit string, then at position six

we have a zero followed by a decreasing flow but at the 9th position, order of flow

is broken (error exists). The only digits that can obey the order of flow are 3, 2, 1

and 0.

Replacing 3 with the faulty digit yields 235AA053310GDBBD; working out the

parity check yields

16∑
i =1

iai ≡ 10 6= 0(mod17)

Hence 235AA053310GDBBD is not the correct bit string.

Replacing 2 with the faulty digit yields 235AA053210GDBBD; working out the

parity check yields

16∑
i =1

iai ≡ 0(mod17)

Hence 235AA053210GDBBD is the correct code word. Once the correct bit

string is found, there is no need to work out for other “possible” bit strings. Since

inverses in (Z∗17,×,+) are unique. Thus no two bit strings can be replaced for

one faulty position to satisfy Equation 4.1.

58

4.3.4 Double error correction

Double errors occur when two bit strings are in error.

4.3.4.1 Any two bit strings excluding the check digit

This error is noticed easily since it simply occurs when any two bit strings (ex-

cluding the check digits) break the order of flow of digits. To correct these errors,

the order of flow on the preceding and consequent digits is established (either

increasing, decreasing or constant). A pair is chosen to replace the faulty digits

such that the flow of digits is correct and Equation 4.1 holds.

Example 4.3.3. Consider the received code word 810567184990000G

At position seven, the bit string 1 is between a bit string 7 and 8, breaking the

order of flow leading to an error. Similarly at position nine, the bit string 4 is

between a bit string 8 and 9, breaking the order of flow leading to an error.

At position seven only digits 0, 7 or 8 can occupy this position without breaking

the order of flow whereas at position nine, only 0, 8 or 9 can occupy this position

without breaking the flow.

Any pair that satisfy the parity check equation yields the correct code word.

Replacing the seventh and the ninth bit strings with 7 and 8 respectively yielding

810567889990000G which obeys the parity check equation hence the sent correct

code word. This choice is done through trial and error.

Due to uniqueness of the check digit which is as a result of unique inverses in Z17,

no other pair can satisfy the equation.

4.3.4.2 The check digit and any other single bit string error

This error occurs when one bit string and the check bit string are in error. The bit

string breaks the order of flow and even when corrected, the equation 4.1 does not

59

hold. To correct these errors, the order of flow for the preceding and consequent

digit is established (either increasing, decreasing or constant). Replacement for

the faulty bit string is done and the check digit is computed such that equation

4.1 holds. Since upon replacement, different digits may obey the order of flow,

the error correction may yield many different but valid code words. This simply

means that the original intended code word must be among the possible choices

and to identify it, one may need to know the intended check digit on the sent

code word, otherwise one may not get the intended codeword.

Example 4.3.4. Consider the received code word 8105678895900005

At position ten, the bit string 5 is in between two 9’s hence breaking the order of

flow leading to an error. Only 0 or 9 can occupy this position without breaking

the flow of digits. But upon replacing them in the position, none of the resultant

code words, 8105678890900005 or 8105678899900005, satisfy the equation 4.1

hence the check digit is also in error.

Considering 8105678890900005 and using the check digit computation method

yields B as the correct check digit hence 810567889090000B is the corresponding

correct code word.

Similarly considering 8105678899900005 and using the check digit computation

method yields G as the correct check digit hence 810567889990000G is the cor-

responding correct code word. The code word sent could therefore be any of the

two code words. No other possible code word could have been the sent one since

no other code word can satisfy the flow of digits.

4.3.5 Triple Error Correction

Triple errors occur when three bit strings are in error. They may occur either on

any three bit strings (that do not obey the order of flow) or any two bit string

60

and the check bit string. The error correction is similar as in section 4.3.4. If the

error is on any three bit strings, a triple is chosen such that it obeys the order of

flow and satisfy’s the parity check equation. If the error is on any two bit string

and the check bit string, a pair is chosen and check digit worked out such that the

order of flow is obeyed and the parity check equation obeyed. Just as in section

4.3.4.2, for errors involving the check digit, different digits may obey the order of

flow. The error correction may yield many different but valid code words. This

simply means that the original intended code word must be among the possible

choices and to identify it, one may need to know intended check digit on the sent

code word.

Example 4.3.5. Consider the received code word 5515566966772775

Bit string 1 at position three breaks the order of flow since from position one to

seven we have an increasing flow. Similarly bit string 9 and 2 at positions eight

and thirteen respectively break the order of flow. The possible bit strings that

can fill these faulty (third, eighth and thirteenth) positions without breaking the

order of flow are:

Table 4.4: Triple error correction
Position Three Position Eight Position Thirteen

case 1 0 0 0
case 2 0 6 0
case 3 0 0 7
case 4 0 6 7
case 5 5 6 7
case 6 5 0 0
case 7 5 6 0
case 8 5 0 7

Considering the non faulty positions in the code word 55 _5566_6677_775, and

taking the sum

61

16∑
i =1

iai(mod17), i 6= 3, i 6= 8 and i 6= 13

yields

(5× 1) + (5× 2) + (5× 4) + (5× 5) + (6× 6) + (6× 7) + (6× 9) + (6× 10)
+ (7× 11) + (7× 12) + (7× 14) + (7× 15) + (5× 16) ≡ 16(mod17)

To get the correct code word, the sum as in equation 4.1, the faulty digits should

yield 1(mod17) so that the sum 16+ 1 ≡ 0(mod17). That is, 3a3 +8a3 +13a13 ≡

1(mod17)

Working out case by case yields the following

Case 1: (0× 3) + (0× 8) + (0× 13) ≡ 0(mod17) thus incorrect

Case 2: (0× 3) + (6× 8) + (0× 13) ≡ 14(mod17) thus incorrect

Case 3: (0× 3) + (0× 8) + (7× 13) ≡ 6(mod17) thus incorrect

Case 4:(0× 3) + (6× 8) + (7× 13) ≡ 3(mod17) thus incorrect

Case 5: (5× 3) + (6× 8) + (7× 13) ≡ 1(mod17) thus correct

Case 6: (5× 3) + (0× 8) + (0× 13) ≡ 15(mod17) thus incorrect

Case 7: (5× 3) + (6× 8) + (0× 13) ≡ 12(mod17) thus incorrect

Case 8: (5× 3) + (0× 8) + (7× 13) ≡ 4(mod17) thus incorrect

The correct code word is 5555566666777775. Each of the above cases would yield

to valid codewords if one would replace the digits and work out their new check

digits separately.

4.3.6 Other Multiple Errors Correction

Just as in double and tripple errors, errors occurring on more than 3 bit strings

can also be corrected. After detecting the faulty digits positions, replacement is

done on these positions such that the order of flow and the parity equation are

obeyed.

Example 4.3.6. Let 117118116117111 be the received code word.

62

Checking the order of flow of bit strings, the third, sixth, ninth and twelveths bit

strings are in error since each of them is in between two 1’s breaking the order of

flow.

Bit strings should be choosen to replace these faulty positions and satisfy the

parity check equation. The table below gives all possible options that can replace

the faulty position without breaking order of flow.

Table 4.5: Other mutiple error corrections
Position Three Position Six Position Nine Position Twelve

case 1 0 0 0 0
case 2 0 0 0 1
case 3 0 0 1 0
case 4 0 1 0 0
case 5 1 0 0 0
case 6 0 0 1 1
case 7 0 1 0 1
case 8 0 1 1 0
case 9 1 0 0 1
case 10 1 0 1 0
case 11 1 1 0 0
case 12 0 1 1 1
case 13 1 0 1 1
case 14 1 1 0 1
case 15 1 1 1 0
case 16 1 1 1 1

These sixteen cases will yield to a valid code word if one would work out their

check digits separately.

For this example, the check digit is 1;

working out yields ,
∑16

i=1 iai, i 6= 3, i 6= 6, i 6= 9 and i 6= 12 yield 4(mod17).

Therefore to get the correct bit strings, 3a3 + 6a6 + 9a9 + 12a12 ≡ 13(mod17) so

that 13 + 4 ≡ 0(mod17)

Working out case by case yields case 16 as the correct one since

(1× 3) + (1× 6) + (1× 9) + (1× 12) ≡ 13(mod17)

63

The correct code word is thus 1111111111111111.

4.4 Number of code words in the ISBN-16 Code

Proposition 4.4.1. In an ISBN-16 code, the check bit string does not permute.

Proof. Each ISBN-16 code word has a check digit which is computed to satisfy

the equation 4.2. Since the inverses in (Z∗17,×,+) are unique, there cannot be

any two or more code words with the first fifteen bit strings similar but have

a different check digit hence the check digit is unique to each code and cannot

permute freely.

Proposition 4.4.2. The ISBN-16 code has a dictionary with an upper limit of

1516 = 6, 568, 408, 355, 712, 890, 625 code words.

Proof. Since each code word is 16 bit strings long and the check digit does not

permute (as shown in proposition 4.4.1 above), only 15 bit strings can permute.

The first bit string can be chosen among the 16 choices. Assuming no condition is

imposed on order of flow of digits, the second digit also can be chosen among the

16 choices. Going on this way and making the same assumption leads to 15 bit

strings being chosen freely among 16 choices with repetition allowed. This yields

to 1516 permutations hence 1516 = 6, 568, 408, 355, 712, 890, 625 code words. But

since order of flow of bit strings must be obeyed, this total number of code words

is thus an upper bound. This upper bound may not necessarily be achieved since

consider a code whose first three bit string are 432. . . , the fourth digit can only

be a 2 or 1 or 0. This means that it does not permute freely hence the maximum

number of permutations will not be achieved. The upper limit is thus 1516 code

words.

64

4.4.1 Error Detection and Correction in the ISBN-16 Code

Proposition 4.4.3. The ISBN-16 code detects and corrects any single error.

Proof. Let u = a1a2a3. . . a15a16 be an ISBN-16 code word.

Any error on any single bit string (either it breaks the flow of bit strings or not) in

any valid code word will not obey the parity check equation due to the uniqueness

of the inverses hence error is detected.

This means that in the ISBN-16 code, no single silent error can go undetected.

That is, no single smudge, typing error, omission or insertion error can go unde-

tected. If the single error is on the check digit, the correction is done as in section

4.3.2. If the single error is on the other bit strings and it breaks the order of flow

of bit strings, the error correction is done as in section 4.3.3.

If the single error does not break the order of flow of bit strings, the parity check

equation detects and corrects it as if it is always a check digit error. If the error

was not on the check digit, the intended sent code word may not be achieved.

To avoid this and to correct the intended existing error the following steps are

followed:

Suppose the error is on bit string k, where k = 1, 2, . . . , 15, clearly k 6= 16

otherwise it would be a check digit error and is discussed in section 4.3.2). For a

received vector u = b1b2. . . b16 and since an error exists, its weighted check sum

W =
16∑
i=1

ibi(mod17) 6= 0(mod17)

The sum

Wi 6=k =
16∑

i=1,i 6=k

ibi(mod17)

is then computed.

Clearly, the summation Wi 6=k 6= 0(mod17) unless bk = 0 in the sent code word

before error occurred.

65

The bit string bk and the error position k are chosen such that

Wi 6=k + kbk ≡ 0(mod17)

If k is known (by observing the order of flow), then the bit string

bk ≡ (−(Wi 6=k))(k
−1)(mod17)

and error is easily corrected. If k is not known (the error does not break order of

flow), then k and bk are chosen from 1, . . . , 16 such that

bk = (−Wi 6=k)(k
−1)(mod17).

Comparison is then made with the bit string in the received code word. If they

differ, then the received bk is the faulty bit string.

This is a trial and error method which may end up being very cumbersome but is

accurate and achievable since 17 is a prime number and inverses are unique.

Example 4.4.1. Let the code word 0123456789ABCDEF be the sent code word

and suppose a single error occur to yield the received code word 0123356789ABCDEF

Clearly, the error does not break the order of flow in the received code word

W =
∑16

i=1 ibi = 12(mod17) which means that an errors exist.

Since there is no prior knowledge of the exact bit string that is in error, this

error could just be interpreted as a check digit error which can be corrected as in

section 4.3.2.

Assumming that the check digit is not in error then the k and bk are chosen form

1, . . . , 16 such that

bk = (−Wi 6=k)(k
−1)(mod17)

and comparison is made with the one in the received code word. If they differ,

then the received bk is the faulty bit string.

When k = 1, b1 = (−12)(1−1) ≡ 12(mod17) just as in the received code word

when k = 2, b2 = (−15)(2−1) = 2 × 9 ≡ 1(mod17) just as in the received code

word

66

when k = 3, b3 = (−11)(3−1) = 6 × 6 ≡ 2(mod17) just as in the received code

word

when k = 4, b4 = (−5)(4−1) = 12 × 13 ≡ 3(mod17) just as in the received code

word

when k = 5, b5 = (−14)(5−1) = 3× 7 ≡ 4(mod17) which is different from the 5th

bit string in the received code word.

Replacing 4 in the 5th bit string and working out the parity check equation yields

0(mod17) hence0123456789ABCDEF is the correct code word.

Theorem 4.4.1. The ISBN-16 code detects any single transposition errors.

Proof. Suppose u = (a1a2. . . a16) is the sent code word and v the received code

word and suppose a single transposition error occurred during transmission on

some bit strings ai and ai+k for some i = 1, 2, . . . , 16 and k = 1, 2, . . . , 15 such

that v = (a1, . . . ai, ai+1, . . . ai+k. . . a16).

If the transposition leads to the order of flow of digits being broken on one or

both bit string positions, the error is detected by the observation method. If the

order of flow of bit strings is not broken, the following cases arise:

67

Table 4.6: Single transposition error detection in ISBN-16

Possibility Effect on parity check
equation after transposition

Transposition
detection

Case 1 ai = ai+k = 0 iai + (i+ k)ai+k =
iai+k + (i+ k)ai = 0

No
Transposition

Case 2 ai = ai+k 6= 0 iai + (i+ k)ai+k =
iai+k + (i+ k)ai

No
Transposition

Case 3 ai < ai+k

(clearly if
ai+k = 0 then
ai does not
exist for this
case)

iai + (i+ k)ai+k >
(i+ k)ai + iai+k

The products
[iai], [(i+ k)ai+k], [iai+k]
and [(i+ k)ai] 6= 0(mod17)
since 17 is prime hence no
existence of zero divisors
under multiplication

Transposition
detected due to
difference in
summation of
the parity check
equation but
the faulty bit
strings are not
identified

Case 4 ai > ai+k

(clearly if
ai = 0 then
ai+k does not
exist, for this
case)

iai + (i+ k)ai+k <
iai+k + (i+ k)ai
The products
[iai], [(i+ k)ai+k] ,
[iai+k]and
[(i+ k)ai] 6= 0(mod17)
since 17 is prime hence no
existence of zero divisors
under multiplication

Transposition
detected due to
difference in
summation of
the parity check
equation but
the faulty bit
strings are not
identified

In case 1 and 2, ai = ai+k which means there is no transposition.

In case 3 and 4, upon computation of the parity check equation, the sent and

received code words yield a different summation hence the transposition error is

detected. Cases 1, 2, 3 and 4 represent all possible single transpositions that can

occur and as seen, the existence of error is detected but they do not show how

to identify the faulty bit strings. Suppose the bit string ak and aw where k 6= w

(otherwise there is no transposition) are the faulty bit strings.

Then bk and bw are then chosen such that Wi 6=k,w + kbk + wbw ≡ 0(mod17)

That is
kbk + wbw ≡ (−(Wi 6=k,w))(mod17)

68

Example 4.4.2. Let the code word 810567889990000G be the sent code word

and suppose that a single transposition error occur to yield 180567889990000G

as the received code word.

The order of flow is not broken by the error but the parity check equation yields

7(mod17) hence an error(s) exists. This error may be interpreted as a check digit

error which can be corrected as in section 4.3.2 above but will yield the code

word 180567889990000F which is not the sent code word hence the conclusion

that other error(s) exists. The error may also be interpreted as a single error on

any bit string and can be corrected as in section 4.3.3 above but this will not

yield the sent code word. Prior knowledge of the type of error caused is therefore

needed for identification of the faulty bit strings otherwise it is very cumbersome.

Suppose it is known that a single transposition error occurred during transmission

on digit position one and two.

Thus k = 1 and w = 2, then Wi 6=1,2 = 7(mod17)

and 1b1 + 2b2 ≡ −7 ≡ 10(mod17). Thus b1 + 2b2 ≡ 10(mod17)

Choosing b1 and b2 from 0, 1, . . . , 16 to satisfy this equation yield b1 = 8 and

b2 = 1. Other pairs (for example b1 = 2 and b2 = 4 or b1 = 6 and b2 = 2) may

exist but comparing with the sent code word, b1 = 8 and b2 = 1 is the correct

pair yielding to 810567889990000G as in the sent code word.

Theorem 4.4.2. The ISBN-16 code detects any double transposition error.

Proof. If the transposition leads to the order of flow of digits being broken on

all (four) transposed bit string positions, the double error is detected. If the

transposition leads to the order of flow of digits not being broken or it is broken

only on some (one, two or three), but not all bit string positions, the error may

or may not be detected by the observation method but will still be detected by

the parity check equation.

69

Let u = (a1a2. . . a16) be the sent code word and suppose a double transposition

error occurred during transmission on some bit strings ai and ah (for some i, h =

1, 2, . . . , 16) to yield a received code word b such that ai and ah are transposed

to ai+k and ah+p where k, p = 1, 2, . . . , 16(mod17) respectively.

Table 4.8: Double transposition error detection in ISBN-16

Possibility Effect on parity

check equation

after transposition

Transposition

detection

Case 1 ai = ai+k =

ah =ah+p = 0

iai + (i+ k)ai+k +

hah+(h+ p)ah+p =

(i+ k)ai+

iai+k + (h+ p)ah+

hah+p

No

Transposition

Case 2 ai = ai+k =

ah =ah+p 6= 0

iai + (i+ k)ai+k +

hah+(h+ p)ah+p =

(i+ k)ai+

iai+k + (h+ p)ah

+hah+p

No

Transposition

Case 3 ai 6= ai+k but

ah = ah+p or

vice versa

Single transposition Detected as

discussed in

theorem 4.4.1

above

70

Case 4 ai < ai+k and

ah < ah+p

iai + (i+ k)ai+k +

hah+(h+ p)ah+p >

(i+ k)ai+

iai+k + (h+ p)ah+

hah+p all these

products

6= 0(mod17)since 17 is

prime hence no zero

divisors under

multiplication

Transposition

detected due to

difference in

summation of

the parity check

equation

Case 5 ai > ai+k and

ah > ah+p

iai + (i+ k)ai+k +

hah+(h+ p)ah+p <

(i+ k)ai + iai+k +

(h+ p)ah + hah+p all

these products

6= 0(mod17) since 17

is prime hence no

zero divisors under

multiplication

Transposition

detected due to

difference in

summation of

the parity check

equation

71

Case 6 ai > ai+k and

ah < ah+p or

ai < ai+k and

ah > ah+p

iai + (i+ k)ai+k +

hah+(h+ p)ah+p 6=

(i+ k)ai+

iai+k + (h+ p)ah+

hah+p due to

uniqueness of

products when

working with mod17,

which is prime. All

these products

6= 0(mod17) since 17

is prime hence no

zero divisors under

multiplication.

Transposition

detected due to

difference in

summation of

the parity check

equation

In case 1 and 2, ai = ai+k which means there is no transposition. Case 3 is a

single transposition and is discussed in theorem 4.4.1 above. In cases 4, 5 and 6,

upon computation of the parity check equation, the sent and received code words

yield different summations as shown in each case hence the transposition error is

detected. All these six cases represent all possible double transpositions that can

occur and as seen, they are detected.

Corollary 4.4.1. The ISBN-16 code corrects any single and double transposition

errors that break the order of flow of bit strings on both bit string positions.

Proof. Let u = (a1a2. . . a16) be the sent code word and let v = (a1. . . ai. . . ai +

k. . . a16) and suppose during transmission, any single or double transposition error

that breaks the order of flow of bit strings occurred. As seen in Theorems 4.4.1

and 4.4.2 above, the errors will be detected. To correct the single transposition

72

error, the faulty bit strings are re-transposed and parity check equation worked

out to confirm validity, if it holds then the corrected code word is the valid sent

code word. Otherwise other errors exist (not single transposition errors).

To correct the double transposition error, the faulty bit strings are re-transposed

in the four positions and parity check equation worked out to confirm validity.

If it holds then the corrected code word is valid otherwise other errors exist (not

double transposition errors). The re-transposition may be cumbersome since four

bit string positions are being chosen from four choices yielding to 44 = 256 choices

which is the upper limit on the choices that can be made but since the order of

flow of digits must be obeyed, these cases reduce.

Corollary 4.4.2. The ISBN-16 code detects any multiple errors that break the

order of flow of bit strings.

Proof. Any multiple errors that break the order of flow of bit strings can be

detected by the observation method hence proven.

It is shown later in Proposition 4.6.2 that the ISBN-16 code cannot detect or

correct some multiple errors that do not break the order of flow of bit strings.

4.5 Conversion Tool from ISBN-13 to ISBN-16

4.5.1 Guidelines towards designing a conversion tool

As discussed in section 1.1.5, the ISBN-13 code was designed as an improvement

of the ISBN-10 code. There was therefore a need to have a conversion tool to

convert the existing ISBN-10 code words to the ISBN-13.

The following guidelines are vital towards designing a conversion tool for the

existing code words to the new ISBN-16 code. The guidelines act as a blue print

to ensure that the new conversion tool is efficient and effective. Let f : I13 → I17

73

be a function from the existing ISBN-13 code to the ISBN-16 defined as,

f(a1a2...a13) = b1b2...b1300b16 where

b16 = (−(
15∑
i=1

ibi)× 16)mod17

Then, the following propositions must be obeyed and act as a guideline for defin-

ing the function.

Proposition 4.5.1. The function f is injective (one to one).

Proof. By contradiction, suppose the function f is not one to one and let u and

v be two different code words in the ISBN-13 code and let f(u) = f(v).

Since u and v are different, they differ in at least 1 bit string position. Since there

is uniqueness of inverses modulo17 in the ISBN-16 code, and since f(u) and f(v)

are ISBN-16 code words then u = v otherwise the uniqueness of inverses won’t

be obeyed which would mean that 17 is not prime.

Proposition 4.5.2. The function f is not necessarily surjective (onto).

Proof. By contradiction, suppose the function f is onto. Since the function is

one to one as shown in proposition above, the ISBN-13 code must have the same

dictionary as the ISBN-16 code which is a contradiction. Hence the function is

not necessarily onto.

4.5.2 The Conversion tool

Since all ISBN-10 code words have an ISBN-13 representation, to convert an

ISBN-13 code word to an ISBN-16 code word, the following steps are followed:

1. The order of flow of the thirteen consecutive bit strings in the ISBN-13 code

word is considered. Since the ISBN-13 codewords start with the prefix 978

or 979, convertion is done to yield the prefixes 970 and 971 respectively.

74

2. If the order of flow (incresing or decreasing) of the remaining ten bitstrings

(including the check digit) is obeyed, step four and five are followed. Oth-

erwise, step three is followed. The thirteenth bitstring (the check digit) in

the ISBN-13 code word is considered as part of the new codeword.

3. If the order of flow of the other bitstrings is not obeyed, any bitstring that

breaks the order of flow is replaced with a zero (0); this ensures that the

order of flow is obeyed.

4. The digits “00” are added to represent the fourteenth and fifteenth bit

strings.

5. The new check digit b16 is computed as in section 4.1.

For example, to convert the ISBN-13 code word 9780198538035 to an ISBN-16

code word, it is noticed that the seventh and tenth bitstrings break the order of

flow. They are replaced by zeros to yield 9700190530035a14a15a16. Putting “00”

for the fourteenth and fifteenth bit strings yields to 970019053003500a16. Finally

the check digit a16 is computed as in section 4.1 to yield 970019053003500C as

the ISBN-16 code word.

This conversion tool is efficient and reliable since it can convert all the ISBN-13

and ISBN-10 code words to ISBN-16. It also maintains some of the bit strings in

the ISBN-13 code words that do not break the order of flow.

Other converted code words from ISBN-13 code to ISBN-16 code include:

75

Table 4.10: Converted codeword ISBN-13 to ISBN-16 code
Book title, year and

author
Assigned
ISBN-13

Conversion to new
ISBN-16

Van Lint J.H., (1998)
Introduction to
Coding Theory

9783540641339 970350064103900

Todd K. Moon.,
(2005), Error

correction coding:
mathematical methods

and algorithms

9780471648000 9700471648000003

Sebastia X. D.,
(2003), Block error
correcting codes.

9783540003953 9703540003953006

Kenneth H. Rosen,
(2003), Discrete

mathematics and its
applications.

9780072930337 970007293033700F

Houghton A., (2001),
Error coding for

engineers

9780792375227 9700792375227009

4.5.3 The ISBN-16 generator

ISBN-16 generator is an application developed using an algorithm derived from

the guidelines in section 4.5.1 and written in .Net framework’s C# programming

language, to generate codewords. This section discusses the ISBN-16 generator

with the following screen shots illustrating how the application works.

76

Figure 4.1: Main Window

There are two options in code generation using ISBN 16 application as depicted in

figure 4.1 in the input type section . The numbers can be generated automatically

or manually.

Automatic Generation

This is done by selecting the auto option under the input type section. Numbers

are randomly generated from the set Z17. It is from this set that the 16th position

is calculated by hitting the compute button as shown in the figure 4.2 :

77

Figure 4.2: Automatic Generation

Manual Generation

With this option, the numbers are input by the user of the application. These

numbers may be input from the set Z17 as shown in figure 4.3 :

Figure 4.3: Manual Generation

78

This could be error prone thus, ISBN-16 application is capable of error detection

as shown in figure 4.4 ;

Figure 4.4: Error Handling

History

Upon computations, the numbers are cleared by using the “clear” button, they

are then listed in the previously generated numbers display on the right hand side

and can be used for reference. This history can be cleared with hitting the “clear

history” button below the historical numbers. The figure 4.5 shows seventeen

previously generated numbers.

79

Figure 4.5: History

4.6 Weaknesses in the ISBN-16 Code

The error correction may be very cumbersome for multiple errors. Also as ex-

plained in section 4.4.1, for some multiple errors in codewords, error correction

may yield multiple valid codewords and identifying the intended codeword may

be impossible if the check digit is not known. In some cases, if multiple error

occur on consecutive bitstrings, one may not know the correct order of flow. This

may make error correction impossible.

Proposition 4.6.1. The dictionary of the ISBN-16 code may never reach the

upper limit of 1516 code words.

Proof. By counter example, consider a code word that has the first four bit strings

being 5687. . . the fifth bit string can only be a 7, 8, . . . , 16 or 0. The bit strings

1, 2, 3, 4, 5 or 6 cannot occupy this position since they would break the order of

flow. This means that the number of all possible permutations on the fifth bit

80

string is ten not the expected sixteen. This in turn means that the upper limit

may never be achieved.

Proposition 4.6.2. The ISBN-16 code cannot detect or correct some multiple

silent errors.

Silent errors in ISBN-16 code are defined as errors that do not break the order of

flow of bit strings and yet the check digit is the same.

Proof. Consider the sent code word u = 1111111111111111 versus the received

code word v = 1111110110111111.

Working out the parity check equations, both code words yield 1 as the check

digit. These are silent errors which go undetected by both the observation method

and the parity check method. Since the errors are not detected, they cannot be

corrected.

81

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMENDATION

5.1 Summary

This research determined the size of the dictionaries in the ISBN-10 and ISBN-13

codes and gave an upper limit that both codes can ever achieve. The research

also showed that the dictionaries reduce against error detection and correction

capalities.

The efficiency of the Cyclic ISBN-10 code in error detection and correction against

the size of the dictionary was analyzed and is shown that the code is inefficient.

The ISBN-16 code was designed to improve the ISBN-10, ISBN-13 and Cyclic

ISBN-10 codes in errors detection and correction capabilities against the dic-

tionary size. It is shown that the code is better as far as error detection and

correction and dictionary size are concerned.

A computer program that generates the ISBN-16 was developed and implemented

as shown in the demonstration screen shots in subsection 4.5.3. The program can

either generate codes automatically or manually. The user can therefore input

values, the program check for errors and computes the check digit.

An algorithm for the conversion from already existing ISBN-13 code to ISBN-16

code was designed. Any ISBN-10 code word has an ISBN-13 equivalent and thus

conversion to ISBN-16 by use of the equivalents.

5.2 Conclusion

In ISBN-10, Silent errors can go unnoticed. To detect an error in ISBN-10 code

word, one has to work out the parity check equation. It can only correct single

errors and transpose errors and for the transpose errors there has to be prior

82

knowledge of the existence of the transpose error. The conditions given for detec-

tion of at least two errors only tell if one can detect the double error and do not

show how to correct it and multiple (more than two) errors cannot be corrected.

ISBN-10 has a relatively small dictionary.

The cyclic ISBN-10 is not a cyclic code since any left or right cyclic shift does

not necessarily yield another codeword since it does not meet the parity check

equation. The dictionary size is smaller than even the ISBN-10 code, the total

number of code words is less than 9 × 108 which forms a major foundation for

any other code that would be developed using this approach. The process of

correction of multiple errors is bit tedious and inacurate since it may end up

having very many choices of possible digits to replace the ones in error.

The ISBN-13 code cannot indicate the exact bit string which is in error and

cannot detect some transposition errors and some double or multiple errors. It

also cannot correct the double, multiple or transposition errors.

The ISBN-16 code detects and corrects any single error, single transposition error

and double transposition error that break the order of flow of bit strings on both

bit string positions and detects any multiple errors that break the order of flow

of bit strings. Moreover, it has been established that the ISBN-16 code has a big

dictionary.

5.3 Recommendations for future research

1. Computing the exact dictionary of the ISBN-16. The research determined

the upper limit of the ISBN-16 code; the actual dictionary of the code with

respect to varying coditions on error detections and corrections need to be

determined.

2. Detection of multiple silent errors. Existence of multiple silent errors in

83

a code word without any ability by the code to detect them needs to be

determined.

3. Design an automated conversion tool for the existing ISBN-13 code to ISBN-

16. The conversion tool given in 4.5 only gives the algorithm that can be

used to convert an ISBN-13 TO ISBN-16. An automated conversion tool

that can be developed.

84

REFERENCES

Atlas-World (2012). How many countries? Retrieved from:

http://www.worldatlas.com/nations.htm, Date accessed: April 2011.

Doumen, J. M. (2003). Some Applications of Coding Theory in Cryptography.

Eindhoven University Press, Germany, Germany.

Egghe, L. (1985). A note concerning two isbn checking algorithms. Journal of

information science, 11:41–42.

Egghe, L. (1999). Detection and correction of multiple errors in general block

codes. Mathematical and computer modelling, 30(7):113–121.

Egghe, L. (2005). The coding of the isbn. Retrieved from:

http://en.scientificcommons.org /leo_ e gghe, Date accessed: 6th May

2010.

Egghe, L. and Ronald, R. (2005). On the detection of double errors in isbn and

issn-like codes. Retrieved from: http://en.scientificcommons. org/leo_egghe,

Date accessed: 6th May 2010.

Eric, W. (2010a). Isbn code. Retrieved from:

http://mathworld.wolfram.com/ISBN.html, Date accessed: 5th May 2010.

Eric, W. (2010b). Isbn code. Retrieved from:

http://mathworld.wolfram.com/Transposition.html, Date accessed: 5th

May 2010.

Henk, V. T. (1993). Coding theory; a first course. Retrieved from: Date accessed:

6th May 2010, http://hyperelliptic.org/tanja/teaching/ CCI11/CODING.pdf.

Houghton, A., One, A., Two, A., and Three, A. (2001). Error coding for engineers.

Kluwer Academic Publisher.

85

Irving, S. R. and Chen, X. (1999). Error-Control Coding for Data Networks.

Kluwer Academic Publishers.

Jacobus, H. (1973). Coding Theory. Springer Verlag.

Kenneth, H. R. (1993). Elementary number theory and its applications. Addison-

Wesley Publishing company.

Kenneth, H. R. (2003). Discrete mathematics and its applications. McGraw-Hill

Publishing company.

Nyaga, L. and Cecilia, M. (2008). Increasing error detection and correction effi-

ciency in the isbn. Discovery and Innovation, 20:3–4.

Raymond, H. (1986). A first Course in Coding Theory. CLARENDON Press,

U.S.A.

Sebastia, X. D. (2003). Block error correcting codes. Springer Verlag. ISBN

3-540-00395-9.

Tervo, R. (1998). Secrets of the isbn - an error detection method. Retrieved from:

http://www.ee.unb.ca/tervo/ee4253/isbn.shtml, Date accessed: April 2011.

Todd, K. M. (2005). Error Correction Coding: Mathematical Methods and Algo-

rithms. John Wiley & Sons Inc.

Uppal, S. M. and Humphreys, H. M. (2008). Mathematics for Science. New Age

International, New Delhi, India, 2nd edition. ISBN 978-8122409949.

Van, L. J. H. (1998). Introduction to Coding Theory. Springer Verlag, 3rd edition.

ISBN 3-540-64133-5.

Viklund, A. (2007). Isbn information home. Retrieved from : http://isbn-

information.com/ind ex.html, Date accessed: 5th May 2010.

86

