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ABSTRACT 

This study concerns the theoretical determination of static performance of finite elasto-

hydrodynamic journal bearings lubricated by ferro-fluids with couple stresses. The 

Reynolds equation that takes into account magneto elasto-hydrodynamics is derived by 

use of continuity and momentum equations. The equation has been integrated locally 

across the film thickness and an equation for the pressure gradient obtained as a function 

of film thickness and total mass flow rate of lubricant, now the modified Reynolds 

equation.  The modified Reynolds equation obtained is solved simultaneously with the 

energy equation numerically by the finite difference technique since they are highly non-

linear. The pressure and temperature profiles are obtained. The numerical scheme used 

is implemented in MATLAB software version 7.14.0.739, so as to obtain the 

approximate solutions where these solutions are represented in tables and graphs. Based 

on the micro-continuum theory, and by taking into account the couple stresses due to the 

microstructure additives, the effects of couple stresses on the performance of a finite 

elasto-hydrodynamic journal bearings were studied. The results were obtained by 

varying various flow parameters, notably couple stress parameter, magnetic coefficient 

and eccentricity ratio. From the results it was found that the magnetic lubrication gives 

higher pressure distribution. The results have also shown that lubricants with couple 

stresses compared with Newtonian lubricants increase the pressure especially at high 

eccentricity ratios. Thus it can be concluded that magnetic fluids lubricants with couple 

stresses are better than Newtonian fluids. The results provide engineers with useful 

information to design machine elements and bearing systems with a higher life 

expectancy and efficiency. 
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CHAPTER ONE. 

INTRODUCTION 

1.0 Background of the Study 

In centuries, the study and investigation of the performance of the hydrodynamic journal bearing 

under different modes of loading have been done. This type of bearings is one of the most 

commonly used in a wide variety of machines. A bearing is a system of machine elements whose 

function is to support an applied load by reducing friction between the relatively moving 

surfaces. When designing such lubricating system, the heat, load and flow rate required for a 

bearing must be known to properly size the lubricating oil pumps, coolers among other bearing 

machines. Bearing type and size are based on rotor weight, rotor rotations per minute (RPM), 

and lubricant characteristics Govindaraj et al (2012). 

The characteristics of hydrodynamic journal bearing have been the subject of many researches. 

Some being directed to the bearing geometry design and others devoted to the study of the 

lubricant properties. The introduction of lubricants that had additional characteristics, compared 

with conventional lubricants, led to an improvement of the bearing performance. These non-

conventional lubricants are referred to as Ferro-fluid lubricants or magnetic fluid lubricants. 

The resent solutions that have encouraged the study of the lubricant properties have been devised 

with other parameter being considered in predicting the journal bearing behavior, such as load 

carrying capacity, type of lubricant flow region (laminar or turbulent flow), type of lubricant 

(Newtonian or non-Newtonian), inertia and acceleration effects, and magnetic effect in the case 

of using Ferro-fluid (Osman, 2002). Thermo-Elasto-hydrodynamic analysis of a diaphragm 

journal bearing have also been done with the view of optimizing bearing performance, predicting 
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and comparing the bearing characteristics with the thermo-hydrodynamic models (Norman, 

1995) 

Most of these investigations considered only the isothermal cases and neglected viscosity 

variation with change of temperature. With time, the thermal aspects have been investigated 

together with the journal bearing behavior lubricated by magnetic fluids with couple stress Abdo 

et al (2009). The latter again neglected the effect of joules heating on the performance of the 

journal bearing. Practically, increasing in load capacity leads to increasing the friction force, 

shear stress and consequently increasing the lubricant temperature. Although many aspects of 

bearing performance are solved, there are still needs for further studies of the thermal effects on 

the bearing performance and characteristics. 

Lubrication 

Wear and tear occurs when two plates in contact move with relative velocity causing high 

friction between them. To reduce this friction, a thin layer of fluid with high viscosity is applied 

between them. This arrangement is referred to as bearing and the fluid applied between the plates 

is known as a lubricant. Lubrication is therefore the process employed to reduce wear and tear of 

one or both surfaces of the plates in close proximity and moving with relative velocity over each 

other. This is achieved by interposing lubricant between their surfaces to help carry the load 

supported by the bearing.  The three types of lubrication regimes are boundary lubrication, 

elasto-hydrodynamic lubrication (mixed film lubrication) and hydrodynamic lubrication. 

Boundary lubrication is where by the surfaces are in contact to each other. Elasto-hydrodynamic 

lubrication (EHL) is a form of fluid film lubrication where the elastic deformation of the 

lubricated surfaces cannot be neglected leading to the surfaces being in contact at some points. 

On the contrary, this effect might even be dominant leading to the boundary lubrication case. 

However, the EHL theory is applicable for lower loads and less rigid structures such as journal 
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bearing. In the case of the hydrodynamic lubrication (full fluid film lubrication) the surfaces are 

separated completely by the fluid film, so the lubricating fluid carries the entire load exerted on 

the two surfaces. This kind of fluid film lubrication is usually associated with highly stressed 

machine elements, such as rolling element bearings and gears. In this work, we shall assume an 

elasto-hydrodynamic case in a journal bearing. 

Ferro-fluid 

In this study a non-conventional lubricant called ferro-fluid lubricant or magnetic fluid lubricant 

is used. A Ferro-fluid is composed of three basic components namely; ferromagnetic particles, a 

base fluid or carrier fluid and a coating on each particle as shown in figure (1.1) Raj and Boulton 

(1987). Examples of the base fluid may include a hydrocarbon base, an ester base, a diester base 

or even water base are among the base fluids important for lubrication. 

The ferromagnetic particles in the base fluid are small in size so as to prevent agglomeration by 

gravitational forces thus a colloidal suspension of these particles can be obtained. The most usual 

ferromagnetic minerals are magnetite (Fe3O4), iron, cobalt, nickel and their alloys. Every 

ferromagnetic particle is coated with a thin layer (1-2 nm thick) of polymer molecules. These 

monomolecular surfactants act as a dispersing agent. They keep the magnetic particles far 

enough apart that the attractions between the particles, due to Vander Waals force or the 

magnetic force does not cause agglomeration of these particles since this could affect the 

performance of the lubricant. 
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Figure 1.1: Components of a ferro-fluid 

Therefore, the ferro-fluids are very stable. Many properties of the ferro-fluid are similar to those 

of the base fluid. The concentration of the magnetic particles is low and thus they do not affect 

the density, vapor pressure, pour point, or chemical properties of the liquid. There is an increase 

of the ferro-fluid viscosity compared with the viscosity of its base fluid. The electrical properties 

of ferro-fluids are also similar to those of base fluids. This implies that the magnetic fluids are 

non-conductive except where there is a metallic base fluid.  The ferro-fluid acts like pure iron in 

that it does not have any magnetic activity in the absence of the magnetic field. It gets 

magnetized in the presence of the magnetic field. When a magnetic field is applied to the Ferro-

fluid, each particle experiences a force that fully depends on the magnetization of the magnetic 

material of the particles and on the strength of the applied field. 
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Ferro-fluids lubrication applies the Navier-Stokes equation where it is modified by adding a term 

to take into account the effect of its magnetic property. It is therefore true that in the absence of 

magnetic field, the Ferro-fluid acts like other liquids, but in the presence of magnetic field, it is 

affected by an additional magnetic force. 

In decades, researches have indicated that these ferro-lubricants are magnetically stable and 

function well as lubricant (Moskowitz, 1975). Therefore, these ferro-lubricants can be controlled 

remotely by a magnetic field. They can be positioned exactly where wear would be expected to 

take place.  This ability of positioning the lubricant externally is valuable in clean-environment 

applications, because the lubricant does not contaminate the environment. 

Rolling bearings in industries are one successful application of magnetic oil lubrication. It is also 

possible to make a rolling bearing without sealing or to make a combination that includes a 

magnetic-oil-lubricated bearing and a magnetic fluid seal. Hydrodynamic slider bearing among 

other bearings can also be lubricated with magnetic oil. Some of the greatest advantages of the 

magnetic-oil-lubricated bearings are a long life, low friction and reduced noise. Bearings 

lubricated with magnetic oils have been used in fast-rotational textile industry spindles that must 

stay clean. Other possible applications are robots working in clean environments and computer 

disk drives. 

Journal Bearing Mechanism 

Journal bearing is a subset of bearings used to support rotating shafts that use the principle of 

hydrodynamic lubrication. The journal bearing is made up of four main parts as shown in the 

figure 1.2. These parts include; the shaft, removable shell halves, the bearing shell which 

supports the shell halves and the oil reservoir responsible for the bearing action. 
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Figure 1.2: Parts of a journal bearing. 

As opposed to the anti-friction bearing that operates using rolling components inside the bearing 

(i.e. balls, rollers), journal bearing operate by using a self-generated hydrodynamic lubricant film 

pressure to support the shaft while preventing the shaft from being in contact with the bearing 

surface. A journal bearing that uses hydrodynamic lubrication has an infinite expected life unless 

there is a loss of the lubricant film due to lack of lubrication or excessive force as opposed to the 

anti-friction bearings which have predictable life. A journal bearing simply performs where by 

the shaft or “journal” rotates in the bearing with a layer of lubricant separating the two plates 

through fluid dynamic effects. Since the bearing surfaces are moving with relative velocity, 

lubricant will be drawn into the gap between them and forced to squirt out the sides of the 

bearing while the gap is converging. As the lubricant is drawn into the converging wedge by 

relative motion, the pressure increases and the lubricant is forced out through the sides of the 

bearing since the lubricant is relatively incompressible. The self-generated pressure is what 

supports the load imposed by the shaft (Abdo, 2009). If the lubricant film is diverging i.e. getting 
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thicker, the pressure tends to decrease so that it can balance the load. In our study we shall 

examine a journal bearing as the one in the figure 1.3 

 

Figure 1.3: Scheme of the examined bearing 
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1.1 Literature Review 

Wear is the major cause of material wastage and loss of mechanical performance of machine 

elements. Reduction in wear can result in considerable savings which can be made by improved 

friction control. Lubrication is an effective means of controlling wear and reducing friction, and 

it has wide applications in the operation of machine elements such as bearings. The principles of 

hydrodynamic lubrication were first established by a well-known scientist Osborne Reynolds in 

1886 and he explained the mechanism of hydrodynamic lubrication through the generation of a 

viscous liquid film between the moving surfaces.  

The journal bearing design parameter such as load capacity can be determined from Reynolds 

equation both analytically and numerically (Hamrock, 1994). Saynatjoki and Holmberg (1982) 

described a magnetic fluid as not a simple fluid; it is a stable suspension of small particles of 

ferromagnetic materials in a base fluid. For the purpose of ensuring the colloid stability, a 

surfactant of polymers (such as oleic acid) is usually introduced into the suspension. This will 

create around each single particle a coating layer to prevent the agglomeration of the particles by 

the magnetic field effect or by the molecular attraction. When a magnetic field is applied to the 

magnetic fluid, each particle experiences a force that depends on the magnetization of the 

magnetic material of the particles and on the strength of the applied field.  

The effects of variable density and variable specific heat on maximum pressure, maximum 

temperature, bearing load, frictional loss and side leakage in high-speed journal bearing 

operation were examined by Chum, (2004).  Regarding the preparations of Ferro fluids and the 

properties of these magnetic fluids, a lot of literature is available according to Rosensweig et al 

(1969), Rosensweing (1982) and Raj et al (1987).  
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Presently, lubricating oils often contain some additives of high-molecular-weight polymers to 

modify some physical (pour point, foaming, or viscosity temperature behavior) and chemical 

properties (oxidation, detergency, or corrosion). These additives are long-chain organic 

compounds; e.g., the length of the polymer chain may be a million times the diameter of a water 

molecule. Due to this special structure of the magnetic-lubricant fluid and also due to the other 

additives, the Newtonian fluid approximation (which neglects the size of fluid particles) is not a 

satisfactory engineering approach.  

A number of micro-continuum theories have been developed according to Ariman et al (1973) 

and Ariman et al (1974) for describing the peculiar behavior of fluids containing substructures, 

which can translate, rotate, or even deform independently. Among them, the Stokes micro-

continuum theory (Stokes, 1966) is the simplest theory that allows for polar effects such as the 

presence of couple stresses and body couples. These couple stresses may be significant 

particularly under lubrication conditions where thin films usually exist.  

A number of studies have applied the Stokes micro continuum theory to investigate the effect of 

couple stresses on the performance of different types of fluid-film bearings. Based on the stokes 

micro continuum theory, the problem of lubrication of finite hydrodynamic journal bearing 

lubricated by magnetic fluids with couple stresses was investigated (Arima and Sylvester, 1973) 

and by including these couple stresses due to micro structure additives and the magnetic effects 

due the magnetization of the magnetic fluid, the modified Reynolds equation was obtained to 

study bearing characteristics. The studies cited above consider the magnetic fluid to behave as a 

Newtonian fluid but other researches treated the magnetic fluid as non- Newtonian fluid using 

the power-law model according to Osman (1999), Osman et al (2002) and Osman et al (2003).  

Investigation on the lubrication of lightly loaded cylinders in combined rolling, sliding, and 

normal motion with a couple stress fluids as lubricant under cavitation boundary conditions was 
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done by Bujurke and Naduvinamani (1990). They noted that the load capacity and the frictional 

drag increased as the squeeze velocity increased. Increasing the couple stress parameter 

enhanced this increase. Presentation on the study of performance of finite journal bearings 

lubricated with a fluid with couple stresses taking into account the elastic deformation of the 

liner have been done by Mokhiamer et al (1999). They concluded that the influence of couple 

stresses on the bearing characteristics was significantly apparent.  

Study on the static characteristics of rotor bearing systems lubricated with couple stress fluids 

with the effect of surface roughness considerations have been done clearly by Naduvinamani et 

al (2002). They formulated and solved for transverse and longitudinal roughness for these 

problem. Nada and Osman (2007) investigated the static performance of finite hydrodynamic 

journal bearings lubricated by magnetic fluids with couple stresses and among their conclusion 

was that the magnetic lubricant gives higher load carrying capacity, higher attitude angle, lower 

friction coefficient, and higher side leakage. These effects are more significant where the 

hydrodynamic effects are low, at the lower values of couple stress parameter and eccentricity 

ratios.  

Fundamentals of fluid film Journal bearing operation and modeling were reviewed in a turbo 

machinery symposium by Minhui et al, (2005). Their work provided practical knowledge on the 

basic operation and what physical effects should be included in modeling a bearing so as to help 

ensure reliable operation in the field. They reviewed all the important theoretical aspects of 

journal bearing modeling, such as film pressure, film and pad temperatures, thermal and 

mechanical deformations, and turbulent flow. 

Thermal effects on hydrodynamic journal bearings lubricated by magnetic fluids and with couple 

stresses were studied by Abdo et al (2009). They concluded that the magnetic lubrication gives 

higher pressure distribution, with small insignificant fluid temperature rise. The load carrying 
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capacity increases without increase of the friction force. They also found that the magnetic 

lubrication has decreased the effect of the side leakage such that the bearing may operate without 

any side leakage. Taking into account of the couple force their results shown that lubricants with 

couple stresses compared with Newtonian lubricants increase the pressure and temperature 

especially at high eccentricity ratios. The couple stresses give increase in both load carrying 

capacity and friction force and decrease in friction coefficient. Thus it can be concluded that 

fluids with couple stresses are better than Newtonian fluids. 

Numerical analysis has allowed models of hydrodynamic lubrication to include closer 

approximations to the characteristics of real bearings. Numerical solutions to hydrodynamic 

lubrication problems can now satisfy most engineering requirements for prediction of bearing 

characteristics. To analyze the bearing design parameters, several approximate numerical 

methods have evolved over the years such as the finite difference method and the finite element 

method. Finite element method has been used for the solution of the hydrodynamic lubrication 

problem to obtain bearing traits by Booker and Huebner (1972). 

Nessil et al, (2012) did an analysis of journal bearings lubrication using non-Newtonian fluids 

which they described by a power-law model. They determined the performance characteristics of 

the journal bearings for various values of the non-Newtonian power-law index “𝑛”. The 

numerical results they obtained showed that for the dilatant fluids (𝑛 > 1), the load-carrying 

capacity, the pressure, the temperature, and the frictional force increased while for the pseudo-

plastic fluids (𝑛 < 1) they decreased. Thermo-hydrodynamic analysis of a Journal bearing using 

CFD as a tool was done by Mukesh et al, (2012). From the results they obtained, it was clear that 

temperature created from the frictional force increase as the viscosity of the lubricant decrease 

and lesser viscosity decreases the maximum pressure of the lubricant inside the bearing. 
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Priyanka and Veerendra, (2012) reviewed the analysis of hydrodynamic journal bearing and in 

their work they presented a survey of important papers pertaining to analysis of various types of 

methods, equations and theories used for the determination of load carrying capacity, minimum 

oil film thickness, friction loss, and temperature distribution of hydrodynamic journal bearing. 

Predictions of these parameters are the very important aspects in the design of hydrodynamic 

journal bearings. They focused on various types of factors which tremendously affect the 

performance of hydrodynamic journal bearing. They found that friction coefficient is increased, 

with increasing wear depth as well as misalignment and Sommerfeld number. The friction 

coefficient and consequently the power loss are strongly dependent upon the misalignment angle 

and wear depth. The noise of the bearing decreases as the mass eccentricity of the rotor 

decreases, the lubricant viscosity increases, the width of the bearing increases, and the radial 

clearance of the bearing decreases. 

Calvalca and, Daniel (2013) evaluated the thermal effects in tilting pad bearing where their 

results showed that the temperature increases as the rotational speed increases due to the shear 

rate of the oil film. The maximum temperature in the bearing occurred in the overloaded pad, 

near the outlet boundary. They performed experimental tests in a tilting pad journal bearing 

operating in a steam turbine to validate the model. Comparing the experimental and numerical 

results they provided a good correlation. They finally concluded that the thermo-hydrodynamic 

lubrication as developed in their work is promising to consistently evaluate the behavior of the 

tilting pad journal bearing operating in relatively high rotational speeds. 

In our departure, we therefore seek to investigate the effect of the parameters such as the 

eccentricity ratio, magnetic coefficient and couple forces parameter that affect the characteristics 

of journal bearing and discuss the velocity and temperature distributions in relation to the 

referred parameters. 
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1.2 Problem statement 

Journal bearing operates effectively and more efficiently when it is in hydrodynamic case where 

there is no contact between the parts of the journal bearing surfaces. Oil have been used mostly 

as the lubricant in the past but with more research it was discovered that magnetic lubricant gives 

higher load carrying capacity, higher attitude angle and lower friction coefficient. These effects 

are more significant where the hydrodynamic effects are low, at the lower values of couple stress 

parameter and eccentricity ratios. It has been concluded that fluids with microstructures are 

better lubricant than Newtonian fluids especially if they were prepared to become magnetic 

fluids (Nada and Osman, 2007). We therefore seek to investigate the effect of the parameters 

such as the eccentricity ratio, magnetic coefficient and couple forces parameter that affect the 

characteristics of an elasto-hydrodynamic journal bearing and discuss the velocity and 

temperature distributions in relation to the referred parameters. We also determine the effect of 

Joules heating to the Journal bearing. 

1.3 Justification 

Equipment’s and machines with rotating parts are commonly used in our society for a wide range 

of energy conservation applications such as automobiles, electric power generation, cooling and 

ventilation systems. Therefore there is need to design a long lasting and efficient bearing and be 

in a position to control different parameter effects that would affect the bearing characteristics. 

Journal bearing operates effectively and more efficiently when it is a full fluid film where there 

is no contact between the parts of the journal bearing surfaces. In real life we have no such a case 

where there is absolutely no contact and therefore we investigate the effects of such parameters 

that would affect an Elasto-hydrodynamic journal bearing performance. 
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1.4 Hypothesis 

The load carrying capacity of the bearing will not decrease due to the use of a non-conductive 

magnetic fluid. The hypothesis null is since in this study since the results obtained gives a 

different conclusion that the pressure increases for a magnetic fluid thus the load carrying 

capacity increases contradicting the hypothesis. 

1.5 Objectives  

1.5.1 General Objective 

Determination of the static performance of finite elasto-hydrodynamic journal bearings 

lubricated by magnetic fluids with couple stresses 

1.5.2 Specific Objectives 

a. To determine the velocity profiles, skin frictions and the rate of mass transfer in a hydro 

magnetic journal bearing. 

b. To determine the pressure and temperature profiles. 

c. To determine the effect of eccentricity ratio, magnetic parameter and the couple force 

parameter on an elasto-hydrodynamic journal bearing performance. 
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CHAPTER TWO 

2.0 INTRODUCTION 

This chapter is concerned with the equations that govern the study of Magneto Hydrodynamic 

flows. The continuity, momentum, induction and the energy equations are discussed. Towards 

the end of the chapter, the method of solution is introduced. 

2.1 THE GOVERNING EQUATIONS 

The governing equations are those that assist us in the analysis of the journal bearing which 

forms the basis of our interest. We therefore look at a number of these equations; 

2.1.1 Equation of Conservation of Mass 

The equation of conservation of mass is also called the equation of continuity. It is derived from 

the law of conservation of mass. The law of conservation of mass states that mass can neither be 

created nor destroyed, i.e. given a steady flow process, the stored mass in a control volume does 

not change. Steady flow process is a process where the flow rate does not change with time. This 

means that inflow into a control volume equals to the outflow.  The general equation of 

continuity is expressed as;  

 
0










i

i

x

u

t



    

      (2.1) 

For a steady and incompressible fluid flow, the tensor form of the equation of continuity is given 

as; 

0




i

i

x

u
           (2.2)  
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2.1.2 Equation of Conservation of Momentum 

The law of conservation of momentum states that the rate of change of momentum in the control 

volume is equal to the sum of the net momentum flux into the control volume and any external 

forces acting on the control volume this is as a result of Newton second law of motion. This 

means that the total momentum of a closed system is constant. The general momentum equation 

in tensor form is expressed as; 

ii

j

i
j

i FuP
x

u
u

t

u
 






















 2


       (2.3) 

2.1.3 Equation of Induced Magnetic Force 

The induced magnetic force for the magnetic fluid under the effect of magnetic field is given by 

(Cowley and Rosensweig 1967, Zelazo and Melcher 1969) 

   mgmm hMBhF 


         (2.4) 

Where B


 is the magnetic field density vector and   mh


  represents the induced free current 

and gM  is magnetization of the magnetic material. This force will be used in the equation of 

motion as an external body force. 

2.1.4 Reynolds Equation 

The Reynolds equation is derived from the Navier Stokes equation where the velocities obtained 

are substituted into the continuity equation and then integrated across the fluid film 

thickness   zxhy ,0  . According to (Hamrock, 1994) the Reynolds equation derived is 

applicable for Elasto-hydrodynamic lubrication. The general Reynolds equation in standard form 

as was derived by (Hamrock, 1994) is as given in equation 2.5; 
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33

  (2.5) 

2.2 PROBLEM MODELING  

2.2.1 Magnetic Force Calculations 

For a Ferro-fluid under a magnetic field, from equation (2.4) the induced magnetic force is 

reduced to our specific case as Illustrated; 

   mgmm hMBhF 


0         (2.6) 

Where B


is the magnetic field density vector and ( mh


) represents the induced free current. 

Since the electrical properties of the Ferro-fluid are similar to that of the base fluid, they are non-

conductive (except where there is a metallic base fluid) and no free currents are induced. The 

first term therefore, can be cancelled and the equation is rewritten as 

 mgm hMF 


0     (2.7) 

The magnetization can be regarded only dependent on the applied field. The magnetization under 

this condition can be roughly divided into two parts as used by Abdo et al, 2009. 

1. If an applied magnetic field is strong enough; the magnetization of the fluid reaches a 

saturation state and is almost constant, Mg=Mgs, and the induced magnetic force is given 

by: 

 mgsm hMF 


0          (2.8) 

2. If a small or moderate applied field is applied; the magnetization of the fluid is 

approximately proportional to the applied field. mmg h X=M , and the induced magnetic 

force is given by: 

 mmmm hhXF 


0          (2.9)
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In this study, the second case is assumed and is used as a body external force in the flow field. 

2.2.2 Modified Reynolds Equation 

From stokes micro-continuum theory, the field equations of an incompressible fluid with couple 

stress gives that the general equation of momentum becomes equation 2.10. Thus the equation is 

broken down in the respective directions. 

 

                         (2.10) 

 

In x direction  

   (2.11) 

  

In y direction 
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  (2.12) 

In z direction 
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  (2.13) 

Where: 

mxF , myF and mzF  are the components of external forces per unit volume. 

















x

u
u

t

u
 , 







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






y

v
v

t

v
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
















z

w
w

t

w
  are the three components of acceleration of the fluid. 

  qBFP
Dt

qD
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Equations (2.11) to (2.13) contain the four unknowns' u, v, w and p. The fourth equation is given 

by the continuity equation to be able to solve for the unknowns: 

0














z

w

y

v

x

u

            

  (2.14) 

Using the assumptions below; 

1. The lubricant is assumed to be a Newtonian fluid.  

2. The flow is laminar; consequently, neither vortex flow nor turbulence is occurring 

anywhere in the flow. 

3. The lubricant is assumed incompressible; i.e. its density is constant. 

4. The curvature of the fluid film is neglected since the film thickness in y-direction is very 

thin compared with the span in x and z-directions. Thus, no gradient of the applied 

magnetic field across the fluid film, no magnetic force in y-direction and thus no pressure 

gradient in this direction 0




y

P
 

5. The fluid flow is steady, implying that  
t

u




= 

t

y




 = 

t

w




= 0 

6. The fluid inertia force is neglected compared to the viscous force and the induced 

magnetic force 

7. No-slip condition exists at the bearing surface. 

8. Except 
y

u




and

y

w




, all other velocity gradients are considered negligible. 

9. No heat conducted to or from the fluid film to surfaces (adiabatic case). 

The assumptions and approximations are necessary so as to reduce the equations in a way they 

could suit a natural phenomenon. Therefore the momentum equations can be written as;  
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  (2.15) 
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(2.16) 
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(2.17) 

Where mxF  and mzF  are the magnetic force components in circumferential and axial directions 

respectively.  

The boundary conditions can be stated as below; 

At 0y   0u  0v  0w               (2.18) 

0
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y

u
  , 0
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y

w

            

(2.19) 

At 
2

h
y    

h
u





, 0v  0w              (2.20) 

 0




y

u
  , 0





y

w

            

(2.21) 

At hy    u , 0v  0w              (2.22) 

0
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
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

y

u
  , 0
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y

w

           

  (2.23) 

Equations (2.18), (2.20) and (2.22) are the no slip boundary conditions. Equations (2.19), (2.21) 

and (2.23) result from the couple stress and vanish at the solid surfaces (Nada and Osman, 2007). 

This is due to the resistance of the solid surfaces for the rotation motion of the additive particles 
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By solving equations (2.15) and (2.17) analytically and using the above boundary conditions, the 

velocity profiles in circumferential and axial directions are obtained as below (Nada and Osman, 

2007). 
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Where 
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(2.26) 

These velocities are substituted in the following integrated continuity equation across the fluid 

film thickness for an incompressible fluid flow and then solved to give the specific Reynolds 

equation. 
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 27.2  

Solving this integral equation 2.28 is obtained; 
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Rearranging this equation we have; 
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This equation can be re-written as; 
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Substituting equation (2.9), the components of magnetic force ( mxF  and mzF ) can be obtained in 

the x and z directions respectively as below; 
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Substituting equations (2.32) and (2.33) in the Reynolds equation (2.30) above we obtain; 
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            (2.34) 

Considering the general equation of energy and taking in to account the magneto elasto-

hydrodynamics, the specific energy equation is obtained, 

22 1
JTk
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DT
Cv


           (2.35) 
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The energy equation is changed due to electric dissipation which is the heat energy produced by 

the work done by electric current. The electric dissipation is referred to as the joule’s heating and 

is given as 21
J


. The term   is the internal heating due to viscous dissipation. For an 

incompressible fluid flow, viscous dissipation function   in three dimensions is expressed as; 
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to viscous 

dissipation is assumed to be negligible and the terms are therefore dropped from the equation. 

Also, the z-axis is infinite and thus the partial derivatives with respect to z are dropped from the 

equation. Therefore, the viscous dissipation equation reduces to; 
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y

w

y

u
          (2.37) 

2.2.3 Using the Electromagnetic equations 

Maxwell’s equations 

The Maxwell’s equations give the relation between the interacting electric and magnetic fields. 

Maxwell’s equations consist of fundamental electromagnetic equations for time varying 

magnetic field and these equations are listed as equation 2.38 to equation 2.41. 
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t

B
E




     Or 

t

H
E




         (2.38) 

t

D
JH




           (2.39) 

eD             (2.40) 

0 B            (2.41) 

Equation (2.38) is the Faraday’s law that was named after Michael Faraday, who in 1831, 

experimentally discovered that a current is induced in a conducting loop when magnetic flux 

linking the loop changes. It is an experimental law and can be considered as an axiom (truth 

without proof). This equation expresses an axiom for electromagnetic induction which means 

that the electric field intensity in a region of time varying magnetic flux density is non-

conservative and cannot be expressed as a gradient or scalar potential. 

Equation (2.39) is the Ampere’s law that was named after Ampere Andre-Marie, and which 

states that wires carrying electric currents attract and repel each other magnetically. 

Form Maxwell’s electromagnetic equations, the relation 0 B  yields 0




y

B
. When the 

magnetic Reynolds number is small, induced magnetic field is negligible in comparison with the 

applied magnetic field. This therefore leads to; 

xB   = zB   = 0  and that yB = 0B  (a constant) 

The current density J has the components  zyx JJJ ,, . Therefore, the equation of conservation of 

electric charge 0 J where it gives that; 
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yJ  a constant 

Since the bearing wall is non-conducting, yJ 0 at the bearing wall and hence it becomes zero 

everywhere in the flow. Neglecting the polarization effect, the electric field E = 0. Therefore 

giving 

 zx JJJ ,0, ,  0,,0 0BB   and  wvuq ,,       (2.42) 

The general Ohms law is expressed as; 

 BqEJ            (2.43) 

The magnetic field is considered to act only from one direction (divergence less). This means 

that there are no magnetic flux sources and sinks within the field, and therefore 0 B . The 

mathematical expression of the continuity equation in the case of conservation of electric charge 

becomes; 

t
J e







             (2.44) 

The term Bq  in equation (2.43) thus yields equation 2.45 

Bq = 

00 0B

wvu

kji

= kuBiwB 00         (2.45) 

Therefore, from equations (2.43) and (2.45) gives the x-axis and z-axis components of the 

current density which reduces to equation 2.46. 

xJ 0wB  and  zJ 0uB         (2.46)  
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Now, the Lorentz force BJ  is expressed as equation 2.47. 

kwBiuB

B

uBwB

kji

BJ 2

0

2

0

0

00

00

0         (2.47)  

Heat generated due to electrical resistance of the fluid to the flow of the induced electric current 

is given as the joule heating which yields equation 2.48; 

 222
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2

0

22
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2
2

wuBBuBw
J

 


       (2.48) 

Taking viscous dissipation (2.37) and the joules heating (2.48) into considerations the equation 

of energy is as in equation 2.49. 
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2.2.4 Magnetic field model 

The magnetic model used is according to Abdo et al, (2009) where a concentric finite wire was 

placed at the center of the shaft and some current passed through. Therefore, induced magnetic 

field is produce by the effect of the current passing through the wire according to Maxwell’s 

equations. The produced magnetic field is represented by equation (2.50);  
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     (2.50) 

This equation in non-dimensionalzed form is expressed as equation (2.51); 
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     (2.51) 

Where, 
R

I
hmo

4
 , and is the characteristic value of magnetic field intensity 

Thus, substituting equation (2.51) in the modified Reynolds and the specific Energy equations, 

our model is now ready to be solved numerically simultaneously and the effect of this model on 

the overall bearing characteristics can be achieved.  

2.2.5 Bearing Geometry and Boundary Conditions   

The considered bearing is an axial feeding cylindrical finite journal bearing. It is schemed as in 

Figure 1.3. The geometric axes of the journal and bearing are assumed parallel. The arc length 

( ) from the oil admission line and considering maximum clearance median section, the film 

thickness is given as equation (2.52), 

eCosCh            (2.52) 

Where, e  is the eccentricity ratio 

Equation (2.52) in non-dimensional form it is expressed as equation (2.53) 

CosH 1           (2.53) 

Where, is the non-dimensionalzed eccentricity ratio. 

The film thickness H depends totally on the change of the angle   and hence the derivatives of 

H  with respect to   remains while those of Hm  with respect to   vanishes. Considering the 

boundary conditions, it is clear that the pressure and the temperature are symmetrical about the 

middle plane of the bearing  0Z . Thus one half of the bearing would reflect the other. 

The boundary conditions used are; 

    0,2,0  ZPZP   At the line of lubricant admission 

    05.0,5.0,   PP  At the bearing ends 

       ZZZHm  2tansin2tansin 11  
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  00,0, 





Z

P
   This due to the bearing symmetry 

For the temperature; 

  0,0,0 ZT    At the lone of lubricant admission 

    05.0,5.0,   TT  At the bearing ends 

 

2.3 NON-DIMENSIONALIZATION 

The principal use of dimensional analysis is to deduce from a study of the dimensions of the 

variables in any physical system certain limitations on the form of any possible relationship 

between those variables. The method is of great generality and mathematical simplicity.  This is 

a process that starts with selecting a suitable scale against which all dimensions in a given 

physical model are scaled. This process aims at ensuring that the results obtained are applicable 

to other geometrically similar configurations under similar set of flow conditions. The 

dimensionless quantities are introduced as below; 

Rx  , ZLz b
,
   Ce  , CHh  , CLl  , RLb 2 , Hhh mom   and   2

*

0

RC

P
P


  

Introducing these non-dimensional quantities to equation (2.34) the modified Reynolds equation 

2.54 is achieved; 
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(2.54)
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
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It is noted that, as the value of (L) tend to zero, equation (2.54) is reduced to the Newtonian 

magnetic lubricant case and the effect of couple stresses vanishes as shown in equation (2.55).  
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(2.55) 

To non-dimensionalize the specific energy equation (2.49), the non-dimensional quantities used 

were, 

Rx  , 
*Cyy  ,  ZLz b

,  



U

Ht
t

*

  

 ,     TTTTT w

*

,   Uuu *

,  and  Uww *
  

To non-dimensionalize this equation the following operations were first carried out to the non-

dimensional parameters labeled as equations 2.56(a), (b), (c), (d), (e), (f) and (g). 
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And by substituting these equations 2.56 (a), (b), (c), (d), (e), (f) and (g) in the specific energy 

equation, yielded equation 2.57. 
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The equation was re-written as in equation 2.58 
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The non-dimensionalized energy equation 2.58 contains Prandtl, Eckert and Peclet non-

dimensional numbers. 

Prandtl Number (Pr) 

Prandtl number (Pr) gives the ratio of viscous force to the thermal force and is defined as; 
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Where 








pC
k


is the thermal diffusivity and



  . Fluids that are more viscous have a large 

value of   and thus it follows a large Prandtl number. Fluid that are good conductors of heat 
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have relatively large 








pC
k


 and this occurs in liquid metals whose Prandtl numbers are 

correspondingly small such as mercury with (Pr=0.023) 

 

Peclet Number (Pe) 

If the Prandtl number is divided with
bL

u 2

, then the non-dimensional number produced is known 

as the Peclet number which is small when viscous force is small while thermal force is large. 

k

uLC
Pe

p
            (2.60) 

 

Eckert number (Ec) 

The Eckert number (Ec) expresses the relationship between the kinetic energy in the flow and the 

enthalpy. 

It is given as; 
TC

U
Ec

p
 

2

         (2.61)  

It represents the conversion of kinetic energy into internal energy by the work that is done 

against the viscous fluid stresses. It have been deduced that a positive Eckert number implies 

cooling of the stretching sheet (or loss of heat from the sheet to the fluid) 

Equation (2.55) and equation (2.58) are then simultaneously solved numerically using finite 

difference iteration method. The final solution is obtained after successive iterations, beginning 

with an initial distribution guess of zero values. The results, with no magnetic effects or thermal 

aspects, have complete agreement with that of Nada and Osman, (2007). 
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CHAPTER THREE 

3.0 THE METHODOLOGY 

In this chapter, the method of solution is discussed and the governing equations are presented in 

their finite difference forms. The final set of the equations are also presented in this chapter and 

these are the equations that were implemented in a MATLAB version 7.14.0.739 computer 

program. 

3.1 FINITE DIFFERENCE TECHNIQUE 

The finite difference approximations for derivatives are one of the simplest methods to solve 

differential equations. The principle of finite difference methods is close to the numerical 

schemes used to solve ordinary and partial differential equations. It consists in approximating the 

differential operator by replacing the derivatives in the equation using difference quotients. The 

domain is partitioned in space and in time and approximations of the solution are computed at 

the space or time points. Equations (2.55) and (2.58) are non-linear hence cannot be solved 

analytically. Therefore the finite difference method was used in their solution subject to the 

initial conditions 

3.1.1 The Reynolds Equation in Finite difference 

Consider the specific non-dimensional Reynolds equation (2.55), the bearing geometry and the 

magnetic field model. The film thickness H depends totally on the change of the angle   and 

hence the derivatives of H  with respect to   remains while those of Hm with respect to   

vanishes, also the derivatives of H with respect to Z disappears while those of Hm  with respect 

to Z remain thus the equation reduces to equation 3.1; 
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And applying the finite difference technique, using the central difference method, the first and 

second derivatives reduce to equations 3.2(a) and 3.2(b); 
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Figure 3.1: Finite difference mesh 

  

 After using the central difference technique, the Reynolds equation reduces to equation 3.3; 

   

Z

PP

Z

P jiji








 

2

*

1,

*

1,
*

Z 

  



34 

 

 
 

 
 

   
 





























































2

,1,13

,

,1,1,1,12

,2

3

,

22

3

,*

,
22

3
2

12



jiji

ji

jijijiji

ji

jiji

ji

PP
H

PPHH
H

Z

HH
P

 
 

 
  











































































2

,1,1,

,

2

1,1,3

,

,1,1

2

1,1,

2

3

, 2

2
3

4 Z

HmHmHm
Hm

Z

HmHm
H

HH

Z

PPH jijiji

ji

jiji

ji

jijijijiji



 

             (3.3)

 

3.1.2 The Energy Equation in Finite difference 

And applying the finite difference technique to the specific non-dimensional energy equation 

2.58, and  using the central difference method, the first and second derivatives yielded equation 

3.4(a) and equations 3.4(b) respectively; 
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After using the central difference technique, the energy equation was written as equation 3.5; 
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Equation 3.5 was re-written as equation 3.6 
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And making 
*

, jiT  the subject of equation 3.6 yielded equation 3.7; 
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The equations (3.3) and (3.7) are the final set of equations and were solved simultaneously using 

a computer code in MATLAB application software version 7.14.0.739. 

 

 



36 

 

CHAPTER FOUR 

RESEARCH RESULTS AND DISCUSSION 

4.0 RESULTS AND DISCUSSIONS 

 

Equations (3.4) and (3.9) were solved using the MATLAB version 7.14.0.739 computer code in 

Appendix I. The pressure and the temperature distributions are discussed in this chapter while 

other parameters such as magnetic coefficient, couple force parameter and eccentricity ratio are 

being varied. The figures produced as per the code in Appendix I are thus discussed below; 

4.1 PRESSURE DISTRIBUTIONS 

 

Figure 4.1: Plot surface of pressure with theta and z 

The results have been worked out for ferro-fluids with couple stresses assuming constant 

viscosity coefficient and density of the lubricant. The result as in Figure 4.1 gives the 

 



37 

 

dimensionless pressure distribution in circumferential and axial directions with eccentricity ratio 

for different values of the couple stress parameter. It represents a surface of pressure against both 

circumferential and axial directions. The results were obtained for constant eccentricity ratio e, 

length to diameter ratio  of 1.0 and varied couple stress parameter L of 0.0, 0.2 and 0.4 and 

comparing this results with (Abdo, 2009) where L = 0.0 is the Newtonian lubricant case they 

have good correlation since the trend is similar. The results are also determined for magnetic 

coefficient  = 0.0 which is the non-magnetic lubricant case and  = 2.0 to 8.0 the magnetic 

lubricant case and comparing with (Nada and Osman, 2007) again we find that there is good 

correlation. The pressure distribution in the circumferential direction at the bearing mid-plane 

(bearing centerline) for different values of couple stress parameter and a constant value of 

magnetic coefficient are shown in Figure 4.2 for eccentricity ratio e = 0.6.  

 

Figure 4.2: Plot of pressure against theta with increasing couple stress 
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The results in Figure 4.2 for the case of magnetic lubricant, there is an increase of the absolute 

pressure with increasing value of couple stress parameter L, at a constant eccentricity ratio used. 

This increase is more pronounced as we increase the value of the couple stress parameter.  Thus, 

the absolute pressure is increasing as the value of the couple stress parameter increases. From the 

basic definition of pressure where it is given as force per unit surface area, therefore, the couple 

stress is as force being added in the fluid surface while the bearing surface remains a constant. 

Hence the increase in pressure is due to the increase in the couple stress.      

 

Figure 4.3: Plot surface of pressure against theta with varied magnetic coefficient 

Considering the magnetic effect, where the value of the magnetic coefficient is varied to see its 

effect on the absolute pressure. This is observed as from Figure 4.3. There is a large increase of 

the pressure as the value of the magnetic coefficient increases. The maximum pressure is shifted 
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to the angle  5.0 . Due to symmetry from Figure 4.1 it is clear that the pressure increases in 

magnitude in the negative way after another 5.0  mark angle. Effect of alpha is also determined 

at a constant value of the eccentricity ratio. At this value of eccentricity ratio, there are two 

maximum pressure points as shown in Figure 4.1 and also according to Abdo, 2009. The first at 

 5.0  due to the magnetic effect and value of the couple stress parameter L and the other at 

nearly   due to the hydrodynamic effect, its value depends mainly on the couple stress 

parameter L.  

 

Figure 4.4: Plot surface of pressure with theta and z 

Figure 4.4 represents the plot of pressure against the length of the bearing for different magnetic 

coefficient for couple stress parameter ( L = 0.2). The result from the graph shows that as we 

increase the value of the magnetic coefficient the pressure also increases. The magnetic 

contribution is more along the length of the bearing and it is highest at the middle of the bearing 

as evident in Figure 4.4. Some symmetry is seen at the center of the bearing that is at 0.0Z . All 
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this is being analyzed considering the eccentricity ratio being held a constant. It can also be seen 

that the pressure of the bearing lubricated with couple stress fluid increases with increasing 

couple stress parameter. Bearings pressure with magnetic lubricant and couple stress are greater 

than that with nonmagnetic lubricant and without the couple stress. This is due to the fact that 

force is increased due to couple force while the surface area to which the force acts on remains a 

constant. 

4.2 TEMPERATURE DISTRIBUTIONS AND VELOCITY PROFILES 

 

Figure 4.5: Plot of surface of temperature with theta and z at 2.0L  

Figure 4.5 shows the Non-dimensional temperature distribution  T for constant eccentricity ratio 

applying some magnetic force and for length to diameter ratio 1.0 across the bearing ends.  This 

figure displays temperature distributions over the whole bearing at the same eccentricity ratio 

applying magnetic force, 8.0  and the couple stress parameter 2.0L . The surface as seen in 
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the figure 4.5 clearly shows the temperature distributions with the bearing length and theta . It 

is found that the temperature increases slightly in the region 0.0  to  5.0  after that the 

rate increases rapidly within the region  5.0  to  5.1 , then rate of increase of 

temperature in the region  5.1   to  2  is approximately considered to be dropping as the 

fluid goes back to meet with fresh lubricant at insertion point at 0.0 . Due to no slip property, 

lubricant layers slid over each other and thus due to friction the temperature increases 

 

Figure 4.6: Plot of surface of temperature with theta and z at 5.0L  

Temperature profile again is shown clearly in the wire frame Figure 4.6 it shows the 3D 

Temperature distributions over the whole bearing at the same eccentricity ratio after applying 

magnetic force, 8.0  and the couple stress parameter 5.0L . It is evident that as the value of 

couple stress parameter increases, the temperature of the bearing increases as well. This is seen 

as we compare the non-dimensional maximum temperatures in Figure 4.5 which is 
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approximately 1.5 and that in Figure 4.6 which is approximately 2.5. Therefore, the higher the 

couple stress parameter L increases so does the bearing temperature. 

 

Figure 4.7: Velocity profiles in both circumferential and axial directions respectively 

From Figure 4.7(a), we observe that the non-dimensional velocity increases with decrease in the 

film thickness which is in the circumferential direction. This velocity is highest at the lowest 

value of the film thickness where the bearing pressure is highest. The film thickness is affected 

by the amount of force applied on the bearing thus the appearance of the eccentricity ratio. In the 

bulk of the liquid, each molecule is pulled equally in every direction by neighboring liquid 

molecules, resulting in a net force of zero. Therefore, the force applied to this fluid is the load 

being carried by the bearing. 

 

Figure 4.7(a) 

Figure 4.7(b) 
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Velocity along the axial direction is as in Figure 4.7(b). This velocity is unstable due to the 

position of the groove. Having that the groove is at some specific position, the lubricant as it 

enters the bearing, it takes the velocity of the journal due to no slip condition. Along the bearing 

therefore, the velocity is varied until at some position away from the groove where this velocity 

is approximately a constant. 

 

Figure 4.8: Plot of film thickness vs. theta and magnetic strength vs. bearing length 

Figure 4.8 a) represents the plot of film thickness against the arc length .  The film thickness 

reduces from some value at 0.0 to    and then increases back to the same value at the 

point of lubricant admission. This is due to the geometry of the bearing as schemed in the Figure 

1.3 which results to the non-dimensional film thickness being given as in equation (3.56). 

Considering the boundary conditions and the geometry, it is clear that the pressure and the 

temperature are symmetrical about the middle plane of the bearing  0Z .  

 

Figure 4.8(a) 

Figure 4.8(b) 
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Figure 4.8 b) represents the plot of magnetic strength applied against the length of the bearing Z . 

The curve shows that the magnetic strength increases from  5.0Z  to  0Z  where it starts 

again to reduce back to the initial value at  5.0Z . This is similar to the results of Abdo, 2009 

where a concentric finite wire was placed at the center of the shaft and some current passed 

through to produce the magnetic strength. Therefore, induced magnetic field is produce by the 

effect of the current passing through the wire according to Maxwell’s equations and this force is 

as in the equation (2.51).  

 

Figure 4.9: Graph of film thickness against theta at different eccentricity ratio values  

Figure 4.9 represents the plot of film thickness against arc length  with eccentricity ratio 

ranging from 0.0e  to 6.0e . It is found that as the eccentricity ratio increases so does the 

film thickness. This effect increases the hydrodynamic effect hence the bearing can carry higher 

values of the load applied on the bearing. Also the temperature distribution is affected by 
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changing the eccentricity ratio; higher eccentricities are always associated with higher 

temperature rise. This agrees with that of Monira, 1982. The results indicate that the magnetic 

lubrication has insignificant effect on the lubricant maximum temperature at all eccentricity 

ratio. In fact, it is from the good benefit for the magnetic lubricant. 
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CHAPTER FIVE 

5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

The performance finite elasto-hydrodynamic journal bearing lubricated with ferrofluid and with 

couple stresses have been investigated. The conclusions that have been arrived at and the 

contributions added are, herein, presented: 

1. Under magnetic lubricant, the results concluded that the magnetic lubrication gives 

higher pressure distribution. This would therefore lead to increased load carrying 

capacity.  

2. For the magnetic lubrication, the increase of the pressure is not accompanied by increase 

of the friction losses. For constant loads, decrease of the operating eccentricity ratio 

(compared to conventional lubricated bearing) may lead to decrease of the frictional 

forces. 

3. The bearing performance is modified when the magnetic effects are comparable with the 

elasto-hydrodynamic ones, namely; when the bearing operates at low eccentricity ratios 

(e) and high values of (α), this requires that the magnetic field to be high, the rotation 

speed is low and the relative clearance is large. Far from such conditions the elasto-

hydrodynamic effects prevail considerably and insignificant effect for the magnetic 

lubrication is obtained. 

4. For journal bearing lubricated by magnetic fluids with couple stresses both the pressure 

and load carrying capacity increase with the increase of the couple stress parameter (L). 

The increase is more pronounced for bearings operating at higher values of eccentricity 
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ratios.  The attitude angle decreases with increasing the couple stress parameter 

especially at high values of eccentricity ratio this influence qualitatively agrees with some 

previous works. 

5. Temperature of the bearing increases due to the friction between the layers of the fluid. 

The temperature is absorbed by the magnetic particles in the fluid thus maintaining 

moderate temperature in the bearing. The couple stresses are observed to increase the 

temperature of the bearing. Considering the effect of joules heating in the bearing, it was 

observed that joules heating effects are minute and thus negligible.  

It could be concluded from the above that fluids with microstructure (couple stress) are better 

lubricants than Newtonian fluids especially if they were prepared to become magnetic fluids. The 

results provide to engineers useful information to design machine elements and bearing systems 

with a higher life expectancy and efficiency.  
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5.2 RECOMMENDATIONS 

In this study, we have considered that the fluid is incompressible in that the density is held 

constant and that the viscosity coefficient is also constant. From the study, having that there is 

change in temperature, then the viscosity and density of the fluid is changing as well. We 

therefore recommend that an extension in research of the same elasto-hydrodynamic journal 

bearing with viscosity and the density being taken as variable be a food for thought for advanced 

research in this area. 

The bearing studied was considered to work under perfect condition and therefore we 

recommend that if it could have a broken part or a hole and more lubricant is lost, a study should 

be done to facilitate how such a condition could be managed. We also recommend that a study be 

done on a combination of a journal bearing and other bearing, to observe whether such 

combinations would be applicable to improving the bearing performance and efficiency. 
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APPENDICES 

APPENDIX 1: COMPUTER CODE IN MATLAB 

In order to solve the governing equations (3.3) and (3.7), the following computer program code 

was developed using MATLAB software version 7.14.0.739, subject to the boundary conditions 

as discussed herein. The results were obtained by varying various flow parameters, notably 

couple stress parameter, magnetic coefficient and eccentricity ratio. 

% NUMERICAL SOLUTION OF JOURNAL BEARING 
function kihugaCode3latest() 
clear all; 
clc; 
N=51; 
xlower=0;xupper=2*pi; 
dx=(xupper-xlower)/(N-1); 
x=xlower:dx:xupper; 
K=51; 
zlower=-.5;zupper=.5; 
dz=(zupper-zlower)/(K-1); 
z=zlower:dz:zupper; 
[h hm g]=coeff3(x,z); 
M=51; 
ylower=0;yupper=h; 
dy=(yupper-ylower)/(M-1); 
y=ylower:dy:yupper; 
miu=1.5; 
p=zeros(N,K);T=zeros(N,M,K); 
%%%START=====BOUNDARY CONDITIONS=========%%%%%%%% 
for i=1:N 
    for k=1:K 
    p(1,k)=0; 
    p(i,1)=0; 
    p(N,k)=0; 
    p(i,K)=0; 
    end 
end 
Tw=40;Tinf=70; 
for i=1:N 
    for k=1:K 
    for j=1:M 
    T(i,1,j)=0; 
    T(i,K,j)=0; 
    T(i,k,1)=Tinf; 
    T(i,k,M)=Tw; 
    T(1,k,j)=0; 
    T(N,k,j)=0; 
    end 
    end 
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end 
%%%END=====BOUNDARY CONDITIONS=========%%%%%%%% 
  
matrix=ones(N,K); 
%% START EXTENDING FXNS h and hm INTO MATRICES%% 
hmatrix=zeros(N,K);gmatrix=zeros(N,K);hmmatrix=zeros(N,K); 
for i=1:N 
    for k=1:K 
        hmatrix(i,k)=h(i)*matrix(i,k); 
        gmatrix(i,k)=g(i)*matrix(i,k); 
        hmmatrix(i,k)=hm(k)*matrix(i,k); 
    end 
end 
  
Hc=hmatrix(2:N-1,2:K-1);Hxr=hmatrix(3:N,2:K-1);Hxl=hmatrix(1:N-2,2:K-1);% extended to matrix form 
Gc=gmatrix(2:N-1,2:K-1);Gxr=gmatrix(3:N,2:K-1);Gxl=gmatrix(1:N-2,2:K-1); 
Hmc=hmmatrix(2:N-1,2:K-1); Hmzu=hmmatrix(2:N-1,3:K); Hmzd=hmmatrix(2:N-1,1:K-2); 
Pc=p(2:N-1,2:K-1);Pxr=p(3:N,2:K-1);Pxl=p(1:N-2,2:K-1); Pzu=p(2:N-1,3:K);Pzd=p(2:N-1,1:K-2); 
  
[A0 A1 A2 A3 A4]=coeff1(Hc,Hxr,Hxl,Gc,Gxr,Gxl,Hmc,Hmzu,Hmzd,Pxr,Pxl,Pzu,Pzd,dx,dz); 
p=(A1./(eps+A0))+(A2./(eps+A0))-(A3./(eps+A0))-(A4./(eps+A0)); 
  
%% END EXTENDING FXNS h and hm INTO 3x3 MATRICES%% 
matrixY=ones(N,K,M);y3D=zeros(N,K,M);h3D=zeros(N,K,M); 
hm3D=zeros(N,K,M);p3D=zeros(N,K,M);p2=zeros(N,K,M); 
p2(2:N-1,2:K-1)=p; 
for i=1:N 
  for k=1:K 
   for j=1:M 
     y3D(i,k,j)=y(j)*matrixY(i,k,j); 
     h3D(i,k,j)=h(i)*matrixY(i,k,j); 
     hm3D(i,k,j)=hm(k)*matrixY(i,k,j); 
     p3D(i,k,j)=p2(i,k)*matrixY(i,k,j); 
    end 
   end 
end 
ys=size(y3D); 
Y3D=y3D(2:N-1,2:K-1,2:M-1);H3D=h3D(2:N-1,2:K-1,2:M-1);Hm3D=hm3D(2:N-1,2:K-1,2:M-1); 
Hmzu3D=hm3D(2:N-1,3:K,2:M-1); Hmzd3D=hm3D(2:N-1,1:K-2,2:M-1); 
Pxr3D=p3D(3:N,2:K-1,2:M-1);Pxl3D=p3D(1:N-2,2:K-1,2:M-1); Pzu3D=p3D(2:N-1,3:K,2:M-1); 
Pzd3D=p3D(2:N-1,1:K-2,2:M-1); 
  
[u w]=coeff(Y3D,H3D,miu,Hm3D,Hmzu3D,Hmzd3D,Pxr3D,Pxl3D,Pzu3D,Pzd3D,dx,dz); 
vel=size(u); 
%% START EXTENDING FXNS u and w TO SAME DIMENSIONS AS T(X,Y,Z) %% 
u2=zeros(N,K,M);w2=zeros(N,K,M); 
u2(2:N-1,2:K-1,2:M-1)=u; 
w2(2:N-1,2:K-1,2:M-1)=w; 
  
%% END EXTENDING FXNS u and w TO SAME DIMENSIONS AS T(X,Y,Z) %% 
uC=u2(2:N-1,2:K-1,2:M-1);uyR=u2(2:N-1,2:K-1,3:M);uyL=u2(2:N-1,2:K-1,1:M-2); 
wC=w2(2:N-1,2:K-1,2:M-1);wyR=w2(2:N-1,2:K-1,3:M);wyL=w2(2:N-1,2:K-1,1:M-2); 
Tzu=T(2:N-1,3:K,2:M-1);Tzd=T(2:N-1,1:K-2,2:M-1);Txr=T(3:N,2:K-1,2:M-1);Txl=T(1:N-2,2:K-1,2:M-1); 
  
[Tpat5 Tpat6 Tpat7 Tpat8 Tpat9]=temp(dx,dy,dz,miu,Tzu,Tzd,Txr,Txl,uyR,uyL,wyR,wyL,uC,wC); 
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T=Tpat5-Tpat6+Tpat7*(Tpat8+Tpat9); 
  
figure(1) 
surf(x(2:N-1),z(2:K-1),p') 
figure(2) 
Tplot=T(:,:,floor(0.5*M)); 
mesh(x(2:N-1),z(2:K-1),Tplot') 
figure(3) 
subplot(2,1,1) 
uplot=u(:,:,floor(0.5*M)); 
mesh(uplot) 
subplot(2,1,2) 
wplot=w(:,:,floor(0.5*M)); 
mesh(wplot) 
figure(4) 
subplot(2,1,1) 
plot(x,h) 
subplot(2,1,2) 
plot(z,hm) 
figure(5) 
hold on 
plot(x(2:N-1),p(:,26),'r','LineWidth',2.5) 
axis([min(x) max(x) -.10 .15]) 
xlabel('theta in rads') 
ylabel('Pressure-P') 
hold off 
end 
function [a0 a1 a2 a3 a4]=coeff1(hc,hxr,hxl,gc,gxr,gxl,hmc,hmzu,hmzd,pxr,pxl,pzu,pzd,dx,dz) 
beta=1; 
alpha=0.801; 
a0=(2/(dx^2)+1/(2*(beta^2)*(dz^2)))*gc; 
a1=((gxr-gxl)/(2*dx)).*((pxr-pxl)/(2*dx)); 
a2=(gc).*((pxr+pxl)/(dx^2))+((gc)/(4*beta^2)).*((pzu+pzd)/(dz^2)); 
a3=3*((hxr-hxl)/dx); 
a4=alpha*((gc.*((hmzu-hmzd)/(2*dz)).^2)+(gc.*hmc.*((hmzu+hmzd-2*hmc)/(dz^2)))); 
end 
  
function [h hm g]=coeff3(x,z) 
e=0.5; v=1;L=0.2; 
h=1+e*cos(x); 
hm=(sin(atan(v+(2*v*z)))+sin(atan(v-(2*v*z)))); 
g=h.^3-12*(L^2)*h+24*(L^3)*tanh(h./(2*L)); 
end 
function [u w]=coeff(y,hc,miuc,hmc,hmzu,hmzd,pxr,pxl,pzu,pzd,dx,dz) 
Xo=0.5; 
omega=0.5; 
R=0.5; 
Lo=1;L=0.2; 
if (L>0) 
u=omega*R.*(y./hc)+(0.5/miuc).*((pxr-pxl)./(2*dx)).*((y.^2-hc.*y)+(2*L^2).*(ones(size(y))-(cosh((2.*y-

hc)./(2*L)))./(eps+cosh(hc./(2*L))))); 
w=(0.5/miuc).*(((pzu-pzd)./(2*dz))-Lo*Xo*hmc.*((hmzu-hmzd)./(2*dz))).*((y.^2-hc.*y)+(2*L^2).*(ones(size(y))-

(cosh((2.*y-hc)./(2*L)))./(eps+cosh(hc./(2*L))))); 
else 
u=omega*R.*(y./hc)+(0.5/miuc).*((pxr-pxl)./(2*dx)).*((y.^2-hc.*y)); 
w=(0.5/miuc).*(((pzu-pzd)./(2*dz))-Lo*Xo*hmc.*((hmzu-hmzd)./(2*dz))).*(y.^2-hc.*y); 
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end 
end 
function [T5 T6 T7 T8 T9]=temp(dx,dy,dz,miuc,Tu,Td,Tr,Tl,ur,ul,wr,wl,uc,wc) 
Pr=1; Ec=1; 
R=0.5;Lb=1;U=10;kmiu=0.1; 
sigma=1;beta0=1;C=0.15; 
T5=0.5*(((Lb^2*dz^2).*(Tr+Tl))+((R^2*dx^2).*(Tu+Td)))./(((Lb^2)*dz^2)+(R^2*dx^2)); 
T6=0.25*Pr*(U/kmiu)*((R*Lb*dx*dz)/((Lb^2*dz^2)+(R^2*dx^2)))*((Lb*dz*uc.*(Tr-Tl))+(R*dx*wc.*(Tu-Td))); 
T7=((R^2*Lb^2*dx^2*dz^2)/((Lb^2*dz^2)+(R^2*dx^2))); 
T8=Ec*(Pr/C^2)*(0.5/max(dy))*(0.5/max(dy))*miuc*((ur-ul).^2+(wr-wl).^2); 
T9=Ec*Pr*0.5*((sigma*(beta0^2))/kmiu)*(uc.^2+wc.^2); 
end 
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