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ABSTRACT 

 

The main factor that determines the weather and climate on the surface of the earth is the 

time variation of the position of the overhead sun. This single factor determines the time 

of the day or night, variation of earth‘s surface temperature, prevailing wind direction 

and therefore precipitation, weather and climate. The locus of the overhead sun as 

described by the solar-declination from a reference point on the earth surface can be 

accurately calculated astronomically at all times. This makes it possible to predict most 

weather parameters, using weather and climate models. We have in this study used a 

second important factor to account for the natural climate variability as the time variation 

of the overhead moon as described in a similar manner by the lunar declination.  

 

This study demonstrates that the presence of enhanced atmospheric tides resulting from 

lunar-solar geometry is a key factor when used to predict the temporal distribution of 

rainfall amounts. Solar and lunar declination values obtained from ephemeris available 

from National Aeronautics Space Agency (NASA) have been used to compute the 

relative magnitude and duration of the tidal effect in the atmosphere for the period 1959 

to 2005 over Nairobi. The impact of the tidal effect has been assessed by statistical 

modeling of Kenya rainfall against the conventional climate variability indices such as 

the Southern Oscillation Index (SOI) and Quasi-Biennial Oscillation (QBO) as well as 

modeling against parameters derived from the tidal effect. We have found that while 

conventional variability indices provide a method to explain past variability, their values 

are unknown for the purpose of projection into the future. We have therefore in this 

study used statistical modeling technique to obtain future rainfall amounts with 

covariates and factors derived from the lunar-solar geometry. The main advantage of 



 xxi 

lunar-solar parameters is that their values can be calculated accurately at all times and 

have therefore been used to carry out a projection of monthly rainfall amounts in Kenya 

for the period 1901 to 2020. The statistical model reveals an increase in frequency and 

intensity of severe hydrology events for the period 2018 to 2020. 
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CHAPTER ONE 

1.0 INTRODUCTION 

Three important factors have combined to bring about a large increase in interest in 

atmospheric science. First, man‘s increasing industrial activity has brought into focus 

the problems of pollution and the possibility of artificial modification of the 

environment. Secondly, concern about world food resources in the face of rapidly 

increasing population has made us much more aware of the critical effect of 

fluctuations in climate, particularly in parts of the developing world. Thirdly, the use 

of computers has made available much more powerful tools for atmospheric 

research. 

 

One major factor which determines the climate on the surface of the earth is the time 

variation of position of the overhead sun. This single factor determines the time of 

day and night, variation of surface temperature, prevailing wind direction, 

precipitation, weather and climate at any position of the earth surface. Luckily, the 

locus of this position can always be determined astronomically with accuracy at all 

times and makes it possible to predict most weather parameters. 

 

When the expected weather and climatic condition is not forthcoming, one is forced 

to look outside this factor for the cause. An unexpected drought condition, as the one 

of years 1984 and 2004 or a spike in rainfall such as the El-Niño rainfall of 1997, are 

examples. In this country droughts have been more devastating than floods and 

therefore more emphasis has been placed on the predictability of droughts. Natural 
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disasters disrupt people‘s lives through displacements, destruction of livelihoods and 

property, deaths and injuries. Consequently they take back years of development thus 

posing a major challenge to the achievement of the goals that target alleviation of 

extreme poverty. In this section we begin by discussing the drought situation, first in 

the Sahel region and then in Kenya. The variation of climate in the Sahel has is seen 

to influence the drought situation in this country. A drought condition is determined 

by the proportion of the country occupied by the Sahel type of climate during the 

year. [Cook, 2011]. 
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Sahel

Desert

1.1 THE SAHEL DROUGHT 

The Sahel drought is a series of historic droughts, beginning in at least the 17th 

century affecting the Sahel region, as in Figure 1.1, is a climate zone sandwiched 

between the African savanna grasslands to the south and the Sahara desert to the 

north across West and Central Africa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the frequency of drought in the region is thought to have increased from the 

end of the 1980s, three long droughts have had dramatic environmental and societal 

effects upon the Sahel nations. Famine followed severe droughts in the 1910s, the 

1940s, and the 1960s, 1970s and 1980s, although a partial recovery occurred from 

1975-80. While at least one particularly severe drought has been confirmed each 

Figure 1.1 

Africa: Climate Regions showing the Desert and the Sahel. [Cook, 2011] 

http://en.wikipedia.org/wiki/Sahel
http://en.wikipedia.org/wiki/Sahara_desert
http://en.wikipedia.org/wiki/West_Africa
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century since the 17th century, the frequency and severity of recent Sahelian 

droughts stands out. In figure 1.2, severe conditions are taken to occur when the 

rainfall index is above 1.3 or below -1.3. [Wikipedia, March 2012]. 

 

 

 

 

 

 

 

 

 

 

Famine and dislocation on a massive scale from 1968 to 1974 and again in the early 

and mid 1980s—was blamed on two spikes in the severity of the late 1960-1980s 

drought period [Batterbury, 2001]. From the late 1960s to early 1980s famine killed 

at least 100,000 people, left 750,000 dependent on food aid, and affected most of the 

Sahel's 50 million people [UNEP, 2002]   

 

The economies, agriculture, livestock and human populations of much of Mauritania, 

Mali, Chad, Niger and Burkina Faso were severely impacted. As disruptive as the 

droughts of the late 20th century were, evidence of past droughts recorded in 

Ghanaian lake sediments suggest that multi-decadal mega-droughts were common in 

Figure 1.2 
Sahel rainfall variation in the twentieth century [wikipedia, 

Feb 2014]. 

http://en.wikipedia.org/wiki/Famine
http://en.wikipedia.org/wiki/Mauritania
http://en.wikipedia.org/wiki/Mali
http://en.wikipedia.org/wiki/Chad
http://en.wikipedia.org/wiki/Niger
http://en.wikipedia.org/wiki/Burkina_Faso
http://en.wikipedia.org/wiki/Megadrought
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West Africa over the past 3,000 years and that several droughts lasted far longer and 

were far more severe, [Shanahan et al, 2009] 

Because the Sahel's rainfall is heavily concentrated in a very short period of the year, 

the region has been prone to dislocation when droughts have occurred ever since 

agriculture developed around 5,000 years ago. The Sahel is marked by rainfalls of 

less than 100 mm a year, all of which occurs in a season which can run from several 

weeks to two months. 

Despite this vulnerability, the history of drought and famine in the Sahel do not 

perfectly correlate. While modern scientific climate and rainfall studies have been 

able to identify trends and even specific periods of drought in the region, oral and 

written records over the last millennium do not record famine in all places at all 

times of drought. One 1997 study, in attempting to map long scale rainfall records to 

historical accounts of famine in Northern Nigeria, concluded that "the most 

disruptive historical famines occurred when the cumulative deficit of rainfall fell 

below 1.3 times the standard deviation of long-term mean annual rainfall for a 

particular place [Aondover and Woo, 1997]. Towards an Interpretation of Historical 

Droughts in Northern Nigeria. Climatic Change, no 37, 1997. pp.601-613   . The 

1982-84 period, for instance, was particularly destructive to the pastoral Fula people 

of Senegal, Mali and Niger, and the Tuareg of northern Mali and Niger. The 

populations had not only suffered in the 1968-74 period, but the inability of many to 

rebuild herds destroyed a decade earlier, along with factors as various as the shift of 

political power to settled populations with independence in the 1960s, Senegalese-

http://en.wikipedia.org/wiki/Agriculture
http://en.wikipedia.org/wiki/Fula_people
http://en.wikipedia.org/wiki/Taureg_people
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Mauritanian border relations, and Niger's dependence upon falling world uranium 

prices coinciding in a destructive famine. 

The first rain gauges in the Sahel date from 1898 and they reveal that a major 

drought, accompanied by large-scale famine, in the 1910s, followed by wet 

conditions during the 1920s and 1930s reaching a peak with the very wet year of 

1936. The 1940s saw several minor droughts especially, in 1949 but the 1950s were 

consistently wet and expansion of agriculture to feed growing populations 

characterized this decade and many have thought it contributed to the severity of the 

subsequent Sahel droughts 

Based on Senegal river cycles, precipitation cycles of various El Sahel stations which 

are related to Solar(89–120 years) Wolf-Gleissberg cycles, and on relations to Nile 

floods and Equatorial lake levels, Yousef and Ghilly anticipated that there is a 

considerable probability that drought will occur in El Sahel Zone in 2005±4 years. 

This forecast was correct as drought occurred in El Niger in 2005 and again in 2010. 

[Yousef and Ghilly, 2000]. 

In the early 2000s (decade), after the phenomenon of global dimming was 

discovered, it was speculatively suggested that the drought was likely caused by air 

pollution generated in Eurasia and North America. The pollution changed the 

properties of clouds over the Atlantic Ocean, disturbing the monsoons and shifting 

the tropical rains southwards. 

In 2005, a series of climate modeling studies performed at NOAA/Geophysical Fluid 

Dynamics Laboratory indicated that the late 20th century Sahel drought was likely a 

http://en.wikipedia.org/wiki/Global_dimming
http://en.wikipedia.org/wiki/Monsoon
http://en.wikipedia.org/wiki/NOAA
http://en.wikipedia.org/wiki/Geophysical_Fluid_Dynamics_Laboratory
http://en.wikipedia.org/wiki/Geophysical_Fluid_Dynamics_Laboratory
http://en.wikipedia.org/wiki/Geophysical_Fluid_Dynamics_Laboratory
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climatic response to changing sea surface temperature patterns, and that it could be 

viewed as a combination of natural variability superimposed upon an 

anthropogenically forced regional drying trend.[Held, 2005]. Using GFDL CM2.X, 

these climate model simulations indicated that the general late 20th century Sahel 

drying trend was attributable to human-induced factors; largely due to an increase in 

greenhouse gases and partly due to an increase in atmospheric aerosols. In IPCC 

future scenario A2 (CO2 value of ≈860 ppm) Sahel rainfall could be reduced by up to 

25% by year 2100, according to climate models. 

A 2006 study by NOAA scientists Zhang and Thomas suggests that the Atlantic 

Multidecadal Oscillation plays a leading role. An AMO warm phase strengthens the 

summer rainfall over Sahel, while a cold phase reduces it [Zhang and Thomas, 

2006]. The AMO entered a warm phase in 1995 and, assuming a 70-year cycle 

(following peaks in 1880 and 1950), will peak around 2020. 

So, what caused the Sahel drought and what has led to its recovery? 

Analysis of the model results shows that in the 1980s, subsidence over the Sahel due 

to Indian ocean warming suppressed convection and the outflow blocked the flow of 

moisture from the Atlantic Ocean into the continent. The relatively warm Atlantic 

Ocean also contributed to the Sahel drought by competing for the moisture. But the 

Indian Ocean continues to warm so that the 1990s recovery was due to an increase of 

the scale of the Indian Ocean warming moved the subsidence to the Tropical Atlantic 

and led to the recovery, [Cook, 2011]. Thus the Sahel droughts were a result of 

natural variability. In this study we demonstrate that the Kenya droughts can be 

predicted by means of a climate model such as the one developed in this study. 

http://en.wikipedia.org/wiki/GFDL_CM2.X
http://en.wikipedia.org/wiki/Greenhouse_gases
http://en.wikipedia.org/wiki/IPCC_Fourth_Assessment_Report#Working_Group_I_.28WGI.29:_The_Physical_Science_Basis
http://en.wikipedia.org/wiki/IPCC_Fourth_Assessment_Report#Working_Group_I_.28WGI.29:_The_Physical_Science_Basis
http://en.wikipedia.org/wiki/IPCC_Fourth_Assessment_Report#Working_Group_I_.28WGI.29:_The_Physical_Science_Basis
http://en.wikipedia.org/wiki/2100
http://en.wikipedia.org/wiki/Atlantic_Multidecadal_Oscillation
http://en.wikipedia.org/wiki/Atlantic_Multidecadal_Oscillation
http://en.wikipedia.org/wiki/Atlantic_Multidecadal_Oscillation
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1.2 KENYAN DROUGHTS AND FLOODS 

The cyclic droughts and floods in Kenya have constantly eroded the recovery 

capacity of communities especially in the Sahel and Savannah type of climate. These 

areas are more commonly referred to as the Arid and Semi-arid Lands (ASALs). 

These natural disasters affect their economic development year in year out and 

require more vigorous attention and planning to mitigate the effects as they have 

impacted greatly on the country‘s fight against poverty and efforts to reduce the 

number of people living below the poverty line. The economic cost of the impact of 

floods, droughts and landslides in the past have been estimated in millions of 

shillings, [Paul, 2004]. 

Kenya‘s landscape is grouped into geographical zones including; the Savannah 

Lands covering most of the arid and semi- arid areas, the Coastal Margin, the Rift 

Valley, the Highlands and the Lake Victoria Basin [UNDP, 2004]. Kenyan 

population was reported as 38.6 million in 2009, compared to 28.7 million in 1999, 

21.4 million in 1989 and 15.3 million 1979, an increase by a factor of 2.5 over 30 

years, or an average growth of more than 3% per year [Wikipedia, 2012]. The 

population growth rate has been reported as somewhat reduced during the 2000s and 

was estimated at 2.7% in 2010, resulting in an estimate of a total population 41 

million in 2011. The population is predominantly rural and relies on agricultural or 

other related activities for daily income although only 17% of the country‘s territory 

is arable.  
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The next 15 or 20 years are likely to see a rapid reduction in the rate of growth of 

Kenya‘s population. Having been close to 4% per annum in the 1970‘s (when it was 

widely claimed to be the highest in the world), by the year 2010 it was less than 2% 

and possibly under 1% if fertility fell as rapidly as envisaged in the ―fast fertility 

decline‖ projections. [AFRICA ENVIRONMENT OUTLOOK, 2014]. 

Agriculture supports up to 75% of the Kenyan population including those who reside 

and work in urban centres, accounts for approximately one third of the Gross 

Domestic Product (GDP), employs more than two thirds of the labour force and 

about 70% of the export earnings [Kenyaweb, 2003]. It generates almost all the 

country‘s food requirements and provides a significant proportion of raw materials 

for the agro-based industries. Overall, the smallholder sub-sector contributes about 

75% of the country‘s total value of agricultural output, 55% of the marketed 

agricultural output and just over 85% of total employment within agricultural sector. 

For this reason, it has a major role in the economy and consequently on the design of 

poverty eradication programmes.  

Declining economic growth in general, coupled with a high population growth have 

lowered living standards and left sizeable numbers of the population poor and 

vulnerable to both natural and man-made disasters. The country‘s geographical set 

up has also contributed much to regular if not permanent hazards in some areas. 

When these disasters interact with vulnerable communities they cause suffering of 

varying magnitudes. This has affected the economic development effectively 

lowering the human development of these areas.  
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Generally, natural hazards include drought, floods earthquakes, volcanic eruptions, 

landslides cyclones, storms etc. These occur all over the world and are, on their own, 

not harmful. However when these natural hazards interact with people, they are 

likely to cause damage of varying magnitude resulting in a disaster. Disasters thus 

occur when the natural hazards interact with vulnerable people, property, and 

livelihoods causing varying damage depending on the level of vulnerability of the 

individual, group, property or livelihoods.  

The impact of such natural hazards is compounded by poverty and lack of adequate 

resources to develop the affected areas rendering the populations becoming more 

vulnerable. There is need to take up a proactive strategy in the management of 

natural disasters in Kenya, which would improve the coping capacity of 

communities, lessen the impact and therefore improve the lives of Kenyans in the 

areas prone to harsh weather conditions. A clear perspective on future rainfall 

situation inevitably necessary to set the pace for development programmes aimed at 

mitigating the impact of natural hazards. We should all be committed towards 

improving the lives of communities in Kenya and our hope is that this study will 

provide a useful tool towards this goal. 

Drought, the most prevalent natural hazard in Kenya affects mainly Eastern, North 

Eastern, parts of Rift Valley and coast Provinces. Floods seasonally affect various 

parts of the country especially along the flood plains in the Lake Victoria basin and 

in Tana river while landslides are experienced during the long rains season running 

from March to May especially in Murang‘a county and areas surrounding the Mount 

Kenya region. See Tables 1.1 and 1.2. 
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Table 1.1 

Kenya Hazard areas 
 

Drought prone provinces 
Eastern, North Eastern, coast, parts of Rift Valley 

Flood prone areas 
Budalangi, Nyando, Rachuonyo, Tanariver 

Landslide prone zones 
Muranga county, parts of Kiambu, Thika, Maragua, Nyeri, 

Kirinyaga, Nyandarua and areas around mount Kenya 
region 

The country covers a total area of 582,644 square kilometers of which less than 3% 

of the total is forest. 75% of Kenya‘s population earns its living from agriculture 

which in turn depends on rainfall. Due to the vast areas prone to drought, Kenya‘s 

vulnerability to food insecurity is highest among the pastoralists and small-scale 

agriculturalists in ASALs of the country. Extreme weather and climate events 

influence the entire economy, which depends mostly on agricultural products like 

cash crops, food crops and animals. Arid and semi arid lands carry 30 % of the 

country‘s total human population yet they are characterized by uncertainty of 

rainfall, high evapo-transpiration rates, low organic matter levels and poor 

infrastructure.  

Kenya has in the past recorded deficits of food due to drought resulting from a 

shortfall in rainfall in 1928, 1933-34, 1937, 1939, 1942-44, 1947, 1951, 1952-55, 

1957-58, 1984-85, and 1999-2000. The 1983-84 drought and the 1999-2000 ones are 

recorded as the most severe resulting in loss of human life and livestock, heavy 

government expenditure to facilitate response and general high economic losses of 

unprecedented levels. After the El Nino induced rains of 1997 and 1998 Kenya 
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experienced prolonged drought in many areas leading to famine and starvation 

[UNDP, 2004]. 

There are two rainy seasons in Kenya, the long rains in March to May and the short 

ones in October to December. The extreme climate and weather conditions are 

associated with anomalies in the general circulations of the seasonal northward and 

southward movement of the Inter-tropical Convergence Zone (ITCZ).  

The ASAL areas in Kenya are categorized as follows. 11 regions are classified as 

arid, 19 as semi arid and 6 as those with high annual rainfall but with ―pockets‖ of 

arid and semi-arid conditions. This gives a total of 36 areas. The various droughts 

that occurred in Kenya since 1883 and their characteristics are shown in Table 1.2 

[Gathara, 1995], [Republic of Kenya, 2004]. 

 

Table 1.2 

Chronology of drought and Floods incidences in Kenya. 
Droughts 

Year Region Characteristics 

1883-84 Coast Worst famine in 30 years 

1889-1890 Coast One year of drought and famine 

1894-1895 Coast Information not available 

1896-1900 Countrywide Failure of three consecutive rainy 

seasons, human deaths 

1907-1911 Lake Victoria, Machakos, Kitui 
and Coastal, Eastern and coastal 

provinces  

Minor food shortages 

1913-1919 Coastal areas Impacts exacerbated by warfare 

1921 Rift valley Central and Coast A record dry year at the coast Local 
food shortages, crop and livestock 

losses (50% in Baringo). 

1925 Northern Rift Valley and central 

provinces 

Heavy loss of livestock, Lorian 

swamp dried up; deaths occurred 

1938-1939 Countrywide Food shortages, about 200 deaths 

1942-1944 Central and Coast Provinces 

Eastern, central, Coast 

Very severe drought in Coast 

Province 



13 

 

1947-1950 Nyanza, western and rift valley 
provinces 

Mombasa reported driest, water 
shortages in Nairobi 

1952-1955 Eastern, south/north rift Valley Droughts followed by floods, cattle 

mortality at about 70-80 % in Maasai 
land. 

1960-1961 Widespread Rains of about 50% long-term mean, 

Nairobi hit by water shortage. 

Wildlife deaths in Nairobi national 
park. 

1972 Most of Kenya Human and livestock deaths in the 

northern counties Maasai cattle losses 

of about80% 

1973-1974 Eastern Central, northern 

provinces 

Crop production paralyzed. 16,000 

people affected. 

1974-1976 Central, Eastern, Western, coast Fam Famine in eastern province Water 

shortages, migration of people and 
livestock 

1977 Widespread 20,000 people affected. 

1980 Eastern province Large food deficits. 40,000 people 

affected. 

1981 Countrywide Severe food shortages in Eastern 

province, less in central province 

1983/84 Central, Rift Valley, Eastern and 

North Eastern 

Moderately Severe in Eastern 

Province, Relief food imported. 
200,000 people affected. 

1987 Eastern and Central 4.7 million people dependent on relief 

power and water rationing 

1991-94 Arid and semi-Arid Areas of 
NE, Rift Valley, Eastern and 

Central, Coast Provinces 

1.5 Million people affected 

1995/96 Widespread 1.41 Million people affected 

1999-2000 Countrywide except west and 

coastal belt.  

4.4 Million people affected 

2004 Widespread 2-3 Million people affected 

Floods 

2002  Meru Central, Muranga, Nandi  2,000 people affected  

2002  Nyanza, Busia, Tana river basin 150,000 people affected  

1997/1998  Widespread (El Nino Floods) 1.5 million people affected  

1985  Nyanza and Western 10,000 people affected  

1982 Nyanza 4,000 

The impact of disasters can either push more people below the poverty line or 

impoverish further the existing poor people due to injuries, displacements, 

destruction of property and livelihoods among other effects. Most communities in the 

Kenyan arid and semiarid lands depend on pastoralism and agriculture for survival. 

These economic activities in turn depend on rainfall for water and pasture.  



14 

 

In Kenya the economic parameters that affect the severity of drought making the 

communities more susceptible to drought and famine are rise in food prices, fall in 

animals prices, depletion of food reserves without replacement, deterioration of 

health due to lack of food and clean water among other issues.  

Poor infrastructure including impassable roads, poor telecommunication lines and 

inaccessibility of some regions hampers the transportation of food to these regions 

either for commercial purposes or relief aid. Poor communication also hampers 

action in terms of response to distress calls, poor publicity and inability to air the 

plight of the people.  

Once the effects of the drought begin to be felt the health of animals begins to 

deteriorate due to inadequate pasture and water. The animals also experience Tsetse 

flies infestation and foot and mouth disease, which are common in drought 

conditions. This requires use of veterinary medicines, which are expensive and 

sometimes not accessible to the pastoralists.  

 

1.3 THE DROUGHT AND THE SOLAR ECLIPSE 

During the great Sahel drought period of the 80‘s (1981-1986) only a single eclipse 

was observable in Kenya over a period of 20 years (1981-2000), the one that 

occurred on December, 4 1983. The path of the eclipse coincided with the areas 

much ravaged by the drought, the Northern Kenya and the Turkana corridor as in 

Figure 1.3. 
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Scientists documenting the eclipse took a flight from Nairobi to Kitale and travelled 

by road on December 4, 1983 through Lodwar, Lokichar to the lakeside town of 

lokitaung to arrive before 12.31 pm the time for the greatest eclipse. We were unable 

to travel to Lokitaung so we set up a site at Nyahururu and made observations from 

there although our site was outside the path a shown in Figure 3.9 of Chapter 3. 

 

It was a partial eclipse but because of the rarity of the event local and foreign 

scientists flocked the area to make real time observations. No similar opportunity 

Figure 1.3 

Eclipse paths during the solar eclipse on December 4, 

1983 and October 3, 2005 
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was expected in this country until October 3, 2005. Not only did they observe the 

eclipse but also the devastating effect of greatest Sahelian drought of the twentieth 

century. But alas! In 2005 scientist flew to Nanyuki and travelled by road through 

Isiolo, Archers Post to arrive in Marsabit before 10.30 am., in the time for greatest 

eclipse. On the way again they found the area still ravanged by another drought; the 

2002-2004 droughts similar to the one that had happened twenty years before. Both 

the towns of Lokitaung and Marsabit lie within the region affected by the Sahelian 

drought. This observation prompted the question as to whether the drought and 

eclipse episodes were mere coincidences. The Sahel region did not fully recover 

from the drought state until 1990. Thereafter it underwent droughts in 1998 and 

2002-2004. A study carried out by Cook, [Cook, 2011] shows that the Sahel region 

as a whole seems to have recovered from the drought after 1990. Even then, another 

less severe drought has devastated this country in 2011. The predictability of severe 

hydrology events therefore remains a challenge in this country. That is why it is the 

subject of this study. 

 

In 2005 we began a study on measurement of atmospheric water content over 

Nairobi by means of both a ground based MAX-DOAS Spectrometer and 

SCIAMACHY a satellite based spectrometer. Due to the prevailing drought 

situation, we found it necessary to take the opportunity and address the drought issue. 

We responded by investigating whether a relationship did exist between atmospheric 

water vapour content of the atmosphere, the drought and the occurrence of an 

eclipse. It was felt that perhaps an eclipse condition led to occurrence of a drought by 

influencing the amount of water vapour in the atmosphere. However, by the end of 
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the study in 2009, we found that while atmospheric water vapour content oscillates 

between 5g/cm
2
 and 3g/cm

2
 depending on the season, no relationship between water 

vapour content and the occurrence of the eclipse was identified.. Even then, the 

drought was suspected to have resulted from enhanced atmospheric tides resulting 

from the superposition of solar and lunar atmospheric tides as happens during a solar 

eclipse. We also found no relationship between the occurrence of a solar eclipse and 

the rainfall distribution, but it was pointed out that the appearance of atmospheric 

tides during a solar eclipse could indeed affect the expected rainfall amount, 

[Gachari, 2008] 

 

1.4 THE CLIMATE MODEL 

The task to establish a relationship between atmospheric tides and rainfall variability 

began in this study in 2009. First steps involved obtaining periods when gravity 

atmospheric tides occur during the cause of the year. This was accomplished by 

obtaining time variation of the solar and lunar declination angles relative to Nairobi. 

Like ocean tides, gravity atmospheric tides are dependent on the solar-lunar 

geometry. However, unlike ocean tides, air is more elastic and therefore surface 

pressure changes due to a solar atmospheric tide are less than 0.3 mmHg. In this 

study we have defined two atmospheric tidal states: the ordinary atmospheric tidal 

state, atide and the enhanced atmospheric tide state, etide. The enhanced tidal state 

coincides with the occurrence of the solar eclipse. The location of the tidal state is 

determined by the angular amplitude of the lunar declination. The lunar angular 

velocity as observed from the earth‘s surface is smaller when the moon orbits the 

earth within the 23.5 degrees limits. The relative maximum lunar angular 
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declinations at various months are defined in this study and allocated numerical 

values of the factor referred to the maximum lunar declination factor, mld with 

values ranging from -28.5 to 28.5 degrees. We have used a fitting procedure to 

reproduce the rainfall variability pattern for the period 1901 to 2000. Using this 

pattern we have projected rainfall for the period 1901 to 2020. This has been 

achieved by obtaining a statistical rainfall model using rain-gauge data taken both at 

Dagorreti and Jomo Kenyatta Airport meteorological stations since 1959 together 

with factors and covariates derived from the solar and lunar geometry. The task was 

completed by March 2012 and the model named the CM12.3 Model output has since 

undergone evaluation and found to be consistent with observations. The fact that a 

model based purely on astronomical variables describing the spatial-temporal 

variation of atmospheric tide can be used to reproduce the rainfall variability is 

evidence that atmospheric tides play a key role in determining rainfall distribution on 

the earth‘s surface in general. The model may be extended to work out rainfall 

distribution in multiple sites while the current model results may be used to estimate 

when future floods and droughts are expected. One important observation from the 

model results is that heavy floods are expected in 2013 and 2016 while prolonged 

droughts will be back between 2019 and 2020. 

 

1.5 PROBLEM STATEMENT 

The worst of the droughts in Kenya‘s history occurred in 2004 and the country was 

still recovering from its devastating effects when this study commenced. To-date, no 

one knows when the next drought(s) will strike. It was widely thought that the 

drought had its origin in the solar eclipse that preceded it. Furthermore, another such 
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drought had also occurred in 1984 after another much publicized eclipse in 

December 1983. Figure 1.40 shows rainfall amounts measured at Kenya 

Meteorological Department in Nairobi from 1959 to 2004 [KenMet] 

 

 

 

 

 

 

 

 

 

 

 

The reduction in solar energy reaching the atmosphere during a solar eclipse was 

suspected to have lowered atmospheric temperature thereby causing a corresponding 

reduction in atmospheric water vapour content thereby leading to a drought situation. 

But, when rainfall amounts measured on each day together with the days on which a 

solar eclipse occurred were considered, it was observed that while the occurrence of 

a solar eclipse is a periodic event, a corresponding periodicity in the occurrence of a 

drought situation could not be identified. It was then observed that the gravitational 

attraction between the moon and the atmosphere could have affected the expected 

precipitation. Since then, it has been established from available literature that the 

presence of atmospheric tides does affect the atmospheric parameters. It is the 

Figure 1.4 
Annual rainfall since 1959. [KenMet] 
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purpose of this study to design an appropriate rainfall model based on astronomical 

factors but also to use the model in estimating future rainfall amounts. 

 

1.6 SIGNIFICANCE AND JUSTIFICATION 

The backbone of Kenya‘s economy is Agriculture and the equatorial location of the 

country together with her position on the African continent land mass gives the 

country a savannah type of climate otherwise referred to as the Tropical Wet and 

Dry according to Köppen classification of world climates [Tarbuck and Lutgens, 

1997]. The predictability of climate and weather is therefore critical for the success 

of rain-fed agriculture.  

 

Natural science is based on the assumption that the natural world behaves in a 

consistent and predictable manner. It is also suspected that the spikes visible in the 

rainfall distribution were as a result of enhanced solar-lunar atmospheric tides which 

affect the usual flow of the prevailing air masses and have prolonged affect. The 

tides affect the direction and manner of the prevailing winds and therefore 

precipitation. They can therefore cause an un-expected shift in short-term weather 

conditions . It also explains why some solar/lunar tides may not affect precipitation – 

their locality may not be relevant to local weather. The dates and paths where the 

solar/lunar atmospheric tides are expected can accurately be calculated and 

documented and used in construction of a rainfall model. 
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1.7 Hypothesis 

The droughts of 1984 and 2004 were as a result of enhanced atmospheric tides 

resulting from the prevailing Solar-Lunar geometries. 

 

1.8 STUDY OBJECTIVES 

The main objective of this study was to design a model which can then be used to 

estimate rainfall amounts in this country for the next decade. This study therefore 

aims at achieving the following objectives:  

i. analyze eclipse, and precipitation data to establish their relevance to the 

hypothesis stated above.  

ii. design a rainfall model based on astronomical and meteorological parameters. 

iii. use the model to determine future rainfall trends. 

iv. use model results to make appropriate recommendations for planning and 

disaster preparedness in this country. 
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CHAPTER 2 

2.0 LITERATURE REVIEW 
2 

In this chapter we describe the factors of climate variability in Eastern Africa and 

then discuss how some of these factors have been used to design a statistical rainfall 

model based on fitting a generalized linear model of the Tweedie family. 

 

2.1 SOLAR DECLINATION 

Solar declination is the Sun-Target-Observer angle: the vertex angle at target center 

formed by a vector to the apparent center of the Sun and a vector intersecting the 

observer. This measurable angle is within 20 arc-seconds (0.006 deg) of the reduced 

phase at observer's location. The difference is due to down-leg stellar aberration 

affecting measured target position but not apparent solar illumination direction. The 

phase angles were obtained from the ephemerides [Solar Ephemeries, 2011]. 

The season corresponds to the solar declination periods. As can be seen in Figure 2.1, 

solar declination is a periodically stable cycle.  

 

     

    

 

   

 

 

 Figure 2.1 

Solar Declination 1959 to 2050 temporal variation 
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Oscillations of the position of the sun relative to Nairobi are uniform on the inter-

annual scale. 

 

2.1.1 The Eastern African Monsoon and the Solar Declination 

The basic principle behind the monsoon is similar to that of the sea breeze: 

differential heating over land and sea. During the summer monsoon (Jun –Aug), air 

over the continents warms and ascends, and moist, colder air flows in from the ocean 

bringing heavy rain. The latent heat release and continuous solar insolation stabilize 

the circulation which can continue for months. The winter monsoon (Dec-Feb) has 

the same origin but opposite direction as the tropical sea is warmer in winter and 

brings draught rather than rain [Wikipedia, 2012]. Monsoon patterns extend over 

East Africa, Arabia, India, and the Arabian Sea as seen in Figure 2.2 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 (a)  

Surface winds during Jun-Aug [Richter A., 2004] 

Figure 2.2 (b) 

Surface winds during Dec-Feb [Richter A., 2004] 
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Similar but weaker patterns can also be found in equatorial America. Summer 

monsoon over India is a result of the low pressure zone over the Asian highlands that 

move North with the sun, leading to monsoon patterns appearing first in Sri Lanka 

end of May and moving to the Himalayas by July. They lead to the highest rainfall 

values observed anywhere on earth. The monsoon is therefore dependent on the 

season which is in turn determined by the solar declination. Solar declination is a 

major factor in the rainfall model developed in this study. 

 

2.1.2 General Circulation. The Hadley Cell 

The Hadley cell is a circulation pattern that dominates the tropical atmosphere, with 

rising motion near the equator, pole-ward flow 10-15 kilometers above the surface, 

descending motion in the subtropics, and equator-ward flow near the surface. This 

circulation is intimately related to the trade winds, tropical rain-belts, subtropical 

deserts and the jet streams as seen Figure 2.3 below. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  

Hadley cells in the atmosphere [Wikipedia, October 2011]. 

http://en.wikipedia.org/wiki/Trade_wind
http://en.wikipedia.org/wiki/Jet_stream
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Figure 2.4 

Solar angle Restriction of Nairobi Rainfall.  

The larger Sector for MAM accounts for longer rains season and the proximity of the 

sector to the Equator accounts for the larger amounts in MAM. 

Seasonal convective rainfall in the tropics is associated with the ITCZ. The Hadley 

cells also explain the location of the tropical high pressure zones at 30 degrees north 

and south of equator as well the zonal and meridianal winds direction. The presence 

of an overhead moon affects the shape and the height of the Hadley cells as well as 

the location of the ITCZ. This affects the local precipitation. In this study the 

incidence where a location is influenced by the presence of the lunar-solar 

gravitational tide is referred to as the atide state or enhanced atmospheric tide state 

etide. An upwards displaced atmosphere due to atmospheric tides may translate the 

high pressure zone equator-wards leading to lower Sahel rainfall amounts. 

 

2.1.3 Solar declination and precipitation 

Wet season occurs when solar declination is increasing with time either -2 to 20 

March-April-May (MAM) or decreasing with time -10 to -23 then increasing -23 to -

20.October-November-December (OND) as seen in Figure 2.4 below. 

 

 

 

 

 

 

 

 

The sun is at the equator on March 22 and September 22. In both cases the solar 

declination is zero. Although the solar declination determines the two seasons, other 
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Figure 2.5 

Six month average clearly showing inter-annual variation  

of Nairobi Rainfall. 
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factor come into play to vary the amount of rainfall in the season. Months fail to 

deliver the expected rainfall creating inter-annual rainfall variability evident in 

Figure 2.5 below. 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4 Lunar Declination and Standstills. 

On the inter-annual scale the latitudinal extremities of lunar position oscillates with a 

wavelength of about 19 years. Standstill periods (ldec>28.5) are therefore separated 

by a period of about 19 years as shown in Figure 2.6. It can also be seen that 

episodes of the same lunar declination amplitudes are separated by the same period. 

  

M
o

n
th

ly
 T

o
ta

l 
R

ai
n
fa

ll
  
(m

m
) 

Year 



27 

 

Figure 2.6 

Lunar Declination temporal variation 
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At a lunar standstill, which takes place every 18.6 years, the range of the declination 

of the Moon reaches a maximum. As a result, at high latitudes, the Moon appears to 

move in just two weeks from high in the sky to low on the horizon. The Moon 

changes in declination, but it does so in only a month, instead of a year for the Sun. 

So it might go from a declination of +28.5° to −28.5° in just two weeks, returning to 

+28.5° two weeks later. Thus, in just one month the moon can move from being high 

in the sky, to low on the horizon, and back again. as seen Figure 2.7 below. 

 

 

 

 

 

 

 

 

 

Figure 2.7 

A Major Standstill 

http://en.wikipedia.org/wiki/Declination
http://en.wikipedia.org/wiki/Moon
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This is because the plane of the Moon's orbit around the Earth is inclined by about 5° 

to the plane of the Earth's orbit around the Sun, and the direction of this inclination 

gradually changes over an 18.6-year cycle, alternately working "with" and "against" 

the 23.5° tilt of the Earth's axis. As a consequence, the maximum declination of the 

Moon varies from (23.5° − 5°) = 18.5° to (23.5° + 5°) = 28.5°. The effect of this is 

that at one particular time (the minor lunar standstill), the Moon will change its 

declination during the month from +18.5° to −18.5°, which is a total movement of 

37°. This is not a particularly big change, and may not be very noticeable in the sky. 

However, 9.3 years later, during the major lunar standstill, the moon will change its 

declination during the month from +28.5° to −28.5°, which is a total movement of 

57°, and which is enough to take its zenith from high in the sky to low on the horizon 

in just two weeks (half an orbit). 

 

Strictly speaking, the lunar standstill is an instant in time: it does not persist over the 

two weeks that the Moon takes to move from its maximum (positive) declination to 

minimum (negative) declination, and it most likely will not exactly coincide with 

either extreme. However, because the 18.6-year cycle of standstills is so much longer 

than the Moon's orbital period, the change in the declination range over periods as 

short as half an orbit is very small. 

During the standstill periods, the moons angular velocity increases and with it the 

attendant increase in the associated zonal wind velocities. This affects local 

atmospheric conditions. For the purpose of this study, the standstill state is the period 

when the lunar declination reaches beyond the 23.5 degrees. 
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Figure 2.9 

Lunar distance variation in Kilometers for 1926 

Figure 2.8 

Lunar distance variation; 1) Apogee, 2) Perigee, 3) Focus (Earth). 

 

Another consequence of the lunar motion is the earth-moon distance. Moon‘s orbit is 

elliptical and so the moon is closest to the earth when it is also collinear with the sun. 

This geometry generates strong atmospheric tides; the enhanced tide, etide factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 shows how solar declination may be a measure of the magnitude of the 

atmospheric tide, having a maximum value when both values of solar and lunar 

angles equals zero. 
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The distance between the moon and the Earth varies from around 356,400km to 

406,700km at the extreme perigees (closest) and apogees (farthest) as seen Figure 

2.9. Enhanced atmospheric gravity tides are generated due to this linear geometry of 

the three bodies- earth, moon and the sun.  

 

Enhanced Atmospheric tides, as happens with ocean tides, occur at the sublunar 

point and at its antinodal point at New Moon and Full Moon. Taking Earth's radius as 

6371 km, Moon's mass as 7.349 x 10
22

 kg, mean distance Earth-Moon radius as 

384401000 m, Sun's mass M to be 1.989 x 10
30

 kg and the mean distance Sun-Earth 

as 1.496 x 10
11

 m, the axial tidal acceleration a by the Moon, aMoon and that by the 

sun, aSun respectively are approximately: 

aMoon ≈ 1.1 x 10
-6

 m/s
2
 

aSun ≈ 0.50 x 10
-6

 m/s
2
 

The tidal forces of the Moon are reinforced by the Sun at New Moon and Full Moon 

so that  

a ≈ aMoon + aSun ≈ (1.1 + 0.50) x 10
-6

 m/s
2
 = 1.6 x 10

-6
 m/s

2 

When the Moon is at first quarter or third quarter (Sun and Moon separated by 90° 

when viewed from the Earth) the solar tidal force partially cancels the Moon's: 

a ≈ aMoon - aSun ≈ (1.1 - 0.50) x 10
-6

 m/s
2
 = 0.60 x 10

-6
 m/s

2 

Using the ecliptical geocentric longitudes of the Moon and the Sun (neglecting their 

declinations), the geocentric distances of the bodies the following quantities were 

calculated: the geocentric and topocentric distance of the Moon from the Earth 

(kilometers), the apparent angular size (arc minutes), the illuminated fraction of the 

Moon's disc (per cent), and the Moon's phase have been computed.  

http://en.wikipedia.org/wiki/Apsis
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Moon phases are denoted as  

0.00 = new Moon 

0.25 = first quarter 

0.50 = full Moon 

0.75 = last quarter 

1.00 = new Moon 

Distances/altitude in kilometers is taking into account the horizontal parallax of the 

Moon are; Perigee: 356,375, and Apogee: 406,720. 

 

The change of distance may be up to about 6,300 km per day and the mean perigee 

distance of 284 anomalistic months is 362562.4 km [NASA, 2009]. 

 

 

2.2 EL-NINO SOUTHERN OSCILLATION (ENSO) 

In normal years, the Walker circulation is characterized by a low pressure system 

over the Western Pacific and high pressure over the Eastern Pacific. This leads to, 

easterly trade winds and upwelling of cold and nutrient rich waters off the coast of 

Peru. These trade winds ―pile up‖ warm water in the Western Pacific (30 cm) 

resulting in  strong convective activity, storm and precipitation over Indonesian 

region [Wendell, 2008]. 

During El Niño conditions, the pressure difference reduces and inverts, and trade 

winds weaken or invert therefore warm water from the Western Pacific flows back to 

the East within 2 months (Kelvin wave) creating an upwelling off Peru is interrupted 
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Figure 2.10 

Model view of El-Niño Phenomenon [Wikipedia 2009] 

 

and sea surface temperature (SST) increases. Convective activity moves with the 

warm water, leading to heavy rain fall at the West coast of SA and draught in the 

Western Pacific as seen Figure 2.10 below.  

 

 

 

 

 

 

 

 

 

 

 

 

The changes during an El Niño event have many effects on the ocean atmosphere 

system such as changing flow directions, increased storm frequencies in some 

regions and reduced land falling hurricanes in other regions. Many areas are subject 

to unusual draughts (Central America, Philippines, Indonesia, Africa and Australia) 

which lead to large scale fires which are difficult to extinguish because of the lack of 

rain. At the same time, other regions, Southern America, Southern Europe) 

experience increased flooding frequencies. 
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2.2.1Southern Oscillation Index (SOI) 

Southern Oscillation Index is the difference in sea-level pressure (slp) between 

Darwin (Australia) and Tahiti‘s air pressure, multiplied by a factor of 10 [Troup, 

1965 ]. Records of the monthly average SOI have been collected since January 1879, 

with missing values being computed by interpolation. Relationships between the SOI 

and rainfall have been extensively explored and numerous authors have shown its 

relationship rainfall in Eastern Africa  

Despite the depth of research in this relationship, the SOI does not provide a strong 

predictor of precipitation occurrence [Hyndman 1999]. Furthermore it is proposed 

that the SOI values prior to 1935 should be used with caution, as there are questions 

regarding the consistency and quality of the Tahiti pressure values prior to this year. 

However, as SOI is used as a predictor of rainfall in current meteorological practices, 

it is considered as a covariate in this study. Its use, though, is approached with 

caution. 

 

2.2.2 Troup's SOI Calculation  

SOI Calculation formula was given by Troup as follows [Troup 1965]: 

 

(2,1) 
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where: PA is the Pressure Anomaly  equal to monthly mean minus long-term mean 

(1887-1989 base period). Std.Dev.Diff. is the Standard Deviation of the Difference 

(1887-1989 base period) 

A SOI value of -10 means the SOI is 1 standard deviation on the negative side of the 

long-term mean for that month. Monthly SOI from 1876 onwards is derived from 

normalized Tahiti minus Darwin mean sea level pressure (mslp) 

2.2.3 NCC SOI Calculation 

The National Climate Centre (NCC) has a revised SOI calculation although still 

based on the Troup formula [Troup, 1965]. However, the base period for calculating 

the NCC SOI is 1933-1992..  

 

2.2.4 SOI Phases 

Research into the SOI has also found that an index which classifies seasons into 5 

phases depending on the value and rate of change in the SOI would be useful when 

modeling rainfall [Stone and Auliciems, 1992 ] used a principal components analysis 

and cluster analysis to group all sequential two-month pairs of the SOI into five 

groups called the SOI phases. The SOI phases are recorded monthly, indicating 

which phase each month appears to be in. Generally, the use of SOI phases to 

calculate future seasonal rainfall probabilities gives a more accurate result than using 

SOI averages. The five phases can be stated generally in the following terms [Dunn 

and Lennox ,2006].   
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Figure 2.11 

SOI index 1959-2005 
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i) Phase 1 – This is termed ‗consistently negative‘. It indicates that the SOI 

values for the two previous months are both negative. 

ii) Phase 2 is termed ‗consistently positive‘, indicates that the SOI values for 

the two previous months are both positive. 

iii) Phase 3 is termed ‗rapidly falling‘, indicates a marked decrease in the SOI 

from the previous month to the current month. 

iv) Phase 4 is termed ‗rapidly rising‘, indicates a marked increase in the SOI 

from the previous month to the current month. 

v) Phase 5 is termed ‗consistently near zero‘, indicates that both the SOI 

values for the previous two months are close to zero 
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Recent trends in the Southern Oscillation Index (SOI) can be used to calculate more 

accurately the probabilities of receiving particular amounts of rainfall at a particular 

location; over the next few months. The phases of the SOI were defined by  Roger 

Stone then of QDPI, who used a statistical technique (cluster analysis) to group all 

sequential two-month pairs of the SOI (from 1882 to 1991) into five clusters (see 

legend below & help on use of trends in the SOI) [Stone and Auliciems 1992] 

 

Droughts of 2004 and 1984 and 1960 occurred during the consistently near zero 

(Phase V) while the floods, 1962, 1977/78, 1981and 1997-98 occurred during rapidly 

changing (IV or V) phases. 

SOI Phases were found to be more useful as factors than SOI values. In this study, 

modeling monthly rainfall amounts has been done using SOI-phases as a factor 

(Chapter 4). 

 

2.3 QUASI-BIENNIAL OSCILLATION (QBO) 

The quasi-biennial oscillation (QBO) is a quasi-periodic oscillation of the equatorial 

zonal wind between easterlies and westerlies in the tropical stratosphere with a mean 

period of 28 to 29 months. The alternating wind regimes develop at the top of the 

lower stratosphere and propagate downwards at about 1km per month until they are 

dissipated at the tropical tropopause. Downward motion of the easterlies is usually 

more irregular than that of the westerlies. The amplitude of the easterly phase is 

about twice as strong as that of the westerly phase. At the top of the vertical QBO 

http://en.wikipedia.org/wiki/Quasiperiodicity
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Equator
http://en.wikipedia.org/wiki/Zonal_and_meridional
http://en.wikipedia.org/wiki/Wind
http://en.wikipedia.org/wiki/Stratosphere
http://en.wikipedia.org/wiki/Tropopause
http://en.wikipedia.org/wiki/Amplitude
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domain, easterlies dominate, while at the bottom, westerlies are more likely to be 

found. 

 

The QBO was discovered in the 1950s, but its cause remained unclear for some time. 

Rawinsonde soundings showed that its phase was not related to the annual cycle, as 

is the case for all other stratospheric circulation patterns. In the 1970s it was 

recognized by James Holton and Richard Lindzen [Holton and Lindzen, 1972] that the 

periodic wind reversal was driven by atmospheric waves emanating from the tropical 

troposphere that travel upwards and are dissipated in the stratosphere by radiative 

cooling [Andrews, Horton and Leovy, 1987], [Baldwin, 2001]. The precise nature of 

the waves responsible for this effect was heavily debated. In recent years, however, 

gravity waves including the ones generated by solar and lunar gravitational force 

variations have come to be seen as a major contributor. There is a positive correlation 

of 0.02984 found in this study between daily rainfall and QBO values for the period 

under investigation meaning that other factors play more significant roles in 

determining rainfall amounts in the region. 

 

Effects of the QBO include mixing of stratospheric ozone by the secondary 

circulation caused by the QBO, modification of monsoon precipitation, and an 

influence on stratospheric circulation in northern hemisphere winter (the sudden 

stratospheric warmings). 

Equatorial waves in the lower stratosphere drive the quasi-biennial oscillation (QBO) 

and the semi-annual oscillation, which are the primary modes of variability of the 

http://en.wikipedia.org/wiki/Rawinsonde
http://en.wikipedia.org/wiki/Annual_cycle
http://en.wikipedia.org/w/index.php?title=James_Holton&action=edit&redlink=1
http://en.wikipedia.org/wiki/Richard_Lindzen
http://en.wikipedia.org/wiki/Atmospheric_wave
http://en.wikipedia.org/wiki/Troposphere
http://en.wikipedia.org/wiki/Stratosphere
http://en.wikipedia.org/wiki/Radiative_cooling
http://en.wikipedia.org/wiki/Radiative_cooling
http://en.wikipedia.org/wiki/Radiative_cooling
http://en.wikipedia.org/wiki/Gravity_wave
http://en.wikipedia.org/wiki/Ozone
http://en.wikipedia.org/wiki/Secondary_circulation
http://en.wikipedia.org/wiki/Secondary_circulation
http://en.wikipedia.org/wiki/Secondary_circulation
http://en.wikipedia.org/wiki/Monsoon
http://en.wikipedia.org/wiki/Northern_hemisphere
http://en.wikipedia.org/wiki/Sudden_stratospheric_warmings
http://en.wikipedia.org/wiki/Sudden_stratospheric_warmings
http://en.wikipedia.org/wiki/Sudden_stratospheric_warmings
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equatorial stratosphere and also influence the variability of the polar vortex. They 

may also be important in stratosphere troposphere interaction. Two well-known 

equatorial waves, the Kelvin wave and westward-moving mixed Rossby gravity 

wave (WMRG) have been extensively investigated by theoretical, numerical 

modeling and observational studies. However, there is relatively less observational 

knowledge of vertical propagation characteristics of the waves and how the 

propagation is influenced by the basic ambient flows. ERA-40 data for two different 

years (1992 and 1993) have been used to investigate the behaviour of the equatorial 

waves under opposite phases of the QBO. Studies have provided an unprecedented 

and detailed view of vertical propagation of equatorial waves in different QBO 

phases. In the easterly-QBO phase there is more upward propagation of the Kelvin 

wave compared with the westerly QBO-phase, but less of the westward-moving 

mixed Rossby-gravity wave and Rossby wave. In general, equatorial waves in the 

lower stratosphere have higher frequency (and phase speed) than those in the upper 

troposphere. 
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Figure 2.12 

Geometry for calculation of tidal potentials. 
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2.4 SOLAR –LUNAR GEOMETRY 

In this section we discuss how eight predicting factors; sdec, ldec, atide, etide, synod, 

mld, perigee and apogee may be obtained from solar-lunar geometry. The factors are 

chosen because they primarily influence the gravitational excitation potential of the 

moon and that of the sun on the atmosphere. We consider Figure 2.12 where O, C 

and S denote the centers of the earth, moon and sun respectively and P is the point of 

gravitational excitation in the atmosphere close to the earth surface. OE is along the 

Equator. Solar declination (sdec) and lunar declination (ldec) are the angles EOS and 

EOC respectively. The angle, as measured from the equator and is positive when the 

target (sun or moon) is in the Northern (+) and negative in the southern (-) 

hemisphere.  

 

 

 

 

 

 

 

When we consider the tidal potential due the moon, P is a point near the earth‘s 

surface. N denotes the North Pole. The potential of the attraction of C at point  

P is -γM/PC, where M denotes the mass of C and γ the gravitation constant [Lindzen 

and Chapman 1969], [Lamb, 1932]. If we put OC=D, OP=a, and denote the moon‘s 
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(geocentric) zenith-distance at P, viz. the angle POC by , this potential is equal to 

the local excitation  and may be written; 

 

 (2,2) 

We require, however, not the absolute accelerative effect on P, but the acceleration 

relative to the earth. Now the moon produces in the whole mass of the earth an 

acceleration equal to;  M/D
2 

parallel to OC, and the potential of a uniform field of 

force of this intensity is evidently ; - Mcos /D
2 

 It is the acceleration at P relative to 

the earth that produces tides. The potential associated with the acceleration of the 

earth as a whole is. Subtracting this from (2,3) above we get 

 

 (2,3) 

Expanding (2,3) in powers of (a/D), which is in our case a small quantity, and 

retaining only the most important term, first term, we get; 

 

(2,4) 

Considered as a function of the position of P, this is a zonal harmonic of the second 

degree, with OC as axis so that the excitation is maximized when  = 0 and that P is 

on OC. An equivalent equation for the solar gravitation excitation is obtained by 

replacing the value of M by the mass of the sun. Thus the excitation is inversely 

proportional to the cube of the lunar or solar distance and is dependent on the lunar 

declination, .  
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Figure 2.13 

Lunar orbit showing New moon at perigee, the condition for the greatest tidal forces. 

In this study an atmospheric tide state, atide occurs whenever O, C and S are co-

linear or nearly collinear. O C and S were taken to be nearly collinear if the 

magnitude of the difference between sdec and ldec is less than 2 degrees. At that 

time the atmospheric tide is present somewhere in the tropics and not necessarily at 

P.  

An enhanced tide (etide) is taken to occur when points OPCS are co-linear. During 

that time, the enhanced tide is now located at P and sdec=latitude at P (overhead 

moon and sun at P). etide occurs only during the new moon phase. We note that a 

solar eclipse event condition at P is satisfied whenever PCS are co-linear but that will 

not necessarily satisfy either the atide or the etide state at P. Thus the solar eclipse 

will always have tidal effects at some location where the declinations coincide with 

the latitude as seen in Figure 2.13. 

 

 

 

 

 

 

 

 

Due to the elliptic nature of the lunar orbit the relative strength of the tidal force 

within a lunation is determined by the earth-moon distance denoted by a synodic 

decimal value between 0.0 and 1.0. Figure 2.13 shows the earth-moon system with 

the earth at a lunar elliptical orbit focus. The magnitude of the tidal forces are 
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Figure 2.14(a) 

Maximum lunar declination monthly values for the period 1901-2050  
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symmetrical for the two halves of the lunation. The factor representing the tidal 

strength in any one month was taken to be the value of the synodic decimal at mid-

month and referred to as the synod. synod has a value of 1.0 at apogee and 0 at 

perigee.  

The moon describes an orbit round the earth in a plane inclined at 5.15
 o

 to 

the ecliptic; the pole of the orbit revolves about that of the ecliptic once in 18.60 

years, so that the inclination of the plane of the moon's orbit to the earth's equator 

varies between 23.45
o
± 5.15

o
 or 18.30

o
 and 28.60

o
.The moon's declination 

consequently changes during each passage round its orbit between maximum 

northern and southern values which may vary from 18.5
o
 to 28.5

o
. The change in 

maximum lunar declination (mld) influences lunar angular velocity relative to a 

terrestrial observer.  

The value of the maximum lunar declination is the numerical value of the 

factor mld for the month. Values of mld used in this study for the period 1901-2050 

are shown in Figure 2.14. MLDs have a 18.6 year cycle in agreement with Yndestad 

et al [Yndestad, William and Vladimir 2008]. 
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Figure 2.14 (b) 

Apogee and Perigee distances for the period 1901-1910.  

 

 

 

 

 

 

 

 

 

 

 

Perigee and apogee distances vary along the lunar orbit. Mean distance of the 

moon from the earth is 384405 km, or 60.335 times the earth's radius (6371.2 km) 

while the eccentricity of the orbit is considerable, and slightly variable; the mean 

ratio of the maximum distance, at apogee, to the minimum value, at perigee, is 

1.1162, and the maximum ratio is 1.1411. The period from one apogee to the next is 

called the anomalistic month and the apogee revolves round the lunar orbit once in 

8.8 years as shown in Figure 2.14(b). For each month, the average perigee and 

apogee distance is calculated. Numerical values represent the factor perigee (prg) 

and apogee (apg) as calculated by means of a tides calculator obtained from 

Dcsymbols [Dcsymbols, 2013]. Figure 2.14(b) shows apogee and perigee distances 

for the period 1901-1910. We observe from equation (2,10) that perigee variation can 

have more significant influence on tidal variation than apogee given that tidal 

potential is inversely proportional to the cube of the distance. During a perigee, the 
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moon is 40,000 km closer than during an apogee and this distance varies by about 

10,000 meters twice each year [Horizons, 2013]. The lunar phase (lunaph) is the 

integral value representing any of the four lunar phases, phase one (New Moon) 

being represented by integer 1. 

2.5 ASTRONOMICAL BASIS FOR ENHANCED ATMOSPHERIC TIDES 

Maximal tide raising forces occur only when the Sun and Moon are in direct mutual 

alignment. This occurs at syzygy (either full Moon or new Moon), provided also that 

the Moon or Sun be in eclipse with the Earth. The former two bodies must also be at 

the closest approach to the Earth, i.e., the Moon at perigee and the Sun at perihelion. 

Repetitions of syzygy, perigee, and eclipse are defined, respectively, by three lunar 

months [Wood 1986]. The synodic (29.5 days) representing every second recurrence 

of syzygy, the anomalistic (27.6 days) representing the recurrence of perigee, and the 

nodical (27.2 days) representing every second recurrence of the Moon positioned at 

its node, lying on the plane of the ecliptic, a requirement for an eclipse. The Earth 

and Sun attain closest approach (perihelion) once every anomalistic year. The 

anomalistic year is only slightly longer than the mean calendar year because 

perihelion advances very slowly, 1 day every 57 years [Neumann and Pierson,1966]. 

Perihelion presently occurs on January 2 in the Christian calendar.  

For any point on the earth surface the occurrence of enhanced atmospheric tide may 

also be determined by the difference between the lunar and the solar declination at 

that point. A difference of zero means that the sun and the moon are in mutual 

alignment indicating the eclipse of the sun condition. In this study, enhanced 
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atmospheric tidal events are taken to occur in Kenya so long as the said difference 

between solar and lunar declinations is less than one degree. Enhanced atmospheric 

tides are strongest at the equator where Kenya is located. The number of days during 

which the one degree requirement is met indicate the prevalence of the enhanced tide 

in any single month of the year. 

Atmospheric tides have been detected as surface barometric pressure, averaging 

1013.25 mb at sea level, fluctuates slowly by a maximum of about 50mb because of 

weather conditions. There is also a regular daily variation of up to a few mb showing 

diurnal and semidiurnal components, like the ocean tide. This atmospheric tide is 

completely solar, the lunar component being too small to observe. The effect is 

greatest at the equator and at continental locations, with a diurnal component of 0.3 

to 0.5 mb, and a semidiurnal component of 1 - 2 mb, for a total range of 3 to 4 mb 

daily. This range is least at the solstices, and greatest at the equinoxes. In polar 

regions, the amplitude of the variation is only about 0.3 mb [Berry, 1945] 

 

2.6 SUNSPOTS NUMBERS 

The number of sunspots appearing on the solar surface has been recorded each month 

through observations and calculation for a long time. Currently, sunspot numbers are 

clearly headed towards a minimum given the trends and the near symmetry of the 

current maximum, typically referred to as Modern Maximum, which comprises 

Cycles 17 to 23 in Figure 2.15. The current cycle, Cycle 24, will probably mark the 

end of the Modern Maximum, with the sun switching to a state of less strong activity. 

While there are three main groups of prediction methods [Kristof, 2010] – precursor 

methods, extrapolation methods and model-based predictions – the National 

Aeronautics and Space Administration (NASA) and the Solar Influences Data 
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Figure 2.15 

 Smoothed sunspot numbers of Cycles 14 to 24 showing the predicted 

(dotted) segment. 
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Analysis Center (SIDC) have finally used the precursor method and made their 

predictions for Cycle 24 [SIDC, 2013]. The smoothed sunspot numbers and 

predictions are shown in Figure 2.15. 

 

 

 

 

 

 

 

 

 

Sunspot numbers have been associated with a change in climate, including severe 

climatic conditions during the Maunder Minimum – the period 1640–1705 which 

was characterised by a conspicuous lack of sunspots [Lassen and Christensen 1995]. 

Total solar irradiance increases when the number of sunspots increases. Total solar 

irradiance is higher at solar maximum, even though sunspots are darker (cooler) than 

the average photosphere. Meehl and Arblaster [Meehl and Arblaster, 2009] analysed 

sea surface temperatures from 1890 to 2006. They then used two computer models 

from the US National Center for Atmospheric Research to simulate the response of 

the oceans to changes in solar output. They found that as the sun's output reaches a 

peak, the small amount of extra sunshine over several years causes a slight increase 

in local atmospheric heating, especially across parts of the tropical and subtropical 

Pacific where sun-blocking clouds are normally scarce. The small amount of extra 

heat leads to more evaporation, producing extra water vapour. In turn, moisture is 

carried by trade winds to the normally rainy areas of the western tropical Pacific, 

fuelling heavier rains.  
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In 2008, White and Liu provided evidence that the 11-year solar cycle may be the 

trigger for El Niño and La Niña events by using harmonic analysis on observed and 

model data [White and Liu, 2008]. The dotted line in Cycle 24 represents NASA‘s 

predicted sunspot numbers for 2012–2020. A model such as the one developed in 

this study captures inter-annual rainfall variability by involving sunspot numbers as 

predictors. 

Sunspot Cycle 24 is the last cycle of the current maximum while the dotted line 

shows the sunspot numbers that NASA have predicted for 2013–2020. The current 

prediction for Sunspot Cycle 24 gives a smoothed sunspot number maximum of 

about 69 in 2013 [Hathaway, Wilson and Reichmann, 1999]‘s method of predicting 

the behaviour of a sunspot cycle is fairly reliable once a cycle has reached about 3 

years after the minimum sunspot number occurs [Hathaway, Wilson and Reichmann, 

1999] 
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2.7 RAINFALL MODEL FORMULATION WITH GENERALIZED LINEAR MODELS 

(GLMS) 

2.7.1 Introduction. 

Rainfall as a variable seems unpredictable for three reasons: 

i) It has both continuous and discrete values, 

ii) The variable has exact zero values visible in Figures 2.16 and 2.17. 

Deciding how to handle the numerous zero values occurring in a 

rainfall distribution presents enormous challenge. 

iii) Kenya rainfall is a highly skewed variable -most analysis procedures 

are designed to handle normal distributions – therefore rainfall 

exhibits non-independent characteristics. 

 

 

 

 

 

 

 

The approach we have used here, which has been used to handle environmental data 

is often composed of two separate components: a discrete element at zero and a 

continuous element recorded above zero. Figure 2.16 shows the time distribution of 

the ONDJ rainfall in 1963-4. In this approach, Rainfall is typically modeled using the 

two-components;  

Figure 2.16 

Curve Fit and rain Amount. The distribution has numerous 

zero values. 
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i) Modeling the occurrence, 

ii) Modeling the amount.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Models will often not be able to capture outliers as this one in 1990 because of the 

low probability of occurrence of such an event. From Figure 2.18, the probability of 

obtaining one value beyond 250mm is 1/564 = 0.0018 (there are 564 values in the 

dataset) 

Figure2.18 

JKIA daily Rainfall 1959-2005 showing an outlier value. 

Figure 2.17 

Distribution with less number of exact zero values 
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2.7.2  Modeling the occurrence of rainfall 

Two methods have been commonly used to model occurrence: 

i) Markov Chains.  

Rainfall occurrence can be viewed as a sequence of random variables  

y(t),t= t1, t2 ……..tT 

(2,5) 

where, 

   y(t) =  

(2,6) 

ii) A Renewal Process. 

This process considers a sequence of alternating wet and dry spells of varying length, 

with each spell having an assumed distribution and that all intervals are independent 

 

2.7.3 The Gamma Distribution 

Since rainfall amounts are skewed as to the right in Figure 2.19 (rainfall amounts are 

exact zeros for most of the days) a function to use for a particular rain season is the 

gamma distribution function. 

 

f(x) =  

2,7) 

Where α  >  0 the shape parameter and  β  >  0 the scale parameter.  
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Figure 2.19 

Gamma Distribution Functions. 

The gamma distribution may therefore be appropriate only when modeling rainfall 

for a season. 

2.7.4 Exponential Dispersion Models (EDMs) 

The Normal, Binomial, Poisson, Inverse Gaussian, Exponential, Gamma, and 

Tweedie distributions all have distributions that form part of the exponential 

dispersion model family. The Binomial and Poisson distributions are both discrete 

distributions, with the Poisson distribution being used when the data involves counts. 

The Binomial distribution is used when the data deal with proportions and the 

outcome is either a ‗success‘ or ‗failure‘. The Normal, Inverse Normal, Exponential 

and Gamma distributions are all continuous distributions. The Gamma distribution is 

used when the response variable is skewed and the variance is not constant. The 

Exponential distribution is a special case of the Gamma distribution used when the 

shape parameter (α) is equal to one. Finally, the Tweedie distribution is a mixed 

distribution, which means that it can model data with both discrete and continuous 
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components, such as the Poisson-Gamma distribution. The Tweedie distribution is 

especially useful in modeling rainfall, as illustrated in Section 3.5. Table 3.1 provides 

information about several distributions that come from the EDM family, including 

their variance functions (See Section 2.7.5). These seven distributions demonstrate 

that EDMs can consist of discrete, continuous, or mixed distributions. 

 

We begin by assuming the Nairobi monthly rainfall follows one of the standard 

exponential dispersion family of distributions and we will therefore be an 

Exponential Dispersion Model (EDM). EDMs have a probability density function or 

a probability mass function, which can be written in the following form [Gill 2001]; 

 

p(y,θ, ø,) = a(y,ø) exp                          .                    (2.8) 

where ø > 1 is the dispersion parameter; μ is the position parameter and μ = k’(ø); y 

is the Nairobi monthly rainfall amount and  is the canonical parameter. y does not 

depend on the parameters θ, and ø. 

The notation Y ~ ED(μ, ø) indicates that a random variable Y comes from the EDM 

family, with location parameter μ and dispersion parameter ø, as in equation (2,8). 

 

2.7.5 The GLM 

A GLM, such as the Tweedie used in this study, satisfies two conditions: 

 

1. It is an EDM ; ie yi ~ ED(μi, ø/wi). The value of prior weights wi is 1 

2. The expected values of the yi, say μi, are related to the covariates xi 

through a monotonic differentiable link function, g(·) 
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Table 2.1 provides information about several distributions that come from the EDM 

family, including their variance functions. These seven distributions demonstrate that 

EDMs can consist of discrete, continuous, or mixed distributions. 

 

Table 2.1  
The characteristics of some of the distributions. [McCullagh & Nelder] 
Distribution  μ = E(Y ) Variance 

Function 

Normal   1 

Poisson e  e  μ 

Binomial ln(1+ e  e  μ(1- μ) 

Gamma -ln(-  -1/  μ2 

Inverse Gaussian   μ2 

Tweedie 
 

 μ2 for p (0,1) 

 

Examples of the predictors (xi) are : SOI phase, Solar and lunar declination, , 

Sunspot numbers , Month (1,2,3,…,12), Solar Declination and Lunar Declination . 

They may also be referred to as explanatory variables or covariates.  

 

2.7.6 The link Function 

The link function, g(.) . This function is the one to be determined by fitting so that  

 

g(μi)= xi
T
 β                                                               (2,9) 

and   

yi = β xi
T
 +ei                                                              (2,10) 

or  

yi = g(μi) xi
T
 +ei                                                            (2,11) 
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is a linear function, hence the name –generalised linear model. ei are the random 

residuals (errors in estimating yi) 

 

Table 2.2 

Commonly used link functions. μ and p are the mean and power.  is the Normal cumulative. 

 

Distribution Canonical Link Form Other Links Form 

Binomial logit log[p/(1 − p)] probit −1(p) 

   c-log-log log[-log(1 − p)] 

Poisson log log μ identity μ 

   square root log (μ) 

Gamma inverse 1/μ log log (μ) 

   identity μ 

 

In this study we use the Tweedie distribution which follows a gamma distribution 

and log link function, log (μ) due to the skewed nature of the rainfall distribution. 

The linear component, xi β , is called the linear predictor and is given the symbol ηi, 

so that, 

ηi = xi
T
 β.                                                            (2,12) 

The linear function g(.) is differentiable, so that β  can be estimated and monotonic 

and that  

x
T

i   has only one value corresponding to each μi .   

g(μi)= xi
T
 β                                                            (2,13) 

The most commonly used form is g(.) is  ηi =  = g(μ). So that the linear predictor,  

ηi = xi
T
 β.                                                            (2,14) 

When we define xit as the covariate vector for unit i at time t, the link function 

becomes; 

g(tit)= ηit                                                            (2,15) 

and also  
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yit = g(μit)xit+eit                                                            (2,16) 

 the variance as a function of the mean, and consequently the distribution of the 

response variable becomes; 

Var[yit] = V (μit)                                                            (2,17) 

 

2.7.7 The Mean and The Variance 

Members of the EDM, family written in the form of Equation (2,8), have a mean and 

variance defined as follows, where θ) and  are determined from equation (2.1) 

[McCullagh and Nelder]. 

Mean of Y : E[Y ] = μ = θ)                                                 (2,18) 

Variance of Y (var[Y ]): var[Y ] = θ)                             (2,19) 

 

The variable θ is related to the mean μ through Equation (2,18). The relationship 

between μ and θ is often written as θ) = θ)= μ and θ = τ
−1

(μ). The function τ (θ) 

is referred to as the mean-value mapping and gives the functional relationship 

between μ and θ. 

 

2.7.8 Variance Functions 

Although not described in the original setup of a GLM, the variance function is 

important as it uniquely identifies a distribution within the class of EDMs. Equation 

2.10 shows that θ) is a function of the mean and thus θ) is also dependent on 

the mean. For this reason θ) is often replaced by the variance function V(μ) so 

that, 

V(μ) = θ).                                                           (2,20) 
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The role of the variance function is to describe the mean-variance relationship of a 

distribution when the dispersion parameter is held constant. If Y follows an EDM 

with mean μ, variance function V(μ), and dispersion parameter , then the variance 

of Y can be written as, 

var(Y) = V (μ).                                                           (2,21) 

The variance function that uniquely identifies the Normal, binomial, Poisson, inverse 

Gaussian, gamma, and Tweedie distributions is illustrated in Table 2.2. The Tweedie 

distributions, are classified by a special form of the variance function (V(μ) = μ
p
). 

 

2.7.9 Deviance 

One method to measure the appropriateness of a fitted model is to examine the 

difference between the fitted values  and the observed values y. In standard Normal 

distribution based regression, this measure is equivalent to the residual sum-of-

squares (Hardin and Hilbe, 2001]. In the framework of GLM, this measure of 

difference is called the deviance, D(y; μ), and can be 

calculated as follows, 

D(y; μ) = D
*
(y; μ) = 2 [ (y; y) − ( ; y)],                       (2,22) 

where D
*
 is called the scaled deviance and has only an approximate 

2 
distribution, 

and  is the log-likelihood function. The deviance can be used to compare models 

[Hardin and Hilbe, 2001] and [Nelder and Wedderburn, 1972]. 

 

2.7.10 Estimation of parameters 

Using an iterative procedure [Dobson, 2002] to obtain the maximum likelihood 

estimators of the parameters β, it is possible to fit a model to a data set. GLMs are 
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estimated numerically with these parameters. The likelihood function is generally 

defined as follows; 

                                              (2,23) 

Where n is the sample size of the data set, and  is the parameter of interest. It is 

easier to work with log-likelihood function, which is defined as  

                                               (2,24) 

                                         (2,25) 

                                                   (2,26) 

In order to use this method, the log-likelihood,  needs to be determined as 

follows; 

                        (2,27) 

The maximum likelihood estimates for βj can now be found by taking the derivative 

of the equation (2,27) above with respect to βj 

Now, 

                                          (2,28) 

Each of the four derivatives on the RHS can be obtained separately by differentiating 

the log-likelihood function as follows: 

                                              (2,29) 

                                                     (2,30) 

since                                               µi  = E[Y] =                                           (2,31) 

The second component uses the relationship as well; 

µi =                                                               (2,32) 
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                                                  (2,33) 

                                                   (2,34) 

=V(µi)                                                  (2,35) 

Inverting this final equation gives 

                                                  (2,36) 

The third component differentiates the link function g( ) = , 

 = g( )                                                                 (2,37) 

                                                               (2,38) 

.                                                                  (2,39) 

Inverting equation (2,39) gives  

                                                                (2,40) 

The final expression uses  = β0xi0 + β1xi1 + ............+ βjxij + .............. βpxir,  

Where r is the rank of β. Thus, the derivative of  with respect to βj is xij . 

Combining these four expressions shows that the equation 2.21 can be written as the 

―score equation‖ for GLMs, 

                                                  (2,41) 
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The maximum likelihood estimator is found by setting Equation (2,41) equal to 0 and 

solving for j = 1, 2, . . . , r. When / = 0, the value of  does not need to be 

known. This is an important concept of GLMs because an estimate of  can be found 

without knowing . 

Equation (2,41) can only be solved through numerical techniques involving iteration, 

such as the Newton-Raphson method or the method of scoring [Dobson, 2002] and 

[Hardin and Hilbe, 2001] 

 

2.7.11 Quasi-likelihood methods 

In many situations, some details of the distribution governing the data is known, 

however the distribution may not be specified exactly. In addition, there are some 

cases for which the distribution is known, however it difficult to evaluate, such as the 

Tweedie distributions. This precludes the use of maximum likelihood, which requires 

exact specification of the distribution in order to construct the likelihood. The idea of 

quasi-likelihood addresses this concern [McCulloch and Searle, 2001].  

Quasi-likelihood methods were first proposed by [Wedderburn, 1974], and are a 

methodology for regression that requires few assumptions about the distribution of 

the dependent variable. Hence they can be used with a variety of outcomes [Zeger 

and Liang, 1986]. In likelihood analysis, the actual form of the distribution must be 

specified. However, in quasi-likelihood, only the relationship between the outcome 

mean and covariates, and the mean and variance, needs to be specified [Zeger and 

Liang, 1986]. The focus of quasi-likelihood is on methods for inference about β, and 

hence  can be treated as a nuisance parameter. A quasi-likelihood can be used if the 
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researcher does not know the density function of the distribution, but knows its mean 

and variance. It is defined for one observation, Q, as, 

 du .                                                 (2,42) 

This quasi-likelihood has the same properties as a true log-likelihood with regards to 

the derivatives of β, enabling GLMs to be fitted for any distribution using a quasi-

distribution. To define a quasi-likelihood function, only the relationship between the 

mean and variance needs to be specified through the variance function [Wedderburn, 

1974]. 

 

2.7.12 Power-variance (Tweedie) distributions 

Of special interest within EDMs is a class of distributions with power mean-variance 

relationships V(μ) = μ
p
. Any distribution whose variance function like this belongs to 

the class of distributions known as the Tweedie family  of distributions, named by 

Jørgensen [Jørgensen, 1987] after Tweedie [Dunn, 2004]. This section describes 

Tweedie distributions, and demonstrates how these distributions can be used to 

model rainfall.   

 

Most of the important distributions commonly associated with GLMs are contained 

within the Tweedie distribution framework, including the Normal (p=0), Poisson 

(p=1 and =1), gamma (p=2), and inverse Gaussian distributions (p=3). Tweedie 

models exist for all values of p outside the interval (0, 1), however only the four 

distributions already mentioned have density functions which have explicit analytic 

forms [Dunn & Smyth, 1996].  
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Tweedie distributions with p>1 have strictly positive means, with p>2 being 

continuous for positive Y , and a shape similar to the gamma, but more right skewed. 

Distributions with p<0 are continuous on the entire real axis. Finally, for 1<p<2 the 

distributions are supported on non-negative real numbers, and the distributions are 

mixtures of the Poisson and gamma distributions, with a mass at zero [Dunn & 

Smyth]. These distributions have been called ‗compound Poisson‘, ‗compound 

gamma‘, and ‗Poisson-gamma‘ distributions. Due to the characteristic of being able 

to model both discrete and continuous combinations simultaneously, these 

distributions have a special use in being able to model both the occurrence and 

amount of rainfall. 

The mean, μ, and canonical parameter, θ can be found for a Tweedie distribution by 

noting that θ) = dμ/dθ = μ
p
 and the mean is given by μ = θ). This allows the 

density function for a Tweedie distribution to be specified. Hence, 

.                                                            (2,43) 

=  .                                                            (2,44) 

.                                                                  (2,45) 

Taking the reciprocals of both sides and integrating with respect to μ gives, 

.                                                 (2,46) 

By setting the arbitrary constant of integration to 0, and noting that μ = θ) gives, 
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.                                                 (2,47) 

The Tweedie densities can thus be written as,  

 .   (2,48) 

 

 

2.7.13 Tweedie distribution and the Quasi-likelihood 

Following Equation (2.36) the Tweedie distribution has the following quasi-

likelihood distribution (when setting the arbitrary constant of integration to 0 

                             (2,49) 

.                                                 (2,50) 

.                                                 (2,51) 

.                                            (2,52) 

 .                                             (2,53) 

This equation has the same likelihood function as equation (2,42), except now there 

is no need to estimate a(y, ). This is extremely helpful as often the a(y, ) term 

cannot be written in closed form, or is of a form which is extremely difficult to 

calculate. 
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2.7.14 Software for Fitting a Tweedie Function 

The model design involves fitting a GLM of the Tweedie family to the Nairobi 

Rainfall. The R Statistical Software was used to calculate the model parameters 

while a MS Excel spreadsheet was used in the calculation of the estimated values. R 

is free software, and this copy was obtained from NCAR, Boulder, Colorado during 

the Colloquium on Africa Climate held in August of 2011.  

To fit a Tweedie GLM the tweedie library is needed program [Dunn, 2004]. The two 

functions loaded were the tweedie.profile; and the tweedie family model. The 

tweedie.profile function is the most suitable and works only if p≥1 which gives 

maximum likelihood value of p and ø at 95% confidence.  

Once the variance power has been calculated using tweed.profile, and the link 

function chosen (default link is canonical –the log option was used), the R command 

was used: 

family=tweedie(var.power=p,link.power=1-var.power) 

The program R is used extensively in this study and is the program that was used to 

create the rainfall models in generated in Chapters 4. 

 

 

 

2.7.15 Tweedie Distributions and Rainfall 

To model rainfall using the Tweedie model, one vital assumption needs to be made: 

the amount of rainfall that occurs during any rain event follows a gamma 

distribution. Let i be a rainfall event, and Ri be the amount of rainfall that occurs 

during this event.  It is assumed that each Ri follows a gamma distribution, with 
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mean  -αγ and variance -αγ
2
 (Gam(-α,γ)). It is also assumed that the number of 

rainfall events during the time period (usually month or day), called N, follows a 

Poisson distribution with mean, λ. Thus when no rainfall has occurred on that 

particular event, N = 0. Finally Y represents the total daily or monthly rainfall, and is 

represented as the Poisson sum of gamma random variables, such that Y = R1 + R2 

+ . . . + RN. This same setup can be applied to differing timescales. For example, if 

Ri represents the amount of rainfall per day, then Y is the total monthly rainfall. The 

resulting distribution of Y is called a Poisson-gamma distribution [Dunn, 2004], and 

belongs to the class of Tweedie distributions when 1 < p < 2. 

A Poisson-gamma distribution has probability function, however Jørgensen shows 

that it takes the following form [Jørgensen B, 1987]: 

.     

(2,54) 

Where γ = (p-1) µ
p-1 

, λ = µ 2-p/[ (2-p)], and W is an example of Wright‘s 

generalized Bessel function. It can be written as,  

, .                          (2,55) 

Where α = (2-p/1-p). The mean of the Poisson-gamma distribution is µ, and its 

variance, as with all Tweedie distributions, is 

var(Y) = µ
p
                                               (2,56) 

The probability of obtaining no rain on any particular event is given by [Dunn, 

2004]; 
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                                               (2,57) 

 

2.7.16 Diagnostic Testing 

The purpose of creating a model is to adequately summarize the important 

characteristics of the data by finding a parsimonious model that explains what is 

happening in the data without using meaningless, or too many parameters. In the 

creation of a model, often this model may show departures from the given data and 

thus not fit the data sufficiently. Diagnostic testing is used to determine whether the 

model adequately fits the data. There are a number of diagnostic tests that are 

available for GLM, and these include: a Q-Q plot; scatter plots of residuals and 

covariates; comparison of residual sizes; and residual deviances. These techniques 

allow the suitability of the link function and assumed distribution to be tested, as well 

as testing of the data for influential values, outliers, or pattern. There are four main 

reasons why a fitted GLM may not adequately represent the data and these include, 

• The model fits well for most observations; however a few isolated cases do not. 

These isolated cases are called outliers; 

• The link function is incorrectly specified; 

• The response variable, Y is incorrectly specified; and/or 

• The linear predictor ( ) may not be correctly specified, or is missing some terms. 
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2.7.17 Residuals 

A general tool used in diagnostic analysis is residuals. Residuals are a measure of 

how different expected values of the responses emerge from the observed responses. 

In simple regression models, the raw residuals (y − ) are used, however these are 

generally inadequate when using a generalized linear model. The two most common 

residuals to use for GLMs are the Pearson residuals and deviance residuals. The 

Pearson residuals, which are also used in GEE models, have an approximate Normal 

distribution N(0, ). Deviance residuals are related to the concepts of deviance D(y; 

μ), and also have an approximate Normal distribution. Quantile residuals have also 

been recently proposed by [Dunn and Smyth, 1996] to be used with GLMs, and have 

an exact Normal distribution when μ and are known exactly. 

2.7.18 Definition of Quantile Residuals 

In continuous responses, the quantile residual is defined as, 

rQ,i = 
−1

F(yi; μi, ),                                               (2,58) 

where F(yi; μi, ) is continuous and is the distribution function of a random variable 

Y , and (·) is the cumulative distribution function of the standard Normal 

distribution. 

In the discrete case, if ai =limy↑yi F(yi; μi, ) and bi = F(yi; μi, ), then 

the quantile residuals are defined as, 

rQ,i = 
−1

(μi),                                                  (2,59) 

where μi is a uniform random variable on the interval (ai, bi]. 
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2.7.19 Residual Plots 

Any of the residuals discussed in section 2.6.17 can be plotted against a variety of 

statistics and other indices. Each provide different information about departures from 

the fitted model. Since residuals should ideally be random, any pattern observed in 

the plots indicate problems with the fitted model. These residual plots can therefore 

help the researcher determine if there are any isolated departures. Furthermore, by 

plotting the residuals against the fitted values, as well as against the covariates, 

systematic departures can also be determined [Chandler, 2003]. 

 

2.7.20 Correct Distribution 

One of the most important components of a GLM is that the correct distribution is 

chosen for the response variable. To check that the chosen distribution is adequate 

for the data, a normal probability or Q-Q (quantile) plot can be produced. If the 

model fits well, this plot should yield a straight line at 45 degrees. While quantile 

residuals are the ideal choice for GLMs, other residuals can be used. 

 

2.8 GENERALIZED ESTIMATING EQUATIONS (GEES). 

The class of generalized linear models (GLMs) introduced in Section 2.7.1 play a 

central role in regression problems which have discrete or continuous response 

variables. However they are based on the classical assumption that observations 

within a data set are independent. GLMs were extended by Liang and Zeger [Liang 

and Zeger, 1986] so that longitudinal or correlated data could be analyzed, and this 

approach is known as the Generalized Estimating Equation (GEE) method. This 
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method has received wide use in medical and biological applications such as 

epidemiology, gerontology, and biology [Ballinger, 2004], and is becoming 

increasingly popular in other disciplines such as organizational and psychological 

research. Much of the appeal of GEEs is due to their broad capabilities, including: 

modeling correlated responses; allowing for time-varying covariates; and facilitating 

regression analysis on dependent variables that are not normally distributed 

[Ballinger, 2004]. 

 

2.8.1 Introduction 

GEEs were introduced as a method of estimating the regression model parameters 

when the response variable is dependent. The GEE approach differs in a fundamental 

conceptual way from the techniques included under the rubric of ‗random-effects‘, 

‗multilevel‘, and ‗hierarchical‘ models which have previously been used to model 

correlated data. The techniques used in these models explicitly model and estimate 

the variations seen between observations, and incorporate these estimates and the 

residual variance into standard errors. The GEE method does not explicitly model the 

variation. Instead it focuses on, and estimates its counterpart: the similarity of the 

observations [Hanley, Edwardes, Negassa and Forrester. 2003]. GEEs develop a 

population average or marginal model. In marginal models, the primary interest of 

the analysis is to model the marginal expectation of the response variable given the 

covariates. In other words, for every one unit increase in a covariate across the 

population, the GEE tells the user how much the average response would change 

[Zorn, 2001]. 
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The correlation, or more generally, the association between the response variables is 

modeled separately and is regarded as a nuisance parameter [Ziegler, Gromping, 

Kastner and Blettner, 1996]. Thus, a basic premise of the GEE approach is that the 

researcher is primarily interested in the regression parameters β and is not interested 

in the variance-covariance matrix. GEEs are not meant to be used in situations in 

which scientific interest centres on the variance parameters. This section focuses on 

the class of GEE models originally developed by [Liang and Zeger, 1986]. This GEE 

approach is now commonly referred to as the GEE1 approach. Further developments 

are currently being made into different types of GEEs. While the focus of the chapter 

is on GEE1 models, the other types of GEEs are discussed briefly. 

 

2.8.2 Longitudinal and correlated studies  

GEEs are traditionally used to model correlated data from longitudinal or repeated 

measures units, as well as from clustered or multilevel studies. Longitudinal studies 

are defined by the characteristic that subjects are measured repeatedly throughout 

time. These studies require special statistical methods because the set of observations 

taken on one unit are usually inter-correlated, [Diggle, Liang and Zegler, 1994]. The 

issue of accounting for correlation also arises when analyzing a single time series of 

measurements, such as rainfall. Although similar techniques can be applied to this 

type of data, inferences are usually less robust. The correlation must therefore be 

taken into account in order for valid scientific inferences to be made , [Diggle, Liang 

and Zeger, 1994]. The data examined in this study is a single time series 

measurement, rainfall, which is measured over time. The site of the rainfall is 

considered as one unit, and the rainfall measured at each site would be the repeated 
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measures over time. The prime advantage of studying rainfall in this manner is that 

multiple sites can be examined simultaneously and it is an effective way to study 

change. However, if more than one site is examined simultaneously in one model, it 

can be thought of as an example of a longitudinal study. Correlated data has been 

examined through a variety of different approaches. The statistical methods for 

modeling longitudinal data are well developed when the response variable is 

approximately Normal [Liang and Zeger, 1986]. Statistical models for non-Normal 

outcomes however, are not as developed. Where analyzing longitudinal data there are 

two classical approaches which have been used in the past: the first is univariate 

mixed model, split-plot, or repeated measures anova; and the second is based on a 

multivariate anova called manova. Two other extensions to the classical approaches 

for modeling correlated data include multivariate modeling and mixed models. The 

former treats all measurements on the same unit as dependent variables, and models 

these simultaneously. The latter focuses on fixed and random effects within the 

model, with the correlation between the observations being a consequence of random 

effects [Dunlop, 1994]. 

 

2.8.3 Notation 

The following notation is used: let yit be a vector of responses with a set of 

corresponding r covariates or factors, Xit, where i indexes the K units of analysis   

i = 1, 2, . . . ,K; and t indexes the time points. t = 1, 2, . . . , ni for each unit.  

Thus the number of clusters observed is K. Also, 

N= , 

(2,60) 
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and is the total number of observations across all units. The first element of xit is set 

to 1 to allow the inclusion of an intercept.  

 

Furthermore, let yi = [yi1, yi2, . . . , yini ] denote the corresponding column vector of 

observations on the response variable for unit i, and Xi = [Xi1,Xi2, . . . ,Xini ] indicate 

the ni × r matrix of covariates for unit i. 

 

In the case of rainfall data, to correspond with the notation described above, the 

following notation is applied: 

Each site forms one unit or cluster. Therefore if only one site is examined, K=1. If 

two sites are examined, then K=2. Thus, i=1 for one site and i=1, 2 for two sites. 

The response variable, yit, is the amount of rainfall recorded. Thus, if one site is 

examined, the response variable becomes y1t. If two sites are examined, there are two 

response vectors of y1t and y2t. 

The observed time, t, corresponds with the time values at which the rainfall is 

measured. For example t = 1, 2, 3 would correspond with measurements taken at 

time point 1, time point 2, and time point 3. The number of time points is n1 for site 

one and n2 for site two. 

 

2.8.4 Assumptions 

Before explaining the concept of GEEs, there are four assumptions about the use of 

GEEs to model correlated data that need to be articulated. The most crucial 

assumption is that the following conditional expectation needs to be specified 

correctly, 
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μit = E[yit|xit] = E[yit|Xi]                                              (2,61) 

Equation (2,61) implies the conditional mean μit of yit, given the explanatory variable 

Xi, measured at all possible time points ni, is equal to a set of the same point specific 

explanatory variables xit [Dahmen and Ziegler, 2003]. 

 

The second assumption is that the response variable yit should have a mean and 

variance which are characterised by a GLM. It is further assumed that a true 

conditional ni × ni covariance matrix exists [Dahmen and Ziegler, 2003]. Finally, it is 

imperative that any missing data is missing completely at random (mcar), otherwise 

results become inconsistent [Dobson, Puride, and Williams, 2002]. 

 

2.8.5 GEEs and rainfall 

There is a general consensus that rainfall is correlated. For monthly rainfall this 

means that the rainfall observed during any particular month, depends on a number 

of previous months‘ conditions. Studies have shown that this is the case, and thus the 

correlated structure of rainfall data should not be ignored when creating a model 

[Chandler and Wheater, 1998]; [Beersma and Buishand, 2003]. Even though 

researchers have realized that rainfall data is correlated, introducing these 

dependencies into a model leads to difficulties. For example, parameter identification 

becomes difficult and models have an increased number of parameters. Thus, 

researchers typically assume that rainfall is independent. However [Lall, 

Rajagopallan and Tarboton, 1996] state that if this independent assumption is 

violated, then the precision of any results obtained are over or underestimated and 

this leads to incorrect conclusions about the significance of parameters [Dahmen and 
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Ziegler, 2003]. Past research thus shows that it is important to take the correlated 

structure of rainfall into account when creating a rainfall model. Generalized 

estimating equations are especially designed to handle correlated data and past 

reviews indicate that utilizing this powerful estimating technique may be beneficial 

to rainfall modeling. 

 

2.8.6 Specification of GEEs 

A basic feature of GEE models is that the joint distribution of a unit‘s response 

vector yi does not need to be specified. Instead, only the marginal distribution of yit at 

each time point needs specification. To clarify, assume there are two time points and 

the outcome variable is approximately Normal. GEEs only assume that the 

distribution of yi1 and yi2 are two univariate Normal distributions, rather than 

assuming that yi1 and yi2 form a (joint) bivariate Gaussian distribution. Thus, GEEs 

avoid the need for multivariate distributions by only assuming a functional form for 

the marginal distribution at each time point [Hedeker, 2005]. Since the GEE model 

can be thought of as an extension of GLMs for correlated data, the GEE 

specifications involve those of GLM, with one addition. Thus, GEE models require 

the user to specify the following, 

• The linear predictor, 

ηit = β                                              (2,62) 

where xit is the covariate vector for unit i at time t. 

• The link function, used to relate the response variable to the linear combination of 

the covariates, 
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g(μit) = ηit                                              (2,63) 

• The variance as a function of the mean, and consequently the distribution of the 

response variable, 

Var[Yit] = V (μit)                                              (2,64) 

• The correlation structure of the response variable.  

The fourth condition is what differentiates a GEE model from a GLM [Liang and 

Zeger, 1986] introduced a ‗working‘ correlation structure to obtain consistent and 

efficient estimators for regression parameters when observations were correlated. 

 

2.8.7 Working correlation matrix 

It is assumed a true correlation between units exists, however it is very rare that this 

true correlation is actually known. Thus, a working correlation matrix, R, is produced 

to obtain an estimate of the covariance matrix [Zorn, 2001]. This working correlation 

is of size t × t because one assumes that there are a fixed number of time points t at 

which units are measured. A given unit does not have to be measured at all t time 

points; each individual‘s correlation matrix Ri is of size ni × ni, with the appropriate 

rows and columns removed if ni < t. 

 

It is further assumed that the correlation matrix R, and thus Ri, depend on a vector of 

association parameters, denoted by α. That is, the working correlation matrix, now 

fully defined as Ri(α), is completely specified by the vector of unknown parameters, 

α. This unknown vector of parameters has a structure which is determined by the 

investigator and is assumed to be the same for all units. It represents the average 
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dependence among the observations. Although Ri(α) is chosen at own discretion, it is 

best to try to choose Ri(α) to be consistent with empirical correlations and on the 

basis of theoretical considerations [Dobson, Puride and Williams, 2003]. This is 

because accurately representing the correlation matrix improves the efficiency of the 

GEE estimates. Despite this, there is little information available about how to choose 

the best correlation structure [Dahmen and Ziegler, 2003], and often it is difficult to 

determine. As long as μi is correctly specified however, and the covariance matrix 

converges to some fixed matrix, then consistent results can still be obtained, even if 

the incorrect Ri(α) structure is identified [Dahmen and Ziegler, 2003 ]. Finally, any 

loss of efficiency is reduced as the number of units increases [Dobson, Puride and 

Williams, 2003]. The most common structures used to model the working correlation 

matrix are the independent, exchangeable, autoregressive, stationary, non-stationary, 

unstructured, and fixed correlation structures. The broad range of options available 

for specifying the correlation structure is another advantage for using the GEE 

approach. Some of these structures are examined in more detail below. 

 

2.8.7.1 Independent Structure 

The independent structure is the simplest form that the working correlation matrix 

can take, as it assumes that no correlation actually exists and observations within the 

series are independent. Because users assume that the responses within each unit are 

independent of each other, this approach sacrifices one of the benefits of GEE in that 

it does not account for within-subject correlation [Ballinger, 2004]. In general, this 

structure does not make logical sense for longitudinal data, since such data is usually 

highly correlated. 
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[Fitzmaurice, 1995] shows that using an independent structure for correlated data can 

lead to large efficiency loss of time-varying covariates. Thus, this structure would 

not be recommended for variables such as rainfall. With this structure, the working 

correlation matrix becomes the identity matrix, Ri(α) = I, and the resulting GEE is 

then called the Independent Estimating Equation [Dahmen and Ziegler, 2003]. No 

estimation of α is required, since no correlation is assumed to exist. This structure 

does not simply produce the algorithm used for a GLM, as it still involves the 

‗working‘ correlation matrix, which a GLM does not. For the independent structure, 

Ri(α) 

is defined as, 

                                               (2,65) 

In matrix notation this becomes, 

Ri =                                               (2,66) 

2.8.7.2 Exchangeable Structure 

The exchangeable structure assumes that there is a common correlation within 

observations. Thus, all of the correlations in Ri(α)are equal [Hedeker, 2005]. An 

exchangeable correlation may be used when each pair of observations within a time 

frame has approximately the same correlation. For the exchangeable structure, Ri(α) 

is defined as, 

V                                               (2,67) 
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In matrix notation this becomes, 

Ri =                                                (2,68) 

2.8.7.3 Autoregressive Structure 

For data that are correlated within cluster over time, an autoregressive correlation 

structure is specified to set the within-subject correlations as an exponential function 

of this lag period, which is determined by the user [Ballinger, 2004]. The 

autoregressive structure assumes time dependence for the association between 

observations and considers each time series to be an AR(m) process. The most 

difficult task for this structure is determining the correct order of the autoregressive 

process [Hardin and Hilbe, 2001]. It is common to choose an AR(1) structure, which 

is defined as  

                                               (2,69) 

In matrix notation this becomes, 

Ri =                                                (2,70) 

 

2.8.7.4 Unstructured structure 

The unstructured form of the working correlation matrix is the most general of all of 

the correlations discussed in this dissertation as no structure is imposed on the 

correlation matrix. This form requires all ni(ni − 1)/K correlations of Ri(α)  to be 
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estimated, and thus when there are many time points this structure becomes very 

computationally burdensome. An unstructured correlation matrix is used when there 

is no logical ordering for the observations in the cluster, and is recommended if the 

number of observations is small in a balanced and complete design [Horton and 

Lipsitz, 1999]. This correlation matrix is the most efficient structure, but is only 

useful when there are relatively few observations as its estimate is not guaranteed to 

be a positive number and there is often a problem with inverting Ri(α) [Hedeker, 

2005]. For the unstructured structure, Ri(α) is defined as, 

                                               (2,71) 

In matrix notation this becomes, 

Ri =                                                (2,72) 

2.8.7.5 Fixed Correlation 

A fixed correlation structure is fixed at some user-defined value and can be imposed 

if there is some knowledge of the structure of the correlation matrix from another 

source [Hardin and Hilbe, 2001]. With this structure, the working correlation is not 

estimated at each step, but instead takes the correlation as fixed throughout the entire 

process. 

2.8.8 GEE Estimation 

As GEEs can be thought of as a moderation in the GLM to incorporate correlated 

data, it makes sense that they involve a moderation to the estimating or score 

equation, Uj , used in GLMs (Section 3.3, Equation (3.8)). GEEs are modified by 
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using the ‗working‘ correlation matrix in the score equations to account for the 

correlations in the data [Hardin and Hilbe, 2001]. To begin, the following terms need 

to be defined in order to setup the score equations for GEE models: 

 

The working correlation matrix, Ri(α) was already defined in section 2.7.7, with α 

fully characterizing Ri(α). Note that Ri(α) is a ni × ni working correlation matrix for 

the i unit. 

Ai is defined as a t × t diagonal matrix, with the variance function V(μit), as the tth 

diagonal element. 

Finally, a working variance-covariance matrix for yi, which incorporates the 

‗working‘ correlation matrix and thus the correlations of the data is defined as, 

Vi(α) = Ai
1/2  Ri(α)Ai

1/2                                                 (2,73) 

This ‗working‘ covariance matrix will be equal to cov(Yi) if Ri(α) is indeed the true 

correlation matrix for the response variable. It is a transformation of the variance 

V(μi) term into a matrix form to account for the correlation between observations.  

 

2.8.9 Generalized Estimating Equations Estimator  

The generalized estimating equation estimator can now be defined as: 

 

                                               (2,74) 

where Di is a matrix of partial derivatives of μi and i (where Dit = μi / t), and Vi is 

the working variance-covariance matrix of yi. This score equation for estimating  is 
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the solution to a set of k ‗quasi-score‘ differential equations [Zorn, 2001], as equation 

(2.74) only depends on the mean and variance of yi. 

 

2.8.10 Estimation of  

The ultimate aim of a GEE is to find the most adequate model to represent a given 

data set by finding values for the unknown  parameters. To estimate , the GEE 

estimator equation (2,74) is rearranged to obtain the following (for the derivation of 

this formula see Appendix A.1), 

 

                                               (2,75) 

 

As GEEs are not a likelihood-based method of estimation, computations based on 

likelihoods are not possible. Thus, in order to find a solution for Equation (2.67), 

estimation may be accomplished either via generalized weighted least-squares, or 

through an iterative process [Zorn, 2001]. Essentially, solving the GEE involves the 

following steps: 

 

1. Specifying the model parameters of interest and in particular the variable that 

indicates that the data is correlated, the link function which will ‗linearize‘ the 

regression equation; the distribution of the dependent variable and the structure of 

the ‗working‘ correlation. 



81 

 

2. Computing an initial estimate of  using GLM methodology; thus assuming that 

observations are independent, with no correlation existing. This is done using GLM 

estimation techniques. 

3. Given the initial estimates of , computing the Pearson‘s residuals, 

 

                                               (2,76) 

4. An estimation of α, to be used in the working correlation matrix, is then computed 

using the Pearson‘s residuals and the assumed structure of Ri specified in step 2. It 

should be noted that the number of nuisance parameters and the estimator of α vary 

depending on the correlation structure chosen. [Liang and Zeger, 1986] introduced 

several formulas to calculate α. In addition, even though  appears in all of the 

following formulas for α, it is not needed to obtain a consistent estimate of . 

Different texts use differing methods of calculating α, although most produce very 

similar values. 

 

5. The working correlation matrix, Ri can now be specified using the α value 

calculated in step 4 and the assumed structure of Ri.  

 

6. Using Ai, defined in Section 4.4 and Ri(α), defined in step 5, compute 

an estimate of the covariance Vi for the K units examined, 

 

                                               (2,77) 
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7. Finally, update  using the following iteratively formula, 

 

                                               (2,78) 

8. Complete steps 3 to 6 until convergence. 

2.8.11 Calculation of α 

2.8.11.1 Independent Structure 

When no correlation is assumed to exist, and an independence structure 

R(α) = I is chosen, α = 1. Thus no calculation of α is required. 

2.8.11.2 Autocorrelation Structure 

If an autocorrelation structure is chosen as the appropriate ‗working‘ correlation 

matrix, then α=( α1, ..., αni-1). An estimator of αt can then be given as, 

 

                                               (2,79) 

If the structure is specified specifically as an AR(1), then a common α is estimated 

as, 

 

                                               (2,80) 
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For the AR(1) structure, all Ri will be identical as this is equivalent to a one-

dependent model. Other m-dependent structures can be specified [Hardin and Hilbe, 

2001]. 

2.8.11.3 Exchangeable Structure 

When an exchangeable correlation structure is chosen for R(α), then α can be 

estimated as, 

 

                                               (2,81) 

2.8.12 Properties of GEEs 

2.8.12.1 Dispersion Parameter,  

The dispersion parameter for a GEE can be estimated by, 

 

                                               (2,82) 

where N =  and is the total number of observations across all units, r is equal to 

the number of regression parameters, and eit are the estimated Pearson‘s residuals 

[Hardin and Hilbe, 2001]. Although most software packages use equation (2,82), 

some use, 

 

                                               (2,83) 
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The advantage of equation (2,82) over equation (2,83) is that model results for 

independent correlation exactly match GLM results. [Liang and Zeger, 1986] state 

that any consistent estimate of  is admissible. 

 

2.8.12.2 Variance of  

In order to perform hypothesis tests and construct confidence intervals, it is of 

interest to obtain standard errors associated with the estimated regression 

coefficients, . These standard errors are obtained as the square root of the diagonal 

elements of the matrix V( ). There are two different ways to calculate the variance of 

 within GEE methodology.  

 

The first way is the naive or ‗model-based‘ approach. This approach often 

underestimates the standard error of ; however it is simple to calculate [Dobson, 

Puride and Williamsl, 2003]. The second approach is called the robust or ‗empirical‘ 

estimate, and yields more consistent results even when, V(Yij) is not equal to V(μij); 

and Ri(α) is misspecified. The naive approach gives the variance of  as, 

 

                                               (2,84) 

The empirical or robust approach gives the variance of  as, 

 

                                               (2,85) 
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where  

 

                                               (2,86) 

and  

 

                                               (2,87) 

It should be noted that if   , then the naive and empirical 

approaches are identical. This second estimator is often called the ‗sandwich‘ 

estimator.  

The consistency of the variance estimate of  depends on proper specification of the 

working correlation structure, unlike the actual estimates of  which do not. 

Misspecification of the working correlation structure yields estimates of Var( ) 

which do not agree with the naive approach. Thus in practice, the robust estimator is 

nearly always used, since specification of the correct correlation matrix is difficult to 

achieve [Zorn, 2001]. However, if there are less than 20 units or clusters, the naive 

approach should be used as it gives better estimates for the variance of  [Horton and 

Lipsitz, 1999].  
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2.8.13 Diagnostics 

The main concern is finding a model that adequately describes the data as simply as 

possible. However, with GEEs the process of selecting model terms and the 

appropriate correlation structure is complicated by the correlation within 

observations. As observations are not independent of each other, the residuals are not 

independent either, and common likelihood-based methods of model fitting either 

cannot be used or need to be adjusted.  

 

Although GEEs are increasing in popularity and improved research has refined the 

estimation of these equations, model selection techniques and diagnostics for GEEs 

has lagged [Ballinger, 2004]. There is still no universally accepted test for goodness 

of fit for GEE models. None of the diagnostic techniques discussed in the next 

section are available in any of the major statistical packages, meaning that checking 

the adequacy of a model is quite difficult.  

 

The next section will outline some of the techniques that can be applied to evaluate 

gee models. It should be noted that all of the criteria described below are meant only 

as a guide for when there is no scientific knowledge presented to the researcher. The 

main techniques discussed are the measures for evaluating the goodness of fit of the 

model, choosing the best correlation structure, and choosing the best subset of 

covariates for a given correlation structure. Section 3.6 should be read in conjunction 

with this. Although diagnostics for GLMs should not be used with GEE models, they 

are the best approach available for testing the link function and appropriateness of 

the assumed response variable‘s distribution. 
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2.8.13.1 The best correlation structure 

In general, decisions about which correlation structure to use should be guided 

initially by theory. Despite this, choosing R(α) on the basis of theoretical 

considerations is sometimes quite difficult to do [Hardin and Hilbe, 2001]. There is 

also very little information available about how to chose the best correlation 

structure. [Hardin and Hilbe, 2001] suggest choosing a correlation structure by 

initially viewing the following guidelines: 

(i) If the number of observations is small, and the design is balanced and complete, 

use an unstructured correlation structure. 

(ii) If the observations in a cluster are collected over time thereby making the 

clustered data longitudinal data, then the structure should be chosen to be time-

dependent, that is, an autoregressive structure. 

(iii) If the observations are simply clustered and not collected over time, then an 

exchangeable structure is advisable. 

(iv) If the number of clusters is small, then the independent model may be the best to 

use. 

(iv) If one or more of the above points applies, then use the ‗quasi-likelihood under 

the independence model information criterion‘ (QIC) to determine the best structure. 

The QIC is explained below. 

 

2.8.13.2 The QIC 

Pan recommends using a QIC to select the best correlation matrix for cases in which 

users may be undecided between two structures [Pan, 2001] The QIC is an extension 

of Akaike‘s information criterion (AIC) which uses the quasi-likelihood of a model 
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rather than the log-likelihood. The QIC is called the ‗quasi-likelihood under the 

independence model information criterion‘, and as its name infers, no matter what Ri 

is chosen, this criterion assumes independence: that is, R = I. It works by comparing 

the variance and magnitude of the squared deviances for an independence model to 

models that assume different sorts of correlation (for example, exchangeable, 

unstructured and autoregressive). It uses the model coefficient estimates and the 

correlation in trying to calculate the most appropriate correlation structure. The QIC 

is defined as, 

 

                                            (2,88) 

where: 

•  is the value of the quasi-likelihood, computed using the 

coefficients from the model with the assumed correlation structure R. 

• Ai is the variance matrix of the independence model. 

• Vi is the sandwich estimate of the variance using the assumed correlation 

matrix, R(α). 

The QIC can then be used to choose between several correlation structures, with the 

best structure being the one which has the lowest QIC value. 

 

2.8.13.3 The best set of covariates to use 

There are two methods sometimes employed to find the best subset of covariates 

to use in a model: the QICu, and the marginal R-squared. 
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2.8.13.4 The QICu 

A similar technique to the QIC can be used to determine the best covariates to use in 

a given model. The new measure, called the QICu, is defined as: 

 

                                               (2,89) 

 where is the value of the quasi-likelihood, computed in similar 

fashion to the QIC and r is the number of coefficients in the model. The best subset 

of covariates is then the model that has the lowest QICu value. 

 

2.8.13.5 Marginal R-squared 

Another technique that can be used to determine which subset of covariates is 

appropriate is an extension of the R
2
 statistic, referred to as ‗marginal R-square‘ (R

2
). 

[Ballinger, 2004] and [Zheng, 1988] introduced this statistic to be used with GEE 

models that have continuous, binary and counted responses. The test measures 

improvement in fit between the estimated model and the intercept-only model. It 

does this by comparing two different quantities. Firstly it compares the predicted 

values produced from the model with the observed values, and secondly, it compares 

the squared deviations of the observations from the mean values for the response 

variable. Marginal Rsquare 

is defined as follows, 

 

                                                (2,90) 



90 

 

 

                                               (2,91) 

is the marginal mean across all time periods. 

The marginal R
2
 is interpreted as the amount of variance in the response variable 

explained by the fitted model [Hardin and Hilbe, 2001]. It has similar properties as 

the statistic R
2
, with the exception that it can take a negative value when the model 

gives a less accurate prediction than the intercept-only model [Ballinger, 2004]. 

 

2.8.13.6 Analysis of residuals 

Residuals are extremely important as a final check to see if the selected model 

adequately fits the data. However, there are limited techniques available to use with 

GEEs for checking the adequacy of a model using residuals. The raw residuals and 

Pearsons residuals are the only residuals that have currently been used to uncover 

any significant departures in the data. The raw residuals (rr) can be found via the 

simple formula of the observed values minus the predicted values, 

 

                                              (2,92) 

Visual inspection of the residuals and a nonparametric test of the randomness of 

residuals are the two main methods of determining if the model produced adequately 

represents the given data. Model assessment is predominantly based on graphical 

visualizations for GEE models. 
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One method of checking the adequacy of the model is to use the raw residuals and a 

nonparametric test to check the randomness of residuals.  [Chang, Ji and Li, 1997] 

suggests using the Wald-Wolfowitz run test to attempt to uncover possible patterns 

of non-randomness within the raw residuals. The test begins by coding the raw 

residuals as ‗1‘ if the residual is positive, and a ‗-1‘ if the residual is negative. This 

test then assumes a null hypothesis that the signs of the residuals are distributed in a 

random sequence. It works by examining the sequence of codes produced and the 

count of the total number of runs of the two codes.  

 

If np is the total number of positive residuals, nn is the total number of negative 

residuals, and T indicates the number of observed runs in the sequence, then the 

expected value and variance of T are,  

 

                                               (2,93) 

 

                                               (2,94) 

The test statistic for the hypothesis that the signs of the residuals are randomly 

distributed is, 

 

                                               (2,95) 
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which has an approximately standard normal distribution, and thus the corresponding 

p-value can be determined using z-tables. Extreme values of WZ indicate that the 

model does not adequately reflect the underlying structure of the data and may 

indicate one of many situations, such as, 

(i) the underlying correlation structure has been misspecified; 

(ii) the covariates do not adequately represent the data; 

(iii) the incorrect distribution has been chosen to represent the response 

variable. 

 

2.8.13.7 Graphical Assessment 

The first step in the graphical assessment of residuals is to include a graph of the raw 

residuals and then check for the presence of outlier values that may seriously affect 

the results [Diggle, Liang and Zeger, 1994]. The model can also be checked to ensure 

that the raw residuals follow a random pattern and do not form clusters around 

certain values; this can be further verified by using the Wald-Wolfowitz test 

described in Section 4.5.3 [Hardin and Hilbe, 2001]. The Pearson residuals can be 

plotted against the linear predictor and the logarithm of the variance function to 

further assess model adequacy [Hardin and Hilbe, 2001]. Finally it should be ensured 

that the raw residuals do not show changes in patterns across the time periods as this 

could indicate that a different correlation structure is needed. 

 

2.8.13.8 Summary of diagnostics 

Overall there are limited diagnostics available to test the adequacy of GEE models. 

Most tests that can be performed have to be programmed by the analyst as most 
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standard software do not perform the diagnostic tests described in this section. Also, 

no methods to assess whether the distribution chosen to describe the response 

variable is adequate or which link function is appropriate, have been described in this 

literature. 

The literature only provides a few model criterion measures to assess overall model 

goodness of fit. The QIC however, is particularly useful for choosing the best 

correlation structure for a GEE model. Similarly, the QICu measure is used for model 

selection. Standard model criterion measures, such as R
2
, are available for GEE 

models, however it can be difficult to interpret for nonlinear models and experience 

may be the only method of correctly interpreting the magnitude of R
2
 in particular 

situations. Finally, plots of the raw residuals and Pearson‘s residuals verse the fitted 

values, the linear predictor of the variance, can be used to assess a given models 

adequacy. 

 

2.8.14 Fitting a GEE to a data set 

When fitting a GEE model, a user should specify the requirements specified in 

Section (4.4.1). Details on how to make decisions required to accurately specify 

these conditions are discussed in turn below. Note that the first two steps are the 

same as for GLM; see Section (2.6.5). 

 

2.8.14.1 Step 1 & 2: Linear predictor and best link function 

To model the expected value of the marginal response for the population μi = E(yi) to 

a linear combination of the covariates, the user must specify a link transformation 

function that will allow the response variable to be expressed as a vector of 
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parameter estimates (β) in the form of an additive model [McCullagh and Nelder, 

1989 ]. The choices available for the link function depend primarily on the 

distribution specified, and a list of these available with GEE models can be seen in 

Table 2.3. This table gives the distributions and corresponding link functions 

currently available with GEE models in most statistical packages. Note that the 

Tweedie distribution does not appear here; it is not yet available with GEEs in any 

statistical packages. 

 

 
Table 2.3 

Link function currently available with GEE models 

Distribution Link Functions  Brief Description 

Normal Identity Link This fits the same model as 

the GLM  

 Power Link Any power transformation 

 Reciprocal Link Links using reciprocal of 

response variable  

Binomial Logit Link Fits logistic regression 

models 

 Probit Link Fits cumulative probability 

functions 

 Power Link Any power transformation 

 Reciprocal Link Links using reciprocal of 
response variable 

Poisson Log Link  

 Power Link Any power transformation 

 Reciprocal Link Links using reciprocal of 

response variable 

Negative Binomial Power Link Any power transformation 

Gamma Power Link Any power transformation 

 Reciprocal Link Links using reciprocal of 

response 

Multinomial Cumulative Logit Link  

 

2.8.14.2 Step 3: Distribution of the response variable 

The next step involves specifying the distribution of the outcome variable so that the 

variance might be calculated as a function of the mean response calculated in step 1 
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and 2 [Hardin and Hilbe, 2001]. GEEs, like GLMs, permit the specification of 

distributions from the exponential family of distributions, including the Normal, 

inverse Normal, binomial, Poisson, negative binomial, and gamma distributions. 

 

Misspecifications of the variance function, and thus the response distribution, can 

have important consequences and lead to incorrect statistical conclusions [Ballinger, 

2004].  

In fitting a GEE (or any GLM), the user should make every reasonable effort to 

correctly specify the distribution of the response variable so that the variance can be 

efficiently calculated as a function of the mean and the regression coefficients can be 

properly interpreted [Ballinger, 2004 ]. 

 

2.8.14.3 Step 4: Form of the correlation 

The final step involves the specification of the form of the correlation of responses 

within units or nested within a group in the sample. Even though GEE models are 

generally robust to misspecification of the correlation structure, it is still important 

that the user takes precautions in specifying this structure. This is because a structure 

that does not incorporate all of the information on the correlation of measurements 

within the cluster may result in inefficient estimators [Ballinger, 2004]. The form of 

the correlation structure should be chosen from one of the structures described in 

Section 2.8.7. 
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2.8.14.4 Step 5: Fitting the model and diagnostics 

A GEE model can now be fitted to the data; however this usually takes considerable 

time and effort. Finally, and often most importantly, the model should be checked to 

see if it is adequate and justifiable using numerous diagnostic techniques (Section 

2.8.13). 

 

2.8.15 Cautions regarding GEE 

There are a few cautions that users should be aware of when fitting a GEE model. 

Firstly, users should be cautioned that using the robust approach to estimate the 

variance of β could be highly biased when the number of units 

or clusters examined is small. [Horton and Lipsitz, 1999] suggest that the GEE robust 

variance estimate should only be used when there are more than 20 units or clusters, 

that is, K should be greater than 20. If a data set contains fewer than 20 units, the 

naive approach to estimating the variance should be used, as it gives better estimates 

for the variance of β.  

 

Secondly, although some researchers use the Wald chi-square statistic for model 

comparisons [Hedeker, 2005 ] and many current statistical packages produce a 

deviance or chi-square statistic for a GEE model using this technique, such a statistic 

is only interpretable under certain unrealistic conditions. Thus, it is not recommended 

for use to test whether all of the variables in the estimate are different from one 

another and different from zero [Ballinger, 2004 ]. It is not interpretable when a user 

wants to model correlations using the auto-regression correlation structure. 

Furthermore, this statistic is sensitive to large differences in the scale of different 
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independent variables [Ballinger, 2004 ].Thus this type of statistic is not suitable for 

this study. 

 

2.8.16 Advantages of GEEs 

The major, and most obvious advantage of GEEs is they can be used to model non-

Normal, correlated longitudinal data. This makes GEEs an invaluable tool when 

analysing data that was previously modelled using uncorrelated models. This 

advantage is further strengthened by the broad range of options available that help 

specify the correlation between observations through the working correlation matrix. 

The incorporation of explicit knowledge about within-unit interdependence makes 

GEEs even more attractive [Zorn, 2001]. As well as the production of more efficient 

estimates of regression parameters due to the inclusion of the correlation, GEEs also 

produce reasonably accurate standard errors and hence, reasonably accurate 

confidence intervals with the correct coverage rates [Hanley, Edwardes, Negassa and 

Forrester, 2003]. Another advantage is that even if an incorrect working correlation 

matrix is specified, it is still possible to obtain consistent parameter estimates for  

that are asymptotically Normally distributed, provided the mean μi has been correctly 

specified as a function of all possible explanatory variables xi [Dahmen and Ziegler, 

2003]. This is a clear advantage, as understanding the relationship of the correlation 

is often quite difficult [Zorn, 2001]. Also the GEE approach has some built-in 

robustness as it requires no specification of the full likelihood of the response 

variable‘s distribution. As GEEs are an extension of GLMs, they allow the outcome 

variable to taken on numerous different forms, such as continuous, dichotomous, 

polychotomous, ordinal, or even count data. This makes their practicality even 
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greater [Zorn, 2001 ]. Finally, as GEEs are becoming increasingly popular, more 

readily available packages have incorporated GEEs into their programs making the 

computations much easier. 

 

2.8.17 Limitations of GEEs 

GEEs are gaining popularity, however there is some evidence that the use of an 

incorrect dependence structure within the GEE approach can produce worse results 

than if using an independent structure to model correlated data [Sutradhar and Das, 

1999]; [Crowder, 1995]. It has been further commented that solutions for  may not 

exist for various reasons, leading to the complete breakdown of the estimation of the 

regression parameters. [Cologne, Fujita, Carter and Ban, 1993] also found that when 

the true correlation structure was quite simple (for example exchangeable), then 

GEEs were quite efficient. 

However, when the structure is more difficult, the efficient results are often not 

obtained if the correlation structure is wrongly specified. In the case when the 

correlation structure is complicated, then every effort should be made to approximate 

the true correlation structure correctly, as consistent results are not obtained when the 

correlation structure is wrongly specified. 

 

2.8.18 Handling Missing Data 

One limitation with using GEEs to estimate parameters is that incomplete data sets 

can complicate the analysis. Often data sets have missing data, such as when rainfall 

is not recorded on a particular day. If data is missing completely at random (mcar), 

consistent results can still be obtained; however the notation and calculations used 
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become more complicated [Horton and Lipsitz, 1999]. In particular, the estimation of 

the working correlation matrix becomes quite tedious.  

 

A series of approaches, when data is missing in the dependent variable, has been 

proposed recently. However, these methods are rarely used as they are extremely 

difficult and they are not available in accessible form with standard software 

[Dahmen and Ziegler, 2003]. Also, the analysis of a data set that contains missing 

observations produce differing results between differing packages [Horton and 

Lipsitz, 1999]. The three data sets that will be used in this dissertation do not have 

any missing data and thus this limitation is avoided. 

 

2.8.19 GEE Software 

The GEE algorithm has been incorporated into many major statistical software 

packages, including SAS, STATA, HLM, LINDEP, GAUSS, SUDANN,R, and S-

Plus. However most of the packages are restricted to only modeling a limited number 

of response outcome distributions (Table 4.1). Further advancements in the area of 

GEE software is continuously occurring, and existing software is being constantly 

revised and updated to include new research. For an overview of software packages 

offering GEE methodology. See [Zorn, 2001] and [Horton and Lipstiz, 1999]. 

 

2.8.20 Summary 

This section has described the GEE approach for modeling longitudinal and 

correlated data. This approach has several features which makes it particularly useful 

and popular. Because it is a generalization of GEE, many types of dependent 
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variables can be accommodated within the GEE family of models. Also, the selection 

of the variance-covariance matrix is not as critical as with other models because 

GEEs provide standard errors that are robust to misspecification of the variance-

covariance matrix. This is an attractive feature, especially for situations where the 

scientific interest is in estimation and inference of the regression parameters and not 

of the variance-covariance structure. The converse of this is that if there is scientific 

interest in the variance-covariance structure of the longitudinal data; then GEEs are 

not appropriate (at least in its GEE1 implementation). [Liang and Zeger, 1986] 

applied the name ‗GEE´ to emphasize the nature of the generalization of the original 

estimating equation due to the focus on the marginal distribution. These models do 

not start with a probability-based model, or likelihood. There is an implied quasi-

likelihood form to the GEE model which may or may not coincide to a probability-

based model. The GEE model was extended assuming a correlation structure that 

was estimated by combining information across panels. The ancillary parameter (α) 

was estimated to get a working correlation matrix. By applying the correlation matrix 

to each unit, the β regression coefficients can be estimated. Thus, the focus is on the 

marginal distribution, where the units are summed together after taking into account 

the correlation. 
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CHAPTER 3 

3.0 MATERIALS AND METHODS 

3.1 Description of Data 

There are four major rainfall data sets used in this study: Dagoretti, JKIA, Nairobi 

mean and the CRU Kenya rainfall. 

3.1.1 Dagoretti data 

Dagoretti data consists of daily gauge measurements taken at Dagorreti station for 

the period beginning in February 2nd 1959 to December 2005.  

3.1.2 Jomo Kenyatta International Airport (JKIA) data 

JKIA data is the gauge readings taken daily at JKIA for the period 1959 to 2005.  

3.1.3 Nairobi Monthly Mean 

Nairobi Monthly mean rainfall values for the period 1959-2005 was calculated as the 

mean of Dagoretti and JKIA data for the same period. The mean is taken as the 

representative Nairobi rainfall values for the period. This data consists of 563 values. 

In this study, Nairobi mean is referred to as KenMet rainfall. 

Figure 3.1 shows a boxplot showing the relative distribution of mean Nairobi 

monthly rainfall.  

 

 

 

 

 
  

Figure 3.1 

Nairobi mean-monthly Rainfall. 

T
o

ta
l 

m
o
n
th

ly
 R

ai
n

fa
ll

 {
m

m
/m

o
n
th

) 



102 

 

Nairobi Monthly Rainfall

Rfall Amount (mm)

fr
e

q
u

e
n

c
y

0 100 200 300 400 500 600

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

 

Summary statistics for the three stations are as follows: 

 

Table 3.1 

JKIA, Dagoretti and Nairobi mean monthly rainfall. 

Summary Statistics. 

 mean sd skewness kurtosis 0% 25% 50% 75% 100% n 

DAGO 84.03 97.67 1.97 4.84 0 15.80 45.0 116.35 622.6 564 

JKA 61.64 82.35 3.13 17.97 0 7.95 32.0 89.65 841.0 564 

NAIROBI 73.64 85.41 1.96 4.77 0 14.51 37.6 108.06 553.3 564 

 

From Table 3.1 it is evident that mean Nairobi rainfall as well as with the other two 

datasets are skewed to the right. 

 

A histogram in Figure 3.2 shows the distribution. 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 

Histogram of Nairobi monthly Rainfall 
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Most months (311 out of 564) receive between 0mm and 50mm of rainfall monthly 

with 18 of them receiving exact zero mm. As there were some months where the 

rainfall was recorded as zero or that the amounts were not recordable, a model that 

combines the monthly rainfall occurrence and rainfall amounts is necessary. A 

histogram of Nairobi monthly rainfall amounts in Figure 3.2 shows that the majority 

of months experiencing less than 100mm of rain. No obvious outliers can be seen. 

 

 

 

 

 

 

 

 

 

 

 

 

The monthly data has a mean of 73.6 mm and the median amount was 37.65 mm.  

This supports the conclusion that Nairobi rainfall data is skewed (the mean and the 

median are very different). With the removal of the high values, the mean and 

standard deviation do not change significantly. It changed to 72.01 and the standard 

Figure 3.3 

KenMet monthly Rainfall 1959-2005 
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deviation to 81.03. The three months were therefore not excluded as outliers in the 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The monthly precipitation shows outstanding peaks; one in Nov.1961(553.3mm) and Nov 

1991 (511.9). We seek to find the cause(s) of these peaks. Kenya rainfall shows a bimodal 

annual distribution with two peaks, as shown in Figure 3.4. The peaks are the two 

rain seasons; the short rains (October, November, December) and the long rains 

(March, April, May). 

 

Figure 3.4 

Nairobi monthly 1959-2005 bimodal variation. 

The bimodal cycle begins in February and ends in January of the following year. 
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3.1.4 CRU Kenya dataset 

The University of East Anglia, UK, provided research data. Datasets are managed by 

a variety of people and projects within CRU. Some were available on-line; others 

were requested from the person responsible for them. Files ending in ".gz" were 

decompressed using gzip (most platforms) or jZip (Windows). The various datasets 

on the CRU website were provided for all to use, provided the sources were 

acknowledged. Acknowledgement was done by citing the papers referenced on the 

references page. The website was also be acknowledged as deemed necessary. CRU 

endeavours to update the majority of the data pages at timely intervals although this 

cannot be guaranteed by specific dates. In this work we have used data supplied and 

maintained by and owned by Dr. Tim Mitchell. The data provides monthly, seasonal, 

and annual climate observations averaged for political units of the world. Kenya 

monthly means (1901-2000) was used in the analysis. 

 

The country aggregation is based on the CRU TS 2.0 gridded data-set.  The gridded 

data were aggregated into countries using political boundaries according to [Mitchell 

Hulme, and New, 2002]: Climate data for political areas. Area 34:109. This data has 

been analysed and the results compared with KenMet data [Mitchell, Hulme, and 

New, 2002, 2002]. This data is referred to here as CRU Kenya. Figure 3.5 shows 

CRU Kenya averaged monthly rainfall. This dataset has the advantage as modeling 

data because of its long time series of 100 years.  

http://www.gzip.org/
http://www.jzip.com/
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N Mean Std.Dev Min Q1 Median Q3 Max 

504 56 44 1.3 25 41 76 267 

The means and the standard deviations are very different between CRU Kenya and 

KenMet rainfall. They measure different quantities. CRU Kenya is averaged for the 

whole region while KenMet is for a single location. CRU Kenya is more 

representative for the country. 

 

 

 

 

 

 

 

CRU Kenya data also exhibit the bimodal annual characteristics. The only difference being 

that the minimum values are higher than KenMet while the maximum values are lower than 

those of KenMet as seen Figure 3.6.  

Figure 3.5 

CRU Kenya country averaged rainfall 1901- 2000. 

Figure 3.6 

CRU Kenya country averaged rainfall 1901- 2000 showing bimodal variation 

with the month of the year. 
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3.1.5 NASA 

NASA has provided invaluable information on eclipse data at the eclipse page;  

http://eclipse.gsfc.nasa.gov/eclipse.html 

3.1.5.1 Solar and lunar Declinations and Distances 

Solar and Lunar declination can be obtained from NASA [NASA Solar]. 

Figure 3.7 shows the variation of lunar distance from the earth for the period 

1995to2006. 

 

 

 

 

 

 

 

 

 

Lunar distance oscillates with a period of one synodic month of 29.25 solar days 

causing atmospheric ocean tides of similar frequency. 

  

Figure 3.7 

Lunar distance. 
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Figure 3.6 shows the lunar position on each day for the first days of 1995.The 

wavelength of the oscillation is still 29.25 days while the amplitude varies with an 

all-time maximum of 28degrees. The maximum in Figure is 18 degrees  

 

3.1.6 The Nyahururu Experiment. 

Data for the astronomical aspects of this project have been obtained from NASA 

except one – the one taken at Nyahururu on December 4th, 1983. 
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Figure 3.8 

Lunar position in 1995. 

Figure 3.9 

Taking measurements during the 1983 solar eclipse event. (Photo by Gachari F.) 
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The photograph in Figure 3.9 was taken by the author and shows an observer taking 

some measurements. In this experiment, several measurements can still be confirmed 

from the picture) e.g, Calendar Date (Gregorian), type of eclipse, time of eclipse; etc. 

The Nyahururu station is located directly at the equator (0N, 36E) and the high 

altitude together with the leeward side of the Aberdare Mountains ensured that 

visibility was not obscured by prevailing clouds. The tools used on that day and their 

readings are shown on the Table 3.2. 

 

Table 3.2 

Validation of NASA values  

Instrument Measurement Value NASA value 

Clock Time evening (RA)16h41m26.2s 

Clinometers Azimuth angle 29
o
 4.41pm. Local Time 

Camera/Mirror Sun‘s Image on screen 40% visible (Gamma=0.4015) 

Date signboard December 4, 1983 December 4, 1983 

White Screen Type of eclipse partial partial  

 

As a case study, these values were found to agree with NASA values used in this 

study. 

 

3.2 MODELING NAIROBI RAINFALL 

The model developed in this study is of the form; 

Response variable ~ predictor(s). 

Where the response variable is the monthly rainfall and the predictors are a sum of 

factors and covariates described below.  
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3.2.1 Fitting a GEE to Nairobi Rainfall data 

The advantage of modeling rainfall using a GEE instead of a GLM were discussed in 

section 2.7.; that rainfall data is correlated.  

The steps involved are summarized as follows: 

1) Linear predictors were chosen and the best link function identified. 

2) The distribution of the response variable was chosen and a GLM was 

fitted which gave the initial estimates of the fit parameters. The choice 

was the Tweedie distribution. To specify the Tweedie, The mean, μ 

the dispersion parameter,  and the variance power, p were required. 

Standard algorithms in R-software calculate μ and MLE was used to 

work out  and p. 

3) A GLM was fitted; on the response variable to obtain the initial 

estimates for the fit parameter α,  and β. 

4) A GEE was then fitted by using the initial fit parameters to obtain new 

updated values of fit parameters β by means of a variance-covariance 

matrix. 

5) Diagnostics tests were perform to assess the appropriateness of the fit. 

 

3.2.2 The Predictors 

Predictors used initially were:  

i) Solar declination 

ii) Lunar declination. 

iii) Month of the year. 

iv) Sunspot numbers 
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The following variables were then added to the set of four predictors above. They are 

defined in this study: 

v) Lunar phases. 

vi) Atmospheric Tide phases. 

vii) Maximum Lunar declination values. 

viii) Gravity atmospheric tide state, atide. 

ix) Enhanced gravity atmospheric tide state, etide. 

3.2.3 Calculating the Predictors 

3.2.3.1 The Month  

The month represents any one of the twelve months of the year. It indicates the 

month during which the rainfall measurement was taken. 

3.2.3.2 SOI Phase 

The SOI Phase represents the state of the SOI values as described in section. It takes 

one of I to V values. The five Phases of the SOI are as follows (see section 2.3.4): 

I - consistently negative, II - consistently positive III - rapidly falling IV - rapidly 

rising V - consistently near zero 

3.2.3.4 Sunspot Phase 

Sunspot phases are categorised in this study according to the number of sunspots 

recorded in the month. The categories are Cold (C),Warm(W), Hot(H) and very 

Hot(vH) where 

0<C<=50, 50<W<=100, 100<H<=150, 150<vH. 
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3.2.3.5 Lunar Phase (lunaph) 

Lunar phases are obtained from lunar ephemeris available from NASA [NASA]. The 

phase of the moon is determined by the fraction (represented by the angle in degrees 

between 0 and 180) lit by the sun and visible from the earth. The lunar phases were 

classified in three ways: 

a) New-moon(NM), Half-moon(HM) and Full-moon(FM). where 0<NM<=45, 

45<HM<=135, 135<FM<=180. 

b) First-quarter(Q),second-quarter(2Q), third-quarter(3Q) and fourth-

quarter(4Q). where 0<1Q<=45, 45<2Q<=90, 90<3Q<=135 and 

135<4Q<=180. 

c) Denoted by digits 1 to 4 depending on the phase of the moon beginning with 

first quarter represented by digit 1. 

3.2.3.6 Lunar Declination (ldec) 

The declination of the moon as observed from Nairobi. The value of the lunar 

declination at mid-month. Values are from -29 to 29. 

3.2.3.7 Solar Declination (sdec) 

The mean solar declination angle between -23
o
 and 23

o
 during the month. The 

variable represents the season. 

3.2.3.8 Atmospheric Tide (atide) 

The frequency in terms of the number of days in any other month when the 

magnitude of the angular difference between sdec and ldec is less than three degrees. 

This is the condition for atmospheric tide occurring anywhere within latitudes -

28.5and 28.5 any time of the year. Atide values range from 0 to 8. 
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3.2.3.9 Enhanced Tide (etide) Enhanced Atmospheric tide is the frequency in terms 

of the number of days during which the air tide state occurs at a reduced magnitude 

of the angular difference of one degree or less. (0 to 2). 

3.2.3.10 Atide Phase (atideph)  

Atide phase. This is the measure of the prevalence of the tidal state. Measured by the 

number of days in the same month during which the tidal state prevails.(L-low-0to3 

days, M-medium-3-6 days, H-high-more than 6days. Atideph may neither covary or 

cofactor with atide. The two are not mutually independent 

3.2.3.11 Maximum Lunar Declination (mld) 

The maximum amplitude in degrees of the lunar declination during the month. Mld 

ranges from 18 to 29.  

3.2.3.12 The synodic decimal (synod)  

The decimal value between 0 1 and 1 representing the percentage of the lunar surface 

lit by the sun as seen from a terrestrial observer at mid-month. 

3.2.3.13 Perigee distance (prg) 

The integral value of the turning point lunar distance in kilometers during the perigee 

of the month. 

3.2.3.14 Apogee distance (apg) 

The integral value of the turning point lunar distance in kilometers during the apogee 

of the month. 

3.2.3.15 Sunspot Number (ssn) 

The number of sunspots visible on the solar surface in the month. 
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In a Microsoft Excel worksheet vectors representing the astronomical variables –

solar and lunar declinations, and their derivatives; atide and etide as well as the 

Figure 3.10 

Software used in this study 
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standstill states were entered. The spreadsheet may also contain any number of other 

explanatory variables that may be desired. The explanatory variables variables are 

defined in section 3.3.2. 

 

Once the vectors have been entered in the spreadsheet, they were categorized as 

either factor or covariate. The selected response variable was also included as one of 

the vectors.  

 

We fitted the response variable-rainfall with a GLM of the Tweedie family. This was 

achieved first by running the tweedie.profile routine available in the R distribution 

and obtaining the p-value necessary for performing the GLM. The R commands 

necessary to carry out these steps were written down and ran as a batch in the 

Rcommander program. They may be run directly on the R console one by one. A link 

function was specified for the GLM as the log link. 

 

Upon fitting the response variable with a GLM determined by the selected 

explanatory variables the fit output includes among others, the beta values which 

represent the coefficients of the linear equation of the fit together with the intercept. 

These beta values were used to calculate the estimates and perform diagnostics 

which determine the quality of the. In this study, the quality of the fit involved 

plotting the fit values along with the measurements for a visual assessment as well as 

calculating the marginal R squared value for the fit. Raw residual plots as well as 

plots of the Pearson residuals were obtained to further assess the goodness of the fit. 
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A QQ plot was also performed and plotted. To assess the appropriateness of the 

explanatory variables the QICu value for the fit was obtained.  

Rainfall data is often correlated. It is advisable to perform a GLM to satisfaction and 

then take a step further and fit a GEE on the response variable. To perform a GEE we 

used the methods described in section 2.8 with our choice of covariance matrix as 

AR(1). That is how new beta values were obtained for the calculation of estimates. 

The bet values are used to construct the equation for the estimate for each month in 

the period 1901 to 2050. In this study the model so obtained has been named Climate 

Model 12.3 (CM12.3) and each estimated monthly value is calculated by means of a 

100 terms equation. 

 

A program EM mixer was obtained from ConvexDNA [Convexdna, 2014]. This 

program which is a slider is useful for carrying out a what-if analysis on the 

estimates. It may be used to improve the quality of the fit by adjusting, the values of 

the coefficients. A useful set of plotting software is available as a toolkit as was used 

in plotting and analyzing the model output [Toolkit]. 

 

3.4 THE FITTING PROCEDURE 

As discussed in Section 2.7.14, this model design is based on fitting a GLM of the 

Tweedie family to the Nairobi rainfall distribution. R Statistical Software was used to 

fit a GEE and obtain the beta values of the fit. The beta values describe how the 

response variable relates with the predictors in the equation: 

rainfall ~predictor(s) 

The specific steps used in the fitting procedure were as follows: 
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Step 1. Initial estimate of beta using GLM were computed by;  

a) Calculating p to be used in the variance function of the Tweedie 

distribution using profile likelihood function. An R-program 

tweedie.profile was used for this calculation. 

b) A Tweedie GLM model was fitted to the data with the p value found by 

using the profile likelihood function and the log link function. 

At this point it was possible to use the beta values and calculate rainfall estimates 

using the beta values obtained from the GLM fit. However, rainfall data is correlated 

and therefore it was necessary to fit a GEE instead. To do this, it was necessary to 

use a correlation matrix of choice to calculate new beta values. We chose AR(1) 

correlation matrix and fitted a GEE by: 

a) Calculating new phi value and alpha. 

b) Calculating an estimate of the covariance matrix. 

c) Calculating new set of beta values. 

Using the new beta values, it was then possible to work out rainfall estimates for the 

period 1901 to 2050. This was made possible because factors involving solar-lunar 

geometry e.g. sdec and ldec were available from NASA for this period. The code that 

was used to perform the GEE fit is available as Appendix I. 
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CHAPTER 4 

4.0 RESULTS AND ANALYSIS 

In this chapter we describe how the fitting process was used to design rainfall models 

and the results obtained. We begin with a simple model having a single predictor- 

month and then proceed to obtain models having multiple predictors. Towards the 

end of the chapter the models are used to obtain projected monthly and annual values 

of rainfall. 

 

4.1 SINGLE PREDICTOR MODEL 

We now use a simple model with only one predictor to describe the fitting process. 

4.1.1 Step 1. 

In this simple model which illustrates the steps followed, only one predictor is used; 

the month of the year. The link function is the log link. 

 

4.1.2 Step 2   

To obtain variance power, p we use R function- tweedie-profile .The initial p-values 

are selected so that the requirement 1<p<2 (section 2.7.5) is met for Tweedie 

function and specified in p-vec in the R command.  

>power=tweedie.profile(rain~month,p.vec=seq(1.5,2.0,length=10),do.plot=TRUE,do

.smooth=TRUE,do.ci=TRUE,method="interpolation") 

>p=power$p.max 

The p-values are shown in the log-likelihood plot in Figure 4.1 below. 
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4.1.3 Step 3 Fitting a GLM 

To fit the rainfall data to a GLM the following R command was used;  

>glmmodel<-glm(rain~month,family=tweedie(var.power=p, 

link.power=0),x=TRUE) 

Fitted values (RED) were then plotted against the measured values (BLUE) as can be 

seen in Figure 4.2 below. 

  

 

 

 

 

 

 

 

Figure 4.1 

Log-likelihood plot for the p-value. 

 Nairobi monthly rainfall and the month predictor at 95% confidence. The p-value at maximum 

likelihood is 1.672336. 

Figure 4.2 

GLM Fit 
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GLM fit beta values were: 

 [1,]  (Intercept)      4.0861611   

 [2,]  month[T.2]       -0.2388545 

 [3,]  month[T.3]     0.3821451 

 [4,]  month[T.4]     1.1236528 

 [5,]  month[T.5]     0.9051177 

 [6,]  month[T.6]    -0.6513141 

 [7,]  month[T.7]    -1.4282353 

 [8,]  month[T.8]    -1.1152909 

 [9,]  month[T.9]    -1.0112070 

[10,] month[T.10]  -0.1023758 

[11,] month[T.11]   0.9284366 

[12,] month[T.12]   0.4220864 

The value of phi was 2.92515. It is evident from figure 4.1 that the fit was not good 

enough. The model was unable to capture values greater than 200 mm/month calling 

for further model improvement. 

 

4.1.4.Step 4 Fitting a GEE 

Using the beta values obtained in the GLM fit, it was now possible to calculate 

values of alpha to be used in the variance-covariance matrix required for a GEE fit. 

Upon fitting a GEE fit, diagnostics were performed to assess the appropriateness of 

the fit. A new set of beta values are now available as follows; 
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 [1,]  (Intercept)     4.0861219 

 [2,]  month[T.2]   -0.2388154 

 [3,]  month[T.3]     0.3821844 

 [4,]  month[T.4]     1.1236921 

 [5,]  month[T.5]     0.9051569 

 [6,]  month[T.6]    -0.6512749 

 [7,]  month[T.7]    -1.4281961 

 [8,]  month[T.8]    -1.1152517 

 [9,]  month[T.9]    -1.0111678 

[10,] month[T.10    -0.1023365 

[11,] month[T.11]     0.9284757 

[12,] month[T.12]    0.4220810 

As can be seen in Figure 4.3 below, the beta values for GLM and GEE when the 

formula is rain~month are not different. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 

Beta value for GLM and GEE fits for rain ~ month.  

The GLM and GEE values are very close. 

G
L

M
 -

 F
it

 

GEE - Fit 



122 

0 100 200 300 400 500

-1
0

0
0

1
0

0
2

0
0

3
0

0
4

0
0

Plot of the raw residuals using the month factor

Observation Number

R
a

w
 R

e
s
id

u
a

ls

Nairobi Monthly Rainfall

Year

A
m

o
u

n
t 
o

f 
ra

in
 (

m
m

)

1960 1970 1980 1990 2000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

GEE fit values are plotted in Figure 4.4 below which shows how the model was able 

to predict historical values. The model was then improved by adding more factors 

and covariates. At this stage, the model equation had twelve terms only, the 

coefficient term and a term for each beta value. 

 

 

 

 

 

 

 

 

4.1.5.Step 5 Diagnostics 

This fit process obtained an R
2
 of  40.53606% and a QICu value of 18983.34 

4.1.6 Residual plot for model  

Figure 4.5 shows the raw residuals plotted against each observation 

 

 

 

 

 

 

 

 
Figure 4.5 

Raw Residuals for GEE fitted values for rain ~ month. 

Figure 4.4 

GEE fitted values for rain ~ month. 
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A ideal model has all the values on the y=0 line because there is no difference 

between the measured and the estimated values. A good model have residuals 

distributed close to y=0. 

 

Another type of residuals calculated was the Pearson‘s residuals shown in figure 4.6. 

 

 

 

 

 

 

 

The Pearson‘s residuals show that linear predictors are well distributed showing a 

good fit for the predictor - month. A perfect fit has the Pearson residuals randomly 

distributed within the linear predictors. Residuals in this case are restricted to specific 

values of predictors showing that the fit was not good enough. The distribution was 

improved further by considering more than one predictors.  

 

4.1.7 QQ Plot 

A Quantile-Quantile (QQ) plot is a scatter plot comparing the fitted and empirical 

distributions in terms of the dimensional values of the variable (i.e., empirical 

quantiles). It is a graphical technique for determining if a data set come from a 

known population. In this plot on the y-axis are the empirical quantiles while on the 

Figure 4.6 

Pearson residuals for GEE fitted values for rain ~ month. 
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x-axis are the ones obtained by the theoretical model. The R command qqplot() was 

used for drawing the QQplot and the command abline(0,1) for drawing a 45-degree 

reference line as in Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

From the QQ plot it is evident that the tail and the head values are not captured well 

by a model with month as the only factor. Other factors and covariates were then 

added to the model to improve the performance. A model with multiple factors is 

discussed below. 

 

4.2 MODEL WITH MULTIPLE FACTORS AND COVARIATES 

The steps used in section 3.2.1 were then followed each time with an increasing 

number of predictors. In order to decide which predictors bore the heaviest cause of 

variability, their individual correlation with monthly rainfall was calculated. The 

predictors were therefore arranged in order of relevance as shown in Table 4.1 

Figure 4.7 

QQ plot for GEE fitted values for rain ~ month. 
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 Table 4.1  

Correlation between factors aon monthly rainfall 

 Predictor 
Factor or  
Covariate 

correlation with Monthly rainfall 

1 atide Covariate 0.403 

2 atideph Factor 0.376 

3 sdec Covariate -0.104 

4 qboph Factor -0.093 

 qbo Covariate 0.083 

6 soi Covariate -0.067 

7 mld Factor -0.041 

8 ssph Factor -0.028 

9 month Factor -0.023 

10 ldec Covariate -0.014 

11 ssn Covariate -0.013 

12 year Factor 0.009 

13 soiph Factor 0.008 

Modeling was done with each of the factors and covariates individually to deter mine 

their suitability. The results are shown in Table 4.2. 

 

Table 4.2  

Suitability of factors and covariates as determined by QICu and R
2
. 

Predictor QICu R2 selected(√) 

sdec (factor) 19434 41.40 √ 

month (factor) 18983 40.53 √ 

atide (factor) 16657 19.02 √ 

atideph (factor) 16544 14.65 √ 

atide (covariate) 16501 11. 82  

atideph (covariate) 16357 11.58  

soi (factor) 16562 10.80 √ 

ldec (factor) 16406 8.06 √ 

soiph (factor) 16237  2.70 √ 

qboph (factor) 16244 1.83 √. 

sdec (covariate) 16120 1.04  

qboph (covariate) 16124 0.86  

qbo (covariate) 16126 0.63 √ 

soi (covariate) 16132 0.47  

mld (covariate) 16136  0.16 √ 

mld (factor) 16136  0.16  

ssph (factor) 16141 0.13 √ 

ssph (covariate) 16138  0.07  

month (covariate) 16138 0.05  
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Factors qbo and ssn did not converge when considered as factors. Factors and 

covariates were therefore selected as ticked(√) in Table 4.2. We note that the most 

important factors are sdec, atide, atideph and soi emphasizing the influence of 

atmospheric tidal state as defined in this study. With these important factors and 

covariates the rainfall formula was: 

rain~sdec(factor)+month(factor)+atide(factor)+atideph(factor)+soi(factor)+ldec(factor)+s

oiph(factor)+qboph(factor)+qbo(covariate)+mld(covariate)+ssph(factor). 

The criteria of determining the best performing model was discussed in section 

2.8.13.8. Values of QICu  and R2 were used in this model to gauge model 

performance. After many trials involving different combinations of factors and 

covariates, the best fit using all factors was of the form: 

rain~month(factor)+sdec(factor)+soi(factor)+soiph(factor)+qbo(covariate)+ 

ldec(factor)+qboph(factor)+atide(factor)+ssph(factor)+mld(covariate) 

The rainfall equation has 173 terms, a p-value of 1.5449, a QICu value of 28392, and 

a marginal R squared value of 63.7%, the highest achieved value. Beta values for this 

fit are shown in Appendix I. The other trials performed are shown in Table 4.3. 
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Table 4.3 

Modeling using all factors and covariates 

a) Modeling with Meteorological and Astronomical 

Factors 

p -

value 

QICu R
2
 

sdec(F)+atide(F)+soi(F)+ldec(F)+soiph(F)+qboph(F)+qbo(

C)+mld(C)+ssph(F) 

1.54 28391 63.

7 

sdec(F)+month(NA)+atide(F)+atideph(F)+soi(C)+ldec(F)+

soiph(C)+qboph(C)+qbo(C)+stdst(C)l+ssph(C) 

1.62 21680 48.

9 

month(F)+atide(F)+atideph(F)+soi(C)+ldec(F)+soiph(C)+q

boph(C)+qbo(C)+mld(C)+ssph(C) 

1.63 21025 47.

8 

sdec(F)+atide(F)+atideph(F)+soi(C)+ldec(F)+soiph(C)+qb

oph(C)+qbo(C)+mld(C)+ssph(C) 

1.62 21680 48.

9 

sdec(F)+month(F)+atide(F)+atideph(F)+ldec(F)+mld(F)+s

sph(F) 

1.63 21021 47.

5 

sdec(F)+atide(F)+atideph(NA)+ldec(F)+mld(F)+ssph(F) 1.63 21021 47.

5 

sdec(F)+atide(F)+ldec(F)+mld(C)+ssph(C) 1.63 21021 47.

5 

month(F)+atide(F)+ldec(F)+mld(C)+ssph(C) 1.63 21043 46.

9 

b) Modeling with Astronomical Factors only    

sdec(F)+atide(F)+ldec(F)+mld(F)+lunaph(F)+etide(F) 1.6183

67 

22077 52.

3 

sdec(F)+atide(F)+ldec(F)+mld(F)+luniph(F)+etide(F) 1.6346

94 

21037 48.

0 

month(C)+sdec(F)+atide(C)+atideph(F)+ldec(F)+mld(C) 1.6448

98 

20417 45.

5 

month(C)+sdec(F)+atide(C)+ldec(F)+mld(C) 1.6448

98 

20414 45.

4 

sdec+atide+ldec+mld 1.6448

98 

20414 45.

4 

atide+ldec+mld 1.7367

35 

16944

. 

15.

1 

 

 

Figure 4.8 shows the log-likelihood plot for p-value using both meteorological and 

astronomical predictors.  
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A plot of predicted values overlaid on the measurements is shown in Figure 4.9 

 

 

 

 

 

 

 

 

 

 

The multiple predictor fit was able to capture most of the peak values not captured in 

the single predictor fit. The improved model was able to capture the peak values of 

Figure 4.8 

Log-likelihood plot for the p-value using multiple predictors. 

The p-value at maximum likelihood is 1.544898 at 95% confidence. 

Figure 4.9 

Predicted Nairobi monthly rainfall (red). 
Overlaid on the measured monthly amounts (blue) obtained using multiple predictors. 

Month of Year 

L
o
g
 -

 l
ik

el
ih

o
o
d
 

p – index (95% confidence interval 

R
ai

n
fa

ll
 (

m
m

) 



129 

0 100 200 300 400 500

-2
0

0
-1

0
0

0
1

0
0

2
0

0
3

0
0

Plot of the raw residuals using the month factor

Observation Number

R
a

w
 R

e
s
id

u
a

ls

1 2 3 4 5 6

-2
0

2
4

6
8

Plot of pearson residuals versus linear predictor (month)

Linear Predictor

P
e

a
rs

o
n

 R
e

s
id

u
a

ls

November 1961, May 1967, April 1977, May 1980, 1989, 1997. It however placed 

unknown peaks in 1968, 1973, 1974 1976 and 2000. 

Raw residuals were plotted against the observation number representing each fit. The 

plot is shown in Figure 4.10. The plot indicates a good fit. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 shows Pearson‘s residuals obtained for the fit using all the factors. The 

distribution of the residuals show an improved fit.  

 

 

 

 

 

 

 

 

 

Figure 4.10 

Raw residuals obtained for multiple predictors. 

The residue distribution close to the zero line shows a better fit than in Figure 4.10. 

Figure 4.11 

Pearson residuals for multiple predictors. 

The distribution of the residuals is more random than in Figure 4.6 showing a better fit. 
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When a QQ-plot is done for the fit, it was observed that the inter-quartile values are well 

represented. However, the tail and the head values failed to get well represented in the fit 

seen in Figure 4.12 

 

 

 

 

 

 

 

 

 

Although this fit provided high value of the marginal R squared, the fit values may not be 

used to estimate future rainfall amounts. The reason is that is that the future values of 

following factors are unknown:  soi, soi phases, qbo and qbo phases. 

4.3 MODEL DESIGN 12.3 

4.3.1 Model 12.3 Fitting 

Modeling of future rainfall was done with the following factors whose future values could be 

determined beforehand; month, sdec, ldec, atide lunaph, luniph and mld. The results obtained 

using different predictor combinations are shown in Table 4.4  

 

Table 4.4   

Modeling using combinations of factors(F) and covariates(C). 

Formula p-value QICu R2 

sdec(F)+atide(F)+ldec(F)+mld(F)+lunaph(F)+etide(F
) 

1.618367 22077 52.3 

sdec(F)+atide(F)+ldec(F)+mld(F)+luniph(F)+etide(F

) 

1.634694 21037 48.0 

month(C)+sdec(F)+atide(C)+atideph(F)+ldec(F)+ml
d(C) 

1.644898 20417 45.5 

month(C)+sdec(F)+atide(C)+ldec(F)+mld(C) 1.644898 20414 45.4 

Figure 4.12 

QQ plot for multiple predictors. 

The inter-quartile distribution is close to the line y=x. 
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As can be seen in Table 4.4 the best results were obtained using the formula: 

rain~sdec(F)+atide(F)+ldec(F)+mld(F)+lunaph(F)+etide(F). 

for which the marginal R squared value of 52.3%. Beta values for this fit are available in 

Appendix II. Log-likelihood plot for p using multiple predictors is shown in Figure 4.13.  

 

 

 

 

 

 

 

 

 

 

A plot of predicted values overlaid on the measurements is shown in Figure 4.14. 

 

 

 

 

 

 

 

 

 

Figure 4.13 
Log-likelihood plot for the p-value in Model 12.3. 

The p-value at maximum likelihood is 1.6183673 at 95% confidence. 

Figure 4.14 

Predicted Nairobi monthly rainfall (red). 

Overlaid on the measured monthly amounts (blue) obtained for Model 12.3 
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4.3.2 Model 12.3 Diagnostics 

Model 12.3 captured most of the peak values. The model was able to capture the 

peak values of November 1961, May 1967, April 1977, May 1980, 1989, 1997. It 

however placed lower value peaks in 1961, 1976, 1994. 

 

 

 

 

 

 

 

 

A look at the raw residuals in Figure 4.15 indicates that the distribution is evenly 

close to the zero line showing a good fit. From Figure 4.16 we find that the Pearson‘s 

residuals are even more randomly distributed than any other fit indicating that model 

12.3 represents the best fit so far. 

 

 

 

 

 

 

 

 

Figure 4.15 

Raw residuals obtained in Model 12.3.  

Figure 4.16 

Pearson residuals for Model 12.3. 
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The distribution of the residuals is fairly random indicating a good fit while the QQ-

plot in Figure 4.17shows the best fitting quartiles.  

 

 

 

 

 

 

 

 

 

 

Model 12.3 is therefore the best so far and is the one used to estimate rainfall 

amounts up to the year 2050. 

 

4.3.3 Model 12.3 estimates 

Monthly rainfall estimates were calculated using the formula: 

rain~sdec(F)+atide(F)+ldec(F)+mld(F)+lunaph(F)+etide(F). 

The equation has exactly 100 terms as shown by the beta values in Appendix II. An 

Excel Worksheet was used to perform the calculations so that for each month the 

estimate is obtained by working out the 100 term equation.  

  

Figure 4.17 

QQ plot for Model 12.3 
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4.3.4 Model 12.3 Skill. 

A plot of rainfall amounts from 1901 to 2050 is done in Figure 4.18.  

 

 

 

 

 

 

 

 

In the figure, monthly estimates from 1901 to 2050 are plotted together with KenMet 

measurements.  

The model overestimated the April and May of 1961 but underestimates the 

November from 553mm to 213mm. However, the model correctly places these 

values as peak values in all cases. Other peaks are also captured by the model 

showing that the model will correctly predict flood episodes. 

 

 

 

 

 

 

 

 

Figure 4.18 

Model 12.3 estimates 1901 to 2050(blue). 

Plotted together with KenMet values for the period 1959 to 2003(red). 

Figure 4.19 

Model 12.3 annual anomaly estimates - 1901 to 2050 (black). 
Plotted together with KenMet annual anomalies for the period 1959 to 2003. 
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One observation is that more severe floods are expected in November 2013 

(698mm/month) and November 2032 (547mm/month). 

 

When annual values were calculated the variation is shown in Figure 4.19. From the 

figure, it was observed that the model correctly placed the droughts and the floods in 

the right years. However, the amplitudes of the rainfall annual amounts were lower in 

the model. In order to correctly compare the variability, the two series have been 

standardized before plotting. The actual amounts compared are shown in Figure 4.20. 

 

Correlation coefficient between Model 12.3 and KenMet is 0.7 which shows that the 

model performed well. 

 

 

 

 

 

 

 

 

 

 

 

Model annual estimates were the compared with both KenMet and CRU values. The 

values are shown in Figure 4.21. 

Figure 4.20 

Model 12.3 annual anomalies - 1959 to 2003(black). 

Plotted together with KenMet annual anomalies for the same period. 
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When compared with CRU values, both KenMet and Model 12.3 values are higher 

than CRU values. The correlation coefficient between Model 12.3 and KenMet is 0.7 

while between the model and CRU it is 0.3.The timing of the peak values however 

coincide suggesting similar variability pattern. The three series were then 

standardized for easier visual comparison. The trend becomes more distinct as shown 

in Figure 4.22. 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 
Model 12.3, KenMet and CRU. 

Annual total rainfall for the period 1959 to 2000. 

Figure 4.22 

Model 12.3, KenMet and CRU Standardized values (Anomalies). 

For the period 1959 to 2003. 
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4.3.6 Model 12.3 Reliability 

Model 12.3 reliability in predicting droughts and floods was tested against known 

floods and droughts. Figure 4.23 shows more clearly the years in which droughts and 

floods are expected during the period 1901-2050. Droughts have negative anomalies 

(red) while floods have positive ones (black). Recorded droughts occurred in the 

following years  

1928, 1933-34, 1937, 1939, 1942-44, 1947, 1951, 1952, 1955, 1957, 1975, 1977, 

1980, 1983-85, 1991-92, 1995-96, 1999-2000, 2004 [UNDP, 2004] as indicated in 

Figure 4.24. Others are 1960, 1966, 1970, 1974-76, 1988, 1996 [KenMet]. 

 

 

 

 

 

 

 

 

 

 

Recorded floods are not as numerous as the droughts years. They are: 1961, 1963, 

1978, 1990-92, 1997-98, 2002 [KenMet].  

 

Floods in Kenya are not as devastating as droughts and therefore more emphasis has 

been given to droughts. The severity of the specific drought or flood event depends 

Figure 4.23  

Predicted Droughts and Floods. 
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on the geographical location in the country. The characteristics of the specific events 

are found in section 1.2. All the droughts and floods are placed in the right years by 

the model. The model indicates that future droughts will occur in the following 

years: 

2015, 2027, 2029, 2034, 2037, 2042, 2044.  

The most severe droughts will be the 2030, 2034, 2037 and 2042. Models estimates 

reveal that floods will occur in the following years: 2002, 2010, 2011, 2013, 2016, 

2019, 2030, 2032, 2035, 2036, 2038, 2043. With the most severe being the 2013, 

2016, 2032, 2035, 2038. 

The floods expected in 2013 estimated at 698 mm/month will be severest since 1901. 

It will be heavier than the well known floods :November 1961-267mm/month, 

November 1963-233mm/month, December 1963-257mm/month, November 1977-

345mm/month, January 1998-334mm/month.  Although Nairobi monthly is not 

expected to vary together with the Sahel distribution exactly, we have plotted the two 

distributions with the Sahel precipitation obtained from several General Circulation 

Models GCMs. The results compare well with models results represented in Figures 

4.29 and 4.30. 

 

4.3.5 Comparison with other models 

Model results were compared with Sahel rainfall distribution from CRU, GPCP and 

TRMM. The plot is shown in Figure 4.24. 
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Standardized model results from 1960 to 2050 were compared with General Climate 

models results for GFDL, GISSEH, MI-100, MP-ECHAMS, MRI, NCAR CV1, 

NCAR NCSV and UKMO and HADCM3 on Sahel rainfall plotted in Figure 4.25 

below. 

 

 

 

 

 

 

 

 

 

IPCC models provided very divergent estimates after 2030. However, Model 

CM12.3 estimates agree with the values generated by Global Circulation models 

before 2030 and performed well in capturing the Sahel drought of the 1980s and the 

one after year 2000. 

Figure 4.24 

Model Performance against Sahel inter-annual variability. 

Model 12.3 annual estimates for the period 1960 to 2003 compared with Sahel inter-annual variability 

estimates using CRU_ts21, GPCP and TRMM.  [Cook, 2011]. 

Figure 4.25 

Model Performance against other models. 

Model 12.3 annual estimates for the period 1960 to 2050 compared with projected Sahel annual 

precipitation from IPCCC AR4 AOGCMs [Cook, 2011]. 
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4.4 MODEL DESIGN SMS12.12 

4.4.1 Model SMS12.12 fitting 

Model SMS12.12 was trained with 30-year data from 1951 to 1980 and tested with 

two segments of data; 1901-1950 and 1981-2000. The predictors are solar 

declination (sdec), maximum lunar declinations (mld) and sunspot numbers (ssn). 

Figure 4.26 shows how the model demonstrates prediction stability with time.  

 

 

 

 

 

 

 

 

 

 

 

Methods used for avoiding artificial prediction skill included using independent 

training and test data sets, cross-validation and hindcasting. Forecast skill depends on 

the amount of lead time, the forecast months and the strength of relationships 

between the predictors and rainfall. Each value represents the Pearson product 

moment correlation coefficient between the predicted and CRU-Kenya Country 

dataset for the corresponding months of the year. Correlation values remained above 

0.5 throughout the period except for the 1925 value seen Figure 4.27. The chance of 

Figure 4.26 
Correlation between SMS12.12 and CRUKenya monthly, 

 for each year showing SMS12.12 stability. 
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obtaining a value less than 0.5 in the prediction area is therefore 1month out of 1200 

months (0.000833). An adjusted R
2
 value of 0.62 was obtained between CRU and 

model estimates during the training period and reduced values of 0.52 and 0.56 in the 

testing datasets. SMS12.12 shows stability in estimating monthly amounts when 

model monthly amounts are compared with CRUKenya monthly values. The average 

correlation for the period 1901-2000 is 0.8.  

 

4.4.2 SMS12.12 Rainfall projection 

SMS12.12 was the used to estimate monthly rainfall totals for the period 1901-2000 

after which the model was used to project monthly rainfall for the period 2001 to 

2020. Monthly estimates are shown in Figure 4.27. 

 

 

 

 

 

Model SMS12.12 estimates indicate elevated monthly totals in the periods 1912-13, 

1931-32 1951-52, 1987-88, 1993-94, 1997-98, 2005-06 and depressed monthly 

rainfall in 1917, 1939-39, 1947-48, 1882-85,1992-93,2002-2004, 2010-11, 2019-

2020. The monthly totals were then aggregated into annual values and the results 

standardized by the mean and standard deviation. The results are shown in Figure 

Figure 4.27 

Projected monthly total rainfall by SMS12.12 

 for the period 1901-2020. 
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4.28 in which model results have been plotted together with CRU Kenya and 

KenMet values for inter comparison. 

 

 

 

 

 

 

 

 

Below normal annual rainfall occurred in the following years:1928, 1933-34, 1937, 

1939, 1942-44, 1947, 1952-3, 1955-57, 1975-77, 1980-85, 1991-92, 1999-2000, 

2004 [UNDP, 2004]. Others are 1965, 1973-74, 1976, 1992-93, [KenMet]. Recorded 

floods occurred in the following years: 1961, 1963, 1977-78, 1997-98 [KenMet]. 

Projected model estimates indicate below normal rainfall in 2009-2011, 2015 and 

2019-2020, while above normal rainfall may be expected in 2012-14, 2016,2018. 

 

4.4.3 Model SMS12.12 Diagnostics 

Probabilities of rainfall amounts were calculated in order to judge the accuracy of the 

model estimates. The results are shown in Figure 4.29. Estimates are comparable at 

Figure 4.28 

Projected annual total rainfall anomalies by SMS12.12  

 for the period 1901-2020. Values are plotted together with CRU.K values for comparison. 
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all stages of model development as shown by hindcasting, training (fitting) and 

forecast stages as well as with the 1901-2000 climatology. Correlation values 

between the model and CRUKenya values are shown in Table 4.5 for the hindcast, 

training and forecast stages. Model estimates are therefore reliable. 

Table 4.5. 

Correlation coefficients within the segments 

(CRU.K vs SMS12.12)   

1901-1951 (hindcast) 0.90 

1951-1981 (training) 0.92 

1981-2000 (forecast) 0.84 

 

 

 

 

 

 

 

 

 

 

4.5  MODEL CM13.1 DESIGN 

5.5.1 CM13.1 fitting 

Model CM13.1 is an ensemble of seven selected individual generalized linear 

models. Monthly total rainfall is common to all the models and they all have 

Figure 4.29 
Probability of rainfall segments 

 for Hindcast, fitting, forecast and climatology. 
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different combinations of explanatory variables defined in this study as described 

below.  

 

4.5.2 CM13.1 Results 

The first three statistical models constituting Ensemble1 are trained and tested on 

Nairobi monthly total rainfall for the period 1959-2003. The other four models 

constituting Ensemble2 are trained and tested on CRU Kenya monthly rainfall for the 

period 1901-2000. Each model has its own unique set of predictors as shown in 

Table 4.6.  

 
Table 4.6 

Characteristics of the ensemble models 
     

Model Factors Training 

period 

Annual 

mean(mm/yr) 

R 

(a) Ensemble1     

1.SLS sdec, ldec, synod 1970-1990 1050 0.67 

2.Model 

12.3C 

sdec, atide, ldec, mld, etide, lunaph 1959-2000 924 0.66 

3. SMP sdec, mld, prg 1970-1990 1082 0.60 

     

(b) Ensemble2     

1. SYNODIC sdec, atide, ldec, mld, etide, synod 1940-1970 620.0 0.78 

2. SMP sdec, mld, prg 1940-1970 654.4 0.73 

3. SM sdec, mld 1970-1990 645.4 0.73 

4. SP sdec, prg 1970-1990 643.9 0.78 

 

Once the beta values have been obtained by fitting, the estimates were then 

calculated. Monthly Estimates for Nairobi rainfall were obtained by the mean of the 

estimates obtained by each of the three models of Ensemble1; SLS, Model 12.3C and 

SMP. A similar procedure was used to obtain the monthly Kenya rainfall estimates 

using the four model of Ensemble2; SYNODIC, SMP, SM and SP shown in Table 

4.6(a). The performance of the model ensembles was assessed by working out one 
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year moving window correlation whereby the correlation (R) between the twelve 

values of the year is calculated between the model estimates and the measurements. 

Figure 4.30 shows a plot of the time variation of R for individual models as well as 

the ensemble mean for Nairobi monthly total rainfall. 

                  

 

 

 

 

 

 

 

 

 

 

Except for model 12.3C which had been trained with the whole of the 1959-2003 

data, the other two models; SLS and SMP had been trained on the 1970-1990 data 

leaving the remaining data segment for testing. A look at Figure 4.30 shows that 

Ensemble1 (ENS1) mean had correlations above 0.3 in both the testing and training 

segments of the data. From Figure 4.30 it is evident that the level of model accuracy 

in both the training and testing segments of the KenMet dataset is not substantially 

different. We found no reason to expect that correlations in the mean model will be 

reduced with time. ENS1 mean was therefore used to project Nairobi monthly 

rainfall values for the period 1901-2020. 

Figure 4.30 

 Moving window correlation between model estimates and Nairobi 

 rainfall for the period 1959-2003 for models SLS, 12.3C, SMP as well as the enseble1 

(ENS1) mean. 
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Models fitting the CRU Kenya monthly rainfall were also tested for accuracy. As 

was done with the Ensemble1 models, Ensemble2 models accuracy was also tested 

by calculating month to month correlation for each year between model values and 

corresponding CRU Kenya values for the period 1901-2000. The correlation values 

(R), are shown in Table 4.6(b) while a plot of the one year window correlations 

shown in Figure 4.31.  

                     

 

 

 

 

 

 

 

 

 

 

We notice that Ensemble2 models fitting CRUKenya monthly totals performed better 

than Ensemble1 models by posting the higher values of correlations. Secondly, 

Ensemble1 variability is contained in Ensemble2. This means that although the 

ensembles are a result of fitting different models, both ensembles portray the same 

results for the period 1959-2003 a result confirmed by working out the correlation 

coefficient between corresponding monthly values in this period. The correlation 

between monthly values in Ensemble1 and Ensemlbe2 during the period 1959-2003 

Figure 4.31 

Moving window correlation between model estimates and CRUKenya  

rainfall for the period 1901-2000 for models SYNODIC, SMP, SM, and SP as well as the 

enseble2 (ENS2) mean. 
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is 0.7. Therefore, Ensemble2 may be sufficient in estimating rainfall variation both in 

Nairobi and Kenya. Thus the two models represent the same variability as expected 

because Nairobi is located in Kenya. Secondly, that the two ensembles of models 

having different predictors can reproduce the same variability pattern increases the 

confidence in the model results. ENS2 mean was also used to project monthly 

rainfall totals for the period 1901-2020 as well. 

 

4.5.3 Rainfall projection by CM13.1 

Monthly estimates were then aggregated into annual estimates for both 

ENS1(Nairobi) and ENS2(Kenya). Annual values have been standardized by the 

long term means and standard deviations and plotted in Figure 4.32 in which both 

series are plotted together as anomalies so that only the annual variability is 

emphasized. 

                

 

 

 

 

 

 

 

 

Model CM13.1 reliability in predicting severe hydrology events was tested against 

historical floods and droughts. Recorded droughts occurred in the following years: 

Figure 4.32 

Nairobi and Kenya annual total rainfall anomalies 

 as projected using Ensemble1 (Nairobi) and Ensemlbe2 (Kenya)  
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1928, 1933-34, 1937, 1939, 1942-44, 1947, 1951, 1952, 1955, 1957, 1975, 1977, 

1980, 1983-85, 1991-92, 1995-96, 1999-2000, 2004 [UNDP, 2004]. Others are 1960, 

1965, 1969, 1973, 1976, 1987, 1993. Recorded floods are not as numerous as the 

droughts years. They are: 1961, 1963, 1978, 1997-98 [KenMet]. Floods in Kenya are 

less devastating than droughts and therefore more emphasis has been given to 

droughts. The severity of the specific hydrological event depends on the 

geographical location in the country. The model indicates above normal annual 

rainfall in 2014-16 and below normal rainfall in 2013, 2018 and 2020 as seen in 

Figure 4.32. 

 

4.6 SUNSPOT NUMBERS AND ANNUAL RAINFALL.  

Kenya rainfall in the modern maximum indicate a peak trend that corresponds to the 

that of sunspots. The trend has a peak in the 19th sunspot cycle centered around 

1961. Variability of annual rainfall shows reflection symmetry in the year 1961 so 

that cycles 18 and 20 are object and image respectively, in Figure 4.33.  

 

 

 

 

 

 

 

 

Figure 4.33 
Smoothed sunspot numbers and annual total rainfall 

 for the period 1901-2000. 
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We refer to events occurring prior to 1961 as objects of corresponding events after 

1961 as images. Object and image pairs labeled c, d, e and f are 17 and 21, 16 and 

22, 15 and 23 and 14 and 24. Object and image cycle pairs have similar rainfall peak 

amplitudes. Reflection symmetry demands that if sunspot turning points lead rainfall 

events in the objects side, the reverse will happen in the image side. While the 

cause(s) of the distribution symmetry is still under investigation, it is what is 

observed from Figure 4.33. At least two sunspot turning points are outstanding. The 

fist one is the heavy rainfall of the early sixties corresponding to the passing cycle 

the 19 maximum, the second is the drought of the mid-seventies and the passing of 

the minimum between cycles 20 and 21, and the third corresponds to the great 

Sahelian drought after the passing of the minimum between cycles 21 and 22. From 

Figure 4.33 one can identify a turning point for each event of severe hydrology in 

Kenya suggesting that sunspot numbers have a direct influence on rainfall as was 

found by Meehl and Julie, [Meehl and Julie, 2009]. Now that sunspots are headed for 

a minimum at the end of the Mordern Maximum one may expect reduced events high 

rainfall and perhaps a prolonged drought of the Sahelian drought of the mid-eighties. 

Judging from the symmetry of the Mordern Maximum a drought of the type 

experienced in early thirties will most likely occur in 2020 +2 after the passage of the 

current cycle 24. This observation is also consistent with model SMS12.12 results as 

shown in Figure 4.32. Because Kenya rainfall is influenced by the Sahel climate, it is 

likely that the decline in rainfall amounts will be experienced in the Eastern Africa 

region and perhaps the Sahel region including the Greater Horn of Africa 

 



150 

CHAPTER 5 

5.0 CONCLUSIONS AND RECOMMENDATIONS 

This study was motivated by the desire to find out the physical causes of the Kenyan 

droughts of the early eighties and at the turn of this century. We have found that 

Kenya rainfall variability is seen to be largely as a result of natural causes. This is 

supported by the fact that the rainfall pattern could be estimated using only solar-

lunar variables and their derivatives as explanatory variables in a rainfall model and 

obtaining a correlation coefficient as high as 0.9 between the model estimate and the 

measurements. It is however necessary to continue to investigate the factors which 

determine the unexplained variability.  

 

Further model improvements will be possible if factors and covariates are identified 

which make the estimates more accurate in terms of amplitudes. The model may also 

be expanded to include multiple site estimates so long as reliable climate variables 

records are available for each site for longer lead times. Our ability to collect and 

store reliable data continuously will therefore always be put to test. Three statistical 

models: CM12.3, SMS12.12 and an ensemble of models referred CM13.1 may also 

be used estimate both historical and future monthly total rainfall or any other climate 

variable so long as appropriate factors and covariates can be identified. The statistical 

models successfully captured a large amount of variability in the precipitation and 

depicted the important relationships between the precipitation and the predictors. 

Correlation however does not imply cause. Furthermore, because the predictors used 

in the model were derived for solar-lunar geometry associated with gravity 
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atmospheric tides, there is likelihood that the tides are key factors in rainfall 

variability in Kenya. 

Ensemble projection indicate an increase in rainfall amounts during the period 2014-

2018 with only a brief break in 2017 and the periods 2013 and 2019-2020 showing 

depressed rainfall amounts. Model results can be used as valuable information in 

planning. This information will contribute a lot in the agricultural sector especially in 

the flood warning system, planning and management of water resources and 

hydrological process. The real value of the rainfall projection will be their impact on 

the decision making process. It is necessary that the model results be made available 

to stakeholders for assessment and possible improvement.  

 

The temporal distribution of sunspot numbers indicates that each turning point 

corresponds to events of severe hydrology in Kenya with time lag of 5+2 years. 

Therefore, such events are predictable so long as sunspots can be predicted in 

advance. However, the prediction of sunspots has not been easy and the current 

prediction of cycle 24 appears to be at the end of the Modern Maximum therefore 

breaking the continuity. The current maximum is fairly symmetrical increasing the 

confidence that sunspot activity is headed for an all time low perhaps similar to the 

one at the beginning of the last century with corresponding reduction in annual 

rainfall amounts. That is why it is possible to expect reduced rainfall amounts at the 

turn of cycle 24 and around the year 2020 +2.  

Model estimates indicate that before 2020 above normal rainfall may be expected in 

the period 2013-2018 and below normal rainfall in 2019-2020. No sunspot numbers 

are available to enable estimation beyond 2020 using the model and the behaviour of 
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sunspots is uncertain after cycle 24. However, as we head towards year 2020, it is 

likely that that the evolution of sunspots will have taken a predictable pattern so that 

sunspot prediction will be possible thereby extending the range of prediction beyond 

2020. However, this observation cannot yet be assumed for global data sets. 

Furthermore, we recommend that future studies be done on rainfall residuals so that 

the seasonality factor is eliminated and a better indication of the influence of sunspot 

numbers can be obtained. A comparison of the results with those obtained through 

statistical downscaling methods is also recommended. 

 

There is a need to do further work with a view to increasing model accuracy. 

Parameterization of Africa land surface as a factor of variability in annual insolation 

absorption is recommended. 

 

The benefits gained through research that supports agricultural production may be 

reduced due to the unpredictability of inter-annual variability of rainfall. A centre 

/unit that facilitates climate studies at this university is recommend. 

 

Finally, the university needs to improve computation capacity to cope with the 

demands of running predictive models with factors and covariates of orders greater 

than 1.  
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APPENDICES 

APPENDIX I 

Code for GEE  

# Initial setting of data 

# Load libraries that are needed to perform calculations 

rm(list=ls()) # remove any previous lists 

rm(list=objects()) #remove any previous objects 

library(stats)  

library(statmod) 

library(tweedie) 

# Set the directory 

setwd ("D:/Documents and Settings/Administrator/My Documents/February2012/") 

#rm(list=ls()) 

Nairobi <- read.table("D:/Documents and Settings/Administrator/My 

Documents/March2012/march2003.txt",header=TRUE,sep="",na.strings="NA",dec=

".",strip.white=TRUE) 

# Load the data. # Nairobi <- read.table("clipboard", header=TRUE, sep="", 

na.strings="NA",   dec=".", strip.white=TRUE) 

# OR file is D:/Documents and Settings/Administrator/My 

Documents/February2012/allfactors_monthly 

#  

# Define the factors soiph and month, etc 

#Nairobi$month=factor(Nairobi$month) 
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Nairobi$stdstl=factor(Nairobi$stdstl) 

#Nairobi$ssph=factor(Nairobi$ssph) 

#Nairobi$qboph=factor(Nairobi$qboph) 

Nairobi$atide=factor(Nairobi$atide) 

#Nairobi$atideph=factor(Nairobi$atideph) 

#Nairobi$soiph=factor(Nairobi$soiph) 

#Nairobi$soi=factor(Nairobi$soi) 

#Nairobi$qbo=factor(Nairobi$qbo) 

Nairobi$sdec=factor(Nairobi$sdec) 

Nairobi$ldec=factor(Nairobi$ldec) 

Nairobi$lunaph=factor(Nairobi$lunaph) 

Nairobi$etide=factor(Nairobi$etide) 

Nairobi$lmean=factor(Nairobi$lmean) 

 

attach(Nairobi) 

 

################################################################ 

#FITTING THE GENERALISED ESTIMATING EQUATION 

# STEP 1 - Compute an initial estimate of beta using GLM 

# metholodogy. Calculate "p", to be used in the variance function 

# of the Tweedie distribution using profile likelihood function. 
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power=tweedie.profile(rain~sdec+atide+ldec+stdstl+lunaph+etide+lmean,p.vec=seq(

1.3,1.9,length=10),do.plot=TRUE,do.smooth=TRUE,do.ci=TRUE,method="interpol

ation") 

p=power$p.max 

 

# Fitting a Tweedie model to this data, with "p" value found 

# using the profile likelihood function and a log link function 

glmmodel<-

glm(rain~sdec+atide+ldec+stdstl+lunaph+etide+lmean,family=tweedie(var.power=p, 

link.power=0),x=TRUE) 

# Initialize values - variables used in the first repetition 

fits<-glmmodel$fitted.values 

beta=glmmodel$coefficients 

phi=power$phi.max 

n=length(rain) 

# Let "r" be the number of beta values (number of covariates +1) 

r=glmmodel$rank 

# Set the variables to be used in the convergence criteria 

dev=sum(tweedie.dev(rain,fits,p)) 

devold=100*dev 

epsilon=1e-8 

 

################################################################ 

# Create the recursive (repeating steps 2 to 5), using a 
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# convergence criteria. 

# Create a new set of fitted values for the new beta values found 

# Convergence criteria 

while(abs(dev-devold)/(0.1+abs(dev))>epsilon)  { 

#_______________________________________________________________ 

# Step 2 - Compute the Pearson‘s residuals for the model 

p.residuals = (rain-fits)/sqrt(fits^p) 

#_______________________________________________________________ 

# Step 3a - Calculate alpha 

# Calculate the new phi value and alpha 

phi <- sum(p.residuals^2)/(n-r) 

# Initialize alpha 

alpha = NULL 

# Obtain alpha value 

alpha = sum(p.residuals[1:(n-1)]*p.residuals[2:n]) 

alpha = ((phi)*alpha)/(n*(n-r)) 

# Step 3b - Calculate R using the alpha values found in 

# step 3a (using AR(1)) 

index  <- seq(0,n-1,by=1) 

longindex <- c(seq(n-1,1,by=-1),index) 

# Calculate R 

i = 0 

R = matrix(nrow=n,ncol=n) 

while(i<n){ 
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R[i+1,] = alpha^longindex[(n-i):(2*n-i-1)] 

i = i+1 

} 

#_______________________________________________________________ 

# Step 4 - Calculate an estimate of the covariance matrix V 

# using R found in step 3b. 

# Calculate A: 

A = diag(fits)^(p/2) 

# Calculate V: 

V = (A %*% R %*% A) 

#_______________________________________________________________ 

# Step 5 - Find an updated version of beta 

# Firstly find (partial mu / partial beta), let 

# (partial mu/partial beta) be matrix "D" 

xmat = glmmodel$x 

D = matrix(nrow=n,ncol=r) 

#Add the values to matrix "D" 

for(i in (1:r)){ 

D[,i] = fits*xmat[,i] 

} 

# To find matrix beta(r+1) use the following notations 

# beta = beta+inverse(C)*B, 

 

# 
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# where C = transpose(D)*inverse(V)*D and 

# B = transponse(D)*inverse(V)*(actual-fitted) 

# Firstly find C 

C = t(D) %*% solve(V) %*% D 

# Find B 

B = t(D) %*% solve(V) %*% (rain-fits) 

beta=beta + (solve(C) %*% B) 

# Fit the new values of dev, devold and fits for use in the 

# covergence criteria 

fits <- exp(t(beta) %*% t(xmat)) 

fits <- as.vector(fits) 

devold <- dev 

dev <- sum(tweedie.dev(rain,fits,p)) 

} 

################################################################ 

# DIAGNOSTICS 

# Calculate QICu 

# Calculate the quasi-likelihood first 

quasi <- sum((rain*fits^(1-p)/(1-p))-((fits^(2-p))/(2-p))) 

# Next calculate the QICu which is to find the best covariates to use 

qicu <- (-2*quasi)+(2*r) 

#_______________________________________________________________ 

# Calculate the Marginal R squared 

marginal = (1/n)*sum(rain) # marginal component of R^2 
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top = sum((rain-fits)^2) # numerator of R^2 

bottom = sum((rain-marginal)^2) # denominator of R^2 

R2 = 1-(top/bottom) 

#_______________________________________________________________ 

# Calculate the Wald-Wolfowitz run test to detect if the model 

# is adequate and residuals are random. 

 

# Calculate the raw residuals 

residuals=rain-fits 

# Initialise the values to use 

run = NULL 

nn = 0 

np = 0 

j = 1 

# Start the test 

while(j <= n){ 

if(residuals[j] <= 0){ 

run[j] = -1 

nn = nn+1} 

if(residuals[j] > 0){ 

run[j] = 1 

np = np+1} 

j = j+1 

} 
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# Find the components E(T) and V(T) needed in the randomness test 

ET = (2*np*nn)/(np+nn)+1 

VT = (2*np*nn*(2*np*nn-np-nn))/((np+nn)^2*(np+nn-1)) 

# Find the total number of observed runs in the sequence 

 

T=0 

j=1 

while(j<=(n-1)){ 

if(run[j]!=run[j+1]){ 

T=T+1} 

j=j+1 

} 

T = T+1 

# Find the test statistic W 

W = (T-ET)/sqrt(VT) 

 

#Print out all the relevant information 

output1 <- data.frame(Diagnostic = c("alpha","QICu","R2","W"), 

Data = c(alpha,qicu,R2,W)) 

output2 <- data.frame(BetaValues = c(beta), 

Names = c(names(glmmodel$coefficient))) 

print(output1) 

print(output2) 

################################################################ 
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################################################################ 

# RESIDUALS PLOT FOR MODEL (1 + month + soiph) 

# Plot of the Raw residuals 

win.graph(width=11,height=7) # graphic size 

plot(residuals,xlab="Observation Number",ylab="Raw Residuals",main="Plot of the 

raw residuals using the month factor") 

abline(0,0) # add a horizontal line at 0 

dev.print(pdf, "D:/Documents and Settings/Administrator/My 

Documents/February2012/rawresidualsmonth.pdf") 

# Plot of Pearson Residuals versus linear predictor (eta=log(mu))  

win.graph(width=11,height=7) 

plot(log(fits),p.residuals,xlab="Linear Predictor", ylab="Pearson 

Residuals",main="Plot of pearson residuals versus linear predictor (month)") 

dev.print(pdf, "D:/Documents and Settings/Administrator/My 

Documents/February2012/linearresidualsmonth.pdf") 

################################################################ 

# PREDICTED VALUES for (1 + month + soiph) 

# Plot of predicted values for Nairobi 

win.graph(width=12,height=6) # graphic size 

# A time series plot of the amount of rain recorded during each 

# dry and wet month and a plot of the predicted values for the 

# amount of rain per month 

# Observed rainfall: 

plot(ts(rain,start=c(1959,1),frequency=12), 



 

172 

 

plot.type="single",col="blue", xlab="Year",ylab="Amount of rain 

(mm)",main="Nairobi Monthly Rainfall") 

abline(h=c(0,100,200,300,400,500),v=c(1960,1965,1970,1975,1980,1985,1990,1995

,2000),lty=2,lwd=.1,col="gray",las=2) 

#Predicted Rainfall: 

Nairobi.fitted<-ts(fits,start=c(1959,1),frequency=12) 

points(Nairobi.fitted,type="l",col="red") #Add to the plot 

dev.print(pdf, "D:/Documents and Settings/Administrator/My 

Documents/February2012/Nairobiobsandpredict.pdf") 

################################################################ 

# Finding a suitable link function 

glmmodel<-glm(rain~sdec+atide+ldec+stdstl+lunaph+etide+lmean, 

family=tweedie(var.power=p, link.power=0),x=TRUE) # Logarithm 

glmmodel.other<-glm(rain~sdec+atide+ldec+stdstl+lunaph+etide+lmean, 

family=tweedie(var.power=p),x=TRUE) # Canonical 

#Deviances 

glmmodel$deviance 

glmmodel.other$deviance 

#Df Residuals 

glmmodel$df.residual 

glmmodel.other$df.residual 

################################################################ 

# Normal probability plot for the model (1 + month + soiph) 

# First print the profile log-likelihood plot 
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win.graph(width=6,height=6) 

power=tweedie.profile(rain~sdec+atide+ldec+stdstl+lunaph+etide+lmean, 

p.vec=seq(1.3,1.9,length=10),do.plot=TRUE,do.smooth=TRUE,do.ci=TRUE,metho

d="interpolation") 

dev.print(pdf,"D:/Documents and Settings/Administrator/My 

Documents/February2012/logplotone.pdf") 

p=power$p.max 

glmmodel<-

glm(rain~sdec+atide+ldec+stdstl+lunaph+etide+lmean,family=tweedie(var.power=p,

link.power=0),x=TRUE) 

win.graph(width=6,height=6) # graphic size 

quantile=qres.tweedie(glmmodel) # Quantile residuals 

qqnorm(quantile, main = "Normal probability plot \n for Nairobi 

model",xlab="Standard Normal Quantiles",ylab="Quantile Residuals") 

qqline(quantile) # Normality line 

dev.print(pdf,"D:/Documents and Settings/Administrator/My 

Documents/February2012/quantileonemonth.pdf") 

 

p 

R2 

qicu 
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APPENDIX II 

Beta values for all factors 

model. 

rain~sdec(factor)+month(fact

or)+atide(factor)+atideph(fact

or)+soi(factor)+ldec(factor)+

soiph(factor)+qboph(factor)+

qbo(covariate)+stdstl(covariat

e)+ssph(factor). Diagnostic          

Data 

1      alpha  2.048879e-03 

2       QICu  2.839177e+04 

3         R2  6.367770e-01 

4          W -2.464647e+00 

5         p = 1.544898 

 

      BetaValues       Names 

1    5.597500634 (Intercept) 

2   -0.909023389 sdec[T.-21] 

3   -0.325725032 sdec[T.-20] 

4    0.454581261 sdec[T.-18] 

5   -0.494059654 sdec[T.-13] 

6   -1.562061648 sdec[T.-12] 

7   -0.248279504  sdec[T.-9] 

8   -0.854812813  sdec[T.-8] 

9   -0.084215894  sdec[T.-2] 

10   0.118942592  sdec[T.-1] 

11  -1.479303845   sdec[T.2] 

12  -1.788639032   sdec[T.3] 

13   0.615739903   sdec[T.9] 

14  -1.115206535  sdec[T.13] 

15   0.697181716  sdec[T.18] 

16   0.566785424  sdec[T.19] 

17  -1.320627465  sdec[T.21] 

18  -0.629060191  sdec[T.23] 

19   0.406463919  atide[T.1] 

20   0.565539541  atide[T.2] 

21   0.811257037  atide[T.3] 

22   0.394712574  atide[T.4] 

23   0.342601238  atide[T.5] 

24   0.501149141  atide[T.6] 

25   0.784041140  atide[T.7] 

26   0.552890810  atide[T.8] 

27  -1.124155199  atide[T.9] 

28  -4.250259274 soi[T.-5.8] 

29  -3.926768565 soi[T.-4.7] 

30  -0.655557648 soi[T.-4.4] 

31  -1.694546484 soi[T.-4.3] 

32  -1.608298648   soi[T.-4] 

33  -0.871730179 soi[T.-3.7] 

34  -1.041975077 soi[T.-3.4] 

35  -3.755765403 soi[T.-3.3] 

36  -1.688455181   soi[T.-3] 

37  -2.423551141 soi[T.-2.9] 

38   0.070211519 soi[T.-2.8] 

39  -2.366020744 soi[T.-2.6] 

40  -2.223418705 soi[T.-2.5] 

41  -1.716012020 soi[T.-2.4] 

42  -1.785445370 soi[T.-2.3] 

43  -2.363316529 soi[T.-2.2] 

44  -2.193756813 soi[T.-2.1] 

45  -1.598173594   soi[T.-2] 

46  -1.519375671 soi[T.-1.9] 

47  -0.820647046 soi[T.-1.8] 

48  -2.045809277 soi[T.-1.7] 

49  -2.065455608 soi[T.-1.6] 
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50  -1.670541519 soi[T.-1.5] 

51  -1.960444994 soi[T.-1.4] 

52  -2.179657369 soi[T.-1.3] 

53  -1.568082594 soi[T.-1.2] 

54  -1.795224933 soi[T.-1.1] 

55  -1.932400419   soi[T.-1] 

56  -1.304399729 soi[T.-0.9] 

57  -2.250413166 soi[T.-0.8] 

58  -1.986763946 soi[T.-0.7] 

59  -2.171466492 soi[T.-0.6] 

60  -1.519189904 soi[T.-0.5] 

61  -2.176064142 soi[T.-0.4] 

62  -1.725591315 soi[T.-0.3] 

63  -2.005892298 soi[T.-0.2] 

64  -1.968763016 soi[T.-0.1] 

65  -1.349041925    soi[T.0] 

66  -1.974671868  soi[T.0.1] 

67  -1.647112589  soi[T.0.2] 

68  -2.627824476  soi[T.0.3] 

69  -1.926823973  soi[T.0.4] 

70  -2.165347131  soi[T.0.5] 

71  -2.183746717  soi[T.0.6] 

72  -2.140230666  soi[T.0.7] 

73  -2.093700477  soi[T.0.8] 

74  -1.786085893  soi[T.0.9] 

75  -2.548319721    soi[T.1] 

76  -1.748629405  soi[T.1.1] 

77  -1.999821783  soi[T.1.2] 

78  -2.363690372  soi[T.1.3] 

79  -1.862530599  soi[T.1.4] 

80  -1.910133191  soi[T.1.5] 

81  -1.527998308  soi[T.1.6] 

82  -1.528363233  soi[T.1.7] 

83  -1.686378683  soi[T.1.8] 

84  -1.384599788  soi[T.1.9] 

85  -1.306027526    soi[T.2] 

86  -1.497822809  soi[T.2.1] 

87  -2.736990991  soi[T.2.2] 

88  -1.362158240  soi[T.2.3] 

89  -1.686523073  soi[T.2.4] 

90  -0.684832151  soi[T.2.5] 

91  -3.265009275  soi[T.2.6] 

92  -1.524190849  soi[T.2.7] 

93  -2.319040518  soi[T.2.8] 

94  -3.551094352  soi[T.2.9] 

95  -2.030527813    soi[T.3] 

96  -0.929437519  soi[T.3.1] 

97  -2.430539173  soi[T.3.2] 

98  -1.834479780  soi[T.3.3] 

99  -0.614250002  soi[T.3.4] 

100 -1.875693531  soi[T.3.5] 

101 -3.525291903  soi[T.3.8] 

102 -1.916656299    soi[T.4] 

103 -2.138158996  soi[T.4.3] 

104  1.054267340 ldec[T.-27] 

105  0.425310068 ldec[T.-26] 

106  1.181525176 ldec[T.-25] 

107  0.432656623 ldec[T.-24] 

108  0.664673116 ldec[T.-23] 

109  0.181169008 ldec[T.-22] 

110  0.749358526 ldec[T.-21] 

111  0.603964906 ldec[T.-20] 

112  0.757348017 ldec[T.-19] 

113  0.547698161 ldec[T.-18] 

114  1.018329128 ldec[T.-17] 

115  0.644080428 ldec[T.-16] 
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116  0.689702202 ldec[T.-15] 

117  0.468838138 ldec[T.-14] 

118  0.461770630 ldec[T.-13] 

119  0.248208100 ldec[T.-12] 

120  0.525656823 ldec[T.-11] 

121  0.141652193 ldec[T.-10] 

122  0.792569648  ldec[T.-9] 

123  0.026086575  ldec[T.-8] 

124  0.922610712  ldec[T.-7] 

125  0.629114442  ldec[T.-6] 

126  0.418371910  ldec[T.-5] 

127  0.983783195  ldec[T.-4] 

128  0.787219433  ldec[T.-3] 

129  0.955113776  ldec[T.-2] 

130  0.049197483  ldec[T.-1] 

131 -0.079215051   ldec[T.0] 

132  0.247899411   ldec[T.1] 

133  0.682139894   ldec[T.2] 

134  1.250880705   ldec[T.3] 

135  0.640117251   ldec[T.4] 

136  1.243941367   ldec[T.5] 

137 -0.137655587   ldec[T.6] 

138  0.229466553   ldec[T.7] 

139  0.609805981   ldec[T.8] 

140  1.408521505   ldec[T.9] 

141  0.006909431  ldec[T.10] 

142  0.448191123  ldec[T.11] 

143  0.527695881  ldec[T.12] 

144  0.793299939  ldec[T.13] 

145  0.488906314  ldec[T.14] 

146  0.745274216  ldec[T.15] 

147  0.589435910  ldec[T.16] 

148  0.347380356  ldec[T.17] 

149  0.648492995  ldec[T.18] 

150 -0.015970717  ldec[T.19] 

151  0.784670265  ldec[T.20] 

152  0.790335953  ldec[T.21] 

153  0.394726083  ldec[T.22] 

154  0.309990996  ldec[T.23] 

155  0.844097545  ldec[T.24] 

156  0.443410070  ldec[T.25] 

157  0.724683411  ldec[T.26] 

158  0.779387571  ldec[T.27] 

159  1.149875234  ldec[T.28] 

160 -0.306960043  soiph[T.2] 

161 -0.085750868  soiph[T.3] 

162 -0.094975974  soiph[T.4] 

163 -0.092357651  soiph[T.5] 

164 -0.035602476  soiph[T.6] 

165 -0.274412600qboph[T.2] 

166 -0.38180146  qboph[T.4] 

167 -0.1330240  qboph[T.5] 

168 -0.1585512  qboph[T.6] 

169 -0.008878874         qbo 

170 -0.150930294      stdstl 

171 -0.046291112   ssph[T.2] 

172  0.046916289   ssph[T.3] 

173  0.052201940   ssph[T.4] 
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APPENDIX III 

Beta values for the model 12.3 

 

rain~ sdec(F)+atide(F)+ldec(F)+stdstl(F)+lunaph(F)+etide(F). Section 4.4.1 

 

1      alpha  8.828505e-04 

2       QICu  2.207748e+04 

3         R2  5.225058e-01 

4          W -1.967940e+00 

 

> print(output2) 

       BetaValues        Names 

1    3.121645714  (Intercept) 

2   -0.948907811 sdec[T.-21] 

3   -0.25971855  sdec[T.-20] 

4    0.38196194  sdec[T.-18] 

5   -0.58105408  sdec[T.-13] 

6   -2.216406993 sdec[T.-12] 

7   -0.42585197   sdec[T.-9] 

8   -0.598690837   sdec[T.-8] 

9   -0.120214816   sdec[T.-2] 

10   0.15206064   sdec[T.-1] 

11  -1.32908324    sdec[T.2] 

12  -1.54433140    sdec[T.3] 

13   0.5475040    sdec[T.9] 

14  -1.48406711   sdec[T.13] 

15   0.80771756   sdec[T.18] 

16   0.34383814   sdec[T.19] 

17  -1.83752574   sdec[T.21] 

18  -0.91437115   sdec[T.23] 

19   0.236665190 atide[T.1] 

20   0.2161033     atide[T.2] 

21   0.249654381   atide[T.3] 

22   0.330429063   atide[T.4] 

23   0.063540494   atide[T.5] 

24   0.335320762   atide[T.6] 

25   0.401749492   atide[T.7] 

26   0.960526664   atide[T.8] 

27  -0.625583256   atide[T.9] 

28   1.03633662  ldec[T.-27] 

29   0.62064499  ldec[T.-26] 

30   1.07895584  ldec[T.-25] 

31   0.84251407  ldec[T.-24] 

32   0.37954092  ldec[T.-23] 

33   0.345413023 ldec[T.-22] 

34   0.67328711  ldec[T.-21] 

35   0.72148902  ldec[T.-20] 

36   0.599130297 ldec[T.-19] 

37   0.43904532  ldec[T.-18] 

38   0.89782494  ldec[T.-17] 

39   0.33356006  ldec[T.-16] 

40   0.615511467 ldec[T.-15] 

41   0.091629584 ldec[T.-14] 

42   0.563766592 ldec[T.-13] 

43   0.67526790  ldec[T.-12] 

44   0.49918324  ldec[T.-11] 
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45   0.21685133  ldec[T.-10] 

46   1.05393771   ldec[T.-9] 

47  -0.767512849  ldec[T.-8] 

48   0.345310892  ldec[T.-7] 

49   0.504856939  ldec[T.-6] 

50   0.214054307  ldec[T.-5] 

51   0.84317045   ldec[T.-4] 

52   0.800854583   ldec[T.-3] 

53   0.838829262   ldec[T.-2] 

54   0.187141670   ldec[T.-1] 

55   0.422252065    ldec[T.0] 

56   0.094392568    ldec[T.1] 

57   0.840679234    ldec[T.2] 

58   0.953659577    ldec[T.3] 

59   0.788665884    ldec[T.4] 

60   1.015993287    ldec[T.5] 

61  -0.000526230    ldec[T.6] 

62  -0.143617144    ldec[T.7] 

63   0.568590918    ldec[T.8] 

64   1.637626784    ldec[T.9] 

65   0.15549187   ldec[T.10] 

66   0.63098437   ldec[T.11] 

67   0.54612030   ldec[T.12] 

68   0.68099059   ldec[T.13] 

69   0.62854862   ldec[T.14] 

70   0.65741639   ldec[T.15] 

71   0.73388159   ldec[T.16] 

72   0.38993848   ldec[T.17] 

73   0.565141536  ldec[T.18] 

74   0.03039593   ldec[T.19] 

75   0.81896849   ldec[T.20] 

76   0.53822974   ldec[T.21] 

77   0.62169479   ldec[T.22] 

78  -0.00254907   ldec[T.23] 

79   0.57337699   ldec[T.24] 

80   0.27446374   ldec[T.25] 

81   0.75400187   ldec[T.26] 

82   0.52430738   ldec[T.27] 

83   0.68064165   ldec[T.28] 

84   0.786065590stdstl[T.18] 

85 1.0971404856stdstl[T.19] 

86   0.50414133 stdstl[T.20] 

87   0.41795094 stdstl[T.21] 

88   0.87264546 stdstl[T.22] 

89   1.05626034 stdstl[T.23] 

90   0.41510860 stdstl[T.24] 

91   0.71421715 stdstl[T.25] 

92   0.59004232 stdstl[T.26] 

93   0.49172636 stdstl[T.27] 

94   0.82420259 stdstl[T.28] 

95   0.73926507 stdstl[T.29] 

96  -0.2330166  lunaph[T.2] 

97  -0.1050344  lunaph[T.3] 

98  -0.02519105 lunaph[T.4] 

99   0.00760904   etide[T.1] 

100  0.03293729   etide[T.2] 

 

 


