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NOMENCLATURE 

Symbol  Meaning 

T    Longitudinal tension, N 

P   Internal pressure, Pa 

PE   External pressure, Pa 

Pt   Transmural pressure (P-PE), Pa  

u   Fluid velocity, 
1ms  

Q       Volumetric flow rate,
13 sm  

A   Cross sectional area, m
2
 

A0   Area at the inlet, m
2
 

S    Peripheral length, m 

KPE   Tube stiffness, Pa 

FL    Skin friction co-efficient 

Greek symbol   

υ   Kinematic viscocity of the fluid, 
12 sm  

ρ   Fluid density, kgm
-3

 

μ   Coefficient of viscosity, kgm
-1

s
-1

 

Abbreviations 

FD     Finite Difference 

PDE’s   Partial Differential Equations 
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ABSTRACT 

In this study the effects of longitudinal tension, tube stiffness and volumetric flow rate 

on the cross sectional area of a collapsible tube, flow velocity and internal pressure of 

a Newtonian fluid through a cylindrical collapsible tube have been determined. The 

tube was considered collapsible in the transverse direction, taken to be perpendicular 

to the main flow direction. Collapse happens when external pressure exceeds internal 

pressure and hence the tube results to a highly noncircular cross sectional area. The 

fluid flow in consideration was steady and incompressible. Equations governing the 

flow are non-linear and cannot be solved analytically. Therefore an approximate 

solution to the equations was determined numerically.  In this case, finite difference 

method was used. A computer program then was used to generate the results which 

were presented in form of graphs. The results show that the longitudinal tension and 

tube stiffness are directly proportional to  both the cross sectional area and internal 

pressure and inversely proportional to the flow velocity and that change in volumetric 

flow rate has no effect on the cross sectional area but it is directly proportional to  the 

flow velocity and inversely proportional to the internal pressure. 
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CHAPTER ONE 

1.0 INTRODUCTION 

 The study of flow through collapsible tubes is of utmost importance in biological 

studies as well as in industries. For instance, the dynamics of fluid flow in collapsible 

tube are vital in understanding the behavior and analysis of flow phenomenon in 

veins, arteries, airways, urethra, etc. Rosar and Charles (2001) explained that vessel 

collapse is most readily seen in the veins, such as in the veins of a hand raised above 

the level of the heart or in the jugular vein when a person is standing upright. Collapse 

also occurs in the arteries when high external pressures are applied, such as when an 

artery is compressed by a sphygmomanometer cuff during blood pressure 

measurement. 

Jensen and Heil (2003) explained that under normal conditions arteries are under 

sufficiently large transmural (internal minus external) pressure and remain distended 

and stiff. Important exceptions are the coronary arteries, embedded in the muscular 

wall of the heart, which can be significantly constricted as the heart contracts and the 

brachial artery, which is compressed by a cuff inflated around the upper arm during 

blood-pressure measurement, in which case flow-induced instabilities generate 

clinically useful “Korotkoff sounds”. Veins operate under much lower transmural 

pressures than arteries so that hydrostatic pressure variations (in systemic veins above 

the heart but outside the skull, or in the pulmonary circulation) can be sufficient to 

induce collapse (i.e. a significant reduction in cross-sectional area, but without 

complete occlusion), which can limit the flow of blood returning to the heart or 

passing through major organs such as the lungs. Venous collapse, however, is 
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important during exercise, when muscular compression of leg veins is used to pump 

blood against gravity up to the heart, and in therapeutic compression of leg veins for 

the treatment of deep-vein thrombosis. Shapiro (1977) explained that the pulmonary 

system also displays collapse, for example, the airways of the lungs can show collapse 

during coughing or sneezing and during forced or rapid expiration. 

Similarly, in the industry collapse may be experienced during cementing operations, 

trapped fluid expansion, or well evacuation, among many others. Most oilfield 

tubulars also experience collapse. 

Fluid flow through collapsible tube is a complex phenomenon since it involves 

interaction between the flowing fluid and the tube wall. A mathematical model of 

physical phenomenon, often results in non-linear equations for some unknown 

function. Usually the problem cannot be solved analytically. Makinde (2005) noted 

that the nonlinear problems can be solved by expansion in powers of some small 

perturbation parameter. The advantage of this approach is that it reduces the original 

nonlinear problem to a sequence of linear problems. In this research study finite 

difference method was used because of its consistency, stability and convergence rate. 

This research work focused on investigating the effects of flow parameters on flow 

variables of a Newtonian fluid through a cylindrical collapsible tube thus expanding 

the understanding of fluid flow through collapsible tubes. 
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DEFINITIONS 

In this study several terms have been used extensively and such terms are defined in 

this section.  

1.1.1  Fluid 

 Fluid is a type of matter which undergoes continuous deformation when some 

external force is applied. It is said to undergo deformation if the distance between any 

two neighboring molecules change. Fluids are conventionally classified as liquids and 

gases.  

Fluid flow may be termed as laminar or turbulent. The term laminar is used to refer to 

a fluid flow in which fluid particles move in an orderly manner in layers parallel to 

the solid boundary.  Turbulent flow is characterized by eddies that cause mixing of 

layers of the fluid until the layers are no longer distinguishable. Quantities such as 

velocity and pressure show random variation with time and space. 

1.1.2  Newtonian Fluid 

 A fluid is said to be Newtonian if it obeys the Newton’s law of viscosity which states 

that the shear stress is proportional to the velocity gradient. The viscosity does not 

change with the rate of flow. 

1.1.3  Collapsible tube 

A collapsible tube is any tube with sufficiently flexible walls that it can elastically 

accommodate deformation to a highly noncircular cross section when the external 
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pressure exceeds the internal pressure. In this study, the collapsible tube in 

consideration is cylindrical in shape. 

1.1.4 Incompressible fluid 

A fluid is said to be incompressible if changes of pressure cause practically no change 

in the fluid density. This means that, for an incompressible fluid, rate of change of 

density is assumed to be zero and hence the divergence of velocity is zero. 

1.1.5 Steady flow 

For a steady flow, all fluid properties for example velocity, temperature, pressure and 

density are independent of time. The properties however, may vary from point to 

point, which means that they could be functions of space coordinates. 

LITERATURE REVIEW 

Flow through collapsible tubes has been extensively studied in the laboratory. 

Pioneering work on collapsible tubes, explain that the veins play an important role in 

controlling the output of the heart. This control function of the veins is a passive one, 

and is as a result of their ability to collapse and inflate. Several experimental studies 

have been done on flexible tubing. Edward and Abraham (1972) explained that these 

experiments are based upon the assumption that the differences between them and 

veins are quantitative in nature rather than qualitative. 

Bertram (1986) did an experimental study on collapsible and elastic tubes with finite-

length and the upstream and downstream ends held open.  Fluid, typically water or air 

was driven through the tube, either by applying a controlled pressure-drop between 
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the ends of the rigid tubes or by controlling the flow rate. When the external pressure 

exceeded the fluid pressure by a sufficiently large amount, the tube buckled non-axi 

symmetrically, leading to a nonlinear relation between pressure-drop and flow rate.  

Bertram et al.(1990) explained that at sufficiently large Reynolds numbers, the system 

produces self-excited oscillations, and exhibits hysteresis in transitions between 

dynamical states, multiple modes of oscillations (each having distinct frequency 

range), rich and complex nonlinear dynamics.  

A further study on self-excited oscillations was carried out by Luo and Pedley (1998) 

who investigated the effect of wall inertia on the self-excited oscillations in a 

collapsible channel flow. The effects of different values of mass ratio on the flow in a 

two-dimensional collapsible channel were studied. It was found that for mass ratio= 

0.01, a value relevant to blood flow in arteries and veins, or experiments with water as 

the fluid, wall inertia had a negligible effect on the self-excited oscillations. This 

implied self-excited oscillations. For mass ratio= 0.1, a value more relevant to air 

flow in the lung, or experiments with air as fluid, flutter-type oscillations were found 

to develop and play an important role in destabilizing the system. The presence of 

wall inertia (with mass ratio=0.1) also increased the critical value of the tension 

below which the system became unstable. 

Jensen and Heil (2003) also realized that nonaxisymmetrically collapsed vessels 

readily develop flow-induced, self excited oscillations. Physiological examples 

include wheezing during forced expiration and the development of korottkoff sounds 

during blood pressure measurement. This is in agreement with the study of Matthias 

and Sarah (2008). They studied finite-Reynolds-number flows in three-dimensional 
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collapsible tubes whose walls perform prescribed high-frequency oscillations of finite 

amplitude. The analysis of the system’s energy budget helped identify conditions 

under which the wall extracts energy from the mean flow. The main source of energy 

was shown to be the influx of kinetic energy generated by the axial sloshing flows 

that are driven by the oscillatory wall motion; the wall extracted energy from the flow 

if the net influx of kinetic energy exceeded the viscous dissipation in the flow. In a 

fully coupled fluid–structure interaction problem in which the wall motion is not 

prescribed, any energy extracted from the flow would be transferred to the wall’s 

strain and kinetic energies, and therefore lead to an increase in the amplitude of the 

wall motion. He concluded that self-excited oscillations of collapsible tubes are much 

more likely to develop from steady-state configurations in which the tube is buckled 

non-axisymmetrically rather than from axisymmetric steady state. 

Several studies have also been carried out on steady flow through a collapsible tube. 

Hazel and Heil (2003) investigated the steady flow through thin-walled elastic tubes 

for a finite Reynolds number. In their finite-element approach, they solved the steady 

3-D Navier–Stokes equations simultaneously with the equations of geometrical 

nonlinear, Kirchhoff–Love thin-shell theory. One of the assumptions underlying thin-

shell theory is that the wall thickness of the tube is some 20 or more times smaller 

than its radius.They showed how nonaxisymmetric buckling of the tube contributes to 

nonlinear pressure-flow relations that can exhibit flow limitation through purely 

viscous mechanisms. 

Andrew and Matthias (2003) further investigated the steady flow of a viscous fluid 

through a thin-walled elastic tube mounted between two rigid tubes. The steady three-
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dimensional Navier–Stokes equations were solved simultaneously with the equations 

of geometrically nonlinear Kirchhoff–Love shell theory. He explained that if the 

transmural (internal minus external) pressure acting on the tube is sufficiently 

negative then the tube buckles non-axisymmetrically and the subsequent large 

deformations leads to a strong interaction between the fluid and solid mechanics. The 

main effect of fluid inertia on the macroscopic behavior of the system is due to the 

Bernoulli effect, which induced an additional local pressure drop when the tube 

buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly 

than it would in the absence of fluid inertia. 

Mawasha et al. (2001) investigated the dynamic behavior of a collapsible tube system 

consisting of a reservoir with inlet and outlet flow conditions. The reservoir was 

subjected to a constant inlet flow rate and the outlet flow rate and the pressure–flow 

rate relation of the downstream collapsible regime was presented by a constitutive 

model containing a cubic nonlinearity. The relaxation oscillations observed for 

collapsible tube model were analogous to the behavior of the van der pol oscillator. 

The van der Pol oscillator is a canonical model for self-excited nonlinear oscillations 

exhibited in electrical circuits. 

Brian (2003) formulated a mathematical model for a collapsible tube and developed a 

computational methodology to determine the best-fit values for parameters that 

describe constitutive behavior of the tube. Numerical results of varying multiple fluid 

flow parameters were presented for both an expanded and a collapsed tube. He 

realized that it is possible to estimate the best-fit tube stiffness parameters for a known 

fluid with experimental data about cross-sectional area ,external pressure and pressure 
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at the inlet to the collapsible tube. He noted that the tube stiffness affected the cross 

sectional area of the tube and had no large influence on the internal pressure. 

Makinde (2005) further described the fluid dynamics of a collapsible tube using a 

mathematical model. Numerical solutions were constructed for the problem using 

perturbation technique . The analysis of the resulting power series solutions were  

performed with a special type of Hermite-Padé approximants. He observed that the 

fluid axial velocity profile was parabolic with maximum value at centerline. He also 

noted that  fluid axial velocity generally decreases with an increase in tube contraction 

due to the strong influence of the negative transmural pressure owing to marked 

reduction of rigidity. 

Marzo et al. (2005) studied three-dimensional collapse of a steady flow through 

finite-length elastic tubes numerically. The Navier-Stokes equations coupled with 

large, nonlinear deformation of the elastic wall were solved using the finite-element 

software, FIDAP. Three-dimensional solid elements were used for the elastic wall, 

allowing the wall thickness to be specified. Previous findings by Hazel and Heil 

(2003) for thinner-walled tubing were confirmed and also they  showed the existence 

of significant differences if a thick-walled tube is used. 

Prashanta (2005) studied the problem of non- Newtonian and non-linear blood flow 

through a stenosed artery. Finite difference scheme was used to solve the unsteady 

nonlinear Navier-stokes equations in cylindrical coordinates assuming axial symmetry 

under laminar flow condition. The model was also employed to study the effects of 

the taper angle, wall deformation, severity of the stenosis within its fixed length, 

steeper stenosis of the same severity, nonlinearity and non-Newtonian rheology of the 



9 

 

flowing blood on the flow field. Quantitative analysis was performed through 

numerical computations. He concluded that that the axial velocity profile assumed a 

flat shape in the presence of a converging tapering instead of a parabolic one for non-

tapered artery when both are treated under stenotic conditions.  He explained that if 

the tube is tapered, then inertial forces associated with the convective accelerations 

manifest themselves in an amount of the same order as viscous forces while the 

former compel the axial velocity profile to attain a flat shape. 

Odejide et al. (2008) examined an incompressible viscous fluid flow and heat transfer 

in a collapsible tube. The non linear equations arising from the model were solved 

using perturbation series.It was noted  that the fluid temperature increased with an 

increase in fluid Prandtl number with maximum value at the center.It was also noted 

that increase in Reynolds number led to an increase in the fluid temperature with 

maximum magnitude at the pipe center and minimum at the wall. The fluid velocity 

profile was noted to be parabolic in nature. 

Andrew et al. (2008) described the role of venous valves in pressure shielding.A one-

dimensional mathematical model of a collapsible tube, with the facility to introduce 

valves at any position, was used. It was found out that a valve decreased the dynamic 

pressures applied to a vein when gravity is applied by a considerable amount. 

Liu et al. ( 2009) explained that the wall stiffness is dominated by the axial tension.If 

the tension is sufficiently small, the viscous pressure drop along the channel induces 

large-amplitude, steady wall deformations. In the absence of wall inertia, the steady 

configurations become unstable to relatively low-frequency self-excited oscillations 

when the Reynolds number is increased . 
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Emilie and Patrice (2010) developed a simple and effective numerical physiological 

tool to help clinicians and researchers in the understanding of flow phenomena. One-

dimensional Runge–Kutta discontinuous Galerkin (RK-DG) method coupled with 

lumped parameter models for the boundary conditions was used.Various benchmark 

problems that showed the flexibility and applicability of the numerical method were 

presented. The emptying process in a calf vein squeezed by contracting skeletal 

muscle in a normal and pathological subject was also studied and the results 

compared with experimental simulations. After the comparison of the results it was 

noted that the efficiency of muscular calf pump is strongly dependent on the valves 

pathology and the walking frequency. 

Eleuterio and Annunziato (2013) fomulated  a one-dimensional time-dependent non-

linear mathematical model for physiological fluid flow in collapsible tubes with 

discontinuous material properties, i.e. vessel wall thickness,equilibrium cross 

sectional area and Young’s modulus.  In particular,a mathematical model for blood 

flow in medium to large arteries and veins was studied. The resulting 6 × 6 hyperbolic 

system was  analysed and the associated Riemann problem solved exactly. They 

explained that although the solution algorithm dealt with idealised cases, it is uniquely 

well-suited for assessing the performance of numerical methods intended for 

simulating more general situations. 

This research work has presented a one dimensional mathematical model of fluid flow 

through collapsible tube. The fluid flow in consideration is steady. From the above 

literature review, we realize that a comprehensive study considering a combination of  

various flow parameters such as volumetric flow rate,longitudinal tension and tube 
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stiffness and their effects on the cross sectional area of a collapsible tube, flow 

velocity and internal pressure of fluid  in a collapsible tube has not been done such 

has been the motivation behind this research. This research therefore aimed at coming 

up with a more comprehensive model of flow through collapsible tubes. 

STATEMENT OF THE PROBLEM 

Several studies of  fluid flow through collapsible tubes have been done experimentally 

so as to shed more light on the nature of the flow. However very few studies have 

been done numerically. This research covers a comprehensive study of  the effects of 

flow parameters such as volumetric flow rate, longitudinal tension and tube stiffness 

on the flow variables, i.e. cross sectional area of a collapsible tube, flow velocity and 

internal pressure of a Newtonian fluid flow through a collapsible tube. The collapsible 

tube in this case is considered to collapse in the transverse direction perpendicular to 

the main flow direction as shown in Figure 1.1. 

 

 

Figure 1.1  Collapsible tube under consideration. The ends A and B are fixed.  

 

 

Tube collapse in transverse direction 

 

 

A B 
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JUSTIFICATION 

In the human body there are several fluid-conveying vessels that are elastic and 

collapsible. These vessels buckle nonaxisymmetrically when external pressure 

exceeds internal pressure.The study of flow through collapsible tubes is  very useful 

for the study and prediction of many diseases, as the lung disease (asthma and 

emphysema), or the cardiovascular diseases (heart stroke).  

 In addition, the study is of great importance in prediction and prevention of possible 

collapse in industries during cementing operations, trapped fluid expansion, or well 

evacuation. Further applications are in the oil industry since most oilfield tubulars 

also experience collapse. The study also has applications such as in modelling 

submarine and aeronautical hydraullic system.  

A study on flow parameters and flow variables is therefore necessary. This study 

aimed at coming up with a more comprehensive model of flow through collapsible 

tubes.The model described this work has the potential to increase understanding of 

fluid flow through collapsible tubes, and ultimately might be employed as part of an 

interventional planning tool. 

 

NULL HYPOTHESIS 

There is no effect of longitudinal tension and tube’s stiffness on cross sectional area 

of a collapsible tube, flow velocity and internal pressure of fluid in a collapsible tube. 

 

 



13 

 

 

OBJECTIVES 

1.6.1 General objective 

To determine the effect of the various flow parameters on the cross sectional area of a 

collapsible tube, the flow velocity and the internal pressure of a Newtonian fluid flow 

through a cylindrical collapsible tube 

1.6.2 Specific objectives 

1)  To determine the effect of longitudinal tension on the cross sectional area, 

flow velocity and internal pressure. 

2)  To determine the effect of tube stiffness on the cross sectional area,flow 

velocity and internal pressure. 

3) To determine the effect of  volumetric flow rate on the cross sectional area, 

flow velocity and internal pressure. 

 

In the next chapter, the general equations govening the flow through a collapsible tube 

are discussed. The assumptions for the flow are also outlined and specific equations 

governing the flow derived in reference to these assumptions. The method of solving 

these governing equations has also been discussed. 
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CHAPTER TWO 

2.0  EQUATIONS GOVERNING THE FLOW 

In this chapter the assumptions made for the flow through a collapsible tube have 

been outlined. The general governing equations which are used to derive the specific 

equations for flow through a collapsible tube are discussed.  

2.1 ASSUMPTIONS 

i. The flow in the tube is one-dimensional. The flow variables at a given instant 

in time only vary in the direction of flow. 

ii. There is no flow separation occurring in a collapsed region of the tube.  

iii. Tensile force throughout the collapsible tube is constant. 

iv. The flow in the tube is steady meaning that the fluid properties are time 

independent. 

v. The fluid is incompressible. This means that the density of the fluid is 

assumed to be a constant. 

2.2 EQUATIONS GOVERNING THE FLOW 

Flow through collapsible tube is basically governed by continuity equation, equation 

of conservation of momentum and the tube law. These equations have been discussed. 

2.2.1 Equation of continuity 

This equation arises from the fact that matter is neither created nor destroyed. The rate 

at which mass enters a system is equal to the rate at which mass leaves the system.  

The differential form for a general continuity equation is given by; 

       (2.1) 
  0




u

t





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Where   is the fluid’s  density and u


is the fluid’s velocity. 

For incompressible fluid flow, is assumed to be a constant and hence equation (2.1) 

reduces to; 

0.  u


          (2.2) 

Equation (2.2) means that the divergence of velocity is zero. 

In Cartesian co-ordinate form and considering a one dimensional fluid flow equation 

(2.2) is expressed as; 

0




x

u


          (2.3) 

The volumetric flow rate Q is given by area multiplied by velocity of the fluid, 

therefore equation (2.3) becomes; 

 
0










x

Q

x

uA


         (2.4) 

Equation (2.4) is derived from the fact that mass is always conserved in fluid systems 

regardless of the pipeline complexity or direction of flow. The volumetric flow rate

Q is constant but area and velocity of the fluid flow are variable so that if A 

decreases, u


 increases and vice versa. 

2.2.2 Equation of conservation of momentum 

The equation of conservation of momentum is derived from Newton’s second law of 

motion, which states that the time rate change of momentum of a body matter is equal 

to the net external forces applied to the body. The external forces are divided into two, 

i.e. surface forces and body forces. The surface forces are exerted on the fluid element 

by its surroundings through direct contact at the surface. For example, forces due to 


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static pressure and viscous stresses. The body forces are distributed over the entire 

mass or volume of the element usually expressed per unit mass of the element. 

Examples of body forces are gravitational force, centrifugal force and magnetic force. 

For this particular research problem, the body forces will be neglected since the 

collapsible tube is assumed to be horizontal.  Of particular interest is to resolve the 

viscous forces for laminar fluid flow through a cylindrical collapsible tube.   

The general equation is given by; 

gRu
x

p

x

u
u

t

u


















1
       (2.5)       

where R>0 is a friction factor and g is the acceleration due to gravity when the tube is 

held vertically. 

According to Shapiro (1977) and Hayashi et.al (1998) the the equation of 

conservation of momentum for steady laminar fluid flow  is given by; 




















A

s

D

u
f

x

p

x

u
u

e

L


 ,           (2.6) 

where s the peripheral length and Lf is the skin-friction coefficient for laminar flow. 

Making the substitution AuQ  , equation (2.6) becomes; 

A

s

A

Q

D
f

x

p

x

A

Q

A

Q

e

L


 


















      (2.7)              

which yields; 
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



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









      (2.8) 

From equation (2.4),
 

0









x

Q

x

Au
 , we have 

32
3 1

A
A

s

D
f

x

A
Q

x

pA

e

l














        (2.9) 

Making 
x


 the subject, equation (2.9) becomes; 

A

s

A

Q

D
f

x

A

A

Q

x

p

e

l


 









2

3
         (2.10) 

 with the boundary condition 

P(0) = Po.             (2.11) 

where  Po is the inlet pressure and P(0) is the pressure at the entrance of the tube.  

2.2.3 The tube law 

The tube law relates the transmural pressure (P-PE) to the cross-sectional  area of an 

ellastic tube. According to (Shapiro 1977), it is given by 













0A

A
pp E  ,          (2.12) 

where the left hand side of the equation represents transmural pressure and the right 

hand side is a function of the ratio of the tube’s cross-sectional area to the initial area. 

Putting into consideration the longitudinal tension in the tube law (Cancelli and 

Pedley (1985), equation (2.10) becomes 

2

2

x

A
T

A

A
pp

o

E













  ,        (2.13) 
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where T is the longitudinal tension the tube is subjected to. In the highly collapsed 

region the tube wall resembles two flattish membranes under tension, with the 

longitudinal curvature roughly propotional to 
2

2

x

A




. The function 









0A

A
 is defined as 
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<01

AAif
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A
K

AAif
A

A
K

A

A

E

o

p

      ( 2.14)

 

where EK and pK are the tube’s stiffness when the tube is extended and collapsed 

respectively. The boundary conditions for equation (2.13) are  as follows:            

A(0) =A0 ,   A(L) = A0        

where A(0)  and   A(L) represent the area at the entrance and the end of the tube 

respectively, and A0 represents area at the inlet. 

However, according to Shapiro (1977),  equation (2.14) reduces to the function 

  )( 2

3


  n

PE
K          (2.15) 

where 
0A

A
 and PEK is the combined stiffness, which  represents the overall 

stiffness of the tube, whether collapsed or distended.  The value n=10 has been 

established as the standard,  and has been used by many authours: among them Pedley 

(1980, 1996); Elad, et al. (1991); Brook and Pedley (2002). 

Equation (2.13) reduces to  

2

2

2

3

)(
x

A
TKpp n

PEE







       (2.16) 

with the boundary conditions: A(0) =A0 ,   A(L) = A0   
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2.3 METHOD OF SOLUTION 

The system of non-linear equations obtained for this particular flow problem, i.e. 

equations (2.10) and (2.16), will be solved using the numerical approximation method 

of finite differences. The derivatives in the governing equations will be replaced by 

their corresponding   finite approximations. 

Equation (2.10) will be discretized using forward differencing for area and pressure 

derivatives. One can approximate the term 
 

dx

xdf
 at discrete node points by first 

taking the Taylor expansion of  xf evaluated at the points xi and xi-1expanded about 

a node point x = xi. Assuming that    ii xxcxf ,1

2

  we get that; 

   
   

...
2 2

22

1 
dx

nfdk

dx

xdf
kxfxf ii

ii for some  iii xxn ,1   (2.17)                     

Hence:- 

   
   

...
2 2

22

1  
dx

nfdk

dx

xdf
kxfxf ii

ii .      (2.18) 

Thus the approximation, 

     
k

xfxf

dx

xdf iii 1
         (2.19) 

which gives the general form for first order derivatives written in finite difference 

form. The higher powers are dropped because since their value tends to zero, k is the 

step size and its value when raised to a power tends to zero. 

Discretizing equation (2.10) for area and pressure derivatives yields; 

 

     iA

s

iA

Q

D
xf

iA

AAQ
pp

im

i

ime

L

im

ii
ii





 

 3

1

2

1     (2.20) 
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where is  is the peripheral length and is expressed as 


 i
i

A
s 2 , )(iAim   is the area 

at pressure nodes and is expressed as Ni
AA

iA ii

im ...2
2

)( 1 


   and De is 

the hydraulic diameter expressed as De = 2 r . 

Equation (2.16) will also be discretized for the cross sectional area by making use of 

the finite difference’s central differencing scheme.At discrete points approximation to 

the term 
 
2

2

x

xA




 is needed. The Taylor expansion of A(x) about a node point x=xi 

evaluated at the nodes 1ix and 1ix with ix - 1ix =k for i=1…N is, 

   
     

...
!32 3

33

2

22

1 















x

xAk

x

xAk

x

xA
kxAxA iii

ii       (2.21) 

   
     

...
!32 3

33

2

22

1 















x

xAk

x

xAk

x

xA
kxAxA iii

ii     ( 2.22) 

Summing these equations yields;  

     
 
2

2
2

11 2
x

xA
kxAxAxA i

iii



  .          (2.23) 

Making  the term 
 
2

2

x

xA i




the subject of the equation yields; 

 
    iii

i AxxAxA
kx

xA
2

1
1122

2





      (2.24) 

Equation (2.16) is thus discretized with central differencing of 
2

2

x

A




to yield; 



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


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
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
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 2

3

10

2

11 2
PEiE

iii Kpp
x

AAA
T  .       (2.25) 
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  The right hand side of equation (2.25) is linearized using the Taylor expansion of the 

term 
















2

3

10 PEK     expanded about the point Ai=c to get equation (2.26) as: 
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           …………………. (2.26) 

 

In the next chapter, equation (2.26) has been rearranged and written in Matrix form. A 

tridiagonal matrix has also been derived. The results obtained after solving these 

equations using MATLAB program have been presented and discussed. 
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CHAPTER THREE 

3.0 RESULTS AND DISCUSSIONS  

In this chapter the specific equations governing the flow have been presented and 

written in finite difference form. They have been further written in the equivalent 

matrix form. The effects of various flow parameters i.e. tube stiffness, longitudinal 

tension and volumetric flow rate on cross sectional area; flow velocity and internal 

pressure are presented in form of graphs. 

3.1 EQUATIONS GOVERNING THE FLUID FLOW IN FINITE DIFFERENCE FORM. 

The governing equations describing the steady, incompressible fluid flow through a 

cylindrical collapsible tube, i.e. equations (2.10) and (2.16), in finite difference form 

are given subject to their boundary conditions as: 

 

     iA
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
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 3
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1      (3.0) 

Subject to the boundary condition; 

P(0)=Po.          (3.1) 

 where Po is the pressure at the inlet. 

  and 
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    (3.2) 

Rearranging equation (3.2) in order to put the like terms together yields; 
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 Equation (3.3) is subject to the following boundary conditions;  

A1 =A0, AN = A0  

where A0 is the area at the inlet. 

Equation (3.3) is applied at all the nodes and a system of linear algebraic equations is 

obtained as shown below. 
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The values of the dependent variable A at i=1(the lower boundary) and at i=N (the 

upper boundary) are given, therefore, the first equation (3.4) and the last equation 

(3.8) can be written as; 
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When these equations are represented in a matrix form, the coefficient matrix is 

tridiagonal meaning that it has non-zero elements only on the main diagonal, the first 

diagonal below this and the first diagonal above the main diagonal. The matrix system 

is of the form RAB


 where B is the tridiagonal matrix. 

To write the equations in matrix form, let   represent 
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The matrix system of the form RAB


  is as shown below. 
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The tridiagonal matrix B is given by; 
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And vector R is given by: 
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3.1.1 Data Representation 

The tridiagonal matrix obtained along with vector R were used to obtain the  

following graphs using MATLAB program code. The values for the flow variables 

i.e. cross sectional area, flow velocity and internal pressure are taken at the point 

where the collapse of the tube is mostly felt, that being midway along the length of 

the tube. 
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3.2.EFFECTS OF VARYING LONGITUDINAL TENSION AND TUBE STIFFNESS ON THE 

CROSS SECTIONAL AREA OF A COLLAPSIBLE TUBE. 

3.2.0 Introduction 

In order to determine the effect of longitudinal tension on the cross sectional area of 

the collapsible tube, the tube stiffness along with other parameters were held constant 

while the longitudinal tension was varied. Three curves were obtained. On the same 

axes, another two curves were plotted when the tube stiffness was varied while the 

other parameters were held constant. This is as shown in graph 3.1. 

The effect of varying the longitudinal tension on the cross sectional area of the 

collapsible tube with tube stiffness held constant is shown by Curves 1,2 and 3 in 

Graph 3.1. On the same graph, the effect of varying tube stiffness on the cross 

sectional area of the collapsible tube  with longitudinal tension constant is shown by 

Curves 1, 4 and 5. 
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GRAPH OF THE CROSS SECTIONAL AREA VERSUS DISTANCE ALONG 

THE COLLAPSIBLE TUBE WITH LONGITUDINAL TENSION AND TUBE 

STIFFNESS  CHANGING. 

 

 

Graph 3.1: Cross sectional area versus distance for Q=510 
-6

, ρ=1.010
 3 

                          

Pe=4.0010 
3  

    r=4.310 
-3
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3.2.1 Results and Discussion 

From Graph 3.1 it is observed that when the longitudinal tension was increased from 

400N to 800N holding the tube stiffness constant (1.21×10
-5

), the cross sectional area 

increased from 6.206×10
-6

 to 3.215×10
-5

square meters. This is shown by Curves 1, 2 

and 3.This can be explained by the reduction of the tube’s tendency to collapse as the 

longitudinal tension increases which consequently leads to decrease in collapse hence 

increase in the cross sectional area. 

From Graph 3.1, using Curves 1, 4 and 5, it is also noted that when the tube stiffness 

was increased from 1.21×10
-5

 to 1.21×10
-1

 holding the longitudinal tension constant, 

the cross sectional area increased from 6.206×10
-6

 to 1.531×10
-5

 square meters. This 

is because as the tube’s stiffness increases, the tendency of the tube to collapse 

decreases hence the cross sectional area increases. 
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3.3 EFFECTS OF VARYING LONGITUDINAL TENSION AND TUBE STIFFNESS ON THE 

FLOW VELOCITY 

3.3.0 Introduction 

In this section the effects of the longitudinal tension and the tube stiffness on the 

velocity of the flow through a collapsible tube were investigated. The longitudinal 

tension was first varied while holding the tube stiffness constant and three curves 

were plotted. Similarly, when the tube stiffness was varied and longitudinal tension 

was held constant; two more curves were plotted on the same axes. 

The resulting curves are as shown in Graph 3.2. The effect of varying the longitudinal 

tension on the flow velocity while holding the tube stiffness constant is shown by 

Curves1, 2 and 3. Curves 1, 4 and 5 on the same Graph 3.2, show the effect of varying 

the tube stiffness on the flow velocity when the longitudinal tension is held constant.  
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GRAPH OF FLOW VELOCITY VERSUS DISTANCE ALONG THE 

COLLAPSIBLE TUBE  WITH LONGITUDINAL TENSION AND TUBE 

STIFFNESS CHANGING. 

 

 

Graph 3.2: Flow velocity versus distance for Q=510 
-6

, ρ=1.010 
3 

                          

Pe=4.0010
 3

      r=4.310 
-3

      

 



33 

 

3.3.1 Results and Discussion 

 From Graph 3.2, it is observed that the longitudinal tension is inversely proportional 

to the flow velocity. As the longitudinal tension increases from 400N to 800N, the 

flow velocity decreases from 0.8051 to 0.1555 m/s. This is as shown by Curves 1, 2 

and 3. The flow velocity decreases when the longitudinal tension increases because of 

the already increased cross sectional area. This happens in order to maintain a 

constant discharge.  

Similarly, it is noted that as the tube stiffness increases, the flow velocity decreases. 

As the tube stiffness increases from 1.21×10
-5

 to 1.21×10
-1

, the flow velocity 

decreases from 0.8051m/s to 0.3267 m/s. This is as shown by Curves 1, 4 and 5. The 

decrease in flow velocity is due to the already increase in cross sectional area which 

had resulted from a decrease in collapse. This helps maintain a constant volumetric 

flow rate. A decrease in collapse leads to a decrease in the flow velocity. 
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3.4 EFFECTS OF VARYING LONGITUDINAL TENSION AND TUBE STIFFNESS ON THE 

INTERNAL PRESSURE 

3.4.0 Introduction 

To investigate the effects of the longitudinal tension and the tube stiffness on the 

internal pressure of a collapsible tube, the tube stiffness was first held constant while 

the longitudinal tension was varied and three curves were obtained. The longitudinal 

tension was then held constant while the tube stiffness was varied. The five curves 

obtained were then plotted on the same axes as shown in Graph 3.3 below. 

The effect of varying the longitudinal tension on the internal pressure while holding 

the tube stiffness constant is shown by Curves 1, 2 and 3, while the effect  of varying 

the tube stiffness on the internal pressure when the longitudinal tension is held 

constant is shown by Curves 1, 4 and 5 in Graph 3.3. 
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GRAPH OF INTERNAL PRESSURE VERSUS DISTANCE ALONG THE 

COLLAPSIBLE TUBE WITH LONGITUDINAL TENSION AND TUBE 

STIFFNESS CHANGING 

 

 

 

 

Graph 3.3: Internal pressure  versus distance for Q=510 
-6

, ρ=1.010
 3

                           

Pe=4.0010
 3       

r=4.310 
-3
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3.4.1 Results and Discussion 

From Graph 3.3, it is observed that as the longitudinal tension increases the internal 

pressure increases. When the longitudinal tension is 400N the internal pressure is 

3679 Pascals and when the longitudinal tension is increased to 800N, the internal 

pressure increases to 3992 Pascals. The increase in internal pressure as the 

longitudinal tension increases is due to the decrease in flow velocity. From Bernoulli 

principle, the sum of pressure energy at any part plus the kinetic energy per unit 

volume plus the potential energy per unit volume at that point is always constant and 

therefore a decrease in flow velocity leads to an increase in pressure. 

From the same Graph 3.3, it is also noted that as the tube stiffness increases the 

internal pressure increases. When the tube stiffness was increased from 1.21×10
-5

 to 

1.21×10
-1

, the internal pressure increased from 3679 Pascals to 3950 Pascals. This is 

as a result of the decrease in flow velocity. It is also observed that at the point where 

the collapse is mostly felt, the internal pressure is minimal. 
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3.5 EFFECTS OF VARYING VOLUMETRIC FLOW RATE ON THE CROSS SECTIONAL 

AREA 

3.5.0 Introduction 

To investigate the effects of volumetric flow rate on the cross sectional area of a 

collapsible tube, the longitudinal tension and the tube stiffness along with the other 

parameters were held constant while the volumetric flow rate was varied. The curves 

obtained were plotted on the same axes as shown in Graph 3.4 below. 

 

GRAPH OF CROSS SECTIONAL AREA VERSUS DISTANCE ALONG THE 

COLLAPSIBLE TUBE WITH VOLUMETRIC FLOW RATE CHANGING 

 

Graph 3.4: Cross sectional area versus distance for T=4.010
 2     

KPE=1.2110
-5

    

ρ=1.010
 3   

Pe=4.0010
 3

         r=4.310
 -3
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3.5.1 Results and Discussion 

From Graph 3.4 it is observed that change in the volumetric flow rate does not affect 

the cross sectional area meaning that the cross sectional area is largely independent of 

the flow rate.  The cross sectional area remains as 6.206×10
-6

 as the volumetric flow 

rate changes. This is because as the flow rate increases, the pressure drop increases in 

order to maintain the steady flow rate. 
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3.6 EFFECTS OF VARYING VOLUMETRIC FLOW RATE ON THE FLOW VELOCITY 

3.6.0 Introduction 

In this study, the volumetric flow rate was varied while the other parameters were 

held constant. The curves obtained were then plotted on the same axes as shown in 

Graph 3.5 below. 

 

GRAPH OF FLOW VELOCITY VERSUS DISTANCE ALONG THE 

COLLAPSIBLE TUBE WITH VOLUMETRIC FLOW RATE CHANGING 

 

Graph 3.5: Flow velocity versus distance for   T=4.010
 2         

KpE=1.2110
-5

       

ρ=1.010
 3 

Pe=4.0010
 3

      r=4.310
 -3
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3.6.1 Results and Discussion 

 From Graph 3.5 it is observed that as volumetric flow rate increases, the flow 

velocity also increases. As the volumetric flow rate increases from 1×10
-6

 to 10×10
-6

, 

the flow velocity increases from 0.1611 m/s to 1.611 m/s. This is because the 

volumetric flow rate is directly proportional to the flow velocity for a given cross 

sectional area. In this case the cross sectional area is constant hence an increase in 

volumetric flow rate translates to an increase in the flow velocity. 
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3.7 EFFECTS OF VARYING VOLUMETRIC FLOW RATE ON THE INTERNAL PRESSURE. 

3.7.0 Introduction 

To investigate the effects of volumetric flow rate on the internal pressure of a 

collapsible tube, different values of volumetric flow rate were used to plot curves 

while the other parameters were held constant. The curves obtained were plotted on 

the same axes as shown in figure 3.6 below 

 

GRAPH OF INTERNAL PRESSURE VERSUS DISTANCE ALONG THE 

COLLAPSIBLE TUBE WITH VOLUMETRIC FLOW RATE CHANGING 

 

Graph 3.6: Internal pressure versus distance for T=4.010 
2     

KpE=1.2110
-5           

ρ=1.010
 3  

Pe=4.0010
 3

      r=4.310
 -3

       

3.7.1 Results and Discussion  
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From Graph 3.6, it is noted that as volumetric flow rate increases, the internal 

pressure decreases. As the volumetric flow rate increases from 1×10
-6

 to 10×10
-6

, the 

internal pressure decreases from 3987 Pascals to 2718 Pascals. This is as a result of 

the already increased flow velocity. From Bernoulli principle an increase in flow 

velocity leads to a decrease in pressure. 
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3.8 DISCUSSION 

Longitudinal tension describes how tight the tube is pulled out when attached at the 

edges. Tube’s stiffness describes the tube’s capability of resistance to elastic 

deformation in response to an applied force. The volumetric flow rate refers to the 

volume of fluid which passes through a given surface per unit time. 

As fluid flows through the collapsible tube there is collision between molecules hence 

a decrease in kinetic energy. Pressure energy is converted into kinetic energy to 

maintain the flow velocity. This leads to a decrease in internal pressure. Since the 

external pressure remains constant, it exceeds the internal pressure causing the tube to 

collapse. The collapse leads to a decrease in cross sectional area and consequently the 

flow velocity increases in order to maintain a constant flow rate.  

An increase in velocity of the fluid leads to an increase in the collision between the 

molecules hence greater loss in kinetic energy. This causes the internal pressure to 

decrease even more. In addition, according to Bernoulli principle, an increase in fluid 

velocity leads to a decrease in pressure.  

The extent to which the tube collapses is dependent on the tube stiffness and the 

longitudinal tension. An increase in these parameters reduces the tube’s tendency to 

collapse and therefore leads to an increase in the cross sectional area of the tube. 

The volumetric flow rate is largely independent of the cross sectional area and 

therefore any change in the discharge affects the flow velocity and consequently the 

internal pressure. 
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3.8.1 Validation of Results 

From this study it has been noted that when the discharge varies, the results obtained 

for the internal pressure and cross sectional area show the same trend as those 

obtained by Brian (2003). 

The conclusions of this research study have been done in the next chapter. Finally, 

recommendations of areas on collapsible tubes that require further research have also 

been outlined. 
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CHAPTER FOUR 

4.0 CONCLUSIONS AND RECOMMENDATIONS  

This chapter presents conclusion of this research study and recommendations on areas 

that require further research. 

4.1 CONCLUSION 

i. Analysis of the effect of longitudinal tension on the cross sectional area, flow 

velocity and internal pressure of a collapsible tube has been carried out. The 

conclusion is that an increase in longitudinal tension leads to an increase in the 

cross sectional area, decrease in flow velocity and an increase in the internal 

pressure. 

ii. The effect of tube stiffness on the cross sectional area, flow velocity and 

internal pressure indicate that the tube’s stiffness is directly proportional to 

both the cross sectional area and internal pressure and inversely proportional 

to the flow velocity. 

iii. Change in volumetric flow rate has no effect on the cross sectional area but it 

is directly proportional to flow velocity and inversely proportional to internal 

pressure. 
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4.2 RECOMMENDATIONS 

It is recommended that further research should be carried out on; 

i. Fluid flow through collapsible tube for a turbulent flow. 

ii. Unsteady fluid flow through a collapsible tube. 

iii. Flow through collapsible tube with tensile force varying 

iv. Flow through other geometric shapes of collapsible tube. 

v. Flow through porous collapsible tube. 
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APPENDIX  

COMPUTER CODE 

The following is the MATLAB program code that was used to obtain the graphs 

labeled 3.1-3.6. The parameters varied were: Longitudinal tension (T), Tube’s 

stiffness (KPE) and Volumetric flow rate (Q). 

 
clear; clc; 

global  kpe n 

outcount =1; 

Q(outcount)=5*10^(-outcount -5); 

  

n=100;  % number of nodes to calculate A at 

kpe =1.21*10^-5; 

T=4.0*10^2;         % tensile force 

L=0.2;            

r=4.3*10^(-3);    %tube radius 

Pe=4.00*10^3;       % external pressure 

rho=1.0*10^3;      % density of fluid 

nu = 1.004*10^-6;     % kinematic viscosity of fluid 

A0= 3.142*r*r;         % initial area 

c=0.5*A0; 

delx=L/n;               % spatial step size 

P(1) = 4.00*10^3;      % input pressure 

epsilon = 10^(-15);       % error tolerance 

% solve for Area 

counter = 0;              % initialize counter for the iterations 

error=10; 

Aold=A0; 

A(1:n)=A0; 

V(1)=Q(outcount)/A0; 

  

for m=2:n 

   

    P(m)=P(1) ; 
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end 

  

 R(1)=-P(2)+Pe+kpe*((c/A0)^10-(c/A0)^-1.5) -

kpe*10*(c/A0)^10+1.5*(c/A0)^(-1.5)- (T*A(1))/(delx^2); 

for i=2:n-3 

    

    R(i)=-P(i)+Pe+kpe*((c/A0)^10-(c/A0)^-1.5) -

kpe*10*(c/A0)^10+1.5*(c/A0)^(-1.5); 

end 

  

 R(n-2)=-P(n-1)+Pe+kpe*((c/A0)^10-(c/A0)^-1.5) -

kpe*10*(c/A0)^10+1.5*(c/A0)^(-1.5)- (T*A(n))/(delx^2); 

  

% matrix building (Tri-diagonal symmetric matrix) 

Bmatrix=diag((-2*T/(delx^2)+kpe*((10/c)*(c/A0)^10+(1.5/c)*(c/A0)^(-

1.5) ) * ones(1,n-2)),0);% Diagonal of matrix 

  

Bmatrix=Bmatrix+diag(ones(1,n-3)* ( T / (delx^2) ),1);% Superdiagonal 

  

Bmatrix=Bmatrix+diag(ones(1,n-3)*(T/(delx^2) ),-1); %Subdiagonal 

  

% correct the diagonal matrices 

Bmatrix(1,1)=(- (2*T)/(delx^2)+kpe*(10/c)*(c/A0)^10+(1.5/c)*(c/A0)^(-

1.5)); 

Bmatrix(n-2,n-2)=(- 

(2*T)/(delx^2)+kpe*(10/c)*(c/A0)^10+(1.5/c)*(c/A0)^(-1.5)); 

Bmatrix(1,2) =  T / (delx^2); 

Bmatrix(n-2,n-3)= T / (delx^2); 

%Solve for new Area values 

A(2:n-1) = transpose(Bmatrix\R'); 

  

%figure Aim (area at staggered nodes) 

Aim(1)=0; 

for i=2:n 

    Aim(i)=(A(i)+A(i-1))/2; 

end 
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%figure Peripheral length, S 

for i=1:n 

    S(i)=2*pi*sqrt(A(i)/pi); 

     

end 

%   figure frictional coefficient 

  

lambda=steadylamfun28(Q(outcount),r,A(i), nu);  

for j=2:n 

    P(j)=P(j-1)+(rho*Q(outcount)^2*(A(j)-A(j-1))) / (Aim(j)^3);  

     P(j)=P(j)-(rho*nu*delx*Q(outcount))*(lambda(j)*S(j)) / 

((Aim(j)^2)*2*r);  

     V(j)=(Q(outcount))/A(j); 

  

     

end         % of pressure solution loop 

  

% check error 

if (counter > 1) 

    error = norm(Aold-A,inf); 

end 

Aold = A; 

% ends iteration at each flow rate value 

error; 

counter; 

x4graph=linspace(0,1,n); 

figure(1) 

grid on 

plot(x4graph,A,'k:'); 

title('Cross-section area vs Distance along the tube'); 

xlabel('Distance x(m)'); 

ylabel('Area in Sq. metre'); 

hold on 

  

figure(2) 
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grid on 

plot(x4graph, P,'k:'); 

title('internal pressure (Pa) vs x'); 

xlabel('Distance x(m)'); 

ylabel('internal pressure in Pa.'); 

hold on 

figure(3) 

grid on 

x4graph=linspace(0,1,n); 

plot(x4graph,V,'k:');   

title(' Flow Velocity vs Distance x along the tube'); 

xlabel('Distance x (m) along the tube'); 

ylabel('Flow Velocity (m/s)'); 

hold on 

  

  

  

  

 

 

 


