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ABSTRACT 

A web service is an implementation of service-oriented architecture which extends World Wide 

Web infrastructure thus providing means of integrating software applications in loosely coupled 

distributed systems. It provides an abstract interface in which applications access services via 

ubiquitous web protocols and data formats such as HTTP, XML and SOAP. Web services 

communication is aided by Simple Object Access Protocol (SOAP). SOAP provides a simple 

and lightweight mechanism for exchanging structured and typed information between peers in a 

decentralized, distributed computing environment using XML. SOAP beats its competitors like 

CORBA and Java RMI due to its simplicity, flexibility, robustness, extensibility and inter-

operability in heterogeneous systems. However, SOAP transmits its data represented in XML. 

XML documents are huge in size and verbose thus becoming a major hindrance in performance 

for high performance applications that process lots of data. This research improves the 

performance of XML-based messaging technique in SOAP communication model of 

applications implemented in web services. To improve SOAP performance, a combination of 

techniques was integrated which include: client-side caching, simple server-side database 

queries, compression technique and document-literal style description of WSDL. A relatively 

high turn-around time and lower network throughput is recorded. Nevertheless, performance of 

SOAP is improved in terms of bandwidth utilization and transfer time while running SOAP web 

service applications. This can be useful in disadvantaged networks (10mbps) and subsequently 

save costs in communication. 
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CHAPTER ONE 

1 INTRODUCTION 

1.1 BACKGROUND INFORMATION 

The internet is growing very fast, it has become an important tool in communication, providing 

services and sharing information. Many organizations, institutions and individuals have 

embraced internet in many ways e.g. e-commerce, blogs etc. Such services can be provided in 

the internet by using Service-Oriented Architecture (SOA), Web Oriented Architecture (WOA) 

etc. SOA is being adopted by many programmers as a way of integrating software systems and 

providing different services thus building dynamic systems that are loosely coupled (Bianco et 

al., 2007). A loosely coupled system is one which each of its components has, or makes use of, 

little or no knowledge of the definitions of other separate components. 

There are various technologies that implement SOA, including Common Object Request Broker 

Architecture (CORBA) (IONA Technologies, 2005), Java Remote Method Invocation (RMI) 

(Grosso, 2001), Component Object Model (COM) (Microsoft, 2013) and web services (Booth et 

al., 2004). There are various advantages and disadvantages of adopting either of these 

technologies in implementing SOA. Web service implementation using SOAP gives it the 

capability of being platform independent and the ability of going through firewalls without being 

recognized. SOAP messages are encapsulated within HTTP. HTTP is a universal standard in the 

World Wide Web. Firewalls by default allow traffic through port 80 which HTTP uses in 

communication. Moreover, web services work in heterogeneous systems; this makes it stand out 

amongst its equals which are monolithic in nature (Coulouris et al., 2009). 
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A web service provides a network accessible interface of functionality/methods for an 

application. It is built using standard internet technologies e.g. e.g. HTTP, XML, SMTP, Jabber 

etc. From a programmer’s perspective, a web service is an abstract layer invoked to provide 

services; separating programmers from web service specific details (Snell et al., 2001). A web 

service is invoked programmatically to provide services to the software developer as shown in 

Figure 1.1. 

 

 

 

 

 

A web service interface generally consists of a collection of interfaces that can be used by a 

client over the internet. Operations in a web service may be provided by different resources, for 

example, programs, objects or databases. A web service may either be managed by a web server 

along with other pages; or it may be a totally separate service (Coulouris et al., 2009). Web 

services are platform independent and can be invoked from any programming language. Client 

applications, like web browsers, that understand these technologies (HTTP and HTML) can 

interact with the web service efficiently (Snell et al., 2001) (Coulouris et al., 2009). 

The key characteristic of web services is that, they can process XML-formatted SOAP messages. 

Each web service uses its own service description to deal with the service-specific characteristics 

of the message it receives (Coulouris et al., 2009). Communication in web services is enhanced 

 

Figure 1.1: Web services abstract layer in the cloud 

(Adopted from Snell et al. (2001)) 
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by SOAP that does the packaging of the actual message being transmitted. SOAP relies on XML 

in formatting the messages. 

SOAP provides a simple and lightweight mechanism for exchanging structured and typed 

information between peers in a decentralized, distributed environment using XML. SOAP does 

not itself define any application semantics such as a programming model or implementation 

specific semantics; rather it defines a simple mechanism for expressing application semantics by 

providing a modular packaging model and encoding mechanisms for encoding data within 

modules. This allows SOAP to be used in a large variety of systems ranging from messaging 

systems to RPC (Don et al., 2000). 

SOAP uses XML to represent messages and HTTP in communication in web services. 

Programmers do not normally need to be concerned with these details. This is as a results of 

SOAP Application Programming Interfaces (APIs) which have been implemented in many 

programming languages, including Java, JavaScript, Perl, Python, .NET, C, C++, C# and Visual 

Basic. To support client-server communication, SOAP specifies how to use the HTTP POST 

method for the request message and response for the reply message. The combination of XML 

and HTTP provides a standard method for client-server communication over the internet 

(Coulouris et al., 2009). 

Both SOAP and the data it carries are represented in XML – a textual self-describing format. 

Textual representation takes up more space than binary ones and requires more space to process. 

In document style interactions, speed is not an issue, but is important in request-reply 

interactions. However, it can be argued that there is an advantage in human-readable format that 

allows for easy construction of simple messages and for debugging more complex messages. It 
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also allows a user to see the text in a message before it. But there are situations in which it is too 

slow (Coulouris et al., 2009). 

Each item in an XML description is annotated with its type and the meaning of each type is 

defined by a schema reference within the description. This makes the format extensible, enabling 

any type of data to be transported. There is no limit on the potential richness and complexity of 

document format in XML, but there could be a problem for those that become unduly complex 

(Coulouris et al., 2009). 

SOAP is a robust and extensible protocol for the exchange of messages. SOAP is the most 

widely used communication protocol in the web services model. SOAP’s XML-based message 

format hinders its performance, thus making it unsuitable in high-performance scientific 

applications. The deserialization of SOAP messages, which includes processing of XML data 

and conversion of strings to in-memory data types, is the major performance bottleneck in a 

SOAP message exchange (Nayef et al., 2005). 

1.2 PROBLEM STATEMENT 

Web services extends World Wide Web infrastructure to provide means for software to connect 

to other software applications in loosely coupled distributed systems. Applications access web 

services via ubiquitous (universal) web protocols and data formats such as HTTP, XML and 

SOAP, with no need to worry about how web services are implemented (Microsoft, 2013). 

Communication in web services is aided by SOAP. SOAP is a standardized de facto XML-based 

protocol for packaging, services invocation and exchanging messages in web service interfaces. 

SOAP specifications defines nothing more than a simple XML-based envelope for information 
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being transferred, and a set of rules for translating application and platform-specific data types 

into XML representations (Snell et al., 2001). 

XML’s structure is verbose (redundant textual characteristics and it uses tags to delimit the data) 

which generates huge documents. This results to considerable network traffic, poor bandwidth 

utilization and higher latency than competing technologies, like Java RMI and CORBA. 

Moreover, generation and parsing of SOAP messages and their conversion to-and-from in-

memory application data is computationally very expensive in high performance applications 

resulting to high costs of implementing SOAP web-based applications. Therefore, SOAP’s 

dependency on XML in communication reduces its performance in high performance 

applications (Coulouris et al., 2009) (Tekli et al., 2011) (Seyyed et al., 2011). 

1.3 JUSTIFICATION 

Organizations focus on making profit and reducing expenses. The cost of accessing internet is 

relatively high and end users usually want quick response to services they request while using 

software applications. SOAP is a technology used in implementing communication in web 

services. SOAP is standardized to do packaging of its messages using XML. However, SOAP-

XML in communication is slow in high performance applications and its verbose structure 

consumes more bandwidth, which reduces the performance of SOAP (Coulouris et al., 2009).  

This research improves performance of SOAP-XML messages by reducing the size of the 

messages being transmitted. This improves bandwidth utilization and reduces cost of running 

web services-based applications. 
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1.4 OBJECTIVES 

1.4.1 GENERAL OBJECTIVE 

This research investigates SOAP performance to improve its communication in web services. 

This is aimed at improving performance of SOAP communication channel in high performance 

applications in disadvantaged networks. This eventually improves bandwidth utilization and 

transfer time of SOAP messages in web services, hence improves the costs of running software 

applications. 

1.4.2 SPECIFIC OBJECTIVES 

(i) To investigate the relationship between SOAP and web services  

(ii) To investigate SOAP performance bottlenecks 

(iii)To identify techniques used to overcome SOAP performance bottlenecks 

(iv) To develop a hybrid architecture that improves SOAP performance in communication 

(v) To implement, test and evaluate the developed hybrid architecture 

1.5 RESEARCH QUESTIONS 

(i) What is the relationship between SOAP and web services? 

(ii) What are some of the bottlenecks in SOAP performance? 

(iii)What are some of the techniques that have been used to overcome SOAP performance 

bottlenecks? 

(iv) Can we develop a hybrid architecture that improves SOAP performance in 

communication? 

(v) How can we implement, test and evaluate the developed hybrid architecture? 
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1.6 SCOPE 

This research investigates web services and its implementation in SOAP. We then give an insight 

of the relationship between web service and SOAP, SOAP performance measures and evaluation 

tool, bottlenecks facing SOAP, techniques used in overcoming these bottlenecks and the 

developed hybrid architecture. We then implemented the hybrid architecture, set-up experiments, 

and collected data, evaluated, and subsequently discussed research’s results. SOAP web services 

are implemented in ASP.NET. We then examine SOAP on HTTP in a local area network. 

1.7 STRUCTURE OF THESIS 

The rest of this research is divided into several chapters. Chapter two discusses literature review. 

Chapter three outlines software development. Chapter four covers experiment data collection, 

results and discussion. Chapter five gives summary, conclusions and recommendations. 
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.1 SERVICE-ORIENTED ARCHITECTURE 

A service is an implementation of well-defined business functionality. These services can then be 

consumed by clients in different applications or business processes (Qusay, 2005). 

Service-Oriented Architecture (SOA) can be defined in many ways: 

o SOA is an architectural style for building software applications that use services available 

in a network such as the web (Qusay, 2005). 

o SOA is a loosely-coupled architecture designed to meet the business needs of the 

organization (Linthicum, 2013). 

o SOA is an IT architectural style that supports the transformation of your business into a 

set of linked services, or repeatable business tasks that can be accessed when needed over 

a network (IBM, 2013). 

SOA is a very popular paradigm in developing distributed systems. SOA is flexible, extensible 

and robust in the sense that it allows for the reuse of existing assets where new services can be 

created from an existing IT infrastructure of systems. This enables businesses to leverage 

existing investments by allowing them to reuse existing applications. SOA promises 

interoperability between heterogeneous applications and technologies (Qusay, 2005). Service-

oriented applications expose business logic via services. 

Internet growth is immense and continuous. It has become an important tool in communication, 

providing services and sharing information. Organizations are embracing the internet in many 

ways e.g. e-commerce, blogs among others. Such services can be provided in the internet by 
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using SOA, WOA etc. in software applications. SOA is emerging as the premier integration and 

architecture framework in today's complex and heterogeneous computing environment (Qusay, 

2005). SOA is being adopted by many programmers as a way integrating software systems and 

providing different services thus building dynamic systems that are of loosely coupled 

architecture. Technologies that implement SOA include: CORBA, Java RMI, COM and web 

services. 

There has been a paradigm shift from object oriented analysis and design in the 80’s to 

component-based development design in the 90’s and now we have service-oriented architecture. 

This is a transformation from remotely invocation of objects to message passing between 

services. Schemas in service-oriented describe not only the structure of messages, but also 

behavioral contracts to define acceptable message exchange patterns and policies to define 

service semantics. These characteristics promote interoperability and thus provide adaptable 

benefits. This implies that a message sent from one service to another is done without the 

programmer’s consideration of how the service handling these messages has been implemented 

(Linthicum, 2013). 

2.2 ROLES OF A SERVICE-ORIENTED ARCHITECTURE 

The roles of a SOA, as shown in Figure 2.1, are as follows (Endrei et al., 2004): 

(i) Service consumer: This is an application, a software module or another service that 

requires a service. It initiates the enquiry of the service in the registry, binds to the service 

over a transport, and executes the service function. The service consumer executes the 

service according to the interface contract. 
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(ii) Service provider: This is a network-addressable entity that accepts and executes requests 

from consumers. It publishes its services and interface contract to the service registry so 

that the service consumer can discover and access the service. 

(iii) Service registry: This is the enabler for service discovery. It contains a repository of 

available services and allows for the lookup of service provider interfaces to interested 

service consumers. 

 

 

 

 

 

 

 

 

2.3 OPERATIONS IN A SERVICE-ORIENTED ARCHITECTURE 

The operations in a service-oriented architecture are as follows (Endrei et al., 2004): 

(i) Publish: This makes a service accessible. A service description must be published so that 

it can be discovered and invoked by a service consumer. 

(ii) Find: A service requestor locates a service by querying the service registry for a service 

that meets its criteria. 

Interaction 

Publish Find 

Service Registry 

Service Consumer 
Service Provider 

Client Service 

Service 

Contract 

………

….……

………. 

Figure 2.1: Roles of a service-oriented architecture 

Adopted from Snell et al. (2001) 
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(iii) Bind and invoke: After retrieving the service description, the service consumer proceeds 

to invoke the service according to the information in the service description. 

The artifacts in a service-oriented architecture are as follows (Endrei et al., 2004): 

(i) Service: A service that is made available for use through a published interface that allows 

it to be invoked by the service consumer. 

(ii) Service description: A service description specifies the way a service consumer will 

interact with the service provider. It specifies the format of the request and response from 

the service. This description may specify a set of preconditions, post conditions and/or 

quality of service (QoS) levels. 

Some of SOA characteristics are: its self-contained (can be deployed independently), it is a 

distributed component (its services are available over the network and can be accessible through 

a name or locator other than an absolute internet address), it has a published interface (users of 

the service only need to see the interface and can be oblivious to implementation details), 

interoperability in heterogeneous systems (service users and providers can use different 

implementation languages and platforms), it is discoverable (has a special directory service that 

allows the service to be registered and users can look for services) and dynamically bound (the 

service is located and bound at runtime) (Bianco et al., 2007). 

Web service is one of the standard-based techniques to realize SOA. There are various 

advantages and disadvantages of adopting CORBA, Java RMI, COM or web services in 

implementing SOA. Web service stands out amongst its equals who are monolithic in nature. 

Moreover, web service is platform independent, can be integrated in various heterogeneous 
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applications, has the capability of riding on HTTP and can go through firewalls without being 

recognized. 

2.3.1 WEB SERVICE IN SERVICE-ORIENTED ARCHITECTURE 

Web services can be defined in various ways: 

o Web services extend the World Wide Web infrastructure to provide the means for 

software to connect to other software applications. Applications access Web services via 

ubiquitous web protocols and data formats such as HTTP, XML, and SOAP, with no 

need to worry about how each Web service is implemented (Microsoft, 2013). 

o A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a format (specifically 

WSDL) that can be processed by a machine (Booth et al., 2004). 

o A web service is a set of related application functions that can be programmatically 

invoked over the Internet. Businesses can dynamically mix and match web services to 

perform complex transactions with minimal programming. Web services allow buyers 

and sellers all over the world to discover each other, connect dynamically and execute 

transactions in real time with minimal human interaction (IBM, 2005). 

The roles of web services in the web service architecture complement those of SOA which 

include: service provider, service requestor/ consumer and service registry. Web services provide 

a distributed computing approach to enable interoperability between heterogeneous (different 

software applications, running on different platforms and/or frameworks) systems. In the internet 

web services specifications are completely independent of programming language, operating 
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systems and hardware to promote loose coupling between service consumer and service provider 

(Mark et al., 2004). 

Figure 2.2 shows a Venn diagram. The Venn diagram shows how web services encapsulate cloud 

computing technologies, how web services technology are part of SOA and vice versa and how 

cloud computing can be part of SOA and vice versa. Cloud computing uses web services for 

connectivity (Barry & Associates, 2013). 

 

 

 

 

 

 

 

 

 

In pure web services solution architectures, SOAP protocol is widely used. Another approach is 

to use Representational State Transfer (REST). One more option is to use messaging systems, 

such as Microsoft MSMQ and IBM WebSphere MQ (previously called MQSeries). 

 

Figure 2.2: Relationship between SOA, cloud computing and web services 

(Adopted from Girish et al. (2013)) 
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Web services take the ideas and principles of the web and apply them to computer interactions. 

Like the World Wide Web (www), web services communicate using a set of foundation 

protocols that share a common architecture and are meant to be realized in a variety of 

independently developed and deployed systems. Nonetheless, like the www, web services 

protocols owe much to the text-based heritage of the internet and are designed to layer as cleanly 

as possible without undue dependencies within the protocol stack, as shown in Figure 2.3. 

2.3.2 WEB SERVICES PROTOCOL STACK 

Snell et al. (2001) elaborate web services stack as shown in Figure 2.3. 

 

 

 

 

 

 

 

 

 

The web service technology stack has five layers. These layers perform different functions which 

are discussed as follows: 

 

Discovery 

Description 

Packaging 

Transport 

Network 

Figure 2.3: The web service technology stack 

(Adopted from Snell et al. (2001)) 
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(i) Discovery 

Discovery is the act of locating resource description. It is performed by the end user and is 

realized using a discovery service. The resources being discovered are usually service 

descriptions thus enabling centralizing services into a common registry and providing easy 

publish/find functionality. Currently service discovery is handled by Universal Description 

Discovery and Integration (UDDI). 

(ii) Description 

This layer is responsible for describing the public interface to a specific web service. Currently, 

service description is handled by Web Service Description Language (WSDL). Other approaches 

include W3C’s Resource Description Framework (RDF) and DARPA Agent Markup Language 

(DAML) which provide a richer capability but very complex to describe web services than 

WSDL. Two attributes in WSDL interface include: style and use. The style attribute has two 

possible values: RPC or document while the use attribute has two possible values: encoded or 

literal. The style and use attributes form four possible combinations called binding styles, 

common once being RCP-encode and document-literal. Bianco et al. (2007) noted that RPC-

encode have more overheads than document-literal. SOAP binding styles will be covered in 

detail in section 2.5.2. 

(iii)Packaging 

Packaging must be done before the message is relayed in the network and must be in a format 

that all parties in heterogeneous environment understand. HTML is primarily used in SOAP 

communication because it is text-based and can be implemented using a variety of operating 

systems, programming environments and is tied to representation other than meaning. XML is 

the basis for web services packaging formats because it can be used to represent the meaning of 
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the data being transferred. Moreover, XML parsers are now ubiquitous. SOAP does the 

packaging in either RPC-encoded or document style. SOAP is a standardized de facto packaging 

protocol. 

(iv) Transport 

This layer has several technologies that enable application-to-application communication on top 

of the network layer. These technologies include: TCP, HTTP, SMTP and Jabber. The choice of 

these technologies is as per the needs of web services implementation. This layer transports data 

in the network. HTTP is one important protocol to note because of its platform independence and 

provides most ubiquitous firewall support. However, HTTP does not provide support for 

asynchronous communication. Jabber on the other hand provides a good communication 

channel. 

(v) Network 

Network in web services architectural stack is like the network layer in TCP/IP Network Model 

which provide critical basic communication, addressing and routing capabilities.  

In summary, web service was developer of open technologies. These open technologies provide 

an opportunity for interoperability among solutions from different vendors’ i.e. heterogeneous 

platforms. Therefore, organizations can implement web services without having knowledge of 

the service consumers and vice versa; enabling a just-in-time integration and allowing businesses 

to establish new partnership easily and dynamically. The enabling technology in web services is 

XML protocols. XML protocols govern how communication happens and how data is 

represented in XML format in the wire. Web service technology consists of several publishing 

standards, SOAP and WSDL.  
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2.4 SOAP IMPLEMENTATION 

2.4.1 OVERVIEW OF SOAP 

SOAP is a standardized de facto XML-based protocol for packaging, services invocation and 

exchanging messages in distributed systems aided by web service interfaces. The specification 

defines nothing more than a simple XML-based envelope for the information being transferred, 

and a set of rules for translating application and platform-specific data types into XML 

representations (Snell et al., 2001). 

SOAP is a flexible and highly extensible protocol since it is XML based. SOAP is aimed at low-

level distributed computing system developers. This implies that in distributed computing SOAP 

can be used to enable interoperability of remote applications. SOAP works behind the scenes 

(abstraction) making sure that your applications can interoperate without much programming 

effort. SOAP is ubiquitous and most if not all software vendors (e.g. Java, IBM, Microsoft etc.) 

have embraced and integrated it in their programming environments. This has made SOAP to be 

a highly abstract and flexible technology. 

In XML messaging, applications exchange messages using XML documents. This forms a 

flexible way of communication and forms the basis of using SOAP. A message can be anything 

e.g. purchases order, report of sales records etc. XML is not tied to a particular operating system 

or programming language; this makes it usable to all environments. For example, Java programs 

can create an XML document which can be shared in Perl programs, Microsoft programs etc. 

The fundamental idea is to share information using simple messages encoded in a way both 

applications can understand. SOAP provides a simple way to structure messages (Snell et al., 

2001).  
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2.4.2 SOAP MESSAGE STRUCTURE 

The structure is as described in Figure 2.4 

 

 

 

 

 

 

 

 

 

SOAP message structure has four regions: 

(i) SOAP envelope 

The SOAP <Envelope> is the root element in every SOAP message, and contains two child 

elements, an optional <Header> and a mandatory <Body> 

(ii) SOAP header 

The SOAP <Header> is an optional sub-element of the SOAP envelope, and is used to pass 

application-related information that is to be processed by SOAP nodes along the message path. 

SOAP envelope 

SOAP Header 

Header block 

Header block 

SOAP body 

 

Message body 

Figure 2.4: SOAP message structure 

(Adopted from Papazoglou (2008)) 
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(iii) SOAP body 

The SOAP <Body> is a mandatory sub-element of the SOAP envelope, which contains 

information intended for the ultimate recipient of the message. 

(iv) SOAP fault 

The SOAP <Fault> is a sub-element of the SOAP body, which is used for reporting errors. 

An example of a SOAP message is as shown in Figure 2.5. 

 

 

 

 

 

 

 

 

 

2.4.3 SOAP BINDING STYLES 

WSDL attributes was briefly described in 2.3.2 where this research identified two combinations 

of style and use attributes in WSDL. This affects the performance of SOAP as follows: 

 

Figure 2.5: An example of a SOAP Message 

(Adopted from Papazoglou (2008)) 
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(i) RPC-encoded style 

This is an equivalent to an XML-based remote method call where the name of the method and 

type of argument are specified in the WSDL interface definition. Results are returned to the 

calling method (Snell et al., 2001). The attributes are encoded using a standard encoding format. 

RPC-encoding style was popular in the first few years when web service was introduced because 

of its simple programming model and the similarity between services and object methods. 

However, it has its own short-comings because of the deficiencies of SOAP-encoding 

specifications (Bianco et al., 2007). Figure 2.6 shows an example of RPC-encoding call. 

 

 

 

 

 

 

(ii) Document-literal style 

It is at times called Electronic Data Interchange (EDI). The SOAP messages body in the 

document-literal style contains an arbitrary XML (business document). With this approach there 

are no parameters specified as the RPC-style. The literal attribute indicates that no standard 

encoding format is used; data in the SOAP body is formatted and interpreted using the rules 

specified in XML schemas created by the service developer. The XML schemas that define the 

Figure 2.6: SOAP RPC-encoding call 

(Adopted from Papazoglou (2008)) 
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data structure of the request and the response are the key elements in the interface definition 

(Bianco et al., 2007). Figure 2.7 shows an example of a document/literal call. 

 

 

 

 

 

 

 

In summary, Bianco et al. (2007) recommended the use of document-literal style approach 

because it has lesser overheads as compared to RPC-encoded style. Some web services use RPC-

encoding style, it is important to note these specifications before creating a web service.  

2.4.4 SOAP OVER HTTP 

SOAP protocol relies on HTTP or HTTPS in communication. However, SOAP can also ride on 

SMTP and other compatible network transfer/ communication protocols. The advantage of riding 

on HTTP is that, HTTP is: firewall friendly, an open standard and a universally accepted transfer 

protocol. SOAP messages are encapsulated within HTTP. HTTP is a universal standard in the 

WWW. Firewalls by default allow traffic through port 80 which HTTP uses in communication. 

This gives SOAP power to be platform independent (Papazoglou, 2008). SOAP does requests 

and responses via HTTP. SOAP uses the HTTP GET method for requests and HTTP POST 

 

Figure 2.7: SOAP document-literal call 

(Adopted from Papazoglou (2008)) 
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method for both request and response, as shown in Figure 2.8. HTTP explores TCP/IP protocol 

for network transport because of reliability nature of TCP/IP protocol. Some researchers have 

explored HTTP binding on UDP which proved to improve performance but it was less reliable 

(Kho, 2007). In equation (2.1) we can simply say that: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HTTP + XML = SOAP (2.1) 

 

Figure 2.8: HTTP SOAP binding 

(Adopted from Papazoglou (2008)) 
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Figure 2.9 shows SOAP binding with HTTP and how messaging occurs in RPC-style. 

 

 

 

 

 

 

 

 

 

 

2.5 SOAP PERFORMANCE IMPROVEMENT TECHNIQUES 

Tekli et al. (2011) provides concise and comprehensive research efforts aimed at SOAP 

performance enhancement (Tekli et al., 2011). They provide a unified view of the problem that 

covers almost every phase of SOAP processing including: message parsing, serialization, 

deserialization, compression, multicasting, security evaluation, and data/instruction-level 

processing. Nevertheless, other techniques have been realized that Tekli et al. (2011) did not 

highlight. This research has identified and classified some of the SOAP improvement techniques 

thematically as: client-side, communication channel and server-side. 

 

Figure 2.9: SOAP binding in HTTP and communication using RPC-style. 

(Adopted from Papazoglo (2008)) 
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2.5.1 CLIENT-SIDE TECHNIQUES 

A client is a computer that sends requests to the server; normally it is the end users computer. All 

the computing operations involved in client computer are said to exist in the client-side. In this 

section we discuss client-side caching technique and differential serialization (DS). 

(i) Client-side caching 

Client-side caching is the storage of data in the client-side. Client-side caching is a technique of 

improving SOAP performance through improved response time. SOAP client-side caching has 

been supported by several researchers (Seyyed et al., 2011) (Chandra et al., 2012) (Kiran et al., 

2003) (Hou et al., 2010) (Matthieu et al., 2009). Caching has been embraced solely to improve 

the amount of traffic and latency between the service and underlying data providers (Seyyed et 

al., 2011) (Chandra et al., 2012) (Matthieu et al., 2009). Client caching can store data temporarily 

within the internet browser or by a JavaScript data structure (Matthieu et al., 2009). 

Data in SOA is categorized as service state and service result. Service state is data that concerns 

the state of the business process/service while service result is data that is delivered by the 

business process/service back to the presentation layer. Moreover, caching can be categorized as: 

client-side caching, proxy caching, reverse proxy caching, and web server caching. Figure 2.10 

shows the different types of caching.  

In client-side caching, data is stored by the client-side browser temporarily on the local disk or 

browser’s internal memory. Its advantage is that, data cached on the local client can be easily 

accessed thus reducing network traffic while its disadvantage is that, cached data in the client is 

browser dependent and not shareable. Proxy caching uses a proxy server that stores cached data 

between the client and the web server. This data cached in proxy server can be shared among 
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clients thus leveraging the weakness identified in client-side caching. Its advantage is that it 

fulfills all requests from web page without sending them out to the actual web server over the 

internet, resulting in faster access and reduced traffic. Its disadvantages include deployment and 

infrastructure overhead to maintain the proxy servers. In reverse proxy caching, the proxy is 

placed in front of the web server. The proxy responds to the most frequent request and passes 

others to the web server. As much it reduces the number of requests directed towards the web 

server, its position in front of the server increases network traffic. In web server caching, the web 

server stores its own cached data. It improves the performance of a site by decreasing the round 

trip of data retrieved from database or other servers, reduces server load, and reduces bandwidth 

consumption (Chandra et al., 2012) 

 

 

 

 

 

 

 

 

After profiling the client-side Kiran et al. (2003) noted that around 40% of execution time is 

spent in XML encoding which involves serializing and marshalling the SOAP payload before 

    

Figure 2.10: Client-side caching, proxy caching, reverse proxy caching and web server caching 

respectively 

(Adopted from Chandra et al. (2012)) 
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transmitting it to the server. Chandra et al. (2012) and Matthieu et al. (2009) noted an improved 

performance using client-side caching. Therefore, clients that send the same request to the server 

frequently consume a considerable amount of time in encoding XML. To overcome this 

challenge, caching such request(s) not only saves a considerable amount of execution time in 

recreating the payload, but also the time involved in trips to fetch data from the server. The client 

always checks if the request was previously indexed and cached on the client-side before sending 

it to the server. If the request was cached, it does a simple file I/O operation to fetch the payload 

from the client-side cache (Kiran et al., 2003). Kiran et al. (2003) used RPC-style in WSDL 1.1 

binding which is an inefficient SOAP binding style as will be covered in section 2.5.2. However, 

after an evaluation of SOAP caching on the client-side, Kiran et al. (2003), recorded an improved 

performance by a remarkable 800%. This resulted to better performance than the traditional 

binary Java RMI which outperformed SOAP as discussed in (Davis et al., 2002). Figure 2.11 

shows the round trip results of SOAP with Java RMI. 

 

 

 

 

 

 

 

 

 

Figure 2.11: Comparison of SOAP (with client-side caching) with Java RMI and the traditional 

SOAP 

(Adopted from Kiran et al. (2003)) 
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Some of the challenges involved in client-side caching include: how frequent the data needs to 

be updated, the data being user specific or application-wide, and what mechanism to use to 

indicate that the cache needs updating (Chandra et al., 2012) (Kiran et al., 2003) (Matthieu et al., 

2009) (Junichi et al., 2005). Matthieu et al. (2003) and Kiran et al. (2003) noted that proper 

indexing and time stamping can be used to verify its validity. Consequently, Kiran et al. (2003) 

notes that data in the client-side can be updated not only by deleting and renewing data period of 

time, but also by updating last modified timestamps by use of a cache provider. Updating last 

modified timestamps is much better because it imposes less overhead as compared to reloading 

the entire data set. Matthieu et al. (2003) suggested a hybrid reverse caching strategy in web 

caching. Hybrid reverse caching caches data structures rather than static values. This caching can 

be built on unified data stores to eliminate redundant and duplicate data. Client-side caching 

performance can be enhanced further by doing more research on caching algorithms that can 

further improve fetching and serialization of XML data. 

(ii) Differential Serialization 

Differential serialization (DS) avoids serializing of the whole message structure. Serialization of 

sent/outgoing messages involves conversion of in-memory data types to SOAP XML-based 

ASCII string formats, and then packing this data into message buffer; this counts as one of the 

major performance bottlenecks of SOAP performance as it accounts for 90% of end-to-end 

message time. The client that sends the requests is called the bSOAP. In DS, once a serialized 

message has been sent by a SOAP communication end point, the client saves the message so that 

it can be reused by future subsequent messages as a template. Subsequent messages that have the 

same structure or are identical can reuse the structure and avoid the serialization overhead 

involved in regenerating the structures from scratch. This works best if the same client sends a 
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stream of similar messages. This technique improves response time (Seyyed et al., 2011) (Dhiah 

et al., 2010) (Nayef et al., 2004) (Behrouz et al., 2009) (Nayef et al., 2005) (Tekli et al., 2011). 

The steps to follow to make DS a success is: tracking data changes and overwriting only those 

values that have been changed since the last sent message, expanding the serialized message to 

accommodate large serialized values, storing the message in chunks and padding them with 

white spaces to reduce the cost of expansion, and overlaying the same memory region with 

different portions of the same outgoing message to reduce memory consumption. The steps 

outlined above demonstrated a best case performance of ten times faster. The study also showed 

that send times reduced by a factor of five only when parts of the message were to be re-

serialized. In designing the DS, when comparing the outgoing message to the saved templates the 

different matching possibilities are (Nayef et al., 2004): 

o Message content matching: This entails the entirely sent message being exactly the same 

as the one sent from the client earlier; the client sends the message as it is. 

o Perfect structure match: This entails the message having the same structure and size as an 

earlier message but having values of some field that have changed. In this case, the 

serialized message is replaced with the changed values only.  

o Partial structure match: This entails the message having a structure but a change in size of 

the message as compared to an earlier message. Also, some of the values may not have 

matched. Unlike in memory base types, the serialized message template may be expanded 

or contracted to meet the requirements of the new message. 

o First time send: This phase encounters the normal overheads involved in creating a 

serialized message from scratch, checking whether it exists amongst the saved templates 

and saving a pointer to it after it has been created. 
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From the different matching possibilities, researchers in (Nayef et al., 2004) notes that partial 

structure match can be avoided using several techniques which include: stuffing, shifting, 

chunking, and stealing.  

o Shifting: This involves expanding the message in memory when the serialized form of a 

new message exceeds its field width as shown in Figure 2.12. It involves shifting bytes in 

the template to make room for the new values then updating Data Update Tracking 

(DUT) Table accordingly. This is expensive because it entails memory moves, possibly 

memory reallocation, and updating DUT table.  

 

 

 

 

o Stuffing: This involves adding extra white spaces in the serialized message to 

accommodate potential future updates that would otherwise require expansion as shown 

in Figure 2.13. The white spaces can be explicitly created when the template is created or 

after serializing a value that requires less space. This technique can avoid shifting which 

is an expensive technique.  

 

 

 

 

 

 

…</w><x xsi:type='xsd:int'>1.2</x><y xsi:type=…. 

becomes 

…</w><x xsi:type='xsd:int'>1.23456</x><y xsi:type=…. 

Figure 2.12: Shifting technique in Differential Serialization.  

(Adopted from Nayef et al. (2004)) 

…<y xsi:type='xsd:int'>678</y><z xsi:type=… 

can be represented as 
…<y xsi:type='xsd:int'>678</y>□□□□<z xsi:type=… 

Figure 2.13: Stuffing technique in Differential Serialization 

(Adopted from Nayef et al. (2004)) 
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o Stealing: This reduces the costs of increasing field size by stealing extra spaces from 

neighboring fields instead of shifting entire portions of memory chunks. This technique is 

actually less expensive than shifting. Performance of stealing depends upon the Halting 

Criteria (tell when to stop stealing) and direction (tell left, right or back-and-forth of 

memory chunks).  

 

 

 

o Chunking: This involves storing messages in potential non-contiguous memory chunks to 

limit the impact of the expensive Shifting.  

Clients that send the same message frequently can maximize the advantage of DS in improving 

performance of that system. DUT Table comes in handy to track whether a program has changed 

data items in new messages since the last serialized SOAP messages. DS had an impact of up to 

17% improvement (Nayef et al., 2004). However, in as much as Chiu et al. (2002) proposed an 

optimized version called XSOAP that used a new XML parser specialized for SOAP arrays, 

Suzumura et al. (2005) notes that, in scientific grid computing (an area of high performance 

computing that is adopting the web service architecture), sending scientific data e.g. large arrays 

of floating point numbers and complex data types via standard implementation of SOAP is very 

expensive. 

…'>678</y><z xsi:type='xsd:double'>1.166</val>□□□□□ 

y can steal from z to yield… 

…'>677.345</y><z xsi:type='xsd:double'>1.166</val>□ 

Figure 2.14: Stealing technique in Differential Serialization 

(Adopted from Nayef et al. (2004)) 
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2.5.2 COMMUNICATION CHANNEL TECHNIQUES 

The SOAP XML document is embedded in HTTP as the default transport protocol. SOAP 

messages can be transported in SMTP and FTP among other protocols. HTTP uses port 80 as the 

default communication port. By default SOAP uses HTTP-GET or HTTP-POST protocol to 

communicate in WS (Papazoglou, 2008) (Kho, 2007). The wire format of data in communication 

channel affects SOAP performance (Kiran et al., 2003) (Fabian et al., 2000). This section discuss 

SOAP binding style and compression techniques that can improve SOAP communication 

(i) SOAP Binding Style 

In section 2.3.2, we covered web service stack which contains the description layer. The 

description layer is responsible for describing the public interface of a specific web services. 

Services are exposed on the public interface of a web service. Service description (location and 

methods exposed) is handled by Web Service Description Language (WSDL). Other approaches 

include the W3C’s Resource Description Framework (RDF) and DARPA Agent Markup 

Language (DAML) which provide a much rich capability but very complex to describe web 

services than WSDL (Bianco et al., 2007). 

WSDL is a model that provides an XML format for describing WS in the web community; this 

ensures interoperability in heterogeneous systems. As per WSDL 1.1 (Erik et al., 2001) 

standards, the document structure of the XML has two sections abstract and concrete. The 

abstract elements (Type, Message, and PortType) define WS interface while the concrete section 

(Binding and Service) describes how abstract interface maps messages on the wire (Bianco et al., 

2007) (Erik et al., 2001) (Aaron, 2003). All the WSDL 1.1 elements include: 

o Type: This is a container for the schema type definitions. 
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o Message: This defines an abstract message that serves as the input/output of an operation. 

An operation is a message exchange; a focal point of a service interaction. 

o PortTypes: It is also known as Interfaces. It is an abstract set underpinned by one or more 

endpoints. It describes a function signature (operation name, input parameters, and output 

parameters) in a Message. An endpoint defines a combination of an address and a binding 

e.g. URI. 

o Bindings: This is a concrete protocol and data format specification for a particular 

PortType.  

o Services: This is a collection of related network endpoints. An endpoint is a port.  

 

 

 

 

 

 

 

 

This research is interested in the binding element. Binding defines the message format and 

protocol details for operations and messages as defined by a particular PortType. In WSDL 1.1, 

binding has two attributes which include: style and use. The default style of the service is either 

TCP HTTP SMTP 

Messages 

Interface 

Operation 

Operation 

Interface 

Operation 

Operation 

Service 

Resource 

Figure 2.15: WSDL Interface and bindings 

(Adopted from Bianco et al. (2007)) 
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RPC or document and the default transport protocol (HTTP) while in the communication channel 

(Erik et al., 2001). The styles are discussed as follows: 

o Document-style (previously called message-style) in SOAP dictates that the body 

contains an XML document, and the message part specifies the XML elements. 

o RPC style in SOAP dictates that the body contains an XML representation of a remote 

procedure being invoked and the message parts representing the parameters to the 

method. 

The use attribute specify the encoding to be used to translate the abstract message parts to 

concrete representations. It has two possible values of encoded or literal (Bianco et al., 2007). 

o In encoded, abstract definitions are translated to a concrete format by using the SOAP 

encoding rules. 

o In literal, the abstract type definitions turn to be the concrete definitions, that is, you can 

simply inspect the XML Schema type definitions to validate concrete message format. 

The style and use attributes forms four possible combinations called binding styles, common 

once being document-literal as shown in Figure 2.16 and RPC-encode and as shown in Figure 

2.17. 

 

 

 

 

 

Figure 2.16: SOAP document-literal call 

(Adopted from Papazoglou (2008)) 
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A lot of research has been done on the different binding styles and their effects on performance 

on SOAP in communication. RPC-encode have more overheads than document-literal (Bianco et 

al., 2007). As much as document style had its own short comings, Bianco et al. (2007) and IBM 

(2013) recommended adoption of document-literal over RPC style in a bid to improve 

performance. Java which had document style (MTOM technology enabled) showed that, web 

service using RPC style requires 15% more time as compared to document- literal style (Girish 

et al., 2013). Moreover, Alex et al. (2008) notes that test client-side experiments built on 

document- literal encoding style was faster than previous implementation using RPC. The 

research findings in Girish et al. (2013) notes that RPC style requires 15% more than document- 

literal as shown in Figure 2.18. 

WSDL 2.0 (Masoud et al., 2009) is a later version of WSDL 1.1. WSDL 2.0 comes with certain 

features and language elements changed and expanded. For example the definitions element is 

renamed to descriptions, portType element is renamed to interface, port element is renamed to 

endpoint, and message element is discarded. The message element defined RPC (parameter 

driven) and message (document type) communication. Due to the limited expressive powers of 

RPC in message element, WSDL 2.0 discards it altogether and simply allows an operation to 

reference a type (such as an XML schema element) directly (Masoud et al., 2009). 

 

Figure 2.17: SOAP RPC-encoding call 

(Adopted from Papazoglou (2008)) 
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WSDL 2.0 component model is a set of components with attached properties which collectively 

describe a WS. Components in WSDL 2.0 are typed collections of properties that correspond to 

different aspects of WS. Components in WSDL 2.0 are serializable in XML 1.0 format but are 

independent of any particular serialization of the component model. WSDL 2.0 components 

include: description, element, type, interface, interface fault, interface operation, interface 

message reference, interface fault reference, binding, binding fault, binding operation, binding 

message reference, binding fault reference, service, endpoint, and extension component (Chiu et 

al., 2002). WSDL 1.1 the predecessor of WSDL 2.0 has lots of restructuring. Some of the new 

alterations might be beneficial upon its full understanding (Masoud et al., 2009). 

(ii) Compression 

A lot of research has been done which supports compression as a promising solution to 

improving the huge verbose XML messages in SOAP (Seyyed et al., 2011) (Ivan et al., 2008) 

Figure 2.18: Performance measurement of Web service in different networks 

(Adopted from Girish, et al. (2013)) 
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(Chandra et al., 2012) (Kiran et al., 2003) (Alex et al., 2008) (Tanakorn et al., 2008) (Tomasz et 

al., 2010). Compression improves bandwidth utilization and response time of SOAP messages. 

Compression has its tradeoffs for example extra compression processing time. Kiran et al. (2003) 

noted that these tradeoffs were not beneficial. However, recently with the increased hardware 

processing capabilities, these tradeoffs are beneficial as compression is not as costly as 

increasing bandwidth which is widely under constrains (Ivan et al., 2008).  

Different compression algorithms have different compression ratio and different compression 

time for the same XML file(s) (Hou et al., 2010). An attempt by Kiran et al. (2003) to compact 

XML tags to reduce the length of the XML tags names had negligible effect on encoding. Kiran 

et al. (2003) further suggested that other than the data an XML message contained, the major 

cost of the XML encoding/decoding is in its structural complexity and syntactic elements. 

Tomasz et al. (2010) and Alex et al. (2008) notes that XML files are highly redundant thus 

lossless compression algorithm works out best to achieve better compression ratios. Lossless 

compression algorithm exploits statistical redundancy to represent sender’s data more concisely 

without errors. However, Tomasz et al. (2010)  and Alex et al. (2008) note that lossless 

compression will not work for high entropy (highly disordered) data e.g. already compressed 

data, random data or encrypted data as it will result in expansion rather than compression. 

Lossless compression algorithms include Gzip, Bzip2, Fast Infoset (FI), Efficient XML 

Interchange (EXI) etc. WS-security performance can be an interesting area to explore. 

Experiments set up by Tomasz et al. (2010) to compare the best compression algorithm between 

EXI, FI, and Gzip indicated that FI performed the poorest. EXI showed slightly better 

compression ratios and response time than Gzip. However, Tomasz et al. (2010) recommended 

Gzip compression algorithm in disadvantaged network. EXI (Liquid Technologies, 2013) 
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showed promising better performance outcomes than Gzip although it is still under open source 

test and evaluation (Tomasz et al., 2010). A commercial version of EXI is yet to be released 

(Liquid Technologies, 2013). 

Tanakorn et al. (2008) focused on compression on textual data. They used an algorithm that 

works in three steps: removal of white spaces, compressing data to UpperCamelCase then 

decompressing the compressed data. Experiment by Tanakorn et al. (2008) had significant 

performance gains of up to 22% in bandwidth utilization. The algorithm works in small and large 

sizes of messages. Nevertheless, experimental results by Tanakorn et al. (2008) show that use of 

Gzip compression algorithm further improves bandwidth utilization as data integrity is observed. 

In multimedia data, a detailed analysis of multimedia streaming and compression is tackled in 

(Ashkan et al., 2012) (Amer et al. 2011). This research is interested in textual data compression. 

Nayef et al. (2005) did an evaluation of performance of Gzip and Bzip2 compressors by doing a 

comparison against three XML compressors (XMILL, xmlppm and XBXML). The methodology 

involved building an XML tree and converting it into a binary tree then encoding the XML tags 

by Fixed Length and Huffman techniques. This eventually removes all the closing tags thus 

saving the opening tags and data leaves of the created tree hence reduces the size of the messages 

sent and received. Nevertheless, in the experiments, 160 messages were equally divided into four 

groups in terms of message size categorizes data as small messages (140-800 bytes), medium 

massages (800-3000 bytes), large messages (3000-20000 bytes), and very large messages 

(20000-55000 bytes). In the results of XML(uncompressed), XML(Bzip2), XML(Gzip), 

XMILL(Bzip2), XMILL(Gzip), XMILL(ppm), xmlppm and wbxml, evaluations shows Gzip 

compression was more effective than Bzip2 by achieving better compression ratio but 

XMILL(ppm) outperforms Gzip and Bzip2. The findings are shown in Table 2.1. Their 
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experiment conclusions reveal that Huffman encoding was the most efficient for large and very 

large documents while Fixed Length encoding was found to be efficient for small documents. 

The compression trends observed in Table 2.1 can be attributed to the fact that look up tables are 

usually created in lossless compression techniques. Look up tables’ aid in mapping of symbols to 

binary codes during compression process. Therefore, lookup tables in large documents consume 

a small space as compared to encoded data while in small documents the lookup table tends to be 

larger than the encoded data. This explains why a high compression ratio is exhibited in large 

documents as compared to small documents. 

Seyyed et al. (2011), Ivan et al. (2008), Tomasz et al. (2010), Tanakorn et al. (2008), Tomasz et 

al. (2010), Alex et al. (2008) and Kiran et al. (2003) support the fact that compression has a deep 

impact in not only reducing the response time, but also the improving bandwidth utilization 

hence increases the performance of SOAP based applications. Seyyed et al. (2011) proposed an 

architectural design that combined several techniques that improved SOAP performance. Seyyed 

et al. (2011) proposed architecture is shown in Figure 2.19.  

 

 

 

 

 

 

 

 

Table 2.1: Result compressed size of different SOAP messages using xmill, xbmill, Gzip, and Bzip2 

compressors in addition to fixed and variable length encoding 

(Adopted from Nayef et al. (2005)) 
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Furthermore, (Hosein et al., 2012) categorized data compression algorithms methods into three:  

o General Purpose Compression Algorithm: This include Gzip which is based on Huffman 

coding, LZ77 which is a substitution compressor and Bzip2 which is an implementation 

of Burrows-Wheeler block-sorting algorithm 
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Figure 2.19: Seyyed et al. proposed architecture to improve SOAP performance. 

(Adopted from Seyyed et al. (2011)) 
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o XML Aware Compression Algorithm: This explores the separation between XML 

markup and payload. The simplest in this category are substitution-based algorithms that 

work at the markup level. They include BXML, WBXML, XMILL, XMLPPM etc.  

o Schema-Aware Compression Algorithm: This defines their schemas in form of XSD or 

DTD files. They do not encode part of infoset which can be decoded by the receiving 

party.  

In as much as Hosein et al. (2012) argues that compression reduces response time, other factors 

about a compression algorithm need to be considered e.g. encoding and decoding time, the 

number of messages transferred, average compression time, number of processes involved, 

network components passing time, and geographical distance. Experiments by Hosein et al. 

(2012), prepared in .NET, studies Bzip2 and BXML algorithms considering their response time. 

From Table 2.2 and Figure 2.20, it is inferred that despite Bzip2 having a better compression 

ratio than BXML. BXML had a better turn-around time because it had a lower compression time. 

Moreover, Hosein et al. (2012) notes that when using a compression algorithm, if the data size is 

more than a specific threshold it may decrease the response time and improve performance 

otherwise it degrades increases response time and performance. 

 

 

 

 

 

 

Table 2.2: The percentage of compression using Bzip2 and BXML algorithms.  

(Adopted from Hosein et al. (2012)) 
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Ivan et al. (2008) gave a detailed algorithm on how a client and server communicate exploring 

text compression technique in a bid to improve performance in web-service-based applications. 

The algorithm showed text was reduced by 80%, meaning 80% less storage space was saved. 

Nonetheless, the text data being transferred required less time which translated to high 

performance for client-server application communication. As much as the compression had some 

tradeoffs like processing time, it resulted to a general better performance of the system. Figure 

2.21 shows an implementation of the compression. Text input from the client through the proxy 

is serialized as text-based SOAP message, compressed then sent to the server. The text is then 

decompressed, de-serialized then passed to the web service. The web service processes the 

request and returns the result which is later serialized and compressed before being sent to the 

client. Lastly, the client collects the text message which is de-serialized and decompressed 

through the proxy. The total processing time of a request is given in equation (2.2) where tser is 

time needed to serialize the request in xml format, ttr is the time needed to actually transfer the 

serialized request, tdeser is the time needed to de-serialize the xml text and tservproc is the time 

needed for processing the request and producing the results at the server-side (Ivan et al., 2008). 

 (2.2) Ttotal = 2˖(tser + ttr + tdeser) + tservproc + tcom/dec 

 

Figure 2.20: The percentage of compression using Bzip2 and BXML algorithms. 

(Adopted from Hosein et al. (2012)) 
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The research done by Hou et al. (2010) gives an assessment formula in equation (2.3)  to 

calculate T which is the transmission time a WS can be improved. In the formulae: N is network 

speed in bytes per second, C is the computing speed of the device in units per second, 

compression algorithm requires Z computing units, and compression algorithm can compress the 

SOAP message out E byte. If the result of T is a positive value then the transmission 

performance of WS is improved. If it is a negative value, then it means that the compression 

algorithm does not improve the transmission performance of the algorithm. 

In as much as there is a tradeoff between compression and CPU usage, this can be resolved by 

use of powerful server that uses multi-processing cores (Hazem, et al.). Moreover, Moores’s Law 

clearly describes the doubling of transistors in integrated circuits (IC) in computer hardware in a 
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span of approximately two years (Intel Corporation, 2014). These shows processing speeds will 

not be a limiting factor for compression in future. 

 

Gzip compression algorithm has been adopted by web browsers (Constantin, 2011) and web 

servers (Microsoft, 2014) (Guillermo, 2011) as a way of compressing data in client-server 

communication model. Web browsers can decompress and render Gzip files compressed by web 

servers. This has improved bandwidth utilization and response time of files fetched to and fro the 

web server. 

2.5.3 SERVER-SIDE TECHNIQUES 

A server is a computer that receives and processes requests from client(s). Normally a server 

computer has high hardware specifications in order to process its client’s requests efficiently. All 

the computing operations involved in server computer are said to exist in the Server-side. In this 

section we bring forth some of the techniques involved in the server-side operations in relation to 

SOAP which are: server-side caching technique and differential deserialization (DDS). These 

techniques are addressed as follows. 

(i) Server-side Caching  

Server-side caching is the storage of data on the server-side. Server-side caching improves 

response time (Seyyed et al., 2011) (Hou et al., 2010) (Matthieu et al., 2009). As discussed in 

client-side caching in section 2.5.1 (Client-side caching), server-side caching is slightly different 

as data is temporarily stored in serialized objects (Matthieu et al., 2009). 

Hou et al. (2010) categorized cache in two methods: message body and template cache. 

T (seconds) = ( E ÷ N ) – ( Z ÷ C ) (2.3) 
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o Message body: This involves storing all SOAP message body calls. According to the 

client’s request, the cache identifies each message body with two parameters: unique ID 

and Time To Live (TTL). If the requested XML message exists in cache and the TTL is 

valid, then the message is fetched from the cache and returned accordingly. Otherwise it 

is fetched in the server. 

o Template cache: In this method, it is argued that in a service process, clients request the 

same elements but with different real time values. With this technique, the elements can 

form the template as the real time values are dynamically interchanged. This avoids 

reconstruction/destruction of the template message. Just like the message body technique 

functions, unique IDs are generated for message bodies and validated against when a 

client makes requests vis-à-vis its TTL in the template cache. This is managed by the 

template cache management module. Template cache structure is as shown in Figure 

2.22. 

  

 

 

  

 

 

Results of optimized message and template cache are as shown in Figure 2.23. Template caching 

is seen to have better performance than message body caching technique. 

 

Figure 2.22: Structure of Template Cache 

(Adopted from Hou et al. (2010)) 
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Server-side data chunking is one technique that is typically handled on the server-side. As the 

number of records to be loaded on the browser increases, the time required to load the data 

increases. Data chunking comes in as a very important technique for the response from the server 

to return a sustainable amount of data to the client. In Data chunking, the client specifies the 

range of data in the request; though this is handled programmatically. The server then composes 

the chunk and returns it via the response method. This improves performance of loading 

thousands of data, by loading chunks or bits (Chandra et al., 2012) (Sencha, 2013). Among other 

JavaScript libraries, Ext. JavaScript 4.1 (Sencha, 2013) has adopted this technique as paging 

which is quite essential in modeling controls e.g. grid as shown in Figure 2.24. 

Similarly as discussed in section 2.5.1 (client-side caching), the challenge of keeping the cache 

up-to-date is also a major problem in server-side caching (Matthieu et al., 2009). Nevertheless, 

Matthieu et al. (2009) and Junichi et al. (2005) proposed the use of database-aided caching 

technique in the web server. Database caching comes with many advantages such as: 

modifications can be done easily, it has the ability to augment data with metadata, it eliminates 

the need to parse an entire XML structure which is computationally expensive, and an extra 

 

Figure 2.23: Test results for template and message body caching 

(Adopted from Hou et al. (2010)) 
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column can be used to store the aforementioned last modified timestamp value for each record 

easily. A suitable predicate value can be stored in replacement of last modified timestamp value 

to allow quick comparison between requests. Session management between multiple clients and 

proxy web server is a rich area of study that can be exploited further (Junichi et al., 2005) 

(Matthieu et al., 2009). 

 

 

 

 

 

(ii) Differential deserialization 

Differential Deserialization (DDS) works in the server/receiver side. DDS technique has been 

supported in improving SOAP performance (Seyyed et al., 2011) (Tekli et al., 2011) (Nayef et 

al., 2004) (Behrouz et al., 2009) (Suzumura et al., 2005). DDS works best if similar messages are 

sent by different clients (Seyyed et al., 2011) (Nayef et al., 2004). DDS is somehow similar to 

Differential Serialization (DS). DDS and DS take advantage of a sequence of similar messages to 

avoid the expensive SOAP message de-serialization/serialization process respectively. Neither of 

them changes the SOAP protocol, the SOAP message nor SOAP message wire format. Both 

implementations remain independent and interoperable with other SOAP implementations 

(Nayef et al., 2004). Moreover, Nayef et al. (2005) noted that DDS is more promising 

implementation technique than DS because DS works if the same client sends a stream of similar 

 

Figure 2.24: Data chunking/paging example in Ext. Js. 

(Adopted from Sencha (2013)) 
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messages whereas DDS avoids deserialization of similar messages sent by multiple clients. The 

speed of the server among other factors determines performance in DDS. Some of the 

differences between DDS and DS are captured in Table 2.3. 

 

 

 

 

 

Deserialization is an expensive process that involves conversion of SOAP XML-messages to 

application object. Deserialization involves a series of undertakings which include fetching an 

appropriate deserializer from the type mapping registry, and constructing a Java object from an 

XML message. To be precise and relatively simple, the process of de-serializing an XML 

message into Java objects is as follows: (Suzumura et al., 2005) 

o Open an XML document that represents the object. 

o Reclusively de-serialize the object’s members which are encoded as sub-elements after 

locating an appropriate deserializer from the type mapping system. 

o Create a new instance of the Java type, initializing it with deserialized members. 

o Return the new Java object. 

These undertakings become more complex and expensive when the XML message becomes 

bigger and deeper. Deserialization can be improved by processing new regions of the XML 

messages and reuse of the constructed objects deserialized in the past. It even becomes more 

Table 2.3: Comparison between differential deserialization and differential serialization 

Differential deserialization Differential serialization 

Works in the server-side Works in the client-side 

Deserialization process involves converting of 

SOAP XML-messages to application object 

Serialization process involves conversion of in-

memory data types to SOAP XML ASCII format 

Uses parse checkpointing the state of the 

deserializer for incoming messages 

Uses Data Update Tracking (DUT) Table to track 

whether a program has changed data items in new 

messages since they were last serialized SOAP 

messages in outgoing message 
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expensive when handling scientific data stored in arrays, floats, and doubles (Suzumura et al., 

2005) (Behrouz et al., 2009) (Nayef et al., 2006). Objects are created before they are used and 

garbage collected after their use is over. The use of more objects affects the performance of 

garbage-cycling process (Suzumura et al., 2005). 

Takase et al. (2005) noted that reuse of the entire object trees works for messages that have 

exactly the same structure.  Suzumura et al. (2005) improved on the approach presented by 

Takase et al. (2005). Suzumura et al. (2005) noted that the fundamental characteristic of 

processed SOAP-based web services messages is that, their wire format structure has lots of 

similarity. By exploiting this weakness redundancy can be avoided by using a deserialization 

mechanism that reuses matching structures/objects from previously deserialized application’s 

objects; deserialization for new regions is only performed on regions that will not have been 

processed before. Suzumura et al. (2005) obtained a 288% maximum performance gain by the 

use of this technique. However, in large messages on the wire that have repetitive elements like 

GoogleSearchLargeservice and in cluster-like environments, in such cases, reusing the entire 

object tree is not the optimal solution because repetition number might differ for each request 

and requires us to consider issues such as thread safeness and scalability respectively (Suzumura 

et al., 2005). 

Nonetheless, DDS primary shortcomings in SOAP message exchange are processing of XML 

data/content and conversion of strings to in-memory data types; checkpointing is explored 

further (Nayef et al., 2006). DDS works by periodically checkpointing the state of SOAP 

deserializer, which reads and de-serializes incoming message portions, and computing checksum 

of these SOAP message portions. The checksum is compared against those of the corresponding 

message portion in the previous message. If the checksums match, the deserializer avoids 
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redoing de-serializing (parsing and converting SOAP message) contents in that region. 

Essentially, the deserializer runs in two different modes: regular and fast mode. In regular mode, 

the deserializer reads and processes all the SOAP tags and message content as it creates 

checkpoints and corresponding message checksum along the way to the end of the SOAP 

message, whereas, in fast mode, the deserializer considers the sequence of checksum of each 

disjointed portions of the message and compares them against the sequence of checksums 

associated with the most recent received message. 

The deserializer switches between regular and fast mode appropriately. Fast mode is switched on 

if the parser state is the same (checksum match) as the one that has been saved in a checkpoint. 

Regular mode is switched on when there is a checksum mismatch. This indicates a difference in 

the incoming message and the corresponding previous message. The deserializer switches from 

fast to regular mode where it reads and converts the message portion’s content. Regular mode is 

actually the normal parsing without DDS optimization. In terms of performance, in fast mode, in 

the best scenario (when all the message portions are identical, though unrealistic), the normal 

cost of de-serializing is replaced by the cost of computing and comparing checksums which in 

general is significantly faster. In regular mode, the worst case scenario (when all the message 

portions are not identical), the DDS enabled deserializer runs much slower than a normal 

deserializer because it does the same work plus the added work of calculating checksums and 

creating parser checkpoints (Nayef et al., 2006). Further, Nayef et al. (2005) and Nayef et al. 

(2006) noted that creating many checkpoints can increase fast mode performance in terms of 

speed at the expense of checkpoint creation time, check point memory utilization, and checksum 

calculation and comparison time. Actually checkpointing is memory intensive. 
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Due to the relatively high memory requirements experienced in checkpointing, Nayef et al. 

(2005), Nayef et al. (2006) introduces a new technique for storing only the difference between 

successive parser states for messages. This technique is called Differential Checkpointing (DCP). 

DCP involves only the differences between the consecutive checkpoints as opposed to storing 

the entire parse states for each checkpoint. DCP optimizes DDS by improving its speed and 

reducing memory requirements.  Despite the fact that DCP reduced memory requirements, it still 

required significant processing overheads. Moreover, DDS primary shortcomings in its 

implementation are generating, storing, and using parse checkpoints. Nayef et al. (2006) 

introduced Lightweight Checkpointing (LCP); the checkpointing approach significantly reduced 

the cost of both DCP and DDS techniques. LCP checkpoints contain very little state information 

(fewer bytes) created at predefined points within the structure of the message. Each lightweight 

checkpoint in LCP has a reference to a base checkpoint that contains state information it shares 

with other lightweight checkpoints. In LCP, creation of checkpoints is much faster than regular 

checkpoints, hence requires much less memory and requires less processing overheads. LCP 

takes only 10% of memory that DCP requires and 3% of the memory original checkpointing 

algorithm required. For processing time, deserialization with LCP was approximately 36% better 

than DCP and approximately 52% better than Full Checkpointing (FCP), on average, when 

approximately half of the message is not changed from the previous message. In FCP, the full 

parser state is stored with each checkpoint. 

Moreover, Behrouz et al. (2009) suggested a Serialization Enhancement Middleware (SEM) 

Technique that utilizes a combination of DS and DDS techniques to improve response time. 

SEM is an implementation that runs on the middleware to run on top of any web server. SEM 

acts as the primary module and takes advantage of similar SOAP requests in a web server. 
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Similarly, SEM avoids redundant serialization stage of SOAP response for request which have 

completely the same parameters. SEM maintains a trie of incoming parameters for current 

requests thus processing and serialization of response of same requests is done only once. 

2.6 RESEARCH GAPS 

In SOA, web services provide a comprehensive solution for representing, discovering and 

invoking services in distributed systems. At the core of the web services, lie various XML-based 

standards including SOAP. SOAP is a protocol that ensures web services extensibility, 

robustness and interoperability between heterogeneous systems. From previous researchers’ 

literature addressed in section 2.5, it is evident that SOAP’s dependence on XML has basically 

two major performance-related drawbacks: 

(i) XML structure is verbose which results to high network traffic and poor network 

utilization 

(ii) XML parsing and processing causes a high computational burden leading to high latency 

2.7 DEVELOPED TECHNIQUE TO IMPROVE SOAP PERFORMANCE  

Several researchers in section 2.5 have made contributions of how to address the research gaps 

indicated in section 2.6. The scope of this research addressed the verbosity of SOAP messages 

which results to huge messages thus poor bandwidth utilization. In relation to this research’s 

literature survey of techniques of improving SOAP performance covered in section 2.5, this 

research developed an aggregation of the following techniques: client-side caching, document-

literal, simple database queries on the server-side and Gzip compression techniques. 

These techniques are implemented at the presentation layer of the OSI (Open Systems 

Interconnection) model. ASP.NET web services were used in developing this research’s web 
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services. This research adopts and modifies the architecture proposed by Seyyed et al. (2011) 

shown in Figure 2.19 in aggregating these techniques. Figure 2.25 shows this research’s hybrid 

architecture to improve SOAP performance. 
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2.8 SUMMARY 

This chapter has several sections that take us through inception stages of SOAP in the SOA to its 

performance challenges, contributions from other researchers then this research’s developed 

SOAP performance hybrid architecture. We have seen that SOA can be implemented in web 

services, Java RPC, CORBA, COM etc. A web services is an abstract interface whose services 

can be invoked programmatically using SOAP or REST techniques. Web services are 

interoperable in heterogeneous systems. SOAP is more secure than REST. Nevertheless, several 

researchers have shown that SOAP’s dependence on XML is messaging is its major undoing in 

performance.  

Several techniques have been proposed and implemented in improving SOAP performance. This 

research categorized these techniques thematically as client-side, communication channel and 

server-side techniques. The some of the techniques that fall under these thematic areas have been 

discussed. From this literature, we identified major research gaps in SOAP performance. Out of 

the weaknesses identified in models proposed by other researchers, we proposed a hybrid 

architecture that aggregates and blends client-side caching, document-literal, simple database 

queries on the server-side and Gzip compression techniques. Chapter Three take us through 

development of the software that realized this hybrid architecture. 

 

 



 

54 

 

CHAPTER THREE 

3 SOFTWARE DEVELOPMENT 

3.1 SOFTWARE DEVELOPMENT PROCESS 

This research adopted waterfall model of software development. The steps undertaken in this 

research’s software development were as follows (Sommerville, 2011). 

3.1.1 REQUIREMENTS ELICITATION AND ANALYSIS 

This research followed requirements elicitation guidelines which are summarized in the 

following steps (Pressman, 2010): 

o Assessing business and technical feasibility for the proposed architecture. 

o Defining the technical environment into which the software was running e.g. computer 

speed, RAM, operating system, communications, and software platform. 

o Identifying the domain constraints that limit the functionality or performance of the 

software to be built. That is, the characteristics of the business environment specific to 

the application domain. 

o Use of requirements elicitation methods including; interviews and focus groups. 

o Soliciting participation from people so that requirements are defined from different points 

of view e.g. brainstorming. 

o Reading secondary data sources. This enabled this research to establish how other 

researchers modeled their systems and the constraints they put in place. 

The requirements elicitation process and analysis processes led to establishing software 

specifications. These specifications govern the functional boundaries of the system i.e. 
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software’s services, constraints, and goals (Sommerville, 2011). This research identified the 

following system requirements: 

(i) Ability to handle specified size of data and render appropriately: This research 

measured large file sizes of up to 7300KB and a small file size of up to 200KB. The 

software was to have the capability of handling any file size in that range. 

(ii) Platforms operability: This system executes in Windows 2000 Server and Windows XP 

clients. The software was to run on these environments. The software developer was to 

use .NET 2.0 framework while compiling this software because it is supported in 

Windows 2000 Server and Windows XP. The client software to be compiled in .NET 

framework 3.0; it is supported in Windows XP. 

(iii) Local host web hosting and database: The SOAP web service application was hosted in 

Windows 2000 Server IIS while the web clients were hosted in Windows XP IIS. The 

database server was operable in the computer hosting Windows 2000 Server. 

(iv) LAN set up: Server computer and the client computers were linked with a switch/ hub 

in a network cable. All cables to and fro the client computers and the switch were one 

meter long. Client computers were to call services from server computer. 

(v) Caching of data on the client-side: The software was to cache data on the client-side. 

This was done using Ext. Js which is a JavaScript library. This data was fetched from 

the .aspx ASP.NET back end code file. 

(vi) SOAP request and responses: The software was to send SOAP requests to the server. 

The server was to compose SOAP responses accordingly. The web service was to pick 

parameters describing the file size/data required to be fetched from server database. The 
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server processed the request and composed the appropriate file size and sent it back to 

the client computer. 

(vii) SOAP web service calls: The software made web service calls while the client 

computers ASP.NET .aspx back end code file to the .asmx SOAP web service. 

(viii) Implementing simple database queries: The database was behind the web service. The 

web services linked with the database and fetch the appropriate sizes of data. Simple 

database queries were executed. The database was MySQL. The database was directly 

accessible by server computers and not the client computer. 

(ix) Implementation of document-literal technique in WSDL: The software had document-

literal implemented in describing WSDL. 

(x) Implement Gzip algorithm in compressing responses: The web server was able to 

compress responses. Uncompressed responses were equally required. 

3.1.2 SYSTEM AND SOFTWARE DESIGN 

System and software design involves identifying and describing the fundamental software 

system abstractions and their relationships (Sommerville, 2011). This research described the 

model and specifications of the system software using UML (Unified Modeling Language). 

UML models can be categorized in three: static, functional/behavioral and dynamic modeling. 

This research designed at least one model: class diagrams (static model), activity diagram 

(functional), and sequence diagram (dynamic). Besides UML diagrams, Figure 3.4 shows the 

general client-server communication model. 
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(i) Class diagram – static model 

A class diagram describes the structure of a system by showing the system's classes, their 

attributes, operations, and the relationships among objects. Figure 3.1 shows class diagrams of 

three classes: Data, Data_DL and Connectivty. The class Data had two properties (_Text_ID and 

_Text_Data), two get set methods (Text_ID and Text_Data), and one constructor method – 

Data(). The class Data_DL implemented the logic. It had two methods Data_RetrieveServer() 

which fetched data from the database and TypeCast() that instantiates a class Data object and 

sets its properties (Data_ID and Data_Text) with values from the database.  

Nevetheless, class Data_DL inherits from the class Connectivity that opens connectivity to the 

database using its default constructor and closes connectivity to the database using its default 

destructor. Class connectivity has inheritable properties (Comm, Conn and myReader). Comm 

property is the MySqlCommand. Comm is the MySqlConnection while myReader is 

MySqlDataReader.  

(ii) Activity diagram – functional model 

An activity diagram is a graphical representation of workflows of stepwise activities and actions 

with support for choice, iteration and concurrency. The activity diagram in Figure 3.2 shows 

steps and flow of processes followed when a client requested for data from the server. If the 

requested data exited in the server, the web service composed a response and sent it to the client. 

(iii) Sequence diagram – dynamic model 

A sequence diagram is a type of interaction diagram. It models the collaboration of objects based 

on a time sequence. It shows how the objects interact with others in a particular scenario of a use 
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case. Figure 3.3 show an activity diagram of this research’s client-server communication model. 

The computer user used the homepage of the client web application. The client web application, 

from the backend code sent a request to the web service requesting for a certain size of data. The 

web service opened connectivity to the database then run an SQL statement. The database then 

returned data to the web service. The web server, which hosted the web service, composed a 

response and sent the data back to the client application. The client form, application back end 

code, received the data and forwards it to the front end interface. The front end interface was 

purely in JavaScript; it renders the data. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Class diagrams showing three classes: Data, Data_DL and Connectivty 
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3.1.3 IMPLEMENTATION AND UNIT TESTING 

In this stage, the software design was realized as a set of programs or program units. Microsoft 

Visual Studio 2010 was selected as the appropriate IDE (Integrated Development Environment) 

for software development. The software had three major components to be developed: Client-

side component, Server-side component and the database component. 

o The client-side was built in Ext. Js. which is a JavaScript library, ASP.NET and C# as the 

backend programming language. 

o The server-side was built using .asmx web service and C# as the back end language. 

o The database component was built on MySQL Server open source database. 

Basic coding standard were maintained e.g. commenting program code, file organization etc.  

Unit testing involves verifying that each unit meets its specification. Component testing was to 

verify that each component meets its specification. A components is a collection of classes, 
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interfaces etc. In this research, each component was tested to ensure that they work correctly. 

The client application interface is show in Figure 3.5 and web service in Figure 3.6 

Notwithstanding, Shariq et al. (2012) did a study of web services testing tools: soapUI 

(SmartBear, 2013), JMeter (JMeter, 2013) and Storm (Storm, 2013). Testing was in terms of 

their architecture, features, interoperability, software requirements, and usability. Moreover, they 

did a comparison of their throughput, response time and usability; only JMeter and soapUI 

support testing of throughput. Nonetheless, soapUI outperformed JMeter and Storm thus can be 

regarded as fastest tool in terms of response time, JMeter had better throughput than soapUI, and 

Storm had a very simple and easy to use interface. It was observed that response time values 

taken at 6:00 AM are most optimal (Shariq et al., 2012).  

Apache Bench can be used to test various metrics among them: throughput and response time 

(Apache Foundation, 2013). Web services performance testing tools is a rich area of study that 

can exploited. Nevertheless, there are many vendors in the internet who have come up with tools 

that can test web services. Some of these tools include: Fiddler Web Proxy (Terelik, 2013), 

NetMon (Microsoft, 2013), Wire Shark (Wireshark), and NeoLoad (NEOTYS, 2013). Software 

testing in complex systems can be very involving. Software performance profiling can be very 

essential in determining a software’s performance in terms of memory utilization, execution time 

etc. (Mostafa, 2008) (Terrence, 2013). 
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Figure 3.6: Web service application interface showing a public method, “Data_RetrieveServer”. 

Methods can be invoked programatically using SOAP 

 

Figure 3.5: Software client application interface developed in ASP.Net and JavaScript 
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3.1.4 COMPONENT INTEGRATION AND SYSTEM TESTING 

Component Integration involved bringing together all the fully developed and tested 

components. In this research we integrated together the client, server and the database 

components. System testing was to verify that all the integrated components meet the overall 

software requirements (Sommerville, 2011). 

3.1.5 OPERATION AND MAINTENANCE 

This involved the system being installed and put into practical use in the computer lab where we 

ran the experiments. Maintenance involved correcting errors which were not discovered in the 

earlier stages of system development.  
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CHAPTER FOUR 

4 EXPERIMENTS, RESULTS AND DISCUSSION 

4.1 EXPERIMENT SETUP 

We set up an experimental design where we manipulated the file size of responses from the web 

server as we set constant other experiment environmental conditions. The experimental 

environment was controlled to so that we attain accurate and valid experimental results. The 

experimental environments were as follows: 

o Windows 2000 Server OS installed in one server computer and Windows XP installed in 

three client computers. The client computers are named as COMP A, COMP B, and 

COMP C. 

o Network bandwidth set to 10mbps; simulates a disadvantage/poor network bandwidth. 

o All computers had 1GB RAM and 3.2GHz. 

o Client and server were interconnected with a switch. 

o Web services were developed in ASP.NET. ASP.NET web services were compressed and 

uncompressed. Leading to the hybrid architecture be hybrid compressed and hybrid 

uncompressed respectively. Compression was done using Gzip algorithm. 

o Web applications were hosted in Microsoft Internet Information Services (IIS). 

We manipulated file size retrieved from the web server by fetching specific quantified data from 

the database. Extraneous variables include network traffic and background processes running in 

the computers. In a bid to control extraneous variables we ensured that: 

o All computers were formatted. 

o Relevant programs to this research were installed e.g. .NET SDK’s in all the computers. 
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o Browser caches, cookies and offline stored data were deleted before running experiment. 

o We waited the response to load, recorded Fiddler Web Proxy results then ran the next 

experiment. 

o Microsoft Windows native applications were to be used e.g. internet explorer and IIS. 

Nevertheless, in section 2.4.4 it was noted that SOAP rides on HTTP. Fiddler software monitors 

HTTP traffic and gives actual performance statistics which this research is interested in. That 

aside, NetBalance Software was used to limit bandwidth to 10mbps. A bandwidth of 10mbps 

exposes the application to poor and strenuous bandwidth which this research is interested in; 

disadvantaged network. This research used a switch to interconnect the server and client 

computers. Experimental raw data was collected as outlined in section 4.2. 

4.2 EXPERIMENT RAW DATA 

Table 4.1, Table 4.2, and Table 4.3 show raw hybrid compressed HTTP SOAP traffic collected 

from computer A, B, and C respectively. Table A-1, Table A-2, and Table A-3 show raw hybrid 

architecture uncompressed HTTP SOAP traffic collected from computer A, B, and C 

respectively. Fiddler Web Proxy software was used in collecting data. A sample of Fiddler Web 

Proxy software interface showing actual performance is shown in Figure 4.1 and Figure 4.2.  

A brief description of the data representation Table A-1, Table A-2, and Table A-3 is shown 

below (Fiddler, 2014): 

o ClientConnected - Exact time that the client browser made a TCP/IP connection to 

Fiddler. 

o ClientBeginRequest - Time at which this HTTP request began. May be much later than 

ClientConnected due to client connection reuse. 
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o ClientDoneRequest - Exact time that the client browser finished sending the HTTP 

request to Fiddler. 

o DNSTime - Milliseconds Fiddler spent in DNS looking up the server's IP address. 

o GatewayDeterminationTime - Milliseconds Fiddler spent determining the upstream 

gateway proxy to use (e.g. processing autoproxy script). Mutually exclusive to 

DNSTime. 

o TCPConnectTime - milliseconds Fiddler spent TCP/IP connecting to that server's IP 

address. 

o HTTPSHandshakeTime - Amount of time spent in HTTPS handshake 

o ServerConnected - Time at which this connection to the server was made. May be much 

earlier than ClientConnected due to server connection reuse. 

o FiddlerBeginRequest - The time at which Fiddler began sending the HTTP request to the 

server. 

o ServerGotRequest - Exact time that Fiddler finished (re)sending the HTTP request to the 

server. 

o ServerBeginResponse - Exact time that Fiddler got the first bytes of the server's HTTP 

response. 

o ServerDoneResponse - Exact time that Fiddler got the last bytes of the server's HTT 

response. 

o ClientBeginResponse - Exact time that Fiddler began transmitting the HTTP response to 

the client browser. 

o ClientDoneResponse- Exact time that Fiddler finished transmitting the HTTP response to 

the client browser. 
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Figure 4.2: Snapshot of a sample of Fiddler Web Proxy interface showing request and response headers 

 

Figure 4.1: Snapshot of a sample of Fiddler Web Proxy interface showing actual performance 
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File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body (KB) 0 0 0 0 0 

Received: Header (KB) 246 247 247 248 248 

Received: Body (KB) 62,722 124,144 802,382 1,857,706 2,466,262 

ClientConnected: (Time) 19:08:19.109 19:08:19.109 19:09:46.937 19:09:46.937 19:09:46.937 

ClientBeginRequest: (Time) 19:08:42.875 19:09:05.421 19:09:46.937 19:10:10.359 19:10:38.203 

GotRequestHeaders: (Time) 19:08:42.875 19:09:05.421 19:09:46.937 19:10:10.359 19:10:38.203 

ClientDoneRequest: (Time) 19:08:42.875 19:09:05.421 19:09:46.937 19:10:10.359 19:10:38.203 

Determine Gateway: (Time) 0ms 0ms 0ms 0ms 0ms 

DNS Lookup: 0ms 0ms 0ms 0ms 0ms 

TCP/IP Connect: 0ms 0ms 0ms 0ms 0ms 

HTTPS Handshake: 0ms 0ms 0ms 0ms 0ms 

Time ServerConnected: (Time) 19:08:42.875 19:08:42.875 19:08:42.875 19:08:42.875 19:08:42.875 

FiddlerBeginRequest: (Time) 19:08:42.875 19:09:05.421 19:09:46.937 19:10:10.359 19:10:38.203 

ServerGotRequest: (Time) 19:08:42.875 19:09:05.421 19:09:46.937 19:10:10.359 19:10:38.203 

ServerBeginResponse: (Time) 19:08:42.921 19:09:05.500 19:09:47.375 19:10:11.328 19:10:39.453 

GotResponseHeaders: (Time) 19:08:42.921 19:09:05.500 19:09:47.375 19:10:11.328 19:10:39.453 

ServerDoneResponse: (Time) 19:08:42.921 19:09:05.500 19:09:47.375 19:10:11.343 19:10:39.484 

ClientBeginResponse: (Time) 19:08:42.921 19:09:05.500 19:09:47.390 19:10:11.343 19:10:39.484 

ClientDoneResponse: (Time) 19:08:42.921 19:09:05.500 19:09:47.390 19:10:11.343 19:10:39.484 

 

Table 4.1: COMP A - raw Gzip compressed HTTP SOAP traffic 
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File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body (KB) 0 0 0 0 0 

Received: Header (KB) 246 247 247 248 248 

Received: Body (KB) 62,722 124,144 802,382 1,857,706 2,466,262 

ClientConnected: (Time) 19:12:19.140 19:12:19.140 19:12:19.140 19:14:08.625 19:14:08.625 

ClientBeginRequest: (Time) 19:12:45.046 19:13:09.390 19:13:25.625 19:14:08.625 19:14:33.468 

GotRequestHeaders: (Time) 19:12:45.046 19:13:09.390 19:13:25.625 19:14:08.625 19:14:33.468 

ClientDoneRequest: (Time) 19:12:45.046 19:13:09.390 19:13:25.625 19:14:08.625 19:14:33.468 

Determine Gateway: (Time) 0ms 0ms 0ms 0ms 0ms 

DNS Lookup: 0ms 
 

0ms 0ms 0ms 

TCP/IP Connect: 0ms 0ms 0ms 0ms 0ms 

HTTPS Handshake: 0ms 0ms 0ms 0ms 0ms 

Time ServerConnected: (Time) 19:12:19.156 19:12:19.156 19:12:19.156 19:12:19.156 19:12:19.156 

FiddlerBeginRequest: (Time) 19:12:45.046 19:13:09.390 19:13:25.625 19:14:08.625 19:14:33.468 

ServerGotRequest: (Time) 19:12:45.046 19:13:09.390 19:13:25.625 19:14:08.625 19:14:33.468 

ServerBeginResponse: (Time) 19:12:45.078 19:13:09.484 19:13:26.031 19:14:09.609 19:14:34.734 

GotResponseHeaders: (Time) 19:12:45.078 19:13:09.484 19:13:26.031 19:14:09.609 19:14:34.734 

ServerDoneResponse: (Time) 19:12:45.078 19:13:09.484 19:13:26.031 19:14:09.625 19:14:34.750 

ClientBeginResponse: (Time) 19:12:45.078 19:13:09.484 19:13:26.046 19:14:09.625 19:14:34.765 

ClientDoneResponse: (Time) 19:12:45.078 19:13:09.484 19:13:26.046 19:14:09.625 19:14:34.765 

 

Table 4.2: COMP B - raw Gzip compressed HTTP SOAP traffic 
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File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body (KB) 0 0 0 0 0 

Received: Header (KB) 246 247 247 248 248 

Received: Body (KB) 62,722 124,144 802,382 1,857,706 2,466,262 

ClientConnected: (Time) 19:14:30.015 19:14:30.015 20:18:12.531 19:14:30.015 19:14:30.015 

ClientBeginRequest: (Time) 19:14:35.718 19:14:57.250 20:18:12.531 19:15:48.593 19:16:28.500 

GotRequestHeaders: (Time) 19:14:35.718 19:14:57.250 20:18:12.531 19:15:48.593 19:16:28.500 

ClientDoneRequest: (Time) 19:14:35.718 19:14:57.250 20:18:12.531 19:15:48.593 19:16:28.500 

Determine Gateway: (Time) 0ms 0ms 0ms 0ms 0ms 

DNS Lookup: 0ms 0ms 0ms 0ms 0ms 

TCP/IP Connect: 0ms 0ms 0ms 0ms 0ms 

HTTPS Handshake: 0ms 0ms 0ms 0ms 0ms 

Time ServerConnected: (Time) 19:14:30.015 19:14:30.015 20:17:36.515 19:14:30.015 19:14:30.015 

FiddlerBeginRequest: (Time) 19:14:35.718 19:14:57.250 20:18:12.531 19:15:48.593 19:16:28.500 

ServerGotRequest: (Time) 19:14:35.718 19:14:57.250 20:18:12.531 19:15:48.593 19:16:28.500 

ServerBeginResponse: (Time) 19:14:35.765 19:14:57.312 20:18:12.968 19:15:49.562 19:16:29.781 

GotResponseHeaders: (Time) 19:14:35.765 19:14:57.328 20:18:12.968 19:15:49.562 19:16:29.781 

ServerDoneResponse: (Time) 19:14:35.765 19:14:57.328 20:18:12.984 19:15:49.578 19:16:29.796 

ClientBeginResponse: (Time) 19:14:35.765 19:14:57.328 20:18:12.984 19:15:49.578 19:16:29.796 

ClientDoneResponse: (Time) 19:14:35.765 19:14:57.328 20:18:12.984 19:15:49.578 19:16:29.796 

 

Table 4.3: COMP C - raw Gzip compressed HTTP SOAP traffic 
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4.3 EXPERIMENT PRE-PROCESED DATA 

In this section we refine the raw data collected as outlined in section 4.2. We then calculate the 

time since the client got connected to the server to send requests, to the time the client was done 

working on the response after the client received the response from the server. This time period 

has several check points e.g. ClientBeginRequest, GotRequestHeaders etc. as indicated in Table 

4.4, Table 4.5, Table 4.6, Table B-1, Table B-2, Table B-3, Table 4.7, and Table 4.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body(KB) 0 0 0 0 0 

Total Request Header (KB) 500 501 501 501 501 

Received: Header (KB) 246 247 247 248 248 

Received: Body (KB) 62,722 124,144 802,382 1,857,706 2,466,262 

Total Response Header (KB) 62,968 124,391 802,629 1,857,954 2,466,510 

ClientConnected: (ms) 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 

ClientBeginRequest: (ms) 0:00:23.766 0:00:46.312 0:00:00.000 0:00:23.422 0:00:51.266 

GotRequestHeaders: (ms) 0:00:23.766 0:00:46.312 0:00:00.000 0:00:23.422 0:00:51.266 

ClientDoneRequest: (ms) 0:00:23.766 0:00:46.312 0:00:00.000 0:00:23.422 0:00:51.266 

FiddlerBeginRequest: (ms) 0:00:23.766 0:00:46.312 0:00:00.000 0:00:23.422 0:00:51.266 

ServerGotRequest: (ms) 0:00:23.766 0:00:46.312 0:00:00.000 0:00:23.422 0:00:51.266 

ServerBeginResponse: (ms) 0:00:23.812 0:00:46.391 0:00:00.438 0:00:24.391 0:00:52.516 

GotResponseHeaders: (ms) 0:00:23.812 0:00:46.391 0:00:00.438 0:00:24.391 0:00:52.516 

ServerDoneResponse: (ms) 0:00:23.812 0:00:46.391 0:00:00.438 0:00:24.406 0:00:52.547 

ClientBeginResponse: (ms) 0:00:23.812 0:00:46.391 0:00:00.453 0:00:24.406 0:00:52.547 

ClientDoneResponse: (ms) 0:00:23.812 0:00:46.391 0:00:00.453 0:00:24.406 0:00:52.547 

 

Table 4.4: COMP - A Gzip compressed hybrid architecture pre-processed results 
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File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body(KB) 0 0 0 0 0 

Total Request Header (KB) 500 501 501 501 501 

Received: Header (KB) 246 247 247 248 248 

Received: Body (KB) 62,722 124,144 802,382 1,857,706 2,466,262 

Total Response Header (KB)             62,968            124,391            802,629         1,857,954         2,466,510  

ClientConnected: (ms) 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 

ClientBeginRequest: (ms) 0:00:25.906 0:00:50.250 0:01:06.485 0:00:00.000 0:00:24.843 

GotRequestHeaders: (ms) 0:00:25.906 0:00:50.250 0:01:06.485 0:00:00.000 0:00:24.843 

ClientDoneRequest: (ms) 0:00:25.906 0:00:50.250 0:01:06.485 0:00:00.000 0:00:24.843 

FiddlerBeginRequest: (ms) 0:00:25.906 0:00:50.250 0:01:06.485 0:00:00.000 0:00:24.843 

ServerGotRequest: (ms) 0:00:25.906 0:00:50.250 0:01:06.485 0:00:00.000 0:00:24.843 

ServerBeginResponse: (ms) 0:00:25.938 0:00:50.344 0:01:06.891 0:00:00.984 0:00:26.109 

GotResponseHeaders: (ms) 0:00:25.938 0:00:50.344 0:01:06.891 0:00:00.984 0:00:26.109 

ServerDoneResponse: (ms) 0:00:25.938 0:00:50.344 0:01:06.891 0:00:01.000 0:00:26.125 

ClientBeginResponse: (ms) 0:00:25.938 0:00:50.344 0:01:06.906 0:00:01.000 0:00:26.140 

ClientDoneResponse: (ms) 0:00:25.938 0:00:50.344 0:01:06.906 0:00:01.000 0:00:26.140 

 

Table 4.5: COMP - B Gzip compressed hybrid architecture pre-processed results 

File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body(KB) 0 0 0 0 0 

Total Request Header (KB) 500 501 501 501 501 

Received: Header (KB) 246 247 247 248 248 

Received: Body (KB) 62,722 124,144 802,382 1,857,706 2,466,262 

Total Response Header (KB) 62,968 124,391 802,629 1,857,954 2,466,510 

ClientConnected: (ms) 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 

ClientBeginRequest: (ms) 0:00:05.703 0:00:27.235 0:00:00.000 0:01:18.578 0:01:58.485 

GotRequestHeaders: (ms) 0:00:05.703 0:00:27.235 0:00:00.000 0:01:18.578 0:01:58.485 

ClientDoneRequest: (ms) 0:00:05.703 0:00:27.235 0:00:00.000 0:01:18.578 0:01:58.485 

FiddlerBeginRequest: (ms) 0:00:05.703 0:00:27.235 0:00:00.000 0:01:18.578 0:01:58.485 

ServerGotRequest: (ms) 0:00:05.703 0:00:27.235 0:00:00.000 0:01:18.578 0:01:58.485 

ServerBeginResponse: (ms) 0:00:05.750 0:00:27.297 0:00:00.437 0:01:19.547 0:01:59.766 

GotResponseHeaders: (ms) 0:00:05.750 0:00:27.313 0:00:00.437 0:01:19.547 0:01:59.766 

ServerDoneResponse: (ms) 0:00:05.750 0:00:27.313 0:00:00.453 0:01:19.563 0:01:59.781 

ClientBeginResponse: (ms) 0:00:05.750 0:00:27.313 0:00:00.453 0:01:19.563 0:01:59.781 

ClientDoneResponse: (ms) 0:00:05.750 0:00:27.313 0:00:00.453 0:01:19.563 0:01:59.781 

 

Table 4.6: COMP - C Gzip hybrid architecture compressed pre-processed results 
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File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500.00 501.00 501.00 501.00 501.00 

Sent: Body(KB) - - - - - 

Total Request Header (KB) 500.00 501.00 501.00 501.00 501.00 

Received: Header (KB) 246.00 247.00 247.00 248.00 248.00 

Received: Body (KB) 62,722.00 124,144.00 802,382.00 1,857,706.00 2,466,262.00 

Total Response Header (KB) 62,968.00 124,391.00 802,629.00 1,857,954.00 2,466,510.00 

ClientConnected: (ms) 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 

ClientBeginRequest: (ms) 0:00:18.458 0:00:41.266 0:00:22.162 0:00:34.000 0:01:04.865 

GotRequestHeaders: (ms) 0:00:18.458 0:00:41.266 0:00:22.162 0:00:34.000 0:01:04.865 

ClientDoneRequest: (ms) 0:00:18.458 0:00:41.266 0:00:22.162 0:00:34.000 0:01:04.865 

FiddlerBeginRequest: (ms) 0:00:18.458 0:00:41.266 0:00:22.162 0:00:34.000 0:01:04.865 

ServerGotRequest: (ms) 0:00:18.458 0:00:41.266 0:00:22.162 0:00:34.000 0:01:04.865 

ServerBeginResponse: (ms) 0:00:18.500 0:00:41.344 0:00:22.589 0:00:34.974 0:01:06.130 

GotResponseHeaders: (ms) 0:00:18.500 0:00:41.349 0:00:22.589 0:00:34.974 0:01:06.130 

ServerDoneResponse: (ms) 0:00:18.500 0:00:41.349 0:00:22.594 0:00:34.990 0:01:06.151 

ClientBeginResponse: (ms) 0:00:18.500 0:00:41.349 0:00:22.604 0:00:34.990 0:01:06.156 

ClientDoneResponse: (ms) 0:00:18.500 0:00:41.349 0:00:22.604 0:00:34.990 0:01:06.156 

 

Table 4.7: Average results of computers A, B, and C while Gzip compressed hybrid architecture 

File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 
                     

500.00  

                  

501.00  
                       501.00               501.00                      501.00  

Sent: Body(KB) 
                            

-    
                          -                                   -                         -                                -    

Total Request Header (KB) 
                     

500.00  

                  

501.00  
                       501.00               501.00                      501.00  

Received: Header (KB) 
                     

223.00  

                  

223.00  
                       224.00               224.00                      224.00  

Received: Body (KB) 
              

199,777.00  

           

386,777.00  
             2,366,776.00     5,527,776.00            7,299,776.00  

Total Response Header (KB) 
              

200,000.00  

           

387,000.00  
             2,367,000.00     5,528,000.00            7,300,000.00  

ClientConnected: (ms) 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 

ClientBeginRequest: (ms) 0:00:26.979 0:00:10.151 0:00:31.750 0:00:54.755 0:01:14.911 

GotRequestHeaders: (ms) 0:00:26.979 0:00:10.151 0:00:31.750 0:00:54.755 0:01:14.911 

ClientDoneRequest: (ms) 0:00:26.979 0:00:10.151 0:00:31.750 0:00:54.755 0:01:14.911 

FiddlerBeginRequest: (ms) 0:00:26.979 0:00:10.151 0:00:31.750 0:00:54.755 0:01:14.911 

ServerGotRequest: (ms) 0:00:26.979 0:00:10.151 0:00:31.750 0:00:54.755 0:01:14.911 

ServerBeginResponse: (ms) 0:00:27.015 0:00:10.203 0:00:32.026 0:00:55.391 0:01:15.740 

GotResponseHeaders: (ms) 0:00:27.015 0:00:10.203 0:00:32.026 0:00:55.391 0:01:15.740 

ServerDoneResponse: (ms) 0:00:27.021 0:00:10.214 0:00:32.052 0:00:55.442 0:01:15.807 

ClientBeginResponse: (ms) 0:00:27.021 0:00:10.214 0:00:32.057 0:00:55.453 0:01:15.818 

ClientDoneResponse: (ms) 0:00:27.021 0:00:10.214 0:00:32.062 0:00:55.458 0:01:15.833 

 

Table 4.8: Average results of computers A, B, and C while uncompressed hybrid architecture 
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4.4 EXPERIMENT PROCESSED DATA 

4.4.1 COMPRESSED/UNCOMPRESSED RESPONSE MESSAGES OF HYBRID 

ARCHITECTURE 

Processed data of uncompressed hybrid architecture SOAP responses messages are shown in 

Table 4.9 while those of compressed hybrid architecture SOAP response messages are shown in 

Table 4.10. This information was derived from Table 4.7 and Table 4.8 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original file size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500.00 501.00 501.00 501.00 501.00 

Sent: Body (KB) - - - - - 

Total Request Header (KB) 500.00 501.00 501.00 501.00 501.00 

Received: Header (KB) 223.00 223.00 224.00 224.00 224.00 

Received: Body (KB) 199,777.00 386,777.00 2,366,776.00 5,527,776.00 7,299,776.00 

Total Response Header (KB) 200,000.00 387,000.00 2,367,000.00 5,528,000.00 7,300,000.00 

 

Table 4.9: Hybrid architecture, uncompressed SOAP response messages  

Original file size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500.00 501.00 501.00 501.00 501.00 

Sent: Body (KB) - - - - - 

Total Request Header (KB) 500.00 501.00 501.00 501.00 501.00 

Received: Header (KB) 246.00 247.00 247.00 248.00 248.00 

Received: Body(KB) 62,722.00 124,144.00 802,382.00 1,857,706.00 2,466,262.00 

Total Response Header 62,968.00 124,391.00 802,629.00 1,857,954.00 2,466,510.00 

 

Table 4.10: Hybrid architecture, compressed SOAP response message 
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4.4.2 TIME TAKEN TO TRANSFER SOAP REQUEST/RESPONSE IN HYBID 

ARCHITECTURE 

Using the average results shown in Table 4.7 and Table 4.8, we calculated the time taken to 

transfer SOAP requests using equation (4.1) whose information is shown in Table 4.11. The time 

taken to transfer a SOAP response was calculated using equation (4.2) (Fiddler, 2014). Improved 

time was calculated using equation (4.3) while the percentage improved time was calculated 

using equation (4.4) Table 4.12 shows the results. 

 

 

 

 

 

 

 

 

 

 

 

 

Original file size (KB) 200 387 2367 5528 7300 

Hybrid Compressed  (ms) 0 0 0 0 0 

Hybrid Uncompressed  (ms) 0 0 0 0 0 

 

Table 4.11: Time to transfer SOAP request of to the server for Hybrid Compressed and Uncompressed 

Original file size (KB) 200 387 2367 5528 7300 Avg. % improvement 

Hybrid Compressed (ms) 0 5 5 16 21  

Hybrid Uncompressed (ms) 5 11 27 52 68  

Improved time (ms) 5 6 22 36 47  

Percentage improved time 100 54.55 81.48 69.23 69.12 74.87 

 

Table 4.12: Time taken to transfer compressed and uncompressed SOAP responses and percentage 

improvement time in the Hybrid architectures. 

Time taken to transfer request = (ServerGotRequest - ClientBeginRequest) (4.1) 

Time taken to transfer SOAP responses = (ServerGotRequest - ClientDoneRequest) - 

(DNSTime + TCPConnectTime) 
(4.2) 

Improved time = Hybrid _uncompressed – Hybrid_compressed (4.3) 

Percentage improved time = (Improved_time ÷ Hybrid _uncompressed) * 100 (4.4) 
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4.4.3 TIME TAKEN TO PROCESS SOAP REQUEST 

Time to process SOAP requests on the server was calculated using equation (4.5) (Fiddler, 

2014). Degraded time was calculated using equation (4.6) while percentage degraded time was 

calculated using equation (4.7). Results are shown in shown in Table 4.13.  

 

 

 

 

 

 

 

 

4.5 SOAP PERFORMANCE EVALUATION METRICS 

SOAP is a service oriented technology with Quality of Service (QoS) requirements. QoS can be 

defined as a set of techniques geared towards management of resources (CISCO, 2013). 

Moreover, QoS is a set of perceivable characteristics expressed in a user-friendly language with 

quantifiable parameters that may be subjective or objective. Software performance evaluation is 

an area of interest in QoS; which is also a field of concern in software engineering (Martinez, 

2005).  

Original file size (KB) 200 387 2367 5528 7300 Avg. % degraded time 

Hybrid Compressed (ms) 42 78 427 974 1266  

Hybrid Uncompressed  (ms) 36 52 276 635 828  

Degraded time (ms) 6 26 151 339 438  

Percentage degraded time 16.67 50.00 54.71 53.39 52.90 45.53 

 

Table 4.13: Time taken to process compressed and uncompressed SOAP request and percentage 

degraded time in the hybrid architectures 

Time to process request = (ServerBeginResponse - ServerGotRequest) (4.5) 

Degraded time = Hybrid_compressed – Hybrid_uncompressed (4.6) 

Percentage degraded time = (Degraded time ÷ uncompressed) * 100 (4.7) 
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Performance evaluation emerged in the 1970’s and 1980’s as an important component in 

computer science. It involves the use of accepted methods in measuring computer systems. The 

field of computer systems and software engineering focuses on specific components in computer 

science. These components can be evaluated in terms of their effectiveness. SOAP performance 

metrics involves a standard measure of SOAP performance indices. In the OSI (Open Standards 

Interconnection) model of communication in a network, SOAP metrics can be evaluated at 

multiple layers in the protocol stack, for instance, IP packets round trip time (network layer), and 

channel utilization (transport layer). There are other various performance evaluation parameters 

which include: throughput, good put, packet loss rate, and MAC layer retries (Martinez, 2005) 

(Tekli et al., 2011) (Bob, 2006) (Shariq et al., 2012).  

This research is interested in SOAP performance which is widely measured in terms of: 

(i) Round trip time (responsiveness): It is the time required to traverse a network and back. 

Round trip time is measured in milliseconds (ms). 

(ii) Bandwidth/channel utilization: It measures utilization of a channel. It is the amount of 

data transmitted or received at a given time. It is measured in megabytes per second 

(mbps). 

(iii)Throughput: Measures the packets that are flowing out (e.g. requests) of a node/client. In 

WS, it can be measured in either megabytes per second (mbps) or requests per second 

(req/sec). It is usually measured at the server-side. 

We did not calculate bandwidth because, as described in experimental set up in section 4.1, 

bandwidth was set as a constant value of 10mbps. We further measured SOAP compression 
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using compression ratio percentage (Mark et al., 1995). We therefore measure SOAP 

performance using the following metrics: 

(i) Compression ratio percentage 

(ii) Round trip time (responsiveness) 

(iii)Throughput 

4.5.1 COMPRESSION RATIO PERCENTAGE 

Compression ratio percentage is used as tool for analysis to measure percentage effect of 

compression. Compression percentage means that for a file that doesn’t change at all when 

compressed, it will have a compression ratio of zero percent. A file compressed down to a 

quarter of its original size will have a compression ratio of 75 percent. A file that shrinks down 

to 0 bytes will have a compression ratio of 100 percent. This way of measuring compression may 

not be perfect, but it shows perfect compression at 100 percent and total compression failure at 

zero (0) percent. In fact, a file that goes through a compression program and comes out larger 

than its original size will have negative compression ratio percentage. The formula of calculating 

compression ratio percentage is show in equation (4.8) (Mark et al., 1995). 

 

Table 4.9 and Table 4.10 highlighted SOAP messages file sizes. From this, the total size of 

SOAP response was calculated by adding the size of the header and the size of the body of the 

SOAP response message using equation (4.9). The results of compression ratio percentage of 

SOAP messages responses are evaluated as shown in Table 4.14. 

 

( 1 - ( compressed_size / raw_size ) ) * 100 (4.8) 

Total size of SOAP response = size of response header + size of response body (4.9) 
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We calculated SOAP response messages compression ratio percentage and average compression 

ratio percentage using equation (4.10) and equation (4.11) respectively as shown in Table 4.15. 

 

 

 

 

 

 

4.5.2 ROUND TRIP TIME (RTT) 

Round trip time (RTT) is the time required to traverse a network and back. Round trip time is 

measured in milliseconds (Tekli et al., 2011). This research’s RTT is the time taken for a SOAP 

message to traverse a network and come back to the client. 

Table 4.11 gave all SOAP requests transfer time as zero. We therefore evaluated RTT using time 

taken to transfer SOAP response and time taken to process SOAP requests as show in equation  

Table 4.15: Compression ratio percentage for hybrid compressed and uncompressed SOAP messages 

 

Original file size (KB) 200 387 2367 5528 7300 

Avg. 

compression 

ratio % 

Response  hybrid 

uncompressed size (KB) 
200,000 387,000 2,367,000 5,528,000 7,300,000  

Response  hybrid 

compressed size (KB) 
62,968 124,391 802,629 1,857,954 2,466,510  

Compression ratio % 68.516 67.8576 66.0909 66.3901 66.2122 67.0134 

 

Methodology Original file size (KB) 200 387 2367 5528 7300 

 Received: Header (KB) 223.00 223.00 224.00 224.00 224.00 

Response  Hybrid 

Uncompressed 
Received: Body (KB) 199,777.00 386,777.00 2,366,776.00 5,527,776.00 7,299,776.00 

 Total Response Header (KB) 200,000.00 387,000.00 2,367,000.00 5,528,000.00 7,300,000.00 

 Received: Header (KB) 246.00 247.00 247.00 248.00 248.00 

Response Hybrid 

Uncompressed 
Received: Body(KB) 62,722.00 124,144.00 802,382.00 1,857,706.00 2,466,262.00 

 Total Response Header (KB) 62,968.00 124,391.00 802,629.00 1,857,954.00 2,466,510.00 

 

Table 4.14: Compression ratio percentage SOAP messages of Hybrid Compressed and Uncompressed 

( 1 - ( ASP_compressed_response_size ÷ ASP_uncompressed_response_size) ) * 100 (4.10) 

Average compression ratio% = Sum of compression ratio % ÷ No. of compressed samples (4.11) 
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(4.12). Degraded RTT was calculated using equation (4.13). Equation (4.14) was used to 

calculate percentage degraded RTT. Results as are show in Table 4.16. 

 

 

 

 

 

 

 

 

4.5.3 THROUGHPUT 

Throughput measures the packets that flow out (e.g. requests) of a node/client. In WS, 

throughput can be measured in either megabytes per second (mbps) or requests per second 

(req/sec). Throughput is usually measured at the server-side (Tekli et al., 2011). In this research 

throughput is measured in requests per second using equation (4.15). The average throughput 

was measure by dividing total number of request by total RTT of these requests as shown in 

equation (4.16); Table 4.17 and Table 4.18 captured the results. 

 

 

File size (KB) 200 387 2367 5528 7300 Avg. % RTT degraded 

Hybrid Compressed (ms) 42 83 432 990 1287 
 

Hybrid Uncompressed (ms) 41 63 303 687 896 
 

Degraded RTT (ms) 1 20 129 303 391 
 

Percentage RTT degraded 2.44 31.75 42.57 44.10 43.69 32.91 

 

Table 4.16: Round trip time results for Hybrid Compressed and Uncompressed 

RTT = Time taken to transfer SOAP response + Time taken to process SOAP request (4.12) 

Degraded RTT = Hybrid_Compressed – Hybrid_Uncompressed 

 
(4.13) 

Percentage RTT degraded = ( Degraded RTT ÷ Hybrid_Uncompressed ) * 100 (4.14) 

Throughput = Request ÷ RTT (4.15) 

Average throughput = Average total number of request ÷ Average total RTT (4.16) 
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4.6 RESULTS 

Results in this section are guided by the processed and evaluated data outlined in section 4.3 and 

section 4.5 respectively. We noted down results as follows: compression ratio, time to transfer 

SOAP messages, time to process requests, round trip time, and throughput. 

4.6.1 RESULTS FOR COMPRESSION RATIO PERCENTAGES  

Figure 4.3 contains a graph illustrating change in compression ratio percentage against file size 

of SOAP response. This graph was derived from Table 4.15 section 4.5.1. It depicts the 

percentage change in compression ratio percentage against change in file sizes between 200KB 

and 7300KB. File size 2367KB recorded the lowest compression ratio percentage.  

The general trend of this graph shows the line sloping to the right. This indicated that smaller file 

sizes exhibited better compression ratios than large file sizes after being compressed with Gzip 

algorithm. 

File Size (KB) 200 387 2367 5528 7300 

Average number of requests 1 1 1 1 1 

Average Hybrid Compressed RTT (s) 0.042 0.083 0.432 0.990 1.287 

Average throughput (request per second) 23 12.05 2.31 1.01 0.78 

 

Table 4.17: Average throughput performance measures for hybrid compressed 

Average  file size in KB 200 387 2367 5528 7300 

Average number of requests 1 1 1 1 1 

Average Hybrid Uncompressed RTT (s) 0.041 0.063 0.303 0.687 0.896 

Average throughput (request per second) 24.39 15.87 3.3 1.46 1.12 

 

Table 4.18: Average throughput performance measures for hybrid uncompressed 
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There was substantial relationship between file size and compression ratio percentage. This is 

shown by sloping of the line representing the change in compression ratio percentage. We note 

that file size had a notable negative relationship with compression ratio percentage. 

 

 

 

 

 

 

 

4.6.2 RESULTS FOR TIME TO TRANSFER SOAP MESSAGES 

(i) Transfer time of compressed and uncompressed hybrid architecture SOAP requests 

Figure 4.4 represents a graph depicting change in transfer time against file size of hybrid 

compressed and hybrid uncompressed SOAP requests. This graph was as a result of data from 

Table 4.12. We considered time to transfer response from the server to the client. Time to 

transfer requests from the client to the server was left out because it gave zero values as show in 

Table 4.11. The graph indicates the change in transfer time against file sizes between 200KB and 

7300KB for hybrid uncompressed and hybrid compressed SOAP messages. 

It is observed that, hybrid compressed recorded the same time value for 387KB and 2367KB file 

sizes. Nevertheless, the trend of the graph shows that both hybrid architectures, compressed and 

uncompressed lines rise steadily. Indicating that smaller file sizes portray smaller transfer time 

 

Figure 4.3: Change in compression ratio percentage against file sizes of SOAP response 
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than larger files. The line representing hybrid compressed runs below hybrid uncompressed. This 

indicated that uncompressed take much longer time to transfer files compared to compressed 

files. 

There was a notable relationship between file size and time taken to transfer SOAP request. This 

was indicated by steady rising of the lines representing both hybrids, compressed and 

uncompressed. So far we say that file size had a notable positive relationship with time.  

 

 

 

 

 

 

 

(ii) Percentage change in transfer time of compressed and uncompressed hybrid 

architectures SOAP requests 

Figure 4.5 represents a graph showing change in percentage improved transfer time against file 

size of hybrid compressed compared to hybrid uncompressed SOAP requests. This graph is as a 

result of data from Table 4.12. The graph indicates the change in percentage improved transfer 

time against file sizes between 200KB and 7300KB for hybrid uncompressed and hybrid 

compressed SOAP messages. 

 

Figure 4.4: Change in transfer time against file size of compressed and uncompressed SOAP 

requests of the Hybrid Architecture 
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The graph depicts that, file size 387KB recorded the lowest percentage improved transfer time 

while 5528KB and 7300KB recorded close percentages values the former being slightly higher. 

However, the general trend of the graph shows that the line slopes steadily to the right. This 

indicated that smaller file sizes portray a higher percentage improvement in transfer time than 

larger files. 

There was notable relationship between file size and change in percentage improved transfer 

time. This is indicated by steady slope of the lines to the right representing percentage change 

transfer time. We note that file size had a notable negative relationship with percentage 

improvement transfer time. 

 

 

 

 

 

 

 

 

 

Figure 4.5: Change in percentage improved transfer time against file size of compressed compared to 

uncompressed SOAP requests of the Hybrid Architecture 
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(iii) Transfer time of compressed hybrid architecture and Seyyed et al. (2011) SOAP 

requests 

Let’s compare compression and Seyyed et al. (2011) in terms of time to transfer SOAP 

messages. To measure improvement in transfer time and percentage improvement, we employed 

equation (4.17) and equation (4.18) respectively. The results were tabulated in Table 4.19. 

 

 

 

 

 

 

 

 

Figure 4.6 represents a line graph depicting transfer time against file size of hybrid compressed 

and Seyyed et al. (2011) SOAP messages. This graph was as a result of data from Table 4.19. It 

is observed that, compressed hybrid architecture recorded the same time value for 387KB and 

2367KB file sizes. Seyyed et al. (2011) also recorded same transfer value of 2367KB and 

5528KB file sizes. Nevertheless, the trend of the graph shows that both compressed hybrid 

architecture and Seyyed et al. (2011) lines rose steadily. Indicating that smaller file sizes 

recorded smaller transfer time than larger files. The line representing compressed hybrid 

File size (KB) 200 387 2367 5528 7300 Avg. % improvement 

Hybrid Compressed 0 5 5 16 21  

Seyyed et al. (2011) 2 6 83 83 107  

Improved time 2 1 78 67 86  

Percentage improvement 100 166.67 93.97 80.72 80.37 104.35 

 

Table 4.19: Transfer time and percentage improvement of compared to Seyyed et al. (2011) 

of SOAP messages of the Hybrid Architecture 

(4.18) Percentage improvement = ( Improved_transfer_time ÷ Seyyed_et_al_2011 ) * 100 

Improved transfer time = Seyyed_et_al_2011 – Hybrid_Compressed (4.17) 
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architecture runs below Seyyed et al. (2011). This indicated that hybrid compressed took less 

time to transfer files. 

 

 

 

 

 

 

 

Figure 4.7 contains a graph showing change in percentage improvement against file size of 

compressed hybrid architecture compared to Seyyed et al. (2011). This graph was as a result of 

data from Table 4.19. It is clear that, 5528KB and 7300KB recorded slightly different percentage 

improvement values 7300 being slightly lower. File size 387KB recorded the highest percentage 

improvement value. The trend of the graph shows that the line sloped steadily to the right. This 

indicated that smaller files record better percentage improvement than larger files.  

 

 

 

 

 

Figure 4.6: Change in transfer time against file size of hybrid compressed and Seyyed et al. (2011) 

SOAP messages  
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4.6.3 RESULTS FOR TIME TO PROCESS REQUEST 

(i) Time to process requests of compressed and uncompressed hybrid architectures 

Figure 4.8 illustrates a graph representing change in time to process SOAP request against 

change in file size of compressed and uncompressed. This graph was retrieved from Table 4.16 

which shows results of time to process compressed and uncompressed request between 200KB 

and 7300KB file sizes. 

The graph shows the line representing change in hybrid compressed and hybrid uncompressed 

rising moderately. This points out that that an increase in the file size results to an increase in the 

time to process a SOAP request for both hybrid architectures, compressed and uncompressed. 

Nevertheless, uncompressed line runs below compressed. This depicts that compressed hybrid 

architecture take more time to process as compared to uncompressed hybrid architecture. This is 

significant in the sense that compressed files in hybrid architecture take more time to be 

processed in the server-side.  

 
Figure 4.7: Change in percentage improvement against file size of hybrid compressed compared to 

Seyyed et al. (2011) 
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There is a notable relationship between file size and time. This is indicated by the lines 

representing both hybrid architectures, compressed and uncompressed rising moderately. We can 

therefore say that file size had a notable positive relationship with time. 

 

 

 

 

 

 

 

 

 

 

(ii) Percentage change in processing time of SOAP request of compressed and 

uncompressed hybrid architectures  

Figure 4.9 represents a graph representing change in percentage degraded time to process SOAP 

request against change in file size of compressed hybrid architecture compared to uncompressed 

hybrid architecture. This graph is as a result of data from Table 4.13.The graph indicates the 

change in percentage degraded time to process SOAP against file sizes between 200KB and 

 

Figure 4.8: Change in time to process SOAP request against change in file size of compressed and 

uncompressed 
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7300KB. The graph illustrates that the percentage degraded time rises steadily to file size 

2367KB. Thereafter the percentage degraded time starts dropping slowly.  

 

 

 

 

 

 

 

 

 

 

(iii) Time to process compressed hybrid architecture and Seyyed et al. (2011) SOAP 

requests 

We compared compressed hybrid architecture and Seyyed et al. (2011) in terms of time to 

process SOAP request. To measure improved processing time and percentage improvement, we 

used equation (4.19) and equation (4.20) respectively. The results were tabulated in Table 4.20. 

 

 

 

Figure 4.9: Change in percentage degraded time to process SOAP request against change in file size of 

compressed compared to uncompressed hybrid architectures 

Improved processing time = Seyyed_et_al_2011 – Hybrid_Compressed (4.19) 

Percentage improvement = ( Improved processing time ÷ Seyyed_et_al_2011 ) * 100 (4.20) 
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Figure 4.16 shows a graph representing change in time to process SOAP request against file size 

of compressed hybrid architecture and Seyyed et al. (2011). This graph is as a result of data from 

Table 4.20. The trend of the graph shows that compressed hybrid architecture and Seyyed et al. 

(2011) lines rise steadily. This means that smaller file sizes records smaller processing time than 

larger files. The line representing compressed hybrid architecture runs below Seyyed et al. 

(2011). This indicates that compressed took less time to process SOAP requests. 

 

 

 

 

 

 

 

 

 

Figure 4.10: Change in time to process SOAP request against file size of hybrid compressed and 

Seyyed et al. (2011) 

File size in KB 200 387 2367 5528 7300 
Avg. % 

improvement 

Hybrid Compressed  42 78 427 974 1266  

Seyyed et al. (2011) 129 227 813 1217 1400  

Improved time  87 149 386 243 134  

Percentage improvement 67.44 65.63 47.44 19.97 9.57 42.01 

 

Table 4.20: Processing time and percentage improvement of Hybrid Compresed compared to Seyyed et al. 

(2011) of SOAP messages 
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Figure 4.11 contains a line graph showing change in percentage improvement against file size of 

compressed hybrid architecture compared to Seyyed et al. (2011). This graph is as a result of 

data from Table 4.19. The trend of the graph shows that the line sloped steadily to the right. This 

indicates that smaller files record better percentage improvement in processing SOAP request 

than larger files.  

 

 

 

 

 

 

 

 

4.6.4 RESULTS FOR ROUND TRIP TIME (RTT) 

(i) Round trip time of compressed and uncompressed SOAP requests in the hybrid 

architecture 

Figure 4.12 demonstrate a line graph describing change in round trip time against file sizes of 

compressed and uncompressed hybrid architectures. This graph is derived from Table 4.16. The 

file sizes range from 200KB to 7300KB.  

 

Figure 4.11: Change in percentage improvement in processing SOAP requests against file size of hybrid 

compressed compared to Seyyed et al. (2011) 
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The general trend of the graph shows that all the lines rise steadily. This indicates that large files 

exhibit more RTT compared to smaller files. Moreover, the line representing compressed hybrid 

architecture runs higher than uncompressed hybrid architecture; this indicates that compressed 

files recorded higher RTT than uncompressed.  

There is notable relationship between file size and RTT. This is indicated by steady rise of the 

lines representing both compressed and uncompressed hybrid architectures. We generally point 

out that file size had a notable positive relationship with RTT as compressed hybrid architecture 

recorded higher RTT than uncompressed hybrid architecture. 

 

 

 

 

 

 

 

 

(ii) Percentage change in round trip time of compressed and uncompressed SOAP 

requests in hybrid architecture  

Figure 4.13 illustrates a line graph showing change in percentage degraded round trip time 

against file size of compressed compared to uncompressed SOAP requests in hybrid 

 

Figure 4.12: Change in round trip time against file sizes of compressed and uncompressed requests 
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architectures. This graph is as result of data from Table 4.16. The graph indicates the change in 

degraded percentage round trip time against file sizes between 200KB and 7300KB for 

uncompressed and compressed SOAP messages in the hybrid architecture. 

The graph shows that, the percentage change in degraded RTT rises steadily 200KB to 5528KB. 

It then falls slightly between 5528KBKB and 7300KB. This indicates that smaller compressed 

files recorded a smaller percentage degraded RTT compared to larger files. 

There is notable relationship between file size and RTT. This is indicated by the steady rising of 

the lines representing percentage change in degraded RTT of compressed compared to 

uncompressed hybrid architectures. We can generally point out that file size had a notable 

positive relationship with percentage degraded RTT of compressed hybrid architecture for file 

sizes between 200KB and 7300KB. 

 

 

 

 

 

 

 

 

 

Figure 4.13: Change in percentage degraded round trip time against file size of compressed compared 

to uncompressed SOAP requests the hybrid architectures  
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(iii) Round trip time of compressed hybrid architecture and Seyyed et al. (2011) of 

SOAP requests 

Let’s compare compressed hybrid architecture and Seyyed et al. (2011) in terms of round trip 

time of SOAP messages. To measure improved round trip time and percentage improvement, we 

used equation (4.21) and equation (4.22) respectively. The results are presented in Table 4.21. 

 

 

 

 

 

 

 

 

Figure 4.14 represents a line graph depicting transfer time against file size of compressed hybrid 

architecture and Seyyed et al. (2011) of SOAP messages. This graph is as a consequent of data 

from Table 4.21. The general trend of the graph shows that compressed hybrid architecture and 

Seyyed et al. (2011) lines rise steadily indicating that smaller file sizes records smaller transfer 

time than larger files. Nevertheless, the line representing compressed hybrid architecture runs 

below Seyyed et al. (2011). This indicates that compressed hybrid architecture took less time to 

transfer files. 

File size in KB 200 387 2367 5528 7300 
% RTT 

improved 

Hybrid Compressed (ms) 42 83 432 990 1287 
 

Seyyed et al. (2011) (ms) 131 233 854 1300 1507 
 

Improved RTT (ms) 89 150 422 310 220 
 

Percentage RTT improved 67.94 64.38 49.41 23.85 14.60 44.04 

 

Table 4.21: Round trip time and percentage improvement of compressed hybrid architecture compared 

to Seyyed et al. (2011) of SOAP messages 

(4.22) Percentage improved RTT = ( Improved_RTT ÷ Seyyed_et_al_2011 ) * 100 

Improved RTT = Seyyed_et_al_2011 – Hybrid_Compressed (4.21) 
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There is notable relationship between file size and RTT. It is depicted by the steady rising of the 

lines representing change in RTT of compressed hybrid architecture and Seyyed et al. (2011). 

We generally note that file size had a notable positive relationship with RTT of compressed 

hybrid architecture and Seyyed et al. 2011 for file sizes between 200KB and 7300KB. 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 illustrates a line graph showing change in percentage improved RTT against file size 

of compressed hybrid architecture compared to Seyyed et al. (2011) in SOAP messages. This 

graph is as a result of data from Table 4.21. The trend of the graph shows that the line slopes 

steadily to the right. This indicates that smaller file record better percentage improvement than 

larger files.  

 

Figure 4.14: Change in round trip time against file size of compressed and Seyyed et al. (2011) of 

SOAP messages 
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4.6.5 RESULTS FOR THROUGHPUT 

Table 4.22 contains an aggregation of throughput results of compressed hybrid architecture, 

uncompressed hybrid architecture and Seyyed et al. (2011). Figure 4.16 illustrates these data. 

 

 

 

 

 

 

 

Figure 4.15: Change in percentage improved RTT against file size of hybrid compressed compared to 

Seyyed et al. (2011) in SOAP messages 

 File size (KB) 200 387 2367 5528 7300 

Hybrid Compressed (req/sec) 23 12.05 2.31 1.01 0.78 

Hybrid Uncompressed (req/sec) 24.39 15.87 3.3 1.46 1.12 

Seyyed et al. (2011) (req/sec) 7.63 4.29 1.17 0.77 0.66 

 

Table 4.22: An aggregation of throughput results of hybrid compressed, hybrid uncompressed and Seyyed et 

al. (2011) 
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Figure 4.16 illustrates a line graph outlining change in throughput against in file size of 

compressed hybrid architecture, uncompressed hybrid architecture and Seyyed et al. (2011). This 

graph was derived from Table 4.22, average throughput values. The file sizes range from 200KB 

to 7300KB.  

The general trend of the graph shows that lines representing compressed hybrid architecture, 

uncompressed hybrid architecture, and Seyyed et al. (2011) slope to the right. This indicates that 

smaller file sizes exhibit better throughput values compared to large file sizes. Nevertheless, 

from the graph, hybrid compressed rides slightly below hybrid uncompressed and Seyyed et al. 

(2011) rides below hybrid compressed. This shows that hybrid uncompressed exhibits better 

throughput values than hybrid compressed which portray better throughput values than Seyyed et 

al. (2011).  

 

Figure 4.16: Change in throughput against change in file size of compressed, uncompressed and Seyyed 

et al. (2011) 
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There is notable relationship between file size and throughput. This is ascertained by the steady 

sloping to the right of the lines representing hybrid compressed, hybrid uncompressed and 

Seyyed et al. (2011). We can therefore say that file size has a notable negative relationship with 

throughput. 

4.7 DISCUSSION 

4.7.1 DISCUSIONS OF RESULTS FOR COMPRESSION RATIO PERCENTAGE 

When interpreting and discussing compression ratio percentage, we should note that 100 percent 

compression ratio means perfect compression while zero percent compression means total 

compression failure (Mark et al., 1995). Poor compression ratios will have poor percentage 

compression ratios. Section 4.6.1 discussed the results illustrated in Figure 4.3. We observed that 

the line representing percentage compression ratio sloped steadily to the right. This means that 

smaller files exhibited better percentage compression ratio than larger files. From the graph we 

also infer that, the larger the file size the poor the percentage compression ratio. However, file 

size 2367KB recorded the lowest percentage compression ratio. The average compression ratio 

percentage was 67.01% as show in Table 4.15. 

The lowest percentage compression ratio recorded by file size 2367KB could be due to the 

nature of data subjected to compression by Gzip algorithm. Tomasz et al. (2010) and Alex et al. 

(2008) noted that lossless compression algorithms work best in highly redundant data. Lossless 

compression algorithms exploit statistical redundancy to represent sender’s data. Gzip is an 

example of lossless compression algorithm. SOAP messages are represented in XML. XML is 

highly redundant as it has redundant textual characteristics and it uses tags to delimit data (Snell 

et al., 2001) (Kohlhoff et al., 2003) (Seyyed et al., 2011). Nevertheless, Tomasz et al. (2010) and 

Alex et al. (2008) noted that highly entropic i.e. highly disordered data results to poor 
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compression thus low percentage compression ratio. Therefore, the nature of the data that 

represented 2367KB could have affected the performance of the compression algorithm resulting 

to the low percentage compression.  

This research showed that larger files recorded a higher processing time than smaller files. This 

is a unique characteristic comes in when you look at the change in processing time against time. 

Smaller files showed the change was lower while the files showed the change was larger. This 

could be attributed by the rate at which the lookup table grew. 

In this research, large file sizes demonstrated a slightly lower percentage compression ratio 

compared to small file sizes. The difference between the best and the lowest percentage 

compression ratio is approximately 2.4251%. Mark et al. (1995) argues when large files are 

compressed, the compression program collects more statistics which take up more space. This 

causes large files to exhibit relatively low percentage compression ratios. 

However, Dhiah et al. (2010), argued that losseless compression algorithms techniques create 

lookup tables for mapping symbols to binary codes during compression process. Dhiah et al. 

(2010) further said that, lookup tables in large documents consume small space in comparison to 

the encoded symbols (binary codes) while lookup documents in small documents could be larger 

than the encoded data. This resulted in large data having high compression ratio compared to 

smaller documents. Dhiah et al. (2010), was actually concerned with small file sizes. 

Since this research worked on relatively large file sizes, we can go with Mark et al. (1995) 

argument and say that Gzip compression collected more statistics for large file sizes which made 

them protray larger percentage compression ratios as compared to smaller file sizes. Microsoft 

has implemented Gzip compression algorithm in its IIS from Windows Server 2000 (Evers, 
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2014) to the current Windows 8 (Microsoft, 2014). Notwithsdanding, further tests can be done in 

the latest IIS platforms to establish its percentage compression ratio and performance. 

Compression is important in improving performance in SOAP communication because it 

improves bandwidth utilization and response time (Seyyed et al., 2011) (Ivan et al., 2008) 

(Chandra et al., 2012) (Alex et al., 2008) (Tanakorn et al., 2008) (Tomasz et al., 2010). This is 

essential in environments that face poor bandwith. This research simulated a disadvantaged 

network environment by limiting bandwith to 10mbps. In as much as compression improves 

bandwidth utilization and response time, it has its tradeoffs which include extra processing time 

and CPU utilization. Some researchers like Kiran et al. (2003) argued that these tradeoffs were 

not benefitial. However, since the increase in hardware capabilities, these tradeoffs are beneficial 

and not as costly as increasing bandwidth which is widely under constrains (Ivan et al., 2008). 

We further recommend that for optimal performance when implemeting compression, we need to 

employ hardware with powerful processors and RAM. 

We also need to be careful when applying compression. Tomasz et al. (2010) and Alex et al. 

(2008) ascertained that lossless compression will not work for high entropy (highly disordered) 

data e.g. already compressed data, random data or encrypted data as it results in expansion rather 

than compression. 

We can therefore say that compression is an important technique in improving bandwidth 

utilization and transfer time. Transfer time is further discussed in section 4.7.2. 

4.7.2 DISCUSIONS OF RESULTS FOR TIME TO TRANSFER SOAP MESSAGE  

Figure 4.4 illustrates a graph of change in transfer time against file size of compressed hybrid 

architecture and uncompressed hybrid architecture SOAP requests. The lines representing 
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compressed and uncompressed hybrid architecture rose steadily indicating that smaller files 

exhibited a smaller transfer time compared to the large file. Moreover, the line representing 

hybrid compressed run slightly below hybrid uncompressed. This showed that the hybrid 

compressed recorded a lower transfer time hybrid compared to hybrid uncompressed. 

Nevertheless, Figure 4.5 shows that smaller files displayed a higher percentage improvement 

time than larger files. File size 387KB recorded the lowest percentage improvement.  

The S.I unit of measuring data in a communication channel is Kilobyte (KB). Speed of data in a 

communication channel is measure in megabytes per second (mbps) i.e. 1,000,000 bytes in 1 

second (Andrew et al., 2011). File sizes in this research are measured in kilobytes (KB). We 

configured the network bandwidth speed to a constant of 10mbps in this research’s experiment 

set up in section 4.1. Looking at the formulae of calculating bandwidth speed equation (4.23) 

(Andrew et al., 2011), we can derive time using equation (4.24). Meaning if we have a large file 

size we expect time to increase. This explains why large files exhibited higher transfer times. 

 

 

 

After compression, hybrid compressed reduced in size, having an average compression ratio 

percentage of 67.01% as shown in Table 4.15. File size after compression with Gzip algorithm, 

exhibited a reduced transfer time of an average improvement percentage of 74.87%, as show in 

Table 4.12. Similarly, several researchers noted that large files exhibited more transfer time 

compared to smaller files. Compression improved transfer time of these large files (Ivan et al., 

2008), (Tomasz et al., 2010), (Tanakorn et al., 2008), (Alex et al., 2008) (Kiran et al., 2003).  

Bandwidth speed (mbps) = Megabytes (MB) ÷ Time(sec) (4.23) 

Time (sec) = Megabytes (MB) ÷ Bandwidth (mbps) (4.24) 
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However, transfer time can be affected by traffic in a network. This traffic could be caused by 

other applications utilizing the communication channel. This could have caused the poor 

percentage improvement of file size 387KB in Figure 4.5.  When conducting such experiments, 

it is advisable to isolate the network or set up a LAN free from interference of other computers or 

internet. At times it is hard to keep this ideal environment constant because even the default 

programs in the computer generate traffic unpredictably. In spite of these, we tried to mitigate 

them by collecting three samples and doing an average of the results as show in this research’s 

data collection procedures in section 4.2. This was to reduce bias while improving accuracy.  

Nothwithstanding,  Hosein et al. (2012) noted that when using a compression algorithm, if the 

data is more than a specified threshold it may increase  the response time, otherwise it will 

degrade the perfromance. Therefore, when choosing a compression algorithm, we need to do a 

thorough review including their compression limits. With this knowledge, a web servers can be 

configure with this limit e.g. Microsoft’s IIS (Evers, 2014) can be configured to compres data 

that is larger than than a cetain file size. 

When we compared this research’s hybrid architecture compressed results with Seyyed et al. 

(2011) results, in Figure 4.6, Figure 4.6, and Table 4.19, we see that compressed hybrid 

architecture showed a better performance. This could be attributed by hybrid compressed having 

a better compression ratio which resulted to a better transfer time in the communication channel. 

Computer users anticipate faster services when running application. Transfer time of SOAP 

messages improve speed of information flowing in a communication channel. This research 

supports compression in improving SOAP performance as supported by Ivan et al. (2008), 

Tomasz et al. (2010), Tanakorn et al. (2008), Alex et al. (2008) and Kiran, et al. (2003). 
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4.7.3 DISCUSIONS OF RESULTS FOR TIME TO PROCESS REQUEST 

Figure 4.8 represented a graph of time to process SOAP request against change in file size of 

compressed and uncompressed hybrid architectures. The trend shows that both lines rose 

moderately. The line representing hybrid uncompressed ran below hybrid compressed. 

Moreover, Figure 4.9 represented the percentage degraded time to process SOAP request against 

change in file size of compressed and uncompressed hybrid architectures. The line representing 

the percentage degradation rises steadily then drops slightly. This research’s hybrid compressed 

experiences an average percentage degradation of 45.53% as shown in Table 4.13. 

Experiments in this research deduce that hybrid compressed took more time when being 

processed on the server-side. This is due to the fact that compression has a tradeoff which is 

extra CPU processing time (Kiran et al., 2003), (Ivan et al., 2008), (Hosein et al., 2012) (Chandra 

et al., 2012) (Alex et al., 2008) (Tanakorn et al., 2008) (Tomasz et al., 2010). This overhead 

causes the web server to spend an extra time in compressing data causing compressed hybrid 

architecture to experience more processing time of its request.  

The percentage degraded time in processing SOAP request in Figure 4.9 showed that smaller 

files had a low degradation percentage. Meaning smaller files are less affected with the CPU 

processing time tradeoff. This could be because smaller files require less CPU processing time 

when mapping its actual data to look up tables and encoded data. Actually, large files have a lot 

of bytes compared to smaller files, which need to go through the compression program for 

mapping to look up tables and encoded data (Mark et al., 1995). 

When we compared this research’s compressed hybrid architecture with Seyyed et al. (2011) as 

shown in Figure 4.8 and Figure 4.9. We see that compressed hybrid architecture generally 
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recorded an average percentage improvement of 42.01% as show in Table 4.20. Different 

compression algorithms require different CPU processing time (Dhiah et al., 2010). This 

research’s compressed hybrid architecture done with Gzip compression algorithm required 

relatively low processing time compared to Seyyed et al. (2011). 

Moreover, its noted that we need to be monitoring the percentage processor time counter of our 

computers. Compression works best if the percentage processor time counter is below 80% and 

there is adequate disk space, otherwise,  the time to process request will be degraded. 

Additionally, enabling dynamic content in Internet Information Services (IIS) while generating 

large volumes of dynamic content on the server will impact negatively the time taken to process 

compressed requests as it results to high processor usage (Evers, 2014). Past these limits the 

CPU takes excessive time to compress files. All these were put into consideration while setting 

this research’s experiments. 

Compression is preferred for disadvantaged networks (Tomasz et al., 2010) (Tanakorn et al., 

2008) (Alex et al., 2008). Compression degrades time to process requests at the server. However, 

the server hardware can be upgrade to mitigate this poor performance. Looking at Moores’s Law 

which describes the doubling of transistors in integrated circuits (IC) in computer hardware in a 

span of approximately two years (Intel Corporation, 2014). From this point of view and Ivan et 

al. (2008) remarks,  in future we anticipate improved hardware capabilities that will handle 

compression processing. As part of recommendation for future work, we recommed a review of a 

compression algorithm whose perfromance tradeoffs will not affect negitively time to process 

SOAP request at the server-side and RTT in general. 
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4.7.4 DISCUSIONS OF RESULTS FOR ROUND TRIP TIME (RTT)  

Figure 4.12 and Figure 4.13 illustrate a line graph of RTT against file size of compressed and 

uncompressed hybrid architectures. We generally deduce a degraded performance in RTT. Table 

4.16 shows an average degraded performance of 32.91% in RTT. 

RTT is the time required for a SOAP message to traverse a network. RTT is the sum of time to 

process and time transfer SOAP request as shown in equation (4.12). In this research, Figure 

4.12 and Figure 4.13, RTT was majorly affected by time to process SOAP requests as discussed 

in section 4.7.3. Despite the fact that time to transfer and bandwidth utilization was improve with 

the introduction of Gzip compression, time to process request was affected negatively which 

affected RTT generally when we compare compressed and uncompressed hybrid architectures. 

Time to transfer SOAP messages and time to process SOAP requests were discussed in section 

4.7.2 and 4.7.3 respectively. 

Nevertheless, Figure 4.14, Figure 4.15, and Table 4.21 compare this research’s compressed 

hybrid architecture and Seyyed et al. (2011) performance. We found out that there was a general 

improved performance having an average percentage RTT improvement of 44.04%. This was 

attributed by improving both transfer and process time of SOAP messages. This was discusses in 

section 4.7.2 and section 4.7.3. 

4.7.5 DISCUSIONS OF RESULTS FOR THROUGHPUT 

We considered equation (4.15) and equation (4.16) to calculate throughput. We deduced 

throughput from average RTT. We can presume that throughput is the reciprocal of RTT. This 

might not be true if we consider latency i.e. time a request wasted in waiting in queue to be 

serviced/ processed. Latency must be considered while evaluating throughput (Andrew et al., 
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2011). It should be added to RTT while evaluating throughput. Nevertheless, we carefully did 

not consider latency while running our experiments. We ensured that one experimental request 

run to completion before running another one as discussed in this research’s experiments setup in 

section 4.1. This avoided queuing of request at the server thus avoiding latency that could be 

difficult to measure. Out of these, see how RTT affects throughput. 

 

 

 

 

 

Figure 4.16 and Table 4.22 show aggregated throughput results of compressed hybrid 

architecture, uncompressed hybrid architecture and Seyyed et al. (2011). It was noted in section 

4.6.5 that hybrid compressed recorded lower throughput values than hybrid uncompressed. There 

are many ways of evaluating throughput, in this research we evaluated throughput as the number 

of requests that can be processed by a web server per second (Tekli et al., 2011). 

From the discussion in section 4.7.4, we saw that hybrid compressed recorded lower RTT 

compared to hybrid uncompressed resulting to hybrid uncompressed exhibiting better throughput 

values than hybrid compressed. Likewise, Seyyed et al. (2011) registered lower throughput 

values compared to hybrid compressed because Seyyed et al. (2011) recorded higher RTT values 

than hybrid compressed. This resulted to hybrid compressed recording better throughput values. 

 

                         Throughput = Request ÷ RTT 

Therefore for 1 request, Throughput = 1 ÷ RTT 

     OR 

      Throughput = Reciprocal of RTT 

Considering latency,  Throughput = 1 ÷ ( RTT + Latency ) 
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Throughput is significant because people want servers with high throughput values to support 

more demanding uses (Andrew et al., 2011). Throughput can be improved by improving RTT of 

requests. Improvements procedures were pointed out in section 4.7.3 when we were discussing 

time to process requests at the server-side. Time to process requests at the server-side degrade 

RTT. 
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CHAPTER FIVE 

5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 SUMMARY AND CONCLUSION 

This research has highlighted web services and its implementation in service-oriented 

architecture. A web service extends the World Wide Web infrastructure to provide the means for 

software to connect to other software applications. Web services integrate heterogeneous 

software applications through standard web protocols and data formats e.g. HTTP, XML and 

SOAP. 

Simple Object Access Protocol (SOAP) is an implementation of web services. SOAP beats its 

competitors due to its simplicity, flexibility, robustness, extensibility and inter-operability in 

heterogeneous systems. Some of its rivals are CORBA and Java RMI. SOAP messages structure 

is composed of a SOAP envelope, header, and body. SOAP transmits its data represented in 

XML. XML documents are huge in size and verbose which results to high network traffic and 

XML parsing and processing causes a high computational burden leading to high latency. 

This research reviewed some of the techniques employed to improve SOAP performance in 

communication. Out of this, this research developed a hybrid architecture included: client-side 

caching, simple server-side database queries, compression technique and document-literal style 

description of WSDL. The hybrid architecture was implemented in a software and run in an 

experimental environment where we collected data.  

The data was processed and evaluated against SOAP performance metrics: compression ratio 

percentage, SOAP request transfer time, SOAP request processing time round trip time, and 

throughput. We found that compression improved compression ratio and SOAP transfer time. 
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However, compression compromised SOAP processing time, round trip time and throughput. 

Nevertheless, compression is supported by several researchers in disadvantaged networks i.e. 

10mbps. The general impact of this is that, in poor networks software end users will experience a 

relatively high turnaround time and low throughput. Nevertheless, bandwidth utilization was 

evident. Better bandwidth utilization saves cost in communication. 

5.2 RECOMMENDATIONS FOR FUTURE WORK 

In this research, we found that processing SOAP request on the server-side took longer when the 

file is compressed than when it is uncompressed. An optimization of the compression process in 

the server-side can greatly improve performance. Moreover, we need to ascertain a better 

compression algorithm that: has better compression ratio percentage, utilizes minimal CPU 

resource, and is interoperable among clients e.g. web browsers. Nevertheless, small file sizes 

exhibited better compression percentages with Gzip algorithm, further research can be done on 

large files. Furthermore, XML parsing and processing causes a high computational burden 

leading to high latency. Further research can be invested here. 
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APPENDICES 

APPENDIX A: RAW UNCOMPRESSED HTTP SOAP TRAFFIC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body (KB) 0 0 0 0 0 

Received: Header (KB) 223 223 224 224 224 

Received: Body (KB) 199,777 386,777 2,366,776 5,527,776 7,299,776 

ClientConnected: (Time) 7:12:34.609 7:12:34.609 7:12:34.609 7:12:34.609 7:12:34.609 

ClientBeginRequest: (Time) 7:13:05.046 7:13:05.046 7:13:27.265 7:13:50.890 7:14:12.109 

GotRequestHeaders: (Time) 7:13:05.046 7:13:05.046 7:13:27.265 7:13:50.890 7:14:12.109 

ClientDoneRequest: (Time) 7:13:05.046 7:13:05.046 7:13:27.265 7:13:50.890 7:14:12.109 

Determine Gateway: (Time) 0ms 0ms 0ms 0ms 0ms 

DNS Lookup: 0ms   0ms 0ms 0ms 

TCP/IP Connect: 0ms 0ms 0ms 0ms 0ms 

HTTPS Handshake: 0ms 0ms 0ms 0ms 0ms 

Time ServerConnected: (Time) 7:13:05.046 7:13:05.046 7:13:05.046 7:13:05.046 7:13:05.046 

FiddlerBeginRequest: (Time) 7:13:05.046 7:13:05.046 7:13:27.265 7:13:50.890 7:14:12.109 

ServerGotRequest: (Time) 7:13:05.046 7:13:05.046 7:13:27.265 7:13:50.890 7:14:12.109 

ServerBeginResponse: (Time) 7:13:05.093 7:13:05.093 7:13:27.546 7:13:51.531 7:14:12.937 

GotResponseHeaders: (Time) 7:13:05.093 7:13:05.093 7:13:27.546 7:13:51.531 7:14:12.937 

ServerDoneResponse: (Time) 7:13:05.109 7:13:05.109 7:13:27.578 7:13:51.593 7:14:13.000 

ClientBeginResponse: (Time) 7:13:05.109 7:13:05.109 7:13:27.578 7:13:51.593 7:14:13.015 

ClientDoneResponse: (Time) 7:13:05.109 7:13:05.109 7:13:27.578 7:13:51.609 7:14:13.031 

 

Table A-1: COMP A - raw uncompressed HTTP SOAP traffic hybrid architecture 
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File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB)                500                   501                   501                   501                   501  

Sent: Body (KB)                    -                       -                       -                       -                       -    

Received: Header (KB)                  223                   223                   224                   224                   224  

Received: Body (KB)           199,777            386,777         2,366,776         5,527,776         7,299,776  

ClientConnected: (Time) 7:10:00.062 7:11:05.140 7:11:05.140 7:11:05.140 7:11:05.140 

ClientBeginRequest: (Time) 7:10:18.859 7:11:05.156 7:11:29.250 7:11:51.375 7:12:08.093 

GotRequestHeaders: (Time) 7:10:18.859 7:11:05.156 7:11:29.250 7:11:51.375 7:12:08.093 

ClientDoneRequest: (Time) 7:10:18.859 7:11:05.156 7:11:29.250 7:11:51.375 7:12:08.093 

Determine Gateway: (Time) 0ms 0ms 0ms 0ms 0ms 

DNS Lookup: 0ms 0ms 0ms 0ms 0ms 

TCP/IP Connect: 0ms 0ms 0ms 0ms 0ms 

HTTPS Handshake: 0ms 0ms 0ms 0ms 0ms 

Time ServerConnected: (Time) 7:10:10.765 7:10:10.765 7:10:10.765 7:10:10.765 7:10:10.765 

FiddlerBeginRequest: (Time) 7:10:18.859 7:11:05.156 7:11:29.250 7:11:51.375 7:12:08.093 

ServerGotRequest: (Time) 7:10:18.859 7:11:05.156 7:11:29.250 7:11:51.375 7:12:08.093 

ServerBeginResponse: (Time) 7:10:18.890 7:11:05.203 7:11:29.515 7:11:52.015 7:12:08.906 

GotResponseHeaders: (Time) 7:10:18.890 7:11:05.203 7:11:29.515 7:11:52.015 7:12:08.906 

ServerDoneResponse: (Time) 7:10:18.890 7:11:05.203 7:11:29.531 7:11:52.046 7:12:08.968 

ClientBeginResponse: (Time) 7:10:18.890 7:11:05.203 7:11:29.531 7:11:52.062 7:12:08.968 

ClientDoneResponse: (Time) 7:10:18.890 7:11:05.203 7:11:29.546 7:11:52.062 7:12:08.984 

 

Table A-2: COMP B - raw uncompressed HTTP SOAP traffic 
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File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body (KB) 0 0 0 0 0 

Received: Header (KB) 223 223 224 224 224 

Received: Body (KB) 199,777 386,777 2,366,776 5,527,776 7,299,776 

ClientConnected: (Time) 18:51:36.125 18:53:05.781 18:53:05.781 18:53:05.781 18:53:05.781 

ClientBeginRequest: (Time) 18:52:07.828 18:53:05.781 18:53:24.265 18:53:47.531 18:54:10.062 

GotRequestHeaders: (Time) 18:52:07.828 18:53:05.781 18:53:24.265 18:53:47.531 18:54:10.062 

ClientDoneRequest: (Time) 18:52:07.828 18:53:05.781 18:53:24.265 18:53:47.531 18:54:10.062 

Determine Gateway: (Time) 0ms 0ms 0ms 0ms 0ms 

DNS Lookup: 0ms 0ms 0ms 0ms 0ms 

TCP/IP Connect: 0ms 0ms 0ms 0ms 0ms 

HTTPS Handshake: 0ms 0ms 0ms 0ms 0ms 

Time ServerConnected: (Time) 18:51:36.140 18:51:36.140 18:51:36.140 18:51:36.140 18:51:36.140 

FiddlerBeginRequest: (Time) 18:52:07.828 18:53:05.781 18:53:24.265 18:53:47.531 18:54:10.062 

ServerGotRequest: (Time) 18:52:07.828 18:53:05.781 18:53:24.265 18:53:47.531 18:54:10.062 

ServerBeginResponse: (Time) 18:52:07.859 18:53:05.843 18:53:24.546 18:53:48.156 18:54:10.906 

GotResponseHeaders: (Time) 18:52:07.859 18:53:05.843 18:53:24.546 18:53:48.156 18:54:10.906 

ServerDoneResponse: (Time) 18:52:07.859 18:53:05.859 18:53:24.578 18:53:48.218 18:54:10.984 

ClientBeginResponse: (Time) 18:52:07.859 18:53:05.859 18:53:24.593 18:53:48.234 18:54:11.000 

ClientDoneResponse: (Time) 18:52:07.859 18:53:05.859 18:53:24.593 18:53:48.234 18:54:11.015 

 

Table A-3: COMP C - raw uncompressed HTTP SOAP traffic 
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APPENDIX B: RAW UNCOMPRESSED PRE-PROCESSED RESULTS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB)                500                     501                 501                     501                 501  

Sent: Body(KB)                   -                         -                      -                         -                      -    

Total Request Header (KB)                500                     501                 501                     501                 501  

Received: Header (KB)                223                     223                 224                     224                 224  

Received: Body (KB)         199,777              386,777       2,366,776           5,527,776       7,299,776  

Total Response Header (KB)         200,000              387,000       2,367,000           5,528,000       7,300,000  

ClientConnected: (ms) 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 

ClientBeginRequest: (ms) 0:00:30.437 0:00:30.437 0:00:52.656 0:01:16.281 0:01:37.500 

GotRequestHeaders: (ms) 0:00:30.437 0:00:30.437 0:00:52.656 0:01:16.281 0:01:37.500 

ClientDoneRequest: (ms) 0:00:30.437 0:00:30.437 0:00:52.656 0:01:16.281 0:01:37.500 

FiddlerBeginRequest: (ms) 0:00:30.437 0:00:30.437 0:00:52.656 0:01:16.281 0:01:37.500 

ServerGotRequest: (ms) 0:00:30.437 0:00:30.437 0:00:52.656 0:01:16.281 0:01:37.500 

ServerBeginResponse: (ms) 0:00:30.484 0:00:30.484 0:00:52.937 0:01:16.922 0:01:38.328 

GotResponseHeaders: (ms) 0:00:30.484 0:00:30.484 0:00:52.937 0:01:16.922 0:01:38.328 

ServerDoneResponse: (ms) 0:00:30.500 0:00:30.500 0:00:52.969 0:01:16.984 0:01:38.391 

ClientBeginResponse: (ms) 0:00:30.500 0:00:30.500 0:00:52.969 0:01:16.984 0:01:38.406 

ClientDoneResponse: (ms) 0:00:30.500 0:00:30.500 0:00:52.969 0:01:17.000 0:01:38.422 

 

Table B-1: COMP – A, uncompressed hybrid achitecture pre-processed results  
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File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB) 500 501 501 501 501 

Sent: Body(KB) - - - - - 

Total Request Header (KB) 500 501 501 501 501 

Received: Header (KB) 223 223 224 224 224 

Received: Body (KB) 199,777 386,777 2,366,776 5,527,776 7,299,776 

Total Response Header (KB) 200,000 387,000 2,367,000 5,528,000 7,300,000 

ClientConnected: (ms) 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 

ClientBeginRequest: (ms) 0:00:18.797 0:00:00.016 0:00:24.110 0:00:46.235 0:01:02.953 

GotRequestHeaders: (ms) 0:00:18.797 0:00:00.016 0:00:24.110 0:00:46.235 0:01:02.953 

ClientDoneRequest: (ms) 0:00:18.797 0:00:00.016 0:00:24.110 0:00:46.235 0:01:02.953 

FiddlerBeginRequest: (ms) 0:00:18.797 0:00:00.016 0:00:24.110 0:00:46.235 0:01:02.953 

ServerGotRequest: (ms) 0:00:18.797 0:00:00.016 0:00:24.110 0:00:46.235 0:01:02.953 

ServerBeginResponse: (ms) 0:00:18.828 0:00:00.063 0:00:24.375 0:00:46.875 0:01:03.766 

GotResponseHeaders: (ms) 0:00:18.828 0:00:00.063 0:00:24.375 0:00:46.875 0:01:03.766 

ServerDoneResponse: (ms) 0:00:18.828 0:00:00.063 0:00:24.391 0:00:46.906 0:01:03.828 

ClientBeginResponse: (ms) 0:00:18.828 0:00:00.063 0:00:24.391 0:00:46.922 0:01:03.828 

ClientDoneResponse: (ms) 0:00:18.828 0:00:00.063 0:00:24.406 0:00:46.922 0:01:03.844 

 

Table B-2: COMP – B, uncompressed hybrid architecture pre-processed results 

File size (KB) 200 387 2367 5528 7300 

Sent: Header (KB)                          500                    501                    501                    501                    501  

Sent: Body(KB)                             -                         -                         -                         -                         -    

Total Request Header (KB)                          500                    501                    501                    501                    501  

Received: Header (KB)                          223                    223                    224                    224                    224  

Received: Body (KB)                   199,777             386,777          2,366,776          5,527,776          7,299,776  

Total Response Header (KB)                   200,000             387,000          2,367,000          5,528,000          7,300,000  

ClientConnected: (ms) 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 0:00:00.000 

ClientBeginRequest: (ms) 0:00:31.703 0:00:00.000 0:00:18.484 0:00:41.750 0:01:04.281 

GotRequestHeaders: (ms) 0:00:31.703 0:00:00.000 0:00:18.484 0:00:41.750 0:01:04.281 

ClientDoneRequest: (ms) 0:00:31.703 0:00:00.000 0:00:18.484 0:00:41.750 0:01:04.281 

FiddlerBeginRequest: (ms) 0:00:31.703 0:00:00.000 0:00:18.484 0:00:41.750 0:01:04.281 

ServerGotRequest: (ms) 0:00:31.703 0:00:00.000 0:00:18.484 0:00:41.750 0:01:04.281 

ServerBeginResponse: (ms) 0:00:31.734 0:00:00.062 0:00:18.765 0:00:42.375 0:01:05.125 

GotResponseHeaders: (ms) 0:00:31.734 0:00:00.062 0:00:18.765 0:00:42.375 0:01:05.125 

ServerDoneResponse: (ms) 0:00:31.734 0:00:00.078 0:00:18.797 0:00:42.437 0:01:05.203 

ClientBeginResponse: (ms) 0:00:31.734 0:00:00.078 0:00:18.812 0:00:42.453 0:01:05.219 

ClientDoneResponse: (ms) 0:00:31.734 0:00:00.078 0:00:18.812 0:00:42.453 0:01:05.234 

 

Table B-3: COMP – C, uncompressed hybrid architecture pre-processed results 


