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ABSTRACT 

In the present study an analysis of the performance characteristics of finite slider 

bearings with an electrically conducting fluid in presence of transverse magnetic field is 

made. A generalized two dimensional Reynolds-type equation is derived using the MHD 

motion equations with Maxwell’s equations. The film pressure is numerically solved 

from the MHD Reynolds-type equation using iterative method of conjugate Gradient. 

The software MATLAB was utilized to achieve this approach. This pressure is used to 

evaluate the bearing characteristics such as load carrying capacity and friction 

parameter. These results were compared with those of the non-conducting lubricant and 

presented graphically. The application of magnetic field signifies an influence on the 

load carrying capacity and the friction parameter of the slider bearing depending upon 

the values of the Hartmann number, aspect ratio and the inlet-outlet film thickness ratio. 

It is clearly seen that the load carrying capacity increases considerably with an increase 

in the application of the magnetic field and with increase of the film thickness ratio. 
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CHAPTER ONE 

INTRODUCTION  

Slider bearings are often encountered in engineering applications. They support or 

guide the parts movably opposed to each other as well as absorb and transfer the 

occurring forces. This can be seen in shafts of motors and pulleys. Slider bearings 

necessitate various kinds of fluids as lubricants. The most important property of a 

liquid lubricant is its viscosity. To prevent the undesirable viscosity change with 

temperature, the use of electrically conducting fluid has received a great attention. 

These kinds of lubricants have a higher thermal and electrical conductivity, but lower 

viscosity than convectional lubricating oils. The high thermal conductivity means 

that heat generated by viscous friction can be readily conducted away. But the low 

viscous property would yield a reduced load-carrying capacity; this low load 

disadvantage can be improved by the application of external electromagnetic field. 

Since the motion of electrically conducting lubricant across the electromagnetic field 

induces electrical field intensity, it results in current density which interacts with the 

magnetic field to produce Lorentz force acting on the lubricant. This force may 

produce a component opposite to the direction of motion by properly orienting the 

applied magnetic field. As a result, the film pressure is increased. However, Ohmic 

heating due to electrical current decreases the viscosity of the lubricant and 

eventually a decrease may occur in film pressure. The magnetic field becomes strong 

and prevents this decrease in pressure. As a result of this the load carrying capacity 

increases. An effort has been made to study and analyze the performance of 

electrically conducting fluid lubricant in finite slider bearing.       



In this chapter the main terms used in the thesis are defined. A review of literature 

related to the present work is given. The objectives and application of the work are 

stated at the end of the chapter. 

1.1 FLUIDS 

A fluid is a substance which is capable of flowing and undergoes deformation 

continuously under the action of shear stress. If a fluid is at rest, there can be no 

shearing forces acting and therefore, all forces in the fluid must be perpendicular to 

the planes upon which they act. Shear stresses are developed when the fluid is in 

motion, if the particles of the fluid move relative to each other so that they have 

different velocities.  If on the other hand the velocity of the fluid is the same at every 

point, no shear stresses can be produced, since the fluid particles are at rest relative to 

each other. If the stress associated with the fluid motion depends linearly on the 

instantaneous value of the rate of deformation, the fluid is said to be Newtonian fluid. 

Suppose that two adjacent layers of the fluid at a distance dy apart are moving with 

velocities ov  and oo vv .  respectively, then the tangential force F acting on the 

layers is proportional to ,
dy
dvo that is  

F=
dy
dvo            1.1 

The constant of proportionality  is the coefficient of viscosity of the fluid. Equation 

(1.1) is known as the Newtonian’s law and any Newtonian fluid satisfies this 

condition. Fluids are further classified into compressible and incompressible fluids. 

Incompressible fluids are fluids whose density does not change significantly when 

subjected to change in pressure and temperature. Compressible fluids are those 
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whose density changes when subjected to change in pressure and temperature. The 

study involving the analysis of fluid flows is known as hydrodynamics. If the flow 

variables for a given fluid flow are dependent on time, then the fluid flow is said to 

be unsteady, if the flow variables are independent of time the flow is said to be 

steady. 

1.2 VISCOSITY 

Viscosity is a scientific term that describes the resistance to flow of a fluid. This 

resistance is due to the friction produced by the fluid’s molecule and affects both the 

extent to which a fluid will oppose the movement of an object through it and the 

pressure required to make a fluid move through a tube or a pipe. 

Viscosity is affected by a number of factors, including the size and shape of the 

molecules, the interactions between them and the temperature. 

1.3 LUBRICATION 

Lubrication refers to the application of thin film of fluid of higher viscosity between 

two plates or two pieces of metal moving with a very small relative velocity to 

prevent friction. When two plates or two pieces of metal are in contact and moves 

with a very small relative velocity, they wear out due to high friction. To reduce this 

friction a very thin layer of a fluid of high viscosity is applied between the two 

plates. This type of arrangement is known as bearing and the fluid between the two 

plates is known as lubricant. The bearings which are commonly used include; 

1.3.1   Step bearing 

In this type of bearing, one of the plates is flat whereas the other plate is of a step 

type. The pressures in this bearing are generated in triangular pattern with their peak 



at the step. This helps to keep the plates in the entire bearing out of contact thus 

maintaining hydrodynamic lubrication type in the entire step bearing 

1.3.2     Thrust bearing 

This is the type of bearing that consist of two plates in which the upper plate rotates 

over the lower plate with a constant angular velocity. The lower plate has a small 

hole near the centre through which the fluid is injected. 

1.3.3    Journal bearing 

This is a type of bearing designed to reduce friction by supporting radial loads. 

Journal bearing are often used when the load is light and motion is relatively 

continuous. 

1.3.4   Slider bearing  

This is the type of bearing that consists of two plates for which the upper plate is 

inclined to the lower plate at a very small angle. The two plates are of infinite length 

so that the flow in between the two plates can be considered as a horizontal flow and 

therefore depends on the vertical distance alone. In this study, the upper plate is 

stationary while the lower plate is moving at  a constant velocity u0.    

 1.4   MAGNETO FLUID DYNAMICS 

Magneto fluid dynamics is the study of flow of electrically conducting fluids in 

presence of a magnetic field. It unifies in a common frame work the electromagnetic 

and fluid dynamic theories to yield a description of the concurrent effects of the 

magnetic field. Magneto fluid dynamics (MFD) deals with electrically conducting 

fluids whereas Magneto-hydrodynamics (MHD) is specifically concerned with 

electrically conducting liquids. Magneto hydrodynamics (MHD) is an academic 
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discipline which studies the dynamics of the flow of an electrically conducting fluid 

in presence of a magnetic field. The term “magneto” means magnetic field, “hydro” 

means liquids and “dynamic” means forces causing movement. Examples of 

electrically conducting fluids include plasmas, liquid metals and salty water.  

The flow of an electrically conducting fluid in presence of a magnetic field in general 

gives rise to induced electric currents which interacts with magnetic field to produce 

Lorentz force acting on the lubricant. The induced current also generates its own 

magnetic field, which distorts the original magnetic field.  

 1.5 DIMENSIONAL ANALYSIS 

Dimensional analysis is a mathematical system of using conversion factors to move 

from one unit of measurement to a different unit of measurement. It is the process of 

expressing the units of any given physical quantity in terms of the fundamental units, 

such as time, mass and length. It is built on the principle of dimensional homogeneity 

that states that an equation expressing a physical relationship between quantities 

must be dimensionally homogenous and proves to be a powerful tool in formulating 

problems that defy analytical solution and must be solved experimentally. In this 

study, dimensional analysis has been used to non-dimensionalize the governing 

equations by first selecting certain characteristic quantities and then substituting 

them in the equation. 

1.6 BOUNDARY LAYER 

The concept of boundary layer was first introduced by Prandtl (1904) and since then 

it has been applied to several fluid flow problems. The fluid layer in the 

neighborhood of the solid boundary where effects of fluid friction (viscous effects) 



are predominant is known as the boundary layer. Boundary layers are thin fluid 

layers adjacent to the surface of a body or solid wall in which strong viscous effects 

exist. Flow outside this layer is considered frictionless. The velocity near the 

boundary is affected by boundary shear stress. At low Reynolds number, viscous 

forces dominate over the inertial forces.    
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1.7   Literature Review 

Hydrodynamic lubrication is and has been of great importance in modern and 

traditional technology. Some investigators have studied the Magneto-hydrodynamics 

(MHD) characteristics of slider bearing with electrically conducting fluids in the 

presence of magnetic fields. By supplying electrical power from the external source, 

Huges (1963) studied the effect of field geometries on the MHD Rayleigh step 

bearings. Significant increases in bearing load are found for a magnetic field both 

tangentially and transversely to the fluid film. In this study, the fluid is electrically 

conducting and there is no external current entering the film. In the study of the 

MHD one-dimensional inclined plane slider bearings by Synder (1963), load 

enhancement is predicted with liquid metal lubricants in the presence of a magnetic 

field. Liquid metal has low viscosity.  In the study of the MHD wide slider bearing 

by Agrawal (1970), Anwar and Rodkiewicz (1972), inertia effect was found to 

increase the load capacity for small Hartmann numbers. In addition the nonuniform 

magnetic field gives a higher load capacity in comparison to uniform magnetic field. 

In the study of the MHD porous slider bearings, Gupta and Bhat (1979) established 

that the load capacity and friction of porous sliders increase markedly with 

increasing the Hartmann number. On the MHD slider bearing with non-Newtonian 

couple stress fluids, the problem of optimum load capacity was analyzed by Das 

(1998). It was found that both the maximum load and the corresponding film ratio 

depend upon the magnetic parameter, the couple stress parameter and the bearing 

shapes.               

Lin et al (2006) studied the dynamic characteristics of a wide exponential film-shape 

bearing lubricated with a non-Newtonian couple stress fluid. He found out that the 



effects of non-Newtonian couple stress fluid characterized by the couple stress 

parameter signify a reduction in the friction parameter and the volume flow rate, as 

well as an increase in the load carrying capacity, the temperature, the dynamic 

stiffness coefficient and the dynamic damping coefficient for both type of bearing. 

Comparing those of the inclined slider bearing, the exponential shaped slider 

designed at larger profile parameters provides smaller volume flow rate, higher load 

carrying capacity and better dynamic stiffness and dumping characteristics for larger 

values of the profile parameter. These improvements of bearing dynamics are more 

pronounced with increasing values of the non-Newtonian couple stress parameter. 

 Chou et al (2003) studied the effects of externally applied magnetic fields on the 

squeeze film characteristics between a sphere and a flat plate with an externally 

conducting fluid.  He presented the results of squeeze film characteristics such as 

load carrying capacity and time-height relationship for various values of Hartman 

number.  As the value of Hartman number approaches zero the study reduced to the 

non-conducting lubricant case.  The presence of externally applied magnetic fields 

signifies an increase in the magneto hydrodynamic squeeze film pressure.  

Comparing with the classical non-conducting lubricant case, the effects of externally 

applied magnetic fields characterized by Hartman number provide an enhancement 

to the magneto hydrodynamic load carrying capacity and lengthen the response time, 

especially for large values of Hartman number.  On the whole, the squeeze film 

characteristics between a sphere and a plane surface are improved by the use of an 

electrically conducting fluid in the presence of transverse magnetic field. 

 Neminath and Gudadappagouda (2008) studied the rheological effect of micro polar 

fluid lubricants on the steady state and dynamic behavior of porous slider bearing by 
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considering the squeezing action.  The micro polar fluid lubricant provides an 

increased steady load carrying capacity and dynamic stiffness co-efficient which 

decreases the dynamic damping co-efficient.  The adverse effects due to the presence 

of porous facing on the slider can be compensated by the proper choice of lubricants 

with appropriate additives. 

Several researchers such as Kumar (1980) and Murti (1974) have analyzed the 

porous slider bearing by using Darcy’s equation to model the flow of Newtonian 

lubricant in the porous matrix. All the studies assume the lubricant to be a Newtonian 

fluid. 

Lin and Hung (2004) analyzed dynamic characteristics for wider slider bearing with 

an exponential film profile taking into account the bearing squeezing action.  They 

concluded that both of the steady state performance and the dynamic characteristics 

are significantly affected by the inlet outlet film ratio of the slider bearing. 

Comparing with those of the inclined plane slider by Lin et al (2001) the exponential 

shaped slider provides higher load carrying capacity and better dynamic stiffness and 

damping characteristics at larger values of the inlet outlet film ratio. 

Since slider bearing surfaces operate mainly upon the wedge-action principal, an 

understanding of the dynamic stiffness and damping behavior is helpful in designing 

bearing. Lin et al (2001) analyzed the dynamic of a wide inclined place slider 

bearing.  It is found that higher dynamic stiffness and damping co-efficiency are 

predicted for the bearing with small values of profile parameter. 

Lin and Lu (2010) investigated the dynamic characteristics of a wide exponential 

shaped slider bearing with an electrically conducting fluid in the presence of a 



transverse magnetic field on the basis of the magneto hydrodynamic thin film 

lubrication. Comparing with non-conducting lubricant case the magneto 

hydrodynamic exponential shaped bearing provides an increase in the steady load 

and the dynamic co-efficient.  On the whole the effects of externally applied 

magnetic fields on the steady load and the dynamic stiffness co-efficient are more 

pronounced with larger values of Hartman number and profile parameter and small 

values of the minimum film thickness. 

Patel et al (2010) analyzed the behavior of a magnetic fluid based squeeze film 

between transversely rough annular plates. A magnetic fluid was used as a lubricant 

and an external magnetic field oblique to the lower plate.  The results obtained 

showed that magnetic fluid lubricant increases the load carrying capacity and that the 

load carrying capacity increased due to the negatively skewed roughness. Extending 

the MHD problems to annular squeeze-film disks by Lin (2001), the magnetic field 

effect provides an increase in the load capacity and the response time. 

Most of the above studies dealt with electrically conducting fluid in presence of 

magnetic field, and how this affects the load carrying capacity. Some of these studies 

looked at the viscosity of electrically conducting fluids and that necessitated the 

present study to choose appropriate lubricant with proper additive. None of the above 

studies however studied the variation of aspect ratio with the magnetic field, and 

friction parameter. This prompted the present study.       

In the presence of a transverse magnetic field, this study presents the MHD 

lubrication characteristics of finite slider bearings with an electrically conducting 

fluid. A generalized two-dimensional Reynolds-type equation, which is applicable to 
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the study of the MHD finite slider bearings with different film shapes, is derived by 

using the MHD motion equations together with Maxwell equations to account for the 

Lorentz force on the lubricant film. The MHD bearing characteristics in terms of the 

load-carrying capacity, friction power, and friction parameter are presented for 

various values of the inlet-outlet thickness ratio, aspect ratio and the Hartmann 

number. Compared to the bearings using a nonconducting lubricant, the influence of 

magnetic fields on the performance characteristics is presented. 

 



1.8 Statement of the Problem 

An electrically conducting fluid flows between two plates of which the upper plate is 

stationary and the lower plate moves with constant velocity uo. The bearing surfaces 

are made of insulating materials. Electrodes are assumed to be fastened to the side 

plates. The current is supplied to the bearing by connecting the electrodes to an 

external generator. The bearing is subjected to a transverse magnetic field B0 as 

shown. The film wedge generates a hydrodynamic pressure field that supports an 

applied load.  

  

Figure 1.1 Physical configuration of a finite slider bearing in the presence of a 

uniformly transverse magnetic field. 

The film thickens (h) has a linear taper along the direction of the surface velocity u.  

 

B0 

uo 

X 
hL 
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The length L is in the x-direction and width B in z-direction. 

1.9 OBJECTIVES OF THE STUDY 

(i) To determine whether the variation of magnetic field on an electrically conducting 

fluid lubricant increases the load carrying capacity.   

(ii) To determine the variation of load carrying capacity with film thickness ratio. 

(iii) To investigate whether electrically conducting fluid lubricant alter the friction. 

1.10 JUSTIFICATION 

Lubrication occurs in engines and machines to reduce friction between the moving 

plates. The basic functions of a lubricant are ; 

(i) Friction reduction.  

Friction is reduced by maintaining a film of lubricant between surfaces 

that are moving with respect to each other, thereby preventing the 

surfaces from going into contact and subsequently causing surface 

damage. 

(ii) Heat removal 

Lubrication acts as a coolant, removing heat generated by either friction 

or other sources of combustion or contact with high temperature 

substances. 

Some of these contaminants include; water, acidic combustion products 

and particulate matter. The ability of lubricant to remain effective in the 

presence of outside contaminants is quite important. 



Since the lubricant in this study is electrically conducting in presence of 

magnetic field, the heat generated is readily conducted away. 

 

1.11 NULL HYPOTHESIS. 

The null hypothesis of this study is that the load carrying capacity will not decrease 

when the applied magnetic field is increased. 

Having defined the terms that are used in this study and stating the problem, we shall 

consider the governing equations in the next chapter. 
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CHAPTER TWO 

THE EQUATIONS OF THE STUDY 

2.0 INTRODUCTION 

The equations governing the flow of an incompressible Newtonian electrically 

conducting fluid in the presence of transverse magnetic field are presented in this 

chapter. First, this chapter considers the assumptions made in this particular flow 

problem and the consequences arising due to these assumptions. The conservation 

equation of mass and momentum equations are considered. Later in this chapter, the 

equations governing the fluid flow are given in their general dimensional form. Non-

dimensional parameters are then defined. A finite difference scheme to solve the 

resulting equations is described. 

2.1 ASSUMPTIONS  

The following assumptions are made in this study 

1. The lubricant is incompressible isothermal electrically conducting fluid with 

electrical conductivity . 

2. The induced magnetic field is negligible as compared to the applied magnetic 

field. 

3. No slip boundary condition i.e. the velocity of the lubricant layer adjacent to the 

boundary is the same as that of the boundary. 

4. The bearing surfaces are made of insulating materials. 

5. The flow is steady and laminar. 



6. The film is thin. 

7. The fluid inertia is neglected. 

8. The body force is negligible except for the Lorentz force. 

2.2 THE GOVERNING EQUATIONS  

2.2.1 Equation of continuity  

The principle of continuity is based on two fundamental propositions namely; 

(i) Mass can neither be created nor destroyed. i.e. the mass of the fluid is conserved. 

(ii) The flow is continuous i.e. empty spaces do not occur between particles which 

are in contact. In this study, the fluid to be considered is incompressible fluid. i.e 

density is assumed constant. The equation of continuity in vector form therefore 

reduces to; 

0. u           2.1 

2.2.2 Equation of momentum The principle of conservation of momentum is 

basically an application of Newton’s second law of motion to an element of fluid 

motion. The net rate of momentum flow must equal the net sum of forces acting on 

the fluid. 

fuuuu







 

 2.  p

t
       2.2 

On the left hand side of equation (2.2), the first term represent the temporal 

acceleration while the second term represent the convective acceleration. On the 

right hand side, the first term represent the pressure gradient, the second term 

represent the force due to viscosity and the third term is the body force. 
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Since the fluid is electrically conducting, in presence of magnetic field oB , the MHD 

momentum equation governing the flow is given as; 

BJuu
 2 p

Dt
D

        
2.3 

 

2.3 MAXWELL’S EQUATIONS are given as;  






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D

t

0.
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         2.4 

2.4 OHM’S LAW 

Ohm’s law characterizes the ability of materials to transport electric charge under the 

influence of an applied electric field. The current density for an electrically 

conducting material at rest is given by; 

J= 


            2.5 

If an external magnetic field is present and the conductor is moving at velocity u , 

then the current density is given as; 

 Bu


 EJ           2.6 

2.5 LORENTZ FORCE 

Underlying the MHD body force is the fact that free charges moving in a magnetic 

field experience a Lorentz force perpendicular to both their velocity and the magnetic 



field. If a current J


 passes through a conductor under a magnetic flux B


, the 

conductor experience Lorentz force perpendicular to both BandJ


, this force is 

proportional to the magnitude of both BandJ


.The Lorentz force experienced by a 

conductor is given as; 

 BJF


  

2.6 NON-DIMENSIONAL NUMBERS 

The dimensionless parameters allow one to apply the results obtained in a model to 

any other dynamically similar case. In this work there are two non-dimensional 

numbers that are used. These are;   

 Reynolds number 

 Hartmann number 

2.6.1 The Reynolds Number, Re 
The Reynolds number is important in analyzing any type of flow when there is 

substantial velocity gradient shear. The Reynolds number indicates the relative 

significance of the viscous effects compared to the inertia effect. The Reynolds 

number is proportional to inertial force divided by viscous force. It is expressed as; 

Re=
forcesviscous
forcesinertiaVL



  

If the Reynolds number of the system is small, the viscous force is predominant and 

the effect of viscosity is important in the whole flow field. If Reynolds number is 

large, the inertia force is predominant and the effect of viscosity is important only in 

thin layer of the region near solid boundary. 
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2.6.2 Hartmann Number, oM  

It is the ratio of the magnetic force to viscous force and is defined as; 

2

22
2

U
vH

M oe


 

2.7 NON-DIMENSIONALIZATION OF THE EQUATIONS 

The MHD equations are expressed in dimensionless form so that the relative 

strengths of the different terms in the fluid flow equations can be inferred by the size 

of any multiplying factors. The non-dimensionalization of the equations is performed 

by first selecting a certain characteristic quantities, the independent variables may be 

non-dimensionalized according to the following definitions. 

,*

L
xx   ,*

B
zz    ,

L
B

   ,
2

*

UL
php L


    ,1 ** x

h
hh
L

    
L

o

h
h

  2.7 

2.8 METHOD OF SOLUTION 

In general, not all real-life problems have analytical solutions. Numerical techniques 

are now at the forefront of every kind of scientific research. The part of numerical 

analysis which has been most changed so far is the solution of partial differential 

equations by finite difference approximations. 

2.8.1 Method of finite differences  

The governing equation together with the boundary conditions are to be solved 

numerically using the finite difference method. This method is used because of its 

inherent advantages, which include: the finite difference programs take less memory, 

it converges and also it is stable.   
 



2.8.2 Definition of a mesh 

Let us assume a rectangular plane with the horizontal axis x and vertical axis z (this 

corresponds with the variables which will be used later in this chapter). Let x vary 

from 0-a and z from 0-b. Further let the intervals be divided into n and m 

subintervals respectively with each subinterval having width x  and 

z respectively. We can now identify a point on the rectangular plane  ji zx  such 

that: 

xixi              i=1, 2, 3-----          and                     zjz j            j=1, 2, 3, -------- 

With the grid lines ji zandx  intersecting at the mesh points. This is illustrated in the 

figure 2.1 below.  
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1ix         ix            1ix  

Figure 2.1 Illustration of the mesh       

2.8.3 The finite difference approximations 

From the mesh defined above, we define differences of du at point ix  using central 

difference as 

11   iii uuu          2.8 

 the central difference approximation to the tangent slope at ix  is given as 
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 Using Taylor’s series expansion at point xx   we have 
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  (i,j+1)  

 (i-1,j) i, j (i+1,j) 

  (i,j-1)  

    



Taylor series expansion at point xx   is given by 
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Summing the Taylor series expansion of ( xx  ) and ( xx  ) we have 









  4

4
4

2

2
2

12
12

x
N

x
x
N

xNNN xx
xxxxx

         
2.12 

On rearranging we have 
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 Truncating second order terms and higher, 
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nd2  order central difference approximation of nd2  derivative is given by 
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Subtracting the Taylor series expansions we have 
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Rearranging we have 
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With truncation error 

  
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nd2  Order central difference approximation of first derivative is given by 
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The central difference approximation to the thm  derivative across q nodes is given by 
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Approximation to mth derivative across q nodes is 
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Taylor series expansion about each point *x  is given as 
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Combining (2.20) with (2.21) and gathering terms we have  
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Redefining we have 
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For n=0………………….q-1 
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CHAPTER THREE 

SOLUTION TO THE REYNOLD’S EQUATION 

3.1 MATHEMATICAL FORMULATION.   

The flow of the fluid is at steady state, the density does not change with time. The 

continuity equation (2.1) is therefore reduced to; 

0
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3.1 

The induced magnetic field is negligible as compared to the applied magnetic field. 

Equation (2.6) is therefore substituted in equation (2.3) as follows; 

Considering the momentum equation in x-direction, 
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 The momentum equation in x, y  and z-direction reduces to;  
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The boundary conditions at the two surfaces of the bearing are 
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        3.5 

By applying the above boundary condition the velocity component u and w are 

solved from equations (3.2) and (3.4), respectively. 
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Where M denotes the Hartmann number 
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  2
1

0 / LhBM           3.8 

If the bearing surfaces are perfect insulators and there is no current external to the 

film, then the electric field may be approximated by requiring the net current flow to 

be zero 
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Substituting for u and w in Eqs. (3.9) and (3.10) and performing the integration, the 

electric fields Ez and Ex becomes 
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3.2 MHD REYNOLDS EQUATION 

Integrating the continuity equation (3.1) across the film we have; 
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We then apply the Leibnitz rule for differentiating and integral whose limits are 

functions of the differentiation variable. 
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Where U1 =vx(x, 0, z)   and      U2=vx (x, h, z) 

Similarly,                   

      












h h

z
z

z
hW

z
hWdyzyxv

z
y

z
v

0 0
21,,                                                   3.16 

Where W1 =vz(x, 0, z)   and      W2=vz (x, h, z) 

Performing the integration by using the boundary conditions (3.5), and substituting 

the velocity components in (3.6) and (3.7) in the above integral, the general MHD 

Reynolds-type equation is derived as; 
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Where the function ),,( LhhMa  is      
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3.3 NON-DIMENSIOLIZATION OF THE REYNOLDS’S TYPE EQUATION 

Using the non-dimensional quantities in equation (2.7), the Reynolds’s equation 

(3.17) is non-dimensionalized as shown below; 
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Equation (3.19) is a dimensionless Reynolds type equation  where 
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As M approaches zero, equation (3.16) reduces to the classical Reynolds-type 

equation Hamrock (1994). It is assumed that the lubricant is enough to flood the 

bearing, and the cavitation effect is neglected. Then the pressure boundary conditions 

are given by 

0* p  at 0* x  and  p* =0  at x*=1           3.21a  

0* p  at 0* z  and  p*=0 at z* =1           3.21b 



3.4 NUMERICAL METHOD 

The equations governing the MHD fluid flow are non-linear differential equations. 

This implies that it is not possible to get their analytical solutions. The approximate 

solution is found by applying numerical methods. In this study, finite difference 

method is used. These approximate solutions are computed subject to initial and 

boundary conditions which will take a numerical form. 

3.5 NUMERICAL FORMULATION 

The dimensionless MHD Reynolds-type equation with condition (3.21) is now 

solved numerically by using finite difference schemes. The film domain under 

consideration is divided by grid spacing as shown in figure 2. Using the central-

difference approximation, the dimensionless MHD Reynolds-type equation is written 

in a finite difference format as 
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   15.0 2*22   xb                               3.23(f) 

** / xzb                                                       3.23(g) 

Equation (3.19) with boundary conditions (3.21a) and (3.21b) is numerically solved 

for pressure using the Conjugate Gradient Method (CGM). Based on a three-term 

recurrence, the CGM is an unconstrained optimization technique in which the search 

directions are conjugate (Decker et al, 1992)   

The finite termination property implies that this method is guaranteed to terminate 

after a finite number of steps. Let the residual vector jir ,  be 

  
*

1,4
*

1,3
*

,12
*

,11
*
,0, jijijijijiji pppppr    3.24 

Then the pressure values have converged according to the following convergent 

criteria 
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3.6 MHD BEARING CHARACTERISTICS 

With the film pressure obtained, the hydro-dynamic squeeze film force can be 

evaluated. The MHD load-carrying capacity is calculated by integrating the pressure 

over the film region 
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Introducing the dimensionless quantity 
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The dimensionless load-carrying capacity can be expressed in a difference form 
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The shear stress which the film exerts on the lower surface is 
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Expressed in a dimensionless form one has 
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The friction force acting on the slider is calculated by integrating the shear stress 

over the film region 
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Performing the integration and using in a dimensionless form, it results in 
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and the coefficient of friction is  

W
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3.33 
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Using non-dimensional quantities, the friction parameter is given  by 

     *

*

.
W
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CHAPTER FOUR 

4.0 DISCUSSION OF THE RESULTS 

The mechanism of lubricating properties of fluid is such that when two solid surfaces 

wetted with fluid come into contact, the latter is forced out of a gap between them. 

Removal of a viscous fluid from a thin gap requires large pressure gradients and 

therefore a wedging pressure occurring in the fluid prevents the convergent of 

surfaces.  

    

 

Figure 4.1: Dimensionless film pressure p* as a function of x* in the midplane 

with β=1 and α=2 for different M. 

The graph of figure 4.1 depicts the dimensionless film pressure p* as a function of 

dimensionless coordinate x* in the midplane (z*=0.5) with the aspect ratio β=1 and 
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the inlet-outlet film thickness ratio α=2 for different values of the Hartmann number. 

The dark blue curve marked with circles represents the classical lubricant case in the 

absence of magnetic field. The green, red, and light blue curves show the results of 

the bearing lubricated with electrically conducting fluids for M=2, 4 and 6.The 

influence of magnetic fields is visibly apparent. The film pressure increases with 

increasing value of applied magnetic field. The fluid particles are retarded by 

magnetic forces which cause an additional increase of viscosity. Moreover, magnetic 

particles form a dense layer on the surface preventing friction surfaces from direct 

contact. Thus both the hydrodynamic and the boundary lubrication mechanisms are 

stronger when magnetic field is applied than in ordinary lubricants. 

 

Figure 4.2 Dimensionless maximum pressure P* max versus Hartman Number 

M at α=2 for different values of β. 



This graph of figure 4.2 shows the dimensionless maximum film pressure *
maxP  as a 

function of the Hartmann number M at film thickness ratio α=2 for different values 

of aspect ratio. 

Compared with the no-conducting-lubricant case, the action of magnetic field 

signifies an increase in the value of *
maxP  for the bearing with electrically conducting 

fluid. The wider the bearing width is, the more the magnetic field affects the 

maximum film pressure. 

Totally, the Hartmann number dominates the effect of magnetic fields upon the 

maximum film pressure. Larger increments are observed for a wider bearing with 

large Hartmann number. This is because the magnetic field intensity increases. 
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Figure 4.3 Dimensionless load carrying capacity W* versus the Hartman 

number M at α=2 for different β. 

The graph of figure 4.3 displays the dimensionless load carrying capacity w* verses 

the Hartmann number M at α=2 for different aspect ratios. Since the effect of 

magnetic fields give a higher film pressure as discussed above, the integrated load 

carrying capacity is similarly affected. 

For the finite bearing with β=1, the load carrying capacity of the conducting fluid 

lubricated bearing is observed to increase with increasing Hartmann number. As the 

bearing tends to be wide (e.g., β=50), the load increases rapidly with the value of M  



This may be explained by considering that the magnetic field increases the fluid 

viscosity and therefore wider bearings has more magnetic field in it  

Totally, the effect of magnetic fields on the bearing load is more pronounced for 

large values of β and M. 

  

Figure 4.4 Dimensionless friction parameter Cf versus the Hartman number M 

at  α =2 for different β 

This graph of figure 4.4 shows the friction parameter   versus the Hartmann 

number M at α=2 for different aspect ratios. It shows that for a fixed β the effect of 

magnetic fields results in an increase in the friction parameter. When the magnetic 
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field comes in contact with the fluid, it slows down the motion of the fluid particles 

causing the friction to increase. 

 However, for a fixed Hartmann number increasing the value of β yields a decrease 

in .The wider the bearing width is, the more space the fluid moves. This reduces 

the friction. 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER FIVE 

5.0 VALIDATION OF THE RESULTS. 

According to the results discussed, we note that as the value of the Hartmann number 

approaches zero, the present study reduces to the classical non-conducting lubricant 

case. 

Comparing with the results without magnetic fields, Taking the limit of the 

Hartmann number as M 0, the MHD bearing characteristics reduces to the 

nonconducting-lubricant case. The results of Taylor and Dowson (1974)], who 

considered the non-conducting lubricant they used the values; 

2 , 1: W0.0691 ; and 3 , 2 : W0.1042 . In this study  

M 0we used 2 , 1: W0.0686 ; and 3 , 2 : W0.1032 .The 

difference is  between the  two methods when there is no magnetic field applied in the 

lubricant is small. However in this study we have also considered the application of 

Magnetic field (M > 0).  

5.1 CONCLUSION. 

The following conclusion can be drawn from this study;   

1. The application of a transverse magnetic field signifies an influence upon the 

performance of slider bearings with an electrically conducting fluid depending on the 

Hartmann number M, the aspect ratio β and the inlet-outlet film thickness ratio α. For 

a fixed α, the MHD load capacity, increase with increasing value of M . This is 

because an increase in magnetic field increases the viscosity of the lubricant.  
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2. The load carrying capacity increases rapidly with increase in the film thickness ratio. 

This is because as the bearing widens, there is more lubricant leading to an increase 

in the load carrying capacity.  

3. Under a fixed   and M, increasing the film thickness ratio results in an increase in 

the load capacity and a decrease in the friction parameter. This is because in wider 

bearing, the lubricant is able to flow without hindrance.  

5.2 RECOMMENDATIONS 

Some of the areas that need further research include 

i. Considering variation of inlet-outlet film ratio. 

ii. Fluid flow in the turbulent boundary layer. 

iii. Fluid flow between two plates where the upper plate moves.  
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APPENDICES 

function A = Amh(hs,m) 

%Reynolds Dimensionless Function 

%   Gets the values h* and M(Hertman Number) 

%Returns A values as vectors 

A=(hs./(2*m^2)).*(m.*hs.*coth(m.*hs./2)-2); 

%display(A'); 

end 

function sig = sigma( B,b,Dx,al ) 

%Sigma constant 

sig=0.5*B^2*b^2*Dx^2*al; 

 

end 

% a<x<b , c<z<d 

% M = Hartmann number 

% ho = height 0 

% hl = height l 

% h = height 

% L = Length of bearing 

% B=Width of bearing 

%U=Sliding viscosity 

%B0=applied magnetic field 

%g=electrical conductivity 

%u=fluid viscosity 

%p=film pressure 
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% n = number of subintervals for x 

% m = number of subintervals for z 

% dx = delta x* 

% dz = delta z* 

a=0; b=1; c=0; d=1;  

n=100; m=100; dx=(b-a)/n;num_iter=20000; dz=(d-c)/m; 

M=2;al=2;beta=2; 

B=4.0;L=2.0;ho=4;hl=2;g=0.5;u=0.2;U=0.101;beta=B/L;M=2; 

x=a:dx:b; 

z=c:dz:d; 

h=ho-((ho-hl)/L)*x; 

 

%p=6*u*U*sum(dx/h^2)*12*u*U*(ho*hl/(ho+hl))*sum(dx/h^3); 

%p=ps/hl;   

hs=h/hl; 

al=ho/hl; 

%As=(hs/2*M^2)*(M*hs*coth(M*hs/2)-2); 

ps=zeros(n+1, m+1); 

% 

%As(1,1)=0; 

%As(n+1,1)=0; 

%As(1,m+1)=0; 

%As(n+1,m+1)=0; 

p=ps; 

ps(1,1)=0; 



ps(n+1,1)=0; 

ps(1,m+1)=0; 

ps(n+1,m+1)=0; 

%ps=h/hl;al=ho/hl; 

%As=hs/2*M^2*(M*hs*coth(M*hs/2)-2); 

Dxs=dx/L; 

Dzs=dz/B; 

bi=Dxs/Dzs; 

for it=1:num_iter 

%wsave=w; 

psave=p; 

Rws=0; 

Rps=0; 

% Solution for w* & p* 

Ai=Amh(hs,M); 

display(Ai); 

y0=yo(beta,bi,Ai,dx); 

y1=yi(beta,bi,Ai,dx); 

y2=yto(beta,bi,Ai,dx); 

y3=ytr(beta,bi,Ai,dx); 

y4=yf(beta,bi,Ai,dx); 

for i=2:n 

for j=2:m 

 

 %ws(i,j)= c1*(ws(i,j+1)+ws(i,j-1)+ws(i+1,j)+ws(i-1,j))-c2*(ps(i+1,j)-ps(i-1,j))-c3; 
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ps(i,j)= (y0(i-1)*ps(i,j)+y1(i-1)*(ps(i+1,j)+y2(i-1).*ps(i-1,j)+y3(i-1)*ps(i,j*1)+y4(i-

1)*ps(i,j-1)))-(-0.5*beta^2*(Dxs/Dzs)^2*(Dxs)^2*(al-1)); 

 

% Rps = Root mean square residuals for H* 

%Rws=Rws+sqrt((w(i,j)-wsave(i,j))^2); 

Rps=Rps+sqrt((p(i,j)-psave(i,j))^2); 

%display( 'Y Os'); display(y0(1,j-1)); 

%display(y1(1,j-1)); 

end 

end 

%Rwss(it,1)=Rws; 

Rpss(it,1)=Rps; 

if (Rps<1e-8 )%& Rws<1e-8) 

break 

end 

end 

% t = Dimensionless temperature (theta) 

t=zeros(n+1,m+1); 

%B.C.'s at the four corners for theta (uniform surface temperature) 

t(1,1)=0; 

t(1,m+1)=0; 

t(n+1,1)=0; 

t(n+1,m+1)=0; 

for i=2:n 

t(i,m+1)=0; 



t(i,1)=0; 

end 

for j=2:m 

t(1,j)=0; 

t(n+1,j)=0; 

end 

% Display solution with x from left to right 

%ws=[ws']; 

%w=[w']; 

ps=[ps']; 

p=[p']; 

%display(ps); 

%t=[t']; 

x= a:dx:b; z=c:dz:d; 

B0=0.2; 

%p=0.5; 

%w=0.2; 

Hp=0.3; 

F=0.4; 

M=B0*hl*sqrt((g/u)); 

xs=x./L;zs=z./B; 

m1=x./xs*u*U; 

c1=p*hl^2; 

%ps=c1./m1; 

% a<x<b , c<y<d 
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% M = Hartmann number 

% ho = height 0 

% hl = height 1 

% h = height 

% L = Length of bearing 

% B=Width of bearing 

%U=Sliding viscosity 

%B0=applied magnetic field 

%g=electrical conductivity 

%u=fluid viscosity 

%p=film pressure 

a=0; b=1; c=0; d=1; num_iter=20000; M=100; 

n=100; m=100; h=(b-a)/n; k=(d-c)/m; 

c1=1/4; c2=(h*M)/8; c3=(h^2)/4; 

 

% ws = load carrying capacity (w*) 

% Hs = friction power loss (H*) 

%hs=film thickness (h*) 

ws=zeros(n+1, m+1);  

Hs=zeros(n+1, m+1); 

%B.C.'s at the four corners for w*(no slip conditions) & H* (electrically insulated 

surface) 

ws(1,1)=0; 

ws(n+1,1)=0; 

ws(1,m+1)=0; 



ws(n+1,m+1)=0; 

Hs(1,1)=0; 

Hs(n+1,1)=0; 

Hs(1,m+1)=0; 

Hs(n+1,m+1)=0; 

%B.C.'s at the four sides for w*(no slip conditions) & H* (electrically insulated 

surface) 

for i=2:n 

ws(i,1)=0; 

ws(i,m+1)=0; 

Hs(i,1)=0; 

Hs(i,m+1)=0; 

end 

for j=2:m 

ws(1,j)=0; 

ws(n+1,j)=0; 

Hs(1,j)=0; 

Hs(n+1,j)=0; 

end 

for it=1:num_iter 

wsave=w; 

Hsave=H; 

Rws=0; 

RHs=0; 

% Solution for w* & H* 
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for i=2:n 

for j=2:m 

ws(i,j)= c1*(ws(i,j+1)+ws(i,j-1)+ws(i+1,j)+ws(i-1,j))-c2*(Hs(i+1,j)-Hs(i-1,j))-c3; 

Hs(i,j)= c1*(Hs(i,j+1)+Hs(i,j-1)+Hs(i+1,j)+Hs(i-1,j))-c2*(ws(i+1,j)-ws(i-1,j)); 

% Rws = Root mean square residuals for w* 

% RHs = Root mean square residuals for H* 

Rws=Rws+sqrt((w(i,j)-wsave(i,j))^2); 

RHs=RHs+sqrt((H(i,j)-Hsave(i,j))^2); 

end 

end 

Rwss(it,1)=Rws; 

RHss(it,1)=RHs; 

if (RHs<1e-8 & Rws<1e-8) 

break 

end 

end 

% gamma = Non-dimensional pressure gradient 

% w = Dimensionless axial velocity 

% H = Dimensionless induced axial magnetic field 

% f = friction factor 

gamma=1/sum(sum(ws*h^2)); 

w=ws*gamma; 

H=Hs*gamma; 

f=-2*gamma; 

% t = Dimensionless temperature (theta) 



t=zeros(n+1,m+1); 

%B.C.'s at the four corners for theta (uniform surface temperature) 

t(1,1)=0; 

t(1,m+1)=0; 

t(n+1,1)=0; 

t(n+1,m+1)=0; 

%B.C.'s at the four sides for theta (uniform surface temperature) 

for i=2:n 

t(i,m+1)=0; 

t(i,1)=0; 

end 

for j=2:m 

t(1,j)=0; 

t(n+1,j)=0; 

end 

for itt=1:num_iter 

tsave=t; 

Rt=0; 

% Solution for theta 

for i=2:n 

for j=2:m 

t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/(4-4*h^2*nu*w(i,j)); 

% Rt = Root mean square residuals for theta 

Rt=Rt+sqrt((t(i,j)-tsave(i,j))^2); 

end 
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end 

% thetam = Mean dimensionless temperature 

% nu = Nusselt number (Nu) 

thetam=(sum(sum(t.*w*h^2)))/(sum(sum(w*h^2))); 

nu=-1/thetam; 

Rtt(itt,1)=Rt; 

if Rt<1e-8 

break 

end 

end 

% Display solution with x from left to right 

ws=[ws']; 

w=[w']; 

Hs=[Hs']; 

H=[H']; 

t=[t']; 

x= a:h:b; y=c:k:d; 

 

function y4 = yf( B,b,A,h ) 

%Yo  

%   1st coefficient of pij 

[m,n]=size(A); 

for i=1:m 

    for j=2:n-1 

    %As(i,j)=(A(i+1,j)-A(i-1,j))/2*h; 



    As2(i,j)=(A(i,j+1)-A(i,j-1))/2*h; 

    end 

end 

y4=As2; 

end 

function y1 = yi( B,b,A,h ) 

%Yo  

%   1st coefficient of pij 

[m,n]=size(A); 

for i=1:m 

    for j=2:n-2 

    As(i,j)=(A(i,j+1)-A(i,j-1))/2*h; 

        end 

end 

y1=B^2*b^2.*(As); 

end 

function y0 = yo( B,b,A,h ) 

%Yo  

%   1st coefficient of pij 

[m,n]=size(A); 

for i=1:m 

    for j=3:n-2 

    As(1,j)=(A(1,j+1)-A(1,j-1))/2*h; 

    As2(1,j)=(A(1,j+2)-A(1,j-2))/2*h; 

    end 
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end 

y0=B^2*b^2.*(As)+As2; 

end 

 

function y2 = yto( B,b,A,h ) 

%Yo  

%   1st coefficient of pij 

[m,n]=size(A); 

for i=1:m 

    for j=2:n-2 

     

    As2(i,j)=(A(i,j+1)-A(i,j-1))/2*h; 

    end 

end 

y2=B^2*b^2.*(As2); 

end 

 

function y3 = ytr( B,b,A,h ) 

%Yo  

%   1st coefficient of pij 

[m,n]=size(A); 

for i=1:m 

    for j=3:n-2 

     

    As2(i,j)=(A(i,j+2)-A(i,j-2))/2*h; 



    end 

end 

y3=(As2); 

end 

 

 

 

 

 

 

 


