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NOMENCLATURE 

B⃗																												Magnetic	 lux	density,Wb/m  

E⃗																													Applied	electric	 ied	strength	with	components	Ex, Ey, Ez 

g																													Acceleration	due	to	gravity, N/m  

H																												Magnetic	 ield	with	componentsH ,H ,H  

i, j, k																							Unit	vectors	in	x, y, z	directions	respectively 

k																														Thermal	conductivity, Wm K  

L																														Characteristic	length, m 

ȷ⃗																														Current	density	with	components	J , J , J (Am ) 

P																													Pressure, Nm  

Q																														Amount	of	heat	added	to	the	system(Nm) 

T																														Temperature	of	the	 luid, K 

	C 	                        Specific Heat Capacity at constant pressure 

h																														Dimensional	distance	between	plates(m) 

	q																												Velocity	vector	with	components	u, v, w	in	the	x, y, z	directions	respectively 

t																															Time(s) 

U																															Characteristic	velocity, m/s 

	P 																												Prandtl	number 

		E 																										Eckert	number 
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	R 																									Magnetic	Reynolds	number 

M																											Hertmann	number 

	T 																										Reference	temperature, K 

		T 																										Temperature	of	the	upper	plate 

T 																										Free	stream	temperature, K 

D
DT 																										Material	or	Substantive	derivative 

ρ																													Fluid	density	, kgm  

β																												Co − ef icient	of	volume	expansion	K  

μ																													Coef icient	of	viscosity, Kgm s  

μ 																												Magnetic	permeability, Wm  

σ																													Electrical	conductivity,Ω m  

∇																												Gradient	operator	i
∂
∂x + 	j

∂
∂y + 	k

∂
∂z 

∆																													Laplacian	operator + +  

φ																												Viscous	dissipation	function	 

θ																													Dimensionless  fluid temperature                          
ϑ																												Kinematic	viscosity, m  
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ABSTRACT 

In this study we have investigated MHD stokes free convection of an incompressible, electrically 

conducting fluid between two horizontal parallel infinite plates subjected to a constant heat flux 

and pressure gradient. A uniform magnetic field is applied normal to the plates. The flow is 

steady and considered heat generating due to frictional heating of fluid particles. This implies 

that flow variables are independent of time. The upper plate is impulsively started at constant 

velocity while the lower plate is assumed to be porous and stationary. The two plates are 

separated by a distance h. An analysis of velocity profiles and temperature distribution that have 

been obtained has been done. In addition, an investigation on how Prandtl number, Eckert 

Number and Hartman Number affect velocity profiles and temperature distribution has been 

carried out. Differential equations that have been generated from this study are non-linear. The 

equations have been solved by finite difference method.  The results that have been obtained are 

discussed in detail and presented graphically. It has been noted that an increase in Hartmann 

number causes a decrease in velocity profiles. However an increase in Hartmann number leads 

into an increase in temperature distribution.It is also revealed that an increase in values of Eckert 

results into an increase in temperature distribution between the plates. Further an increase in 

Prandtl Number leads to a fall in temperature distribution.  
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CHAPTER ONE 

1.0 INTRODUCTION 

The word magneto hydrodynamics is derived from magneto-meaning magnetic field, hydro-

meaning liquid and dynamics-meaning movement.  Therefore, magneto hydrodynamics refers to 

the study of flow of an electrically conducting fluid in the presence of magnetic field. 

A fluid is a substance whose constituent particles may continuously change their positions 

relative to one another when shear force is applied to it. The fluid undergoes deformation 

irrespective of the magnitude of the force.  As fluid flows, it transfers heat from one point to 

another.  Heat transfer in fluids is called convection.  Fluids do not exist in isolation but with 

solids.  Heat transfer in solids is called conduction whereas heat transfer in a vacuum is called 

radiation.  Convection as a mode of heat transfer is of great interest in relation to conduction and 

radiation since it has a wide range of applications in engineering and other scientific fields. 

Convection is categorized into: 

(a)  Natural (free) convection – refers to fluid flow due to density variations resulting from 

temperature differences within the fluid.  Buoyant forces cause denser fluid to move downwards 

replacing less dense fluid that rises upwards resulting to free convectional currents. 

(b)  Forced convection – refers to fluid flows caused by external forces or urgencies such as 

fans, mixers or pumps. 

A fluid can flow in an enclosure, in a pipe, in a channel or over a plate. When fluid flows, fluid 

particles interact with these surfaces resulting into two flow regions namely; 

(i) Boundary layer region- is a region in which fluid particles are in contact with solid 

surface.  In this region viscous effects of the fluid are abundant. 
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(ii) Free stream region- is a region in which fluid particles experience negligible viscosity. 

Consequently boundary layer region is more significant than free stream region. Fluid flow in 

boundary layer can be; 

(a) Turbulent flow- Flow is turbulent if fluid particles move in a disorderly manner in a channel. 

This flow is said to be unsteady and occurs due to boundary roughness or variation in physical 

properties of fluid moving in straight path or porous walls. 

(b) Laminar flow-Flow is laminar if fluid particles are orderly and do not mix with particles of 

adjacent layers.  This flow is said to be steady. It is characterized by low Reynolds number. 

Fluid flows in engineering devices occur within magnetic field. Fluid flow in the presence a 

magnetic field is called hydromagnetic flow and the study of hydro magnetic flows is called 

magneto hydro dynamics (MHD).  
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1.1 LITERATURE REVIEW 

Magneto hydrodynamics is the study of hydro magnetic flows.  It was first detected by Michael 

Faraday in 1931.  Faraday performed an experiment to study the behavior of currents in circuits 

placed in time varying magnetic field.  He used mercury as an electrically conducting fluid and 

allowed it to flow in a glass tube in a magnetic field.  He observed that the voltage was induced 

in a direction perpendicular to both the direction of flow and the magnetic field. Hartmann 

(1938) discussed theoretically and experimentally the flow of a conducting fluid between two 

parallel plates while Stokes (1951) concentrated on the flow of an incompressible and viscous 

fluid past impulsively started infinite flat plates. Further, Ram et al (1995) solved magneto 

hydrodynamics stokes problem of convection flow for a vertical infinite plate in a dissipative 

rotating fluid with Hall current. This is an analysis of the effects of various parameters on the 

concentration velocity and temperature profiles while Kwanza et al (2003)presented their work 

on MHD stokes free convection past an infinite vertical porous plate subjected to a constant heat 

flux with ion-slip and radiation absorption. They discussed   their tabulated results on 

concentration, velocity profiles and temperature distributions both theoretically and graphically. 

Sigey et al (2004) presented an investigation on a numerical study on natural convection 

turbulent heat transfer in an enclosure while Chandra B.S(2005) studied a steady MHD flow of 

an electrically conducting fluid between two parallel infinite plates when the upper plate is made 

to move with constant velocity while the lower plate is stationary.Okelo et al (2007) investigated 

unsteady free convection of incompressible fluid past a semi-infinitive vertical porous plate in 

the presence of a strong magnetic field at an angle ( ) to the plate with Hall ion-slip current 

effects. They discussed the effects of modified Grashof number, heat source parameter, Schmidt 

number, time, hall current, angle of inclination and Eckert number on a convectively cooled or 
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convectively heated plate restricted to a laminar boundary layer. They found that an increase in 

mass diffusion parameter causes a decrease in concentration profiles while an increase in suction 

velocity leads to an increase in concentration profiles. In addition they realized that an increase 

in Eckert number results into an increase in temperature profiles whilst an increase in angle of 

inclination causes an increase in primary velocity profiles and a decrease in secondary velocity 

profiles. Abbas I.A and Palani G. (2009) carried out an investigation on Free Convection MHD 

Flow with Thermal Radiation from an Impulsively Started Vertical Plate. They established that 

velocity increases with a decrease in magnetic field parameter. In addition they realized that 

dimensionless temperature decreases with an increase in thermal radiation.MarigiE.M et al(2010) 

carried out an investigation on hydro magnetic free convectional currents effects on boundary 

layer thickness while Abuga et al (2011) carried out an investigation on the effects of Hall 

current and Rotational Parameter on dissipative fluid past a vertical semi-infinite plate. They 

found that an increase in Hall parameter for both cooling and heating of the plate by free 

convection currents has no effect on temperature profiles but leads to an increase in velocity 

profiles. Similarly they found that an increase in Rotational parameter led to a decrease in 

velocity profile when the Eckert number was 0.01 and an increase in velocity profile when 

Eckert number was 0.02. Furthermore they realized that an increase in time led to an increase in 

both primary and secondary velocity profiles in case of cooling of the plates by convection 

currents but led to a decrease in velocity  profiles in case of heating the plates by convection 

currents. Rajput U.S and Sah P.K (2011) conducted an investigation on unsteady transient free 

convection MHD flow between two long vertical parallel plates with constant temperature and 

variable mass diffusion. They established that velocity and skin friction of the fluid increase with 

increase with the value of time but decrease with increasing the value of the prandtl number, 
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Schmidt number and magnetic parameter. More overManyonge et al (2012) investigated on 

Steady MHD Poiseuille flow between two infinite porous plates in an inclined magnetic field. 

They established that a high Hartmann flow (high magnetic field strength) decreases velocity 

whereasBhaskarkalita (2012) carried an investigation on unsteady free convection MHD flow 

and heat transfer between two heated vertical plates with heat source. It was found that an 

increase in Hartmann number caused high velocity profiles near the walls and low velocity 

profiles at the centre between the walls. Similarly, an increase   in Prandtl number to P = 7 

caused a remarkable change in temperature distribution. 

 In spite of all these studies, the problem of MHD stokes free convection past an infinite 

horizontal porous plate under constant heat flux has not received adequate attention.  In this 

study we have assessed the effect of a uniform magnetic field perpendicular to the plates together 

with a constant pressure gradient on temperature distribution and velocity profiles. The flow is 

steady and the fluid considered is viscous, incompressible and electrically conducting. The two 

plates are parallel and infinite in extent with the upper plate impulsively started at constant 

velocity and the lower plate porous and stationary.  In addition we have investigated on the effect 

of Prandtl, Eckert and Hartmann numbers on velocity profiles and temperature distribution. The 

lower plate is along the x- axis of the Cartesian plane whereas the y-axis is perpendicular to both 

plates. 
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1.2 STATEMENT OF THE RESEARCH PROBLEM    

When an electrically conducting fluid flows between two horizontal parallel infinite plates in the 

presence of uniform magnetic field, fluid motion is interfered with hence velocity and 

temperature changes occurred .The flow is steady and in the x-direction. It is therefore necessary 

to obtain an approximation solution for velocity profile and temperature distribution. 

 

1.3 GEOMETRY OF THE PROBLEM 

A uniform magnetic field was applied normal to the plates.  The upper plate is impulsively 

started at constant velocity in direction of the flow parallel to the x-axis while lower plate porous 

and stationary as shown. 

 

Figure 1:  Geometry of flow Configuration 
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1.4  OBJECTIVES OF THE STUDY 

The objectives of the study are; 

1. To determine the velocity profiles and temperature distribution of hydro magnetic free 

convection in a steady and laminar fluid flow over a porous stationary plate. 

2.  To investigate how Eckert number, Prandtl number and Hartmann number affect flow 

variables. 
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1.5 JUSTIFICATION 

 MHD laminar flow through a porous medium has become very important in recent years 

because of its wide range of applications in many branches of science and technology. Some of 

the applications of this research area include; 

In engineering:  most engineering machines involve fluid flow.  Melted metals are applied in 

technology, casting and as well in liquid metal cooling hoops of nuclear reactors. 

Heat transfer devices:  The results of this study can enable us design heat transfer devices with 

higher efficiency since most of heat transfer devices operate within an electric field which induce 

magnetic field. 

In general operation of MHD devices:  Most MHD devices have a channel conveying an 

electrically conducting fluid that passes between the poles of a magnetic material.  There are 

electrodes in the channel that are in contact with the fluid.  These electrodes lie in the plane 

perpendicularly to the magnetic field.  These include MHD fluid dynamos, power generators, 

flow meters pump etc. 

In addition it is used in agricultural engineering to study underground water resource, seepage of 

water in riverbeds while in petroleum technology it is to study movement of natural gas, oil and 

water through oil reservoirs. 

In the following chapter, assumptions made and a detailed discussion of equations governing the 

flow is presented.  
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CHAPTER TWO 

 

2.0 Assumptions 

The following assumptions have been taken into account in the research problem: 

(i) The fluid is assumed to be incompressible and with constant density. 

(ii) The plate is electrically non-conducting. 

(iii) Fluid velocity is too low and its Reynolds number is small. 

(iv) There is no external applied force that is	E⃗ = 0. 

(v) Thermal conductivity electrical conductivity and co-efficient of 
viscosity are constant. 

(vi) Magnetic flux density is B⃗ = μ H⃗ 

(vii) The fluid does not undergo any chemical reaction. 

(viii) Hall current is ignored since the magnetic field applied is weak.  

 

2.1  Governing Equations 

In this section equations governing the flow in the research problem have been generated well. 

The equations are derived using laws of conservation of mass, momentum and energy. 

Governing equations can be categorized into; 

2.2 Magneto hydrodynamics equations 

Magneto hydrodynamics combines electromagnetic and fluid mechanics. Fluid 

mechanics is the study of the behavior of fluids whether at rest or in motion. The study of 

fluids at rest is called fluid statics whereas fluid dynamics is the study of fluids in motion. 
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Thus the general equations governing MHD flows have been derived from 

electromagnetic theory and fluid mechanics. 

These equations are: 

2.2.1 Ohm’s Law 

A material has an ability to transport electric charge under the influence of applied 

electric field.  In moving electrically conducting fluids within a magnetic field, the 

magnetic field induces a current in the conductors of magnitude   q⃗ × B⃗. 

The current density is 

J⃗ = σ(E⃗ + q⃗ × B⃗)2.2.1 (1) 

2.2.2 Maxwell’s equations 

These equations govern electric and magnetic fields .They include 

														∇. B⃗ = 0 

∇ × H⃗ 		= J⃗2. 2.2(1) 

														μ
∂H		
∂t 		= 	−	∇ × E⃗ 

															∇. D⃗ 	= ρ  

However, in this research area Maxwell’s equations have been regarded redundant due to 

a small Reynolds number hence not considered. 
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2.3 Equations governing flow of an incompressible fluid in presence of magnetic field 

Under this category, the equations include: 

2.3.1 Continuity equation 

The equation is based on the principle of conservation of mass of the fluid that is mass of 

fluid is conserved and that the flow is continuous. 

The equation is: 

	 + ∇. (ρu) = 0(1) 

In three dimensions  

+
	
+ 	 	= 0																																																																																																						(2) 

Since there is no flow along the z-axis, that is, the flow is stagnant in z- direction then  

 thecontinuity equation reduces to 

	
+ = 0  (3) 

Similarly in the flow velocity u depends on y only. Thus 

= 0       Hence 

= 0(4) 

Integrating the equation(4) gives 
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 V = −v          (5) 

where	v  is the suction velocity.  

This velocity is maintained for a steady flow against suction of the fluid.          

2.3.2 Equation of momentum conservation 

The equation is based on the Newton’s second law of linear motion.  The equation is also 

called Navier-stokes equation.  In vector notation the equation of motion considers the 

body force due to gravity and electromagnetic force only. 

It is written as 

+ (q.∇)q = −	 ∇	p + ϑ∇ q + F																																																																																												(1) 

where 

∂q
∂t − 	is	temporal	acceleration 

(q∇q)	Is	convective	acceleration	and	allows	for	acceleration	even	when	the	 low	is	steady.		 

												−
1
휌 ∇p − Is	pressure	gradient	 

												ϑ∇ q − 	Is	force	due	to	viscosity 

													F = J⃗ × B⃗ − Is	body	force 
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The Navier-Stokes equation is also written in the form 

ρ 	+ u 	+ v = − + μ − ρg	 + 	 J	⃗X	B⃗(2) 

Since	the	 low	is	steady	then		 	 = 0		and	u	 = 0	because	u	depends	on	y	only.	Thus 

equation (2) reduces to 

ρ v = − + μ − ρg	+ 	 J	⃗X	B⃗(3) 

Differentiating equation (3) with respect to x gives  = 0 which on integrating results into 

= −P(constant)	that	is	pressure	gradient	is	constant.                                                                         

The negative sign shows that fluid pressure decreases in the direction of flow. 

 Hence equation (3) becomes  

ρv = P + 	μ − ρg + J⃗XB⃗(4) 

In theflow, the effect of force of gravity is insignificant since the two plates are horizontal hence 

it is ignored. Further upon substituting equation 2.3.1(5) in equation 2.3.2(4), it reduces to 

ρ −v = P + μ + J⃗	XB⃗(5) 

Replacing J⃗	XB⃗  in equation (5) gives 

ρ −v = μ + P − σμ H u(6) 
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																																							where	(J⃗ × 	 B⃗) = σ(q⃗ × B⃗) × B⃗ 

																																													Thus		J⃗ × B⃗ 	= −σB U 

= σμ H μ 

2.3.3Energy equation 

The equation is based on conservation of energywhich states that energy is neither 

created nor destroyed but can be transformed from one form to another.  It is derived 

from the first law of thermodynamics which states that the amount of energy added to a 

system dQ equals to change of internal energy dE plus work done dWi.e 

dQ = dE +dW  (1) 

The first law of thermodynamics requires that 

ρ + 	e ρ 	+ ρ∇q = −∇Q′ + 	Q′′ − p∇. q + μφ(2) 

Since the flow is incompressible, then the density is assumed to be constant. The term in 

brackets in equation (2) above represent the equation of continuity and hence should be 

equated to zero. 

Since 

h = e + p (3) 
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Then, the substantive derivative of enthalpy term in (3) is given as 

	 = + 	 − (4) 

where 	 					 = 0 since density of the fluid is assumed to be constant. 

Thus equation (4) reduces to 

ρ = ρ − (5) 

Substituting equation2.3.3 (5) in equation 2.3.3(2) above gives 

ρ = ∇(K∇T) + σB U + + μφ − 	p∇q(6) 

From mass conservation equation the last term of equation (6) is zero hence it reduces to 

ρ = (K∇T) + σB U + + μφ																																																																																													(7) 

The equation can be expressed in terms of temperature by replacing the specific enthalpy 

on the left hand side with an equivalent relation for h given by 

dh = Tds + dp												                                                                                                     (8) 

T - is absolute temperatureand 

ds –specific entropy change. 
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ds = dT + dp      (9) 

Thus 

( ) = − = = −     (10) 

where 

β = 	−
1
ρ

∂s
∂p . It	represents	the	coef icient	of	thermal	expansion. 

while =  

Hence equation 2.3.3(8) can be rewritten as 

dh = C dT + 	 	(1 − 	βT)dp(11) 

That is in substantive derivatives equation (11) becomes 

ρ = ρC 	 + (1	 − 	βT) (12) 

Substituting equation 2.3.3(12) in equation 2.3.3(7) results into 

ρC = ∇. (K∇T) + σB U + 	βT 	+ μφ																																																																																							(13) 

Now for a fluid flow with constant fluid conductivity, k and negligible compressibility 

effectβT	 ,   the energy equation reduces to 
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ρC 	 = 	 ∇. (K∇. T) 	+ σB U 	+ 	μφ  (14) 

Energy equation is also expressed as 

ρC 	 = 	 ∇. (K∇. T) + 	 j 	+ 	μφ																																																																																																									(15) 

where 

Q = 	−k∇T	 = 	−k
∂T
∂x +

∂T
∂y +

∂T
∂w .				Hence			 − ∇Q = k∇ T 

k∇ T –This term is due to conduction of heat 

Q  - is the internal heat generation defined as				Q = 	 j 	= σB U  

   -  is the material derivative and is expressed as 

		DT
	Dt =

∂T
∂t + q∇T 

Or = + (u + v 	+ 	w ) 

		φ	 - is the dissipative heat which is expressed as  

				φ = 	 2
∂u
∂x + 	

∂v
∂y + 	

∂u
∂y +

∂v
∂x  

 In the flow both temperature T and velocity u are functions of y only. Hence it is evident that 

= = 0 for all quantities except pressure gradient which is assumed to be constant. 
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Thus the term due conduction of heat, material derivative, internal heat generation and   

dissipative heat reduces to 

k∇ T = k ,			 	 = 	 + v 	 , Q = σB U and		휑	 = respectively.  

Substituting these results in equation 2.3.3(15) gives 

ρC + v = k + μ + 	σB U (16) 

Since fluid motion along the normal axis is very small, transverse velocity component v is 

approximated to be zero hence equation (16) becomes 

ρC = k + μ + 	σB U (17) 

Since the flow observes the no-slip conditions implies that velocity of the fluid at the upper plate 

equals the velocity of the plate while at the lower plate the velocity is zero. Thus the initial and 

boundary conditions are; at y=0, u=0 and T = T  while at y=1, u = U  and T = T  

2.4 Dimensional analysis 

It is a mathematical technique that helps in analysis of fluid flow problems. It is built in the 

principle of homogeneity. It helps formulate fluid problems that defy analytical solutions and 

that must be solved experimentally. In this research dimensional analysis has been used to non-

dimensionalize governing equations. Non-dimensional analysis refers to partial or full removal 

of units from an equation involving physical quantities by suitable substitution ofvariables. 
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2.5 Non-Dimensional parameters 

These are non-dimensional numbers.  The numbers are introduced into the governing equations 

to ensure that given solutions of natural phenomenon hold for all units. Some of 

theparametersused in this research area include: 

2.5.1 Reynolds number 퐑퐞 

Is the ratio of inertial force to viscous force.  It gives the relative significance of inertial force in 

fluid flow problems.  

 Mathematically it is expressed as 

R =
UL
ϑ  

A large Reynolds number of a fluid, inertia forces predominates and viscosity effects are 

negligible. Similarly when the Reynolds number is small, viscous force dominates and inertia 

force can be neglected. 

2.5.2 Eckert number, 퐄퐜 

Is the ratio of kinetic energy of the flow to thermal energy.It is expressed by 

E = 	
U

C ∆T 

2.5.3 Prandtl number, 퐏퐫 

Is the ratio of viscous force to thermal force. 
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It is also defined as the ratio of momentum diffusivity and thermal diffusivity.  It is expressed as 

P 	= 	
μ
ρ

k ρ
	= 	

C μ
k =

ϑ
α 

where 

ϑ = 	
μ
ρ − is	kinematic	viscosity									and		α = 	

k
ρC 		− 	is	the	thermal	diffusibility 

2.5.4 Hartmann Number, M 

Is the ratio of magnetic force to viscous force.It is expressed as 

																							M = 	
σμ H
ρU  

																													=
σB
	ρU  

Or 

																							M =
σμ H
ρU  

																											=
σB
	ρU  

2.6 Non-dimensionalisation of velocity and energy equations 

Taking the characteristic length, velocity and pressure to be L, U and P respectively, the 

following non-dimensional variables are used. 

t = t∗ ,        y = y∗  ,     θ =
∗ 			 ∗

∗ ∗ 	,			P =  

u =
∗
,						 					v =

∗
,       E = 	

( ∗ ∗ )
, 			x∗ =  
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In dimensional form theequation 2.3.2(6) is written as 

ρ −v∗
∗

∗ = P + μ
∗

∗ − σ	μ H u∗2.6(1) 

But       v∗
∗

∗ 	= v  and 

μ
∂ u∗

∂y∗
= μ

U
ϑ
∂ u
∂y  

Then upon dropping the stars in equation (1) by replacing them by their respective non-

dimensional parameters, the equation(1) becomes  

ρ −v = P + 	μ − σμ H Uu																																																																																								(2) 

Dividing each term containing u in (2)by ρ
		
and the constant P by 	ρ		results into 

+ v − σμ H + 	 = 0        (3) 

 Substituting  ρ =   in equation (3) we get 

+ v −	M u + c = 0(4) 

where				M =    andc = (constant) 

Similarly equation 2.3.3(17) is written in dimensional form as 

ρC
∗

∗ = k
∗

∗ + μ
∗

∗ + 	σB U∗     2.7(1) 
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 However applying chain rule we have 

∗
= T∗ − T∗ (2) 

∂T∗

∂y∗ =
∂T∗

∂θ .
∂θ
∂y .

∂y
∂y∗ 			=

U(T∗ − T∗ )
ϑ .

∂θ
∂y 

∗

∗ = ∗

∗

∗ = ( ∗ ∗ ) . (3) 

∗

∗ =
∗

. . ∗ = ( ∗ ∗ ) . (4) 

u∗ = u U (5) 

Substituting equations (3), (4) and (5) in equation 2.7(1) gives  

( ∗
	

∗ ) . = ( ∗ ∗ ) . + . + (6) 

Equation (6) can be rewritten as 

= . +
∆

. +
∆

u (7) 

 Equation (7) simplifies to 

= . + E + E M u (8) 

The corresponding initial and boundary conditions in dimensional form are; when t ≤ 0, u = 0 

and θ = 0  at y =0 while when t > 0,   u = 1 and θ = 1 at y =1. 

In the chapter to follow, equations 2.6(4) and 2.7(8) are expressed in finite difference form. 
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CHAPTER THREE 

3.0 METHOD OF SOLUTION 

The problem under investigation hasgenerated non-linear differential equations. Being a 

boundary value problem, its solution has been determined using finite difference approach. In 

this technique derivatives occurring in the generated differential equations have been replaced by 

their finite difference approximations. The resulting linear equations have then been solved by 

the central difference approximations which involves selecting a uniform mesh that consists of a 

network of rectangles of width ∆t and height	∆y  as shown 

y 

     

     

     

     

     

     

∆y     

																								∆t						Figure 2: Uniform Meshes t 
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Central difference approximation is defined by obtaining Taylor’s series expansions of y(x+h) 

and y(x-h) respectively as                                       

	y(x + h) = f(x) + hf (x) +
!

f (x) +
!

f (x)(1)                         and                                                                                                                          

y(x − h) = f(x) − 	hf (x) +
!

f (x) −
!

f (x)(2) 

To obtain first order differences subtract (2) from (1) giving                                                                   

f (x) = 	 ( ) ( ) + H. O. T																																																																																																																	 (3) 

Similarly to obtain second order differences add (1) to (2) to get 

f (x) = 	 ( ) ( ) ( ) + H. O. T																																																																																																							 (4) 

By takingf (x) 	= 	 	= U ,  	= 	 	= 	 θ , f (x) 	= 	 	= 	U´, 	
	

= 	
	

= 	θand 

setting∆t = ∆y		where	∆t = h	and	∆y = k		then		h = k 

thus we have 

∂ u
∂y = U = 	

y(x + h) + 	y(x − h) − 2f(x)
h + H. O. T 

																		= 	 	H. O. T																																																																																																										(5) 

	
= U = 	

, 	 , + H. O. T																																																																																																																(6) 
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= θ = 	 + H. O. T																																																																																																								 (7) 

	 = θ = 	 + H. O. T                                                                                                    (8) 

Substituting directlydifferent values of M, P  and E  in equations 2.6(4) and 2.7(8) make it too 

difficult to obtain their exact solutions analytically. Hence the equations are solved using central 

finite difference by substituting equations 3.0(5) and 3.0(6) in equation 2.6(4) to give 

+ v − M u + c + H. O. T = 0(9) 

Similarly substituting equations 3.0(7), and	3.0(8)in	equation		2.7(8)		give	 

=
	

+ E + E M u + H. O. T(10) 

where i and j refer to y and t respectively. 

The results generated from equations 3.0(8) and 3.0(10) using a central finite difference scheme 

are discussed and analyzed using tables and graphs.  
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CHAPTER FOUR 

4.0 RESULTS AND DISCUSSIONS 

The nonlinear differential equations 2.6(4) and 2.7(8) together with boundary conditions have 

been expressed in finite difference form and then solved using MATLABsoftware. The results on 

how Hartmann, Eckert and Prandtl Numbers affect velocity profiles and temperature distribution 

have been presented in tabular and graphical form. 

Table 1 below shows how the velocity of the fluid changes with distance away from the lower 

plate. It is noted that at y = 0.3, the values velocity change from 0.9110 forM = 0 to 0.8048 for 

M = 1.5  measured normally from the lower plate. When M = 0 means that magnetic force is so 

small compared to viscous force. An increase in the Hartmann number results due to the fact that 

magnetic force increases as viscous force decreases. This is so because heat flux is subjected 

normally from the lower plate. Consequently, asthe distance from the upper plate is increased 

downwards magnetic force also increases implying thatLorentz force is generated. This force 

opposes the fluid motion hence decelerating the flow. In turn adecrease in velocity profiles as 

Hartmann number increases is noted. Similarly, the boundary layer formedas the fluid flow along 

the x-direction is thicker at the trailing edge and thinner at theleading edge. As the fluid flows, 

some of it is sucked by the lower porous plate hence stabilizing the laminar and steady flow. It is 

clear that velocity of the fluid at the trailing edge is higher than that at the leading edge.  

When values of distance y in table 1 are drawn against corresponding values of velocity at 

different Hartmann numbers, the graphs in figure 3 below are obtained. The graphs reveal a 

similar trend as noted in table1.This implies that an increase in Hartmann number leads to a 

decrease in velocity profiles. 
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Table 1: Effect of different values of Hartmann on velocity distribution at h = 0.1 and C = 2 

At y 0.1 0.3 0.5 0.7 0.9 

U for M = 0 0.9871 0.9110 0.7537 0.5144 0.1924 

U for M = 0.5 0.9696 0.8724 0.7113 0.4824 0.1805 

U for M = 1 0.9533 0.8371 0.6729 0.4536 0.1698 

U for M = 1.5 0.9381 0.8048 0.6380 0.4276 0.1601 

 

The graphs corresponding to velocity profiles as per table 1 above are as shown in figure 3. 

 

Figure 3: velocity profiles at different values of Hartmann 
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 Further an investigation on how Hartmann Number affect temperature distribution has been 

carried out. At different values of y, respective values of temperature have been obtained when 

Hartmann number change from M=0.5 to M=1.5.The results are in table 2.It is noted that fluid 

particles flow at a higher kinetic energy near the upper plate and the energy decrease as distance 

is increased normally downwards. This implies that collision of fluid particles is higher near the 

upper plates thus causing high heat generation. As distance is increased downwards to the lower 

plate, kinetic energy decrease due increased viscosity hence reduces the heat generation. This 

means that temperature increase with increase in Hartmann number. For instance at y=0.3 the 

values of temperature change from 0.7580 to 0.9678 as Hartmann number change from M=0.5 to 

M=1.5respectively. It is noted that temperature changes in the same way for other values of 

y.This result indicates that temperature at any value of y increase with increase in Hartmann 

number. However, values of temperature reduce significantly as the distance from the trailing 

edge increases. This is due to the presence of Lorentz force that results from the application of a 

uniform transverse magnetic field normal to the plates.This force is resistive to the flow hence 

decelerates it. 

When temperature distribution is plotted against vertical distance y,a similar occurrence is noted 

in figure 4 as revealed in table2.  
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Table 2:  Effect of different values of Hartmann on temperature distribution 

when h = 0.01, P = 0.71 and		E = 0.2 

   At y 0.1 0.3 0.5 0.7 0.9 
 

θ	for	M = 0.5 0.9444 0.7580 0.4991 0.2266 
 

0.0304    

θ	for		M = 1.0 0.9931 0.8651 0.6091 0.2931 
 

0.0412   

θ	for	M = 1.5 1.0377 0.9678 0.7179 0.3611 
 

0.0526   

 

 The figure 4 below corresponds to results in table 2.It shows variation of temperature   with 

distance at h = 0.01, P = 0.71 and		E = 0.2 

 

Figure 4: Effect of Hartmann on temperature distribution 
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In addition a study on how changing Eckert number affect the distribution of temperature has 

been done. The results obtained have been presented in table3 and corresponding figure 5. As 

already sited kinetic energy of fluid particles is higher near the upper plate in relation to thermal 

energy difference across the boundary layer. However kinetic energy reduces as distance 

increases in a vertical direction whereas thermal energy difference across the boundary layer 

increases as distance increase in the same direction. This implies that there is more heat 

generation near the upper plate. This outcome reveals an increase in temperature with an increase 

in Eckert number.For instance at y = 0.3 temperature changes from 0.7088 for E = 0.5 to 

0.7966 forE = 1.5.  However as the flow progress in the x-direction, the fluid flow is retarded 

hence collision of particles is reduced. This cause a gradual fall in temperature as distance from 

the trailing edge increases. 

When different values of distance y in table 3are plotted against corresponding temperature 

values, figure 5 below is obtained. It is evidenced that at each Eckert number, temperature is 

higher near the origin and fallsgraduallythereafter. It is therefore generally clear that an increase 

in Eckert number results into an increase in temperature distribution. 

Table 3: Variation of Eckert on temperature distribution when h = 0.05, M = 0.2 and  P = 0.71 

    At y 0.1 0.3 0.5 0.7 0.9 

θ	for		E = 0.5 0.9221 0.7088 0.4490 0.1966 0.0256 

θ	forE =1.0 0.9476 0.7613 0.4991 0.2244 0.0298 

θ	forE  =1.5 0.9638 0.7966 0.5334 0.2438 0.0327 
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 The figure 5 below represents the table3 findings. In these graphs temperature varies with 

distance at h = 0.05, M = 0.2 and P = 0.71 for different values of Eckert numbers 

 

 Figure 5: Effect of different values of Eckert number on Temperature 
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Further an investigation on how varying Prandtl number affect the distribution of temperature 

has been carried out. The results collected have been represented in table4 and figure 6 

respectively. It is realized that temperature drops from 0.7658 when P = 0.4 to 0.6961 

whenP = 1.0 at y = 0.3 as revealed in table 4. Near the upper plate thermal diffusion is higher 

since temperature is high. As vertical distance from the upper plate increases downwards, kinetic 

energy reduces hence slowed rate of thermal diffusion in relation to viscous force. In addition, 

boundary layer grows thicker at the trailing edge and thinner at the leading edge due to viscosity. 

Thus thermal boundary layer thickness reduces in the flow direction. It is therefore noted from 

table 4 that a rise in Pandtl number lead to a decrease in temperature distribution because an 

increase in prandtl number means a slow rate in thermal diffusion. 

Graphs in figure 6 suitably agree with table 4 results that an increase in prandtl number leads to a 

fall in temperature distribution because thermal diffusion is gradually overcome by momentum 

diffusibility.  

Table 4: Variation of Prandtl Number on temperature distribution for h = 0.05,	E = 0.5  and        

M= 0.2 

At y       0.1     0.3       0.5       0.7     0.9 

θ	for	P = 0.4      0.9467     0.7658      0.5053      0.2287     0.0305 

θ	for	P = 0.7      0.9297     0.7305      0.4714      0.2097     0.0277 

θ	for	P = 1.0      0.9130      0.6961      0.4387      0.1915     0.0249 
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 The corresponding graphs for table4 above are as drawn in figure 6below. In the graphs 

temperature vary with a change in prandtl number at h=0.05,		E = 0.5   and M =0.2 

 

Figure 6: Effect of different values of Prandtl Number on temperature distribution 

 

    A summary of all these results is represented in the chapter to follow. 
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CHAPTER FIVE 

5.0 CONCLUSION 

Velocity profiles and temperature distribution on a steady flow of an incompressible, viscous and 

electrically conducting fluid in parallel horizontal plates in the presence of a uniform transverse 

magnetic field have been investigated. The effect of Hartmann, Eckert and Prandtl Numberson 

velocity profiles and temperature distribution has been carried out. It has been noted that an 

increase in Hartmann numbercauses a decrease in velocity profiles. However an increase in 

Hartmann number leads into an increase in temperature distribution. It is also revealed that an 

increase invalues of Eckert results into an increase in temperature distribution between the plates. 

Further an increase in Prandtl Number leads to a fall in temperature distribution.The p number is 

taken to be 0.71corresponding to air. 

5.1 RECOMMENDATIONS 

It is recommended that an extension of this work be done on the following areas; 

1. Two parallel plates inclined at an angle one porous and the other impulsively started 

under transverse magnetic field. 

2. Two parallel verticalplates one porous and the other impulsively started under constant 

heat flux. 
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